The Complexity of Generating Functions
for Integer Points in Polyhedra
and Beyond

Alexander Barvinok*

Abstract. Motivated by the formula for the sum of the geometric series, we consider
various classes |9f sets S C Z% of integer points for which an a priori “long” Laurent series
or polynomial < x™ can be written as a “short” rational function f(S;x). Examples
include the sets of integer points in rational polyhedra, integer semigroups, and Hilbert
bases of rational cones, among others. We discuss applications to efficient counting and
optimization and open questions.

Mathematics Subject Classification (2000). Primary 05A15; Secondary 68W30,
11P21, 52C07, 11H06

Keywords. lattice point, rational polytope, generating function, rational function, Lau-
rent polynomial, integer semigroup, Hilbert basis, efficient counting, computational com-
plexity

1. Introduction

Our inspiration comes from a formula for the sum of a finite geometric series:

n
I
m=0

We look at the formula from several points of view.

Geometrically, the left hand side of (1.1) represents the sum over all integer
points in a one-dimensional polytope. Namely, with every integer point m we
associate a monomial ™ and then consider the sum over all integer points in the
interval [0, n].

From the computational complexity point of view, the left hand side of (1.1)
is a “long” polynomial whereas the right hand side of (1.1) is a “short” rational
function. More precisely, to write an integer m we need about log m digits or bits.
Consequently, to write the left hand side of (1.1), we need about nlogn bits. On
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the other hand, to write the right hand side of (1.1) we need only about logn bits.
Thus the left hand side is exponentially longer than the right hand side.

Finally, let us read (1.1) from right to left. We can ask how to extract various
facts about the set S of integer points in the interval [0, n] from the rational function
encoding. For example, to compute the number |S| of points we substitute x = 1
into the right hand side of (1.1). Although z =1 is a pole of the rational function,
we can compute the desired value by applying I’Hospital’s rule.

Let R? be Euclidean space with the standard basis e1, ..., eq, so a point z € R?
is identified with the d-tuple z = (&1, ...,&q) of its coordinates, and let Z¢ C R?
be the standard integer lattice, that is the set of points with integer coordinates.

With every integer point m = (u1, ..., tq) We associate the Laurent monomial
X" =t
in d complex variables x = (z1,...,74). We agree that z¥ = 1.

Let S C Z be a finite set and let us consider the sum

f(S;x) = Z x.
mes

Thus f(S;x) is a Laurent polynomial that is the generating function of the set
S. We are interested in the following general questions:

e For which sets S C Z? a potentially long Laurent polynomial f(S;x) can be
written as a short rational function?

e What information about the set S can be extracted from f(S;x) given as a
short rational function?

The paper is organized as follows.

In Section 2, we discuss necessary preliminaries from the theory of computa-
tional complexity, define what “long” and “short” means and show that if S is
the set of integer points in a rational polyhedron P C R? then the generating
function f(5;x) can be computed in polynomial time as a short rational function,
provided the dimension d of the ambient space is fixed in advance. We discuss
applications to efficient counting and optimization and practical implementations
of the algorithms.

In Section 3, we discuss what information can we extract from a set S C
7% defined by its generating function f(S;x) written as a rational function. In
particular, we show that if S1,S, C Z? are two finite sets defined by their rational
generating functions f(S7;x) and f(S2;x), then the generating function f(S;x) of
their intersection S = S; N S5 can be computed in polynomial time as a rational
function.

In Section 4, we show that if S C Z, is an integer semigroup with a fixed
number d of generators, then f(S;z) can be computed in polynomial time as a
short rational function. This result is obtained as a corollary of a more general
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result that the projection of the set of integer points in a rational polytope admits a
polynomial time computable rational generating function. We mention some other
examples such as Hilbert bases of rational cones.

In Section 5, we consider the results of Sections 2 and 4 in the general context of
Presburger arithmetic. We argue that the “natural” class of sets S C Z? with short
rational generating functions f(S;x) would have been the class of sets defined by
formulas of Presburger arithmetic where all combinatorial parameters (the number
of variables and Boolean operations) are fixed and only numerical constants are
allowed to vary. As the paper is being written, this is still a conjecture.

In Section 6, we try to identify the natural boundaries of the developed theory.
We also discuss the emerging picture of what happens if the dimension d of the
ambient space is allowed to grow.

2. Rational Polyhedra

Formula (1.1) admits an extension to general rational polyhedra.

Definition 2.1. The set P C R? of solutions to a system of finitely many linear
inequalities is called a polyhedron:

d
P:{(fl,...,fd)I j;aijfjgﬂi, iil,...,n}. (21)

Here o;; and 3; are real numbers. A bounded polyhedron is called a polytope.
A polyhedron P is called rational if in (2.1) one can choose all a;; and §; integer.

To state an analogue of formula (1.1) we need to discuss the notion of the input
size. As we remarked earlier, to write an integer a we need roughly [log, |a|] + 1
bits. Consequently, to define a rational polyhedron P C R? by the inequalities
(2.1) we need about

L=n(d+1)+) [logy a1+ og, |51 (2.2)

i,] i

bits. The number £ is called the input size of representation (2.1) of P.

We are interested in the computational complexity of formulas and algorithms.
In particular, we are interested in polynomial time algorithms, that is, in the
algorithms whose running time is at most £ where £ is the input size. In
what follows, often the dimension d of the ambient space will be fixed in advance
and the algorithms will run in polynomial time for any fized dimension d. In other
words, the running time of such an algorithm is at most £?(9) for some function
¢. We use [28] as a general reference in the area of computational complexity and
algorithms.

Let P C R? be a rational polyhedron with a vertex (equivalently, a non-empty
polyhedron without lines), possibly unbounded, and let S = P N Z? be the set of
integer points in P.
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To simplify notation, we denote the generating function

F(Six)= > x™,
meS

where S = PN Z%, just by f(P,x).
It is not hard to show that there exists a non-empty open set U C C¢ such that

for all x € U the series
f(Px)= g x"
mePNZ4

converges absolutely and uniformly on compact subsets of U to a rational function
in x. It turns out that this rational function can be efficiently computed as long
as the dimension d of the ambient space is fixed in advance.

The following result was proved, essentially, in [3] although the formal state-
ment and better complexity bounds did not appear until [4].

Theorem 2.2. Let us fir d. Then there exists a polynomial time algorithm, which,
for a rational polyhedron P C R without lines defined by inequalities (2.1) com-
putes the generating function

f(Px)= Z x"

mePNZ4

in the form v
f(P’X) = ZQ‘ (1 _Xuil)).(..(l_xuid)7 (23)

iel

where €; € {—1,1}, vi,u;; € Z, and u;j; # 0 for all i, j.

The complexity of the algorithm is £9(®) where £ is the input size of P defined
by (2.2). In particular, the number || of terms in (2.3) is L@ which is why we
call (2.3) a short rational function.

Rational cones play the crucial role in the proof of Theorem 2.2.

2.1. Rational cones. A non-empty rational polyhedron K is called a ratio-
nal cone if for every x € K and A > 0 we have Ax € K. We are interested in
pointed rational cones, that is, cones not containing lines (equivalently, cones for
which 0 is the vertex). A basic example of a pointed rational cone is provided
by the non-negative orthant Ri consisting of the points with non-negative coor-
dinates. The generating function for the set of integer points in R‘j_ is a multiple
geometric series

m 1
FRLx) = > <" =[]

mEZfr i=1

A unimodular cone K is the set of non-negative linear combinations of a given basis
Ui, ..., uq of the lattice Z%. Up to an integral change of coordinates, a unimodular
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cone K looks like the non-negative orthant Ri. Consequently, the generating
function for the set of integer points in K is a multiple geometric series

F (K, X) = Z x" = H 1 _1Xui'

meKNZe i=1

It is well-known that any rational cone K can be subdivided into unimodular
cones, cf., for example, Section 2.6 of [16]. However, even for d = 2, the number
of the unimodular cones may have to be exponentially large in the input size:
consider the cone K C R? spanned by (1,0) and (1,n) for a positive integer n.
Nevertheless, where exists a computationally efficient procedure for constructing a
more general decomposition of a rational cone into unimodular cones.

Definition 2.3. For a set A C R?, let [A] : R? — R be the indicator of A defined

by
R A

Let P (Q%) be the vector space (over C) spanned by the indicators [P] of rational
polyhedra P C R?. We call P (Qd) the algebra of rational polyhedra. Vector space
P (Qd) possesses an interesting and useful algebra structure, cf. [26], which we
don’t discuss here.

The idea is to write the indicator K] of a given rational cone K C R? as a linear
combination of indicators of unimodular cones. For d = 2 such an efficient pro-
cedure has long been known via the continued fractions method, cf., for example,
[22]. We give a simple example below.

Suppose that K C R? is the cone spanned by vectors (1,0) and (31,164).
Writing the continued fraction expansion, we obtain

164_5+ 1
31 1 ’
3+ ——

242
4

so we write 164/31 = [5;3,2,4]. Next, we compute the convergents

1 37 1 16 5

5:3,2] =5+ ——=", [53]=5+-=— d [5]==2

[5:3,2] = 5+ — [5:3]=5+3==, and [5]=7
3+ 3

and notice that

(K] = [Ko] — [K1] + [K2] — [K3] + [K4],

where K is spanned by (1,0) and (0,1), K is spanned by (0,1) and (1,5), K»
is spanned by (1,5) and (3,16), K3 is spanned by (3,16) and (7,37), and K, is
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spanned by (7,37) and (31,164). Since K; turn out to be unimodular for i =
0,1,2,3,4, we get the short rational function expression

1 1
K,x) = — +
TEX) =0 ) Q) —wa)) | (o) (1 — )
1 1
— + .
01—l T (= 2~ i)

A polynomial time algorithm for computing a unimodular cone decomposition
in any (fixed in advance) dimension d was suggested in [3]. Using triangulations,
it is not hard to reduce the case of an arbitrary rational cone to that of a simple

rational cone K C R?
d
i=1

spanned by linearly independent vectors uy, ..., uq € Z%, which may not, however,
constitute a basis of the lattice Z?. As a measure of how far is K from being
unimodular, we introduce the inder ind(K) of K as the index of the sublattice
generated by uy, . .., ug in the ambient lattice Z¢. Thus ind(K) is a positive integer
and ind(K) =1 if and only if K is a unimodular cone.

Let us consider the parallelepiped

d
H:{Z)\iui: |)\i|§ind71/d(K) for i:l,...,d}.
i=1

Then II is a convex body symmetric about the origin and vol II = 2¢. Therefore,
by the Minkowski Theorem there is a non-zero point w € IINZ, cf., for example,
Section VII.3 of [5]. Moreover, such a point w can be constructed in polynomial
time as long as the dimension d is fixed, cf. Section 6.7 of [17]. Replacing w by
—w if needed, we can also ensure that w lies in the same halfspace as uq, ..., uq.
Let K; be the cone spanned by uq,...,uq with the vector u; replaced by w and let
€; = 1 or ¢, = —1 depending on whether this replacement preserves or reverses the
orientation of the set uq, ..., uq (we choose ¢; = 0 if we obtain a linearly dependent
set). Then we observe that

[K] = Z €[K;] £ indicators of lower-dimensional cones

i=1
2.4
and @4)

ind(K;) < ind“"V/4K) if dimK; = d.
As we iterate the above procedure, on the nth step, we obtain a decomposition

of the cone K as a linear combination of at most d™ cones K; (not counting smaller-
dimensional cones) with
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d—1\"
ind(K;) < (ind(K))(T)

To ensure that all K; are unimodular, we can choose n = O(dloglogind(K)),
which results in a polynomial time algorithm for a fixed d.

To prove a weaker version of Theorem 2.2 (with d replaced by d + 2 in (2.3)
and £0(@) complexity) one can note that a rational polyhedron P C R? without
lines can be represented as the section of a pointed rational cone K C Rt by the
affine hyperplane £;.1 = 1. Consequently, we have

f(P’X>:

F (KL (%, 2441)) (2.5)

5l‘d+1 Tq41=0

2.2. Using identities in the algebra of polyhedra. The following
remarkable result was proved by A.G. Khovanskii and A.V. Pukhlikov [23], and,
independently, by J. Lawrence [25].

Theorem 2.4. Let P (Qd) be the vector space spanned by the indicators of rational
polyhedra and let C(x) be the vector space of rational functions in d complex vari-
ables x = (z1,...,zq). There exists a linear transformation F : P (Q?) — C(x)
such that

1. If P C RY is a rational polyhedron with a vertex then ]:([P]) = f(P,x),
where f (P,x) is the rational function defined as the sum of the series

me

mePNZ3
when the series converges absolutely.

2. If P C R? is a rational polyhedron without vertices then F([P]) = 0.

Proof. Let us fix a decomposition

R =) oi[Qi] (2.6)
iel
for some rational polyhedra @); with vertices and some numbers «;. Multiplying
(2.6) by [P], we get
[Pl => " a[PNQ, (2.7)
iel

from which we deduce that P (@d) is spanned by indicators of rational polyhedra
with vertices.
Suppose that we have a linear relation

> B[Pl =0 (2.8)

jeJ
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for some polyhedra P; with vertices. Multiplying (2.8) by [Q;], we get

> B[P N Qi) =0.

jeJ

Since @; has a vertex and P;NQ; C @, there exists a non-empty open set U; C o
such that for all x € U; all the series defining f (P; N Q;,x) converge absolutely
and uniformly on compact subsets of U;. Therefore, we must have

Zﬁjf(ijQi,X) =0 forall i€l

j€T
Similarly, from (2.7) we get

F(Px) =Y aif (P;NQi,x) forall je.lJ
i€l

Combining the last two equations, we conclude that

D Bif (Prx)= > aiBif (P;NQix) = 0. (2.9)

J€J i€l jed

Thus a linear dependence (2.8) among indicators of rational polyhedra P; with
vertices implies the corresponding linear dependence (2.9) among the generating
functions f (Pj,x). Therefore, the correspondence

[P]— f(P,x)

extends to a linear transformation F : P (Q%) — C(x). It remains to show that
F([P]) = 0if P is a rational polyhedron with a line.

We observe that if P/ = P+u is a translation of P by a lattice vector u, we must
have f (P’,x) = x"f (P,x) for all rational polyhedra P with vertices. By linearity,
we must have F ([P + u]) = x"F([P]) for all rational polyhedra P. However, if P
contains a line then there is a vector u € Z?\ {0} such that P +u = P. Therefore,
we must have F([P]) = 0 for P with a line. O

Theorem 2.4 provides a powerful tool for computing the generating function of
the set of integer points in a rational polyhedron. The following “duality trick”
going back to the seminal paper of M. Brion [11] turns out to be particularly useful.

Let (-,-) be the standard scalar product in R? and let K C R be a cone. The
cone

K*:{xeRd: (x,y) >0 for all yEK}

is called the dual to K. Tt is easy to see that if K is rational (resp. unimodular)
cone then K* is a rational (resp. unimodular) cone, and that if K contains a line
(resp. lies in a proper subspace of RY) then K* lies in a proper subspace of R?
(resp. contains a line). A standard duality argument implies that (K*)* = K for
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closed convex cones K. A less obvious observation is that duality preserves linear
relations among indicators of closed convex cones:

Z a;[K;] =0 implies Z o;[KF] =0,

el el

see, for example, Section IV.1 of [5] for a proof.

Now, to compute the generating function f (K,x) one can do the following.
First, we compute the dual cone K*, and, iterating (2.4), we compute unimodular
cones K; and numbers ¢; € {—1,1} such that

[K*] = Z ¢;[K;] modulo indicators of lower-dimensional cones.
iel

Then, dualizing again, we get

(K] = Z €, [K}] modulo indicators of cones with lines. (2.10)
iel

In view of Theorem 2.4, cones with lines can be ignored as far as generating
functions are concerned. This gives us

f(K’X) = ZQf (K:,X)
el

Since K} are unimodular cones, this completes computation of f (K, x). This trick

allows us to reduce the complexity of the algorithm in Theorem 2.2 from £0@)
to L@ where L is the size of the input.

Another important identity is Brion’s Theorem [11], which expresses the gen-
erating function of the set of integer points in P as the sum of generating functions
for the sets of integer points in the tangent (supporting) cones at the vertices of
P. Namely, for a vertex v of a polyhedron P let us define the tangent cone K, as

K, = {:C : ex+ (1 —e€ve P forall sufficiently small e > 0}.

We note that K, is not a cone per se but rather a translation of the cone K, — v.

Theorem 2.5 (Brion’s Theorem). For a rational polyhedron P we have
f(va) = Zf(KU7X)7
where the sum is taken over all vertices of P and the identity is understood as the

identity among rational functions.

Discovered by M. Brion [11], Theorem 2.5 started an avalanche of research.
The original proof of Theorem 2.5 was based on algebro-geometric methods. Later,
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elementary proofs were discovered in [23] and [25]. One can deduce Theorem 2.5
from Theorem 2.4 and an elementary identity

[P] = Z[Kv] modulo indicators of polyhedra with lines,

v

cf. Section VIIL4 of [5].

Theorem 2.5 together with the unimodular decomposition of Section 2.1 and
the duality trick provide the proof of Theorem 2.2 as stated. Another advantage of
using Theorem 2.5 is that it allows us to understand how the generating function
f (P,x) changes as the facets of P move parallel to themselves so that the com-
binatorial structure of P does not change. In this case, the tangent cones K, get
translated by vectors linearly depending on the displacements of the facets of P.
Writing K, as combinations of translated unimodular cones K; 4+ v as in (2.10),
we notice that as far as lattice points are concerned, a rational translation K; + v
of a unimodular cone K; is equivalent to a certain integer translation K; + u:

(Ki+v)NZ'= (K; +u)NZ* for some ue Z*
and hence we have
f(Ki+v,x) = f(K; +u,x) =x"f(K;,x).

If K = Ri then u is obtained from v by rounding up the coordinates to the
nearest integer. The case of a general unimodular cone differs by a unimodular
linear transformation, see [4] for details.

2.3. Implementation. The algorithm of Theorem 2.2 appears to be practi-
cal. First, it was implemented by J. De Loera et al. [12], who wrote the LattE
(Lattice point enumeration) software package. The authors of LattE discovered
that often the most practically efficient way to handle computations is to represent
a polyhedron P as a hyperplane section of a higher-dimensional cone as in (2.5)
and then use the “dualized” decomposition (2.10). The package allows one to com-
pute the number of integer points in a given rational polytope. Formally speaking,
to compute the number |P N Z4| of integer points in a given rational polytope P,
we should substitute x = (1,...,1) into the rational function f (P,x). However,
we need to be careful since this particular value is a pole of every fraction in (2.3).
Nevertheless, the substitution can be done efficiently, see Section 3.1 and [3], [4],
[7], and [12] for details.

In addition, LattE allows one to compute the Ehrhart (quasi)-polynomial of
a given rational polytope P, that is, to find a formula for the number of integer
points in the dilated polytope nP, where n is a positive integer, see also Section
6.1.

Testing whether a given rational polyhedron P contains an integer point, or,
equivalently, whether f (P,x) # 0 is a non-trivial problem related to the general
integer programming problem of optimizing a given linear function on the set P N
Z%. LattE package contains also an implementation of an integer programming
algorithm based on rational functions f (P, x).
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Another implementation, called barvinok , was written by S. Verdoolaege, see
[36]. Among other features, the implementation allows one to obtain closed ex-
plicit formulas for the number of integer points in a parametric polytope as a
function of displacement parameters when the facets of the polytope move parallel
to themselves, see Theorem 2.5 and the subsequent discussion.

There is an extensive literature devoted to the lattice point enumeration in
polytopes, whether from algorithmic, structural, or application points of view. For
the classical Ehrhart theory in the context of enumerative combinatorics, see [34]
and [9] for a clever simplification of the proofs of the main results of the theory.
For an approach featuring Dedekind sums and other analytic tools, see [8]. It does
not seem to be possible to survey all the literature in the paper. In addition to
already mentioned papers, we provide only a few references among many good
papers which appeared after the survey [4].

Efficient counting in special situations with applications to computational ques-
tions in representation theory and network flows is discussed in [2]. For a recent
advance connecting lattice point counting with algebraic geometry, see [29]. For
a computationally efficient version of the Euler-Maclaurin formula, satisfying, in
addition, some natural “local” conditions, see [10].

3. Operations on Sets and Generating Functions
Motivated in part by Theorem 2.2, let us consider sets S C Z% defined by their

generating functions
f(Six) = x™
mesS

written as rational functions in the form

F(8:3%) = 36—y (3.1)

iel

Here I is a finite set of indices, ¢; € Q, a;,b;; € Z¢, and b;; # 0 for all i,5. To
avoid ambiguity, we assume that either S is finite, or, if S is infinite, then there
is a non-empty open set U C C? such that the series defining f(S;x) converges
absolutely and uniformly on compact subsets of U and for every fraction in (3.1)
there is the Laurent series (multiple geometric series) expansion

x%i
— X)L, — xbi
(K1 5o i) EZE

inU.

To indicate the computational complexity level of our set S, we consider the
two parameters fized in formula (3.1): the number d of variables and the number
k of binomials in the denominator of each fraction. Note that if we happen to have
a smaller number of binomials in some fraction, we can formally “pad” it to k by
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multiplying both the numerator and denominator of the fraction by some artificial
binomials. Since k is fixed, that would increase the length of the formula by a
constant factor.

Next, we discuss what information about the set S can be extracted from
f(S;x) given in the form of (3.1).

3.1. Monomial substitutions and differentiation. One piece of in-
formation we can get is the cardinality |S| of a finite set S. To compute |S|, we
would like to substitute x = (1,...,1) in (3.1), but this should be done carefully
since this particular value of x is the pole of every single fraction in (3.1). The
procedure is introduced in [3].

We choose a sufficiently generic vector ¢ € Z¢, ¢ = (v, ...,74), so that {c, bij) #
0 for all 7,j. For a 7 € C, let

Thus we want to compute
li ; .
tim f(S, X(T))
Let us compute
o = <C, ai> and ﬂ,‘j = <C, bl]>
Then

;T

F(8:x(m) = Y= eﬁmf oy (3.2)

icl

Next, we note that f (S ; X(T)) is a meromorphic function in 7 and that we want to
compute the constant term of its Laurent expansion in the neighborhood of 7 = 0.
To do that, we deal with every fraction separately. We write each fraction of (3.2)
as

eO(iT

(1 —efirm). .. (1 — ePirT

k
) = k™ H 95 (1), where
j=1

)
95(7) = T em

Now, each g;;(7) is an analytic function of 7 and we compute is Taylor series
expansion p;;(7) up to the 7*+1 term:

-
T By =Pis () mod 7FFL.

Similarly, we compute a polynomial g;(7) such that

e =¢;(7) mod Tkt

Finally, successively multiplying polynomials mod 7%*!
mial h;(7) with deg h; < k such that

we compute the polyno-

@ipin -+ pik = h;  mod TR
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Letting
T) = Z hi(T)
il
we conclude that the coefficient of 7% in h(7) is the desired value of (3.2) at 7 =0
and hence is the value f(S;x) at x = (1,...,1). We note that the procedure has
a polynomial time complexity even if both k and d are allowed to vary and if we
allow different numbers k; < k of binomials in different fractions of (3.1).

A more general operation which can be computed in polynomial time is that
of a monomial substitution. Let f(x) be an expression of the type (3.1). Let
z = (21,...,2n) be a new set of variables, let l1,...,l; € Z™ be vectors, and let
¢ : C* — C< be the transformation defined by

(#1,.-+y2n) — (21,...,24) where xz; = zhi.

If the image ¢ (C™) does not lie in the set of poles of f, one can define a rational
function g(z) = f (¢(z)). Function g can be computed in polynomial time in the

form
5 zdi
where §; € Q, ¢;,b;; € Z", bj; # 0 for all ¢,j and k; < k for all ¢ € I'.
The case of [y = ... = Iz = 0 corresponds to the case of x = (1,...,1) con-

sidered above. As above, the general case of a monomial substitution is handled
by a one-parametric perturbation and computation with univariate polynomials.
Details can be found in [7] (the assumption that & is fixed in advance is not needed
there).

The operation of monomial substitution has the following geometric interpre-
tation. Let T : R? — R™ be the linear transformation whose matrix in the
standard bases consists of the integer column vectors Iy,...,l5. Let S C Z% be a
set and suppose that for all m € T(S) the set T=1(m) NS is finite. The monomial
substitution z; = z! into the generating function f(S;x) produces the weighted
generating function ¢(z) of the image T'(S) C Z", where each monomial z™ for
m € T(S) is counted with multiplicity |T~*(m) N S]|.

Another useful operation is that of differentiation. Let p be a d-variate poly-
nomial. We can write

m 0 0
Zp(m)x =P\Ti5 -y Tdy f(S,X)
81‘1 8xd
mes
As long as k is fixed in advance, the result can be computed in polynomial time in

the form o
i
Z 0; Xbu v (1 — xbz:k)'”k' ’
iel’

where §; € Q, a;,b;; € VA bi; # 0, and 7;; are non-negative integers such that
Vi1 + ...+ vk < k+ degp for all 4, see [6].
This observation is used in [6], see also [10] and [13].
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One corollary of Theorem 2.2 is that we can efficiently perform set-theoretic
operations (intersection, union, difference) of finite sets defined by (3.1). The
following result is proved in [7].

Theorem 3.1. Let us fix positive integers d and k. Then there exists a polynomial
time algorithm, which, for any two finite sets Si,Sy C Z% given by their rational
generating functions

Pi
F(Sx) =" i X (3.3)

= —x%1) ., (1 —x%*)

and
Qi

S27 Zﬁz X ] (1 _Xbik')

i€ly

(3.4)

computes the generating function f(S;x) of their intersection S = S1 NSy in the
form

x Ui
Z% —xv) .. (1 —xve)

el

where s < 2k.

Proof. The idea of the proof is to linearize the operation of intersection of sets.
Suppose we have two Laurent series

= Z p1mX™ and go(x Z PomX"
meZd meZd
Let us define their Hadamard product g1(x) x g2(x) as
= Z pmX'™"  where pn = prmpom-
mez?

Then, clearly,
F(S1 NSy x) = f(S1;%) * f(S2;%x).

Without loss of generality, we assume that there is a non-empty open set U C
C9 such that for all x € U and every fraction of (3.3) and (3.4) we have the multiple
geometric series expansions:

e e R VL G SN
— X"l ). — X%ik
(p1yees ) EZE.

and

x4

— gitvibint. +vebir 3.6
(1—xb1).. . (1 — xbw) >, = (36)
(V17~--7Vk)ezi

As usual, we assume that for all x € U the convergence in (3.5) and (3.6) is
absolute and uniform on all compact subsets of U. To ensure that such a set U
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indeed exists, we choose a sufficiently generic linear function ¢ : R — R and
make sure that ¢ (a;;), ¢ (b;;) > 0 for all 4, j by reversing, if necessary, the direction
of a;; and b;; via the identity

—a

1 b'e

l-x¢  1-x20

Here we use that S; and Ss are finite so that f(S1;x) and f(S3;x) are, in fact,
Laurent polynomials.

Since the Hadamard product is a bilinear operation on series, to compute
f(S1;%x) % f(S2;x) it suffices to compute the Hadamard product of every pair of
series (3.5) and (3.6).

In the space R?* of two k-tuples (z,y), where 2 = (&,...,&) and y =
(m,...,mk), let us introduce the polyhedron

511"'75/6;7717”‘77716 ZO
Qi={ (@) g 57)
i +&1ai1 + .o+ ek = qi b + o+ bk

and let Z?* C R?* be the standard integer lattice.
Since the Hadamard product is bilinear and for monomials we have

x™ if mp =m2 =Mm
XM % x™M2 = )
0 if my # ma,

the Hadamard product of the series (3.5) and (3.6) can be expressed as the sum
Z Xp'i"rﬂlail"l‘---"l‘ﬂkaik’ where

(m,n)eQ,;NZ2k (38)

m:(lu’la'-'nuk) and n:(V17"'ayk)'

On the other hand, (3.8) is obtained from the generating function f(Q;,z) with
z = (z1,..., 22;) by the monomial substitution

zi=x% for 1=1,...,k and zz=1 for i=k+1,...,2k (3.9

and multiplication by xP.
We use Theorem 2.2 to compute f(Q;,z). The monomial substitution (3.9) can
also be computed in polynomial time, cf. Section 3.1. O

Therefore, one can compute the generating functions of the union and differ-
ence:

f(S1US;x) = f(S1;%x) + f(S2;x) — f(S1NS2;x)  and
f(S1\ S25x) = f(S1:%x) — f (51N S25%) .

Theorem 3.1 allows us to work with generating functions (3.1) directly as with
data structures bypassing any more explicit descriptions of sets S in question. Of
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course, there is a price to pay: with every set-theoretic operation, the complexity
level of the set, the number k£ of binomials in the denominator of each fraction in
(3.1), doubles. From the definition (3.7) of Q; we can notice that in a sufficiently
general position we will have dim @Q; = 2k — d, so we would be able to choose
s = 2k — d in Theorem 3.1. Theorem 3.1 admits an extension to infinite sets S
and So provided there is a non-empty open set U C C¢ such that the multiple
geometric series expansions (3.5) and (3.6) hold for all fractions in (3.3) and (3.4).
K. Woods [38] used the construction of the Hadamard product to show that in any
fixed dimension there is a polynomial time algorithm to check if a given integer is
a period of the Ehrhart quasi-polynomial of a given rational polytope.

4. Beyond Polyhedra: Projections

There are other interesting sets admitting short rational generating functions (3.1).
We start with examples.

4.1. Integer semigroups. Let S be the semigroup generated by positive
coprime integers a1 and ao, that is, the set of all non-negative integer combinations
of a; and as:

S:{ulal + po2asg : /Ll,,lLQEZ+}.
It is not hard to show that

1— gma

(1 —2m9)(1—a92)

f(S;2) =

(the series defining f(.S;x) converges for all |z| < 1).
Let S be the semigroup generated by positive coprime integers a1, as, and ag,

S = {:ulal + p2a2 + pzas i p1, o2, g3 € Z+}~

Then there exist positive integers p1,ps2,ps, P4, and ps, not necessarily distinct,
such that
1 — gPr — P2 — P3 + P4 + xPs

(1 —29) (1 —2%)(1—1x9)

This interesting result was rediscovered a number of times. It was explicitly stated
by M. Morales [27]; the proof wasn’t published though. Independently, the proof
was rediscovered by G. Denham [14]. Both proofs are algebraic and based on the
interpretation of f(S;x) as the Hilbert series of a graded ring C[t*!,¢%,¢%3]. In
this special case (a Cohen-Macaulay ring of codimension 2), the Hilbert series can
be computed via the Hilbert-Burch Theorem, cf. also [18]. Meanwhile, a combina-
torial proof of a somewhat weaker result (up to 12 monomials in the numerator)
independently appeared in [35].

The pattern breaks down for semigroups with d > 4 generators, meaning that
if we choose the denominator of f(S;z) in the form (1 —z%)-.-(1 —2%), the

f(S;z) =
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number of monomials in the numerator does not remain constant for a particular
value of d, and, moreover, grows exponentially with the input size of a1, ...,aq. As
shown in [35], for d = 4 the number of the monomials in the numerator can grow as
fast as min'/? {a1, az,as, as}, whereas the input size is only about log(ajasagays).

Nevertheless, the generating function f(S;x) admits a short rational function
representation for any number d of generators fixed in advance. The following
result was proved in [7].

Theorem 4.1. Let us fix d. Then there exists a positive integer s = s(d) and a
polynomial time algorithm, which, given positive integers ai,...,aq, computes the
generating function f(S;x) of the semigroup

d
S:{Zﬂiaii M1,-~-,MdEZ+}
i=1

generated by ay,...,aq in the form
xPi
f(Siz) =) o : —, (4.1)
; (]__xbzl)...(]__xbls)

where a; € Q, pi,bi; € Z and bz # 0 for all i, 7.

In particular, for any fixed d, the number |I| of fractions in (4.1) is bounded
by a polynomial in the input size, that is, in log(ay - - - aq).

Theorem 4.1 is obtained as a corollary of a more general result that the projec-
tion of the set of integer points in a rational polytope of a fixed dimension admits
a short rational generating function [7].

Theorem 4.2. Let us fir d. Then there exists a number s = s(d) and a polynomial
time algorithm, which, given a rational polytope P and a linear transformation
T :RY — R* such that T (Zd) C ZF, computes the generating function f(S;x)
for S=T (P ﬂZd), S C ZF, in the form

F(Sx) =3 1 _Xbil)).(.f(]__xbis)’ (4.2)

el

where a; € Q, pi, bij € ZF and b; # 0 for all i, ;.

One can observe that Theorem 4.1 is a corollary of Theorem 4.2. Indeed, let
T :R* — R be the linear transformation defined by

T, .. 8) =a1& + ...+ aga.

Then the semigroup S generated by a1, ..., aq is the image S =T (Z%) of the set
Zi of integer points in the rational polyhedron Rff_ C R?. The polyhedron R‘j_
is unbounded, so Theorem 4.2 cannot be applied immediately. However, it is not
hard to show that S C Z, stabilizes after a while (if aq,...,aq are coprime then
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S includes all sufficiently large positive integers). Thus only the initial interval of
S is of interest, to get which we replace Ri by a sufficiently large simplex

d
P:{(517--~7fd)3 Z&'St and & >0 for i:l,...,d},

i=1

see [7] for details.

We sketch the proof of Theorem 4.2 below.

Without loss of generality we assume that dimkerT = d — k. The proof then
proceeds by induction on d — k. If d = k we are in the situation of Theorem 2.2.
We note that for any k and d, if the restriction 7 : P NZ¢ — S is one-to-one,
we can compute the generating function f(5;x) from that of the set P NZ% using
an appropriate monomial substitution, cf. Section 3.1. Otherwise, the monomial
substitution will account for each point m € S with the multiplicity equal to the
number of the points in P N Z¢ mapped onto m. Thus our goal is to eliminate
multiplicities.

The case of d = k + 1 illuminates some of the ideas used in the proof for an
arbitrary d — k. Suppose that

T:Rk+1—>Rk7 (fla"wfk-ﬁ—l)’—)(515"'a§k)

is the projection (this is a sufficiently general case). Let S = PN ZF1 and let us
consider the restriction 7" : S — 8. Then, for every point m € S, the preimage
T~(m) C S is the set of integer points in the interval T—!(m) N P which all agree
in their first k coordinates and disagree in the last coordinate. Let exi1 be the
last basis vector and let us consider

Y:§\(§+€k+1).

In words: we subtract from S its translation by 1 in the last coordinate.

Then the restriction T': Y — S is one-to-one since the preimage T~!(m) C Y
consists of the single point in 7=!(m) C S with the smallest last coordinate. Now,
S is the set of integer points in a rational polytope and we compute its generating
function using Theorem 2.2. Then we compute the generating function of Y using
Theorem 3.1. Finally, we obtain f(S;x) by substituting zx,1 = 1 in the generating
function f(Y; (x, xk+1)), cf. Section 3.1.

Let us consider the case of general k and d. Let pr :AZ’“Jrl — 7 be the
natural projection, pr (1,...,uxsr1) = (p1,...,pux). Let T : Z¢4 — ZF+1 be a

linear transformation which is a lifting of T so that pr (f(m)) = T(m) for all
m € Z%. We define S = T(S), § C Z**!, and consider the restriction

pr::S'\—>S.

For every m € S the preimage pr—1(m) C S consists of the points which differ in
their last coordinate only. Suppose that we managed to construct 7" in such a way
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that the set pr—t(m) C S has small gaps, meaning that there exists a constant
[ = I(d) such that if there are two points in pr—!(m) whose (k + 1)st coordinates
differ by more than [, there must be a point in pr—1(m) lying strictly between
them.

In this case, we compute f(5;x) as follows. Let us define

Y:§\O(§+jek+l),
j=1

In words: we subtract from S its [ translates by 1,...,1 in the last coordinate.
Because of the small gap property, the restriction pr : ¥ — S is one-to-one:
now, the preimage pr—'(m) C Y consists of the single point in pr=t(m) c S
with the smallest last coordinate. Using the induction hypothesis, we compute the
generating function of S. Then, applying Theorem 3.1 [ times, we compute the
generating function of Y. Finally, f(S;x) is obtained from f(Y; (%, ka)) by the
substitution 41 = 1, see Section 3.1.

In general, we cannot construct a lifting T with the small gap property but
the next best thing is possible. Namely, we can construct in polynomial time a
decomposition R*F = U; Qi of R into a union of non-overlapping rational polyhedra
@; such that for each piece S; = SN Q; a lifting ﬁ with the small gap property
indeed exists. The generating functions f(S;;x) are computed as above and then
patched together into a single generating function f(S;x). The construction of
such polyhedra @; and liftings 7} is based on the results of [21] and [20]. The
main tool is the following Flatness Theorem, see, for example, Section 6.7 of [17]
or Section VIL.8 of [5].

Theorem 4.3 (Flatness Theorem). For each dimension d there exists a constant
w(d) with the following property: if V is a d-dimensional real vector space, A C V is
a lattice of rank d, A* C V* is the reciprocal lattice, and K C V is a convex compact
set with non-empty interior such that K N A = 0 then there is an £ € A*\ {0} such
that

I;leal){cﬂ(x) — min (z) < w(d). (4.3)

In words: a lattice-free convex body is flat in some lattice direction. The
number in the left hand side of (4.3) is called the width of K with respect to £
and denoted width(K,¢). The infimum of width(K,¥¢) over all £ € A* is called
the lattice width of K and denoted width(K). A simple and crucial observation
relating the lattice width and the small gap property is that if for £ € A* we have
width(K, ¢) < ywidth(K) then the gaps between the consecutive integers in the
set £(K N A) do not exceed yw(d).

We go back to finish the sketch of the proof of Theorem 4.2. Let A = Z¥Nker(T)
be the lattice in ker(T). Fory € R?, let P, = PNT~!(x) be the fiber of the polytope
P over z. We will measure the lattice width of P, with respect to A. The results
of [21] and [20] allow us to construct a polyhedral decomposition R¥ = | J; @; and
vectors £; € A* such that for all y € Q; we have either width (P,, ;) < 2width(P,)
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or width(Py, ¢;) < 1. We then define

Ti(z) = (T(z), 4;(2)) if T(z) € Q;.
This completes the sketch of proof of Theorem 4.2.

4.2. Applications. Theorem 4.1 implies polynomial time solvability of a va-
riety of problems about integer semigroups. Suppose that the generators aq, ..., aq
are coprime. As is known, all sufficiently large integers lie in the semigroup .S gen-
erated by ai,...,aq. In the situation when the number d of generators is fixed,
R. Kannan [20] constructed a polynomial time algorithm to compute the largest
integer not in S. Theorem 4.1 implies that one can compute in polynomial time
the number of positive integers not in S, the number of integers in S belonging to
a particular interval, etc.

Unlike the algorithm of Theorem 2.2, the algorithms of Theorems 4.1 and 4.2
seem to be unimplementable at the moment. Indeed, the way Theorem 4.2 is
proved gives s = d*(? at best and, similarly, in Theorem 4.1. It is not clear at the
moment whether a smaller value of s is possible.

In Theorem 4.1, apart from d = 1,2,3, the value of d = 4 seems to indicate
a possibility of a “special treatment”. The approach of [33] combined with the
continued fraction method, see Section 2.1, may lead to a practically efficient
algorithm to compute f(S;z).

Theorem 4.2 implies that some other interesting sets admit short rational gen-
erating functions. One class of such sets consists of the Hilbert bases of rational
cones. Let K C RY be a pointed rational cone. The set S ¢ K NZ%, 0 ¢ S, is
called the (minimal) Hilbert basis of the semigroup K NZ? if every point in K NZ?
can be represented as a sum of some points in S and if no point in S is a sum of
other points in S. In other words, S consists of the points in K N Z% that cannot
be written as a sum of non-zero points in K NZ?. Theorem 4.2 implies that as long
as the dimension d remains fixed, given a rational cone K, the generating function
f(S;x) can be computed in polynomial time as a short rational function of the
type (3.1). Consequently, the number |S| of points in the Hilbert basis of K N Z%
can be computed in polynomial time.

To deduce this result from Theorem 4.2, let Q C K be a rational polyhedron
containing all integer points in K except 0 (to get @ from K, we cut the vertex of
K by a hyperplane), let P = Q x Q C R? © RY = R?? and let T be the projection
P+— K, T(z,y) = x +y. Then the Hilbert basis S is the complement in Q N Z%
of the image T (P N sz). The obstacle that the polyhedron @ is not bounded,
so Theorem 4.2 cannot be applied immediately, can be easily fixed since only the
“initial part” of the semigroup K N Z% is of interest, see [7].

Another class of sets allowing short rational generating functions via Theorem
4.2 are the test sets in integer programming, see [30].

It should be noted that the short rational function description provides only
very general characterization of the set. For example, many of the fine properties
of test sets [30] do not seem to be picked up by rational generating functions and
some empirically observed phenomena are still waiting for their explanation. For
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structural results (without complexity estimates) regarding f(S;x), where S is the
projection of the set of integer points in a rational polyhedron, see [24].

5. Beyond Projections: Presburger Arithmetic

Let us consider formulas we can construct by using integer variables, operations
of addition, subtraction, and multiplication by an integer constant (but not mul-
tiplication of two integer variables), comparison (<, >, =), Boolean operations
(“and”, “or”, “not”), and quantifiers (V, 3). The realm of such formulas is Pres-
burger arithmetic. Thus the set P N Z< of integer points in a rational polyhedron
can be described by a quantifier-free formula of Presburger arithmetic: the set
PNZ% consists of d-tuples of integer variables that satisfy a number of linear con-
straints with constant integer coefficients. Similarly, the projection T' (P N Zd) of
the set of integer points in a polyhedron is described by a formula of Presburger
arithmetic with existential quantifiers only (no quantifier alternations).

With a little work, Theorem 2.2 can be extended as follows. Let us fix the
number d of variables. Then there exists a polynomial time algorithm, which,
given a quantifier-free formula F' of Presburger arithmetic, computes the generating
function f(S;x) of the set S C Z¢ defined by F as a rational function (2.3). Some
routine precautions regarding convergence of the series defining f(S;x), if S is
infinite, should be taken. The general case of a set defined by a quantifier-free
formula F' reduces to that of the set integer points in a rational polyhedron by
some more or less straightforward “cutting and pasting” of polyhedra. Since the
dimension d of the ambient space is fixed, this cutting and pasting can be performed
in polynomial time.

Theorem 4.2 can be extended as follows. Let us fix the number of variables
and the number of Boolean operations used. Then there exists a polynomial time
algorithm, which, given a formula F' of Presburger arithmetic without quantifier
alternations, computes the generating function f(S;x) of the finite set S C Z*
defined by F as a rational function (4.2). Note that here we have to fix not
only the number of variables but also the number of Boolean operations. For
example, unless P=NP one cannot hope to compute the generating function of
the projection of the set of integer points in a union of rational polytopes if the
number of polytopes is allowed to vary, cf. Section 5.3 of [37] and [31].

One can ask whether the results can be extended even further. Let us fix
the number of variables and the number of Boolean operations, making numerical
constants essentially the only parameters of the formula. Is there a polynomial
time algorithm which computes the generating function (3.1) of the (finite) set S
of points described by such a formula? This indeed seems very plausible, see the
discussion in Chapter V of [37]. Intuitively, such sets should have some “hidden
periodicity” and short rational generating functions should reveal that periodicity.
Besides, it seems hard to prove that a particular finite, but large, set S C Z? does
not admit a short rational generating function: if a particular candidate expression
for f(S;x) is not short, one can argue that we haven’t searched hard enough and
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that there is another, better candidate.

We mention that the result of R. Kannan [19] establishes polynomial time
solvability of decision problems for formulas with not more than one quantifier
alternation. If the number of variables is not fixed, the complexity of decision
problems in Presburger arithmetic is double exponential by the result of M. Fischer
and M. Rabin [15].

6. Concluding Remarks

One can ask whether some of the technique discussed in this paper can be extended
to lattice points satisfying some non-linear constraints. The answer seems to be
“no”. For example, lattice points in the standard Euclidean ball exhibit phenomena
explained not by rational but rather by theta functions. Let

Bn:{(€1a€2a£37£4): £%+€§+£§+€i§n}

be the Euclidean ball of radius y/n. Jacobi’s formula asserts that the number
|B,, N Z*| — |B,,—1 N Z*| of integer points on the sphere of radius /7 is equal to

827‘

44r|in

(in words: eight times the sum of divisors of n that are not divisible by four). One
can show then [1] that if one can count points in a 4-dimensional ball efficiently
(in polynomial time), one can factor integers efficiently (in randomized polynomial
time).

We note also that lattice points in irrational polyhedra exhibit a very interesting
behavior, see [32].

6.1. Large dimensions. Almost everywhere in this paper we assumed that
the dimension d of the ambient space is fixed in advance. But what if the dimension
is allowed to grow? Given a rational polyhedron P C R?, it is an NP-hard problem
to determine whether P N Z¢ = () (even when P is a rational simplex). Thus
there is little hope to compute the generating function f(P,x) in polynomial time.
However, it appears that some interesting “residues” or “shadows” of f(P,x) can
be efficiently computed even when the dimension d is allowed to grow, cf. [10] and
[6].

The number e(P) = |P N Z| of integer points in a rational polyhedron is an
example of a lattice invariant valuation, see [26]. That is, the map P —— e(P)
extends to a linear functional on the space spanned by the indicators [P] of rational
polyhedra, cf. Definition 2.3, and the linear functional is invariant under lattice
shifts: e(P) = e(P +u), u € Z%. One can ask if there is another lattice invariant
valuation v on rational polytopes which is efficiently computable in interesting
cases and which, in some sense, approximates the counting valuation e(P). For
example, the volume vol P may serve as the “Oth” approximation to e(P).
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With every lattice invariant valuation v one can associate the expression

d
v(nP) =Y v(P;n)n’, (6.1)

i=0
where nP is a dilation of P by an integer factor n and the coefficients v;(P;n)
are quasi-periodic: v;(P;n +t) = v;(P;n) provided tP is a polytope with integer
vertices, cf. [26]. In the case of the counting valuation e, the expression (6.1)
is called the Ehrhart quasi-polynomial of P and e4(P;n) = vol P. As the kth
approximation to the counting valuation e we consider a lattice invariant valuation

v which agrees with e in the k 4 1 highest terms:

vi(P;n) =¢;(P;n) for i=d,d—1,...,d—k.

A natural goal is to construct such a valuation v, which is computable in polynomial
time (at least, in some interesting cases) for any k fixed in advance.

Abstractly speaking, to define the counting valuation e, we have to choose
a finite-dimensional real vector space V and a lattice A € V. Then we define
e(P) = |P N A for every polytope P C V such that the vertices of ¢P belong to A
for some integer t. Apparently, to make a canonical choice of v, we have to fix some
additional structure in V. In [6] a canonical valuation v is constructed for rational
polytopes whose facets are parallel to hyperplanes from a given finite collection
of hyperplanes. Valuation v agrees with e in the k£ + 1 highest terms and for
any fixed k valuation v is polynomially computable on polytopes with the number
facets exceeding the dimension d by not more than a constant fixed in advance
(in particular, on rational simplices). In [10] a different canonical valuation f is
constructed provided a scalar product on V is chosen. Valuation y also agrees with
e on the k£ + 1 highest terms and polynomially computable on the same class of
polytopes.
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