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Abstract

In this paper, we argue that a broad range of large-scale
network services would benefit from a scalable mecha-
nism for delivering state about a random subset of global
participants. Key to this approach is ensuring that mem-
bership in the subset changes periodically and with uni-
form representation over all participants. Random sub-
sets could help overcome inherent scaling limitations to
services that maintain global state and perform global
network probing. It could further improve the routing
performance of peer-to-peer distributed hash tables by
locating topologically-close nodes. This paper presents
the design, implementation, and evaluation of RanSub, a
scalable protocol for delivering such state.

As a first demonstration of the RanSub utility, we con-
struct SARO, a scalable and adaptive application-layer
overlay tree. SARO uses RanSub state information to
locate appropriate peers for meeting application-specific
delay and bandwidth targets and to dynamically adapt to
changing network conditions. A large-scale evaluation of
1000 overlay nodes participating in an emulated 20,000-
node wide-area network topology demonstrate both the
adaptivity and scalability (in terms of per-node state and
network overhead) of both RanSub and SARO. Finally,
we use an existing streaming media server to distribute
content through SARO running on top of the PlanetLab
Internet testbed.

1 Introduction

Many distributed services must track the characteristics
of a subset of their peers. This information is used for
failure detection, routing, application-layer multicast, re-
source discovery, or update propagation. Ideally, the size
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of this subset would equal the number of all global par-
ticipants to provide each node with the highest quality in-
formation. Unfortunately, this approach breaks down be-
yond a few tens of nodes across the wide-area, encounter-
ing scalability limitations both in terms of per-node state
and network overhead. Recent work suggests building
scalable distributed systems on top of a location infras-
tructure where each node can quickly (in �����
	���
 steps)
locate any remote node while maintaining only ������	���

local state [22, 24, 26, 30]. This approach holds promise
for scaling to distributed systems consisting of millions
of participating nodes.

While existing techniques track the characteristics of a
fixed set of ������	���
 nodes, a hypothesis of this work is
that there are significant additional benefits from periodi-
cally distributing a different random subset of global par-
ticipants to each node. By ensuring that the received sub-
sets are uniformly representative of the entire set of par-
ticipants and are frequently refreshed, nodes will eventu-
ally receive information regarding a large fraction of par-
ticipants. Consider the applicability of such a mechanism
to the following application classes:

� Adaptive overlays: A number of efforts build over-
lays that adapt to dynamically changing network
conditions by probing peers. For instance, both
Narada [14] and RON [2] maintain global group
membership and periodically probe all participants
to determine appropriate peering arrangements, lim-
iting overall system scalability. The presence of a
mechanism to deliver random subsets to each node
would allow overlay participants to learn of remote
nodes suitable for peering, while at the same time
periodically learning enough new information to
adapt to dynamically changing network conditions.

� Parallel downloads: One recent effort [5] sug-
gests “perpendicular” downloads of popular content
across a set of peers receiving erasure-coded con-
tent. Here, nodes receive data not only from the
source, but also from peers that might have already



received the data from the source or some other peer.
One unresolved challenge to this approach is locat-
ing peers with both available bandwidth and diver-
sity in the set of received data items. Random sub-
sets would provide a convenient mechanism for lo-
cating such peers. Related to this approach, a num-
ber of efforts into reliable multicast [4] propose the
use of peers in the multicast tree for data repairs (to
avoid scalability issues at the root). Random subsets
would likewise provide a convenient mechanism for
locating nearby peers that do not share the same bot-
tleneck link (and hence have a good chance of con-
taining lost data).

� Peer to peer systems: For locality, peer to peer sys-
tems [22, 24, 26, 30] often desire multiple potential
choices at each hop between source and destination.
A changing, random subset of participating nodes
would enable nodes to insert entries into their rout-
ing table with good locality properties and to adapt
to dynamically changing network conditions.

� Content distribution networks: In CDNs, objects are
stored at multiple sites spread across the network.
Important challenges from the client perspective in-
clude resource discovery (determining which repli-
cas store which objects) and request routing (send-
ing the request to the replica likely to deliver the best
performance given current load levels and network
conditions). Random subsets would allow CDNs
to track the state of a subset of global replicas. A
number of earlier studies [9] indicate that making
decisions based on a random subset of global infor-
mation often performs comparably to maintaining
global system state.

� Epidemic algorithms: A classic application of ran-
dom subsets is epidemic algorithms [10, 27], where
nodes transmit updates to random neighbors. With
high probability, � nodes performing “anti-entropy”
will converge to see the same set of updates in
�����
	 ��
 communication steps. Random subsets pro-
vides a convenient mechanism for locating neigh-
bors and perhaps biasing communication to nearby
sites.

Thus, we view a scalable mechanism for delivering uni-
formly random subsets of global participants as funda-
mental to a broad range of important network services.
This paper presents the design and implementation of
RanSub, one such protocol. RanSub utilizes an over-
lay tree to periodically distribute random subsets to over-
lay participants. We could leverage any number of ex-
isting techniques [3, 7, 12, 13, 14, 16, 19, 21, 23, 31]

to provide this infrastructure. However, to demonstrate
some of the key benefits of RanSub in support of adaptive
overlay construction, we present the design and evalua-
tion of SARO (Scalable Adaptive Randomized Overlay).
SARO uses random subsets to build overlays that i) meet
application-specified targets for delay and bandwidth, ii)
match the characteristics of the underlying network and
iii) adapt to changing network conditions.

Much like RanSub, a key goal of SARO is scalability: no
node tracks the characteristics of more than �����
	���
 re-
mote participants and no node probes more than ������	�� )
peers during any time period (a configurable epoch). Fur-
ther, SARO requires no global coordination or locking to
perform overlay transformations. A special instance of
RanSub ensures a total ordering among all participants
such that no two simultaneous transformations can intro-
duce loops into the overlay.

We have completed an implementation of both SARO and
RanSub and conducted a number of large-scale experi-
ments. We show that a 1,000-node instance of SARO run-
ning on an emulated 20,000 node network using Model-
Net [28] quickly converges to user-specified performance
targets with low overhead from both per-node probing
and RanSub operation. We further subject our prototype
to live runs over the PlanetLab testbed [20], demonstrat-
ing similarly low convergence times, and the ability to
stream live media over our overlays using publicly avail-
able media servers.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the RanSub algorithm for distributing ran-
dom subsets. Section 3 then details SARO, a scalable
and adaptive overlay that uses random subsets to con-
form to the underlying topology and dynamically adapt
to changing network conditions. Section 4 evaluates our
prototype’s behavior under a variety of network condi-
tions. Section 5 places our work in the context of related
efforts and Section 6 presents our conclusions.

2 Random Subsets

2.1 Desirable Properties

Before we present the details of our design and imple-
mentation, we discuss desirable properties of a random
subset “tool”. Ideally, the system will offer:

1. Customization: Applications should determine the
size of random subsets that are delivered. This
size will depend on application-specific actions per-



formed by nodes upon receiving the random subset.
For example, a parallel download application may
wish to initiate data transfer with only a small con-
stant number of peers while a P2P system may wish
to probe ������	���
 nodes.

2. Scalability: The system should support large-scale
services without posing a burden on the underly-
ing network in terms of control overhead. Addition-
ally, correct system operation should not depend on
system size, i.e., the application should be able to
request any random subset size. Overall, scalabil-
ity implies that required per-node state and network
communication overhead should grow sub-linearly
with the number of participants.

3. Uniform, changing subsets: We envision a tool
that is repeatedly invoked to retrieve “snapshots” of
global participants at different points in time. Each
snapshot, or random subset, should consist of nodes
uniformly distributed across all global participants,
such that each remote node appears in a delivered
subset with equal probability. If desired by the ap-
pliaction, each invocation of the tool should return
to each participant a different random subset inde-
pendently chosen over all participants. Similarly,
across invocations, each participant should receive
probabilistically different subsets with no correla-
tion across invocations. In this way, over time, each
node can be exposed to a wide variety of global
participants. Certain applications may desire non-
uniform distribution that, for example, favors nearby
nodes; this functionality can be layered on top of the
baseline system.

4. Frequent updates: To support network services that
use the system to adapt to changing network condi-
tions, the system should offer frequent distribution
of random subsets.

5. Resilience to failures: The system will preserve its
properties even in the face of failures. Failed nodes
should not appear in future random subsets within a
short and bounded amount of time.

6. Resilience to security attacks: Even when under at-
tack by malicious users, the system should maintain
its properties (uniform distribution, etc.), and de-
grade its performance gracefully when it is unable
to defend against a massive attack.

2.2 Overview

Given the goals described above, we now describe Ran-
Sub, our scalable approach to distributing random subsets
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Figure 1: RanSub operation.

containing nodes that are uniformly spread across all par-
ticipants. For the purposes of this discussion we assume
the presence of some scalable mechanism for efficiently
building and maintaining an overlay tree. A number of
such techniques exist [3, 14, 16]; in the next section, we
describe SARO, one technique for building such an over-
lay that both makes use of RanSub functionality and also
provides the necessary overlay infrastructure.

Figure 1 summarizes RanSub operation. RanSub dis-
tributes random subsets through Collect messages that
propagate up the tree and leave state at each node. Dis-
tribute messages traveling down the tree use soft state
from the previous collect round to distribute uniformly
random subsets to all participants.

RanSub distributes a subset of participants to each node
once per configurable epoch. An epoch consists of two
phases: one distribute phase in which data is transmitted
from the root of an overlay tree to all participants (data
is distributed down the tree) and a second collect phase
where each participant successively propagates to its par-
ent a random subset called a collect set (CS) containing
nodes in the subtree it roots (data is aggregated up the
tree). During the distribute phase, each node sends to its
children a uniformly random subset called a distribute set
(DS) of remote nodes. The contents of the distribute set
are constructed using collect sets gathered during the pre-
vious collect phase.

When a Distribute message reaches a leaf in the RanSub
tree, it triggers the beginning of the next collect phase
where each node sends its parent a subset of its descen-
dants (the collect set) along with other metadata. This
process continues until the root of the tree is reached.
The collect phase is complete once the root has received
collect sets from all of its children. The root signals the
beginning of a new epoch by distributing a new distribute
set to each of its children, at which point the entire pro-
cess begins again. The length of an epoch is configurable



based on the requirements of applications running on top
of RanSub. The lower bound on the length of an epoch is
determined by the worst-case root-to-leaf and leaf-to-root
transmission times of the overlay.

2.3 Collect/Distribute

Each node participating in a RanSub overlay maintains
the following state: address of its parent in the overlay, a
list of its children, and the sequence number of the cur-
rent epoch. In addition, it maintains the following soft
state: a collect set and number of subtree descendants for
each of its children, a distribute set, and the total number
of overlay participants. Below, we describe how RanSub
uses this information and how it maintains it in a decen-
tralized manner.

2.3.1 Collect Phase

Overall, the goal of the Collect message is for each node
to: i) compose the collect sets for constructing the dis-
tribute set during the subsequent distribute phase, and ii)
determine the total number of participants in its local sub-
tree.

The collect phase begins at the leaves of the tree in re-
sponse to the reception of a Distribute message. Table 1
describes all the fields in Collect messages (in the left
half of the table). The Collect message has the same se-
quence number as the triggering Distribute message. At
the leaves, the number of descendants is set to one and the
collect set contains only the leaf node itself. Once a par-
ent receives all Collect messages from its children, it fur-
ther propagates a Collect message to its own parent. The
nodes in the collect set are selected randomly from the
collect sets received from its children to form a subset of
configurable size ( ������	 ��
 by default). Each node stores
this collect set to aid in the construction of distribute sets
distributed to its children during the subsequent distribute
phase.

One key challenge is to ensure that membership in the
collect set propagated by a node,

�
, to its parent is both

random and uniformly representative of all members of
the sub-tree rooted at

�
. To achieve this, RanSub makes

use of a �������	��

� operation, which takes as input multi-
ple subsets and the total population represented by each
subset. ����������

� outputs a new subset with two prop-
erties: i) group membership randomly chosen over the
input subsets and ii) a target size constraint. This is
achieved by building the output set incrementally. We

first randomly choose an input subset based on the pop-
ulation that it represents. We then randomly choose a
member of this subset (not already selected) and add it to
the output set. Consider the case where �������	��
�� were
performed over two subsets,

�
and � .

�
and � each con-

tain 8 members,
�

represents a population of 30 while �
represents a population of 10. ����������

� would choose
members of

�
to add to the output set with probability

0.75. Thus, the output set of 8 members would uniformly
represent a population of 40, with an expected member-
ship of 6 members from

�
and two members from � .

Note that ����������

� is able to properly weigh each subset
because as part of collect/distribute, each node learns the
total number of nodes at the subtree rooted at each of its
children.

2.3.2 Distribute Phase

A new epoch can begin once the root has received a Col-
lect message from all of its children for the previous
epoch. The actual length of an epoch is determined by
individual application requirements. The right half of Ta-
ble 1 describes the fields contained in the Distribute mes-
sage.

A parent constructs distribute sets for each child in the
following manner. Recall that each node stores the col-
lect set received from each child during the previous col-
lect phase. Thus, for each of � children, a particular node
maintains ����������������� �����!���#" . Also recall that each col-
lect set, ���#$ , consists of nodes selected uniformly ran-
domly from the subtree rooted at node % . A parent node�

constructs a distribute set for each child from this infor-
mation saved during the preceding collect phase. This in-
formation includes the collect set for each child, the node�

itself, as well as &'�#( ,
�

’s own distribute set.

To the application using it, RanSub offers three choices
regarding the contents of distribute sets:

� RanSub-all : This is suitable when the application
requires uniformly random subsets of all nodes in
the system. There are two flavors of the All option.
All-identical delivers the same distribute set to all
nodes in the overlay. This distribute set, &'��)!*�*,+ , is
created by the root using the Compact operation:

&'� )�*�*,+.- ����������

� �/��� � � ��� ��������0���1 2������!3 

where ��� $ represents the subtree rooted at child
% of the root (numbered 45����� ���/6 ). A potentially
more useful construct is evident with the ALL-non-
identical option that delivers different distribute sets



Collect Distribute
Sequence # Sequence number of current epoch Sequence # Sequence number of current epoch
Collect Set Uniformly random subset of nodes

in sender’s subtree
Distribute set Uniformly random subset of over-

lay participants
Descendants Estimate of number of nodes in

sender’s subtree
Participants Estimate of total number of nodes

in the overlay
Reshuffle flag
(only for ordered
RanSub)

Determines if children should be
reshuffled so that a new total or-
dering is created

Table 1: Contents of Collect and Distribute messages.

to each node. In this case, node � receives a Dis-
tribute message from its parent � containing & ���� .
� constructs &'��� using &'���� and the collect sets
stored from its children, ��� ��� ��� �������#" , in the fol-
lowing manner:

&'��� - �������	��

� � ��������� �����!���#"���&'� �� ��1	��3 

� then forwards the following to each child 
 :

&'� �� - ����������

� � ��� � � ��������������
 � �
������� � ����� ���!��� " � & � �� ��1	��3 


Note that the root’s &'���� is 153 since it has no parent.
� RanSub-nondescendants : In this case, each node

should receive a random subset consisting of all
nodes except its descendants. This might be ap-
propriate for an application-layer multicast structure
where participants are probing for better bandwidth
and latency to the root of the tree. In this case, con-
sidering a node’s descendants could introduce a cy-
cle in the overlay tree. For each child 
 (numbered
45����� ����� ), the parent node

�
constructs & � � in the

following manner:

&'��� - �������	��

� � ��� � ��� �����!������
 � �
������� � � ����� ����� " � &'��( ��1 � 3 


� RanSub-ordered : This type of distribute set calcu-
lation imposes a total ordering among participating
nodes. A node receives a distribute set containing
random nodes that come before it in the total order-
ing. For each child 
 (numbered 4�� ��� ����� ), the par-
ent node

�
constructs &'� � in the following manner:

&'� � - ����������

� � ��� ��� ����������� ��
 ��� &'� ( ��1 � 3 

(1)

Our sample application, an adaptive application-layer
multicast overlay, uses Ransub-ordered to ensure that si-
multaneous transformations to the tree structure do not
introduce loops (as discussed in Section 3). Thus, we as-
sume RanSub-ordered for the remainder of this paper.

2.3.3 Discussion

A limitation of RanSub-ordered is that the first child of a
particular node will always have a smaller set of poten-
tial nodes to choose from than the � th. In fact, the first
child’s distribute set would always be restricted to a rela-
tively small subset of global nodes. For RanSub-ordered,
this violates our goal of distributing random subsets to all
nodes that are uniformly chosen across all global partic-
ipants in a single epoch. We take the following step to
ensure that every node still receives a uniformly random
subset across multiple invocations of RanSub-ordered.
Every configurable 2 epochs, the root of the overlay pe-
riodically sets the reshuffle flag in its Distribute message,
signaling overlay participants to randomly reshuffle chil-
dren lists. This allows children that were at the beginning
of the total ordering (and hence received few nodes in dis-
tribute sets) a chance to move toward the end of the total
ordering and receive information about more nodes.

Figure 2 summarizes the operation of the two phases of
the RanSub protocol. For simplicity, we do not include
the results of ����������

� , which would appropriately re-
duce the size of all subsets to the application-specified
size constraint. In the collect phase for this example, each
node constructs a collect set ( ��� ) composed of the union
of itself and all members of the collect sets it received
from its children. Thus,

�
receives a collect set from

each of its children, � and � , that are uniformly repre-
sentative of the subtrees rooted at � and � respectively.
Each node determines which of its collect sets should be
used to compose the distribute set ( &'� ) for each of its
children.

For the distribute phase, node
�

constructs &'��� by tak-
ing the union of itself (

�
) with ����� . Node � in turn con-

structs &'��� by taking the union of itself ( � ) with its own
distribute set ( &'��� - 1 � �!� ��� ����3 ) and ����� - 1	� 3
from the previous collect phase. & gets “lucky” in this
ordering (it is actually the last node in this total ordering)
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Figure 2: Example scenario depicting the two phases of the RanSub protocol: The collect phase traveling up the
overlay in the left panel and the distribute phase traveling down the overlay in the right panel.

and receives a distribute set representative of the entire
topology (once again, recall that we are omitting the com-
pact operation that would throw out appropriate set ele-
ments to maintain size-constrained sets). Node � would
get “unlucky” and only receive a distribute set consist-
ing of itself (it is the first node in this total ordering).
However, once the children lists are reshuffled, the re-
sulting total ordering would be a random walk of the tree
in which each node is only visited once yielding an en-
tirely different new total ordering. Finally, note that the
complexity of reshuffling children is only needed if a to-
tal ordering is required.

2.4 Comparison with the Ideal Random Subset
Primitive

We believe that RanSub closely approximates the ideal
properties outlined at the beginning of this section. Since
it uses a tree to propagate sublinear-sized collect and dis-
tribute sets between parents and children, it imposes low
overhead on the underlying network. Using an efficient
overlay structure further ensures that epochs can be short.
For instance, we find that for a 1000-node system (in a
network with a diameter less than 500 ms), epochs can
be as short as five seconds.

In the absence of node failure, RanSub delivers random
subsets that are close to uniformly distributed. The key
behind achieving uniformity is accounting for nodes that
are represented by a random sample at any given time
during the protocol execution. We achieve this by run-
ning the protocol over a tree, where it is straightforward
for a node to have an estimate of the number of its descen-
dants. Future work includes adapting RanSub to function
over meshed overlays, not just trees.

RanSub uniformity might suffer as nodes join and leave
the system. We do not provide the guarantee that nodes
in the random subset will be active when considered by
other nodes. RanSub is a mechanism for taking a snap-
shot of “live” tree participants and then taking uniformly
random samples of it. This is a strength of our approach
since we do not require a separate group membership
mechanism. If the node is alive when it receives a Col-
lect message, it may be included in distribute sets given
to other nodes. If that node fails soon after the snapshot,
it may be unavailable when considered by other nodes. If
a node joins after the collect phase of a previous epoch
has completed, it will not be present in the snapshot.

In RanSub, the time for node failure detection can be on
the order of a small number of seconds. Nodes below a
point of failure rejoin the tree at current participants us-
ing previously received distribute sets. The node failure
detection interval can be further reduced if the underlying
tree is used to support application-layer multicast. In this
case, absence of data for a few hundreds of milliseconds
might signify disconnection from the parent. In essence,
application-layer data may serve as a heartbeat mecha-
nism for failure detection.

RanSub assumes trust between overlay participants, and
therefore is not resilient to internal attacks. For example,
a malicious node might alter the contents of collect and
distribute sets. We are investigating several techniques
to address this limitation. For instance, one approach in-
volves sending subsets over multiple tree “cross-links” to
allow identification and confinement of damage caused
by malicious users. These “cross-links” would also help
with the overall reliability of the tree. Multiple paths
through the tree means that a single failure may not dis-
connect nodes in the tree.



3 SARO

3.1 Overview

As discussed earlier, distributing uniformly random sub-
sets of global participants is applicable to a broad range of
important services. This section describes SARO, a Scal-
able Adaptive Randomized Overlay, one such application
of RanSub. The use of RanSub for SARO is circular in
this example. SARO uses random subsets to probe peers
to locate neighbors that meet performance targets and to
adapt to dynamically changing network conditions. At
the same time, RanSub uses the SARO overlay for effi-
cient distribution of Collect and Distribute messages.

The goal of SARO is to construct overlays that
are: i) scalable, ii) degree-constrained, iii) delay-
and bandwidth-constrained, iv) adaptive, and v) self-
organizing. For scalability, we enforce the following
rules:

1. No node should track more than �����
	 ��
 remote
nodes.

2. No node should perform more than �����
	���
 network
probes during any time period (epoch). The appli-
cation can configure the number of probed nodes to
effect a tradeoff between network overhead and the
adaptivity (or agility [17]) of the overlay.

3. No global locking should be required to transform
the overlay.

We achieve the first two goals using the distribute sets
that RanSub transmits to each node every epoch. Each
SARO node

�
performs probes to members of this subset

to determine if a remote node � exists that would deliver
better delay or bandwidth to

�
and its descendants. If so,�

attempts to move under � .

To motivate the third requirement, consider a node
�

that
decides to move underneath a remote node � . The sys-
tem would introduce a loop if some ancestor of � simul-
taneously decides to move under some descendant of

�
.

The naive approach to avoiding loops requires locking a
number of nodes across the wide area to avoid such si-
multaneous overlay transformations. While this may be
appropriate for a small number of nodes or for LAN set-
tings, this process will not scale to large overlays. Thus,
we impose a total ordering among nodes provided by the
ordered flavor of RanSub to ensure that no two simulta-
neous moves in the same epoch can introduce a SARO

loop. During any epoch, each node’s distribute set con-
tains only remote nodes that come before it in the current
total order.

Recall that RanSub periodically changes the total order-
ing of nodes and random membership in delivered dis-
tribute sets. Thus, while each node only tracks and probes
������	���
 remote nodes during any one epoch, RanSub en-
sures that the makeup of the distribute set changes proba-
bilistically such that, over time, each node quickly probes
all potential parents. The size of the random subset ef-
fects a tradeoff between scalability (measured by per-
node state and network probing overhead) and conver-
gence time (the amount of time it takes to build an over-
lay that achieves delay and bandwidth targets even under
changing network conditions).

SARO requires additional information beyond that dis-
tributed by RanSub (see Table 1). In general, applica-
tions may wish to piggyback different state information
with the existing Collect and Distribute messages. Our
RanSub layer is designed in a manner to make such ex-
tensibility straightforward, though a detailed description
is beyond the scope of this paper. Table 2 describes the
additional information transmitted by SARO in Collect
and Distribute messages.

3.2 Probing and Overlay Transformations

Recall that the length of an epoch (random subsets are
distributed once per epoch) is determined by application-
specific requirements. Shorter epochs provide more in-
formation, while longer epochs incur less overhead. For
SARO, our goal is to quickly converge to an overlay that
matches the underlying topology and adapts to dynami-
cally changing network characteristics. The implemen-
tation and evaluation in this paper is pessimistic in that
we run with a constant epoch length of 10 seconds in all
cases. In the future, we plan to investigate setting the
epoch length adaptively based on both overlay character-
istics and network conditions. For example, if SARO has
already matched the underlying topology and if network
characteristics are not changing rapidly (likely the com-
mon case in the Internet), then the system can afford a
longer epoch length. Thus, we envision reducing over-
all system overhead by running SARO with a short epoch
length during initial self-organization and in response to
large changes in network conditions, but running with a
long epoch in the common case.

A key to SARO’s ability to converge to bandwidth and de-
lay (maximum delay from root to all other overlay partic-
ipants) targets lies in localized tree transformations. Dur-



Collect Distribute
Delay Delay estimate for furthest de-

scendant
Tree height Estimate of the actual highest root-

to-leaf latency in the tree
Delay gain Estimate of delay gain from mov-

ing to a best alternative parent
Root delay Estimate of recipient’s delay from

root

Table 2: Additional fields in Collect and Distribute messages required by SARO.

ing each epoch, nodes measure the delay and bandwidth
between themselves and all members of their distribute
set. These probes consist of a small number of packets
inter-spaced by the target application bandwidth1. If the
loss rate of the probes is below a specified threshold, the
probing node calculates the average round trip time. The
goal is to locate a new parent that will deliver better de-
lay, better bandwidth, or both to itself and all of its de-
scendants. If a better parent is located, the child attempts
to move under it. The migrating node issues the add re-
quest to the potential parent and waits for the response.
If the request is accepted, it notifies its old parent, com-
municates its new delay from root to all its children, and
notifies the new parent of its furthest descendant (updat-
ing the parent’s state for the next epoch).

In general, the goal of SARO is to achieve the low-
est delay configuration that still maintains the target
bandwidth to the root. Thus, during each epoch,
nodes use information from their probes to perform
two types of transformations: BANDWIDTH ONLY and
DELAY AND BANDWIDTH. Nodes that have not yet
reached their bandwidth target may perform BAND-
WIDTH ONLY transformation to improve their bandwidth
to root, even if it means increasing their delay. DE-
LAY AND BANDWIDTH transformations allow nodes to
rotate under a new parent that improves the nodes’ delay
to root while maintaining (or improving) bandwidth.

3.3 Dynamic Node Addition and Failure Recov-
ery

To this point, our discussion assumes a static set of nodes
dynamically self-configuring to match changing network
conditions. In general however, the set of overlay par-
ticipants will also be changing. A node performing a
SARO join simply needs to contact any existing member
of the overlay. The initial bootstrapping parent may be
sub-optimal from the perspective of bandwidth or delay.

1We currently assume that overlay traffic makes up a relatively small
portion of overall traffic through the bottleneck. We leave more accu-
rate, more stable, and TCP-friendly probing to future work. In general,
higher accuracy probes will inherently incur higher overhead, though
this issue is orthogonal to our own work.

However, the node will begin receiving random subsets
as part of the collect/distribute process, and it can use the
associated random subsets to probe for superior parents
using the process described above.

Since the bootstrapping parent node might fail, we make
an additional assumption that every node is aware of the
root of the tree. Therefore, an incoming node will al-
ways have at least one bootstrapping parent (similar to
Overcast [16], we can replicate the root to improve root
availability). For the sake of scalability, we allow nodes
to contact the root only if it is absolutely necessary (i.e.,
its original bootstrapping parent failed).

If a bootstrapping parent does not have enough slots in
its children list to accept a joining node, it redirects the
incoming node randomly to either its parent or one of its
children. Similarly, if the incoming node would violate
the delay bound, the bootstrapping parent redirects it to
its parent. If the node is redirected too many times, it
joins the tree at the first available point, and tries to im-
prove its position later.

Handling node failure is simplified by our periodic dis-
tribution of Collect and Distribute messages, which im-
plicitly act as heartbeat messages. Each parent waits for
Collect messages from all of its children. If a message is
not received within some multiple of the subtree height2,
the parent assumes that one of its children has failed and
excludes it from participating in the next epoch by not
sending a Distribute message to that child. However, the
node does proceed with a Collect message to its own par-
ent when it detects the failure to ensure that a failure low
in the tree does not cascade all the way back up the tree.
A node,

�
, can similarly detect the failure of its parent

when it does not receive a Distribute message within a
multiple of the delay target. In this case,

�
will send a

dummy Distribute message (with an empty distribute set)
to all of its children. This empty Distribute message sig-
nals

�
’s descendants that no probing or overlay transfor-

mations should be performed during this epoch.
�

then
attempts to locate a new parent using information from

2Note that the current maximum node-to-leaf delay serves as a con-
venient baseline for the complex process of determining appropriate
timeouts.



previous distribute sets where appropriate. Thus, upon a
failure, the entire subtree rooted at

�
is able to rejoin the

overlay with a single transformation, rather than forcing
all nodes below

�
to rejoin separately.

3.4 Weans

Under certain circumstances, the greedy nature of SARO
can lead to sub-optimal overlays. Consider the follow-
ing situation. A node

�
with a particular degree bound

has a full complement of children. However, a node �
somewhere else in the overlay can only achieve its band-
width target by becoming a child of

�
. Finally, one of

�
’s

children, � , is best served by
�

but would still be able
to achieve its bandwidth target as a child of some fourth
node & . As described thus far, SARO will become stuck
in a “local minimum” in this situation.

We address this situation by introducing wean operations.
At a high level, the goal is to ensure that each parent
leaves a number of slots open whenever possible to ad-
dress the above condition. Thus, as a node approaches
its degree limit, it will send a wean message to one of
its children. In subsequent epochs, that child will move
to a new parent if it can find a suitable location that still
meets its bandwidth requirement (though its delay may be
increased). A wean may or may not succeed (an appropri-
ate alternate parent may not exist) and the wean operation
expires after a configurable number of epochs.

One difficulty is choosing the child to wean. Ideally, a
parent would wean the child that would lose the least in
delay and bandwidth while still achieving its targets. We
approximate this in the following manner. During each
epoch, all nodes maintain information on the best alter-
nate parent with respect to both delay and bandwidth.
This information is propagated to parents in the collect
phase (see Table 2) and is used by parents to determine
the wean target.

4 Evaluation

We have completed an implementation of both RanSub
and SARO as described in the previous sections. We
wrote our code to a compatibility layer that allows us to
evaluate our working system in both the ns packet sim-
ulation environment [18] and across live networks. For
brevity, we omit the majority of the results of our detailed
simulation evaluation. Instead, we focus on the behavior
of our system running live on ModelNet [28], an Inter-
net emulation environment and across the Internet in the
PlanetLab testbed [20].

For our ModelNet experiments, SARO runs on 35 1.4Ghz
Pentium-III’s running Linux 2.4.18 and interconnected
with both 100 Mbps and 1 Gbps Ethernet switches. We
multiplex 28-29 instances of SARO on each of the Linux
nodes, for a total of one thousand nodes self-organizing
to form overlays. We validated our ModelNet results
with ns experiments using identical topologies and com-
munication patterns. In ModelNet, all packet transmis-
sions are routed through a core responsible for emulat-
ing the hop-by-hop delay, bandwidth, and congestion of
a target network topology. For our experiments, we use
a single 1Ghz Pentium III running FreeBSD-4.5 as the
core. The core has a 1 Gbps connection to the rest of
the cluster. The core was never a bottleneck either in
CPU or bandwidth for any of our experiments. Our ear-
lier work [28] shows that, for a given wide-area topology,
ModelNet is accurate to within 1 ms of the target end-to-
end packet transmission time up to and including 100%
CPU utilization, and 120,000 packets/sec (1 Gbps assum-
ing packets are 1000 bytes on average). ModelNet can
scale its capacity with additional core nodes, though this
was not necessary for our experiments here. ModelNet
emulates packet transmission hop-by-hop (including per-
hop queue sizes and queuing disciplines) through a tar-
get network. Thus, a packet’s end-to-end delay accounts
for congestion and for per-hop queuing, propagation, and
transmission delay.

By default, the core emulates the characteristics of a ran-
dom 20,000-node INET-generated topology [6]. We ran-
domly assign 1,000 nodes to act as clients connected to
one-degree stub nodes in the topology. One of these
participants is randomly selected to act as the root of
the SARO tree. We classify network links as being
Client-Stub, Stub-Stub (both with bandwidth between
1-10 Mbps), Transit-Stub (bandwidth between 10-100
Mbps) and Transit-Transit (100-155 Mbps). We calculate
propagation delays among nodes from the relative place-
ment of the nodes in the plane by INET. The baseline
diameter of the network is approximately 200 ms. While
the presented results are restricted to a single topology,
the results of additional experiments and simulations all
show qualitatively similar behavior.

4.1 RanSub Uniformity

To verify that RanSub distributes uniformly random sub-
sets to all nodes, we used our complete RanSub prototype
to create a SARO overlay of 1000 emulated nodes as de-
scribed above. After convergence, we let our experiment
run for a total of 360 epochs and tracked the cumulative
number of unique remote peers that RanSub distributes to
each node over time. We configured RanSub to distribute
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Figure 3: Average number of nodes each of 1,000 nodes
learns of as a function of number of epochs for the opti-
mal pure uniform case and for RanSub.

25 random participants each epoch. Figure 3 plots the
average number of peers each node is exposed to on the
y-axis as a function of time progressing in epochs on the
x-axis. The vertical bars represent the standard deviation.
We also show the best case in which we simulate pure
uniform random subsets (using the same random number
generator as the one used by our RanSub implementa-
tion). RanSub delivers random subsets with essentially
optimal uniformity.

4.2 SARO Overlay Convergence
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Figure 4: Delay convergence as a function of time for
three different delay targets.

Figure 4 shows the convergence time of three SARO
overlays running with a maximum degree of 10 and ran-
dom subsets of size 15. The 1000 nodes join the overlay
sequentially at a random point in the network over the
first 20 seconds of the experiment (50 nodes/second) and

then use random subsets to probe for parents that will de-
liver the appropriate delay target (bandwidth targets of
64Kbps were easily achieved for this experiment). In ef-
fect, at the beginning of the experiment we pessimisti-
cally create an overlay with random interconnectivity. We
observe the behavior of the system for three different de-
lay targets, 339 ms, 382 ms, and 452 ms. The 339 ms de-
lay target is quite difficult to achieve for our topology and
degree bound. The figure plots the achieved worst-case
delay relative to the delay target as a function of time pro-
gressing on the x axis. SARO uses random subsets to con-
verge to the specified delay target in all cases, with con-
vergence time varying from 60 seconds to 220 seconds
in the three cases depending on the tightness of the delay
target. We note that our convergence times using ran-
dom subsets are comparable to a number of smaller-scale
overlay construction techniques that maintain global state
information and that perform global probing.

4.3 Effects of Random Subset Size
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Figure 5: Delay convergence time and resulting per-node
probing overhead as a function of the size of the random
subset.

We now quantify the effects of the size of the random sub-
sets on SARO convergence time. In general, less infor-
mation in the random subset increases convergence time
as nodes have to spend more time to find an appropriate
parent. More information will likely decrease the conver-
gence time, but at the cost of increased network probing
overhead. With a maximum per-node degree of 10, we
measure the time for the 1,000 node SARO tree to con-
verge to a 382 ms delay target as a function of the size of
the random subsets. As shown in Figure 5, we increase
the size of the random subset from 5 to 24 on the x-axis
and plot the resulting convergence time on the left-hand
y-axis. The convergence time decreases from approxi-



mately 240 seconds to 90 seconds. Figure 5 also plots
the associated tradeoff with per-node control overhead,
accounting for both RanSub Collect/Distribute messages
and probing overhead. As expected, probing overhead on
the right-hand y-axis grows linearly with the size of the
random subset, but only to a manageable 2300 bytes/sec
even when the random subset size grows to 24, most of
which is probing overhead. Note that the benefits of in-
creasing the random subset size beyond 20 diminishes
rapidly. Of course, this point of diminishing returns will
vary with the topology and delay target. We have exper-
imented with dynamically increasing or decreasing the
random subset size by taking real-time measurements of
the overlay’s convergence, but we leave this to future
work.

4.4 Adaptivity
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Figure 6: Adaptivity of a SARO tree in response to pro-
nounced change in network delay.

One of the most important aspects of SARO is its ability
to dynamically react to changing network conditions. To
evaluate this ability, we subject a steady-state 1000-node
SARO tree to widespread and sustained change in net-
work characteristics. Every 25 seconds, we increase the
propagation delay of a randomly chosen 14% of all net-
work links by between 0-25% of the link’s original de-
lay. The idea behind this experiment is to determine what
happens to the overlay as the network continuously de-
grades under conditions much worse than those typically
found on the Internet. Figure 6 shows the results of this
experiment, plotting delay as a function of time for the
90th percentile, 95th percentile, and worst case node in
the overlay as a function of time progressing the x-axis.
Note that the 90th percentile indicates that 90% of SARO
nodes have delay better than the indicated value. We set
the delay target to 382 ms for this experiment, the degree

bound to 10 and the size of the random subset to 15.

We intentionally set our target delay to a value that is rel-
atively difficult to achieve for our degree bound in the
face of highly variable network conditions. Thus, the
overlay initially takes approximately 150 seconds to con-
verge to the delay target. We perturb network condi-
tions in the manner described above beginning at time
� -������ and continuing for 200 seconds. While 95% of
nodes are able to maintain their delay target during most
of the network perturbation, it takes SARO another 180
seconds after the network perturbation subsides (though
link delays remain at their elevated levels) to once again
bring all nodes within delay bounds. We include the re-
sults of this experiment to quantify the level of adaptivity
that SARO can deliver. Additional experiments indicate
that if network conditions were perturbed for a longer pe-
riod of time (with same number of links, magnitude of
change, and frequency of change), SARO would be un-
able to once again achieve the delay target. With less per-
turbation or a more relaxed delay target, SARO typically
quickly recovers from changes to network conditions.

4.5 PlanetLab Deployment
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Figure 7: CDF of convergence time for 19 PlanetLab
nodes, with each node acting as root in turn for two dif-
ferent delay targets.

To further evaluate the utility of our approach, we eval-
uated the behavior of SARO running on a subset of 19
PlanetLab nodes [20] during September 2002. We ran
SARO over PlanetLab 19 times with each separate run
using a different PlanetLab node as the root of the over-
lay. We then measure the convergence time for each of
two different delay targets: 50ms and 100ms. We set the
maximum per-node degree to 5 and the random subset
size to 5. Figure 7 plots the result of this experiment. We



find that for a relatively relaxed delay target of 100ms, all
nodes converge within 20 seconds. Tightening the delay
bound to 50 ms increases the typical convergence time
to approximately a minute with worst case convergence
taking up to two minutes. Note that all reported values
are once again for the worst-case convergence time of the
last node to meet its delay target.

Next, we streamed live audio over SARO by integrating
an HTTP proxy as a separate thread in the SARO address
space, as depicted in Figure 8. We use a publicly avail-
able SHOUTCast server [25], to stream MP3 encoded
over HTTP. We then instantiate a SARO/HTTP process
on the same node as the SHOUTCast server to act as the
root of the overlay tree. Each SARO node below the root
instructs its associated HTTP proxy to establish a connec-
tion to its parent to receive streaming data. The node is
then able to stream content to local Winamp players and
to its own children in the overlay. Each time a SARO
node locates a better parent, it also instructs is HTTP
proxy to reestablish a connection to this new parent.

SHOUTcast

HTTP
Proxy SARO

HTTP
Proxy SARO

HTTP
Proxy SARO

Winamp

Winamp WinampWinamp Winamp

Figure 8: Streaming live media using SARO and
SHOUTcast over PlanetLab.

We use this configuration to successfully stream MP3
files at 256Kbps from an existing SHOUTcast servers
over 1000 nodes in our emulation environment and the
PlanetLab testbed. Figure 9 shows the results of a 5-
minute experiment of SHOUTcast streaming over 19
SARO nodes spread across the PlanetLab testbed. We set
the delay target to 75ms, the size of the random subsets
to 5 and the maximum per-node degree to 5. The figure
plots a CDF of the percent of bytes received by each of
the 19 nodes. Byte loss rates vary from 0-5%. However,
we note that we measure the loss rate while SARO was
still self-organizing at the beginning of the experiment.
The vast majority of the losses came at this time. We ver-
ified the correctness of our experiment by connecting to
individual HTTP/SARO nodes using the Winamp media
player to playback the stream.
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Figure 9: Distribution of percent of packets received for
a 5 minute experiment streaming 256Kbps over SARO
running on PlanetLab.

5 Related Work

RanSub shares some design goals with gossip-based dis-
semination protocols such as SCAMP [1] and LBP-
CAST [11]. However, because it operates over a tree,
RanSub offers uniformly random subsets relative to these
earlier efforts. RanSub does not require a minimum ran-
dom subset size for correct operation. Finally, in combi-
nation with SARO, RanSub allows more predictable time
between updates (one epoch).

Our work on SARO builds upon a number of recent
efforts into “application-layer” multicast, where nodes
spread across the Internet cooperate to deliver content to
end hosts. Edges in this overlay are TCP connections, en-
suring congestion control and reliability in a hop-by-hop
manner. Perhaps most closely related to our effort in this
space is Narada [14, 15], which builds a mesh intercon-
necting all participating nodes and then runs a standard
routing protocol on top of the overlay mesh. Relative
to our work, Narada nodes maintain global knowledge
about all group participants. In comparison, we use the
RanSub layer to maintain information about a probabilis-
tic ������	���
 subset of global participants, making appli-
cations built on top of RanSub, including SARO, more
scalable.

SARO bears some similarity to the Banana Tree Pro-
tocol (BTP) [13], and Host Multicast Tree Protocol
(HMTP) [29]. However, neither of these approaches at-
tempt to provide delay or bandwidth guarantees and nei-
ther considers a two-metric network design. All three
protocols use the idea of tree transformations based on



local knowledge (obtained through limited network prob-
ing) to improve overall tree quality. However, BTP im-
plements a more restrictive policy for choosing a po-
tential parent, called “switch-one-hop”, which considers
only grandparents and immediate siblings. HMTP can
introduce loops and thus requires loop detection that re-
quires knowledge of all of one’s ancestors. Since HMTP
offers no bounds on tree height, message size and re-
quired state are also unbounded ( ������
 ), rendering this
approach potentially unscalable. Finally, HMTP is not
evaluated under changing network conditions.

Yoid [12] shares the design philosophy that a tree can be
built directly among participating nodes without the need
to first build an underlying mesh. Yoid does not describe
any scalable mechanism for conforming to the topology
of the underlying network, has not been subjected to a
detailed performance evaluation, and contains loop detec-
tion code as opposed to our approach of avoiding loops.

ALMI [19] uses all-pairs probing at a cost of ����� � 
 and
transmits this changing connectivity information to a cen-
tralized node that calculates an appropriate topology for
the overlay. RMX [7] faces similar scalability limitations.
In Overcast [16], all nodes join at the root and migrate
down to the point in the tree where they are still able
to maintain some minimum level of bandwidth. Rela-
tive to our effort, Overcast does not focus on providing
delay guarantees (given its focus on bandwidth-intensive
applications). Its convergence time is also limited by
probes to immediate siblings and ancestors. NICE [3]
uses hierarchical clustering to build overlays that match
the underlying network topology. Relative to our ap-
proach, NICE focuses on low-bandwidth (i.e., single-
metric, delay-optimized) applications and requires loop
detection code. We believe that a variety of existing
overlay construction techniques, including Yoid, ALMI,
RMX, Overcast, and NICE could benefit from the avail-
ability of our RanSub layer.

Finally, a number of recent efforts [21, 23, 31] propose
building application-layer multicast on top of scalable
peer-to-peer lookup infrastructures [8, 22, 24, 30]. While
these projects demonstrate that it is possible to probabilis-
tically achieve good delay relative to native IP multicast,
they are unable to provide any performance bounds be-
cause of the probabilistic nature of the underlying peer-
to-peer system. Further, these systems do not focus on
two-metric network optimization (e.g., delay and band-
width). Finally, to the best of our knowledge, these ap-
proaches, have largely been evaluated through simulation
and have not been subjected to live Internet conditions.

6 Conclusions

This paper argues for a generalized mechanism for peri-
odically distributing state about random subsets of global
participants in large-scale network services. Sample ap-
plications include epidemic algorithms, reliable multi-
cast, adaptive overlays, content distribution networks,
and peer-to-peer systems. This paper makes the follow-
ing contributions:

� We present the design and implementation of a scal-
able protocol, RanSub, that distributes state about
uniformly random subsets of configurable size once
per application-specific epoch.

� We argue for the utility and generality of such an
infrastructure through the evaluation of SARO, a
scalable and adaptive overlay construction proto-
col. SARO is able to match underlying networking
topology and to adapt to dynamically changing net-
work conditions by sampling members of its random
subset once per configurable epoch.

� A large-scale evaluation of 1000 SARO nodes in an
emulated 20,000 node network topology confirm the
scalability and adaptivity of our approach.

� We use an existing streaming media player to trans-
mit live streaming media using SARO running on
top of the PlanetLab Internet testbed.
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