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Abstract

Our MED 12 system is an extension of our MED 11 system [12], and consists of a collection of low-
level and high-level features, feature-specific classifiers built upon those features, and a fusion system
that combines features both through mid-level kernel fusion and score fusion. We have incorporated
large number of audio-visual features in our new system and incorporated diverse types of standard
and newly developed event agents which learn the salient audio-visual characteristics of event classes.
The combination of additional features and newly developed powerful event agents improve our MED
performance substantially beyond our MED 11 results.

In addition, our MER 12 submissions reported recounting of specified clips for all five MER events and
additionally provided MER results for all the clips detected by MED system. Our MER system generated
recounting of detections based on CDR features and synopsis provided as part of the EventKits and DEV-
T datasets. The MER evaluation results are promising for event-level discrimination, and indicated
further improvement to be made for clip-level discrimination.

1 Introduction

For TRECVID 2012 [11], we participated MED and MER tasks. For MED task, we have submitted runs for
all enlisted tasks which include pre-specified (E06-E15 & E21-E30), ad-hoc (E16-E20), and small example
tests (Ex10).

Our MED 12 system is an extension of our MED 11 system [12], and consists of a collection of low-
level and high-level features, feature-specific classifiers built upon those features, and a fusion system that
combines features both through mid-level kernel fusion and score fusion. We have incorporated additional
features in addition to the ones used for MED 11. In addition, we have incorporated additional event agents
which learn the salient visual characteristics through latent SVM framework. The combination of additional
features and newly developed powerful event agents improve our MED performance substantially beyond
our last year’s results.

Our MER 12 submissions reported recounting of specified clips for all five MER events and additionally
provided MER results for all the clips detected by MED system. Our MER system generated recounting of
detections based on CDR features and synopsis provided as part of the EventKits and DEV-T datasets. The
MER evaluation results were very promising for event-level discrimination, and indicated further improve-
ment to be made for clip-level discrimination.

2 Multimedia Event Detection

For TRECVID MED 12, we have improved our MED 11 system [12] by adding a set of new features and
enhancing fusion methods.

Overall, our goal for MED task was to optimize the event agents to produce performance pertaining to
the ratio of 1:12.5 between probability of detection and false alarms. The averaged results reported by NIST
is summarized in Table 1 where it can be observed that the actual average ratio is fairly close to the ratio of
12.5, which is encouraging.
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’ | Probability of detection (Pd) [ False Alarm Ratio (FAR) [ Ratio of Pd/FAR |

Pre-specified Full 0.0261 0.3346 12.82
Ad-Hoc Full 0.0294 0.3134 10.66
Pre-specified EK10Ex 0.0392 0.5217 13.30
Ad-Hoc EK10Ex 0.0393 0.5790 14.73

Table 1: Results of average performance on Progress Dataset (computed by NIST)

In addition, we pursued an event-agnostic approach for MED, which means that we made no effort
to tune our system for particular events, even for pre-specified events, except in an unsupervised manner
during the event generation steps. It is also worth noting that we conducted only minimal tuning effort
for CDR generation such as codebook generation or event agent parameter estimation. Still, the effect of
adding features and employing advanced fusion methods resulted in fairly promising performance, which is
encouraging.

In particular, the effect of the improvement made for our system can be observed by comparing the esti-
mated DET curves generated during cross validation, which are shown side-by-side in Figure 1. Additionally,
the estimated DET curves for MED Full tasks for E16-E20 and E21-E30 are shown in Figure 2, which show
fairly comparable and reliable performance for E06-E15 shown in Figure 1(Right). The overall difference
between Pre-speicified and Ad-hoc events are not noticeable, which indicates the reliability of the developed
system.
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Figure 1: DET curves for E06-E15 estimated via cross validation on training dataset using identical data
splits: (Left) DET curves by MED 11 system. (Right) DET curves by MED 12 system. The improvement
in performance towards MED 12 system is clearly visible. (Note that the MED 11 curves on the left are
different from the curves in[12] because the training protocol for MED 12 was different than MED 11. The
curve here reflects the MED 11 system re-trained with the new protocol.)

2.1 Features

In our MED 12 system, we computed a set of features to construct our CDR, which are mostly quantized
by a codebook-based method. For many features, a single clip-level histogram representation based on bag-
of-words (BoW) models were used, while a sequence of BoW segments were built for ObjectBank features
to be incorporated into temporal latent SVM models.



Bostfusod. detoction.cav bostfused. dotoction.cav

Randon Perfornsnce Randon Perfornsnce

Ise-cest ratio Line{s) Ise-cest ratio Line{s)

HED1Z Target HED1Z Target

o0 - E016 = Actual PHiss®0.302 PIARD.025 Thesn, 015 —@— | 0 E421 = Attual PHiss®0.254 PIARD.018 Thesn, 629

Tsokatiosl2.5 PHiss=0 305 PPASD.024 Thes.is @
Bi7 = Actual “PHiss=0.256 PPASD.021 Thesi, 865

Tsokatios26  PHiss=0,290 FIASD.018 Thesi, 627
B022 = Actual “PHiss=0, 344 PPASD.027 Thesi, 893

Tsokatiosi2.5 PHiss=0.250 PFRSO.021 Thes0.68 W ) Teokatio=12,5 Piss=0.344 PFRSO.028 Thesn. 003 &
ol E18 - Actual PHisss0.200 PrR0.08 Thesnose —he— | Ll 023 = fctual PHissS0.168 PFAS0.011 Thesn. 034 —dh—

TsoRatio=i2.5 PHiss=0.220 PFAS0.016 Thesp.035 & Ll TsoRatio=si2.5 PHiss=0.15 PFASD.012 Thesp.03a &

' - Mctual PHiss=n.270 PFASD.B21 Thesn.234 hH E0%d' - Mctual Priss=n. 442 PFRS0_036 Thesd.oitl — W

IsoRatios12.5 PHiss=n.270 PFASD.822 Thrsd.233 k) IsoRatiosi2.5 PHiss=n.442 PFASD.835 Thesp.eil v

- 628 - Actual Priss=n.362 PFR=0.629 Thesd.017 — & 025 - Actual Piss=n.411 PFR=0.G31 Thesn. 016 —&-

\ IsoRatios12.5 Priss=n.362 PFRSD.623 Thrsp.@1s  + IsoRatiosi2.5 PHisssn.d404 PFRSD.G32 Thrsd.g15  +

EN2E - fctual Priss=d.325 PFRED.825 Thess.e04
IsoRatio®12.5 PHiss®d,325 PFRSD.826 Thred, 883

E627 = Actual PHiSs®d. 175 PPARG.81% Theen,sba B
IsoRatio®12.5 PHiss®0.177 PIRRD.014 Theeg.goe . =
£U28 = Actual  PHiSsS0.105 PIASD.012 Thesw, 260
IeoRatio®12.5 PHizs=0,172 PPRSD.014 Thesn. 206

LENZE = Actusl  PHiSSSILE08 PPRSDLOIG Thesi, 100 —W— |
= FaRatio=12.5 PHiss=.206 PFR=0.017 The=0.099 v

G4, - Mctual  PHiss=0,208 PFA=D.023 The=i, 018 —@—
. 12,5 PHiss=0,201 PFA=D.003 The=d. 015 &
Y

Priss Cin 2}
Priss Cin 2}

a2 .5 1 H 5 1. £ an ] a2 .5 1 H 5 1 £ n )
FER Cln %) FER Gl XD

Figure 2: DET curves for Full MED setting, estimated via cross validation on training dataset using identical
data splits: (Left) DET curves for E16-E20, and (Right) DET curves for E21-E30.

The list of our visual features includes HoG3D [5], ObjectBank [8], GIST [10], Color SIFT [13], inde-
pendent subspace analysis (ISA) [6], transformed color histogram [13], and a set of visual features from [15]
including histogram of gradients, geometry texton histogram, self-similarity measure, dense/sparse SIFT,
local binary patterns (LBP), tiny image, and etc.

Additionally, the list of our audio features include MFCC [7] and acoustic segment models (ASMs) [1].

2.2 Protocol for Training

For event agent generation, following TRECVID guidelines, we have followed an independent event agent
generator scenario where only the corresponding event kit examples are used along with DEV dataset. In
other words, the other remaining event kits were assumed to be unknown and not included in any way (e.g.,
as negative datasets).

For the incorporation of negative samples beyond event kit samples, we have taken a realistic set-up where
we assume that only the labels from the event kits are known and treat all the remaining DEV datasets
to be unknown, i.e., as negative samples. Accordingly, DEV datasets are always used as negative training
data regardless of their labels, which simulate a realistic scenario where the negative datasets are essentially
polluted.

Specifically, for each event agent generator for every event class, our training data consists of the samples
in the corresponding event kit and samples in the DEV datasets (including MED11TEST) from MED ’11.
For the examples included in the event kits as 'near miss’ or 'related’, they were used as explicitly as negative
samples while the remaining ’'positive’ samples from the event kit are used as positive training data. Any
samples drawn from the DEV datasets were treated as negative samples, even if they were labeled as positive
for the target event class; i.e., we ignored the labels in the DEV datasets, which is a realistic scenario.

2.3 Base Classifiers

From the CDR feature sets, multiple classifiers are learned from different subsets of features, which compute
scores on PROGRESS dataset independently. These set of classifiers are categorized as 'base classifiers’ in
our framework. A large number of base classifiers are learned from single features, while others are learned
from multiple features jointly. In total, we learned 14 base classifiers.

We learned three different types of base classifiers: (1) non-linear kernel SVMs using kernels [2] such as
histogram intersection kernel, (2) multiple kernel learning (MKL) [14] for joint event agent learning across



multiple features, and (3) a temporal variation of latent SVM.

In particular, our temporal variant of latent SVM is a new development which learns salient parts of videos
and detect such important temporal regions from test clips, resulting in significant boost in performance.
The overall formulation is analogous to the original formulation of spatial latent SVM model for object
detection [3]. The training and testing of temporal latent SVM is computationally more demanding than
standard non-linear kernel SVMs, and it has been employed for ObjectBank feature only for MED 12.

During the testing on PROGRESS dataset, the base classifiers are applied to the test data and indepen-
dently compute detection scores for the corresponding event class. Accordingly, each test clip is associated
with multiple base classifier scores, which are fused to compute final scores.

2.4 Fusion

To compute the final single number score for detection, multiple base classifier scores are fused through
diverse fusion methods. We have learned fusion parameters through cross-validation on our training data
when learning is needed, or used blind fixed-rule fusion methods. By blind fusion methods, we mean simple
fixed approaches such as average and geometric mean of base classifier scores. In terms of learning-based
parameter estimation for fusion methods, we have used multiple methods including Expert Forest [9], MFoM
[4], linear SVM, etc.

The learning of fusion classifiers is conducted via cross-validation on training data where it has been
observed that the best performing fusion method can be different across events, with significant differences
in the performance of across the set of methods. Overall, geometric mean and expert forest are observed to
be selected frequently as the best performing fusion methods for largest number of events. MFoM is also
observed to be good for a fair number of events, while linear SVM and average were selected only for a small
number of classes.

Once multiple fusion models are established, the best fusion classifier is selected per event class based
on performance estimated by cross validation on training data. The selected method was then used to fuse
scores on the test dataset to generate final scores.

3 Multimedia Event Recounting

The task of MER is to report the list of observations and rationale for each and every MED detection. Our
MER submissions include: (1) detailed MER versions for pre-specified list of MER test video clips, and (2)
compact version of MER results for all the video clips detected by our MED system. A sample snapshot of
an automatically generated output by our MER system is shown in Figure 3.

In particular, our MER system encompasses models for human language and the meaning of text words
(both nouns and verbs) included in Event Kits. For example, it can be observed in Figure 3 that our MER
outputs include the key nouns and verbs along with their definitions.

Specifically, given a detected clip, our MER system identifies the best matching clip from EventKit
samples based on multiple low-level CDR features and semantic object detections. Then, the LDC-provided
synopses for the matched clips in the training data are used in a data-driven manner to describe the target
video clip, where the confidence scores are generated based on the likelihood of the matches.

Based on evaluation by NIST, our MER system showed the best results for the task of event discrimination
among all submissions, but, indicated a room for improvement for clip-level differentiation. The outcome
can be attributed to the synopsis transfer methodology adopted in our system. We plan to improve the clip-
level differentiation capability by extending multiple aspects of our current system, including the semantic
detection of salient per-clip characteristics and language models.

4 Conclusion

In our MED 12 system, we have explored the use of a large number of features and advanced event agent
learning methods which expanded our system beyond our MED 11 system. The improvement in our per-
formance is significantly noticeable and indicates that the overall direction of our research and development
addresses the problem more effectively. We obtained these results in spite of the minimal optimization and



actor:a person
objects_1:rock wall
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person - belongs o the semantic category of person_s

indoor - a kind of scene
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affect
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effect

rock - a kind of object whose meaning can be infermed from: a lump or mass of hard consolidated mineral matter
climbs - a kind of action whose meaning can be infermed from: go upward with gradual or continUOUS Progress

Figure 3: An example snapshot of an output by our MER system.

tuning efforts, and clearly indicating the reliability of the developed system. In the future, we plan to tie
our MED and MER system to simultaneously improve the performance for both tasks while enhancing the
transparency of the decision criteria made by our system.
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