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Abstract. We introduce a category-independent shape prior for object
segmentation. Existing shape priors assume class-specific knowledge, and
thus are restricted to cases where the object class is known in advance.
The main insight of our approach is that shapes are often shared be-
tween objects of different categories. To exploit this “shape sharing”
phenomenon, we develop a non-parametric prior that transfers object
shapes from an exemplar database to a test image based on local shape
matching. The transferred shape priors are then enforced in a graph-
cut formulation to produce a pool of object segment hypotheses. Un-
like previous multiple segmentation methods, our approach benefits from
global shape cues; unlike previous top-down methods, it assumes no class-
specific training and thus enhances segmentation even for unfamiliar cat-
egories. On the challenging PASCAL 2010 and Berkeley Segmentation
datasets, we show it outperforms the state-of-the-art in bottom-up or
category-independent segmentation.

1 Introduction

Bottom-up image segmentation methods group low-level cues from color, texture,
and contours to estimate the boundaries in an image. Despite significant strides
in recent years, it is widely acknowledged that a bottom-up process alone cannot
reliably recover object-level segments. Pitfalls include the fact that a single object
is often comprised of heterogeneous textures and colors, objects with similar
appearance can appear adjacent to one another, and occlusions disrupt local
continuity cues—all of which lead to over- or under-segmented results. This can
be a fatal flaw for downstream recognition processes.

As a result, researchers have explored two main strategies to move beyond
low-level cues. The first strategy expands the output to produce multiple seg-

mentation hypotheses, typically by using hierarchical grouping, varying hyperpa-
rameters, or merging adjacent regions (e.g., [1–5]). Enlarging the set of segments
increases the chance of “hitting” a true object; however, large pools of candidate
regions are costly to compute and maintain, and, more importantly, existing
methods lack a model of global shapes.1 The second strategy introduces top-
down category-specific priors, unifying bottom-up evidence with a preference to
match a particular object’s layout, shape, or appearance (e.g., [6–9]). Such meth-
ods elegantly integrate segmentation and recognition, yet they rely heavily on

1 Throughout, we use shape to refer to the outer contours or boundaries of objects.
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(a) Semantically close (b) Semantically disparate

Fig. 1. Intuition for shape sharing. While one may expect shape sharing between ob-
jects of semantically close categories (a), we observe that similar shapes exist even
among semantically disparate objects (b). This suggests transferring “object-level”
shapes between categories, to enable category-independent shape priors.

a known (pre-trained) class model. Further, category-specific shape priors often
make strong assumptions about the viewpoint of the object to be segmented.

At the surface, the goals of these two existing strategies seem to be in conflict:
the former maintains category-independence, while the latter enforces top-down
shape knowledge. Our idea is to reconcile these competing goals by developing
a category-independent shape prior for segmentation. The main insight of our
approach is that similar shapes exist across objects—and this “shape sharing”
occurs even across disparate categories. See Figure 1. Thus, rather than learn
a narrow prior good only on the known class of interest, we can transfer ob-
ject shapes between classes, thereby leveraging top-down shape cues to segment
objects regardless of their category.

To this end, we propose a non-parametric, data-driven prior based on partial
shape matching. Given a novel unsegmented image, we first extract local shapes
using a boundary-preserving local region detector, and then identify any strong
matches it has with shapes in a database of segmented exemplars. Based on
the scale and position of each local shape match, we project the associated
exemplar shapes into the test image. This effectively maps local support into
global shape hypotheses without assuming any category-specific knowledge, since
the database need not contain exemplars of the same object class(es) as our test
image. Each set of highly overlapping shape projections yields a shape prior
for the novel image, suggesting regions that would not be considered if judging
color/texture alone. Finally, we generate multiple output segment hypotheses by
performing a series of figure-ground segmentations using graph-cuts, enforcing
each of the shape priors in turn. Figure 2 overviews the approach.

Results on the PASCAL 2010 and Berkeley Segmentation datasets show that
our approach outperforms not only bottom-up segmentation [10], but also state-
of-the-art category-independent region generation methods that lack shape pri-
ors [3, 4]. Furthermore, we demonstrate it is even competitive with an analogous
category-specific shape prior, lending clear support for shape sharing among dif-
ferent categories. As such, unlike existing top-down segmentation methods, our
approach can enhance the segmentation of objects it has never seen previously.
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2 Related Work

In segmentation, shape is typically used as a category-specific cue, whereby
known object models are integrated with bottom-up grouping cues [6, 7, 11, 12].
In contrast, our approach leverages shape in a category-independent manner,
and thus does not require prior knowledge about the object(s) present.

The notion of sharing visual properties has been pursued in various forms in
computer vision. In object detection, jointly training multi-class detectors allows
the reuse of common discriminative features [13, 14]. In image parsing, hierar-
chical representations can exploit local parts shared between objects [15, 16]. In
object recognition, model parameters learned on one set of categories can be
transferred to more efficiently learn new related objects [17, 18]. All such prior
methods focus on sharing features to reduce redundancy and increase computa-
tional efficiency, and they employ category-labeled data to explicitly train shared
parts/features. In contrast, we propose a novel form of sharing to estimate shape
priors for image segmentation, and our data-driven method uses no class labels.

For shapes in particular, knowledge about shared properties is typically ex-
pressed in parametric forms, e.g., Gestalt cues like symmetry [19], or hand-
crafted geometric primitives [20]. A recent method for figure-ground contour
classification discovers prototypical local geometric features, yet it depends on
bottom-up cues alone when grouping the labels predicted by each local proto-
type [21]. In contrast, we consider object-level sharing, whose top-down nature
allows our method to globally group parts of diverse appearance. Unlike any of
the above, we propose an exemplar-based, non-parametric approach to sharing,
which offers flexibility to the rich variations of object shapes and poses.

Exemplar-based methods have long been explored in vision and graphics.
Some recent work tackles segmentation in a data-driven manner [22, 23], using
image-level matching to gather exemplars with similar scene layouts, and then
combining them with graph-cuts to preserve spatial coherence. Their image-level
matching is too coarse to capture individual objects’ shapes and is sensitive to
scale and position changes; they are therefore most applicable to the images
with a single object or consistent scene layout. A contemporary approach uses
window-level matching for more robust exemplar retrieval under image vari-
ations [24]. However, the window matching can be distracted by background
clutter when an object’s shape does not fit in the window and so the window is
dominated by background pixels. In contrast to all these methods, our method
retrieves exemplars according to local shape matches, which allows it to delineate
multiple objects in spite of spatial layout variations and/or background clutter.

Also relevant to our work are recent methods that generate category-independent
object segmentation hypotheses [3, 4]. Like our method, they also assume ac-
cess to a database of segmented images, generate multiple object hypotheses
using similar multi-parametric graph-cuts, and offer improvements over purely
bottom-up image segmentation. However, the previous techniques rely on local
bottom-up cues (color, texture, contour strengths). Their lack of shape priors
hurts performance—particularly for cases where color consistency is insufficient
to form a good segment, as we show in the results.
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Fig. 2. Overview of our method. (a) Exemplars (first column) that share shape with
the test image (second column) are projected in, no matter their category. We identify
those shared shapes (marked in blue) via local BPLR matches (marked in white). (b)
Multiple exemplars that highly overlap are aggregated, to form a shape prior and color
model per each aggregated group. (c) The priors from each group are used to compute
a series of graph-cut segmentation hypotheses.

3 Approach

The input to our method is an unsegmented image containing unknown object
categories, and the output is a set of object segment hypotheses (which may
overlap). The method is successful to the extent that the hypotheses contain
regions that highly overlap with true object boundaries.

Our approach consists of three main steps: (1) estimating global object shape
in a test image by projecting exemplars via local shape matches (Sec. 3.1),
(2) aggregating sets of similarly aligned projected shapes to form a series of
hypothesized shape priors (Sec. 3.2), and (3) enforcing the priors within graph-
cuts to generate object segment hypotheses (Sec. 3.3).

3.1 Projecting Global Shapes from Local Matches

Suppose we have a database of manually segmented exemplars of a variety of
objects. For each exemplar object, we extract a set of distinctive local region
features. We use the Boundary-Preserving Local Region (BPLR) method to
detect the local shape regions [25]; it is a publicly available dense local feature
detector whose boundary-preserving property is well-suited to shape matching.
To describe the shape of each detected region, we extract a pHOG descriptor
computed on a gPb [10] contour map, which captures both boundary shape and
coarse inner texture.

Given a test image, the goal is to identify with which exemplars it shares
shape. We first extract BPLRs throughout the test image, generating a dense set
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Fig. 3. Jigsaw puzzling the superpixels underlying the exemplar’s projection.

of local shape regions (∼1,000 per image). Then, we match each BPLR in the test
image to the exemplar database by finding its k = 5 nearest neighbor descriptors
among all of the exemplars’ BPLRs. For each such local shape match, we project
the associated exemplar’s global outer boundary shape into the test image based
on the similarity transform (scale and translation) computed between the two
matched features (see Figure 2(a)). The density of the BPLR detector establishes
thousands of such initial global shape projections per test image.

Due to shape deformations and uncertainty in the local match, however, the
projected shapes need not be entirely aligned with the test image’s contours.
Therefore, we next want to snap the projected shape to align with bottom-up
evidence of boundaries. To this end, we refine the initial projection boundary
to span the “jigsaw” of underlying superpixels that overlap the global shape by
more than half their total area. In this way, the exemplar shape is adapted to
fit the observed contours. Figure 3 shows an example jigsaw puzzling.

Finally, we eliminate unreliable projections whose shape changes substan-
tially after the refinement process. Specifically, we rank them by the pixel-level
overlap between the original exemplar’s projection and the jigsaw refined version,
and select the top-ranked projections. Essentially this weeds out unreliable pro-
jections that lack bottom-up support in the test image. In our implementation,
we keep the top 600 projections from the initial ∼5,000 candidates.

The key impact of this step is to generate globally shared boundary hypothe-
ses from locally matched shapes. Broadly speaking, the use of local matches to
generate global contour estimates has long been considered in vision, e.g., in
early model-based recognition [26] or voting-based implicit shape models [27].
However, the key novelty of our design is its category-independence. Whereas
existing approaches seek matches of the same instance or category, our predic-
tions are made across categories. In fact, it is irrelevant to our method whether
or not the exemplar shapes have class labels; their value is solely in providing a
non-parametric prior for what kinds of shapes objects take on.

3.2 Aggregating Partially Shared Shapes

At this point, we could simply treat each of the global shape projections com-
puted above as an individual shape prior; in fact, we find that alone they pro-
vide a reasonable prior (see Table 1 in results). However, doing so would not
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account for the fact that objects in the test image often share shapes with var-
ious exemplars—some of them only partially. Therefore, we next aim to group
together those shape projections that agree on their spatial extents in the test
image. The idea is for each projection to contribute a portion of its contour to
an aggregate shape prior (e.g., see the matched exemplars in Figure 2(a), each
of which partially shares shape with the cat in the test image). In addition,
the aggregation removes redundancy among the highly overlapping projections,
which in effect reduces the number of shape priors for the subsequent graph-cuts
computation.

To determine which projections to aggregate, we use a simple but effective
metric: any projections whose pixel overlap exceeds 50% are grouped. (In prac-
tice, this typically yields 250-300 groups given ∼600 individual shape projec-
tions.) Each such group is used to construct one shape prior consisting of two
parts: one that prefers including those pixels in the test shape that are shared
by the contributing exemplar projections, and one that extracts a color model
using their predicted shape. See Figure 2(b) and (c). Both parts enforce the
shape prior in a graph-cut figure-ground segmentation, as we explain next.

3.3 Graph-Cut Segmentation with the Shape Prior

The final step is to enforce the non-parametric priors when computing the output
region hypotheses. We define an energy function that measures the quality of
a given figure-ground segmentation according to its agreement with the shape
prior. We optimize this function independently for each group (prior) defined
above, yielding one set of region hypotheses per group.

Treating each pixel pi in the image as a node, graph-cut optimizes their labels
yi ∈ {0 (bg), 1 (fg)} by minimizing an energy function of the form:

E(y) =
∑

pi∈P

Di(yi) +
∑

i,j∈N

Vi,j(yi, yj), (1)

where P denotes all pixels, N denotes pairs of adjacent pixels, Vi,j is a smooth-
ness function, and Di is a data term. Note that this follows the basic graph-cut
segmentation formulation; what we focus on is how to encode a non-parametric
shape prior into the data term.

Data term: Typically, the data term Di is a function of the likelihood of
labeling pixel pi as foreground or background. In our formulation, it consists
of two parts: a shape-prior likelihood Si and a color likelihood Ci: Di(yi) =
Si(yi) + Ci(yi).

The shape-prior term Si defines the likely spatial extent of the foreground
and background. Given one group from Sec. 3.2, we first compute the intersection
I and union U of its component shape projection regions. Then we define the
cost of labeling a pixel as foreground to be:

Si(yi = 1) =











0.5 − γ if pi ∈ I

0.5 + γ if pi /∈ U

0.5 if pi /∈ I and pi ∈ U ,

(2)
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(a) Region-based seeds (b) Contour-based seeds

Fig. 4. The two methods for constructing Hf and Hb histograms. Yellow: fg seeds,
Red: bg seeds. Best viewed in color.

where pi ∈ I and pi ∈ U denote a pixel inside the intersection and union of the
projections, respectively, and γ is a positive constant value used to adjust the
impact of the shape prior (and will be defined below). The cost of assigning the
background label is simply the inverse: Si(yi = 0) = 1 − Si(yi = 1). Intuitively,
this likelihood prefers a pixel inside the intersection region to be labeled as
foreground, since all of the projections in the group agree that the pixel belongs
in the shape. In contrast, it prefers a background label for pixels outside the union
region, since none of the projections predict the pixel to belong to the shape (i.e.,
no sharing). Pixels in the union but outside of the intersection are treated as
neutral, with no bias towards either foreground or background, as reflected by
the third line in Eqn. 2. The white and gray pixels in Figure 2(b) depict these
foreground biased and “don’t care” regions of the shape prior, respectively.

The color likelihood term Ci also relies on the shape projections, but in a
different way. Whereas Si biases pixel memberships based on the span of the
shared shapes, Ci uses the shared shape to estimate a color distribution for the
hypothesized object. Let Hf and Hb denote normalized color histograms sampled
from the shared shape region for the foreground and background, respectively.
We define the color likelihood cost as:

Ci(yi) =
1

1 + exp(βWi(yi))
, (3)

where Wi(pi) is a function of the color affinity between pixel pi and the his-
tograms, and β is a normalizing constant that is automatically determined as
the inverse of the mean value of Wi over all pixels. Let c(pi) denote the histogram
bin index of the RGB color value at pixel pi. The color affinity rewards assigning
the background label to pixels more likely to be generated by the background
color distribution:

Wi(yi = 0) = Hb(c(pi)) − Hf (c(pi)), (4)

and vice versa: Wi(yi = 1) = −Wi(yi = 0). The sigmoid in Eqn. 3 serves to
scale the color likelihoods between 0 and 1, making them compatible with the
shape-prior values Si.

We devise two complementary ways to sample pixels from the shared shape
in order to form Hf and Hb: one that uses region-based seed pixels, and one that
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uses contour-based seed pixels. For region-based seed pixels, Hf is computed
using all pixels inside the intersection I of the shape projections, and Hb is
computed using pixels falling within a thick rectangular border surrounding the
intersection region. See Figure 4(a). For contour-based seed pixels, we instead
form Hf using pixels along the boundary of I and along its primary medial
axes within the shape, and we compute Hb using pixels along the boundary of a
dilated version of the same intersection region. We ignore any boundary pixels
having weak gPb [10] values. See Figure 4(b).

The two seeding methods work in complementary ways. Region-based seed-
ing provides dense coverage of pixels, and thus reflects the full color distribution
of the shape prior’s region. However, when the shape prior is flawed—for ex-
ample, if it leaks into the background, as shown in Fig. 4(a)—then its estimate
can be distorted. On the other hand, contour-based seeding respects the object
shapes, and is motivated by how users tend to manually give seeds for interactive
segmentation [28]. However, being sparser, it may lack sufficient statistics to es-
timate the color distribution. We use each of these seeding strategies separately
when generating the pool of segmentations (see below).

Smoothness term: Our smoothness function Vi,j follows the conventional
form, e.g.,[28]: the cost of assigning different labels to neighboring pixels is in-
versely proportional to the strength of the contour at that position.

Multi-parametric graph-cuts: Having defined the complete energy func-
tion E(y), we can now compute the optimal binary labeling using graph-cuts.
For each group of projections resulting from Sec. 3.2, we solve multiple instances
of the problem by varying the weighting constants and color histogram seeding
strategies. This yields multiple segment hypotheses for a given prior, and is in
the common spirit of the sequence of parametric min-cuts performed in [3, 4]
(though, our focus is to incorporate the shape prior).

Specifically, we vary (1) the value of γ in Eqn. 2, which adjusts the influence
of the shape prior relative to the color likelihood, (2) whether region-based or
contour-based seeding is used, which adjusts the definition of Ci in Eqn. 3, and
(3) the value of a foreground bias constant λ in the data term. For the latter,
we modify the data term Di as follows:

Di(yi, λ) =

{

Di(yi) + λ if yi = 1

Di(yi) − λ if yi = 0.
(5)

Positive values of λ decrease the foreground bias, while negative ones raise it.
Thus, the total number of hypotheses for the given group is (#γ values) ×2×

(#λ values); we use 2 and 8 values of γ and λ in our experiments, respectively.
Note that increasing the pool of segments naturally will increase recall of true
object shapes, but at the penalty of greater complexity.

4 Results

The main goals of the experiments are (1) to demonstrate that shape sharing
improves the quality of the segmentation (Sec. 4.1), (2) to analyze under what
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Approach Covering (%) Num segments

Exemplar-based merge (Ours) 77.0 607
Neighbor merge [2] 72.2 5005

Bottom-up segmentation [10] 62.8 1242

Table 1. Our shape-based projection and merging approach outperforms an existing
merging strategy while requiring an order of magnitude fewer segments (second row).
It also substantially improves the state-of-the-art bottom-up segmentation (third row).

conditions shapes are useful for segmentation (Sec. 4.2), and (3) to validate
the impact of our category-independent shape priors compared to traditional
category-dependent ones (Sec. 4.3).

Datasets and implementation details: To build the exemplar database,
we use the PASCAL 2010 Segmentation training data, which has pixel-level an-
notations for 2,075 objects from 20 classes. We extract 1,000-2,000 BPLRs from
each exemplar, and represent them with pHOG+gPb descriptors. To efficiently
identify nearest neighbor matches, we use FLANN [29]. For superpixels, we use
the output of gPb-owt-ucm [10]. We sample values for γ in Eqn. 2 and λ in
Eqn. 5 uniformly, following [3, 4].

It takes about 4 minutes to generate hypotheses in our unoptimized Matlab
code (5 sec to match BPLRs + 50 sec to project shapes + 3 mins for graph-cuts).
The best competing methods [3, 4] also use multi-parametric graph-cuts; so, the
additional time required by our method is fairly small and could be reduced
further by parallelizing the shape projection step.

We test on two datasets: the PASCAL 2010 validation set and the Berkeley
BSD300 dataset. For BSD, we use the ground truth region annotations given
by [4]. Note that for both test sets, we use the same PASCAL exemplars.

Evaluation metrics: To evaluate segmentation quality, we use the covering

metric, following [10, 3], which is the average best overlapping score between
ground-truth and generated segments, weighted by object size. Note that due
to the use of “best overlap” in the covering metric, a method that achieves
higher covering for fewer segments has better focused its results on true object
regions. We also report recall as a function of overlap, following [4], to quantify
the percentage of objects recalled at a given covering score.

4.1 Segmentation Quality

First we investigate how well shape sharing improves segmentation accuracy, by
comparing our results to those of several state-of-the-art techniques [10, 2–4].

Considering the shape priors alone: First we evaluate the quality of
our exemplar-based shape priors (i.e., the first stage of our method defined in
Sec. 3.1). We compare against two existing methods on the PASCAL data: (1)
a merging method that combines pairs and triples of neighboring superpixels,
without considering layout or shape [2], and (2) the state-of-the-art bottom-up
hierarchal segmentation algorithm [10]. Both are important baselines, since [2]
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Approach Covering (%) Num segments

Shape Sharing (Ours) 84.3 1448
CPMC [3] 81.6 1759

Object proposals [4] 81.7 1540
gPb-owt-ucm [10] 62.8 1242

Table 2. Accuracy on the PASCAL2010 dataset.

Approach Covering (%) Num segments

Shape Sharing (Ours) 75.6 1449
CPMC [3] 74.1 1677

Object proposals [4] 72.3 1275
gPb-owt-ucm [10] 61.6 1483

Table 3. Accuracy on the BSD300 dataset.

also entails merging superpixels but lacks top-down shape cues, while [10] pro-
vides the original regions to both merging methods.

Table 1 shows the results. Our method clearly outperforms the previous meth-
ods, while also maintaining a much smaller number of segments. This confirms
the ability of shape sharing to predict the objects’ spatial extent.

Final segmentation with graph-cuts: Next we compare our full ap-
proach to existing segmentation methods, including the state-of-the-art category-
independent object segmentation generators of [3] and [4]. We use the code kindly
provided by the authors.2 To focus on raw segmentation quality, we do not con-
sider post-processing with a learned region-ranking function (as in [3], [4]), which
could equally benefit all methods, in terms of the number of segments.

Tables 2 and 3 show the results on PASCAL and BSD, respectively. Our
approach outperforms the existing methods. It is also more accurate for 18 of
the 20 PASCAL classes, with per-class gains up to 9 points (see supp. file3). Since
all three previous methods rely on only color and/or local appearance and layout
cues, this result validates the impact of global shape priors for segmentation.

The strength of our method on BSD—for which we use PASCAL images
as exemplars—is strong evidence that shape sharing is generalized among var-
ious objects of unrelated categories. Even the PASCAL test results illustrate
category-independence, since the exemplars matched to test images can and of-
ten do come from different categories. When examining the sharing strength
between all pairs of PASCAL object classes, we find that shape sharing often
occurs among semantically close categories (e.g., among animals or vehicles) as
well as semantically disparate classes (e.g., bottle and person); see Figure 5. In
Sec. 4.3 below we further explicitly isolate the impact of category-independence.

2 In order to isolate the impact of a color-based graph-cut likelihood, for [3], we select
an option in the author’s code to forgo graph-cut outputs with uniform foreground
bias, which do not rely on image cues.

3 http://vision.cs.utexas.edu/projects/shapesharing/supp.pdf
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Exemplars Test images 

Exemplars Test images 

Sharing between animals 

Vehicles 

Semantically disparate 

Shape 

transfer 

Exemplar Test image 

Fig. 5. Shape sharing matrix for the 20 classes in PASCAL. We compute the strength
of sharing by counting how many times shape exemplars from one class are used to
generate the best segmentation hypotheses for another class. Brighter=higher.

4.2 Impact of Shapes on Segmentation

Thus far, we have presented the results in terms of the average score over all
test objects and classes. To go beyond this summary of overall performance,
we next dig deeper to see where and why shape sharing is most effective. That
is, under what conditions will our shape prior most benefit segmentation? We
expect shape to serve a complementary role to color, and to be most useful for
objects that consist of multiple parts of diverse colors, and for objects that are
similarly colored to nearby objects and the background.

To validate this hypothesis, we introduce a measure of color easiness, such
that we can rank all test images by their expected amenability to color-based
segmentation. We define color easiness by building fg and bg color histograms
using pixels from inside and outside the ground truth object boundaries, respec-
tively, and then count how many pixels in the object’s bounding box would be
correctly labeled if using only their distance to the two histograms. The more
correctly labeled pixels, the higher the color easiness for that test image.

Figure 6 plots Shape Sharing’s accuracy gain over the baselines, as a function
of color easiness (x-axis) and object size (multiple curves per plot). We see clearly
that the most impressive gains—up to about 15 points in raw covering score—
indeed occur when color easiness is lowest, for both datasets. The trend with
color easiness is especially pronounced in the comparison to [3] (see (a) and
(b)), which makes sense because its cues are strictly color-based. In contrast,
compared to [4] the trend is a bit flatter, since that method uses not only color
but also a local layout cue (see (c) and (d)). Still, our gains are substantial over
both methods.

Figure 6 also reveals that Shape Sharing most benefits the segmentation
of larger objects. In fact, the average gain in covering score increases from 2.7
points (Table 2, for all objects) to 4.8 points for non-trivial objects in size that are
larger than 2% of image size (∼40 by 40 pixels). We attribute this to a couple of
factors. First, shapes become more evident as object size increases, since there is
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Fig. 6. Impact of Shape Sharing as a function of “color easiness”. When color alone is
most confusing (low easiness), Shape Sharing shows the greatest accuracy gains.
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Fig. 7. Shape Sharing’s gain in recall as a function of overlap.

sufficient resolution along the boundary. Second, since larger objects tend to have
various parts with diverse colors (e.g., a close-up of a person wearing differently
colored pants and shirt), shape becomes more critical to combine the disparate
parts. On the other hand, Shape Sharing has little impact (and can even hurt
accuracy) for the smallest objects that occupy less than 1% of the image. This is
because local shape matches are missed on the tiny objects, or the scale change
computed from the local match becomes unreliable.

Figure 7 plots Shape Sharing’s gain in recall as a function of overlap score,
where recall records what percentage of objects have a best overlap score over
the given threshold. Ours outperforms the baselines. In particular, our method
provides the greatest gains in what is arguably a critical operating range for seg-
mentation: overlaps from about 0.6-0.9. Why is this a critical range? For overlaps
beyond 0.9, many segmentations are so easy as to make the perceived “winner”
a toss-up. On the other hand, for low overlaps less than 0.5, segmentations are
all poor, similarly making it hard to perceive the difference. However, in the
range of about 0.6 to 0.9, segmentation quality is reasonable while images con-
tain substantial challenges for segmentation, making the qualitative differences
among methods much more evident. See supp. file for an illustration.

Figure 8 show example results from our method and the best competing
method, CPMC [3], illustrating when the shape prior is most beneficial.

4.3 Category-Independent vs. Category-Specific

Finally, we directly study the extent to which our method’s success is based
on its category-independence. We compare Shape Sharing to two baselines. The
first is a category-specific approach that operates just as our method, except that
only exemplars of the same class as the test instance may be used (which, of
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(a) Objects with diverse colors (b) Objects similarly colored as surroundings (c) Failure cases 
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Fig. 8. Results from Shape Sharing (left col per group) and CPMC [3] (right col per
group). (a) Shapes pull together diversely-colored parts of an object. (b) Shapes help
delineate an object from surroundings of similar colors: e.g., nearby objects from the
same class (rows 1, 2), or confusing backgrounds (3rd row). (c) Shapes do not help
segment tiny objects (1st row), nor objects lacking shape, e.g., the truncated sofa (2nd
row), or thin structured objects like the bicycle (3rd row).

Approach Covering (%)

Category-specific 84.7

Category-independent (Default) 84.3
Strictly category-independent 83.9

CPMC [3] 81.6
Object proposals [4] 81.7

Table 4. Comparison of category-independent and category-specific variants of our
approach on PASCAL data.

course, uses information that would not be available in most realistic scenarios).
The second is a strictly category-independent variant, where we require that the
exemplar matched to a test image must be from another class; this too is not
enforceable in realistic settings, but it verifies our gains are not due to having
segmented exemplars of the same object class available.

Table 4 shows the results, with the previous baseline numbers repeated for
reference in the bottom two rows. As expected, the category-specific variant
performs best, and strictly-independent performs worst. However, the accuracy
of all three is quite close. In addition, even our strictly independent variant
outperforms the previous baselines that lack shape priors. This result demon-
strates that shapes are truly shared among different categories, and one can use
the proposed shape priors in a category-independent manner; we do not need
hand-crafted exemplars for the object(s) in the test image for segmentation.

5 Conclusions

We introduced a category-independent shape prior for segmentation that ex-
ploits shape sharing between objects of different categories. Through extensive
experiments, we showed that (1) shape sharing improves the quality of bottom-



14 Jaechul Kim and Kristen Grauman

up segmentation, while requiring no prior knowledge of the object, and (2) our
category-independent prior performs as well as a parallel category-specific one,
demonstrating that shapes are truly shared across categories. As such, unlike
previous top-down segmentation methods, our approach can enhance the seg-
mentation of previously unseen objects.
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