
NORMALIZATION OF INFORMAL TEXT FOR TEXT-TO-SPEECH

by

Deana L. Pennell

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Yang Liu, Co-Chair

Dr. Vincent Ng, Co-Chair

Dr. John H.L. Hansen

Dr. Haim Schweitzer

c© Copyright 2011

Deana L. Pennell

All Rights Reserved

Dedicated to the memory of

Larry King

September 17, 1945 – October 1, 2010

“Good teaching is more

a giving of right questions

than a giving of right answers.”

–Josef Albers

NORMALIZATION OF INFORMAL TEXT FOR TEXT-TO-SPEECH

by

DEANA L. PENNELL, B.S., M.S.

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2011

PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the “Guide for the

Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signature of the Supervising Committee which precedes all other material in the dissertation

attest to the accuracy of this statement.

v

ACKNOWLEDGMENTS

I would like to take this opportunity to thank the many people without whom this disserta-

tion would not have been possible.

First and foremost, my utmost thanks goes to my adviser, Dr. Yang Liu. Without her, I

would have been lost in the world of research. I can safely say that none of my prior schooling

experiences prepared me in any way for the realities of pursuing a doctoral degree. With her

guidance, I was able to grow as a scholar and complete a dissertation that I can be proud

of. I know that I was not always the most diligent student, but she graciously accepted my

faults as well as my strengths and pushed me to reach higher and live up to my capabilities.

Seeing her successes, her motivation, and the obvious enjoyment she draws from her work

kept me going at times when I felt tempted to give up and move on. I feel honored and

privileged to have had the opportunity to work hand-in-hand with such an inspiring woman.

I also need to extend my thanks to my committee members: Dr. Vincent Ng, Dr. John

Hansen and Dr. Haim Schweitzer. Thank you all for taking the time out of your very busy

schedules to provide guidance and valuable feedback on my work.

My lab mates, past and present, are also very deserving of my thanks for their constructive

criticism of my work, suggestions, and general back and forth intellectual discussion. My

gratitude is extended to Je Hun Jeon, Melissa Sherman, Fei Liu, Shasha Xie, Dong Wang, Rui

Xia, Zhonghua Qu, Bin Li, Thamar Solorio, Feifan Liu, Keyur Gabani and Nisa Hassanali.

Special thanks are extended to Justin Schneider and Duc Le for their work on the message

selection for annotation described in Section 3.3 in this dissertation, and for various scripts

written along the way.

Thanks as well to the various others who have played parts both small and large throughout

my days at UTD. Mark Hittenger and Brian Nelson are especially deserving of my thanks

for putting up with the myriad questions I asked to which I should have already known the

vi

answers. To Eric Moden and Judy Patterson for dealing with my lack of knowledge about

deadlines and requirements for so many years. To all the staff in the Computer Science Head

office, for completing the various small tasks I presented you with a smile and for keeping

track of my paychecks for me.

A big thank you goes to all of my co-workers at SCALE 2010 for providing a sounding

board for my ideas and providing me with valuable feedback. Special thanks are extended

to Spence Green, Paul McNamee, Stephanie Poisson and Chris Callison-Burch for extended

discussions that led directly to certain aspects of the work in this dissertation.

To my family, who have always been extremely supportive of my decision to pursue a doc-

toral degree even though it meant leaving Maine. My parents in particular encouraged me to

pursue any and all interests and to dream big and my brother Trevor played devil’s advocate

to my early attempts at research (a.k.a. my “brilliant attempts” to solve all of the world’s

problems before finishing middle school). And to my friends, without whom my sanity would

have been lost long ago; who helped me take my mind off work when it was needed most; who

graciously listened to me both when I was overly excited about results and wouldn’t stop

spouting new ideas and when I was frustrated and unmotivated and wouldn’t stop complain-

ing: Lara Graham, Jennifer Bates, Barbara Crawford, Melissa Masucci, Ehsan Nourbakhsh,

Vitali and Sahar (Salari) Loseu and Paul Johnson. Thanks also to the CHAMPS fellows

with whom I had the opportunity to get middle school children excited about education and

technology, and to help each other grow as teachers. Robert Anderson, Anastasia Kurdia and

Steven Kirtzic, who I collaborated with on lesson plans and who helped me refine my abil-

ities. Special mention should be made for my new friends and acquaintances at the Arthur

Murray Dance Studio in Plano for providing me with a fun and healthy way to unwind from

the stresses of graduate school; in particular, our teacher Lindsay Jordan for understanding

that sometimes working on my dissertation was more important than practicing the last

week’s lesson!

Finally, my amazing husband, Ryan – without you, formatting this dissertation would have

taken me many more years! Words cannot begin to express my heartfelt gratitude, ap-

vii

preciation and thanks for all you have done to support and encourage me on this journey.

Throughout our years at UTD, together we have grown as students and as people. Thinking

back on our time together, from those first meetings in Venky’s class where you were his

protogé and I was that girl who always showed up halfway through class (and eventually con-

vinced the professor to start class half hour later, just for her!), to the nights spent frantically

finalizing paper drafts and generating final rounds of dissertation results at Flying Saucer in

between rounds of Quelf, it seems like there isn’t anything we haven’t done together. And

now that we’ve both written dissertations, finished graduate school and gotten excellent jobs

lined up, it seems like there is nothing we can’t accomplish. Together. The last five years

have been amazing. Let’s make the next five even better.

September 2011

viii

NORMALIZATION OF INFORMAL TEXT FOR TEXT-TO-SPEECH

Publication No.

Deana L. Pennell, Ph.D.
The University of Texas at Dallas, 2011

Supervising Professors: Dr. Yang Liu, Co-Chair
Dr. Vincent Ng, Co-Chair

A large amount of information is found in noisy contexts as texting and chat lingo have

become increasingly prolific in the past decade. To take advantage of this vast knowledge

resource, natural language processing techniques need to be adapted to work accurately

on this unconventional data. This dissertation describes various noisy-channel approaches

for the normalization of informal text, such as that found in emails, chat rooms, and SMS

messages. In particular, two methods for the abbreviation modeling aspect of the noisy

channel model are introduced: a statistical classifier using language-based features to decide

whether a character is likely to be removed from a word, and a character-level machine

translation model. A two-phase approach is used; in the first stage the possible candidates are

generated using the selected abbreviation model and in the second stage the best candidate is

chosen through decoding using a language model. Various combinations of the two methods

are explored. The model is finally extended to decrease the number of false positives by using

dictionary heuristics. Normalization accuracy for all systems is presented as well as both

quantitative and qualitative results showing the effects of normalization on text-to-speech

output. A significant decrease in word and phoneme error rates is achieved as well as an

improvement shown using human perceptual tests. These contributions reflect an important

ix

step toward the development of improved text for automatic speech synthesis applications

driven by informal text domain sources.

x

TABLE OF CONTENTS

PREFACE v

ACKNOWLEDGMENTS vi

ABSTRACT ix

LIST OF TABLES xiv

LIST OF FIGURES xvii

CHAPTER 1 Introduction 1

1.1 Domain-specific Challenges for NLP . 2

1.2 Contributions of the Proposed Work . 6

CHAPTER 2 Literature Review 8

2.1 Informal Text . 8

2.2 General Abbreviation Modeling, Disambiguation and Expansion 10

2.3 Text Normalization . 12

CHAPTER 3 Corpus Collection and Annotation 15

3.1 Collection . 16

3.2 Annotation . 19

3.2.1 Amazon’s “Mechanical Turk” . 19

3.2.2 Java Annotation GUI . 21

3.3 Choosing Messages for Annotation . 23

3.4 Annotation Statistics . 25

3.5 Types of Abbreviations . 27

3.5.1 Analysis . 28

3.6 Chapter Summary . 29

CHAPTER 4 Normalization Model and Setup 30

4.1 The Noisy Channel Model for Normalization 30

4.1.1 Language Modeling . 31

xi

4.1.2 Abbreviation Modeling . 32

4.2 Experimental Setup . 32

4.3 Baseline Experiments . 37

4.3.1 Language Model Baseline . 37

4.3.2 Jazzy Spell Checker . 38

4.4 Chapter Summary . 39

CHAPTER 5 Statistical Deletion Modeling 41

5.1 Model Description . 41

5.1.1 Features . 42

5.1.2 Generating Word Candidates . 44

5.1.3 Reranking and Decoding . 45

5.2 System Setup . 45

5.3 Experimental Results . 46

5.3.1 Model Performance . 46

5.3.2 Full System Performance . 47

5.3.3 Model Pruning Performance . 49

5.4 Feature Selection . 51

5.5 Chapter Summary . 53

CHAPTER 6 Abbreviation Modeling Through Character-Level MT 54

6.1 Model Description . 54

6.2 MT System Setup . 56

6.3 Experiments . 57

6.3.1 Model Performance . 58

6.3.2 Full System Performance . 59

6.3.3 Model Pruning Performance . 61

6.4 Chapter Summary . 62

CHAPTER 7 System Extensions 65

7.1 System Combinations . 65

7.1.1 Methods of Combining the Systems 65

7.2 Dictionary Heuristic for the Reduction of False Positives 72

7.3 Comparison with Past Work . 76

7.4 Chapter Summary . 77

xii

CHAPTER 8 Effect of Normalization on TTS Output 79

8.1 Phoneme Error Rate . 80

8.2 Human Listening Tests . 81

8.3 Chapter Summary . 85

CHAPTER 9 Conclusions 87

APPENDIX 92

REFERENCES 97

VITA

xiii

LIST OF TABLES

2.1 Methods for processing unseen tokens during normalization. 12

3.1 Possible abbreviations for the word “fortunately” given by three annotators. 21

3.2 Division of annotations in our data. 25

3.3 Pairwise boolean agreement (%) between annotators. A indicates the author. 26

3.4 Distribution of maximum annotators in agreement per token. 26

3.5 Abbreviation types. Subcategories are italicized below their parent category. 27

3.6 Division of abbreviation types in the annotated data. 28

3.7 Analysis of tokens in the corpus. 29

4.1 Top-N accuracy (%) using only a language model for decoding. 38

4.2 Top-N accuracy (%) using the Jazzy spell checker. 39

5.1 Accuracy (%) of deletion-based systems on abbreviations only without LM
information. 46

5.2 Accuracy (%) of deletion-based systems in n-gram context tests when using
both AM and LM scores. 47

5.3 Percentage of abbreviations correctly normalized in top-n sentence hypotheses
for the deletion-based systems. 48

5.4 Sentence-level top-N accuracy (%) using lattice decoding with deletion-based
systems. 48

5.5 False positive (FP) rate (%) and final WER in top-1 sentences when using
deletion-based systems. 49

5.6 Accuracy (%) in n-gram context tests when using the deletion-based AMs for
pruning only. 49

xiv

5.7 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses when using the deletion-based systems for pruning only. 50

5.8 Sentence-level top-N accuracy (%) using lattice decoding when using deletion-
based systems for pruning only. 50

5.9 False positive (FP) rate (%) and final WER in top-1 sentences when using
deletion-based systems for pruning only. 51

6.1 Accuracy (%) of MT systems without LM information on abbreviations only. 58

6.2 Accuracy (%) of the MT systems on each abbreviation type. 59

6.3 Accuracy of MT systems using both AM and LM scores on n-gram context
tests. 59

6.4 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses when using the MT setup. 60

6.5 Sentence-level top-N accuracy (%) using lattice decoding for MT. 60

6.6 False positive (FP) rate (%) and final WER in top-1 sentences for MT. . . . 61

6.7 Accuracy (%) of MT systems on abbreviations only using AM score for prun-
ing only. 62

6.8 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses when using the MT AMs for hypothesis generation only. 63

6.9 Sentence-level top-N accuracy (%) using MT AMs for pruning. 63

6.10 FP rate (%) and final WER in top-1 sentences using the MT AMs for pruning. 64

7.1 Accuracy (%) in n-gram context tests using system combinations. 67

7.2 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses when using system combinations. 68

7.3 False positive rate (%) among the various combination methods. 68

7.4 WER when using the different combination methods. 69

7.5 Top-n sentence accuracy (%) for the combination methods. 69

xv

7.6 Accuracy (%) during n-gram context tests using system combinations with
MT+R. 70

7.7 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses when using system combinations with MT+R. 71

7.8 False positive rate (%) among the various combination methods with MT+R. 71

7.9 WER when using the different combination methods with MT+R. 72

7.10 Top-n sentence accuracy (%) for the combination methods with MT+R. . . 72

7.11 False positive rate (%) after applying each of the four dictionaries. 75

7.12 Top-n sentence accuracy (%) after applying the dictionary heuristic. 75

7.13 Word error rates when applying the various dictionaries. 76

7.14 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses after applying the dictionary heuristic. 77

7.15 System comparison on the 303-term SMS test set provided by Choudhury
et al. (2007). 78

8.1 Phoneme error rates (PERs) for each message source. 81

8.2 Character error rates (CERs) of transcribed audio files compared to the stan-
dardized text for each source. 82

8.3 Analysis of transcription difficulty ratings. 83

8.4 Analysis of annotators ratings for the second perceptual experiment. 85

A.1 Accuracy (%) of all systems using n-gram context tests. 92

A.2 Percentage of abbreviations correctly normalized in top-N sentence hypothe-
ses for all systems. 93

A.3 Message level top-1 accuracy (%) across all systems. 94

A.4 WER for top-1 sentences across all systems. 95

A.5 False positive rate (%) for top-1 sentences across all systems. 96

xvi

LIST OF FIGURES

3.1 An illustration of the problems faced when adapting Twitter status messages
to our domain. 17

3.2 Our template for annotating abbreviations with their standard English forms
using Amazon’s Mechanical Turk. The text boxes show responses given by an
actual annotator. 20

3.3 The GUI used for annotating our corpus. 22

4.1 An excerpt from the lattice for the input sentence “green tea fraps r guuud :)” 35

5.1 Character-level tags for one abbreviation of ‘suggestion’. 42

5.2 An example of syllable positions assigned to characters. The beginning, mid-
dle and end positions of a syllable are noted by ‘B’, ‘M’ and ‘E’, respectively. 44

5.3 Distribution of chosen features (from Section 5.1.1) across the 10 development
experiments. 52

5.4 Distribution of chosen weight for the length model across the 10 development
tests. 53

6.1 An excerpt from a phrase table showing possible translations when the char-
acter sequence “ab” is found in a message. 55

7.1 The lattice for the input sentence “green tea fraps r guuud :)” after application
of the dictionary heuristic . 74

8.1 Example phoneme sequences for the message “workinnn i have coffee jittahz
=/” . 80

8.2 Histogram showing distribution of transcription difficulty rating by source. . 82

8.3 Histogram showing distribution of pronunciation rankings by source. 84

xvii

CHAPTER 1

INTRODUCTION

Texting and chat lingo has become increasingly prolific in the past decade. According to the

CTIA’s semi-annual report, over 1.5 trillion text messages were sent during the 2009 calendar

year (approximately 150% increase from 2008), with almost 5 billion messages per day sent

by the end of the year; an increase of 33% saw 1.8 trillion SMS messages sent between June

2009 and June 2010 (CTIA, 2009, 2010a,b). Unfortunately, this popularity has lead to a

large increase in automobile accidents caused by people who are texting while driving, which

is gaining extensive media attention. The National Security Council estimates that over

200,000 accidents in 2008 were caused by texting or emailing while driving (NSC, 2010),

and while statistics are not yet available, it is expected that those numbers have risen with

the growth of texting popularity. The website http://txtresponsibly.org/ was designed

to educate drivers about the dangers of reading and writing text messages while driving.

In April 2010, Oprah Winfrey promoted making vehicles a “No Phone Zone” (Winfrey,

2010), with a country-wide publicity campaign on April 30. Although we realize the safest

alternative is to prevent phone usage altogether while driving, it is probably unrealistic to

believe people will completely ignore their phones. We hope that by developing a text-to-

speech (TTS) system for text messages, we can provide a somewhat safer, though admittedly

imperfect, solution.

When using a standard TTS system to read text messages, many problems arise due to

phenomena in text messages, e.g., use of abbreviations, emoticons and informal capitalization

and punctuation. These problems also exist in other domains, such as blogs, forums, social

network websites, chat rooms, message boards, and communication between players in online

video game chat systems. For lack of a formal definition for the domain of our data, we will

use the term “informal text” to refer to the type of writing with which we work. There

1

http://txtresponsibly.org/

2

is an increasing volume of information contained in informal text due to a rapid increase

in popularity of the writing style. This has lead to a rapidly growing need for efficient

processing and applications such as summarization, topic classification, sentiment analysis

and user behavior modeling, just to name a few. Traditional natural language processing

(NLP) techniques perform poorly on informal text because they are typically trained using

formal written text whereas text in this domain is written in a casual, speech-like style and

contains many non-standard words.

Industry is becoming interested in this domain, especially with regard to micro-blogging

sites such as Twitter (http://www.twitter.com). The Library of Congress has archived all

public status messages from Twitter from the site’s inception in 2006 until the present, and

will continue to do so (Gross, 2010). Google has recently released many applications for their

“real-time search” results, which return current posts on Twitter and other micro-blogging

sites along with typical search results (Singhal, 2009; Wise, 2010; Casey, 2010). Twitter itself

provides a list of “trending topics” and promotes many user-designed applications to enhance

other user’s experiences providing search, recommendations for users to follow, among many

other features. By addressing the challenges presented by the domain of informal text, we are

paving the way not only for improved TTS output for text messages, but also for improved

applications for many other sources of information.

1.1 Domain-specific Challenges for NLP

The informal text studied in this work contains features that make it very different from

either formal written text or text annotated from speech data. These differences mean that

current techniques for many NLP tasks perform quite poorly on data from this domain.

Not all differences are detrimental, though. Some features of this domain present useful

information that is often difficult to obtain from text alone, such as stress and emotion.

This is because writers in this domain often phrase messages to reflect the way they speak,

which is generally not true of formal text. A description of the main differences making this

domain difficult follows. The descriptions focus on the effect of these differences on text-to-

http://www.twitter.com

3

speech (TTS) applications because this is the application where most of our proposed work

is concentrated; however, brief descriptions of problems associated with other applications

are also listed.

1. Texting abbreviations. The greatest challenge when working with informal text is

the large number of out-of-vocabulary words arising from the prolific use of abbrevia-

tions. These abbreviations have their roots in the first instant messaging (IM) systems

and multi-player video games where it was important to communicate quickly over

the internet despite a lack of touch-typing skill. As text messaging via the short mes-

sage service (SMS) on cell phones became increasingly common, people began using

abbreviations more frequently to keep their messages below the 160 character limit to

save money. Abbreviations are used inconsistently, even by an individual user, and

new abbreviations are constantly being invented, preventing us from simply creating

a dictionary of all abbreviations. These abbreviations pose serious problems for many

useful NLP applications.

Chat abbreviations have a detrimental effect on text-to-speech (TTS) systems because

it would be impossible to store pronunciations in the lexicon for all possible abbrevia-

tions. Although it is possible to ignore the unknown word and just leave a silent gap

in the utterance, it is generally better to at least guess a pronunciation. TTS systems

may either try to pronounce them using letter-to-phoneme (L2P) rules or spell them

out character by character. For some classes of abbreviations, one or the other of these

approaches produces an understandable utterance, e.g. “nite” is easily pronounced as

the correct word “night” using L2P rules and “ne” is understandable as “any” when

the letters are spelled out. The abbreviation “abt” for “about”, however, does not lend

itself well to either of these approaches. Abbreviations are constantly changing and

a single abbreviation can stand for multiple words or phrases, so building a mapping

between abbreviations and words is not a feasible solution.

Search applications are also hindered by abbreviated text because they may not return

relevant results when the search term has been abbreviated in the conversation, status

4

message, blog or forum in which it occurs. Users cannot possibly search for all possible

abbreviations or misspellings of a word in order to find the post they are looking for.

Recently, detection of topics, keywords and sentiment is being performed on blogs

and Twitter status messages in an attempt to get real-time information about how

people feel about a given person, subject, current event, political candidate, or even

a television show that is currently being broadcast (Bollen et al., 2009; Diakopoulos

and Shamma, 2010; Tumasjan et al., 2010; Pak and Paroubek, 2010). Because these

applications still rely heavily on the words used in the text, they are negatively affected

by abbreviations, which do not appear in the lexicons used.

2. Emoticons and fillers. An emoticon is a textual representation of a facial expression.

Informal text is usually stream of consciousness and written in one pass without the

multiple drafts and editing sequences that are common for formal domains. In this

way, informal text is much like the spoken word, where words are uttered without

prior planning and refinement. In a spoken conversation, humans use the speaker’s

tone of voice and visual cues such as facial expressions or eye movement serve to

indicate when someone is being sarcastic, telling a joke, tired, confused, or genuinely

thinks something is funny. In written text, these clues are absent, which often leads to

misunderstandings. Emoticons help provide a “voice” to the text, leading to a better

understanding of the writers intentions.

There are styles of emoticons for most character sets, including adding diacritics or

using writing systems that do not use the Roman alphabet, such as Korean or Cyrillic

characters. The most common emoticon styles that we encounter in English writing

are typically called the “Western Style” and the “Asian Style”. Western emoticons are

viewed by tilting the head to the side, e.g. :-) indicating smiling or <3 representing a

heart. Asian emoticons, on the other hand, can be viewed right side up, e.g. (^ ∼) can

indicate winking or playfulness, while (o O) indicates surprise or confusion. English

users tend to leave off the parenthesis representing the side of the face when using

5

Asian emoticons, for instance writing ^ ∼ or o O for the previous examples. Although

there is a core set of emoticons, new expressions are being constantly invented.

Although not technically considered emoticons, users often explicitly mark pauses with

fillers such as “ummm” and “uhh”, a specially marked word indicating they are per-

forming an action (such as *cries*) or simply punctuation to indicate that they are

thinking. A message consisting of only an ellipsis often indicates that the writer believes

the previous statement was unintelligent. Question marks and exclamation points with

no words can indicate a lack of understanding, confusion, or surprise.

When normalizing a message, one may need to distinguish between emoticons and

punctuation, or in the case of emoticons such as “XD” (extremely happy: big grin

with squinty eyes), between emoticons and words or abbreviations, especially as they

are often attached to the previous (or following) word with no space in between. Be-

cause new emoticons are constantly being created, it is very difficult to create a com-

prehensive list for filtering. Emoticons present a difficulty in TTS due to a lack of

understanding of how (or whether) they should be pronounced. Much like texting ab-

breviations, new emoticons are constantly being created and multiple emoticons can

serve the same purpose. They may, however, be useful for TTS when used as clues to

the type of prosody and intonation that an utterance should have in order to sound

natural to a human listener. Often, emoticons also indicate the beginning or ending

of a sentence in lieu of typical sentence-final punctuation. This may be a helpful clue

for sentence boundary detection in a domain where punctuation marks are often used

inconsistently or are altogether absent.

3. Inconsistent capitalization. In formal English, proper nouns and sentence initial

words are always capitalized. This is not necessarily true of writing in this domain.

Capitalization is optional and often used inconsistently even within a single message.

Although may users capitalize names and sentences inconsistently, it is quite common

to use capital letters for emphasis, emotion, just to to LoOk InTeReStInG, or not at

6

all. Cases of abnormal capitalization indicating emotion or emphasis may actually

improve a TTS system. A sentence containing entirely capital letters is generally

accepted to mean that the writer is yelling, while a few words in all capitalized letters

in an otherwise lowercase message means the writer intends to emphasize these words.

Therefore, we may see improvements in emotion detection or detection of stress and

prominence information that are generally difficult to obtain from text alone. This

information can then be used to provide prosodic information to the utterance, making

it seem more natural to a human listener.

On the other hand, inconsistent capitalization can greatly increase the difficulty of

named-entity recognition (NER), a task that is relatively easy on formal written English

where proper nouns are always capitalized. NER in this domain is similar to that of

NER on transcripts from an ASR system, which usually lack capitalization information,

or on languages such as Arabic or Chinese that have no capital characters. However,

other features unique to this domain may prevent us from using techniques from those

tasks without modification. The lack of NER may cause inaccuracies when normalizing

abbreviations; without the capital letter, it may be difficult to detect whether a given

OOV word is an abbreviation that should be expanded or a name, which should not.

Lack of capitalization can also have a negative effect on sentence boundary detection

(SBD) leading to strange phrasing from the TTS system, especially when combined

with a lack of punctuation which is also very common. One common feature for SBD

in English is whether the word following the possible sentence boundary is capitalized

or not. This task also resembles the equivalent task on ASR transcripts.

1.2 Contributions of the Proposed Work

This thesis describes our advancements toward building an improved TTS system for reading

informal text. Our main contributions to the field are summarized as follows:

7

• The development of an annotated corpus of informal sentences. The corpus will be

made publicly available to aid further research.

• Use information gathered from our corpus to develop a state-of-the-art normalization

system for this domain, transforming informal text to look more like the formal stan-

dard English typically read using TTS

• Development of two methods to create abbreviation models for use during normaliza-

tion: the first using a statistical classifier to recognize when characters are likely to be

deleted from a word, and the second using a character-level machine translation model.

• Exploration of various methods of combining the two abbreviation models.

• Preliminary tests of a heuristic using a dictionary to reduce the false positive rate

during normalization.

• Verification that our enhancements improve pronunciation using the Festival TTS sys-

tem (Taylor et al., 1998) using both quantitative and qualitative evaluations.

• Our work can be generalized to other NLP applications and will improve results for

these tasks as well.

CHAPTER 2

LITERATURE REVIEW

This chapter briefly describes research related to processing informal text in general, as well

as research related to the specific tasks relevant to this dissertation. Interest in informal text

is a relatively new development, so evidence of its increasing importance is provided as well

as a description of informal corpora in current use. The final two sections describe work in

fields directly related to the dissertation research, though not necessarily directly applied to

informal text.

2.1 Informal Text

Informal text has become an increasingly popular research topic in recent years. Many

academic conferences are encouraging research on informal domains and noisy text. Both

NAACL and ACL have recently had multiple papers and workshops working with text from

blogs, micro-blogs and SMS messages. The International Journal on Document Analysis

and Recognition has had three special issues on noisy text analytics, in 2007, 2009 an 2011

containing a variety of work, from correcting false online friends to topic mining and under-

standing the informal language used. TREC has introduced a blog specific track for their

workshops, resulting in papers for summarization, topic detection, sentiment analysis, and a

variety of other tasks on blog data. Although it would be impossible to give an exhaustive

list of examples, we describe a variety of recent work on processing informal text.

One important vein of research on informal text lies in the prevention of spam and trolling

messages. Spam messages add no useful content to a blog thread, conversation, or online

community and often contain nothing but a hyperlink to the poster’s own blog, website, or

pornographic webcam. Trolls are users who purposely post derogatory or negative comments

8

9

in order to incite anger in other users or the original poster. Of the two, spam has the most

related work because it began as a problem in e-mail before blogging and other social media

became popular. It was shown by Sculley and Wachman (2007) that SVMs can provide

efficient spam filtering on blogs in addition to their typical use on email spam. Veloso et al.

(2007) uses data mining techniques to provide automatic moderation of spam and trolling

comments on blogs that outperforms the traditional SVM and decision trees in terms of

speed and accuracy.

A relatively new line of research looks at analyzing the content of micro-blogging websites,

such as the popular site, Twitter (http://www.twitter.com). Researchers are performing

search (Teevan et al., 2011), topic modelling of an individual user’s stream (Ramage et al.,

2010), as well as the more popular research on summarizing“trending topics” on the site as a

whole (OConnor et al., 2010; Sharifi et al., 2010a,b; Chakrabarti and Punera, 2011; Liu et al.,

2011) and detecting and analyzing users’ sentiment regarding a variety of topics (Bollen et al.,

2009; Davidov et al., 2010; Barbosa and Feng, 2010; Pak and Paroubek, 2010; Diakopoulos

and Shamma, 2010; Tumasjan et al., 2010).

Much work has been done on SMS messages to improve the speed of input through

language models (Hasselgren et al., 2003; Klarlund and Riley, 2003; Bento and Gil, 2005;

Tanaka-ishii, 2007; Pennell, 2007; Gong, 2008; van den Bosch and Bogers, 2008) and keyboard

optimizations (Kober et al., 2001; MacKenzie et al., 2001; How and Kan, 2005; Gong, 2008).

Microsoft Research has recently produced many articles about using speech to reply to SMS

messages while driving (Ju and Paek, 2009; Wu et al., 2010; Ju and Paek, 2010).

Three small SMS corpora are currently publicly available for current research. The NUS

SMS corpus contains approximately 10,000 SMS messages gathered from college students at

the National University of Singapore (How and Kan, 2005). The language used is a hybrid

of English and many other languages spoken in Singapore commonly known as “Singlish”.

The work of Choudhury et al. (2007) provides a small parallel corpus of 1,000 messages col-

lected from http://www.treasuremytext.com. Finally, Fairon and Paumier (2006) provide

http://www.twitter.com
http://www.treasuremytext.com

10

a parallel corpus of 30,000 French SMS messages paired with what they call “Standardized

French” (as opposed to “Standard”, which is controversial).

In addition, recent years have seen the development of corpora based on Twitter status

messages, which can be very similar to SMS messages and are used extensively in this

dissertation. The Edinburgh Twitter Corpus is a collection of over 97 million Twitter status

messages in a standardized format (Petrovic et al., 2010). This corpus is for general use

and its size prevents annotating it in its entirety, however it is a valuable resource for many

research topics in this domain. In addition, the annotated data used by Han and Baldwin

(2011) has been released publicly. Although their dataset is small (549 status messages

containing 1184 ill-formed words), is is fully annotated for OOV words and the tokens are

left in sentence order so context is available.

2.2 General Abbreviation Modeling, Disambiguation and Expansion

Abbreviation disambiguation and expansion is a common problem when processing text from

any domain. Willis et al. (2002) studied abbreviation generation in the hopes of lowering

the effort of text entry for people with motor disabilities; the user could enter abbreviated

text that would be expanded by a system to be read by his or her conversation partner.

They asked a group of young people to abbreviate a text of 500 characters to progressively

smaller lengths, assuming they are charged per letter but there is a hefty fee for every error

in decoding by another person. Although they do not attempt to expand the abbreviations

automatically, they produce a set of rules by which participants produced abbreviations,

using both deletion and substitution.

Early work (Pakhomov, 2002; Yu et al., 2003; Gaudan et al., 2005; Pakhomov et al., 2005)

showed that medical abbreviations can be modeled and expanded using various machine

learning (ML) techniques alongside the principle of “one sense per location” introduced by

Yarowsky (1993). These studies used contextual information to help disambiguate medical

terms under the assumption that an abbreviation and its correct expansion will be found in

11

similar contexts. This assumption was also used in combination with various ML techniques

by HaCohen-Kerner et al. (2008) for Jewish law texts.

Wong et al. (2006) introduced their ISSAC system that works on top of the spell check-

ing program Aspell to perform spelling correction, abbreviation expansion and capitalization

restoration simultaneously. Their model gives weight to the original weight given to a sug-

gested correction by Aspell, normalized edit distance, domain significance, number of hits for

a word on Google, and appearance of the word/abbreviation pair in an online abbreviation

dictionary. In addition, a word is given more weight if it has been seen paired with the

current abbreviation earlier in the document. Their re-ranking scheme provides a significant

increase in accuracy over Aspell alone.

Yang et al. (2009) work with abbreviations for spoken Chinese rather than for English

text messages, but their process is quite similar to ours. They first perform an abbrevia-

tion generation task for words and then reverse the mapping in a look-up table. They use

conditional random fields as a binary classifier to determine the probability of removing a

Chinese character to form an abbreviation. They rerank the resulting abbreviations by using

a length prior modeled from their training data and co-occurrence of the original word and

generated abbreviation using web search.

Cook and Stevenson (2010) focus on lexical blends, an interesting type of neologism that

is common in informal text. While these are not technically abbreviations, the ability to

break a lexical blend into its component words may be helpful for pronunciation by a TTS

system as well as for understandability in downstream tasks. They generate candidate sets

of words for the blend based on substring overlap between the blend and standard English

words. They then use a variety of features to generate a ranked order of the candidate sets

and choose the highest ranked set at the blend’s source words.

12

2.3 Text Normalization

Abbreviation expansion is just one of many techniques needed for the task of text normal-

ization. Text normalization is an important first step for any text-to-speech (TTS) system.

Regardless of the size of the training corpus, there will always be tokens that do not appear

and have unknown pronunciations. Text normalization has been widely studied in many

formal domains. Sproat et al. (2001) provides a good resource for text normalization and its

associated problems.

Table 2.1. Methods for processing unseen tokens during normalization.

Method Formal Example Informal Example
as chars RSVP “cu” (see you)
as word NATO “l8r” (later)
expand Corp. “prof” (professor)
combine WinNT “neway” (anyway)

In Table 2.1, we show some generally accepted processing methods for unknown words

with examples from text messages and more formal text domain. Text message normaliza-

tion presents many difficulties that are not encountered in other domains. This domain is

constantly evolving; new abbreviations appear frequently and inconsistently. One user may

abbreviate a single word in multiple ways. Abbreviations containing numbers and symbols

are very uncommon in formal text but often seen in text messages. Spell-checking algo-

rithms are mostly ineffective on this data, perhaps because they generally do not account for

the characteristics of text messages. They instead focus on single typographic errors using

edit distance, such as Kukich (1992), or a combination of this approach and pronunciation

modeling, such as Toutanova and Moore (2002).

One line of research views normalization as a noisy channel problem. The work of Choud-

hury et al. (2007) describes a supervised noisy channel model using HMMs for SMS normal-

ization. Cook and Stevenson (2009) modified this work to create an unsupervised noisy

13

channel approach. They divided abbreviations into eleven categories and created probabilis-

tic models for the most common types. The English word with the highest probability after

combining the models is chosen as the standard form of the texting word. Deletion-based

abbreviations were addressed in our work (described in detail in Chapter 5) using statistical

models (maximum entropy and conditional random fields) combined with an in-domain lan-

guage model (LM) (Pennell and Liu, 2010, 2011b). Liu et al. (2011) extend the statistical

model to be independent of abbreviation type with good results.

Whitelaw et al. (2009) used a noisy channel model based on orthographic edit distance

using the web to generate a large set of automatically generated (noisy) pairs to be used for

training and for spelling suggestions. Although they use the web for collection, they do not

focus on informal text but rather on unintentional spelling mistakes. Acharyya et al. (2009)

used an HMM to decode the abbreviations, but implemented an approximate maximum

likelihood inference algorithm using clustering over substring vectors rather than the typical

Baum-Welsch. Each vector contains a list of subsequences of the term with the normalized

weighted count of appearance for each subsequence, where each subsequence has decaying

exponential weights depending on the distance between the first and last character of the

subsequence in the original string. Unfortunately they do not perform any tests to determine

the accuracy of their system; however, anecdotal evidence in the form of their clusters shows

reasonable lists of abbreviations for each word. Beaufort et al. (2010) combine a noisy channel

model with a rule-based finite-state transducer and got reasonable results on French SMS,

but have not tried their method on English text. Han and Baldwin (2011) first determine

whether a given OOV word needs to be expanded or is some other type of properly-formed

OOV. For those predicted to be ill-formed, a confusion set of possible candidate words is

generated based on a combination of lexical and phonetic edit distance and the top word is

chosen in context using LM and dependency parse information.

The work of Pini et al. (2010) was originally designed to make text entry easier by allowing

users to type free-form abbreviated text that their system would then expand into a formally

written message, rather than the typical normalization scenario; however, their methods are

14

necessarily similar. They train a discriminative rather than generative model using an SVM

using n-gram features, a language model probability feature, the length of the string and

the consonant to vowel ratio. To estimate match probabilities they use logistic regression

with similarity features; positive examples of abbreviation pairs are taken from their data,

and they generate negative examples by pairing an abbreviation with a randomly chosen

English word. Their system allows substitution and deletion of characters in a word as well

as deletion of entire function words. Their accuracy on tests using common phrases of up to

five words found in an email corpus is quite promising.

Machine translation (MT) techniques trained at the word- or phrase-level are also com-

mon. The research of Bangalore et al. (2002) uses consensus translations to bootstrap a

translation system for instant messages and chat rooms where text messaging abbreviations

are commonly used. Aw et al. (2006) viewed text messaging lingo as if it were another lan-

guage with its own words and grammar to produce grammatically correct English sentences

using MT. Kobus et al. (2008) incorporate a second phase in the translation model that maps

characters in the texting abbreviation to the corresponding phonemes, which are viewed as

the output of an automatic speech recognition system. They use a non-deterministic phone-

mic transducer to decode the phonemes into English words. Q. and H. (2009) trained an

MT system using three on-line SMS dictionaries for normalizing chat-like messages on Twit-

ter. The technical paper of Raghunathan and Krawczyk (2009) details an explicit study

varying language model orders, distortion limit and maximum phrase length allowed by the

MT system during decoding. Contractor et al. (2010) also uses an SMT model; however, in

an attempt to get around the problem of collecting and annotating a large parallel corpus,

they automatically create a noisy list of word-abbreviation pairs for training using some

heuristics. As far as we know, our recent work is the first to use an MT system at the

character-level for this task (Pennell and Liu, 2011a). The details of that MT system are

described in Chapter 6.

CHAPTER 3

CORPUS COLLECTION AND ANNOTATION

NLP research in most domains requires a large, domain-specific, annotated corpus. In par-

ticular, the desire to use statistical methods requires a large number of accurate annotations

for model training. Unfortunately, such a corpus is not currently available to the research

community. Three SMS corpora are available but none met the needs of this study. The

use of “Singlish” in the NUS SMS corpus (How and Kan, 2005) and French in the corpus

developed by Fairon and Paumier (2006) means that they are not representative of the target

English speaking demographic, although it may be interesting to test the methods described

in this dissertation on these corpora in the future to see how well the method generalizes.

The corpus provided by Choudhury et al. (2007) is very small, with only 1000 messages.

Moreover, the test set provided with this corpus is merely an alphabetical listing of pairs of

words without contextual information needed for the methods described herein.

At the time this research began, the Edinburgh Twitter Corpus (Petrovic et al., 2010)

and the Twitter corpus developed by Han and Baldwin (2011) were not yet available. Had

they existed, neither would have been ideal. These corpora are built from Twitter status

messages in general while, in an effort to be more representative of the domain, the Twitter

status messages collected for this study were sent to Twitter using an SMS message. While

the meta-data is available for the very large Edinburgh corpus, no parallel corpus exists that

is specific to messages sent from SMS so the annotation performed for this dissertation would

have still been required.

Due to the lack of a suitable corpus, one was built and annotated for this study.

15

16

3.1 Collection

The first task in creating a corpus is to gather data. A corpus of actual text messages

would contribute best to our end goal. Friends, family, and people from online communities

volunteered to anonymously donate their sent messages for the project. Volunteers were

asked only to donate their sent messages, since we felt that received messages would require

permission from the message writer. Messages were collected using two methods. Some

either typed up their messages by hand or used a third party program to download their

messages to a text file. These messages were donated via email; to maintain anonymity, the

address from which the email originated was not saved. To make the process of donating

easier on the participants, a more automatic method of contribution was developed using

a Telit GM862-GPS cell phone modem (Telit Wireless Solutions, 2006). The modem was

attached to a development board with a RS-232 serial communication bus, which is used to

interface with a computer. Commands were issued to the modem over the serial port using

a C program; the modem notified the computer when a new text message was received. The

computer gathered only the content of the message and saved it to a text file. All other data

attached to the message was ignored by the program, including the sender’s phone number,

making this method of message gathering completely anonymous. Using these two methods

combined, approximately 20,000 sentences were collected. Although both costly and slow,

these messages give an accurate view of the domain.

To more rapidly enlarge the corpus, public data from the social networking site, Twitter

[http://twitter.com] was gathered. Twitter allows users to share “status messages” with

their “followers” (friends). These messages may contain up to 140 characters, which is 20

fewer than allowed in a text message. In fact, users may send a text message containing

their desired new status to a special number to update their status on the site without

having to access the internet. Over one million Twitter updates were collected during two

days in early August, 2009. Information about the sender of the update is removed to again

maintain anonymity during our collection process.

17

(a) Non-English messages from Twitter. (b) Spam messages detected with URL filter.

(c) Other types of unrepresentative messages. (d) Messages representative of the informal do-
main.

Figure 3.1. An illustration of the problems faced when adapting Twitter status messages to
our domain.

18

The meta-data provided by Twitter enabled collection of only status messages updated

by text message, which may more strongly resemble the target domain. Unfortunately,

many of these sentences are still not very representative of text messages. A large number

of public status messages are contributed by “bots” and contain spam or information like

stock quotes, weather reports, or the current time. In addition, since Twitter is utilized by

people all around the world, many messages are not in English. Furthermore, many messages

contain well-formed text and discuss topics unlikely to be mentioned in SMS messages.

First, a basic filtering of the collected data was performed for some easy-to-find unrepre-

sentative message types. Foreign language messages are shown in Figure 3.1(a). Notice that

many contain characters that are not used in standard English, providing a simple method to

filter a large portion of foreign messages. However, some messages are more difficult to detect

because they only contain the 26 characters (plus digits and punctuation) used in English.

In fact, in languages that use the Roman character set plus diacritics (accent markers), users

often leave off the diacritic marks when writing informal text. Examples of spam messages

containing URLs are shown in Figure 3.1(b). The presence of a URL flags the message for

removal. While it would be interesting to attempt using characteristics messages containing

URLs to detect spam that does not contain a URL, this is not directly addressed at the

present time. The messages shown in 3.1(c), demonstrate other ways to be unrepresentative

of the domain without containing a URL or foreign text. These messages are difficult to de-

tect so human input is currently relied upon, although many of these messages are eventually

discarded by the filtering process described in Section 3.3.

Finally, messages that are representative of the domain are shown in Figure 3.1(d). Native

English speakers can decipher such messages with little difficulty. Conversely, a TTS system

lacks the background knowledge needed to guess what these abbreviations might mean or

how they might be pronounced. The inconsistency in writing poses problems for NLP tasks.

19

3.2 Annotation

A set of abbreviations paired with the standard English word(s) from which they were derived

is needed to train the normalization methods. In the process of finding the best method both

for annotating message and for choosing appropriate messages to annotate, various methods

were tried before settling on a message selection algorithm and annotation interface.

3.2.1 Amazon’s “Mechanical Turk”

As a cost and time saving measure, Amazon’s “Mechanical Turk”1 was tried initially. The

annotation template submitted to Mechanical Turk is shown in Figure 3.2. Sentences from

the SMS portion of the corpus containing at least one OOV word with respect to the CMU

dictionary were chosen for annotation. Each annotator was shown the entire sentence since

context plays an important role in deciphering abbreviations. Each word in the sentence

(using spaces as word boundaries) is then shown with a corresponding text box. Annotators

were asked to write the standard English form of all abbreviations in the sentence in their

corresponding text boxes. If the annotator recognized that a word was an abbreviation, but

unable to guess the standard form, he was instructed to type “XXX”. Otherwise, the anno-

tator was asked to leave the text box blank. Three unique workers per message annotated

2,500 total messages in this fashion.

Unfortunately, the results were not very useful. This can partly be attributed to the poor

heuristic used to choose messages for annotation. Of the 2,500 sentences submitted, fewer

than expected were marked as containing an abbreviations, and many of these were actually

names of people or places. We have since implemented an improved method for selecting

messages for annotation, which is described in Section 3.3.

It also appears as if participants on the Mechanical Turk do not represent our target

demographic. A high percentage of the abbreviations found were marked with “XXX”,

1This tool allows researchers to upload human intelligence tasks such as annotation,
called HITs. Turk users complete the tasks for a small price. This tool can be found at
https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome

20

Figure 3.2. Our template for annotating abbreviations with their standard English forms
using Amazon’s Mechanical Turk. The text boxes show responses given by an actual anno-
tator.

indicating that the annotator was unsure of the term’s meaning. Not only that, but we

could have completed much of this task ourselves in the time taken to check the annotations

by hand due to low inter-annotator agreement. For this reason, an annotation GUI was

developed and annotators were hired and trained for the final corpus.

Reverse Annotations

While the GUI development and corpus annotation was in progress, abbreviation to standard

English mappings were still needed in order to continue making progress. Reverse annota-

tions of the type shown in Table 3.1 were gathered for this purpose, which are relatively fast

and easy to collect. Annotators were asked to perform the reverse translation task, listing

as many reasonable abbreviations for a given English word as they could think of. Each an-

notator could use his or her own definition of “reasonable”. To choose English words to be

annotated, sentences from our corpus consisting of five or more words were selected as can-

didates. Those sentences containing words of three or more characters that do not appear in

a dictionary were eliminated. The annotator was given an English word from the remaining

sentences and context from the containing sentence. Eight annotators translated 1000 total

words in this fashion, with each word marked by three distinct annotators. For consistency,

each participant was required to complete a minimum of 250 words; most completed more,

and one annotated completed all 1,000 words. The inter-annotator agreement is quite low

21

overall. Of the 2917 unique pairs generated by the annotators, 67.08% were listed by only

one annotator, 19.78% were listed by exactly two annotators, and only 13.10% were listed by

all three. This confirms that a system for this task needs to be robust to new abbreviations

in order to be effective. These reverse annotations were only used during development of the

abbreviation expansion methods.

Table 3.1. Possible abbreviations for the word “fortunately” given by three annotators.

Word: fortunately
Context: fortunately, he’s 10 min away what time?
Ann. 1: fortuntly, 4tunatly, 4tntly, 42ntly
Ann. 2: fortnately, forch
Ann. 3: fortnly, frtly

3.2.2 Java Annotation GUI

Finally, a Java GUI was developed for performing many types of annotations in one pass

over the corpus, shown in Figure 3.3. Each message is displayed in the text box in the

upper left of the GUI. The annotator can click the check boxes at the bottom or buttons

on the right to add annotations; individual uses for each type are explained below. Each

annotation is displayed in the area below the message as it is added, and can be removed

from the list if the annotator notices a mistake. If a message requires no annotations, the

user can simply press the “Next” button to move on to the next message. The “Previous”

button can be used to redo the last message if the annotator realizes a mistake was made.

The number of completed sentences is displayed in the lower right corner. The annotator

can stop at any time by pressing the “Done” button, which writes the output at any time.

When the program is run next, it will pick up where they left off. Explanations of each type

of annotation we hope to collect are given below.

22

Figure 3.3. The GUI used for annotating our corpus.

1. Translation of abbreviations to their standard English forms. This is the most

important type of annotation for the work described in this dissertation. On the GUI,

the user highlights an abbreviation with the mouse and clicks the “Abbreviation”

button. A pop-up text box appears where the user can write the standard English

word or words corresponding to the selected abbreviation. If the user is unsure of the

meaning, he can type “XXX”.

2. Location of emoticons in messages. Currently, this information is only used for

tokenization of sentences since users often do not insert spaces between a word and an

emoticon. Typical tokenization methods often view these emoticons as punctuation

and insert spaces between each character, rather than viewing them as a single entity.

Detection of emoticons helps to eliminate this problem. This information should also

be useful for sentence boundary detection and improving the naturalness of text-to-

speech output, although these are not currently implemented. To mark an emoticon,

the user merely highlights it with the mouse and presses the “Emote” button.

23

3. Location of named entities in messages. Detection of named entities is important

to distinguish OOVs that are abbreviations needing to be expanded from OOVs that

are named entities and should be read using L2P rules. By detecting that an OOV

word is a named entity, the accuracy of our system improves since we will not perform

expansion. Annotating a named entity is also done by highlighting the entity and

pressing the corresponding button. The “Needs Name Token” checkbox is used to fix

a potential problem caused by a pre-processing step. On Twitter, users can direct a

message at another user by prefacing the message with an @ symbol and the username

of their friend, for instance “@username I saw that too!!” Because this is not done

in text messages, message initial tokens beginning with the @ symbol were removed.

This notation is also used when talking about another Twitter user; if this happens

at the beginning of the message its removal results in an incomplete sentence, such as

“is coming over later”. Named entity annotations are not used in current work,

but have many potential uses for future research.

4. Flagging of unrepresentative messages. The GUI includes check boxes that an

annotator can mark if a foreign or otherwise non-representative message is accidentally

selected for annotation. This can provide feedback for tuning the prioritizing process

as well as giving cause to eliminate the message from the corpus.

3.3 Choosing Messages for Annotation

After settling on the GUI annotation method, messages must be selected for annotation.

With over a million Twitter messages, it is infeasible to have a human look through all of

the messages and choose a set by hand. In addition, an annotator’s time is wasted if he is

presented with the unrepresentative messages described above. Annotating many messages

containing no abbreviations, or repeatedly annotate the same, very common abbreviations

would also be detrimental to the training process. A scoring system to determine which

messages to annotate and in what order was thus devised using the following metrics:

24

1. Word Count Index. A low word count index indicates that a message is close to

the mean message length. Messages with fewer than five words are removed from

consideration. The index is |N −E(N)|/σ(N), where N is the number of words in the

message and mean and standard deviation are calculated over the entire corpus.

2. Perplexity Scores. Two perplexity scores are utilized calculated against character-

level language models. First, the perplexity of the message compared to standard

English text is calculated. A lower score indicates that the message is less likely to be

in a foreign language or jibberish. The perplexity of the message compared to the rest

of the corpus is also calculated. A low score here indicates that the message is more

representative of the domain. The sentence is removed completely if in either case the

perplexity value is greater than a threshold (1000 in this study).

3. OOV Count. This is a simple count of the number of out of vocabulary (OOV) words

in the message compared to an English dictionary, which is denoted NOOV . This metric

helps guarantee selection of messages containing many OOV words. The sentence is

removed completely when NOOV = 0.

4. OOV Percentages. This metric consists of two scores: the first is NOOV /N ; the

second is a non-duplicate OOV percentage, where all repeated words are removed and

then the percentage is calculated again. If the first score is greater than 0.5 but the

second is not, the message is removed from consideration.

5. OOV Frequency Scores. For each OOV token (including emoticons) the frequency

of the token across the entire corpus is found. This ensures annotation of those abbre-

viations that are commonly used.

One sorted list is generated for each metric. A final score is generated for each sentence

by a weighted average of its position in each list, where more weight is given to the non-

duplicate OOV percentage list and less weight is given to the OOV frequency scores. The

sentences are ranked in a penultimate list based on this final score. Finally, there is a post

processing step consisting of iterating through the list and removing sentences introducing no

25

new OOV words when compared to higher-ranked sentences. Messages were then annotated

in the order they appeared in the final score list.

3.4 Annotation Statistics

Five undergraduate students were hired and trained for annotation using the GUI. The

students were asked to use all available resources (including web searches or asking friends)

to help when they were unsure of a term’s meaning. As of the writing of this dissertation,

4661 twitter status messages have been annotated. Table 3.2 shows number of annotations

made per student2. Tokens refers to the total number of annotations made, including

duplicates (i.e., the same abbreviation was used in multiple sentences). Types refers to the

number of annotations when duplicates are removed. Unique refers to those pairs that only

appeared in this student’s annotations. Unknown refers to the number of tokens for which

this annotator could not find the standard English form.

Table 3.2. Division of annotations in our data.

Annotator 1 2 3 4 5
Sentences 600 547 892 977 1925

Tokens 866 784 1251 1676 3192
Types 593 570 894 1125 2017

Unique 344 311 542 704 1439
Unknown 51 36 45 68 92

Seventy-four messages were used for inter-annotator agreement. These messages were also

annotated by the author as a standard set for comparison. Unfortunately no single hired

annotator completed all 74 messages. Agreement is first computed at the boolean level;

that is, whether a token was marked as an abbreviation or not regardless of the provided

translation. Table 3.3 shows the pairwise agreement between annotators on tokens given to

2Originally, the messages were to be divided equally amongst the annotators, but some
annotators left the university before the task was completed.

26

both people, including those that both agreed were not abbreviations. The Fleiss’ Kappa of

κ = 0.891 is quite high so the number of annotators can probably be reduced.

Table 3.3. Pairwise boolean agreement (%) between annotators. A indicates the author.

Annotator 1 2 3 4 5
A 98.6 96.8 96.3 97.2 97.7
1 97.0 97.0 96.7 98.1
2 96.4 95.7 97.0
3 97.0 96.4
4 97.1

Non-boolean agreement is also calculated, where in the case that two annotators marked

a token as an abbreviation but provided different translations they are considered to be in

disagreement. For this task, the maximum number of annotators (per token) who are in

agreement is used as a metric. As an example, if one annotator says a token is not an

abbreviation at all, two say it is an annotation and translate it as A and the remaining three

also believe it is an abbreviation but translate it as B, the agreement is 3.

Table 3.4. Distribution of maximum annotators in agreement per token.

1 2 3 4 5 6
0 3 5 15 30 425

Table 3.4 shows the distribution across only those tokens seen by all five annotators and

the author, but this is slightly misleading. Of the 478 tokens included in the table, only

82 tokens were marked as an abbreviation by at least one person. Clearly, the 53 with a

maximum agreement less than 6 all come from this set, showing this task is more difficult.

27

Table 3.5. Abbreviation types. Subcategories are italicized below their parent category.

Category Definition Example

Deletion Deletions only. tmro (tomorrow)
Clipping Entire syllable(s) deleted prof (professor)
Location Silent ‘e’, Initial ‘h’ or -ing ‘g’ talkin (talking)
General Single word, not covered above abt (about)
Initialization First letter of each word jk (just kidding)

Substitution Replacing characters with others 2nite (tonight)
As Sound Reading the token as a word l8r (later)3

As Character Pronouncing character’s names ne(any)3

Symbolic Symbol(s) that look similar $top (stop)

Insertion Word length is increased lightining (lightning)
Repetition Letters repeated for emphasis yesssss (yes)
Stylistic Intentional changes confrused (confused)
Error Generally caused by a typo jusyt (just)

Swap Correct letters in wrong positions freind (friend)

Combination Use of two or more of the above. 2sdy (Tuesday)
1As opposed to “ell-ate-arr” and “neh”

3.5 Types of Abbreviations

Abbreviations can be categorized by formation method. Cook and Stevenson (2009) pro-

posed eleven categories that are somewhat subjective due to overlap. Three broad categories

are proposed for use in this work (two with subcategories) loosely based on edit distance.

The categories are listed with examples in Table 3.5, and are referred to throughout the

dissertation. Abbreviations can mostly be categorized by looking at the characters alone

using these divisions, though some ambiguity stems from silent ‘e’ removal (does “mayb”

remove a silent ‘e’, or replace “be” with ‘b’?). Insertions and swaps are often the result of

typing errors. The count of each type of abbreviation found in the annotated data is shown

in Table 3.6. The vast majority of insertions are of the repetition type. For this reason, they

are categorized and treated separately in this work. Insertions of the phonetic type (such as

dawg for dog) are considered substitutions for the purposes of categorization.

28

Table 3.6. Division of abbreviation types in the annotated data.

Deletion Substitution Repetition Swap Insertion Combin.
Tokens 2546 828 558 106 59 197
Types 1406 620 510 106 55 140

3.5.1 Analysis

Table 3.7 shows a comparison of statistics gathered from collected SMS messages and the

annotated Twitter data. Note that there are approximately four times as many SMS mes-

sages as there are annotated Twitter messages. The number of words and the number of

out-of-vocabulary (OOV) words compared to the CMU Lexicon4, which contains over 125k

words were counted first. Although the number of words is far higher for the SMS data (as

expected, since there are many more messages) the number of unique words is lower. This

can be attributed to the fact that we had a small number of contributers, and a single person

tends to use a somewhat stable set of words. The Twitter data could have theoretically been

taken from as many users as there are messages. Twitter users are also more wordy than

the SMS contributers; SMS users have an average of just over 6 words per message, while

Twitter users have just over 14 words per message. Many of the SMS messages appear to be

replies to another SMS user, such as “no thanks”, “that’s fine” or “just got home”. Twitter

messages, on the other hand, are often written to no one in particular and usually contain

explanatory sentences so that followers will understand the context. The OOV rate of the

SMS data is lower than expected, which we believe is because most of our contributers are

in graduate school and probably do not represent the stereotypical SMS user. The SMS

OOV rate is quite high compared to formal text and considering the size of the reference

dictionary but is very low compared to the Twitter data, which has a high OOV rate due to

the large number of proper nouns in the data.

4Available from http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

29

Examination of the OOV words showed that the OOV words generally fell into five cat-

egories: intentional misspellings, abbreviations and slang (e.g., “wen” for “when”, “brb” for

“be right back”, “friended”); proper nouns (e.g., “leanne”); onamotapoea (e.g., “aaaaargh”);

alphanumeric words (e.g., “2moro”, “gr8”, “10pm”); and emotes (e.g., “:-)”, “<3”). Regular

expressions were used to estimate the number of words falling into the alphanumeric and

emote categories for the SMS data. For the twitter data, a regular expression was used to

find the alphanumeric words, but the emote numbers are taken directly from the annotated

data.

Table 3.7. Analysis of tokens in the corpus.

Category Total (i.e., tokens) Unique (i.e., types)

SMS

words 121,572 8,185
OOV words 3,969 1,498 (18.3% of word types)

alphanumeric (regex) 150 95 (6.34% of OOV word types)
emotes (regex) 1,015 45 (3% of OOV word types)

Twitter

words 65,315 12,243
OOV words 16,666 7,553 (61.6% of word types)

annotated abbrs. 6300 3096 (25.28% of word types)
alphanumeric (regex) 597 495 (6.5% of OOV word types)

emotes 1,170 199 (2.6% of OOV word types)

3.6 Chapter Summary

Supervised methods in natural language processing require the use of a large annotated

corpus. To this end, a collection of SMS-like status messages from Twitter was gathered, as

well as a set of actual SMS messages from graduate student volunteers. Statistics gathered on

both data sets show that they are similar in terms of the types and amounts of non-standard

words present. Five student annotators used a Java GUI designed specifically for this project

to mark the location and meaning of abbreviations found in the Twitter data, with excellent

agreement. This annotated data will be used throughout the following chapters.

CHAPTER 4

NORMALIZATION MODEL AND SETUP

This chapter describes the setup for the experiments performed in Chapters 5, 6 and 7. First,

the noisy channel model used in this work for normalization of messages is explained and

broken down into its constituent parts in Section 4.1. The four experiments performed for

each model presented in the following chapters are then described in Section 4.2. Finally,

some baseline experiments and results with which system performance can be compared are

described in Section 4.3.

4.1 The Noisy Channel Model for Normalization

This work uses the noisy channel model for normalization, similar to automatic speech

recognition (ASR) and statistical machine translation (SMT) problems. For a given text

message sentence, A = a1a2...an, the problem of determining the sentence of standard English

words, W = w1w2...wn, can be formally described as:

Ŵ = arg maxP (W |A)

= arg maxP (W)P (A|W)

≈ arg max
∏

P (wi|wi−n+1...wi−1)×
∏

P (ai|wi)

= arg max(
∑

logP (wi|wi−n+1...wi−1) +
∑

logP (ai|wi)) (4.1)

where the approximation is based on the assumption that each abbreviation depends only

on the corresponding word (note that we are not considering one-to-many mappings in this

study), and a word is dependent on its previous (n−1) words. In other words, the probability

P (wi|wi−n+1...wi−1) is represented by a traditional n-gram language model (LM), which we

briefly describe in Section 4.1.1. The abbreviation score in Equation 4.1, P (ai|wi), typically

30

31

corresponds to the acoustic model during ASR or the translation model during SMT. In this

work, these models are replaced by an abbreviation model (AM) representing the likelihood

that an abbreviation ai is derived from word wi. There could be many ways to generate the

AM; two possible methods are described in the following chapters.

Equation 4.1 assumes that the AM and LM should be weighted equally, but in actuality

one model may prove to be more helpful than the other. For this reason, the terms from

Equation 4.1 may be given weights, yielding the final equation

Ŵ = arg max(α
∑

logP (wi|wi−n+1...wi−1) + β
∑

logP (ai|wi)) (4.2)

where α and β are determined empirically. The final system is thus a two-stage process: In

the first stage the P (a|w) scores are generated and in the second stage they are combined

with LM scores using Equation 4.2.

4.1.1 Language Modeling

Language modeling, and n-gram modeling in particular, is an important part of natural

language processing. Modeling the informal domain will help achieve better disambiguation

results when normalizing abbreviations in the text.

The AM provides possible standard English words with associated scores corresponding

to a given abbreviation. Assuming that the context is entirely made of words in our LM,

the probability that each standard word in the list appears in that context is given by the

model. Of course, there is no such guarantee for this task. In fact, it is quite likely that the

surrounding words are also abbreviations that do not appear in the LM. A word-level LM

is used in Equation 4.2 to help disambiguate multiple word hypotheses for an abbreviation

when translating an entire text message.

The language model (LM) used during decoding is a trigram language model generated

using the SRILM toolkit (Stolcke, 2002) with Kneser-Ney discounting. Those messages from

the Edinburgh Twitter corpus (Petrovic et al., 2010) containing no out-of-vocabulary (OOV)

32

words compared to a dictionary are used to train the model. SRILM is constrained to use

the appropriate order LM for the amount of context given during testing.

4.1.2 Abbreviation Modeling

There are many ways to create an AM for the P (ai|wi) scores. Two methods are described in

this dissertation: a model specific to those abbreviations formed by only deletions (Chapter 5)

and a more general model using a character-level MT system (Chapter 6). Some approaches

for combining these two models are discussed and evaluated in Chapter 7.

4.2 Experimental Setup

Cross validation was used for the experiments on each AM presented in the dissertation. The

data from four annotators is used as training data, while the data from the fifth annotator

is divided in half for development and testing. Two tests are performed for each fold;

initially, the first half is used for development and testing is done on the second half, then

the development and test portions were swapped. The results are averaged over all ten tests.

Throughout the experiments there are two sets of abbreviations on which experiments

are performed. The first is made up of all single-word abbreviations (SW) in the annotated

data. This data does not include those annotations where a single token was mapped to

multiple words or when multiple tokens (or parts of multiple tokens) are mapped to one or

more words. As previously mentioned, due to pre-processing it also does not include those

tokens annotated as sound effects or those tokens where the annotator was unable to guess

a translation even though he or she recognized that it was an abbreviation. There are 4409

abbreviations in this test set. The second test set is made up of only those abbreviations

that can be formed from their annotated standard form by deletions only (DEL), resulting in

2546 abbreviations for testing. This is necessary because the abbreviation model described in

Chapter 5 is designed to address this and only this type of abbreviation. For fair comparison,

all other AMs and the baseline systems are also tested on this deletion-only set. When

33

performing tests, abbreviations not in the current test set (SW or DEL) are replace with

their standard forms. This yields original word error rates (WERs) of 9.49% for DEL and

11.6% for SW. Note that the original error rate of the data set is even higher. These WERs

are much lower than the OOV rate shown in Table 3.7 because of the high occurrence of

proper nouns in the Twitter data set, which are OOV compared to the dictionary used but

are already considered to be in standard form.

For each abbreviation model, the three tests listed below are performed.

1. Abbreviation Model Alone. The first question is how well the scores generated

by each abbreviation model perform on their own, without any information from a

language model. Without a language model, a system cannot make use of context, so

we submit only an abbreviation for each test case.

2. Incorporation of an LM for Decoding. Next, the language model information

is incorporated using Equation 4.2. Hypotheses are generated for an abbreviation

using the AM under test and then decoded using the language model to find the final

score for each hypothesis. The hypotheses are ranked by score and the highest scoring

word is suggested by the system as the translation. The language model scores are

automatically retrieved using the SRILM toolkit (Stolcke, 2002).

3. AM for Pruning Only. Finally, it may be interesting to see what contribution each

abbreviation model has toward re-ranking the candidates to find the best choice of

translation. In this setup, the AM under test is used to generate the possible hypotheses

for translation; however, only the language model is used for decoding rather than

combining the LM score with the AM score (e.g., setting β = 0 in Equation 4.2). In

this way, the AM is only used to prune the number of words the LM must consider

but does not contribute to the score used to rank these hypotheses. Once again, the

language model scores are automatically retrieved using SRILM.

Top-N accuracy is calculated for N = 1, 3 and 10 as well as the total number of correct

standard forms found regardless of position. Each of the three tests is executed using no

34

context (unigram). Tests 2 and 3 are also run with one or two words of context on either side

(bigram and trigram, respectively) in order to see how the order of the LM affects results.

These tests are first run using only trigram context on the development set to optimize top-1

accuracy. During optimization, α is set to 1 and β is varied from 0.01 to 100. In these

context tests, abbreviated context words are replaced with their annotated standard form

to yield the best chance of decoding.

Each test is also performed at the message level, where the entire message is decoded

using the model under test and the SRILM lattice-tool. It is common for abbreviations to

appear in the context of other abbreviations, which poses a more difficult decoding problem

when context is used. Thus, in the message level tests the only words replaced with their

standard forms are those not in the current test set. Sentences containing no abbreviations

for the current test set were removed. For some setups, thirteen sentences caused the SRILM

lattice-tool to run out of memory, even when run on a machine with 8G of memory and using

options designed to help with memory usage. These messages were therefore discarded for

all message level tests across all setups described in this dissertation. This results in 2525

messages containing 4387 abbreviations for the SW test set and 1687 messages containing

2511 abbreviations for DEL.

A word lattice is generated using the AM under test in order to decode the message. An

except from an example lattice is shown in Figure 4.2. At the top, the number of nodes N

and transitions (links) L are specified. The eight nodes for the example sentence are defined

by the lines “I=0” through “I=7”. The words label the links between nodes. The first link

shown in the figure, “J=6”, starts at node 2 (“S=2”) and ends at node 3 (“E=3”). There

are 14 possible words that can link nodes 2 and 3 shown in the figure. Each W represents

a candidate word, and the associated score a represents P (ai|wi). When the system under

test is unable to generate any candidate hypotheses, as is the case for the tokens “fraps” and

“:)” in the example sentence, the original token is used as the candidate with the score -0.1.

If the original token is not one of the hypotheses from the system under test, it is added

35

N=8 L=41
I=0
I=1
I=2
I=3
I=4
I=5
I=6
I=7
J=0 S=0 E=1 W=<s> a=−0.1
J=1 S=1 E=2 W=green ing a=−3.37862
J=2 S=1 E=2 W=greeno a=−5.19076
J=3 S=1 E=2 W=gren a=−5.46853
J=4 S=1 E=2 W=green a=−0.952995
J=5 S=1 E=2 W=greene a=−4.37003
J=6 S=2 E=3 W=eat a=−4.66563
J=7 S=2 E=3 W=ate a=−5.6587
J=8 S=2 E=3 W=tea t a=−6.58284
J=9 S=2 E=3 W=tate a=−7.1831
J=10 S=2 E=3 W=te a=−5.39761
J=11 S=2 E=3 W=tee a=−6.49165
J=12 S=2 E=3 W=tae a=−6.5319
J=13 S=2 E=3 W=t e e r a=−7.38816
J=14 S=2 E=3 W=heat a=−7.16311
J=15 S=2 E=3 W=t e a l a=−7.23479
J=16 S=2 E=3 W=tea r a=−6.14705
J=17 S=2 E=3 W=ta a=−6.55731
J=18 S=2 E=3 W=t e r a=−6.32367
J=19 S=2 E=3 W=tea a=−2.77546
J=20 S=3 E=4 W=f r a p s a=−0.1
. . .
J=34 S=5 E=6 W=god a=−7.16848
J=35 S=5 E=6 W=guide a=−7.21387
J=36 S=5 E=6 W=guard a=−5.92715
J=37 S=5 E=6 W=good a=−7.77716
J=38 S=5 E=6 W=gude a=−7.32483
J=39 S=5 E=6 W=guuud a=−7.77716
J=40 S=6 E=7 W=:) a=−0.1

Figure 4.1. An excerpt from the lattice for the input sentence “green tea fraps r guuud :)”

36

as the final link between the two nodes with a score equal to the minimum score across all

other hypotheses for that token (see link “J=39” in the figure).

The SRILM lattice-tool is used to generate the 20 best sentences. The lattice-tool is

typically used to combine a language model with an acoustic model; the abbreviation model

replaces the acoustic model for this test. The decoding is easier than the typical case because

there is a strict one-to-one alignment between words and abbreviations for all of the tests

in this dissertation. The LM is constrained to use order 1, 2 or 3 to test the impact of LM

order. For message level tests, the following metrics are used:

1. Abbreviation top-N accuracy. This metric is used to see what degradation of

performance occurs due to the added difficulty of decoding abbreviations when there

are other abbreviated words nearby. An abbreviation is correct in top-N if the word is

correctly translated in at least one of the top N sentences. Note that when using this

metric a score of 100% in top-N would not guarantee that any single top-N sentence

is 100% correct. One abbreviation may be correct in sentence i < N but incorrect in

sentence j < N , where the opposite is true of a second abbreviation. In addition, it

is possible that a system may falsely “correct” a word that was already correct in the

original sentence, changing it to another English word.

2. Sentence-level top-N accuracy. A system is marked as correct in top-N at the

sentence-level if one of the top-N decoded sentences exactly matches the reference

sentence. The system therefore corrected all abbreviations in the original sentence but

did not mistakenly change any words that were already in their proper standard form.

3. Top-1 false positive (FP) rate. This metric is only calculated for the top-1 hypoth-

esis for each message since it is difficult to define the metric over multiple sentences.

It describes the percentage of words already in standard form in the original message

that are changed to an incorrect word by the system under test.

4. Top-1 word error rate (WER). Similar to the last metric, this is also calculated

for only the top-1 hypothesis. It describes the final WER of the top-1 hypothesis for

37

the system under test. This includes both correctly normalized abbreviations as well

as the FP changes.

4.3 Baseline Experiments

Before the methods presented in this dissertation can be tested, baselines must be established

with which a comparison can be made. Two baselines are provided: the first uses a language

model (LM) for decoding with no information about the abbreviations themselves, while the

second uses a state-of-the-art spelling checker, Jazzy (Idzelis, 2005).

4.3.1 Language Model Baseline

A natural question is how well the LM performs on its own without the use of an AM. It is

impractical conduct experiments with no context for this baseline because the LM is unable

to differentiate between unigrams without context and will always choose the same word

(the one with the highest unigram probability).

Thus the LM baseline is tested using one or two words of context on either side of the

abbreviation. For a test case w1Aw2 (w1w2Aw3w4) the LM is used to extract all bigrams

(trigrams) that begin with the left context word(s), as well as their scores. The second

(third) word in the bigram (trigram) is considered a candidate A’ for the translation of A.

Then the LM the score for the bigram (trigram) beginning with A’ followed by the right

context is extracted. For trigram testing, the score for the trigram w2A
′w3 is also used. As

the scores produces by SRILM are log-probabilities, the scores are added to find a final score

for the word A’.

In the exceptional case where no bigram (trigram) beginning with the left context exists,

the system backs off to the unigram (bigram) model and considers all unigrams as possible

candidates for A. This model also backs off when there are no bigrams (trigrams) beginning

with a candidate A’, or in the case of trigram testing, when the trigram w2A
′w3 does not

appear in the model.

38

Finally the candidates are ordered by their scores and the highest ranking candidate A’

is chosen as the translation of the abbreviation A.

Table 4.1. Top-N accuracy (%) using only a language model for decoding.

Top-1 Top-3 Top-10 Found
Bigrams (SW) 13.95 24.86 38.98 91.69

Trigrams (SW) 18.32 28.51 39.22 75.54
Bigrams (DEL) 13.15 24.82 39.31 90.7

Trigrams (DEL) 17.32 26.82 37.50 74.51

The results of these tests are shown in Table 4.1. The top-N accuracy is calculated

for values N = 1, 3 and 10, where a system is considered correct in top-N if the correct

translation appears in the first N hypotheses given by that system. The number of correct

answers eventually found by the system regardless of how far down the list it appears is

shown in the final column of the table.

Using only the LM performs very poorly, as expected. The results are similar for the

two test sets, which is to be expected since the LM has no knowledge of the abbreviation

form, or even what abbreviation originally appeared in the context. Note that while the

trigram context outperforms the bigram context in general, the bigram context has a higher

found percentage. This is because the trigram context eliminates the correct word C from

consideration when the trigram W1W2C does not appear in the language model, which

happens somewhat frequently.

4.3.2 Jazzy Spell Checker

Similar to Liu et al. (2011), the state-of-the art spell checking algorithm, Jazzy (Idzelis, 2005)

is also used as a baseline system. Jazzy is based on the Aspell algorithm and integrates a

phonetic matching algorithm (DoubleMetaphone) and Ispells near miss strategy that enables

the interchanging of two adjacent letters, as well as the changing/deleting/adding of letters.

39

Rather than using the small dictionary included with the Jazzy source, an Aspell dic-

tionary1 is incorporated. Initial tests using both dictionaries indicated better performance

using the larger Aspell dictionary. An attempt was made to use the Aspell phonetic dic-

tionary1as well, however it degraded performance significantly compared to Jazzy’s default

setup. Jazzy’s configuration file was modified so that corrections for words containing digits

would be suggested; by default Jazzy ignores these tokens, which are common in this domain.

Jazzy’s predictions do not change based on context, so only unigram-based tests are

performed. When Jazzy believes a word to be misspelled, it returns a ranked list of words.

This is treated as the N -best list and top-N accuracy is calculated. If Jazzy does not provide

any suggestion we mark it as correct if the token was already in standard form, and incorrect

otherwise. The results for Jazzy on our two data sets are shown in Table 4.2. The results

on this data are lower than those obtained by Liu et al. (2011) (on their own test set) by a

fair margin.

Table 4.2. Top-N accuracy (%) using the Jazzy spell checker.

Top-1 Top-3 Top-10 Top-20 Found
SW 37.91 39.47 44.25 44.53 44.60

DEL 34.68 36.72 43.40 43.51 43.60

4.4 Chapter Summary

Throughout this dissertation, the noisy channel model is used for normalizing the abbrevia-

tions found in informal text. This model combines the use of a language model (LM)–here

derived from a portion of the Edinburgh Twitter corpus–with an abbreviation model (AM)

that gives likelihoods for representing an English word with various abbreviations. The ab-

breviation models used will be described in the following chapters. For each abbreviation

1en US dictionary and en phonet.dat from Ubuntu, package version 6.0-0-6ubuntu1

40

model, evaluations are performed to determine the effect of having varying amounts of con-

text available for decoding, the effect of increasing the order of the language model used,

and the usefulness of the AM when it is used with an LM, without an LM and when the AM

is used only to generate hypotheses but not in calculating the final hypothesis score. Two

baselines are also presented: the first uses only a language model to choose a likely word for

the context in which the abbreviation appears, and the second uses a state-of-the-art spell

checking algorithm.

CHAPTER 5

STATISTICAL DELETION MODELING1

The first abbreviation model created focused only on deletion-based abbreviations of single

words, which the annotated data shows to be the most common abbreviation type. This is a

reasonable starting point because the end goal of this work is a TTS system. The As Sound

class is the most frequent substitution method, leading to reasonable pronunciations using

letter to sound rules. Although a deletion-based system cannot guess the standard form,

the end user can understand the speech. This chapter describes an approach for creating an

abbreviation model for the Deletion types.

5.1 Model Description

Concentrating only on the Deletion class allows the task to be viewed as a binary classification

problem. For each word/abbreviation (W/A) pair, tagging is performed at the character level

as shown in Figure 5.1. A tag of ‘N’ means that the character should be removed to form

the abbreviation, while a tag of ‘Y’ means that the character should remain in the word.

A comparison of two classifiers is presented. The first is maximum entropy modeling (ME)

using the LeZhang implementation of the algorithm2. The second is conditional random

fields (CRFs) using the open source software CRF++3.

1 c©2010,2011 IEEE. Portions reprinted, with permission, from:
Pennell, Deana L. and Yang Liu, Normalization of Text Messages for Text-to-Speech, in
Proceedings of ICASSP, April 2010.
Pennell, Deana L. and Yang Liu, Toward Text Message Normalization: Modeling Abbrevi-
ation Generation, in Proceedings of ICASSP, May 2011.

2http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
3http://crfpp.sourceforge.net/

41

42

Figure 5.1. Character-level tags for one abbreviation of ‘suggestion’.

5.1.1 Features

The following list of features was compiled in an attempt to capture the abbreviation methods

discussed in Section 3.5. The reasons for choosing these features follow the feature list.

1. Contextual Features

(a) The character itself, ci.

(b,c) The two previous characters, ci−1 and ci−2.

(d,e) The following two characters, ci+1 and ci+2.

(f,g) The two bigrams containing current character, ci−1ci and cici+1.

(h,i,j) The trigram containing the two previous and the current character, ci−2ci−1ci,

ci−1cici+1 and cici+1ci+2.

2. Function Features

(a) Whether it is identical to the previous character.

(b) Whether the character serves as a vowel.

(c) Concatenation of features 2a and 2b.

(d) Concatenation of features 1a and 2b.

3. Syllabic Features

(a) The characters making up the current syllable.

(b) Whether the character is in the first syllable of the word.

(c) Whether the character is in the last syllable of the word.

43

(d) Whether the character is in neither the first nor last syllable.

(e) Concatenation of features 3b, 3c and 3d.

(f) The character’s position in its syllable.

(g) Concatenation of features 3a and 3f.

(h,i) Two features concatenating 3f with both 3b and 3c.

(j,k,l,m,n) Features resulting from concatenation of 1a with each of 3a, 3b, 3c, 3d and 3f.

4. CRFs enable us to use the classification of the previous character as a final feature.

The contextual features were designed to help with the Location class of abbreviations

as well as some General deletions. <s> and </s> represent the beginning and ending of a

word.

The function features were also intended to help with the General deletion abbreviations.

Feature 2d was included to help locate the silent ‘e’ character, since no pronunciation features

are included. Any syllable-final ‘e’ character is considered to be silent when preceded by a

consonant. A silent ‘e’ determined in this fashion is marked as a consonant in Feature 2b.

The free online dictionary found at http://www.dictionary.com is utilized for finding

syllable boundaries. This website does not list words containing prefixes or suffixes as sepa-

rate entries from the base word, which causes problems in some cases. To address this issue,

an automatic syllabification method (Bartlett et al., 2008) is planned for future work. Once

the syllable information is known, features 3a–3d are easy to extract. For single syllable

words, features 3b and 3c fire, while 3d does not. These features were intended to help

generate the Clipping subclass of abbreviations.

For feature 3f, a character’s position (Beginning, Middle or End) within a syllable is

determined as follows. When a consonant falls to the left of the sonorant vowel(s) in the

syllable, it is labeled B, while those on the right are labeled E. Vowels with consonants on

both sides are labeled M. Those with no consonants to the left are assigned B and those

with none on the right are assigned E. If a syllable consists of only vowels, they are labeled

http://www.dictionary.com

44

B. Again, a silent ‘e’ is considered to be a consonant, since it does not function as a vowel in

the syllable. An example showing positions of characters in the word “symmetry” is shown

in Figure 5.2.

Yang et al. (2009) found that for their Chinese abbreviation CRF model, the best features

were the current character, the word in which the character appeared, the character’s position

within the word, and a combination of the final two features. This is analogous to using

Feature 3a (syllable) and Feature 3f (position in syllable). Thus, Features 3g, 3h and 3i are

included. Feature set 3j-n learns whether certain letters are more likely to be removed when

in certain positions in a word or syllable.

5.1.2 Generating Word Candidates

To ensure that the abbreviation model is robust to the numerous and inconsistent variations

in abbreviating, multiple abbreviations for each word must be generated. The posterior

probability of the tag for each character c generated by the classifier can be used to compute

an abbreviation score. For each abbreviation a of an N -character word w, its abbreviation

score is:

Sa =
N∏
i=1

sc(ci), (5.1)

where

sc(ci) =

 p(ci) ci ∈ a

1− p(ci) otherwise
(5.2)

ci is the ith character of word w, and p(ci) is the posterior probability of the ‘Y’ class.

Figure 5.2. An example of syllable positions assigned to characters. The beginning, middle
and end positions of a syllable are noted by ‘B’, ‘M’ and ‘E’, respectively.

45

5.1.3 Reranking and Decoding

The normalization performance is bounded by the number of W/A pairs from the test set

that appear in the look-up table (described below). For this reason, the list of abbreviations

generated for a word is re-ranked to maximize coverage. Based on the finding in Yang et al.

(2009) that there is a strong correlation between the length of the formal text and the length

of the abbreviation for Chinese organizations, the candidates are rescored by a length model.

The original abbreviation score is combined linearly with the length based information, i.e.,

the probability of using an M -character abbreviation for an N -character word, P (M |N),

which is gathered from the training set. The new score S ′a is thus:

S ′a ≈ α logP (M |N) + β logSa, (5.3)

where α and β determine the weighting for each model, while Sa refers to Equation 5.1.

Note that S ′a is the representation of P (ai|wi) from Equation 4.2 for this model. The top N

most probable abbreviations for each word in our dictionary are stored in a look-up table.

In decoding, it is desirable to find all possible wi for a given ai as quickly as possible.

Therefore the look-up table is reversed from the generation process – for an abbreviation,

the look-up table contains a list of possible words and their corresponding scores (S ′a from

Equation 5.3).

5.2 System Setup

The look-up table is created by generating abbreviations for all words in the CMU lexicon

that have syllables available through dictionary.com. For an n-character word, initially 2n

abbreviations are generated using a particular setup. These 2n abbreviations were then re-

ranked using the length model and then pruned to use the top n−1 abbreviations for building

the look-up table. The values 2n and n − 1 were found empirically to be a good balance

between the size of the look-up table and accuracy. These generated pairs are then reversed

and stored in the look-up table used to find the hypotheses and scores during testing. The

46

results shown here were derived by using all of the features during training and weighting

the length model and abbreviation scores equally, though we do attempt to optimize these

values there was no significant gain from doing so (see Section 5.4). Finally, the development

set is used to tune the weights of the language model and the resultant score model.

5.3 Experimental Results

The results from the experiments described in Section 4.2 are shown below. A full comparison

of these results with those presented in Chapters 4, 6 and 7 can be found in the Appendix.

5.3.1 Model Performance

The results for these deletion-based methods (shown in Table 5.1) are somewhat disappoint-

ing on their own, with only just over half of the deletion-abbreviations appearing in the

look-up table. CRFs outperform ME by a slight margin at all points in the top-N list,

probably due to its use of the classification given to the previous character. For the CRF

classifier, 72.8% of the correct standard forms are found in the top-1 even without context,

which is promising. If this method is to be effective in future work, it will be important to

find a way to raise the upper bound by improving the features and the re-ranking method.

Table 5.1. Accuracy (%) of deletion-based systems on abbreviations only without LM infor-
mation.

ME (DEL) CRF (DEL)
Top-1 36.76 37.27
Top-3 41.39 43.75

Top-10 46.11 48.86
Found 49.13 51.17

47

5.3.2 Full System Performance

The results of the full system on the context tests using each of the deletion-based AMs are

shown in Table 5.2. During development, it was found that setting β on the low end (while

holding α at 1) produces higher results. The final values chosen for β are 0.1 and 0.05 for CRF

and ME respectively. CRFs continue to outperform ME by a small margin. The addition

of language model information greatly improves the performance of these models during the

context tests over the using only the abbreviation model in Section 5.3.1. Even without

context, the addition of the unigram LM score is able to increase the CRF performance to

89% (over 94% for ME) of the upper bound in the top-1. In general, a slight performance

gain is obtained when the LM order is increased.

Table 5.2. Accuracy (%) of deletion-based systems in n-gram context tests when using both
AM and LM scores.

ME (DEL) CRF (DEL)

Top-1
Unigram 43.00 45.48

Bigram 45.12 46.81
Trigram 45.87 47.44

Top-3
Unigram 48.03 49.84

Bigram 48.35 50.39
Trigram 48.35 50.39

Top-10
Unigram 49.13 51.09

Bigram 49.13 51.09
Trigram 49.13 51.09

Found 49.13 51.17

Table 5.3 shows the sentence-level results for abbreviation accuracy for both systems,

while the sentence-level N -best results are shown in Table 5.4. These results at first seem

surprisingly poor considering the good performance on abbreviations alone. However, when

one examines the WER and FP rates shown in Table 5.5 the reason is evident. Recall that

the original WER of the DEL test set is 9.49%. The deletion models perform quite poorly

with regard to false positives. In many cases, words already in standard form are transformed

48

Table 5.3. Percentage of abbreviations correctly normalized in top-n sentence hypotheses
for the deletion-based systems.

ME (DEL) CRF (DEL)

Top-1
Unigram 41.89 50.37

Bigram 44.00 51.69
Trigram 44.60 52.48

Top-3
Unigram 43.40 51.85

Bigram 45.71 53.08
Trigram 46.43 53.92

Top-10
Unigram 44.48 52.84

Bigram 47.15 54.67
Trigram 47.43 55.35

Found
Unigram 45.32 53.20

Bigram 47.78 55.47
Trigram 47.86 55.67

Table 5.4. Sentence-level top-N accuracy (%) using lattice decoding with deletion-based
systems.

ME (DEL) CRF (DEL)

Top-1
Unigram 2.90 0.05

Bigram 15.58 1.54
Trigram 21.51 4.68

Top-3
Unigram 5.21 0.11

Bigram 22.11 2.25
Trigram 27.56 6.81

Top-10
Unigram 8.71 0.41

Bigram 27.91 3.49
Trigram 32.06 9.78

Found
Unigram 11.08 0.53

Bigram 31.29 4.09
Trigram 36.81 11.32

49

Table 5.5. False positive (FP) rate (%) and final WER in top-1 sentences when using
deletion-based systems.

ME (DEL) CRF (DEL)
FP WER FP WER

Unigram 23.33 26.6 52.33 52.1
Bigram 7.95 12.5 38.64 39.6

Trigram 4.49 9.3 27.82 29.7

to other English words bringing the overall sentence-level accuracy down drastically. Inter-

estingly, while the CRF classifier outperforms ME in terms of accuracy on abbreviations,

the sentence level accuracy is slightly worse and it performs significantly worse in terms of

false positives and final WER. This may be worth investigating in future work.

Table 5.6. Accuracy (%) in n-gram context tests when using the deletion-based AMs for
pruning only.

ME (DEL) CRF (DEL)

Top-1
Unigram 43.91 45.56

Bigram 44.73 46.15
Trigram 45.87 47.52

Top-3
Unigram 47.95 49.84

Bigram 48.50 50.39
Trigram 48.46 50.39

Top-10
Unigram 49.13 51.17

Bigram 49.13 51.09
Trigram 49.13 50.39

Found 49.13 51.17

5.3.3 Model Pruning Performance

Finally, results are presented when using the AM to generate the candidate standard forms

for each abbreviation, but the AM scores are not combined with the LM scores for decoding.

The results for the n-gram context tests are shown in Table 5.6. As expected, this method

50

Table 5.7. Percentage of abbreviations correctly normalized in top-N sentence hypotheses
when using the deletion-based systems for pruning only.

ME (DEL) CRF (DEL)

Top-1
Unigram 42.57 38.63

Bigram 43.09 46.95
Trigram 43.76 48.78

Top-3
Unigram 45.55 45.04

Bigram 46.35 51.45
Trigram 46.75 52.72

Top-10
Unigram 47.15 50.45

Bigram 47.86 54.67
Trigram 47.98 55.67

Found
Unigram 47.82 52.25

Bigram 48.14 56.07
Trigram 48.22 56.31

Table 5.8. Sentence-level top-N accuracy (%) using lattice decoding when using deletion-
based systems for pruning only.

ME (DEL) CRF (DEL)

Top-1
Unigram 19.73 5.98

Bigram 23.94 18.25
Trigram 24.71 23.53

Top-3
Unigram 26.49 11.79

Bigram 29.75 27.20
Trigram 30.82 29.93

Top-10
Unigram 30.46 17.72

Bigram 33.43 32.89
Trigram 34.73 37.10

Found
Unigram 31.89 21.99

Bigram 36.51 35.74
Trigram 40.13 39.30

51

gives a vast improvement over the LM only or AM only methods, but does not perform

quite as well as the full system. However, on devices that have ample memory but low

computational power, this may be a good compromise.

The sentence-level results show a vast improvement for the deletion-based models. The

sentence-level abbreviation accuracy, sentence-level N -best accuracy and WER/FP rates

are given in Tables 5.7, 5.8 and 5.9, respectively. Though the abbreviation accuracy at the

sentence level is similar to that seen with the full system, the false positive rate is greatly

reduced. This indicates that the AM scores are probably inaccurate and too high even though

the mappings produced are reasonable. This decreased FP rate leads to a vast improvement

in both sentence-level accuracy and WER.

Table 5.9. False positive (FP) rate (%) and final WER in top-1 sentences when using
deletion-based systems for pruning only.

ME (DEL) CRF (DEL)
FP WER FP WER

Unigram 4.28 9.3 13.97 18.6
Bigram 2.74 7.8 6.35 10.8

Trigram 2.29 7.4 4.92 9.3

5.4 Feature Selection

Although the CRF classifier consistently outperformed ME in terms of abbreviation accuracy,

it is possible that its accuracy could be increased further by use of feature selection or

optimization of the length model weight. For this reason, the weight for the length model

and the set of features used are tuned simultaneously as follows. Both forward and backward

feature selection are used to try to find the most optimal setup. For each feature set tested

during feature selection, the generated list is re-ranked using the various weights for the

length model described in Section 5.1.3 and then prune the list to length n− 1. The look-up

table’s coverage of the development set is calculated and the feature/weight combination

52

Figure 5.3. Distribution of chosen features (from Section 5.1.1) across the 10 development
experiments.

that yields the maximum coverage is used during the testing phase. In general, the forward

selection setup yielded slightly higher coverage on the development data than the backward

selection setup. During backward decoding, it was often found that removing even one

feature decreased performance. The set of all features outperformed the forward selection

set by a fair margin (over 10 percentage points in some tests).

Because it is interesting to note which features were found to be useful to the model, a

histogram showing the number of times each feature was selected over the 10 development

experiments using forward selection is shown in Figure 5.3. Knowledge of the previous

character’s classification is very useful, and trigram context information is also important.

Of the syllable related features, the actual characters in the syllable are selected most often.

To select a weight for the length model, the score model weight was held steady at 1 and

the length model weight was tested on values from 0.01 to 100. The best performing weight

varied so much during the development tests that it is difficult to suggest a good weight to

choose for future tests. Histograms of the chosen weights are shown in Figure 5.4. After

the forward selection setup, the length weights are well-centered around 1. The backward

selection weights appear more spread out, but are still somewhat centered on a weight of 1.

53

Figure 5.4. Distribution of chosen weight for the length model across the 10 development
tests.

5.5 Chapter Summary

The first abbreviation model presented uses statistical classifiers (maximum entropy and

conditional random fields) to learn the likelihood of removing a given character from a

word in order to form an abbreviation. The features for the classifiers were designed by

examining abbreviations found in the corpus and fall into three feature categories: Context

Features, which use the characters surrounding the character in question; Function Features,

which indicate whether the character is a vowel, double letter, or silent “e”; and Syllable

Features, which look at the characters in the syllable, the syllable’s position in the word,

and the character’s position in the syllable. The posterior probabilities from the classifier

can be decoded using the Viterbi algorithm to determine for a given word the most likely

abbreviations that can be formed using deletions only. Hypotheses are then re-ranked using

a length model and stored in a look-up table for easy access. While this method is able to

accurately translate approximately half of the deletion-based abbreviations in the data, it

suffers from a high false positive rate that brings down its accuracy when decoding a full

message.

CHAPTER 6

ABBREVIATION MODELING THROUGH CHARACTER-LEVEL MT1

Typically, an SMT system translates a sentence from one language to another. An alignment

step learns a mapping of words and phrases between the two languages using a training corpus

of parallel sentences. During testing, this mapping is used along with LMs to translate a

sentence from one language to another. While researchers have used this method to normalize

abbreviations (Bangalore et al., 2002; Aw et al., 2006; Kobus et al., 2008; Q. and H., 2009;

Contractor et al., 2010), it is not robust to new words and leads to poor accuracy in this

domain where new terms are used frequently and inconsistently.

The method described in this chapter differs in that the MT model is trained at the

character-level to generate an AM; that is, rather than learning mappings between words

and phrases, characters are mapped to other characters in what can be a many-to-many

mapping. In this way, the model is able to learn common character-level changes that occur

during abbreviation, regardless of whether the word in which it appears was seen during

training. For example, the ending “-er” (as in “teacher” or “brother”) is often abbreviated

with the single character ‘a’. Characters may also be mapped to symbols (“@” for “at”),

numbers (“8” for “ate”) or nothing at all (deletions).

6.1 Model Description

Formally, for an abbreviation a : c1(a), c2(a), ..., cm(a) (where ci(a) is the ith character in the

abbreviation), an MT system is used to find the proper word hypothesis:

1 c©2011 AFNLP. Portions reprinted, with permission, from: Pennell, Deana L. and Yang
Liu, A Character-Level Machine Translation Approach for Normalization of SMS Abbrevi-
ations, in Proceedings of IJCNLP, November 2011.

54

55

ŵ = arg max p(w|a) (6.1)

= arg max p(w)p(a|w)

= arg max p(c1(w), ...cn(w))

×p(c1(a), ..., cm(a)|c1(w), ...cn(w))

where ci(w) is a character in the English word, p(c1(w), ...cn(w)) is obtained using a char-

acter language model, and p(c1(a), ..., cm(a)|c1(w), ...cn(w)) is based on the learned phrase

translation table. Note that this is very similar to Equation 4.1, except that this works at

the character level rather than at the word level.

To train the translation model, pairs are taken from the annotated data: an abbreviation

and its corresponding English word. Spaces are replaced with the underscore character and

then spaces are inserted between each character in order to facilitate character-level training.

Figure 6.1. An excerpt from a phrase table showing possible translations when the character
sequence “ab” is found in a message.

Because the translation system is trained at the character-level, each hypothesis (w) for

an abbreviation (a) is a sequence of characters, which may or may not produce a valid word.

To see why this is possible, examine the partial phrase-table2 shown in Figure 6.1; using this

2Aside from the possible translations, the phrase table also shows five values for each
word. They correspond to the inverse phrase translation probability φ(f |e), the inverse

56

table, “hab” could be translated to “hib”, “habulary” or “habou” as well as the correct word

“have”. It is also possible, and in fact very likely, for a hypothesis to appear many times in

the N -best hypothesis list due to different segmentation (two characters may be generated

by a single phrase mapping or by two different mappings, one for each character). Thus,

the MT system is used to generate the top 20 distinct hypotheses for each abbreviation and

then those hypotheses that do not occur in the CMU Lexicon are eliminated.

The abbreviation score P (ai|wi) from Equation 4.1 represents the likelihood that abbre-

viation ai is derived from word wi, and can be obtained from:

p(ai|wi) ∝
p(wi|ai)
p(wi)

(6.2)

where p(wi|ai) is the score from the character-level MT system, and p(wi) is from the char-

acter LM used in MT decoding. In this work, the score from the character MT system is

used as the likelihood score without dividing by the character-level LM contribution. This

is equivalent to using both a character-level and a word-level LM during decoding.

6.2 MT System Setup

The popular open source SMT implementation, Moses (Koehn et al., 2007), is used for all

experiments. The probability of swaps was lowered in Moses’ parameters; while swaps are

common in translating between different languages due to different grammatical word orders,

they are relatively uncommon when forming abbreviations. Early in system development,

character language models of orders 3, 5 and 7 were built using OOV words from the Ed-

inburgh Twitter corpus Petrovic et al. (2010) and tested on the partially annotated data to

determine the ideal order for the purposes of this work. A large increase in performance was

seen when moving from order 3 to order 5, but when moving to order 7 there was only a

very slight increase and occasionally a small decrease in performance. For this reason, an

order 5 character language model was used in all experiments discussed below.

lexical weighting lex(f |e), the direct phrase translation probability φ(e|f), the direct lexical
weighting lex(e|f) and the phrase penalty (always exp(1) = 2.718), where e and f are the
English and foreign phrases, respectively. We do not currently make use of these values.

57

The MT system works by generating words from the abbreviations. Therefore it requires

much less setup and tuning as we give the abbreviations in the test set to Moses directly

after adding spaces between characters. As mentioned above, we generate the top 20 distinct

hypotheses for each abbreviation and eliminate those hypotheses that do not occur in the

CMU Lexicon. Once again, we use the development set to tune the weights for the abbre-

viation model (AM) and the language model (LM) and use the top performing weights for

evaluation on the test set. Note that Moses may generate positive score (impossible for a

real log-probability). When a negative value is expected, we use -0.1 instead, indicating that

this pair is very likely.

Aside from evaluating the MT system on both the DEL and SW test sets, a third eval-

uation is performed that reuses the SW test set with a focus on improving performance on

the repetition type. Similar to some past work (Han and Baldwin, 2011; Liu et al., 2011),

these tokens are pre-processed to improve performance. The intuition behind the processing

is that there is no standard number of times that a character is repeated when creating this

type of token, and the MT system may not have enough examples with a given number of

repeated characters to be able to generalize when new terms are seen. For this reason, all

instances of repetition with length greater than two are reduced to have length two before

training (e.g., “yeeeeeessssss” is reduced to “yeess”). The repetitions are also reduced as

seen during testing before submitting the token to the MT system for hypothesis generation.

This repetition focused system is denoted MT+R.

6.3 Experiments

The results from the experiments described in Section 4.2 are shown below. For comparison,

the best results from Chapter 5 are shown. A full comparison of the results presented below

with those presented in Chapters 4, 5 and 7 can be found in the Appendix.

58

6.3.1 Model Performance

The results for the AM without use of an LM are shown in Table 6.1. By examining the

“found” row in the table, one can see that the MT model produces a higher coverage of the

test set than the CRF model. This implies that (with proper re-ranking) it has the potential

to obtain higher results in a final system. We also see that it performs significantly better

at each step in the N -best list. However, if we take the number of abbreviations “found”

as 100%, we see that the CRF model has a higher percentage of abbreviations in the top-1

(72.8) than the MT system for deletions (67.3). CRFs may therefore produce a slightly

better initial model in terms of the original ranking of hypotheses. In addition, we see that

pre-processing the repetitions does, in fact, lead to a slight improvement in performance for

all values of n.

Table 6.1. Accuracy (%) of MT systems without LM information on abbreviations only.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)
Top-1 37.27 54.71 55.90 56.64
Top-3 43.75 74.15 72.81 74.38

Top-10 48.86 79.69 77.07 78.61
Found 51.17 80.72 77.74 79.26

Tests were also conducted to see how well the MT system performed on each type of

abbreviation. Each abbreviation in the SW test set has been annotated with the formation

methods corresponding to those listed in Table 3.6 and accuracy was computed for each type.

Table 6.2 shows the top-1 accuracy for each abbreviation type for the two MT methods.

Adding the pre-processing for repetition types does increase the repetition accuracy for the

model alone, as well as giving a slight increase in the combination types (because some

contain repetitions). There is a slight decrease in performance for most of the other types,

though it is expected that with incorporation of the LM in decoding that difference can be

mitigated.

59

Table 6.2. Accuracy (%) of the MT systems on each abbreviation type.

Deletion Substitution Repetition Swap Insertion Combin.
MT 54.71 43.96 74.55 87.73 45.76 50.24

MT+R 54.51 41.90 79.92 87.73 44.06 51.72

6.3.2 Full System Performance

The results for the n-gram context tests are shown in Table 6.3. During development, the

best value of β was found to be the very low value 0.05, giving the LM score preference over

the AM score.

Table 6.3. Accuracy of MT systems using both AM and LM scores on n-gram context tests.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)

Top-1
Unigram 45.48 62.09 64.19 65.91

Bigram 46.81 69.59 69.69 71.32
Trigram 47.44 70.58 70.44 71.93

Top-3
Unigram 49.84 79.45 76.91 78.50

Bigram 50.39 76.39 75.17 76.69
Trigram 50.39 77.57 75.87 77.39

Top-10
Unigram 51.09 80.71 77.73 79.25

Bigram 51.09 80.71 77.73 79.25
Trigram 51.09 80.71 77.73 79.25

Found 51.17 80.71 77.73 79.25

The sentence-level abbreviation accuracy, sentence-level N -best accuracy and WER/FP

rates are given in Tables 6.4, 6.5 and 6.6, respectively. The sentence-level accuracy for the

MT systems are a large improvement over the CRF system, especially as we look farther

down the top-N list. Although the MT setup performs somewhat better than the CRF setup

for abbreviation accuracy, the much lower false positive rate for MT is the major cause of

this improvement. The MT system is able to achieve an overall decrease in WER for both

60

Table 6.4. Percentage of abbreviations correctly normalized in top-N sentence hypotheses
when using the MT setup.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)

Top-1
Unigram 50.37 59.81 62.63 64.00

Bigram 51.69 64.87 66.56 68.22
Trigram 52.48 66.34 67.90 69.43

Top-3
Unigram 51.85 71.44 70.77 72.28

Bigram 53.08 75.18 73.67 75.31
Trigram 53.92 75.34 73.80 75.40

Top-10
Unigram 52.84 77.45 75.03 76.74

Bigram 54.67 79.56 76.81 78.32
Trigram 55.35 79.37 76.81 78.27

Found
Unigram 53.20 79.05 76.24 77.79

Bigram 55.47 80.28 77.38 78.91
Trigram 55.67 79.88 77.25 78.75

Table 6.5. Sentence-level top-N accuracy (%) using lattice decoding for MT.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)

Top-1
Unigram 0.05 31.47 31.36 32.07

Bigram 1.54 37.16 36.55 37.82
Trigram 4.68 38.64 37.98 39.08

Top-3
Unigram 0.11 43.09 40.83 41.94

Bigram 2.25 48.60 45.54 46.85
Trigram 6.81 49.49 46.49 47.88

Top-10
Unigram 0.41 50.50 46.45 47.60

Bigram 3.49 54.83 50.93 52.87
Trigram 9.78 58.56 54.37 55.72

Found
Unigram 0.53 53.23 49.18 50.77

Bigram 4.09 59.45 55.92 56.91
Trigram 11.32 66.56 62.49 63.48

61

datasets (recall the original WER was 9.49 and 11.6 for DEL and MT, respectively), but we

still feel that it generates too many false positives. This problem is addressed in Chapter 7.

Once again, the MT system outperforms the CRF system by a large margin at all places

in the top-N . However, the MT system (on DEL using a trigram context) reaches only 87.4%

of its maximal performance, whereas the CRF system is able to reach 92.7%. This shows

that there is more work that can be done to re-rank the MT system to obtain better results

in the future. Increasing the order of the LM leads to an increase in performance across all

setups. There is a consistent jump in accuracy when increasing the order from unigram to

the bigram, with a smaller increase from bigram to trigram. All three MT setups are able to

reach their maximum performance by the top-10 hypothesis. The slight improvement gained

by using the MT+R setup continues to hold once the LM is applied.

Table 6.6. False positive (FP) rate (%) and final WER in top-1 sentences for MT.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)
FP WER FP WER FP WER FP WER

Unigram 52.33 52.1 4.14 7.6 4.07 7.9 4.19 7.9
Bigram 38.64 39.6 3.61 6.6 3.50 7.0 3.58 6.8

Trigram 27.82 29.7 3.56 6.4 3.44 6.8 3.52 6.6

6.3.3 Model Pruning Performance

Finally, results are presented when using the AM to generate the candidate standard forms

for each abbreviation, but the AM scores are not combined with the LM scores for decoding.

The results for the n-gram context tests are shown in Table 6.7. Interestingly, we see an

increase in performance for the MT system, indicating that the scores associated with the

pairs in the MT setup may not be appropriate. This slight improvement also holds for

abbreviation accuracy at the sentence level as well (shown in Table 6.8.

The sentence-level N -best accuracy is given in Tables 6.9 While there was an increase

in performance for the deletion systems, instead there is a sharp decline in performance

62

for all of the MT setups, bringing them down nearly to the level of the CRF-for-pruning

setup. False positives are the culprit once more. Examination of Table 6.10 shows a sharp

increase in false positives over the full system results for the MT setups, with a worse FP

rate and final WER than the CRF setup. The context information helps significantly during

decoding; a large jump in performance is evident between the unigram and bigram language

models.

Table 6.7. Accuracy (%) of MT systems on abbreviations only using AM score for pruning
only.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)

Top-1
Unigram 45.56 60.36 62.76 64.53

Bigram 46.15 69.04 69.42 71.00
Trigram 47.52 70.34 70.35 71.82

Top-3
Unigram 49.84 79.40 76.82 78.41

Bigram 50.39 76.39 75.22 76.73
Trigram 50.39 77.29 75.76 77.28

Top-10
Unigram 51.17 80.71 77.73 79.25

Bigram 51.09 80.71 77.73 79.25
Trigram 50.39 80.71 77.73 79.25

Found 51.17 80.71 77.73 79.25

6.4 Chapter Summary

The second abbreviation model presented uses a machine translation (MT) system trained

at the character level to find the words that are most likely to generate a given abbreviation.

Training at the character level rather than the word level allows the system to be more robust

to new terms as it can recognize a common abbreviation pattern regardless of whether the

word in which it appears was seen during training. The MT model significantly outperforms

the deletion model both in terms of the number of abbreviations it is able to correct and the

number of false positives generated. To more accurately handle repetitions in informal text,

a heuristic is implemented whereby characters with more than two consecutive repetitions

63

Table 6.8. Percentage of abbreviations correctly normalized in top-N sentence hypotheses
when using the MT AMs for hypothesis generation only.

CRF(DEL) MT (DEL) MT (SW) MT+R (SW)

Top-1
Unigram 38.63 59.85 62.36 64.09

Bigram 46.95 67.26 68.15 69.75
Trigram 48.78 68.73 69.22 70.70

Top-3
Unigram 45.04 63.28 65.03 66.87

Bigram 51.45 72.16 71.84 73.55
Trigram 52.72 73.27 72.87 74.51

Top-10
Unigram 50.45 69.37 69.36 71.21

Bigram 54.67 75.50 74.37 76.04
Trigram 55.67 77.41 76.45 77.18

Found
Unigram 52.25 72.04 71.48 73.51

Bigram 56.07 77.41 75.45 77.34
Trigram 56.31 78.57 76.45 78.07

Table 6.9. Sentence-level top-N accuracy (%) using MT AMs for pruning.

CRF(DEL) MT (DEL) MT (SW) MT+R (SW)

Top-1
Unigram 5.98 6.57 7.52 8.67

Bigram 18.25 24.89 25.10 27.00
Trigram 23.53 31.89 31.64 33.18

Top-3
Unigram 11.79 10.84 12.07 13.54

Bigram 27.20 36.69 35.08 37.26
Trigram 29.93 41.19 39.64 41.94

Top-10
Unigram 17.72 16.89 17.82 19.80

Bigram 32.89 43.27 42.01 44.31
Trigram 37.10 49.49 46.69 48.63

Found
Unigram 21.99 20.45 21.70 24.07

Bigram 35.74 47.30 45.94 48.31
Trigram 39.30 56.90 53.34 55.84

64

Table 6.10. FP rate (%) and final WER in top-1 sentences using the MT AMs for pruning.

CRF (DEL) MT (DEL) MT (SW) MT+R (SW)
FP WER FP WER FP WER FP WER

Unigram 13.97 18.6 19.82 21.7 19.72 21.8 18.58 20.6
Bigram 6.35 10.8 8.39 10.7 8.10 10.9 7.85 10.4

Trigram 4.92 9.3 6.53 8.8 6.33 9.2 6.25 8.9

are truncated to only two. This pre-processing step yields a slight increase in performance

throughout the evaluations.

CHAPTER 7

SYSTEM EXTENSIONS

This chapter describes two extensions to the methods described in Chapters 5 and 6, as

well as providing a comparison of the methods described in this dissertation to past work

on a small standard data set. Section 7.1 describes several approaches for combining the

deletion and MT methods to create a single abbreviation model. The high false positive

rate is addressed in Section 7.2 by using a dictionary to determine whether a term should

be expanded.

7.1 System Combinations

Overall, the MT system always outperforms the CRF system, even when tested on solely the

deletion abbreviations for which the CRF was designed. When examining the abbreviations

that each system was able to correct, there are slight differences between the two methods.

For this reason, by combining the two systems into one system a higher performance than

either single setup may be achieved.

7.1.1 Methods of Combining the Systems

Assuming for a test case (i.e., an abbreviation A), each system generates a set of word

hypotheses, H1 and H2 respectively. For a hypothesis W in these sets, the system also

provides a score, Si(W,A) (i = 1, 2). For a combined system, there are multiple ways to

generate the word hypotheses (set H3) and their scores (function S3(W,A)). The following

describes the attempted methods for combining information from two systems.

1. Weighted Average. In this method, the word candidates are the union of the two

systems: H3 = H1 ∪H2. For word candidates that appear in only one system, that

65

66

system’s scores are used; for a word appearing in both systems, the weighted average

of the two scores is taken, that is:

S3(W,A) =

S1(W,A) if W ∈ H1 −H2

S2(W,A) if W ∈ H2 −H1

αS1(W,A) + βS2(W,A) if W ∈ H1 ∩H2

(7.1)

where α and β are determined empirically on the development set.

2. Take Highest. The set H3 is similar to the method above in that it is formed using the

superset of H1 and H2. The difference is that for the words that fall in the intersection,

the highest score is used: S3(W,A) = max(S1(W,A), S2(W,A))if W ∈ H1 ∩H2.

3. System Preference. The set H3 is once again the superset, but to determine the

score for a word in the intersection, a preferred system is defined such that its scores are

always used. Let I be the preferred system (1 or 2), then S3(W,A) = SI(W,A)if W ∈

H1 ∩H2.

4. Case-Specific Knowledge. This is specifically for cases where one of the systems

being tested is a deletion-based system. In this example, let H1 be the set generated

by the deletion-based system and H2 be generated by some other system. For each

candidate, the system is given knowledge of whether it is actually a deletion abbrevi-

ation or not. For those that are deletion abbreviations, if H1 6= ∅, the prediction from

H1 and S1 are used. If H1 = ∅ or the abbreviation is formed by a method other than

deletions, use the prediction from H2 and S2.

Since the CRF system performs worse than MT, this test may seem counterintuitive.

Remember, however, that the CRF method has high precision despite its low recall.

Therefore, it may achieve poor results not because it produces incorrect translations,

but rather because it has no guess at all for an abbreviation and thus leaves it as-is

(which is also considered incorrect). For this reason, we hope that when the CRF

system has a guess it will be correct, and when it has no guess the MT system can

help.

67

Table 7.1. Accuracy (%) in n-gram context tests using system combinations.

System under test
MT 1 2 3a 3b 4

Top-1
Unigram 64.19 66.09 64.09 63.23 63.30 41.26

Bigram 69.69 70.64 70.44 70.26 70.16 64.07
Trigram 70.44 71.61 71.39 71.32 71.34 64.91

Top-3
Unigram 76.91 78.57 78.05 77.84 77.87 51.52

Bigram 75.17 77.14 76.96 76.94 76.89 68.56
Trigram 75.87 77.80 77.59 77.50 77.50 68.62

Top-10
Unigram 77.74 80.10 80.10 80.09 80.09 57.75

Bigram 77.74 80.06 80.04 80.02 80.02 69.12
Trigram 77.74 80.04 80.02 80.00 80.00 69.10

Found 77.74 80.10 80.10 80.10 80.10 69.16

The n-gram context tests were performed on the combinations listed above using the

methods described in Section 4.2 and results are shown in Table 7.1. The system numbers

correspond to their numbers in the list above; 3a refers to preferring the CRF system and

3b refers to preferring the MT system. For comparison, the results from the MT+R system

are also given. In addition, we use the dictionary heuristic on the top-performing system.

During development, we first run the tests using only trigram context on the development

and optimize the top-1 accuracy. As before, we set α = 1 and vary β from 0.01 to 100. Once

again, lower weights for β give better performance. Generally, 0.1 was selected as the best

weight, although 0.5 and 0.1 were occasionally chosen as well.

The averaging system performed best when setting the weight for the MT system to 1 and

the deletion system to 0.25. The results shown are from that setup. The averaging method

performed slightly better than the MT system during context tests. While that advantage

holds for abbreviations during full message decoding, the higher false positive rate causes an

overall decrease in performance.

The sentence decoding results are shown in Tables 7.2–7.5. Excepting the case-specific

method, the combinations perform well on abbreviations but suffer from a high false positive

68

Table 7.2. Percentage of abbreviations correctly normalized in top-N sentence hypotheses
when using system combinations.

System under test
MT 1 2 3a 3b 4

Top-1
Unigram 62.63 64.34 64.53 63.98 59.26 52.60

Bigram 66.56 67.90 67.56 67.49 65.42 54.84
Trigram 67.90 69.40 69.09 69.09 68.01 55.50

Top-3
Unigram 70.77 68.13 69.47 68.20 65.35 56.21

Bigram 73.67 73.90 74.19 73.14 72.66 58.03
Trigram 73.80 74.81 74.94 74.17 74.37 58.08

Top-10
Unigram 75.03 73.26 73.67 72.41 71.05 57.73

Bigram 76.81 77.75 77.91 76.93 77.36 59.22
Trigram 76.81 77.75 77.84 77.54 77.79 59.19

Found
Unigram 76.24 75.19 75.70 74.31 73.74 58.42

Bigram 77.38 78.73 78.75 78.11 78.55 59.47
Trigram 77.25 78.93 79.00 78.50 78.82 59.58

rate during sentence decoding. The case-specific method performs somewhat worse on ab-

breviations, but performs competitively with respect to other metrics due to its much lower

false positive rate. However, this method still achieves a much lower full sentence accuracy

than the original MT method because it is unable to compete on abbreviated terms.

The same combination experiments were then repeated using the MT+R setup. Ex-

amining the results for n-gram context tests shown in Table 7.6 shows a slight increase in

performance across all tests.

Table 7.3. False positive rate (%) among the various combination methods.

System under test
MT 1 2 3a 3b 4

Unigram 4.07 10.01 12.34 17.26 10.31 4.07
Bigram 3.50 4.88 5.00 7.44 4.87 3.56

Trigram 3.44 4.40 4.43 5.92 4.40 3.47

69

Table 7.4. WER when using the different combination methods.

System under test
MT 1 2 3a 3b 4

Unigram 7.9 13.0 15.0 19.4 13.8 9.1
Bigram 6.9 8.0 8.1 10.3 8.3 8.4

Trigram 6.7 7.4 7.5 8.8 7.6 8.2

Table 7.5. Top-n sentence accuracy (%) for the combination methods.

System under test
MT 1 2 3a 3b 4

Top-1
Unigram 31.36 17.02 13.42 8.59 15.04 24.79

Bigram 36.55 32.43 32.15 26.65 31.36 27.64
Trigram 37.98 36.00 35.92 32.19 35.48 28.39

Top-3
Unigram 40.83 23.08 21.06 13.98 23.20 29.86

Bigram 45.54 42.25 42.37 37.02 41.26 33.26
Trigram 46.49 44.67 44.67 41.30 44.19 33.90

Top-10
Unigram 46.45 31.16 29.46 22.17 30.65 33.02

Bigram 50.93 48.23 47.96 43.60 48.11 36.47
Trigram 54.37 51.40 51.72 48.43 51.20 38.93

Found
Unigram 49.18 35.36 34.41 26.37 34.97 34.97

Bigram 55.92 52.11 52.23 47.72 52.19 40.31
Trigram 62.49 57.06 56.79 53.70 57.42 44.95

70

Table 7.6. Accuracy (%) during n-gram context tests using system combinations with
MT+R.

System under test
MT+R 1 2 3a 3b 4

Top-1
Unigram 65.91 65.09 65.68 65.54 65.09 41.92

Bigram 71.32 71.73 71.95 71.98 71.77 65.59
Trigram 71.93 72.84 72.93 72.86 72.72 66.38

Top-3
Unigram 78.50 79.47 79.61 79.52 79.43 53.06

Bigram 76.69 78.45 78.48 78.43 78.41 70.07
Trigram 77.39 79.07 79.16 79.11 79.07 70.14

Top-10
Unigram 79.26 81.60 81.63 81.60 81.54 59.25

Bigram 79.26 81.54 81.54 81.54 81.54 70.64
Trigram 79.26 81.54 81.54 81.54 81.54 70.62

Found 79.26 81.64 81.64 81.64 81.64 70.67

However, at the sentence level, there is generally a decreased performance using the

MT+R system instead of the simple MT system, even though the MT+R shows an increase

when used alone. This implies that, while the score ranking is internally better for the MT+R

system, its scores may not be matched as well with the CRF scores. Perhaps normalizing or

otherwise weighting the two systems before implementing the combination methods could

help achieve a higher accuracy. The accuracy on abbreviations when decoding at the sentence

level is generally lowered for all tests except the case-specific method, with an occasional very

slight increase with trigram LM, as shown in Table 7.7. This appears to be due, at least in

part, to a cascading effect. When a word is incorrectly decoded, it also causes errors when

it appears in the context of other words. The upper bound is raised slightly for most of the

tests.

The false positive rate is also negatively affected by the change in the MT system (again

with the exception of the case-specific model), as shown in Table 7.8. Using higher order

language models helps decrease the false positive rate, but even with a trigram model the

rate is still higher than when the unmodified MT method is utilized in the combinations. A

71

Table 7.7. Percentage of abbreviations correctly normalized in top-N sentence hypotheses
when using system combinations with MT+R.

System under test
MT+R 1 2 3a 3b 4

Top-1
Unigram 64.00 54.38 63.42 62.89 55.42 53.48

Bigram 68.22 64.55 67.69 67.30 64.58 55.97
Trigram 69.43 68.18 69.68 69.31 68.04 56.57

Top-3
Unigram 72.28 57.33 66.95 65.62 59.78 57.17

Bigram 75.31 68.92 73.41 72.54 70.46 59.18
Trigram 75.40 72.75 74.89 74.11 73.41 59.20

Top-10
Unigram 76.74 60.22 71.38 69.54 65.06 58.83

Bigram 78.32 73.65 77.52 76.16 75.42 60.33
Trigram 78.27 76.69 78.28 77.43 77.31 60.19

Found
Unigram 77.79 62.57 73.46 71.85 68.13 59.52

Bigram 78.91 75.70 79.18 77.94 77.64 60.52
Trigram 78.75 77.94 79.46 78.72 79.00 60.68

corresponding increase in WER is seen in Table 7.9. The top-N sentence (Table 7.10) is also

affected negatively in all but the case-specific combination.

Table 7.8. False positive rate (%) among the various combination methods with MT+R.

System under test
MT+R 1 2 3a 3b 4

Unigram 4.19 32.42 17.49 25.53 17.28 4.07
Bigram 3.58 11.34 6.77 10.87 7.04 3.50

Trigram 3.52 7.37 5.28 7.68 5.42 3.43

The case-specific method shows an increase in performance across the board for tests at

the sentence level when using MT+R in combinations; it is less affected by the change in the

MT approach. This seems to imply that the scores for deletions were highly affected by the

repetition pre-processing. Although we did not see a large increase in accuracy on deletion

abbreviations in Table 6.2, the scores may change without affecting the relative ordering of

72

Table 7.9. WER when using the different combination methods with MT+R.

System under test
MT+R 1 2 3a 3b 4

Unigram 7.8 33.9 19.6 26.8 20.4 8.9
Bigram 6.8 14.1 9.7 13.3 10.3 8.6

Trigram 6.6 10.1 8.1 10.3 8.4 8.0

Table 7.10. Top-n sentence accuracy (%) for the combination methods with MT+R.

System under test
MT+R 1 2 3a 3b 4

Top-1
Unigram 32.07 2.21 8.87 4.07 8.43 25.90

Bigram 37.82 18.29 28.07 20.39 26.13 29.58
Trigram 39.08 29.30 34.77 29.50 33.74 30.29

Top-3
Unigram 41.94 4.67 14.37 8.11 13.58 31.64

Bigram 46.85 27.84 39.00 30.57 37.14 35.16
Trigram 47.88 38.29 44.15 38.81 42.25 35.96

Top-10
Unigram 47.60 7.56 20.87 12.79 19.36 34.85

Bigram 52.87 36.19 46.29 38.65 44.15 38.77
Trigram 55.72 46.05 51.80 47.20 50.69 40.91

Found
Unigram 50.77 10.53 24.35 15.72 22.69 37.06

Bigram 56.91 41.50 50.81 43.04 49.50 42.33
Trigram 63.48 52.99 56.75 52.19 56.55 47.08

the pairs. However, even though the case-specific model shows an improvement when using

MT+R, it still does not achieve the performance of the MT+R system alone.

7.2 Dictionary Heuristic for the Reduction of False Positives

The high false positive rate of the systems presented in the previous chapters is problematic if

these systems are to be used in real world situations. One possible solution to this problem is

to use a dictionary to decide whether or not a token should be expanded. Using this heuristic,

if a token appears in the chosen dictionary, it is assumed that it is already in standard form

73

and should not be expanded. If the token is not in the dictionary, the hypothesis from

the system under test is used. Because false positives do not come into play during the

n-gram context tests, only the sentence-level evaluations are performed for this setup. Four

dictionaries were tested in combination with the previous best system (MT+R) to see which

would yield the best performance.

1. cmu: The CMU lexicon used in previous experiments. This is a large, standard lexicon

for TTS.

2. cmu*: The portion of the CMU lexicon that overlaps with entries found at dictio-

nary.com, as used when generating the syllable features in Section 5.1.1.

3. asp: The Aspell dictionary used instead of Jazzy’s default dictionary in Section 4.3.2.

4. jaz: The default dictionary used by the Jazzy spell-checking system.

The dictionaries were incorporated during lattice creation for input to the SRILM lattice

tool. When building the lattice, only one link is generated for any token that is in the

dictionary being used. If the token has an associated score in the AM under test, that score

is used in the lattice; otherwise the token is added with a default score of -0.1. For tokens

that do not exist in the dictionary, the same procedure is followed as described in Section 4.2.

In Figure 7.2, we show a lattice generated by this process for the message “green tea fraps

r guuud :)”. Note that this is the same sentence used to build the lattice in Figure 4.2. By

using this heuristic, the dictionary used to build the lattice in Figure 7.2 was able to almost

halve the number of links in the lattice. Originally, there were 5 links for the token “green”

and 14 for the token “tea”; this heuristic lowers than number to 1 for both because they are

dictionary tokens. This guarantees that it is impossible for these words to be translated into

some other English word, thereby lowering the false positive rate.

The results in Table 7.11 shows that the heuristic is a success. At the unigram level, the

FP rate is almost halved for three of the dictionaries and still significantly lowered for the

fourth. Adding higher order language models is not very helpful when a dictionary is used;

74

N=8 L=24
I=0
I=1
I=2
I=3
I=4
I=5
I=6
I=7
J=0 S=0 E=1 W=<s> a=−0.1
J=1 S=1 E=2 W=green a=−0.952995
J=2 S=2 E=3 W=tea a=−2.77546
J=3 S=3 E=4 W=f r a p s a=−0.1
J=4 S=4 E=5 W=ur a=−7.70762
J=5 S=4 E=5 W=er a=−6.34979
J=6 S=4 E=5 W=r a=−4.55793
J=7 S=4 E=5 W=re a=−5.02034
J=8 S=4 E=5 W=are a=−6.01279
J=9 S=4 E=5 W=tor a=−6.47094
J=10 S=4 E=5 W=ar a=−5.77696
J=11 S=4 E=5 W=our a=−6.56922
J=12 S=4 E=5 W=ro a=−6.08681
J=13 S=4 E=5 W=or a=−6.73477
J=14 S=4 E=5 W=ra a=−6.28262
J=15 S=4 E=5 W=ear a=−5.45143
J=16 S=4 E=5 W=orr a=−7.92868
J=17 S=5 E=6 W=god a=−7.16848
J=18 S=5 E=6 W=guide a=−7.21387
J=19 S=5 E=6 W=guard a=−5.92715
J=20 S=5 E=6 W=good a=−7.77716
J=21 S=5 E=6 W=gude a=−7.32483
J=22 S=5 E=6 W=guuud a=−7.77716
J=23 S=6 E=7 W=:) a=−0.1

Figure 7.1. The lattice for the input sentence “green tea fraps r guuud :)” after application
of the dictionary heuristic

75

the decrease in FP rate with higher order LMs is very small. The difference between the

dictionary methods and the MT+R method is much smaller when a trigram language model

is used, but is still a worthwhile improvement in all cases.

Table 7.11. False positive rate (%) after applying each of the four dictionaries.

MT+R +cmu +cmu* +asp +jaz

Top-1
Unigram 4.19 2.29 2.39 2.09 3.03

Bigram 3.58 2.24 2.38 2.03 2.93
Trigram 3.52 2.23 2.37 2.02 2.92

However, the lowered false positive rate does not lead to a similar improvement in the

other sentence-level metrics. The sentence level N -best statistics are shown in Table 7.12.

Interestingly, the dictionary that performed worst in terms of the false positive rate (jaz)

has the best performance of all the dictionaries in terms of sentence accuracy. The Jazzy

dictionary shows an increase in performance in top-1 accuracy for the lower order LMs, but

that improvement is not seen across all levels of the table. The other dictionaries perform

significantly worse than the MT+R system at all levels except the top-1 sentence with a

unigram language model.

Table 7.12. Top-n sentence accuracy (%) after applying the dictionary heuristic.

MT+R +cmu +cmu* +asp +jaz

Top-1
Unigram 32.07 31.32 32.39 32.67 35.36

Bigram 37.82 32.91 33.66 33.78 38.21
Trigram 39.08 32.83 34.21 34.33 38.89

Top-3
Unigram 41.94 36.51 38.09 38.49 43.12

Bigram 46.85 37.18 39.24 39.00 45.46
Trigram 47.88 37.50 40.00 39.20 46.25

Top-10
Unigram 47.60 40.39 42.57 42.45 48.71

Bigram 52.87 40.79 43.40 42.61 50.69
Trigram 55.72 41.02 44.19 42.97 51.96

Found
Unigram 50.77 41.46 43.96 43.24 51.76

Bigram 56.91 41.66 45.34 43.60 55.40
Trigram 63.48 41.78 45.54 43.80 56.91

76

The WERs in Table 7.13 show a similar pattern in terms of the ranking of the dictionaries.

All four outperform MT+R with a unigram LM, but only the Jazzy dictionary is able to

maintain that advantage when using the higher order language models.

Table 7.13. Word error rates when applying the various dictionaries.

MT+R +cmu +cmu* +asp +jaz

Top-1
Unigram 7.9 7.6 7.5 7.4 7.1

Bigram 6.8 7.4 7.3 7.2 6.6
Trigram 6.7 7.3 7.2 7.1 6.5

To see the reason why the Jazzy dictionary outperforms the others in sentence accuracy

and WER despite a worse performance regarding false positives, examine the accuracy on

abbreviations in Table 7.14. The dictionaries cmu, cmu* and asp show a significant decrease

in abbreviation normalization accuracy. This is due to an increase in false negatives when

an abbreviated token is found in the dictionary being tested. For example, the CMU lexicon

contains the token “im” as a valid word, preventing it from being properly expanded to the

word “I’m”. The Jazzy dictionary does not contain the token “im”, so it can be properly

expanded. The dictionaries often contain copious amounts of acronyms and abbreviations

resulting in nonstandard words such as “ths” and “abv” to remain unnormalized. For this

reason, the Jazzy dictionary is chosen as the best compromise for decreasing the overall word

error rate without significantly hurting accuracy on abbreviated text.

7.3 Comparison with Past Work

Although there has been very little work on this task until quite recently, multiple studies

have been done using the small 303-term dataset first used by Choudhury et al. (2007). For

this reason, the two top performing systems (MT alone, and the average weight combination

using MT and CRF) on this small data set. The Jazzy spell-checker is used as a baseline.

Because this dataset has no context information the LM-only baseline is not feasible.

77

Table 7.14. Percentage of abbreviations correctly normalized in top-N sentence hypotheses
after applying the dictionary heuristic.

MT+R +cmu +cmu* +asp +jaz

Top-1
Unigram 64.00 52.15 54.02 52.10 62.04

Bigram 68.22 53.81 55.61 53.40 65.32
Trigram 69.43 53.86 56.30 54.11 66.19

Top-3
Unigram 72.28 55.25 59.28 57.16 69.20

Bigram 75.31 55.59 59.94 57.32 70.57
Trigram 75.40 55.52 59.92 57.28 70.59

Top-10
Unigram 76.74 55.75 60.31 57.55 71.18

Bigram 78.32 55.77 60.38 57.55 71.62
Trigram 78.27 55.73 60.26 57.55 71.55

Found
Unigram 77.79 55.75 60.36 57.55 71.50

Bigram 78.91 55.77 60.40 57.55 71.68
Trigram 78.75 55.75 60.33 57.55 71.64

The CRF scores used in the average combination use all features and are rescored using

a length model trained on all our data. The simple MT system is used rather than MT+R.

The abbreviation models are combined with the unigram language model in order to form a

prediction by giving the AM a weight of 0.1 and the LM weight is fixed at 1.

System comparisons are shown in Table 7.15. The results shown for other systems (except

Jazzy) are those reported in their respective papers; we did not re-implement their systems.

Both the MT and the averaging system perform comparably to the work of Liu et al. (2011)

on this dataset. The averaging system has a slight advantage, but with only 303 items it is

probably not significant. Although we outperform both Choudhury et al. (2007) and Cook

and Stevenson (2009) in top-1, they outperform both the MT and averaging systems at

top-10 and top-20. With better re-ranking, their system has the higher potential. It is thus

important to obtain better coverage in future work.

7.4 Chapter Summary

Two extensions to the work discussed in previous chapters were presented. The first exten-

sion was to test various methods for combining the two abbreviation models presented in

78

Table 7.15. System comparison on the 303-term SMS test set provided by Choudhury et al.
(2007).

Top-1 Top-3 Top-10 Top-20
Jazzy (Idzelis, 2005) 49.86 53.13 54.78 55.44

Choudhury et al. (2007) 59.9 – 84.3 88.7
Cook and Stevenson (2009) 59.4 – 83.8 87.8

Liu et al. (2011)1 58.09 70.96 – –
Liu et al. (2011)2 62.05 75.91 – –

MT 60.39 74.58 75.57 75.57
Average (MT) 62.70 77.55 79.53 79.53

Chapters 5 and 6 to create a single system. Four methods were examined for cases where a

word/abbreviation pair was present in both systems: a weighted average of the two system

scores, taking the higher of the two scores, always preferring one of the two systems, and a

case-specific method that uses knowledge of the abbreviation type. When using the original

MT scores, the averaging method shows a slight increase in overall performance, but all of

the combination methods are affected negatively by the addition of the pre-processing for

repetitions. The second extension attempts to address the high false positive rates seen when

using the AMs in previous chapters. A dictionary heuristic is created, whereby a token is not

expanded if it appears in the dictionary being used under the assumption that it is already

a correct word. For dictionaries were tested to find one able to decrease the false positive

rate without significantly increasing the false negative rate. Extensions to this heuristic are

planned for future work. Finally, the best performing systems from this dissertation were

tested on a small standard dataset as a basis of comparison with past work. The methods

presented herein perform well and should thus be considered state-of-the-art in this field.

CHAPTER 8

EFFECT OF NORMALIZATION ON TTS OUTPUT

The end goal of this normalization system is to improve the output of TTS systems when

reading informal text. It is therefore important to know whether the current setup yields

any performance in TTS performance. The Festival TTS system (Taylor et al., 1998) is used

to generate three waveforms for each message:

1. The original informal message gathered from Twitter.

2. The normalized text for the message generated by the MT+R+jaz system described

in Section 7.2.

3. The “standard” form of the message used in the SW test set.

The MT+R+jaz was used because it was the best system at the time the human tests

were conducted. For consistency, the phoneme error statistics are also calculated using this

same normalized version. We also used Festival’s scripting language to obtain the phoneme

sequence (without pauses) uttered by Festival for each of the three waveforms.

These waveforms and phoneme sequences are used in both quantitative and qualitative

tests to determine the improvement gain our system obtains. As a quantitative experiment,

we examine the phoneme error rates (PERs) of our system output and the original informal

text to determine the improvement gained by our normalization scheme in that regard.

We also perform human listening experiments (qualitative) to determine if the waveforms

generated by our normalized output are easier for humans to understand.

79

80

8.1 Phoneme Error Rate

When evaluating normalization methods, the metric is usually word error rate (WER). For

this metric, a hypothesized word is marked correct if and only if its lexicographic form exactly

matches that of the correct standard form. The normalization methods are evaluated using

this metric because a low WER is necessary for many NLP tasks to perform well in this

domain, for instance search, summarization or sentiment analysis.

For TTS, however, this metric is too strict. When a TTS system pronounces “nite”, it

correctly sounds like the intended word “night” even though the lexicographic forms do not

match. If the pronunciation is correct and understood by the listener, should the word be

marked incorrect? To combat this problem, phoneme error rate (PER) has been used to

evaluate TTS systems. The gold standard sentence is passed through the TTS system, and

the phoneme sequence generated is compared to that generated when using the hypothesized

normalized sentence. We show example phoneme sequences in Figure 8.1.

(w er k ih n ay hh ae v k aa f i y jh ih t aa z)
(w er k ih ng ay hh ae v k aa f i y jh ih t er z)

Figure 8.1. Example phoneme sequences for the message “workinnn i have coffee jittahz =/”

Phoneme edit distance (PED) is computed by using the edit distance algorithm while

treating each phoneme as a word; that is, the phoneme “ax” is considered a substitution if

the original phoneme were “ai”, rather than a replacement of only the character “i” with “x”.

The PER of a phoneme sequence compared to a reference phoneme sequence is calculated

as the PED divided by the number of phonemes in the reference sequence. Overall PER is

thus calculated by averaging the message-level PER over the entire set of messages. This

measure is important because it allows us to know whether the TTS system pronounces

words correctly. The comparative PERs are listed in Table 8.1.

Although the PER across the entire data set is significantly decreased, another interesting

statistic is the percentage of messages on which the system is able to decrease the error rate

81

Table 8.1. Phoneme error rates (PERs) for each message source.

Original Normalized
PER 7.7 4.7

compared to the original message. It is also important that the system does not frequently

increase the error rate. The system is able to decrease the PER on 54.2% of the messages

compared to the original PER while only increasing the PER on 21.1%. The increase rate

is higher than desired but the ratio is in the appropriate direction.

8.2 Human Listening Tests

Two types of human listening tests were submitted to Amazon’s Mechanical Turk1. Due to

time and cost constraints, all 4500+ messages could not be submitted to the Turk workers.

Instead, 100 messages were chosen for this purpose.

We used the PED from the original form of each message to order all of the messages.

The 50 messages with the highest PED and 50 messages with an original PED of zero made

up the test set of 100 messages for the perceptual evaluation. This setup was chosen to be

sure the system can make a positive improvement on those messages that would be difficult

to understand otherwise (high PED), but to also be sure the system does not make messages

more difficult to understand when they are already pronounced correctly.

For the first perceptual test, workers were given only the audio file and asked to transcribe

exactly what they heard. 43 annotators transcribed the 300 audio files over the course of six

days. The character error rate (CER) of the transcription against the standard message was

calculated and is shown in Table 8.2. Once again we use the Levenstein edit distance but

here each character is treated as a word. CER was chosen rather than WER due to spelling

errors on the part of the annotators; often the correct word was transcribed but misspelled

1https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome

82

Table 8.2. Character error rates (CERs) of transcribed audio files compared to the stan-
dardized text for each source.

Original Normalized Standard
CER 21.79 16.85 15.09

Figure 8.2. Histogram showing distribution of transcription difficulty rating by source.

and with CER the annotators are given partial credit for this word. The CER is lower for

the normalized text than for the original text, showing that the speech produced using the

normalized text was easier for the annotators to understand. There is still some room for

improvement compared to the standard text, which was expected.

After transcribing the message, they were asked to rank the difficulty of the task on the

following four point scale:

Class 1: This message was next-to-impossible to transcribe because everything is pronounced

strangely.

Class 2: This message was difficult to transcribe. I had to listen to it multiple times and

think hard about many words.

83

Table 8.3. Analysis of transcription difficulty ratings.

Original Normalized Standard
Mean 2.73 2.98 3.10

Standard Dev. 0.90 0.86 0.85
Fleiss κ 0.14 0.12 0.13

Class 3: This message was sort of easy to transcribe. I only listened once but had to think

fairly hard about a word or two.

Class 4: This message was very easy to transcribe, I only had to listen to it once and am

very confident in my transcription.

A histogram of their rankings for each message source is shown in Figure 8.2. The

distribution of rankings matches our expectations, with the original text having more ratings

at the low end and the standard text having more ratings at the high end. As hoped, the

normalized version has fewer messages in categories 1 and 2 than the original system.

The mean, standard deviation and Fleiss’ κ (Kappa) of the chosen categories for each

message source are shown in Table 8.3. Fleiss’ κ is a statistical measure of the reliability of

agreement any fixed number of raters when assigning categorical ratings to items. This is

different from Cohen’s κ, which only works when there are exactly two raters. Fleiss’ κ only

expects that the number of raters k is identical for each item, but does not assume that the

same k raters categorize all items. Typically, Fleiss’ κ is not used for ordered categories, but

rather for unordered groupings such as categorizing a rock as “igneous”, “metamorphic” or

“sedimentary”, and would therefore not generally be used for this rating task. Spearman’s

ρ would be used instead, which takes into consideration the relative position of the rankings

rather than the actual categories, i.e., (1, 2, 1, 3) is considered perfectly correlated with

(2, 3, 2, 4). This behavior is not desired for this ranking task and the categories can be

considered discrete.

84

Figure 8.3. Histogram showing distribution of pronunciation rankings by source.

In the second perceptual test, workers are able to see the original form of the message

while listening to the audio files. In this way, they first form an expectation of what they

should hear in the audio file. The following definitions are listed:

“Pronounced Incorrectly” The wrong word is spoken (example: ”more” instead of ”mis-

ter”). The word is spelled instead of read, may be spelled properly (example: ”c-a-m-

e” instead of ”came”) or incorrectly (example: ”l-u-v” instead of ”love”). Other gross

mispronunciations (ex: ”suh uh uh uh uh uh oh” for ”so” or ”soooo”).

“Almost Correct” The word has a slightly wrong pronunciation, as what you might hear

by a non-native English speaker or child learning to read. (example: ”hoose” for

”house” ... ”cot”/”cait” for ”cat”, etc).

They are then asked to rank on a five point scale how well the pronunciation in the audio

file matches their expectations. The ranking scale was given as follows.

Class 1: Pronunciation seems to have nothing to do with the message.

Class 2: Many of the words are pronounced incorrectly.

85

Table 8.4. Analysis of annotators ratings for the second perceptual experiment.

Original Normalized Standard
Mean 3.61 3.96 4.33

Standard Dev. 1.08 0.96 0.81
Fleiss κ w/5 0.17 0.17 0.14
Fleiss κ w/3 0.20 0.20 0.19

Class 3: Most words are correct or almost correct, but at least one is pronounced incorrectly.

Class 4: Pronunciation is almost correct but still easily understandable.

Class 5: Pronunciation exactly matches what is expected.

Nine unique annotators ranked the 300 audio files in just under 12 hours, with three

unique annotators per file. A histogram of their rankings by source is shown in Figure 8.3.

The histogram matches exactly what is expected Once again the mean, standard deviation

and Fleiss’ Kappa of the chosen categories for each message type are shown in Table 8.4. This

seems to be a difficult task; the Fleiss’ κ is very low for this task. For this reason, a second κ

score is calculated by merging the two lowest categories and the two highest categories; for

example, ratings of 1 and 2 are treated as a single category. Unfortunately, there is not much

improvement when the categories are merged. Interestingly, the lowest agreement occurs on

the standardized form. As expected, the system produced text falls between the original

text and the reference text on both mean and standard deviation. There is still a lot of room

for improvement in terms of the system pronunciation to bring the mean up to the level of

the standard version.

8.3 Chapter Summary

The previous chapters provided results only in terms of the word error rate (WER) produced

by the normalization system; however, the WER is not necessarily indicative of performance

86

when the output is used in a text-to-speech (TTS) system. For this reason, this chapter

provides both quantitative and qualitative evaluations of the effect on TTS performance

when using normalized text. For the quantitative evaluation, phoneme error rate (PER) is

used as the basis of comparison. Three audio files are generated for each message: the first

is generated using the original text from Twitter, the second is generated on the normalized

text, and the third uses the standard terms annotated in the corpus. The phoneme sequences

for the original and normalized versions are compared to that of the “standard” version, and

it is shown that normalizing the text yields a decrease in PER.

Two qualitative tests are performed as well, using Amazon’s Mechanical Turk. In the

first test, annotators are given the audio files without any accompanying text and asked to

transcribe what they hear. Their transcriptions are compared to the standard text at the

character level and the transcriptions of the normalized audio falls between the original and

“standard” in terms of character error rate. The transcribers were also asked to rate the

difficulty of transcription, and again the difficulty was ranked between that of the original and

standard. In the second test, annotators were given both the audio file and the original text

from Twitter, and asked to rank the pronunciation of terms on a five-point scale. Once again,

the normalization system falls between the original and “standard’ in terms of pronunciation

accuracy. Overall, normalization of the informal text gives an increased performance on TTS

output.

CHAPTER 9

CONCLUSIONS

As informal text becomes ubiquitous, techniques in all areas of NLP will need to adapt in

order to use the vast amount of information found therein. In this dissertation, steps were

presented toward an improved TTS system for informal text that can be utilized in screen

readers for the visually impaired, to improve safety while driving or to make mobile phone

applications more useful or entertaining. Improvements stem mainly from improved abbre-

viation expansion during the lexical normalization step. The normalization work presented

in this dissertation produces state-of-the art results on our own data and on that from other

researchers.

The work began with the collection and annotation of an appropriate corpus to use in

the testing and training of a normalization system. Although some SMS messages were

collected for this purpose, the annotated data used for experiments was obtained from the

popular micro-blogging site at www.twitter.com. Of the four types of annotations that have

been added to the data, the translation of chat abbreviations into their standard English

form has been utilized the most. The annotated abbreviations and their standard forms

were used to train many different abbreviation models to use in the noisy channel model for

normalization. The noisy channel model is typically used in automatic speech recognition or

statistical machine translation, but by using an abbreviation model rather than an acoustic

or translation model it is applicable to this problem as well. A language model is also required

for a noisy channel implementation; the language model used in this dissertation is trained

on a corpus of Twitter status messages, which has the advantage of being in-domain for the

task. Throughout the dissertation, the order of the language model is varied from 1 to 3 to

judge the usefulness of higher order models. In general, it is shown that a bigram language

model gives a large improvement over a simple unigram model, and that the improvement

87

www.twitter.com

88

from bigram to trigram is smaller, but consistent. A bigram language model may be used

without a sharp decrease in performance when memory or computational power is low.

The first type of abbreviation model presented focused on those abbreviations formed only

by deleting characters from the original word. Deletion abbreviations are very common (the

most common type of abbreviation in the annotated corpus) and TTS systems have greater

difficulty in pronouncing them, so we believed that a model trained especially for deletions

would be the most useful. Here, statistical classifiers (maximum entropy and conditional

random fields) are trained to learn the probability of deleting a particular character from a

word when forming an abbreviation. The features used by the classifiers were designed by

hand based on the abbreviation patterns seen in the corpus. The posterior probability of

deleting each character in the word was combined to form a score by which each possible

abbreviation could be ranked. A look-up table was used to store the abbreviations and

associates scores for each word in a dictionary. The look-up table is generated only once and

would be shipped with the system. In this way, it is useful for a device with high memory

but low CPU such as a mobile phone or a communication device for the physically impaired.

Unfortunately, this system did not perform as well as expected, even on the deletion

abbreviations for which it was specifically designed. The performance of this method is

bounded from above by the number of correct pairs in the look-up table, and unfortunately

this value was very low. If this method is to be pursued in the future, much work will need

to be done to improve the features used to train the classifiers. Preliminary work has been

done to vary the dictionary used during look-up table generation. For the work done in

Chapter 5, the CMU dictionary is pruned using dictionary.com because this is where the

syllable information is gathered for feature extraction. Since then, the feature extraction

program has been modified to treat words not listed at dictionary.com as a single syllable

(though this is often not truly the case) and extract features accordingly. This significantly

improves the coverage of the system, and will be investigated further in the future. In

addition, improvement may be gained by initially generating far more abbreviations for each

89

word and using an improved method for re-ranking the list. The largest source of error for

this system, however, was the very high false positive rate when decoding entire messages.

Due to the drawbacks of the deletion-based method, the next approach pursued was an

MT-based system that learns patterns on its own from the data without the need for hand

crafted features. In this method, an MT system is trained at the character level to recognize

common abbreviation patterns regardless of the word in which it occurs. Not only does a

machine translation approach avoid human selected features, but it also has the advantage

of addressing all types of abbreviations simultaneously, without the need for classification

of the abbreviation type. The disadvantage of this approach is that the MT system is run

on the abbreviations as they are seen in text, rather than on full English words as in the

deletion-based system. For this reason, it is impossible to generate a look-up table and the

device must be able to preprocess each message and run the MT software in order to make

use of the system.

A large increase in performance in seen when using the MT system to generate the

abbreviation scores. The upper bound on performance is increased drastically, and that

performance holds at each step in the N -best list. With more annotated data and optimized

parameters in the MT software, it may be able to increase the upper bound even further

in future work. The increase in performance is seen even when tested solely on deletion

abbreviations, meaning that the MT system is able to utilize some feature in the text that is

not covered by those used in this work. A further gain in improvement occurs when repeated

characters in the informal text are pre-processed to contain a maximum of two occurrences

per repetition before training and testing.

Although the false positive rate is drastically decreased from that of the deletion-based

methods, it is still higher than is desirable. For this reason, we created a heuristic that uses

a dictionary to determine whether a given token should be expanded or not. This heuristic

works reasonably well, provided that the dictionary is very carefully chosen. While the false

positive rate was significantly decreased by incorporating any of the four dictionaries tested,

there was a large increase in false negatives (abbreviations that should have been expanded

90

but were left as-is) using three of the dictionaries due to the inclusion of acronyms and

abbreviations included in the dictionary.

False negatives will be added regardless of the dictionary used; practically every dictionary

will contain the word “no”, which is often used as an abbreviation for the word “know”, and

“cat” which is used for the word “category”. Even the highest achieving dictionary showed

lower performance at all levels of all tests (other than false positive rate) due to the increased

number of false negatives. To combat this problem, effort will be made in the future to

improve the dictionary heuristic. Rather than making the decision not to expand a word

solely based on its inclusion in a dictionary, we can incorporate knowledge of the language

model information as well; a word may be expanded if it is already in the dictionary, as long

as the LM score is high enough.

In an effort to utilize the strengths of both systems, several methods of combining the

deletion-based system with the MT system were evaluated. While most of the combinations

led to a decrease in performance, taking the weighted average of the scores from each system

shows promise. When combined with the dictionary heuristic, this is state-of-the-art.

Finally, we ask what effect these normalization improvements have on real TTS output.

Both quantitative and qualitative tests show a significant improvement in the understand-

ability of the audio produced by a common TTS system. Quantitatively, the normalization

was able to lower the phoneme error rate significantly over the output produced by the orig-

inal text. In the human listening experiments, transcription results improved in accuracy

and the audio produced from the normalized messages was rated easier to understand and

transcribe than that from the original informal text. Although there is some room for im-

provement in order to reach the results of the standardized text in both quantitative and

qualitative performance, we have made great strides toward a workable system.

Aside from improving the normalization results, in future work one major goal is to

improve the naturalness of the TTS output. The annotations already collected will be

invaluable in making progress toward more natural sounding audio. TTS output on informal

text often has strange phrasing due to the lack of punctuation in the original message. By

91

using the annotated sentence boundaries, sentence boundary information can be restored

to help with phrasing. But more importantly, prosodic information is gleaned far easier

from informal than formal text. Informal text has a wealth of information available to

it regarding the emotion and stress that the user intends to convey through the use of

emoticons, capitalization and filler text. The emoticons used in a message can be used

to determine the overall feel of the text; a smiling emoticon may indicate that a message

should sound happy and have a rising tone, while a frowning face may lead to adding a

downward pitch slope. In addition, sound effects such as laughter or scowls are often directly

transcribed in informal text. Finally, capitalization can be used as knowledge of whether the

user is yelling or intends to stress a word. Use of all of this information could lead to vastly

improved TTS naturalness in the future.

To conclude, as language continues to evolve and informal text becomes more prevalent

it will become necessary for NLP techniques to evolve as well. The normalization work pre-

sented here is only the first step toward that evolution to yield better results on downstream

NLP tasks such as search, summarization, sentiment analysis and tasks that haven’t yet

been imagined.

A
P

P
E

N
D

IX

T
h
is

ap
p

en
d
ix

sh
ow

s
a

co
m

p
il
at

io
n

of
al

l
of

th
e

re
su

lt
s

th
ro

u
gh

ou
t

th
e

d
is

se
rt

at
io

n
.

T
ab

le
A

.1
.

A
cc

u
ra

cy
(%

)
of

al
l

sy
st

em
s

u
si

n
g
n

-g
ra

m
co

n
te

x
t

te
st

s.

D
E

L
T

es
t

S
et

S
W

T
es

t
S
et

S
y
s.

A
lo

n
e

U
n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
S
y
s.

A
lo

n
e

U
n

ig
ra

m
B

ig
ra

m
T

ri
g
ra

m
L

M
B

a
se

li
n
e

–
–

13
.1

5
17

.3
2

–
–

13
.9

5
18

.3
2

J
a
zz

y
34

.6
8

–
–

–
37

.9
1

–
–

–
M

E
36

.7
6

43
.0

0
45

.1
2

45
.8

7
–

–
–

–
C

R
F

37
.2

7
45

.4
8

46
.8

1
47

.4
4

–
–

-
-

M
T

54
.7

1
62

.0
9

69
.5

9
70

.5
8

55
.9

0
64

.1
9

69
.6

9
70

.4
4

M
T

+
R

–
–

-
-

56
.6

4
65

.9
1

71
.3

2
71

.9
3

A
v
g
.

(M
T

)
–

–
–

–
–

66
.0

9
70

.6
4

71
.6

1
A

v
g
.

(M
T

+
R

)
–

–
–

–
–

65
.0

9
71

.7
3

72
.8

4
H

ig
h

(M
T

)
–

–
–

–
–

64
.0

9
70

.4
4

71
.3

9
H

ig
h

(M
T

+
R

)
–

–
–

–
–

65
.6

8
71

.9
5

72
.9

3
P

re
f.

C
R

F
(M

T
)

–
–

–
–

–
63

.2
3

70
.2

6
71

.3
2

P
re

f.
C

R
F

(M
T

+
R

)
–

–
–

–
–

65
.5

4
71

.9
8

72
.8

6
P

re
f.

M
T

(M
T

)
–

–
–

–
–

63
.3

0
70

.1
6

71
.3

4
P

re
f.

M
T

(M
T

+
R

)
–

–
–

–
–

65
.0

9
71

.7
7

72
.7

2
T

y
p

e
S
p

e
c.

(M
T

)
–

–
–

–
–

41
.2

6
64

.0
7

64
.9

1
T

y
p

e
S
p

e
c.

(M
T

+
R

)
–

–
–

–
–

41
.9

2
65

.5
9

66
.3

8

92

93

T
ab

le
A

.2
.

P
er

ce
n
ta

ge
of

ab
b
re

v
ia

ti
on

s
co

rr
ec

tl
y

n
or

m
al

iz
ed

in
to

p
-N

se
n
te

n
ce

h
y
p

ot
h
es

es
fo

r
al

l
sy

st
em

s.

D
E

L
T

es
t

S
et

S
W

T
es

t
S
et

U
n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
U

n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
M

a
x
e
n
t

41
.8

9
44

.0
0

44
.6

0
–

–
–

C
R

F
50

.3
7

51
.6

9
52

.4
8

–
–

–
M

T
59

.8
1

64
.8

7
66

.3
4

62
.6

3
66

.5
6

67
.9

0
M

T
+

R
–

–
–

64
.0

0
68

.2
2

69
.4

6
A

v
g
.

(M
T

)
–

–
–

64
.3

4
67

.9
0

69
.4

0
A

v
g
.

(M
T

+
R

)
–

–
–

54
.3

8
64

.5
5

68
.1

8
H

ig
h

(M
T

)
–

–
–

64
.5

3
67

.5
6

69
.0

9
H

ig
h

(M
T

+
R

)
–

–
–

63
.4

2
67

.6
9

69
.6

8
P

re
f.

C
R

F
(M

T
)

–
–

–
63

.9
8

67
.4

9
69

.0
9

P
re

f.
C

R
F

(M
T

+
R

)
–

–
–

62
.8

9
67

.3
0

69
.3

1
P

re
f.

M
T

(M
T

)
–

–
–

59
.2

6
65

.4
2

68
.0

1
P

re
f.

M
T

(M
T

+
R

)
–

–
–

55
.4

2
64

.5
8

68
.0

4
T

y
p

e
S
p

e
c.

(M
T

)
–

–
–

52
.6

0
54

.8
4

55
.5

0
T

y
p

e
S
p

e
c.

(M
T

+
R

)
–

–
–

53
.4

8
55

.9
7

56
.5

7
M

T
+

R
+

cm
u

–
–

–
52

.1
5

53
.8

1
53

.8
6

M
T

+
R

+
cm

u
*

–
–

–
54

.0
2

55
.6

1
56

.3
0

M
T

+
R

+
a
sp

–
–

–
52

.1
0

53
.4

0
54

.1
1

M
T

+
R

+
ja

z
–

–
–

62
.0

4
65

.3
2

66
.1

9

94

T
ab

le
A

.3
.

M
es

sa
ge

le
ve

l
to

p
-1

ac
cu

ra
cy

(%
)

ac
ro

ss
al

l
sy

st
em

s.

D
E

L
T

es
t

S
et

S
W

T
es

t
S
et

U
n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
U

n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
M

a
x
e
n
t

2.
90

15
.5

8
21

.5
1

–
–

–
C

R
F

0.
05

1.
54

4.
68

–
–

–
M

T
31

.4
7

37
.1

6
38

.6
4

31
.3

6
36

.5
5

37
.9

8
M

T
+

R
–

–
–

32
.0

7
37

.8
2

39
.0

8
A

v
g
.

(M
T

)
–

–
–

17
.0

2
32

.4
3

36
.0

0
A

v
g
.

(M
T

+
R

)
–

–
–

2.
21

18
.2

9
29

.3
0

H
ig

h
(M

T
)

–
–

–
13

.4
2

32
.1

5
35

.9
2

H
ig

h
(M

T
+

R
)

–
–

–
8.

87
28

.0
7

34
.7

7
P

re
f.

C
R

F
(M

T
)

–
–

–
8.

59
26

.6
5

32
.1

9
P

re
f.

C
R

F
(M

T
+

R
)

–
–

–
4.

07
20

.3
9

29
.5

0
P

re
f.

M
T

(M
T

)
–

–
–

15
.0

4
31

.3
6

35
.4

8
P

re
f.

M
T

(M
T

+
R

)
–

–
–

8.
43

26
.1

3
33

.7
4

T
y
p

e
S
p

e
c.

(M
T

)
–

–
–

24
.7

9
27

.6
4

28
.3

9
T

y
p

e
S
p

e
c.

(M
T

+
R

)
–

–
–

25
.9

0
29

.5
8

30
.2

9
M

T
+

R
+

cm
u

–
–

–
31

.3
2

32
.9

1
32

.8
3

M
T

+
R

+
cm

u
*

–
–

–
32

.3
9

33
.6

6
34

.2
1

M
T

+
R

+
a
sp

–
–

–
32

.6
7

33
.7

8
34

.3
3

M
T

+
R

+
ja

z
–

–
–

35
.3

6
38

.2
1

38
.8

9

95

T
ab

le
A

.4
.

W
E

R
fo

r
to

p
-1

se
n
te

n
ce

s
ac

ro
ss

al
l

sy
st

em
s.

D
E

L
T

es
t

S
et

S
W

T
es

t
S
et

U
n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
U

n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
M

a
x
e
n
t

26
.6

12
.5

9.
3

–
–

–
C

R
F

52
.1

39
.6

29
.7

–
–

–
M

T
7.

6
6.

6
6.

4
7.

9
7.

0
6.

8
M

T
+

R
-

-
-

7.
9

6.
8

6.
6

A
v
g
.

(M
T

)
–

–
–

13
.0

8.
0

7.
4

A
v
g
.

(M
T

+
R

)
–

–
–

33
.9

14
.1

10
.1

H
ig

h
(M

T
)

–
–

–
15

.0
8.

1
7.

5
H

ig
h

(M
T

+
R

)
–

–
–

19
.6

9.
7

8.
1

P
re

f.
C

R
F

(M
T

)
–

–
–

19
.4

10
.3

8.
8

P
re

f.
C

R
F

(M
T

+
R

)
–

–
–

26
.8

13
.3

10
.3

P
re

f.
M

T
(M

T
)

–
–

–
13

.8
8.

3
7.

6
P

re
f.

M
T

(M
T

+
R

)
–

–
–

20
.4

10
.3

8.
4

T
y
p

e
S
p

e
c.

(M
T

)
–

–
–

9.
1

8.
4

8.
2

T
y
p

e
S
p

e
c.

(M
T

+
R

)
–

–
–

8.
9

8.
1

8.
0

M
T

+
R

+
cm

u
–

–
–

7.
6

7.
4

7.
3

M
T

+
R

+
cm

u
*

–
–

–
7.

5
7.

3
7.

2
M

T
+

R
+

a
sp

–
–

–
7.

4
7.

2
7.

1
M

T
+

R
+

ja
z

–
–

–
7.

1
6.

6
6.

5

96

T
ab

le
A

.5
.

F
al

se
p

os
it

iv
e

ra
te

(%
)

fo
r

to
p
-1

se
n
te

n
ce

s
ac

ro
ss

al
l

sy
st

em
s.

D
E

L
T

es
t

S
et

S
W

T
es

t
S
et

U
n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
U

n
ig

ra
m

B
ig

ra
m

T
ri

g
ra

m
M

a
x
e
n
t

23
.3

3
7.

95
4.

49
–

–
–

C
R

F
52

.3
3

38
.6

4
27

.8
2

–
–

–
M

T
4.

14
3.

61
3.

56
4.

19
3.

58
3.

52
M

T
+

R
4.

07
3.

50
3.

44
–

–
–

A
v
g
.

(M
T

)
–

–
–

10
.0

1
4.

88
4.

40
A

v
g
.

(M
T

+
R

)
–

–
–

32
.4

2
11

.3
4

7.
34

H
ig

h
(M

T
)

–
–

–
12

.3
4

5.
00

4.
43

H
ig

h
(M

T
+

R
)

–
–

–
17

.4
9

6.
77

5.
28

P
re

f.
C

R
F

(M
T

)
–

–
–

17
.2

6
7.

44
5.

92
P

re
f.

C
R

F
(M

T
+

R
)

–
–

–
25

.5
3

10
.8

7
7.

68
P

re
f.

M
T

(M
T

)
–

–
–

10
.3

1
4.

87
4.

40
P

re
f.

M
T

(M
T

+
R

)
–

–
–

17
.2

8
7.

04
5.

42
T

y
p

e
S
p

e
c.

(M
T

)
–

–
–

4.
07

3.
56

3.
47

T
y
p

e
S
p

e
c.

(M
T

+
R

)
–

–
–

4.
07

3.
50

3.
43

M
T

+
R

+
cm

u
–

–
–

2.
29

2.
24

2.
23

M
T

+
R

+
cm

u
*

–
–

–
2.

39
2.

38
2.

37
M

T
+

R
+

a
sp

–
–

–
2.

09
2.

03
2.

02
M

T
+

R
+

ja
z

–
–

–
3.

03
2.

93
2.

92

REFERENCES

Acharyya, S., S. Negi, L. V. Subramaniam, and S. Roy (2009). Language independent
unsupervised learning of short message service dialect. International Journal on Document
Analysis and Recognition 12 (3), 175–184.

Aw, A., M. Zhang, J. Xian, and J. Su (2006). A phrase-based statistical model for SMS
text normalization. In Proceedings of COLING/ACL, Sydney, Australia, pp. 33–40.

Bangalore, S., V. Murdock, and G. Riccardi (2002). Bootstrapping bilingual data using con-
sensus translation for a multilingual instant messaging system. In Proceedings of COLING,
Taipei, Taiwan, pp. 1–7.

Barbosa, L. and J. Feng (2010). Robust sentiment detection on Twitter from biased and
noisy data. In Proceedings of COLING: Posters, pp. 36–44.

Bartlett, S., G. Kondrak, and C. Cherry (2008). Automatic syllabification with structured
SVMs for letter-to-phoneme conversion. In Proceedings of NAACL-HLT/ACL, Columbus,
OH, pp. 568–576.

Beaufort, R., S. Roekhaut, L. Cougnon, and C. Fairon (2010). A hybrid rule/model-based
finite-state framework for normalizing SMS messages. In Proceedings of ACL, Uppsala,
Sweden, pp. 770–779.

Bento, C. and N. Gil (2005). Text input disambiguation supported on a hierarchical user
model. In Proceedings of sOc-EUSAI, pp. 253–258.

Bollen, J., J. Mao, and A. Pepe (2009). Modeling public mood and emotion: Twitter
sentiment and socio-economic phenomena. In Proceedings of WWW, pp. 450–453.

Casey, D. (2010). Official Google blog: Replay it: Google search
across the Twitter archive. http://googleblog.blogspot.com/2010/04/

replay-it-google-search-across-twitter.html.

Chakrabarti, D. and K. Punera (2011). Event summarization using tweets. In Proceedings
of AAAI ICWSM, pp. 66–73.

Choudhury, M., R. Saraf, V. Jain, A. Mukherjee, S. Sarkar, and A. Basu (2007). Investiga-
tion and modeling of the structure of texting language. International Journal of Document
Analysis and Recognition 10, 157–174.

97

http://googleblog.blogspot.com/2010/04/replay-it-google-search-across-twitter.html
http://googleblog.blogspot.com/2010/04/replay-it-google-search-across-twitter.html

98

Contractor, D., T. A. Faruquie, and L. V. Subramaniam (2010). Unsupervised cleansing of
noisy text. In Proceedings of COLING: Posters, pp. 189–196.

Cook, P. and S. Stevenson (2009). An unsupervised model for text message normalization.
In Proceedings of NAACL-HLT Workshop on Computational Approaches to Linguistic Cre-
ativity, Boulder, CO, pp. 71–78.

Cook, P. and S. Stevenson (2010). Automatically identifying the source words of lexical
blends in English. Computational Linguistics 36 (1), 129–149.

CTIA (2009). CTIA - Semi-Annual report, 2008 II. http://www.ctia.org/media/press/
body.cfm/prid/1811.

CTIA (2010a). CTIA - Semi-Annual report, 2009 II. http://www.ctia.org/media/press/
body.cfm/prid/1936.

CTIA (2010b). CTIA - Semi-Annual report, 2010 II. http://www.ctia.org/media/press/
body.cfm/prid/2021.

Davidov, D., O. Tsur, and A. Rappoport (2010). Enhanced sentiment learning using Twitter
hashtags and smileys. In Proceedings of COLING: Posters, pp. 241–249.

Diakopoulos, N. A. and D. A. Shamma (2010). Characterizing debate performance via
aggregated Twitter sentiment. In Proceedings of CHI, pp. 1195–1198.

Fairon, C. and S. Paumier (2006). A translated corpus of 30,000 French SMS. In Proceedings
of LREC, Genoa, Italy, pp. 351–354.

Gaudan, S., H. Kirsch, and D. Rebholz-Schuhmann (2005). Resolving abbreviations to
their senses in Medline. Bioinformatics 21 (18), 3658–3664.

Gong, J. (2008). Improved text entry for mobile devices : Alternate keypad designs and
novel predictive disambiguation methods. Ph. D. thesis, Northeastern University. Available
from http://hdl.handle.net/2047/d10016090.

Gross, D. (2010). Library of Congress to archive your tweets - CNN.com. http://www.

cnn.com/2010/TECH/04/14/library.congress.twitter/index.html.

HaCohen-Kerner, Y., A. Kass, and A. Peretz (2008). Combined one sense disambiguation
of abbreviations. In Proceedings of ACL-HLT: Short Papers, pp. 61–64.

Han, B. and T. Baldwin (2011). Lexical normalisation of short text messages: Makn sens
a #twitter. In Proceedings of ACL-HLT, pp. 368–378.

Hasselgren, J., E. Montnemery, P. Nugues, and M. Svensson (2003). HMS: A predictive
text entry method using bigrams. In Proceedings of ACL, pp. 43–49.

http://www.ctia.org/media/press/body.cfm/prid/1811
http://www.ctia.org/media/press/body.cfm/prid/1811
http://www.ctia.org/media/press/body.cfm/prid/1936
http://www.ctia.org/media/press/body.cfm/prid/1936
http://www.ctia.org/media/press/body.cfm/prid/2021
http://www.ctia.org/media/press/body.cfm/prid/2021
http://hdl.handle.net/2047/d10016090
http://www.cnn.com/2010/TECH/04/14/library.congress.twitter/index.html
http://www.cnn.com/2010/TECH/04/14/library.congress.twitter/index.html

99

How, Y. and M.-Y. Kan (2005). Optimizing predictive text entry for short message service
on mobile phones. In Proceedings of HCII. Available from http://www.comp.nus.edu.sg/

~kanmy/papers/hcii05.pdf.

Idzelis, M. (2005). Jazzy: The Java open source spell checker.

Ju, Y. and T. Paek (2009). A voice search approach to replying to SMS messages in
automobiles. In Proceedings of the ISCA, pp. 987–990.

Ju, Y. and T. Paek (2010). Using speech to reply to SMS messages while driving: An in-car
simulator user study. In Proceedings of ACL: Short Papers, pp. 313–317.

Klarlund, N. and M. Riley (2003). Word n-grams for cluster keyboards. In Proceedings of
the EACL workshop on language modeling for text entry methods, pp. 51–58.

Kober, H., E. Skepner, T. Jones, H. Gutowitz, and I. S. MacKenzie (2001). Linguistically
optimized text entry on a mobile phone. Technical report, Eatoni Ergonomics, Inc. Available
from http://www.eatoni.com/research.

Kobus, C., F. Yvon, and G. Damnati (2008). Normalizing SMS: Are two metaphors better
than one? In Proceedings of COLING, Manchester, UK, pp. 441–448.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst (2007).
Moses: Open source toolkit for statistical machine translation. In Proceedings of ACL:
Interactive Poster and Demonstration Sessions, pp. 177–180.

Kukich, K. (1992). Technique for automatically correcting words in text. ACM Computing
Surveys 24 (4), 377–439.

Liu, F., F. Weng, B. Wang, and Y. Liu (2011). Insertion, deletion, or substitution? Normal-
izing text messages without pre-categorization nor supervision. In Proceedings of ACL-HLT,
pp. 71–76.

MacKenzie, I. S., H. Kober, D. Smith, T. Jones, and E. Skepner (2001). Letterwise: Prefix-
based disambiguation for mobile text input. In Proceedings of the ACM Symposium on
User Interface Software and Technology, pp. 111–120.

NSC (2010, March). Understanding the distracted brain: Why driving using hands-free cell
phones is risky behavior. Technical report, National Safety Council.

OConnor, B., M. Krieger, and D. Ahn (2010). Tweetmotif: Exploratory search and topic
summarization for Twitter. In Proceedings of ICWSM, pp. 384–385.

Pak, A. and P. Paroubek (2010). Twitter as a corpus for sentiment analysis and opinion
mining. In Proceedings of LREC, pp. 1320–1326.

http://www.comp.nus.edu.sg/~kanmy/papers/hcii05.pdf
http://www.comp.nus.edu.sg/~kanmy/papers/hcii05.pdf
http://www.eatoni.com/research

100

Pakhomov, S. (2002). Semi-supervised maximum entropy based approach to acronym and
abbreviation normalization in medical texts. In Proceedings of COLING, pp. 160–167.

Pakhomov, S., T. Pedersen, and C. G. Chute (2005). Abbreviation and acronym dis-
ambiguation in clinical discourse. In Proceedings of the AMIA Annual Symposium, pp.
589–593.

Pennell, D. and Y. Liu (2010). Normalization of text messages for text-to-speech. In
Proceedings of ICASSP, Dallas, Texas, USA, pp. 4842–4845.

Pennell, D. and Y. Liu (2011a, November). A character-level machine translation approach
for normalization of SMS abbreviations. In Proceedings of IJCNLP (to appear), Chiang
Mai, Thailand.

Pennell, D. and Y. Liu (2011b, May). Toward text message normalization: Modeling
abbreviation generation. In Proceedings of ICASSP, Prague, Czech Republic, pp. 5364–
5367.

Pennell, D. L. (2007, July). An improved method for text entry on cell phones. Master’s
thesis, The University of Texas at Dallas.

Petrovic, S., M. Osborne, and V. Lavrenko (2010). The Edinburgh Twitter corpus. In
Proceedings of the NAACL-HLT Workshop on Computational Linguistics in a World of
Social Media, Los Angeles, California, USA, pp. 25–26.

Pini, S., S. Han, and D. R. Wallace (2010). Text entry for mobile devices using ad-hoc
abbreviation. In Proceedings of AVI, pp. 181–188.

Q., C. A. H. and A. H. H. (2009). A ngram-based statistical machine translation approach
for text normalization on chat-speak style communications. In Proceedings of CAW2.0,
Madrid, Spain, pp. 1–5.

Raghunathan, K. and S. Krawczyk (2009). CS224N: Investigating SMS text normalization
using statistical machine translation. Technical report.

Ramage, D., S. Dumais, and D. Liebling (2010). Characterizing microblogs with topic
models. In Proceedings of AAAI, pp. 130–137.

Sculley, D. and G. M. Wachman (2007). Relaxed online SVMs for spam filtering. In
Proceedings of ACM SIGIR, Amsterdam, The Netherlands, pp. 415–422.

Sharifi, B., M. Hutton, and J. K. Kalita (2010a). Experiments in microblog summarization.
In Proceedings of SocialCom, pp. 49–56.

Sharifi, B., M. Hutton, and J. K. Kalita (2010b). Summarizing microblogs automatically.
In Proceedings of NAACL-HLT, pp. 685–688.

101

Singhal, A. (2009). Official Google blog: Relevance meets the real-time web. http://

googleblog.blogspot.com/2009/12/relevance-meets-real-time-web.html.

Sproat, R., A. Black, S. Chen, S. Kumar, M. Ostendorf, and C. Richards (2001). Normal-
ization of non-standard words. Computer Speech and Language 15 (3), 287–333.

Stolcke, A. (2002). SRILM — an extensible language modeling toolkit. In Proceedings of
the ICSLP, Volume 2, pp. 901–904.

Tanaka-ishii, K. (2007). Word-based predictive text entry using adaptive language models.
Natural Language Engineering 13 (1), 51–74.

Taylor, P., A. Black, and R. Caley (1998). The architecture of the Festival speech synthesis
system. In Proceedings of the Third ESCA Workshop in Speech Synthesis, pp. 147–151.

Teevan, J., D. Ramage, and M. R. Morris (2011). #twittersearch: A comparison of mi-
croblog search and web search. In Proceedings of ACM-WSDM, pp. 35–44.

Telit Wireless Solutions (2006). AT Commands Reference Guide (Revision 1. ed.). Telit
Wireless Solutions. Available from http://www.telit.co.it/product.asp?productID=

105.

Toutanova, K. and R. C. Moore (2002). Pronunciation modeling for improved spelling
correction. In Proceedings of ACL, Philadelphia, Pennsylvania, pp. 144–151.

Tumasjan, A., T. O. Sprenger, P. G. Sandner, and I. M. Welpe (2010). Predicting elections
with Twitter: What 140 characters reveal about political sentiment. In Proceedings of
AAAI, pp. 178–185.

van den Bosch, A. and T. Bogers (2008). Efficient context-sensitive word completion for
mobile devices. In Proceedings of MobileHCI, pp. 465–470.

Veloso, A., W. Meira, T. Macambira, D. Guedes, and H. Almeida (2007). Automatic
moderation of comments in a large on-line journalistic environment. In Proceedings of
AAAI, pp. 1–8.

Whitelaw, C., B. Hutchinson, G. Y. Chung, and G. Ellis (2009). Using the web for language
independent spellchecking and autocorrection. In Proceedings of EMNLP, Volume 2, pp.
890–899.

Willis, T., H. Pain, S. Trewin, and S. Clark (2002). Informing flexible abbreviation expan-
sion for users with motor disabilities. In Computers Helping People with Special Needs, pp.
359–371.

Winfrey, O. (2010). Oprah Winfrey’s no phone zone. http://www.oprah.com/packages/

no-phone-zone.html.

http://googleblog.blogspot.com/2009/12/relevance-meets-real-time-web.html
http://googleblog.blogspot.com/2009/12/relevance-meets-real-time-web.html
http://www.telit.co.it/product.asp?productID=105
http://www.telit.co.it/product.asp?productID=105
http://www.oprah.com/packages/no-phone-zone.html
http://www.oprah.com/packages/no-phone-zone.html

102

Wise, A. (2010). Official Google blog: Google follow finder: Find some sweet tweeps. http:
//googleblog.blogspot.com/2010/04/google-follow-finder-find-some-sweet.

html.

Wong, W., W. Liu, and M. Bennamoun (2006). Integrated scoring for spelling error correc-
tion, abbreviation expansion and case restoration in dirty text. In Proceedings of AusDM,
Volume 61, Sydney, Australia, pp. 83–89.

Wu, W., Y. Ju, X. Li, and Y. Wang (2010). Paraphrase detection on SMS messages in
automobiles. In Proceedings of ICASSP, Dallas, TX, USA, pp. 5326–5329.

Yang, D., Y. cheng Pan, and S. Furui (2009). Automatic Chinese abbreviation generation
using conditional random field. In Proceedings of NAACL-HLT, Boulder, Colorado, pp.
273–276.

Yarowsky, D. (1993). One sense per collocation. In Proceedings of the workshop on Human
Language Technology, pp. 266–271.

Yu, Z., Y. Tsuruoka, and J. Tsujii (2003). Automatic resolution of ambiguous abbreviations
in biomedical texts using support vector machines and one sense per discourse hypothesis.
In Proceedings of the SIGIR, Volume 3, pp. 57–62.

http://googleblog.blogspot.com/2010/04/google-follow-finder-find-some-sweet.html
http://googleblog.blogspot.com/2010/04/google-follow-finder-find-some-sweet.html
http://googleblog.blogspot.com/2010/04/google-follow-finder-find-some-sweet.html

VITA

Deana Pennell was born and raised in the small town of Machias, Maine. She moved to

the Dallas area in 2003 to attend the University of Texas at Dallas. After obtaining her

Bachelor degree in Computer Science Magna Cum Laude in May of 2006, she decided to

stay at UTD to pursue her graduate education. She received a Master of Science degree

in August of 2007, which also focused on on improvements for mobile devices. During her

time at UTD, Deana was a founding officer of the ECS Honor Society and a member and

officer of Golden Key. She was supported during her graduate education by two prestigious

fellowships: the Get-Doc Fellowship offered by UTD and the CHAMPS GK-12 Fellowship

sponsored by the National Science Foundation. She also met and married her husband while

completing her doctoral research, a fellow classmate and graduate student, Ryan Burchfield.

After graduation, Deana is moving to the Washington, D.C. area with her husband and pets

to pursue a research career in Natural Language Processing with the U.S. Department of

Defense.

	PREFACE
	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER Introduction
	Domain-specific Challenges for NLP
	Contributions of the Proposed Work

	CHAPTER Literature Review
	Informal Text
	General Abbreviation Modeling, Disambiguation and Expansion
	Text Normalization

	CHAPTER Corpus Collection and Annotation
	Collection
	Annotation
	Amazon's ``Mechanical Turk''
	Java Annotation GUI

	Choosing Messages for Annotation
	Annotation Statistics
	Types of Abbreviations
	Analysis

	Chapter Summary

	CHAPTER Normalization Model and Setup
	The Noisy Channel Model for Normalization
	Language Modeling
	Abbreviation Modeling

	Experimental Setup
	Baseline Experiments
	Language Model Baseline
	Jazzy Spell Checker

	Chapter Summary

	CHAPTER Statistical Deletion Modeling
	Model Description
	Features
	Generating Word Candidates
	Reranking and Decoding

	System Setup
	Experimental Results
	Model Performance
	Full System Performance
	Model Pruning Performance

	Feature Selection
	Chapter Summary

	CHAPTER Abbreviation Modeling Through Character-Level MT
	Model Description
	MT System Setup
	Experiments
	Model Performance
	Full System Performance
	Model Pruning Performance

	Chapter Summary

	CHAPTER System Extensions
	System Combinations
	Methods of Combining the Systems

	Dictionary Heuristic for the Reduction of False Positives
	Comparison with Past Work
	Chapter Summary

	CHAPTER Effect of Normalization on TTS Output
	Phoneme Error Rate
	Human Listening Tests
	Chapter Summary

	CHAPTER Conclusions
	APPENDIX
	REFERENCES

