
Introduction to
Software Engineering

Prof. Lyle N. Long

lnl@psu.edu

http://www.personal.psu.edu/lnl

What is Software Engineering

Sources of Material

Software Engineering, 7th Edition, by Ian
Sommerville

CSDP Exam Prep Course Notes, Richard
Thayer, 2005

For more info:

• AERSP 440 course, Software Engineering, by Lyle
Long

What is software?

Computer programs and associated documentation such
as requirements, design models and user manuals.

Software products may be developed for a particular
customer or may be developed for a general market.

Software products may be
• Generic - developed to be sold to a range of different

customers e.g. PC software such as Excel or Word.

• Custom - developed for a single customer according to their
specification.

New software can be created by developing new
programs, configuring generic software systems or
reusing existing software.

Software engineering

The economies of ALL developed nations are
dependent on software.

More and more systems are software controlled

Software engineering is concerned with theories,
methods and tools for professional software
development.

Expenditure on software represents a
significant fraction of GNP in all developed
countries.

Number of Jobs

Lockheed Martin (Feb. 2005)

708 Job Openings for recent graduates:

 167 in Systems Engineering (23 %)
 136 in Software Engineering (19 %)
 59 in Mechanical Engineering (8 %)
 56 in Information Technology (8 %)
 45 in Electrical Engineering (6 %)
 21 in Aerospace Engineering (3 %)

Software costs

Software costs often dominate computer system
costs. The costs of software on a PC are often
greater than the hardware cost.

Software costs more to maintain than it does to
develop. For systems with a long life,
maintenance costs may be several times
development costs.

Software engineering is concerned with cost-
effective software development.

What are the attributes of good software?

The software should deliver the required functionality and
performance to the user and should be maintainable,
dependable and acceptable.

Maintainability
• Software must evolve to meet changing needs;

Dependability
• Software must be trustworthy;

Efficiency
• Software should not make wasteful use of system resources;

Acceptability
• Software must accepted by the users for which it was designed.

This means it must be understandable, usable and compatible
with other systems.

Critical Systems

Safety-critical systems
• Failure results in loss of life, injury or damage to the

environment;

• Chemical plant protection system; Aircraft avionics & guidance

Mission-critical systems
• Failure results in failure of some goal-directed activity;

• Spacecraft navigation system;

Business-critical systems
• Failure results in high economic losses;

• Customer accounting system in a bank;

System dependability

For critical systems, it is usually the case that the most
important system property is the dependability of the
system.

The dependability of a system reflects the user’s degree
of trust in that system. It reflects the extent of the user’s
confidence that it will operate as users expect and that it
will not ‘fail’ in normal use.

Usefulness and trustworthiness are not the same thing. A
system does not have to be trusted to be useful.

Importance of dependability

Systems that are not dependable and are
unreliable, unsafe or insecure may be rejected by
their users.

The costs of system failure may be very high.

Undependable systems may cause information
loss with a high consequent recovery cost.

Development methods for critical systems

The costs of critical system failure are so high
that development methods may be used that are
not cost-effective for other types of system.

Examples of development methods

• Formal methods of software development

• Static analysis

• External quality assurance

Maintainability

Ease of repairing the system after a failure has been
discovered or changing the system to include new
features

Very important for critical systems as faults are often
introduced into a system because of maintenance
problems

Survivability

The ability of a system to continue to deliver its
services to users in the face of deliberate or
accidental attack

This is an increasingly important attribute for
distributed systems whose security can be
compromised

Survivability subsumes the notion of resilience -
the ability of a system to continue in operation in
spite of component failures

Dependability vs Performance

Untrustworthy systems may be rejected by their users

System failure costs may be very high

It is very difficult to tune systems to make them more
dependable

It may be possible to compensate for poor performance

Untrustworthy systems may cause loss of valuable
information

Dependability costs

Dependability costs tend to increase exponentially as
increasing levels of dependability are required

There are two reasons for this

• The use of more expensive development techniques and
hardware that are required to achieve the higher levels of
dependability

• The increased testing and system validation that is required to
convince the system client that the required levels of
dependability have been achieved

Costs of increasing dependability

C
os
t

Low Medium High Very
high

Ultra-high

Dependability

Dependability economics

Because of very high costs of dependability
achievement, it may be more cost effective to
accept untrustworthy systems and pay for failure
costs

However, this depends on social and political
factors. A reputation for products that can’t be
trusted may lose future business

Depends on system type - for business systems
in particular, modest levels of dependability may
be adequate

Elements of Software Engineering

Professionalism, economics, ethics
Software requirements
Software design
Software construction
Software testing
Software maintenance
Software configuration management
Software engineering management
Software engineering processes
Software engineering tools and methods
Software quality

Question:
Where does

programming
fit in?All these are covered on the IEEE CSDP Exam

Programming vs Software

Engineering

Programming Software Engineering

Programming without Software Engineering is
just hacking

IEEE Software Engineering Exam
(Certified Software Development Professional)

http://www.computer.org/certification/

Before taking exam, candidate needs:

• At least a B.S. degree

• A minimum of 9000 hours of software engineering experience

• Must adhere to code of ethics

Exam is 3.5 hours and is 180 multiple choice questions
(closed book)

Exam costs $450

Industry group prepares exam questions

I passed this exam in 2005, a very difficult exam….

The Software Crisis

A software failure is a software project that has
one or more of the following:

• Over budget

• Late

• Does not satisfy user needs or expectations
• Does not meet functional or performance requirements

• Does not meet quality requirements

Examples of Failures

State of California:

• $40M DMV project

• $44M Prison software system

• $100M State child support system

$10B FAA modernization project

UK tax filing system

THEY ALL FAILED !

The Software Crisis

“The construction of new software, which is pleasing to
both user and buyer and does not contain errors, is an
unexpectedly hard problem. It is perhaps the most difficult
problem in engineering today. Referred to as the
“software crisis,” it has become the longest continuing
crisis in the engineering world, and it continues unabated.”

W. W. Royce

1929 - 1995

What is causing software crisis?

Software requirements do not adequately describe user
needs or customer expectations
Project planning is frequently unrealistic, incomplete, or
ignored
Project cost and schedule estimates are underestimated
or established by management edict
Software quality is difficult to specify, design, and build-to
Software development progress is difficult to see, progress
is often unknown
Changes in requirements are not accompanied by
changes in software plans
Design is changed without changing requirements
Standards are not used or documented

How do we solve software engineering crisis?

Software Engineering

Software Crisis

“The tragedy of software engineering is not
that we don’t know how to plan and
conduct software projects, but that we
know how and just don’t do it….”

Richard E. Fairley

Software Crisis

“We can successfully build large
reliable systems. Software
engineering has worked!”

Ian Sommerville

2000

What is Software Engineering?

Software Engineering could be more accurately
called Software System Engineering, it builds
upon System Engineering

What is software engineering?

Software engineering is an engineering discipline
that is concerned with all aspects of software
production.

Software engineers should adopt a systematic
and organised approach to their work and use
appropriate tools and techniques depending on
the problem to be solved, the development
constraints and the resources available.

Developing software without using software engineering is like building
a car by just grabbing some tools and metal and building it.

What is the difference between software

engineering and computer science?

Computer science is concerned with theory and
fundamentals; software engineering is concerned
with the practicalities of developing and
delivering useful software.

Software engineering is closer to good business
practices than science

Computer science theories are still insufficient to
act as a complete underpinning for software
engineering (unlike e.g. physics and electrical
engineering).

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects
of systems development including hardware,
software and process engineering.

Software engineering is part of this process
concerned with developing the software
infrastructure, control, applications and
databases in the system.

System engineers are involved in system
specification, architectural design, integration
and deployment.

What is Software Engineering?

Practical application of computer science, management
techniques, and other skills to: design, construct, and
maintain software and its documentation

Systematic application of methods, tools, and techniques
to achieve a stated requirement or objective for software
system

Application of systems engineering to software
development

Uses engineering discipline to reduce problems of late
delivery, cost overruns, and failure to meet requirements

A means for communicating amongst stakeholders

System Engineering

Problem definition (requirements analysis)

Solution analysis (software design)

Process planning

Process control

Product evaluation (verification, validation, and
testing)

ATC system architecture Computer Program vs Software Product

A Program

A Software
System Product

A Programming
Product

(Documentation,
maintenance, testing, …

A Programming
System

(interfaces, system
integration, …3X

3X
9X… at least an order of
magnitude more work !!

Effort, Software Size, & Complexity

Size and Complexity

Effort

Without
Software
Engineering

With
Software
Engineering

Effort, Software Size, & Complexity

Size and Complexity

Effort

Procedural
(e.g. Fortran)

OOP
(e.g. C++)

This same figure applies to OOP vs procedural
programming

IEEE Software Engineering Standards

IEEE-Std 1074-1997

IEEE-Std 1012-1998

IEEE-Std 829-1998

IEEE-Std 830-1998

IEEE-Std 12207.0-1996

IEEE-Std 12207.1-1997

IEEE-Std 12207.2-1998

What is a software process?

A set of activities whose goal is the development or
evolution of software.

Generic activities in all software processes are:
• Specification - what the system should do and its development

constraints

• Development - production of the software system

• Verification – checking that the software meets the
requirements

• Validation - checking that the software is what the customer
wants or meets intended use

• Evolution - changing the software in response to changing
demands.

V&V = Verification and Validation

What is a software process model?

A simplified representation of a software process,
presented from a specific perspective.

Generic process models

• Waterfall;

• Iterative development;

• Component-based software engineering.

Life Cycle Models

CodingHacking (code and fix)

Risk ManagementSpiral

Exploratory DevelopmentEvolutionary

Evolving ProductIncremental

Project PhasesWaterfall (conventional)

Model EmphasisLife Cycle Model

Waterfall model

Spiral model of

requirements/design

What are the costs of software

engineering?

Roughly 60% of costs are development costs,
40% are testing costs. For custom software,
evolution costs often exceed development costs.

Costs vary depending on the type of system
being developed and the requirements of system
attributes such as performance and system
reliability.

Distribution of costs depends on the
development model that is used.

Activity cost distribution

What are the key challenges facing

software engineering?

Heterogeneity, delivery and trust.

Heterogeneity

• Developing techniques for building software that can cope with
heterogeneous platforms and execution environments;

Delivery
• Developing techniques that lead to faster delivery of software;

Trust

• Developing techniques that demonstrate that software can be
trusted by its users.

Professional and ethical

responsibility

Software engineering involves wider
responsibilities than simply the application of
technical skills.

Software engineers must behave in an honest
and ethically responsible way if they are to be
respected as professionals.

Ethical behaviour is more than simply upholding
the law.

Ethics vs Law

Ethics are personal code of behavior

Law is minimum standard imposed by society

Law represents will of majority (violation
punishable by government)

Ethics are suggested, not mandated (violation can
result in malpractice suit, loss of job, …)

Issues of professional

responsibility

Confidentiality
• Engineers should normally respect the confidentiality

of their employers or clients irrespective of whether
or not a formal confidentiality agreement has been
signed.

Competence
• Engineers should not misrepresent their level of

competence. They should not knowingly accept work
which is outside their competence level.

Issues of professional

responsibility

Intellectual property rights
• Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They
should be careful to ensure that the intellectual property of
employers and clients is protected.

Computer misuse

• Software engineers should not use their technical skills to
misuse other people’s computers. Computer misuse ranges
from relatively trivial (game playing on an employer’s machine,
say) to extremely serious (dissemination of viruses).

IEEE Computer Society Code of Ethics

The professional societies in the US have
cooperated to produce a code of ethical practice.

Members of these organisations sign up to the
code of practice when they join.

The Code contains eight Principles related to the
behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

Code of ethics - preamble

Software engineers shall commit
themselves to making the analysis,
specification, design, development, testing
and maintenance of software a beneficial
and respected profession. In accordance
with their commitment to the health, safety
and welfare of the public, software
engineers shall adhere to the following
Eight Principles:

Code of ethics - principles

1. PUBLIC
Software engineers shall act consistently with the public
interest.

2. CLIENT AND EMPLOYER

Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public
interest.

3. PRODUCT
Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

Code of ethics - principles

4. JUDGMENT
Software engineers shall maintain integrity and independence
in their professional judgment.

5. MANAGEMENT

Software engineering managers and leaders shall subscribe to
and promote an ethical approach to the management of
software development and maintenance.

6. PROFESSION
Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

Code of ethics - principles

7. COLLEAGUES

Software engineers shall be fair to and supportive of
their colleagues.

8. SELF

Software engineers shall participate in lifelong
learning regarding the practice of their profession
and shall promote an ethical approach to the practice
of the profession.

Ethical dilemmas

Disagreement in principle with the policies of
senior management.

Your employer acts in an unethical way and
releases a safety-critical system without finishing
the testing of the system.

Participation in the development of military
weapons systems or nuclear systems.

Key points

Software engineering is an engineering discipline that is
concerned with all aspects of software production.

Software products consist of developed programs and
associated documentation. Essential product attributes
are maintainability, dependability, efficiency and usability.

The software process consists of activities that are
involved in developing software products. Basic activities
are software specification, development, validation and
evolution.

Methods are organised ways of producing software. They
include suggestions for the process to be followed, the
notations to be used, rules governing the system
descriptions which are produced and design guidelines.

Key points

Software engineers have responsibilities to the
engineering profession and society. They should
not simply be concerned with technical issues.

Professional societies publish codes of conduct
which set out the standards of behaviour
expected of their members.

Summary

Software engineering developed out of necessity to handle
large software projects that cannot be handled by few
individuals using ad hoc methods
Goal is to develop software systems that:
• Satisfy technical requirements, user needs, and acquirer

expectations
• Are developed on time and on budget
• Are easy to modify and maintain
• Are developed with pride and personal satisfaction
• Fulfills all ethical and legal considerations

Good project management and software engineering
processes are required

