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Abstract

We present an approach for producing articulated
motion for human from a sequence of 3D points form-
ing the volume of a human. In our approach, we use
an existing voxel carving technique for collecting point
volumes consisting of a single individual. We propose
a volume-to-posture procedure based on the estimation
of a skeleton curve. A skeleton curve is a underlying
“wire” structure for the volume is approximated us-
ing a technique we developed, called nonlinear spher-
ical shells. Nonlinear spherical shells uses Isomap, a
nonlinear dimension reduction function, with cluster-
ing, and interpolation to find points for the skeleton
curve of the captured volume. Using the volume and
the skeleton curve, we find rigid bodies for the volume
that conform to a given hierarchy and convert the con-
figuration of these bodies into a kinematic posture.

1 Introduction

The ability to collect information about people
habitating a certain environment is a familiar prob-
lem in computer vision and can be useful for a variety
of applications. Typical applications of human activity
sensing include surveillance of an area for various types
of behavior, perceptual user interfaces for intelligent or
interactive spaces, and collection of data for later anal-
ysis or processing. However, the type of data provided
from sensing techniques may not be readily amenible
for use in such an application. Our aim in this work
is to provide a bridge between reasonable representa-
tions for sensed human data and human data useful
for further applications and analysis.

In order to address this problem, we must first state
our expectations for both the sensing and applica-
tion data representations. Towards the end of activity
recognition, we expect the sensed data to provide a
representative description of an unmarked and unin-

strumented human. More to the point, the sensed
data representation should not rely on obtrusive sens-
ing mechanisms, even if the humans are actually in-
strumented. For applications, we expect data repre-
sentation to provide a familiar and relatively intuitive
specification of human motion.

Fortunately, suitable representations for both
sensed and application human data are readily avail-
able. Through passive sensing (e.g., cameras) and
techniques such as voxel carving [9], a sampling of
3D points comprising the volume of a human can be
readily sensed, even at interactive rates. This rep-
resentation is also desireable because various types of
passive sensing technologies have the potential for pro-
ducing data in this representation. For the applica-
tion data, we will represent human motion using a
kinematic model, assuming only the topology of the
rigid links. Kinematics is standard representation of
articulated motion in many applications, including hu-
manoid robotics and character animation.

In this paper, we present an approach, outlined in
figure 1, for deriving kinematic motion and rigid link
parameters from a sequence of 3D point volumes of
a human. The core of our approach is a volume-to-
posture procedure that is applied to each volume in the
squence. The volume-to-posture procedure takes as in-
put a set of 3D points representative of the sensed hu-
man and procduces an estimation of the length, width,
and joint angle parameters of each rigid link in a known
kinematic topology.

Our approach is similar to work by Mikic et. al. [8]
in that both methods are converting a volume of points
into human kinematics. However, their approach is
based on statistical tracking of a body model initial-
ized by fitting a known human body template to the
first frame of motion. In contrast, our approach fo-
cuses on the geometric characteristics of the volume
by introducing an intermediate step of finding princi-
pal curves, called nonlinear spherical shells. We treat
a set of principal curves, formed into a skeleton curve,
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Figure 1: The outline of our appraoch. A human
viewed in multiple cameras (1) is used to build a point
volume (2). This volume is transformed into a topol-
ogy accentuating embedding (3). A skeleton curve (4)
are found in this embedding and interpolated back to
the input space (5). The skeleton curve allow for the
fitting of body parts (6). The kinematic posture is
generated from these world-space body parts (7).

as the underlying structure of the volume, similar to a
wire frame support structure embedded in a soft model
or puppet. This skeleton curve serves as a guide for
dividing the points of the volume into body parts. We
are then able to construct postures from these body
parts. By constructing the skeleton curve, we (i) can
derive accurate kinematic postures for each frame in a
motion sequence due to the relative speed of nonlinear
spherical shells (ii) have the potential to extend our
approach to derive the kinematic structure of various
creatures with unknown kinematic topologies.

We have implemented a working system of our ap-
proach. We demonstrate the usefullness of our imple-
mentation by applying point volume sequences of dif-
ferent human motion. The derived kinematic motion
was exported to a standard motion capture format and
used to actuate the upper-body of a 20 DOF dynamic
humanoid simulation.

2 Volume Capture

In this section, we describe our implementation of
an existing volume capture technique using multiple
calibrated cameras. While not the focus of our work,
this implementation does provide an adequate means
for collecting input volume data. This implementa-
tion is derived from the work of Penny et. al. [9] for
real-time volume capture; however, several other ap-
proaches are readily available. In our capture setup,
we place multiple cameras around three sides of a hy-

pothetical rectangular volume, such that each camera
can view roughly all of the volume. This rectangular
volume is a voxel grid that divides the space in which
moving objects can be captured.

The intrinsic and extrinsic calibration parameters
for the cameras are extracted using Camera Calibra-
tion Toolbox designed by [2]. The intrinsic parameters
such as skew and distortions coefficients enable us to
compensate the image distortions. The extrinsic pa-
rameters provide a common world coordinate system
to relate the viewpoint of each camera to the voxel
grid. With these parameters, given an arbitrary point
coordinate in 3D space, we can easily calculate the
pixel coordinate on the four image planes that the
point projects to. Given this capability, we precom-
pute a lookup table relating each voxel to its corre-
sponding pixel location in each camera image.

For each set of synchronized camera images, silhou-
ettes of active objects in the voxel grid are segmented
in each image and used to carve the voxel grid. The
segmentation of camera images into silhouettes is per-
formed by our implementation of an algorithm pro-
posed in [4]. Each voxel in the grid can then be deter-
mined to be part of an active object or not by count-
ing and thresholding the number of camera images in
which it is part of a silhouette. One set of volume data
is collected for each set of synchronized images and is
stored for offline processing.

Our implementation of the image processing and
volume capturing algorithm is not perfect, but is also
not the focus of our work. Consequently, some silhou-
ette images or volume data may need manual mod-
ification before used in the following motion capure
algorithm. We discuss some of the shortcomings in
this implementation within Section 5.

3 Skeleton Curve Determination for
Human Volumes

The first step of our volume-to-posture procedure
is to estimate a set of points that reside on the prin-
cipal curves of the volume. The definition of principal
curves can be found in [5] or [6] as “self-consistent”
smooth curves which pass through the “middle” of a
d-dimensional data cloud, or nonlinear principal com-
ponents. Our procedure ignores the necessary smooth-
ness properties and focuses placing approximate prin-
cipal curves through the middle of the volume, similar
to a wire spine or support structure of a puppet. These
curves will be of significant use in our ability classify
voxels into body parts such as head, torso and limbs.

Even though the volume data in each frames will
be different due to kinematic motion, the underly-
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ing topological structure of the kinematics remains
the same. We use this assumption for our principal
curve approximation approach called nonlinear spher-
ical shells.

With this concept in mind, we first apply Isomap
[10], a nonlinear dimension reduction algorithm, to
volume data of each frame. The purpose of using
Isomap is to transform the volume data such that the
effect of joint angles are removed and the underly-
ing topology of the volume is preserved. In applying
Isomap, we only need to specify the d dimensionality
of the embedding and a function for determining a lo-
cal neighborhood of points. An example result from
an Isomap embedding of a volume is shown in Figure
2.

The embedded point volume will be roughly zero-
centered in the transformed space, i.e., the origin of the
embedding is located roughly at the waist of the vol-
ume. The “posture” of the embedded volume assumes
a “da Vinci” like pose, with the arms and legs streched
straight and outward from the embedding origin.
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Figure 2: Volume data in original 3D space (left) and
Volume data in dimensionally reduced feature space.
The dimension of the feature space is set to 3 (right)

We can then leverage volumes embedded in this

manner by splitting the embedded points into concen-
tric spherical shells. A series of concentric spheres are
placed on the embedded volume data, centered at the
zero mean. These concentric spheres divide the vol-
ume data into spherical shells as shown in (Fig.3). Be-
cause the embedded volume takes on the “da Vinci”
pose, the concentric spheres will provide good slices
of the limb extremeties and distinguishable mid-body
features. The points within each spherical shell are
isolated and bounding box clustering, as in [3], is used
on each shell to divide the points. Each cluster repre-
sents a limb and the centroid of each cluster is com-
puted. The cluster centroids are considered as points
on a principal curve associated with the points of the
cluster.

The appropriate number of spherical shells and
their size is dependent on the resolution of voxel grid.
More shells will not necessarily provide better princi-
pal curves. If the interval between shells is less than
the voxel resolution, many shells will contain zero or
very few voxels and erratic principal curves will be
produced.
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Figure 3: Shells placed on the feature space data

By linking principal curve points of overlapping
clusters on adjacent spherical shells, a tree structure
of principal curve points results, as shown as (Fig.4).
We use this tree structure to help use classify voxel
into rigid body parts in the next section.

The structure of the estimated principal curves may
not immediately useful due to a variety of artifacts.
We use a refinement procedure to prune and merge
subtrees in the principal curves into a useful skeleton
curve.

The refinement procedure begins by merging small
branches that occur due to noise or smaller parts of
the body (e.g., hands and feet). This operation should
result in only 5 remaining leaves in the skeleton curve.
Next, a new root node is formed by nodes for shells in
the middle of the body with no articulation, i.e., a sin-
gle encompassing cluster. Decendants of this root node
that are also ancestors of limb branches are merged

3



−20 −15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

Student Version of MATLAB

Figure 4: The initial tree structure from shell clusters

into a single branch node (e.g., chest and pelvis nodes).
This following pseudocode describes in more detail the
refinement procedure.

PROCEDURE Adjust_Tree_Nodes
BEGIN
// Clip the noise branch and merge leaves of
// palms and feet
FOREACH node n IN tree t
IF n.child > 2
IF all of n.child have depth <= threshold
merge all children of n into one node

ELSE
FOREACH c IN n.child AND
c.depth <= threshold
clip_subtree(c);

END
END

END
END

// Merge root clusters until reach
// first branch
n = t.root;
WHILE n.child == 1
merge_node(n.child, n);

END

// Merge nodes in the chest or pelvis
FOREACH leaf p IN tree t
WHILE p.child == 1 OR p.parent != t.root
p = p.parent;

END
// p is the root of the limb subtree after
// the loop
WHILE p.parent != t.root
merge_node(p, p.parent);

END
END

END

Once points skeleton points are found in the embed-
ded space, we then use radial-basis function weighted
averages (local neighborhood) [1] to interpolate skele-
ton points to the original input space volume, main-
taining the same tree-structure. Because each node
in the principal curve represents a cluster of points,
merged nodes are repositioned using the centroid of
the points in the merged clusters. A sample skeleton
curve is shown in (Fig.5).
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Figure 5: The resulting tree structure in feature space
(left) and in original data space (right)

4 Kinematic Posture Estimation

The last part of the volume-to-posture procedure is
the skeleton curve to find rigid body parts and their lo-
cal transformations in the kinematic hierarchy. Using
the five leaf skeleton curve as a guide, we can divide
the volume points into rigid bodies and determine the
kinematic posture of the human. The skeleton curve
has five leaf branches. The shortest of these branches is
classified as the head. The branches closes to the head
branch are classified as arms, leaving two remaining
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leg branches. Volume points are separated into one of
these branches, the chest branch, the pelvis branch, or
the root torso based on their cluster association to a
skeleton curve point.

The head branch of the skeleton curve is used to
fit a sphere to the points of the head branch. The
center of the head sphere is determined by merging
the skeleton curve points of the head branch. The ra-
dius of the head sphere is determined by the largest
distance between its center and a head volume point.
Volume points residing within this sphere are reasso-
ciated to the head, regardless of their previous classi-
fication. (Fig.6)
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Figure 6: Segmentation of the head volume points

Next, a cylinder is grown to fit the root torso using
a cylinder. The vector between the chest and pelvis
nodes is the axis of the cylinder. To initialize the cylin-
der, the height and radius are set to bound the voxels
of the root torso. The top of the cylinder is extended
to meet the head sphere. The bottom of the cylinder
is extended to bound the points of the pelvis. (Fig.7)
Voxels that fall within the cylinder are reassociated to
the torso regardless of their previous classification.

Unlike the head and torso, the arm and leg limb
branches will require a slightly more sophisticated fit-
ting procedure because they contain a two body artic-
ulation. This fitting procedure will place two cylinders
on a limb for the upper and lower parts of the extrem-
ity. The procedure begins by ingoring the section of
the skeleton curve residing within the torso cylinder.
The last skeleton point of each limb branch within the
torso cylinder is used as the placement of the limb root,
such as the hip or shoulder joint.

The division of the volume points for a limb is de-
termined by a separating skeleton point, having the
maximum distance from the line segment connecting
the limb root and the leaf of the limb branch. If this
maximum distance falls below a threshold, the limb is
extended straight, exhibiting no articulation. Limbs
in this configuration cannot be divided into upper and
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Figure 7: Initial and final segmentation of torso points

lower parts without additional assumptions or infor-
mation. If the threshold is exceeded, the volume points
of the limb are divided by a separating plane placed
at the separating skeleton point. The upper and lower
parts of the limbs have cylinder axes for line segments
connecting the root limb, separating point, and leaf
branch. The separating plane is oriented such that
the angle formed between the cylinder axes is divided
equally. The cylinder radius is determined by the av-
erage of the distance between “surface” volume points
and the cylinder axis.

An example division of the volume points into rigid
body parts is shown in (Fig.9).

After applying the rigid body fitting procedure for
each individual frame, a second pass across the frames
is used to correlate the rigid bodies across time. The
second pass determines static radius and length values
for the rigid bodies and consistent labels for each limb.
The radius and length of each rigid body is determined
from its average value in all frames in which produce
distinct articulations. Limb values in postures with-
out articulations are not included in the averaging.
Limbs are provided with a consistent labeling, such
as “arm1”, using the sum of squares distance between
rigid body locations in adjacent frames for correspon-
dence. Semantic labels for “right” and “left” are not
applied to the limbs.

The rigid bodies represented in world coordinates
are converted into local coordinates with respect to
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Figure 8: Segmentation of an arm points into upper
and lower parts.

their parent in the kinematic hierarchy. More specifi-
cally, the torso is expressed in world coordinates, the
head and upper limb bodies are expressed with respect
to the torso, and the lower limb bodies are expressed
with respect to their corresponding upper limb body.
The origins of the torso and the head are located at
the center of the body geometry. The origins of the
upper and lower limb bodies are located at the limb
roots and limb separating points, respectively.

The Z axis of each local coordinate system is defined
by the cylinder axis of the rigid body. The positive di-
rection of these axes points toward the head for the
torso and outward from the torso for upper limb bod-
ies, and outward from the separating point for lower
limb bodies. The Z axis of the head is the vector dif-
ference of the upper most point of the torso cylinder
axis from the center of the head.

The X axis of the torso is the cross product of the
Z axis and the vector formed between the two shoul-
der points. Given the defined torso coordinate system,
child bodies in the kinematics can determine their X
axes by the cross product of X axis of their parent and
their own Z axis. If these axes are parallel, an offset
of the parent X axis is used in the cross product. Y
axes can then be determined simply through the cross
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Figure 9: The fitting of cylinders and spheres to a
human volume

product of it respective X and Z axes. Joint angles
are then determined from the rotational transforma-
tion between each child body and its parent.

5 Results and Discussion

In this section, we discuss the implementation of
our approach and present our results from capturing
various kinematic motions. The entire implementation
was developed and executed on a 350 MHz Pentium
with 128 GB of memory. The voxel carving proce-
dure was implemented in Microsoft Visual C++ for a
80× 80× 50 grid of 50mm3 voxels. Images were taken
from four Marshall V-1246-T CCD camera and cap-
tured by an Imagenation PXC200 framegrabber. Us-
ing the Intel Image Processing Library, volumes were
captured in interactive-time, approx. 10 Hz.

Our voxel carving procedure was used to capture
point volume sequences of a human marching, waving,
and jumping jacks, shown in figure 10. These mo-
tions were selected because they exhibit the expected
kinematic articulation. Each sequence consisted of ap-
proximately 50 frames.

The skeleton curve and kinematic posture estima-
tion procedures were implemented in Matlab, as shown
in figure 10. For Isomap, we an epsilon distance radius
of (50mm3)1/2 produce an embedding that accentu-
ates the underlying kinematics, but does not reduce
dimensionality. For concentric spherical shells, the em-
bedded volume is divided into 25 shells and the bound-
ing box clustering threshold is set to 1/25th of the diag-
onal of embedded volume bounding box. For all of the
volume sequences, the estimated skeleton curves and
kinematic postures accurately reflected the underlying
posture of the captured human. The estimated kine-
matic motion of each sequence was exported to Bio-
vision BVH motion capture files, specifying the Euler
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angles for each posture. Each exported motion used as
desired joint space trajectory for controlling a 20 DOF
dynamically simulated humanoid torso, Adonis [7].

Our approach and implementation provide a useful
system for markerless human motion capture, but has
certain limitations. One such limitation is imposed by
the quality of the volumes produced from the sensing
human. Our current multi-camera system is rather un-
refined. We use relatively low quality (but affordable)
cameras, placed in a non-optimal configuration due to
lab space constraints. Because image segmentation is
not our focus, our background subtraction is a rough
version of [4]. These factors manifest themselves in the
sensed volume through erroneous shadow voxels on the
floor and “ghost voxels”. A ghost voxel is erroneously
activated due to pixels viewing different objects that
fuse in persepective projection. To account for these
problems, we clean up the raw volume through offline
procedures such as removing floor voxels and using the
single largest connected component in the grid, in ad-
dition to manual clean up. The volume sensing has
much room for accuracy and speed improvments.

Our current implementation also has a limitation
the N number of volume points that can be processed.
In order to perform nonlinear embeddings, Isomap per-
forms an eigenvalue decomposition on an N ×N ma-
trix. If N exceeds roughly 3000 points, Matlab will
not complete the Isomap procedure due to memory
constrints. In addition, the execution of Isomap typi-
cally accounts for 90 percent of the processing in the
volume to posture conversion. Even though the vol-
ume conversion process is not slow (60 to 90 seconds),
we would like to make the procedure as fast as possi-
ble. We reduce the effect of these limitations in two
ways. One, we can use a subset of the sensed volume
points. Two, Isomap provides the use of landmarks in
order to use an M ×N , where M < N .

An additional benefit to using our volume to pos-
ture conversion is potential to derive kinematic models
and postures from volumes with arbitrary topologies.
Furthermore, our approach can be extended to extract
tree structured kinematics for volumes that indicate
the presence of cycles.

6 Conclusion

We have presented a method for converting se-
quences of human point volumes sensed from cali-
brated multiple cameras into kinematic human mo-
tion. We introduced a new method for finding princi-
pal curves from volume data. These principal curves
enabled us to classify volume points into rigid bodies
and determine kinematic information about the input
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Figure 10: Results from processing motions for wav-
ing, walking, jumping jacks (rows). The results are
shown as a snapshot of the performing human, the
sensed point volume, and the derived kinematic pos-
ture (columns).

volume. We demonstrated the potential for uninstru-
mented robotic teleoperation by actuating motion pro-
duce by our system on a huanoid torso simulation.
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