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Abstract

In a distributed database system, data replicas are
placed at different locations to achieve high data availabil-
ity in the presence of link failures. With majority voting
protocol, a location is survived for read/write operations if
and only if it is accessible to more than half of the repli-
cas. The problem is to find out the optimal placements for a
given number of data replicas in a ring network. When the
number of replicas is odd, it was conjectured by Hu et al.
that every uniform placement is optimal, which is proved
by Shekhar and Wu later. However, when the number of
replicas is even, it was pointed out by Hu et al. that uni-
form placements are not optimal and the optimal placement
problem may be very complicated. In this paper, we study
the optimal placement problem in a ring network with ma-
jority voting protocol and even number of replicas, and give
a complete characterization of optimal placements when the
number of replicas is not too large compared with the num-
ber of locations.
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1. Introduction

The distributed database systems [4, 8, 11, 12] are usu-
ally built in a network with certain topological structures.
Multiple copies of data are distributed at different locations
to increase the data availability. Such copies are called data
replicas. In presence of link failures, optimal replica place-
ment problem (ORP) is an important research problem in
distributed data systems. In ORP, one is to find a place-
ment of given replicas that maximizes the expected number
of locations that can access the data when some links fail.
Its solution depends on the data manage protocol and the
distribution of link failures.

The ORP is proved to be very difficult for general
networks. Nel and Colbourn [9] and Johnson and Taad
[7] independently showed that the ORP is #P-complete.
Stephens et al. [11] showed that the ORPs for read-only
system and write-dominant system are both NP-complete.

Suppose each link can fail independently with a same
probability ρ. Some works concentrate on the case when
ρ is small. For tree networks, Stephens et al. [12] derived
some necessary conditions for optimal placements. For ring
networks, Stephens et al. [11] showed that equally spacing
placements are optimal for read-only system, and grouping
placements are optimal for write-dominant system. In the
case of majority voting protocol, Hu et al. [6] conjectured
that every uniform placement is optimal for odd k. The
conjecture was proved by Shekhar and Wu [10]. However,
when the number of replicas is even, it was pointed out by
Hu et al. with counterexample that the uniform placement
may not be optimal and the ORP may be very complicated.
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In this paper, we study the ORP in a ring network
with majority voting protocol and even number of replicas,
and give a complete characterization of optimal placements
when the number of replicas is not too large compared with
the number of locations. When the number of replicas is
large, it is easy to see that the placement is dense. In this
case, the structure is not so concise as our main result (The-
orem 3.1).

Some other related works can be found in [2, 3, 5, 6] etc.

2. Preliminary and Terminology

Consider a ring network R(V,L) with n locations and
k data replicas. To control concurrency, suppose the sys-
tem employs the majority voting protocol [1, 13], that is, a
read/write operation must be performed on more than a half
of the k replicas. Thus, data can be ‘successfully’ accessed
at a location in this protocol if and only if the location is
accessible to more than half of the replicas. Such a location
is called a survived location.

Label the locations by 1, 2, ..., n clockwise. A placement
of a set of k (1 < k < n) replicas in R(V,L) is described
by a k-tuple [c1, c2, ..., ck] where the ith component ci is the
location of the ith replica.

Suppose each link can fail independently with a same
probability ρ. For a placement C, denote by E(C) the
expected number of survived locations and by NC(F ) the
number of survived locations when F is the set of failure
links. Then

E(C) =
n∑

i=0


 ∑

F⊆L,|F |=i

NC(F )


 ρi(1 − ρ)n−i.

For any placement C,
∑

F⊆L,|F |=0

NC(F ) = n,
∑

F⊆L,|F |=1

NC(F ) = n2,

which do not depend on C. When ρ is sufficiently small,
(∑

F⊆L,|F |=2 NC(F )
)

ρ2(1 − ρ)n−2

� ∑n
i=3

(∑
F⊆L,|F |=i NC(F )

)
ρi(1 − ρ)n−i.

Therefore, for sufficiently small ρ, to find a placement to
maximize E(C), it suffices to maximize

f(C) =
∑

F⊆L,|F |=2

NC(F ).

So, we shall call a placement C which maximize f(C) to
be optimal.

Next, we introduce some terminologies used in this pa-
per. For two locations u and v, we use (u, v) to denote

the path between u and v clockwise, and call (u, v) a seg-
ment. The length of (u, v) is the number of edges in (u, v),
denoted by d(u, v). A segment containing at least t + 1
replicas is called a survived segment. For two replicas ci

and cj , the segment (ci, cj) is called an interval, ci and cj

are the left- and right-bounds of the interval, respectively.
An interval bounded by two consecutive replicas such as
(ci, ci+1) is call a gap of C. If a gap (ci, ci+1) is of length
1, then call it a small gap, otherwise call it a big gap. A
small gap (ci, ci+1) is a max-small-gap if (ci−1, ci) and
(ci+1, ci+2) are both big gaps. An interval consisting of
consecutive small gaps is called a 1-interval. A maximal
1-interval (cp, cq) (with respect to inclusion) is said to be a
max-1-interval if (cp+t, cq+t) is not ’properly’ contained in
another 1-interval, that is, there does not exist a 1-interval
(cp′ , cq′) such that p′ < p + t and q′ > q + t.

3 Main Results

In this section, we study ring network R = (V,L) with
majority voting protocol and even number of replicas. De-
note by n = |V |, and 2t the number of replicas in R. Our
main result is as follows.

Theorem 3.1. Let R = (V,L) be a ring network with n
locations and 2t replicas, n > 5t for odd n and n > 4t
for even n. When t is odd, write t = 2m − 1, when t is
even, write t = 2m. Let T = (m − 1)n + t and a = �T/t�
when t is odd, a = �T/(t − 1)� when t is even. For a
placement C = (c1, c2, ..., c2t), write �j = d(cj , cj+t) (j =
1, 2, ..., 2t). Then C is optimal if and only if the following
conditions are satisfied:

For odd t (see Fig. 1 (a)), there is a pairing of replicas
{c1, c2}, {c3, c4}, ..., {c2t−1, c2t} such that

(a1) for j = 1, 2, ..., t, (c2j−1, c2j) are small gaps and
(c2j , c2j+1) are big gaps, where ‘+’ is taken as modulo 2t;

(a2) elements in {�1, �3, ..., �2t−1} can only take the val-
ues of a and/or a + 1;

For even t (see Fig.1(b)), except for four replicas, say
c2t, c1, c2, ct+1, there is a pairing for all the other repli-
cas as {c3, c4}, {c5, c6}, ..., {ct−1, ct}, {ct+2, ct+3}, ...,
{c2t−2, c2t−1} such that

(b1) the above pairs form small gaps, (c2t, c1), (c1, c2)
are small gaps, and all the other gaps are big;

(b2) elements in {�3, �5, ..., �t−1, �t+2, ..., �2t−2, �2t}
can only take the values of a and/or a + 1;

(b3) �1 = n/2.

For any two locations x and y, define

s(x, y) =
∑

|F |=2,F⊆(x,y)

NC(F ).
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Figure 1. Illustration of optimal placements.

Lemma 3.2. Let C = [c1, c2, ..., c2t] be a placement, and
x, y be two locations. If there are less than t replicas in the
segment (x, y), then

s(x, y) =
(� − 1)�(3n − � − 1)

6
,

where � = d(x, y).

Proof. Consider an F ⊆ (x, y). Suppose F =
{(u, v), (u′, v′)} with v ≤ u′. Then the survived segment is
(v′, u). So NC(F ) = d(v′, u)+1 = d(y, x)+�1+�2+1 =
n− � + �1 + �2 + 1, where �1 = d(x, u) and �2 = d(v′, y).
Note that �2 + �1 + 2 ≤ �, the result follows from

s(x, y) =
�−2∑
�1=0

�−2−�1∑
�2=0

(n − � + 1 + �1 + �2)

Lemma 3.3. Let C = [c1, c2, ..., c2t] be a placement. Then

f(C) =
2t∑

i=1

s(ci, ci+t) −
2t∑

i=1

s(ci, ci+t−1).

Proof. This follows from the observation that each F with
|F | = 2 is contained in k of (ci, ci+t)’s if and only if it is
contained in k − 1 of (ci, ci+t−1)’s.

Lemma 3.4. Let C = [c1, c2, ..., c2t] be an optimal place-
ment. Then for any i = 1, 2, ..., 2t, either (ci, ci+1) or
(ci+t, ci+t+1) is a small gap.

Proof. Denote by xj = d(cj , cj+1). Then
∑2t

j=1 xj =
n. Fix x1, ..., xi−1, xi+1, ..., xi+t−1, xi+t+1, ..., x2t and
let xi, xi+t vary with the restriction that xi + xi+t =
n − ∑2t

j=1,j �=i,i+t xj
∆= x (note that x is a constant). Then

f(C) as formulated in Lemma 3.3 can be viewed as a func-
tion on variable xi. By Lemma 3.2, it can be calculated that

d2

dx2
i

f(C) = xi + xi+t > 0.

Hence, f(C) is a strictly convex function on xi. Since 1 ≤
xi ≤ x − 1, f(C) takes the maximum value at xi = 1 or
xi = x − 1. In the latter case, xi+t = 1.

Lemma 3.5. Let C = [c1, c2, ..., c2t] and C ′ =
[c1, ..., ci+t−1, ci+t − 1, ci+t+1, ..., c2t] be two placements.
Suppose d(ci−1, ci) ≥ d(ci, ci+1) and �i − �i+t ≥ 1. Then
f(C ′) ≥ f(C). Furthermore, equality holds if and only if
d(ci−1, ci) = d(ci, ci+1) and �i − �i+t = 1.

Proof. It should be noted that the existence of C ′ implies
that (ci+t−1, ci+t) is a big gap. To compare f(C) and
f(C ′), we only need to consider those F ’s which has dif-
ferent values of NC(F )’s and NC′(F )’s.

If (ci+t−1, ci+t) �∈ F , then ci+t−1 plays the same role
as ci+t in determining the survived segment for both C and
C ′. So, we may assume (ci+t − 1, ci+t) ∈ F . Let (j, j +1)
be another edge in F . If (j, j + 1) ⊆ (ci+t, ci−1), then the
survived segment is (j + 1, ci+t − 1) for both C and C ′. If
(j, j + 1) ⊆ (ci+1, ci+t − 1), then the survived segment is
(ci+t, j) for both C and C ′. So, we are left with two cases.

(1) (j, j + 1) ⊆ (ci−1, ci). Then the survived segment is
∅ for C and (j + 1, ci+t − 1) for C ′. So, NC(F ) = 0 and
NC′(F ) = �i + �, where � = d(j + 1, ci).

(2) (j, j + 1) ⊆ (ci, ci+1). Then the survived segment is
(ci+t, j) for C and ∅ for C ′. So, NC(F ) = �i+t +1+ � and
NC′(F ) = 0, where � = d(ci, j).

Then f(C ′) − f(C) equals to

d(ci−1,ci)−1∑
�=0

[�i + �] −
d(ci,ci+1)−1∑

�=0

[�i+t + 1 + �] =

1
2
{n[d(ci−1, ci) − d(ci, ci+1)] + [�i − �i+t]d(ci−1, ci+1)

+d(ci−1, ci)[d(ci−1, ci) − 1] − d(ci, ci+1)[d(ci, ci+1) + 1]},
where the observation that �i + �i+t = n is used. By the
assumption d(ci−1, ci) ≥ d(ci, ci+1) and �i − �i+t ≥ 1, the
result follows.

Remark 3.6. Lemma 3.5 can be used with a ‘flipping’,
that is, if d(ci, ci+1) ≥ d(ci−1, ci) and �i+t − �i ≥ 1,
then C ′′ = [c1, ..., ci+t−1, ci+t + 1, ci+t+1, ..., c2t] satis-
fies f(C ′′) ≥ f(C), and equality holds if and only if
d(ci, ci+1) = d(ci−1, ci) and �i+t − �i = 1. Such a ‘flip-
ping’ is applicable to other results in the following.
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Corollary 3.7. Let C = [c1, c2..., c2t] be an optimal place-
ment with (ci−1, ci+1) being a 1-interval.

(a) If (ci+t−1, ci+t) is a big gap, then �i − �i+t ≤ 1.
(b) If (ci+t, ci+t+1) is a big gap, then �i+t − �i ≤ 1.
(c) If both (ci+t−1, ci+t) and (ci+t, ci+t+1) are big gaps,

then |�i − �i+t| ≤ 1.

Proof. (a) is a direct consequence of Lemma 3.5 and the
assumption that C is optimal, note that the ‘big gap’ re-
quirement guarantees the existence of C ′. (b) can be ob-
tained from (a) by a flipping. (c) is a combination of (a) and
(b).

Lemma 3.8. Let C = [c1, c2..., c2t] be a placement
with (ci, ci+1), (ci+t−1, ci+t), (ci+t+1, ci+t+2) being small
gaps, (ci+1, ci+2) being a big gap, and �i − �i+t+1 ≥ 1.
Then C ′ = [c1, ..., ci−1, ci + 1, ci+1 + 1, ci+2, ..., c2t] is
a placement with f(C ′) ≥ f(C). If furthermore �i =
�i+t+1 + 1, then f(C ′) = f(C) and C ′ satisfies �′i −
�′i+t+1 = −1.

Proof. Note that since (ci+1, ci+2) is a big gap, C ′ exists.
Similar to the proof of Lemma 3.5, it can be calculated that

f(C ′) − f(C) = [�i − �i+t+1 − 1] · [1 + d(ci+t, ci+t+1)].

Then it follows from �i − �i+t+1 ≥ 1 that f(C ′) ≥ f(C).
If furthermore, �i = �i+t+1 + 1, then �′i − �′i+t+1 =
d(c′i, ci+t)− d(ci+t+1, c

′
i+1) = �i − �i+t+1 − 2 = −1.

By Lemma 3.8 and a flipping use of it, we have

Corollary 3.9. Let C = [c1, c2..., c2t] be an optimal place-
ment with (ci, ci+1), (ci+t−1, ci+t), (ci+t+1, ci+t+2) being
small gaps. If both (ci+1, ci+2) and (ci−1, ci) are big gaps,
then |�i − �i+t+1| ≤ 1, and in the case |�i − �i+t+1| = 1,
there is an optimal placement C ′ with �′i = �′i+t+1 −1, also
an optimal placement C ′′ with �′′i = �′′i+t+1 + 1.

Lemma 3.10. Let C = [c1, c2..., c2t] be an optimal place-
ment with (ci−1, ci+1) being a 1-interval, then |�i−�i+t| ≤
1.

Proof. This result is an improvement on Corollary 3.7 since
there is no ‘big gap’ requirement here.

Suppose, without loss of generality, that �i − �i+t ≥ 2.
We shall derive a contradiction. By Corollary 3.7 (a),
(ci+t−1, ci+t) is a small gap. So �i−1 − �i+t−1 = �i −
�i+t ≥ 2. If (ci−2, ci−1) is a big gap, then by Lemma 3.4,
(ci+t−2, ci+t−1) is a small gap. Hence �i−2 − �i+t−2 ≥
�i−1 − �i+t−1 ≥ 2. If furthermore (ci+t−3, ci+t−2) is
a small gap, then by taking the place of ci by ci+t−2 in
Lemma 3.5 (with a flipping), we have a better placement
than C, a contradiction. So (ci+t−3, ci+t−2) is a big gap,
and thus (ci−3, ci−2) is a small gap. Taking the place of ci

by ci+t−2 in Corollary 3.9 (with a flipping), it follows from

the optimality of C that �i−1 − �i+t−2 ≤ 1. On the other
hand, since �i+t−2 = �i+t−1 +1− d(ci−2, ci−1) < �i+t−1,
we have �i−1 − �i+t−2 > �i−1 − �i+t−1 ≥ 2, a contradic-
tion. So (ci−2, ci−1) is a small gap. Taking the place of ci

by ci−1 in the above deduction, we see that (ci−3, ci−2) is
also a small gap. This procedure continues infinitely, which
contradicts the finiteness of R(V,L).

Corollary 3.11. Let C = [c1, c2..., c2t] be an optimal
placement. If (ci−1, ci+1) is a 1-interval, then �i = n/2
when n is even, and �i = (n− 1)/2 or (n + 1)/2 when n is
odd. Furthermore, in the case that n is odd, there exists an
optimal placement C ′ with �′i = (n− 1)/2, also an optimal
placement C ′′ with �′′i = (n + 1)/2.

Proof. The first part follows from Lemma 3.10 and the ob-
servation that �i + �i+t = n. The second part is the result
of Lemma 3.5.

Lemma 3.12. Let C = [c1, c2..., c2t] be an optimal place-
ment, and (cp, cq) be a max-1-interval. Then

(a) |�p − �q+t| ≤ 1.
(b) In the case |�p−�q+t| = 1, there is an optimal place-

ment C ′ with �′p = �′q+t − 1, also an optimal placement C ′′

with �′′p = �′′q+t + 1.

Proof. If q = p + 1, the result is true by Corollary 3.9. So,
suppose q > p+1 in the following. For i = p+1, ..., q−1,
we have �i = n/2 when n is even, and �i = (n − 1)/2 or
(n + 1)/2 when n is odd. Since (cp−1, cp) and (cq, cq+1)
are both big gaps, (cp+t−1, cp+t) and (cq+t, cq+t+1) are
small gaps. For simplicity of notation, denote by a =
d(cq+t−1, cq+t) and b = d(cp+t, cp+t+1). First, we con-
sider the case that a > 1 and b > 1.

Let C ′ = [c1, ..., cp−1, cp + 1, cp+1 + 1, ..., cq +
1, cq+1, ..., cp+t, cp+t+1 + 1, ..., cq+t−1 + 1, cq+t, ..., c2t]
be a new placement. Note that such a placement is fea-
sible since (cq, cq+1) is a big gap and we have assumed
d(cq+t−1, cq+t) = a > 1. Similar to the proof of Lemma
3.5, we have

f(C ′) − f(C)
= [�q−1 − �p+t+1 − 1] + a − b

+[�p+1 − �p+t+1 − 1]b − b(b − 1)
+[�q−1 + 1 − �q+t−1](a − 1) + (a − 2)(a − 1).

In the case n is even, we have �q−1 = �q+t−1 = �p+1 =
�p+t+1 = n/2. Thus

f(C ′) − f(C) = a(a − 1) − b(b + 1).

By f(C ′) ≤ f(C), we have a ≤ b + 1 and equality
holds if and only if a = b + 1. Symmetrically, by con-
sidering C ′′ = [c1, ..., cp−1, cp − 1, cp+1 − 1, ..., cq −
1, cq+1, ..., cp+t, cp+t+1 − 1, ..., cq+t−1 − 1, cq+t, ..., c2t]
(note that (cp−1, cp) being a big gap and d(cp+t, cp+t+1) =
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b > 1 guarantees that such a placement is feasible), we
have b ≤ a + 1 and equality holds if and only if b =
a + 1. So, |a − b| ≤ 1. Since �p = �p+1 + 1 − b and
�q+t = �q+t−1 + 1 − a, we have �p − �q+t = a − b.
Thus |�p − �q+t| ≤ 1. Furthermore, if �p − �q+t = 1, then
a = b+1 and C ′ is an optimal placement with �′p = �′q+t−1;
if �p − �q+t = −1, then b = a + 1 and C ′′ is an optimal
placement with �′′p = �′′q+t + 1.

In the case n is odd, there are three cases to consider.
(1) �p+1 = �q−1 = (n + 1)/2. Then f(C ′) − f(C) =

a2 − b2. It follows from the optimality of C that a ≤ b, and
equality holds if and only if a = b.

(2) �p+1 = �q−1 = (n − 1)/2. Then f(C ′) − f(C) =
a(a− 2)− b(b + 2). It follows that a ≤ b + 2, and equality
holds if and only if a = b + 2.

(3) �p+1 = (n − 1)/2 and �q−1 = (n + 1)/2. Then
f(C ′)− f(C) = (a− 1)(a + 1)− b(b + 2). It follows that
a ≤ b + 1 and equality holds if and only if a = b + 1.

By analyzing the placement C ′′ symmetrically, we see
that b − 2 ≤ a ≤ b in the first case, a − 2 ≤ b ≤ a in the
second case, and b−1 ≤ a ≤ b+1 in the third case. Hence,
�p − �q+t = �p+1 − �q+t−1 + a − b ∈ [−1, 1] in any case.
Furthermore, if �p − �q+t = 1, then a = b in the first case,
a = b+2 in the second case, and a = b+1 in the third case.
In any case, C ′ is also optimal. By a symmetric analysis, if
�p − �q+t = −1, then C ′′ is optimal.

It can be seen from the above analysis that if |�p −
�q+t| = 1, then either C or C ′ is an optimal placement satis-
fying �p = �q+t−1, either C or C ′′ is an optimal placement
satisfying �p = �q+t + 1

Next, suppose a > 1 but b = 1. In this case, C ′′ does
not exist, but the analysis for C ′ is still valid. Furthermore,
�p = �p+1. So, when n is even, we have 1 < a ≤ b+1 = 2,
which implies that �p − �q+t = a − b = 1 and C ′ is also
optimal. When n is odd, case (1) does not occur. If case
(2) occurs, then 2 ≤ a ≤ b + 2, and thus �p − �q+t =
−1+a− b ∈ {0, 1}. Furthermore, when �p − �q+t = 1, we
have a = b + 2 and C ′ is also optimal. If case (3) occurs,
then it follows from 2 ≤ a ≤ b + 1 that a = b + 1 = 2.
Hence, �p − �q+t = a − b = 1, and C ′ is also optimal.

The case b > 1 but a = 1 can be analyzed symmetrically,
and C ′′ is also an optimal placement.

Now, suppose a = b = 1. Since (cp−1, cp) and
(cq, cq+1) are big gaps, we see that (cq+t, cq+t+1) and
(cp+t−1, cp+t) are small gaps. If n is even, then �p =
�q+t = n/2, and we are done. So, suppose n is odd. Then
�p and �q+t take the values of (n − 1)/2 or (n + 1)/2, and
thus |�p − �q+t| ≤ 1. Furthermore, if �p − �q+t = 1,
then �p = (n + 1)/2 and �q+t = (n − 1)/2. It fol-
lows that �i = (n + 1)/2 for i = p, p + 1, ..., q, and thus
d(cj , cj+1) = 1 for j = p + t, p + t + 1, ..., q + t − 1.
Furthermore, since (cp−1, cp) and (cq, cq+1) are big gaps,
we have d(cj , cj+1) = 1 also holds for j = p + t − 1

and q + t. But then (cp+t, cq+t) is properly contained in a
1-interval (cp+t−1, cq+t+1), contradicting that (cp, cq) is a
max-1-interval.

In proving the following lemma, our notation of �’s is a
little different from before, for the sake of easier statement.

Lemma 3.13. Let {(ci1 , ci2), ..., (ci2k−1 , ci2k
)} be the set

of all max-1-intervals of C. For j = 1, 2, ..., k, denote by
�
(l)
j = d(ci2j−1 , ci2j−1+t) and �

(r)
j = d(ci2j+t, ci2j

). Then

elements in L = {�(l)j , �
(r)
j }j=1,...,k differ by at most 1.

Proof. We shall show that there exists an optimal placement
C̃ such that elements in L̃ differ by at most 1, and L̃ = L
setwisely. The placement C̃ is obtained by applying ad-
justments as in Lemma 3.12 step by step to the sequence
(cp1 , cq1), (cp2 , cq2), ..., (cps

, cqs
) of max-1-intervals con-

structed as follows (see Fig. 2).
(1) Let (cp1 , cq1) be a max-1-interval. Furthermore, if

there exists an index j such that �
(l)
j �= �

(r)
j , suppose, with-

out loss of generality, that �
(l)
j < �

(r)
j , then choose p1 to be

such a j.
(2) For i = 2, 3, ..., let (cpi

, cqi
) be a max-1- interval

containing cpi−1+t.
It should be observed that
(a) Since (cpi−1−1, cpi−1) is a big gap, then

(cpi−1+t−1, cpi−1+t) is a small gap, and thus pi < pi−1 + t.
(b) Because (cpi−1 , cqi−1) is a max-1-gap, we have qi <

qi−1 + t − 1 (otherwise (cpi+t, cqi+t) would be properly
contained in the 1-interval (cpi+t−1, cqi+t+1)). So, (2) is re-
alizable since now a maximal 1-interval containing cpi−1+t

must be a max-1-interval.
(c) Since (cq1 , cq1+1) is a big gap, this procedure must

stop with some s such that cq1+t ∈ (cps
, cqs

).
(d) {(cp1 , cq1), (cp2 , cq2), ..., (cps

, cqs
)} consists all

max-1-intervals (so s = k).
�

�

�

�

�

�
� �

�

�

�

�

�
�cp1

cq3

cp3

cq5

cq1+t
cp5 cq2

cp1+t

cp2

cq4

cp4

cq1

Figure 2. An illustration of how to construct the sequence.

In the following, we change the notation �’s to �
(l)
j =

d(cpj
, cpj+t) and �

(r)
j = d(cqj+t, cqj

). First, note that for

any j = 1, 2, ..., s, |�(l)j − �
(r)
j | ≤ 1 by Lemma 3.12. Fur-

thermore, since the 1-intervals under consideration are all
max-1-intervals, we see that �

(l)
j = �

(r)
j+1.
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Suppose, without loss of generality that �
(l)
1 ≤ �

(r)
1 . We

do as follows. For j = 1, 2, ...s, if �
(l)
j+1 ≤ �

(r)
j+1 (then

�
(l)
j+1 ≤ �

(r)
j+1 = �

(l)
j ), we move on to the next j. If �

(l)
j+1 >

�
(r)
j+1, then by Lemma 3.12, there is an optimal placement

with �̃
(l)
j+1 = �̃

(r)
j+1 − 1. In this case, �̃

(r)
j+1 = �̃

(l)
j = �

(l)
j + 1

and �̃
(l)
j+1 = �̃

(r)
j+1 − 1 = �

(l)
j . Note that in the next step,

�̃
(l)
j+1 may increase, but by at most 1, and once for all. The

idea in the above process is to make the final sequence
(�̃(l)1 , �̃

(l)
2 , ..., �̃

(l)
s ) a ‘nearly’ decreasing one, that is, for any

j = 1, 2, ..., s − 1, �̃
(l)
m ≤ �̃

(l)
j + 1 holds for any m ≥ j + 1.

In fact, if in the final placement, there is an index j such
that �̃

(l)
j+1 > �̃

(l)
j , then �̃

(l)
j+1 is obtained by being increased

by 1 in the (j + 2)’s step, and thus �̃
(l)
j+1 = �̃

(l)
j + 1 and

�̃
(l)
j+2 = �̃

(l)
j+1 − 1 = �̃

(l)
j . So, even �̃

(l)
j+2 is increased in the

(j + 3)’s step, it can not exceed �̃
(l)
j + 1. As a result of the

above ‘nearly monotonicity’, �̃
(l)
j ≤ �

(l)
1 + 1 and �̃

(l)
s ≤ �

(l)
j

for any j = 1, 2, ..., s − 1 (�̃(l)s can not be increased since it
is the last step). Note that �̃

(r)
1 = �̃

(l)
s , and �̃

(r)
1 ≥ �

(r)
1 − 1

(since �
(l)
1 ≤ �

(r)
1 and �

(l)
1 can be increased in the adjust-

ment by at most once), we see that in the case �
(l)
1 < �

(r)
1 ,

�̃
(l)
s ≤ �̃

(l)
j ≤ �

(l)
1 + 1 ≤ �

(r)
1 ≤ �̃

(r)
1 + 1 = �̃

(l)
s + 1

for any j = 1, 2, ..., s − 1. In the case �
(l)
1 = �

(r)
1 ,

by the choice of (cp1 , cq2), we see that �
(l)
j = �

(r)
j holds

for any j. By the observation �
(l)
j = �

(r)
j+1, we see that

all elements in L have the same value. In any case, ele-
ments in {�̃(l)1 , �̃

(l)
2 , ..., �̃

(l)
s } differ by at most 1. A care-

ful review of the above process shows that the values of
{�̃(r)1 , �̃

(r)
2 , ..., �̃

(r)
s } also fall into {�̃(l)s , �̃

(l)
s + 1}. Further-

more, in the above process, we merely exchanges some con-
secutive values of �’s, and hence L̃ = L.

Call the values in L the essential-bound-values.

Lemma 3.14. Let C = [c1, c2..., c2t] be an optimal place-
ment, n > 4t for even n and n > 5t for odd n. Then the
essential-bound-value a < n/2 − 1 when n is even and
a < (n − 1)/2 − 1 when n is odd.

Proof. Let a sequence of 1-intervals (cp1 , cq1), (cp2 , cq2),
..., (cps

, cqs
) be constructed as follows: Let (cp, cq) be a

max-1-interval. Set p1 = p, and q1 the first replica in
(cp, cq) with d(cq1+t−1, cq1+t) > 1 (note that such q1 ex-
ists since (cp, cq) is a max-1-interval). For j = 2, 3, ...,
let (cpj

, cqj
) be a 1-interval with qj = pj−1 + t and

d(cpj−1, cpj
) > 1. An illustration of the construction is

shown in Fig 3. Note that this construction is different
from that in Lemma 3.13, (cpj

, cqj
) is not required to be

a max-1-interval. But it is easy to see that d(cpj
, cpj+t)’s

and d(cqj+t, cqj
)’s are also a or a + 1. Furthermore,

ps = q1 + t since d(cq1+t−1, cq1+t) > 1. Denote by
Nj = {cpj

, ..., cqj
, cpj+t + 1, ..., cqj+t − 1}. Then Nj’s

are mutually disjoint and
⋃s

j=1 Nj = V .

��
�

�

�

�

�

�
�

�
�

�

�

�

�

�

�
�

︷ ︸︸ ︷

︸ ︷︷ ︸

cq1cp = cp1

cq3
cp3

cq5

cq1+t = cp5

cq1+t−1

cq2 = cp1+t

cp2

cq4

cp4

cq

Figure 3. The locations in the braces constitute N1.
If a ≥ n/2 − 1 when n is even and a ≥ (n − 1)/2 − 1

when n is odd, then for each j, Nj contains at most 2 non-
replicas when n is even, and at most 3 non-replicas when
n is odd. In the case n is even, the number of replicas ≥
|Nj |/2 for each j. So, 2t ≥ n/2. When n is odd, the
number of replicas ≥ 2|Nj |/5 for each j. So, 2t ≥ 2n/5.
These contradict our order assumption.

Corollary 3.15. Let C = [c1, c2..., c2t] be an optimal
placement with n > 4t for even n, and n > 5t for odd
n. Then, any max-1-interval has at most 3 replicas.

Proof. Suppose (cp, cq) is a max-1-interval containing at
least 4 replicas. By corollary 3.11 and Lemma 3.5, we
may assume that �p+1 = �p+2 = n/2 when n is even
and �p+1 = �p+2 = (n − 1)/2 when n is odd. It follows
that (cp+t+1, cp+t+2) is a small gap. Combining this with
the observation that (cp, cp+1) and (cp+t−1, cp+t) are both
small gaps, it follows from Lemma 3.8 that �p+t+1 ≤ �p+1.
In the case that n is odd, since �p+t+1 = n − �p+1 =
(n+1)/2, we have �p ≥ (n−1)/2. So, a ≥ (n−1)/2−1,
and thus n ≤ 5t by Lemma 3.14, a contradiction. The case
when n is even can be shown similarly.

Call a max-1-interval with 3 replicas a big-1-interval,
and a max-1-interval with 2 replicas a small-1-interval. A
replica which is the intersection of two big gaps is called a
singleton.

For an edge e ∈ L, the contribution of e to f(C) is

ctr(e) =
∑

F={e,g}⊂L

NC(F ).

For a gap (ci, ci+1), its contribution to f(C) is

ctr(ci, ci+1) =
∑

e∈(ci,ci+1)

ctr(e).
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Lemma 3.16. Let C = [c1, c2..., c2t] be a placement. For
each gap (ci−1, ci), its contribution to f(C) only depends
on �i−1 and �i.

Proof. Write a = d(ci−1, ci). If (ci−1, ci) is a small gap,
then e = (ci−1, ci) is an edge, and

ctr(e) = [(2n− �i−1)(�i−1 − 1)+ (n+ �i)(n− 1− �i)]/2.

Next, suppose (ci−1, ci) is a big gap. Let ej = (j, j + 1) ∈
(ci−1, ci). Then

ctr(ej) = [(2n − �i−1 + k1)(�i−1 − k1 − 1)
+(n + �i + k2)(n − �i − k2 − 1)]/2,

where k1 = d(ci−1, j) and k2 = d(j + 1, ci) = a− 1− k1.
Then

ctr(ci−1, ci)
=

a

2
[(n + �i)(n − 1 − �i) + (2n − �i−1)(�i−1 − 1)

+(2�i−1 − 2�i − 1 − 2n)(a − 1) − (a − 1)(2a − 1)
3

]

Note that a = �i−1 − �i + 1, we are done.

Denote by ri = d(ci+t, ci). By symmetry, it is easy to
see the following corollary:

Corollary 3.17. Let C = [c1, c2..., c2t] be a placement,
(ci−1, ci), (cj−1, cj) be two gaps. If �i = rj−1 and �i−1 =
rj , then ctr(ci−1, ci) = ctr(cj−1, cj).

Lemma 3.18. Let C = [c1, c2..., c2t] be an optimal place-
ment, n > 4t for even n and n > 5t for odd n. Then there
are at most one big-1-interval in C.

Proof. Suppose this is not true. Let (ci−1, ci+1) and
(cj−1, cj+1) be two big-1-intervals such that cj+t is a sin-
gleton nearest to ci+1. By Corollary 3.11 and Lemma 3.12,
we may assume that �i = rj+t. By ‘flipping’ the place-
ment in the interval (ci, cj+t) ∪ (ci+t, cj) as shown in Fig.
4, we obtain a placement C ′ (the literals a, b, c, d in the fig-
ure indicates that the corresponding lengths are the same).
For each gap in (ci, cj+t)∪ (ci+t, cj), the bound values ex-
change their ‘left’ and ‘right’ positions in C ′. As to other
gaps outside of (ci, cj+t)∪(ci+t, cj), their contributions are
clearly kept. Since

f(C) =
1
2

2t∑
i=1

ctr(ci, ci+1),

we see that f(C ′) = f(C), and thus C ′ is also an optimal
placement. In C ′, there is a small-1-interval (c′j+t−1, cj+t)
with a bound value �j+t ≥ (n−1)/2. So the essential bound
value a ≥ (n − 1)/2 − 1, which leads to a contradiction to
Lemma 3.14.
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� �
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c
d

(a)
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� �
�
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�
�

ci

cj+1

cj

ci+t

cj+t

c′j+t−1

c′j+t−2

c′j−1
c′j−2

a

b

c

d

(b)

Figure 4. (b) is obtained from (a) by flipping
locations in (ci, cj+t) ∪ (ci+t, cj).

Corollary 3.19. Let C = [c1, c2..., c2t] be an optimal
placement, n > 4t for even n and n > 5t for odd n. When
t is odd, every 1-interval is small. When t is even, there is
exactly one big-1-interval.

Proof. Let (cp1 , cq1), (cp2 , cq2), ..., (cps
, cqs

) be a sequence
of max-1-intervals constructed as in Lemma 3.13. Note that
if there is a big-1-interval, then a placement as described by
the above lemmas is feasible only when t is even. The result
follows.

Proof of Theorem 3.1
To prove the necessity, we see from Lemma 3.13 and

Corollary 3.19 that it is sufficient to show that the essential-
bound-value a = �T/t� when t is odd and a = �T/(t −
1)� when t is even. Suppose the pairing is as described in
Theorem 3.1.

First, consider the case that t is odd, write t = 2m − 1.
Each edge in a small gap is covered by the set of intervals
I = {(c1, ct+1), (c3, ct+3), ..., (c2t−1, ct+2t−1)} exactly m
times. For each edge in a big gap, I covers it exactly m− 1
times. So

�1 + �3 + ... + �2t−1 = (m − 1)n + t = T.

Suppose that the remainder of T/t is x. Then by Lemma
3.13, among the t integers �1, �3, ..., �2t−1, x of them equal
to a + 1, and t − x of them equal to a.
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Next, suppose t is even, write t = 2m. Each
edge in a small gap is covered by the set of intervals I ′ =
{(c3, ct+3), (c5, ct+5), ..., (ct−1, c2t−1), (ct+2, c2), ..., (c2t, ct)}
exactly m times. For each edge in a big gap, I ′ covers it
exactly m − 1 times. So

�3+�5+...+�t−1+�t+2+...+�2t−2+�2t = (m−1)n+t = T.

Suppose that the remainder of T/(t − 1) is x. Then among
the t − 1 integers �3, �5, ..., �t−1, �t+2, ..., �2t−2, �2t, x of
them equal to a + 1, and t − 2 − x of them equal to a.

In the following, we show the sufficiency. The idea is to
show that for any placement C satisfying the conditions in
Theorem 3.1, f(C) is completely determined by the para-
meters n and t, which implies that every placement C satis-
fying the conditions in Theorem 3.1 has the same objective
function f(C), and thus the sufficiency follows from the
necessity.

First, suppose t is odd. Consider the sequence S =
(�1, �1+(t−1), �1+2(t−1), ..., �1+(t−1)2). Then each of
�1, �3, ..., �2t−1 appears exactly once in S. By the above
analysis, the number of a’s and the number of (a + 1)’s are
the same for any placement satisfying condition (a2).

Suppose, without loss of generality, that the number of
a’s is smaller than that of a + 1’s. We are to modify C
to a ‘standard’ placement C ′ with f(C ′) = f(C), where
the term standard means that there is no consecutive a’s in
the sequence S. The modification can be done by induc-
tion on the number of consecutive a’s. First, suppose there
exists an index i such that �1+(i−1)(t−1) = �1+i(t−1) = a
and �1+(i+1)(t−1) = �1+(i+2)(t−1) = a + 1, that is, there
is a sub-sequence of S with the form (a, a, a + 1, a + 1).
By Lemma 3.12, we can change C to C ′ with f(C ′) =
f(C) and �′1+i(t−1) = a + 1, �′1+(i+1)(t−1) = a. Since
�1+(i+2)(t−1) = a + 1, such an adjustment decreases the
number of consecutive a’s. Symmetrically, if there exists a
sub-sequence of S with the form (a + 1, a + 1, a, a), we
can also decrease the number of consecutive a’s. Since the
number of (a + 1)’s is at least that of a, we see that one of
the above two cases must occur.

In C ′, the bound values of each gap is either (a, a + 1),
or (a + 1, a + 1). Furthermore, the number of (a, a + 1)’s
equals to t − x (the number of a’s in C ′). By Lemma 3.16
and Corollary 3.17, f(C ′) is completely determined by n
and t, and thus so is f(C).

The case that t is even can be considered similarly. �
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