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ABSTRACT

The Functional Transformation Method (FTM) is a recently intro-
duced method for sound synthesis by physical modeling. Based
on integral transformations, it provides a parallel system descrip-
tion for any linear physical model, usually described by a set of
partial differential equations. Such parallel descriptions can be di-
rectly implemented by a set of recursive systems in full rate. In this
paper we present a new and very ef£cient method for this imple-
mentation which bene£ts from the spectral decomposition of the
system. All recursive systems are working at a subsampled rate
and are summed up by the application of a polyphase £lterbank.
Performance measurements on a real time implementation show,
that a ¤exible and ef£cient realization is achieved. Compared to
the direct implementation it is over nine times faster at the cost of
nine milliseconds of delay and even faster with more delay.

1. INTRODUCTION

Physical Modeling is the most recent sound synthesis technique,
where not the sound itself but the sound production mechanism
is modeled to achieve more natural and ¤exible sounds. In this
context, the Functional Transformation Method (FTM) is a suit-
able method for the solution of any physical model described by
Partial Differential Equations (PDEs). It starts with the mathemat-
ical description of the sounding object, in terms of a PDE with
several initial and boundary conditions, and it provides a discrete
implementation in parallel form, consisting of a set of £rst order
conjugate complex recursive systems. For a detailed description
of sound synthesis with the FTM see [1].

In this paper we will take advantage of the spectral analysis
properties of the FTM. The recursive systems will be grouped to-
gether to band limited signals, from which we can generate the
output function by a synthesis £lterbank. According to the the-
ory of polyphase-£lterbanks (see [2]), it is suf£cient to work with
subsampled versions of the band limited signals and therefore it is
suf£cient to work with subsampled recursive systems.

As the subsampling of the complex modes, in contrast to sub-
sampling of real modes, is a one-to-one mapping, the £lterbank
can be directly applied to the subsampled complex recursive sys-
tems. A dual £lterbank approach with one additional shifted £lter-
bank avoids distortion for modes with frequencies near the band
edges of the £lterbanks. The ef£cient implementation of the £l-
terbank by polyphase synthesis £lterbanks together with the sub-
sampling of the recursive systems gives us a signi£cant reduction
of the computational effort. We achieve a ¤exible and ef£cient
implementation of physical models for real time sound synthesis.

The paper is organized as follows. In section 2 a short re-
view of the FTM is given, which particularly describes the ad-
vantages of the FTM concerning the application of the £lterbank.
Section 3 provides a short introduction to the principal properties
of polyphase-£lterbanks along the lines of [2] and [3]. Conditions
for the combination of the £lterbank and the FTM, and the actual
implementation are described in section 4. Some details on the
trade-off between delay, distortion and computational effort are
given in section 5, supported by measurements on a real-time im-
plementation in the audio application Mustajuuri (see [4]). Section
6 concludes this paper.

2. REVIEW OF THE FTM

The FTM provides a method for the solution of multi-dimensional
systems. It is based on the transformation to the frequency domain
in time and space. Its general procedure is depicted in £gure 1, for
detailed information refer to [1] for instance.
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Figure 1: General procedure of the FTM solving initial-boundary-
value problems de£ned in form of PDEs and initial conditions
(IC) and boundary conditions (BC). Further abbreviations are ex-
plained in the remainder of this section.

2.1. Partial Differential Equations

The starting point is the description of the physical system in terms
of several partial differential equations (PDEs) together with the
systems initial (IC) and boundary conditions (BC). By introduction
of several additional variables, one can always rewrite the PDEs by
a system of £rst order equations, denoted by the vector description
in equation (1).

[L +CDt]y (x, t) = v(x, t), x ∈ V
fTb y(x, t) = φ(x, t), x ∈ ∂V

fTi y(x, t)|t=0 = yi(x), x ∈ V
(1)

Thereby t is the scalar time, x denotes the vector of space co-
ordinates de£ned within the spatial volume V , bounded by ∂V .
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y(x, t) indicates the vector of unknown quantities, v(x, t) is a
vector of excitations. The operator Dt denotes £rst order temporal
derivative, while C is a mass or capacitance matrix. The spatial
differentiation operator L is a concise notation for

L = A+B∇ , (2)

where ∇ denotes £rst-order spatial derivative. The matrix A con-
tains loss terms and matrix B combines all expressions with £rst-
order derivatives.

The initial conditions are given by the vector operator fi and
the initial values yi, and the boundary conditions are given by the
vector operator fb and the boundary functions φ.

2.2. Integral Transformations

The FTM adapts the well known idea of integral transformations
for the solution of one-dimensional systems to multi-dimensional
systems. So, to remove the temporal derivatives in equation (1)
the Laplace transformation is used, which yields an Ordinary Dif-
ferential Equation (ODE) with boundary conditions. The follow-
ing Sturm-Liouville transformation (SLT, denoted by the operator
T {·} in £gure 1) has the same effect for the spatial derivatives.

It is adopted to the speci£c boundary-value problem and uses
the eigenfunctions K(x, β) of the operator L as transformation
kernels. It transforms the ODE into a simple algebraic equation
which can be reordered to obtain a multi-dimensional transfer func-
tion model (MD TFM).

Ȳ (β̃µ, s) =
1

s+ β̃µ

[

V̄(β̃µ, s) + ȳi(β̃µ) + Φ̄b(β̃µ, s)
]

︸ ︷︷ ︸

=F̄e(β̃µ,s)

(3)

Equation (3) displays this transfer function model. The bars
denote the application of the SLT and upper case letters denote the
application of the Laplace transformation. The spatial frequency
variable β̃ is always restricted to several discrete values β̃µ due to
the boundary conditions.

2.3. Discretization and inverse Transformation

Application of the impulse-invariant transformation on (3) (see [5]
for instance) leads to a discrete multi-dimensional transfer func-
tion model (discrete MD TFM) as depicted in £gure 1.

Ȳ d(β̃µ, z) =
z

z − e−β̃µT
F̄ d
e (β̃µ, z) (4)

The inverse SLT is simply the summation over all possible val-
ues of β̃ of the discrete MD TFM (see equation 4) weighted by the
transformation kernel K(x, β̃µ) and the norm factor of the trans-
formation kernel Nµ. Together with the inverse Z-transformation
we achieve a discrete solution of the physical system as written in
equation (5).

yd(x, k) =
∞∑

µ=0

1

Nµ

K(x, β̃µ)e
β̃µkT ∗ f̄de (β̃µ, k) (5)

2.4. Discrete Realization

The discrete realization of equation (5) is obviously an in£nite set
of £rst order recursive systems. However, for a given frequency
range (normally from zero up to the sampling frequency) we al-
ways achieve a £nite set (Nh) of recursive systems, each repre-
senting one harmonic of the resulting sound. Figure 2 illustrates
the implementation of equation (5) for the set of spatial points xa.

+

+

+
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Figure 2: Basic structure of the FTM simulations derived from vec-
tor PDEs with several complex £rst-order resonators in parallel.

2.5. Related Methods with a Parallel System Description

At this point it is of interest to compare the FTM with another
physical modeling technique, the modal analysis [6, 7, 8]. Modal
synthesis can be interpreted as an extension of additive synthesis,
i.e. a parallel arrangement of damped resonators. In additive syn-
thesis, the frequencies and the damping coef£cients can be cho-
sen completely arbitrary. In modal synthesis these parameters are
derived from approximations to the physical behavior of vibrat-
ing structures. To reduce the number of vibrational modes in the
model, a spatial discretization is used, where the number of spatial
nodes corresponds to the required number of modes [6]. This spa-
tial discretization yields only approximate values of the vibrational
modes. Alternatively, also measurements from real-world musical
instruments can be used to obtain the frequencies and damping co-
ef£cients of the resonators.

In contrast to modal synthesis, the FTM uses a physical model
of the vibrational body in the form of a PDE with appropriate ini-
tial and boundary conditions. It allows to calculate the exact values
of an arbitrary number of vibrational modes. Furthermore, since
no spatial discretization is involved, the coef£cients of the digital
resonators are expressed directly by the physical parameters of the
PDE model.

In short, the FTM shares with modal synthesis as well as with
additive synthesis the basic structure of the discrete-time model,
i.e. the well known parallel form realization of digital £lters [5].
FTM differs from the other synthesis methods in the determina-
tion of the model parameters. The application of suitable integral
transformations to the underlying PDEs allows a direct expression
of the model parameters in terms of the physical constants. For
a more detailed comparison between FTM, modal synthesis, and
other synthesis methods, see [1].
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3. POLYPHASE-FILTERBANKS

As all harmonics in equation (5) are strictly band limited, it is easy
to group them together to several (N in the sequel) band limited
signals yn[k] with 0 ≤ n < N . Such signals represent the spec-
tral analysis of the signal yd(x, k) (y[k] in the sequel) and can be
synthesized with a synthesis £lterbank. Ef£cient implementations
of such £lterbanks are the well known polyphase £lterbanks (see
[2] or [3]) which will be brie¤y described here.

3.1. Subsampled Filterbank

As the signals yn[k] are strictly band limited to a band width of
∆Ω = 2π

N
, it is save to subsample them with the factor N . As

well known from signal theory (see [3] for instance), perfect recon-
struction of the original signal is possible with suitable bandpass
£lters hn[k].PSfrag replacements
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Figure 3: Implementation of the £lterbank with an IDFT.

Figure 3 depicts the basic idea of polyphase £lterbanks. The
signals yn[k] are given in subsampled rate m · N . They are up-
sampled with the factor N and afterward £ltered with the band-
pass £lters hn[k] to achieve the original signals. The last step is
the summation of all yn[k] to achieve the output function y[k].

3.2. Ef£cient Implementation

If the bandpass £lters hn[k] are equidistant shifted versions of the
so called prototype lowpass £lter h0[k], which means

hn[k] = ejn
2π
N h0[k] , (6)

then we can replace the N full rate bandpass £lters in £gure 3 by
one inverse discrete Fourier transformation (IDFT) and N £lters
in subsampled rate.
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Figure 4: Implementation of the synthesis £lterbank with an IDFT,
£lters and a signal multiplexer. z−1 denotes delay by one sample.

This much more ef£cient implementation of the £lterbank is
depicted in £gure 4. The £lters hn[mN ] are shifted and subsam-
pled versions of the prototype lowpass £lter h0[k]. They can be
obtained by

hn[mN ] = h0[mN + n] . (7)

3.3. Analysis-Filterbank

To the synthesis £lterbank of £gure 4 corresponds an analysis £l-
terbank with a similar structure. Its components are the same as
in £gure 4 but the order is reversed. The £rst step is the signal
demultiplexer, realized by the delays and downsampling. The sub-
sequent elements are the £lters hn[mN ] with the same coef£cients
as given in equation (7), and £nally the IDFT.

4. THE IMPLEMENTATION

A few adaptations have to be made to implement equation (5) with
a polyphase £lterbank. These adaptations and further properties
will be described in this section.

4.1. Complex versus Real Signals

As the FTM is a physical modeling method, we are always mod-
eling real valued systems. The PDE in equation (1) is working for
the real valued output y(x, t). Therefore equation (5) has to be
real too. Any complex eigenfrequency β̃µ and thus any complex
harmonic has its conjugate complex counterpart. Thus equation
(5) describes a set of real harmonics.

However it is not possible to use the real harmonics in combi-
nation with a £lterbank; it is not even possible to use subsampled
versions of the real harmonics. Although the computation of real
harmonics is twice as effective, we have to use the complex ones.

If one tries to subsample a real harmonic whose frequency is
near to any integer multiple of the new sampling frequency, it is
no longer possible to separate frequency and amplitude correctly.
The spectrum of the subsampled signal aliases with its conjugate
complex part in such a manner that even destructive interference
of the signal is possible (see [9] for another approach to avoid this
problem).

Nevertheless, for computational ef£ciency it is not necessary
to calculate the conjugate complex harmonics separately. The ex-
traction of the real part of the £lterbank output has the same effect,
as the computation of all harmonics together with their conjugate
complex counterparts.

4.2. Dual-Filterbank Approach

As already mentioned in section 3.1, the £lterbank in £gure 4 is
simply a set of equidistant shifted versions of the prototype low-
pass £lter h0[k]. However, as we have to use causal and linear
phase systems this £lter must be a Finite Impulse Response (FIR)
£lter. This £nite length (let it be L · N ) causes £nite transition
bands and a £nite suppression of the mirrored harmonics. There-
fore, as we do not want to restrict the frequencies of the harmonics,
we use a dual £lterbank approach.

We de£ne valid zones (bounded by the dashed lines in £gure
5) for the harmonics, so that we can be sure, that any mirrored fre-
quency (included between the dotted lines in £gure 5) is below a
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tolerated level. The non-valid zones in the even £lterbank are cov-
ered by the valid zones of the odd £lterbank (lower two frequency
responses in £gure 5), which is just a shifted version of the even
£lterbank. Working with complex harmonics this shifting causes
no further problems, for real signals a separation of the conjugate
complex part of the spectrum would be necessary.
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Figure 5: Frequency response of bank number 3 (left) and 4 (right)
of the even £lterbank (upper) and the odd £lterbank (lower) for
N = 32, L = 6. The window function is the Kaiser window.

4.3. Analysis- and Synthesis- Filterbank

Application of the polyphase synthesis £lterbank to the subsam-
pled version of the FTM output in equation (5) poses the problem
of aliasing for the exciting signal f̄de (β̃µ, k). The complex har-
monics are strictly band limited, the exciting signal is not.

Therefore we have to create band limited excitation signals via
the corresponding polyphase analysis £lterbank. An overview of
the complete resulting system for the even £lterbank is depicted in
£gure 6. We consider one input and one output function, neverthe-
less multiple inputs and multiple outputs are possible too.

The odd £lterbank system is nearly identical to £gure 6, except
for the modulated £lter coef£cients, the exchange of the £ltering,
and the evaluation of the real part in the synthesis £lterbank.

4.4. Filter design

Furthermore, we take a look at the design of the prototype lowpass
£lter h0[k], as this £lter mainly determines the behavior of the
£lterbank.

As already mentioned in section 4.2, we have to use a FIR
£lters for the prototype lowpass. So, one of the main properties
of the lowpass £lter is its £nite length. Since integer multiple of
the £lterbank order N are useful (but not essential) for reasons
of computational effort, we de£ne the length of the lowpass £lter
h0[k] to L ·N .

Longer £lters are causing steeper transition bands and higher
aliasing suppression, as can be seen in £gure 7 for L = 4 and
L = 8. However longer £lters are also causing longer delays. For
a lowpass £lter of length LN we achieve a delay of LN

2
samples.

0 2 4 6 8 10

−100

−80

−60

−40

−20

0

PSfrag replacements

f in kHz

|H
3
,e

(
f
)
|

in
dB

0 2 4 6 8 10

−100

−80

−60

−40

−20

0

PSfrag replacements

f in kHz

|H
3
,e

(
f
)
|

in
dB

Figure 7: Frequency response of band 3 of the even £lterbank with
N=32 and L = 4 (left) resp. L = 8 (right).

FIR £lters are usually truncated si-signals ( sin x
x

) weighted by
an appropriate window function. There are no restrictions for the
choice of the window function. Selection criteria for this choice
are the ¤atness of the valid passband (between the dashed lines in
£gure 7) and the suppression of aliasing components in the stop-
band (between the doted lines in £gure 7). The behavior in be-
tween these bands is not important.

5. PERFORMANCE AND RESULTS

The performance of this implementation is a trade-off between
computational effort, delay and distortion. Their interrelations and
measurements at a real-time implementation are discussed in this
section.

5.1. Delay, distortion and computational effort

Delay and distortion are directly related to the £lterbank. Convolu-
tion with a FIR lowpass £lter of length LN causes a delay of LN

2
samples. Since the complete implementation in £gure 6 consists
of an analysis and a synthesis £lterbank a delay of δt = LNT
occurs, where T denotes the sampling interval.

As the downsampling produces images of the complex har-
monics and as the length of the FIR £lters is £nite, we have to tol-
erate a minor distortion (see also £gure 9 in the next section). The
intensity of the distortion is mainly determined by the £lter length
multiplierL. A £lter length of 4N suppresses any image by at least
Smin = 45dB, a £lter length of 8N by at least Smin = 75dB (see
£gure 7). This suppression is independent from the order N of the
£lterbank.

The aim of the £lterbank implementation is the reduction of
the computational cost. To estimate the computational cost we can
calculate the number of needed multiplications per sample (MPS).
For the direct implementation we need three real multiplications
per real harmonic and sample,

MPSd = 3 ·Nh . (8)

The computational cost of the £lterbank implementation is di-
vided into the implementation of the subsampled complex harmon-
ics and into the constant computational effort for the £lterbank.
The recursive systems themselves, that implement the real har-
monics, need 6 ·Nh real multiplications per subsampled time step.
Both £lterbank implementations need two Fast Fourier Transfor-
mations (FFTs) and 2N £lter implementations of lengthL per sub-
sampled time stamp. However, as the upper half of the DFTs input
is zero, we can skip the £rst N

2
butter¤ies of the FFTs, so what we

only need N
2
(log2N − 1) complex multiplications per FFT. The
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Figure 6: Overview of the complete even £lterbank system for excitation in one point with the excitation function f e[k] and one output
function y[k]. Each channel includes a set of recursive systems, denoted by the thick lines. The weighting factors A0 and AN

2
−1 include

the excitation point dependency, the transformation kernel K(x, β̃µ), and the norm factor Nµ (see section 2.3).

real analysis £lter implementations need L real multiplications per
channel and time stamp. The synthesis £lters for the even £lter-
bank needs L real multiplications for each channel, as we only
need the real part of its output. But the complex £lters of the odd
£lterbank need 2L real multiplications. In summation the average
and peak number of real Multiplications Per Sample (MPSf ) for
the complete system is calculated to

MPSf = 6
Nh

N
+ 8(log2N − 1) + 5L . (9)

5.2. Measurements and Results

For the purpose of testing and veri£cation a real-time application
was programmed. Both, the direct implementation as well as the
£lterbank implementation of an oscillating membrane (see [10])
are realized as a plugin of the audio application Mustajuuri (see
[4]).

In the £rst measurement, the number of membrane harmon-
ics was reduced to one and the base pitch of the membrane was
set to 200Hz for £gure 8 resp. 1kHz for £gure 9. Furthermore,
the membrane was excited by an impulse, so that a sine wave was
achieved. Figure 8 compares the temporal behavior of the result-
ing sine wave. For the direct implementation, the synthesized sine
wave with a frequency of 200Hz starts immediately after the excit-
ing impulse at t = 0. The £lterbank implementation with N = 32
channels and a £lter length multiplier of L = 4 is delayed by
δt = 5.8ms (sampling interval T = 1/44100s), what is in perfect
line with the results in section 5.1.

The next £gure illustrates the minimum suppression Smin of
the aliasing components. As it can be seen in £gure 9 subsampling
causes N

2
− 1 = 15 images of the original 1kHz sine wave. For

L = 4 the minimum suppression Smin is 45dB and for L = 6 it is
65dB, which is suf£cient for most listening conditions.

To conclude the presentation of the £lterbanks performance,
the simulation of the lowest guitar string with about Nh = 268
audible real harmonics was assumed and tested. The following
table shows the trade-off between delay δt, distortion (denoted
by the minimum aliasing suppression Smin in dB) and computa-
tional ef£ciency. The computational ef£ciency is denoted by G,

0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

PSfrag replacements

t in ms

y
(
t
)

0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

PSfrag replacements

t in ms

y
(
t
)

Figure 8: Sine signal with a frequency of 200Hz, realized directly
(left) and with a 32 channel polyphase £lterbank and L = 8
(right).
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Figure 9: Spectrum of a sine with a frequency of 1kHz, realized
with a N = 32 channel polyphase £lterbank for L = 4 (left)
resp. L = 6 (right).

the quotient of the computational cost for the direct implemen-
tation divided by the computational cost for the £lterbank imple-
mentation. It is given as a theoretically achievable maximum value
Gmax = MPSd

MPSf
and the value Gm which has been measured di-

rectly on the real-time implementation. To calculate Gmax, the
number of audible harmonicsNh (268 for the lowest guitar string),
and the number of channels N , and the £lterlength multiplier L
was inserted in equation (9) resp. equation (8) to achieve the num-
ber of real multiplications per sample (also included in the table).
For the measurement of Gm, the number of membrane harmonics
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was simply set to 268.

parameters performance

N L δt Smin MPS Gmax Gm

direct 0.02 ms 120 dB 804 1 1
16 4 1.45 ms 45 dB 145 5.5 3
16 6 2.18 ms 65 dB 155 5.2 2.8
32 4 2.9 ms 45 dB 103 7.8 5.4
32 6 4.35 ms 65 dB 113 7.1 5.2
32 8 5.8 ms 75 dB 123 6.5 5
64 4 5.8 ms 45 dB 86 9.3 9.1
64 6 8.7 ms 65 dB 87 9.2 9.1

The real-time implementation of the £lterbank is obviously
slowed down by a non-negligible amount of overhead, which is
not included in equation (9). Nethertheless, for large numbers of
harmonics we achieve even more computational ef£ciency. We
were able to simulate the membrane with over 10000 harmonics at
the cost of 8.7ms of delay and non audible distortion (parameters
N = 64, L = 6).

6. CONCLUSIONS

This paper introduced a new approach for the ef£cient implemen-
tation of sound synthesis by physical modeling. It described the
solution of partial differential equations with the FTM and gave
a polyphase £lterbank implementation of this solution. Measure-
ments at a real-time implementation of an oscillating membrane
have shown the practical relevance of this method and its advan-
tages. The implementation with polyphase £lterbanks gives the
system designer more freedom, for trade off between distortion,
delay and computational effort. So it is possible to calculate spa-
tial two-dimensional systems with over 10000 harmonics with non
audible distortion (< 65dB) and non audible delay (< 10ms) in
real-time.

This research has been funded by the European Commission
within the IST-project ALMA (Algorithms for the Modelling of
Acoustic interactions).
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