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Abstract

A method for constructing sets of matrices that pairwise commute is presented. The sets are defined such that each

matrix is a combination of basic matrices. An iterative algorithm is given, where the construction approach aims

to obtain appropriate basic matrices. A numerical example illustrate the proposed method.
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1. Introduction

Commuting matrices is an active topic both in pure and applied mathematics. They appear in a variety of appli-

cations in physical and general sciences (McCarthy & Shalit, 2013; Bourgeois, 2013; De Seguins, 2013; Ogata,

2013; Shastry, 2011; Yuzbashyan & Shastry, 2013), where several theoretical and numerical works on differential

equations, matrix polynomials equations and general matrix equations get some properties of scalars (Brewer et

al., 1986; Gohberg et al., 1982). In such contexts sets of matrices which pairwise commute are needed in numerical

experiments. However, examples with commuting matrices often appear in works where commutativity is not the

primary concern (Tisseur & Meerbergen, 2001; Higham & Kim, 2001; Guo et al., 2009; Han & Kim, 2010).

The classical way to obtain matrices that commute in pairs is to consider the solutions of equation AX = XA. In

such case any two solutions of this equation commute if and only if the matrix A is nonderogatory (Gantmacher,

1960). Probably the most simple method for practical experiments is to consider the polynomials of a matrix B
(Dennis & Weber, 1978), in the same way we have that two polynomials in B commute if and only if the matrix

B is nonderogatory. Besides that, although there are works dealing with rings and other algebraic structures of

commuting matrices, these are not of ease manipulation for numerical purposes (Suprenenko, 1968; Song, 1999;

Britnell & Wildon, 2011).

Our objective here is to present a method for constructing sets of commuting matrices. Summarizing the remainder

of this paper, in section 2 we develop the support theory, in section 3 we state the method and in section 4 we give

a numerical example together with some practical considerations.

2. Support Theory

We consider the set of complex matrices of order n

Vnk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v11 v12 . . . v1n

v21 v22 . . . v2n
...

...
. . .

...
vn1 vn2 . . . vnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, vi j =

k∑
l=1

α(i j)l yl

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

where vi j are multivariate linear polynomials in y1, y2, . . . , yk ∈ C, with coefficients α(i j)l ∈ C, i, j = 1, . . . , n and

l = 1, . . . , k (Rosa et al., 2008).

Alternatively we can write this set as

Vnk = {y1A1 + y2A2 + . . . + ykAk : y1, y2, . . . , yk ∈ C} ,
where Ai are n × n complex matrices, we call them the basic matrices of the setVnk .
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Example 1 Let

V23
=

{[
y1 − 2y2 −y1 + y2 − 4y3

2y1 + 3y2 + y3 y1 + 4y2 + y3

]}
.

We can also write

V23
= {y1A1 + y2A2 + y3A3} ,

in which

A1 =

[
1 −1

2 1

]
, A2 =

[ −2 1

3 4

]
and A3 =

[
0 −4

1 1

]
.

Our concern is with the case when any two elements of the setVnk commute, that is whenVnk is a commuting set.

Conditions for this in terms of the basic matrices are stated next.

Proposition 1Vnk = {y1A1 + y2A2 + . . . + ykAk } is a commuting set if and only if

AiA j = AjAi,

for i, j = 1, . . . , k.

Proof. (⇐) Suppose that AiAj = AjAi, for i, j = 1, 2, . . . , k.

Given A, B ∈ Vnk , then there are α1, α2, . . . , αk and β1, β2, . . . , βk, such that

A = α1A1 + α2A2 + . . . + αkAk and B = β1A1 + β2A2 + . . . + βkAk.

Hence,

AB =
k∑

i=1

k∑
j=1

αiβ jAiA j and BA =
k∑

j=1

k∑
i=1

β jαiA jAi.

From AiAj = AjAi, i, j = 1, 2, . . . , k, it follows that αiβ jAiA j = β jαiA jAi, then AB = BA.

(⇒) For Ai and Aj, i � j, consider

A = 0A1 + 0A2 + . . . + Ai + . . . + 0Aj + . . . + 0Ak and B = 0A1 + 0A2 + . . . + 0Ai + . . . + Aj + . . . + 0Ak.

Hence,

AB = AiAj and BA = AjAi.

By hypothesisVnk is commuting, so AB = BA, then AiAj = AjAi, i, j = 1, 2, . . . , k. �
Example 2 Let

V32
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 + 21y2 4y1 − 24y2 y1

3y1 − 24y2 2y1 + 21y2 y1

24y2 − 5y1 4y1 − 24y2 7y1 − 3y2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We can also write

V32
= {y1A1 + y2A2} ,

where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 4 1

3 2 1

−5 4 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
21 −24 0

−24 21 0

24 −24 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
are commuting matrices, thenV32

is a commuting set.

Next we inspect some basic facts related with a commutingVnk .

If A is nonderogatory then the solution set of AX = XA is a commuting setVnn , which is closed under the product

operation. This is illustrated in the following example.

Example 3 Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0 0

−2 0 1 0

2 0 0 1

−2 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
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A is nonderogatory matrix. If we consider

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

and we choose x14, x24, x34 and x44 as arbitrary parameters, then the solution set of AX = XA is

V44
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x24 + 2x34 + x44 x14 + 2x24 + x34 2x14 + x24 x14

−2x24 − 2x34 −2x14 − x24 + x34 + x44 −2x14 + x24 + x34 x24

2x24 + 2x34 2x14 + x24 2x14 + x34 + x44 x34

−2x24 − 2x34 −2x14 − 2x24 − x34 −2x14 − x24 − x34 x44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

which is a commuting set closed under the product.

On the other hand, it can be verified that the commuting set

V33
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3

0 x1 0

0 0 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

is not a solution set of any equation AX = XA. Furthermore, considering

V21
=

{[
0 x1

x1 0

]}
,

we also can conclude that there are commuting sets Vnk which are not closed under the product, that is, they are

not rings. Although such cases can be always completed to a set closed under the product, this is an important

issue to consider when dealing with commuting sets.

Now, we examine a crucial question: how many linearly independent matrices can a commuting setVnk have. The

answer to this is not new. Schur gave it a century ago (Schur, 1905). The maximum number of linearly independent

commutative n × n matrices is N(n) =
n2

4
+ 1, that is, the greater integer less than or equal to

n2

4
+ 1. Using our

notation, given a commutingVnk , for the basic matrices Ai, i = 1, 2, . . . , k, commute it is necessary that k ≤ N(n).

We use these in the development of our algorithm.

3. The Method

First we consider the set

E =
{
eieT

j : i, j = 1, 2, . . . , n
}

where ei is n × 1 with 1 in the ith position and zeros elsewhere.

Conditions for the set E be commuting are stated next.

Lemma 1 Let E =
{
eieT

j , i, j = 1, 2, . . . , n
}
, if Πa = egeT

h and Πb = ekeT
l are matrices of E, such that Πa � Πb,

then Πa commutes with Πb if and only if g � l e h � k.

Proof. We have that

eT
i e j =

{
1 if i = j
0 if i � j.

Thus, ΠaΠb = egeT
h ekeT

l and ΠbΠa = ekeT
l egeT

h . From Πa � Πb, we can conclude that ΠaΠb = ΠbΠa if and only if

g � l and h � k. �
We observe that given two elements of E, ei1 eT

j1
and ei2 eT

j2
, if each of them commutes with ei3 eT

j3
, then ei1 eT

j1
+ ei2 eT

j2
commutes with ei3 eT

j3
, even if ei1 eT

j1
and ei2 eT

j2
do not commute.

Let now

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

...
en

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

eT
1 eT

2 . . . , eT
n

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1eT
1 e1eT

2 . . . e1eT
n

e2eT
1 e2eT

2 . . . e2eT
n

...
...

. . .
...

eneT
1 eneT

2 . . . eneT
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)
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be an n2 × n2 block matrix, where the (i, j) block is eieT
j .

Using the matrix F we can determine all the matrices of the set E that commute with a given matrix eueT
v ∈ E.

Proposition 2 Let F be defined as above (1). Given a block eueT
v ∈ F, let H be the set of blocks eieT

j of the
submatrix resulting of F by deleting the block row v and the block column u, then ereT

s ∈ F, such that ereT
s � eueT

v ,
commutes with eueT

v if and only if ereT
s ∈ H.

Proof. Given a block eueT
v ∈ F, we have that

H =
{
ereT

s : r, s = 1, 2, . . . , n, r � v, s � u
}
.

Supposing r � v and s � u, it follows by Lemma 1 that eueT
v commutes with ereT

s if and only if ereT
s ∈ H. �

The set H will be used in the method. It has n2 − 2n elements if u � v; otherwise, if eueT
u is a diagonal block of F,

then H has n2 − 2n + 1 elements. Besides that not all of its elements commute in pairs.

The next algorithm is a successive application of Proposition 2.

Algorithm 1

1) Given n, let

2) s: = 0

3) Gs: =
{
eieT

j : i, j = 1, 2, . . . , n
}

4) d := 0

5) While Gs � ∅
5.1) Choose eueT

v ∈ Gs and let

5.2) s := s + 1

5.3) As := eueT
v

5.4) If u = v

5.4.1) d := d + 1

5.5) Gs := Gs−1 − (
{
ereT

s ∈ Gs−1 : r = v ∨ s = u
}
∪
{
eueT

v

}
)

If d = n

6.1) k := s

6.2)Unk := x1A1 + x2A2 + . . . + xsAs

If d < n

7.1) k := s + 1

7.2) As+1 := In

7.3)Unk−1
:= x1A1 + x2A2 + . . . + xsAs

7.4)Unk := x1A1 + x2A2 + . . . + xsAs + xs+1As+1

End.

If the matrices chosen from G0 are eieT
i , i = 1, 2, . . . , n, then the algorithm gives only one commuting set, otherwise

it gives two commuting sets, where in the second set As+1 is the identity.

The fact that the sets Unk and Unk−1
are commuting is a direct consequence of the matrices Ai pairwise commute.

We also observe that the set of basic matrices {A1, A2, . . . , As, As+1} is linearly independent. Besides that we have

the following.

Proposition 3 The setsUnk andUnk−1
are closed under the product operation.

Proof. Let A, B ∈ Unk−1
, then there exist scalars α1, α2, . . . , αk−1 e β1, β2, . . . , βk−1 such that A = α1A1 + α2A2 +

. . . + αk−1Ak−1 and B = β1A1 + β2A2 + . . . + βk−1Ak−1, we have that AiAj = 0 = AjAi, and then AB = 0 ∈ Unk−1
.

Consider now A′, B′ ∈ Unk , in a similar way, A′ = α1A1 + α2A2 + . . . + αk−1Ak−1 + αkIn and B′ = β1A1 + β2A2 +
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. . .+ βk−1Ak−1 + βkIn, so we write A′ = A+ αkIn and B′ = B+ βkIn, where A, B ∈ Unk−1
, from AB = 0, it follows

that

A′B′ = AβkIn + BαkIn + αkβkIn

= (α1A1 + . . . + αk−1Ak−1)βk + (β1A1 + . . . + βk−1Ak−1)αk + αkβkIn

= (α1βk + β1αk)A1 + . . . + (αk−1βk + βk−1αk)Ak−1 + αkβkIn,

then A′B′ ∈ Unk . �
4. Numerical Example

We implemented the algorithm in the Matlab. We use an auxiliary matrix to control the matrices of the set G0 that

make part of the commuting setUnk . The following example is for matrices of order n = 4 .

Consider

G0 =
{
eieT

j : i, j = 1, 2, 3, 4
}

and let

M0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

be an n× n matrix, where the 1s in the positions (i, j) represent the elements eieT
j of the set G0 that can be taken as

the matrices Al to construct the commuting set

Unk = x1A1 + x2A2 + . . . + xsAs.

We choose the element (1, 2) of M0, that is A1 = e1eT
2 as the first matrix, thus the row 2 and the column 1 of M0

are set to zeros, to represent the elements in G0 that were deleted to obtain G1. Furthermore, setting (M0)12 = 2 we

indicate that the respective element was already chosen and therefore is neither in G1. Hence we get

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 2 1 1

0 0 0 0

0 1 1 1

0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

In the same way the 1s in M1 represent the elements of G1, which are the available elements that commute with

A1, and therefore from those we have to pick the next one.

Choosing now the element (1, 3) of M1, that is A2 = e1eT
3 . Thus deleting row 3 and column 1 from M1 and setting

(M1)13 = 2, we obtain

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 2 2 1

0 0 0 0

0 0 0 0

0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Again the 1s represent the elements that commute with the matrices already picked, that are represented by the 2s.

Continuing, we choose the element (4, 2) of M2, then A3 = e4eT
2 , thus

M3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 2 2 0

0 0 0 0

0 0 0 0

0 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

and finally we pick the only one left, A4 = e4eT
3 . We can construct a commuting set with these elements

U44
=
{
x1e1eT

2 + x2e1eT
3 + x3e4eT

2 + x4e4eT
3 : x1, x2, x3, x4 ∈ C

}
,

or

U44
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 x1 x2 0

0 0 0 0

0 0 0 0

0 x3 x4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ : x1, x2, x3, x4 ∈ C

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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Adding the matrix I4 we obtain the second commuting set

U45
=
{
x1e1eT

2 + x2e1eT
3 + x3e4eT

2 + x4e4eT
3 + x5I4 : x1, x2, x3, x4, x5 ∈ C

}
,

or

U45
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x5 x1 x2 0

0 x5 0 0

0 0 x5 0

0 x3 x4 x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ : x1, x2, x3, x4, x5 ∈ C

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

The maximum number of matrices linearly independent inU45
is the Schur number

n2

4
+1 = 5 = k. This evidently

depends on the suitable choice we perform. We could get a lesser k, either with a different choice or stopping

the iterations before the set G be empty, this can be achieved including an option in step 5 of the Algorithm 1 to

terminate the iterations.

The setsUnk generated by the method have a very specific form. To obtain an aleatory form we can use a nonsin-

gular matrix S and thenVnk = SUnk S
−1 is also commuting. For example, from

U33
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 x3

0 x1 0

0 x2 x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

obtained by Algorithm 1, if

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 2

1 0 1

0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
then

V33
= SU33

S −1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 + x2 − x3 4x3 − x2 2x3

x2 − 2x3 x1 − x2 x3

−4x3 4x3 x1 + 2x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

is a commuting set with a different form from those generated by the algorithm.

As future prospects of the presented method, we cite the extensions to block versions, fact that will permit the

application of it to generalized matrices partitioned into commuting blocks, like the block companion and the

block Vandermonde, among others. Such matrices are linked to systems of higher order.

The authors want to thank the referees for the comments that helped to improve the paper.
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