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Abstract. For a set of five moderate disturbance events, we
calculate the total number of He+ ions removed the plasma-
sphere using calibrated global EUV images. In each of the
events, between∼0.6 and 2.2×1030 He+ ions are removed
from a region of the inner magnetosphere fromL= 1.5 to
5.5. This loss constitutes between 20% and 42% of the ini-
tial He+ distribution. The lost percentage is correlated with
the number of hours of strongly positive solar wind electric
field (Ey > 2.5 mV/m). Also, the total amount of material
removed from the plasmasphere is estimated by using sev-
eral values of the He+ to H+ number density ratio. The total
mass lost is found to be in the range of 20 to 80 metric tons al-
though for each individual case the estimate can vary by over
50% depending on assumed density ratio. We also attempt
to distinguish between losses to the ionosphere and losses to
the dayside boundary layers by estimating losses interior and
exterior to the newly formed plasmapause boundary. For the
events studied, losses inside the new plasmapause constitute
between 24% to 54% of the total number of He+ ions lost.

Keywords. Magnetospheric physics (Electric fields; Plasma
convection; Plasmasphere)

1 Introduction

The plasma that populates the Earth’s vast magnetospheric
cavity originates from two sources, the ionosphere and the
solar wind. Within the inner magnetosphere, the plasmas-
phere acts as a massive intermediate reservoir of ionospheric
plasma. On a diurnal cycle, solar illumination on the dayside
of the Earth results in an up-flow of ionospheric material that
fills plasmaspheric flux tubes (e.g.,Park, 1970, 1974a; Chap-
pell et al., 1971; Galvan et al., 2008). On the nightside of
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the Earth, the ionosphere rapidly recombines, and a down-
ward flow from the plasmasphere acts to partially maintain
the nocturnal ionosphere (Park, 1970; Zhang et al., 1999;
Galvan et al., 2008).

During geomagnetic storms, a more dramatic redistribu-
tion of plasmaspheric plasma occurs. Enhanced magneto-
spheric convection strips away the outer layers of the plas-
masphere, and the combined action of convection and coro-
tation leads to the formation of a plasmaspheric drainage
plume in the afternoon local time sector (e.g.,Grebowsky,
1970; Spasojevic et al., 2003). Solar wind-driven convec-
tion may be aided by internal coupling processes that pro-
duce fast but latitudinally narrow westward flow channels in
the dusk sector (e.g.,Anderson et al., 2001; Foster and Vo,
2002). These fast flows may significantly increase the rate of
plasma transport from the duskside plasmasphere to the day-
side magnetosphere during geomagnetic disturbances (Gold-
stein et al., 2003a). Using whistler data during a geomagnetic
storm, Park (1970) estimated that∼ 3×1031 electrons and
ions were removed from the plasmasphere, more than half
the plasma stored in the quiet time plasmasphere, based on
removal of essentially all plasma in a belt extending globally
from L = 3.5 to 5.

In addition, significant plasma depletions occur interior to
the new plasmapause boundary (Park and Carpenter, 1970;
Park, 1973; Carpenter et al., 1993; Chi et al., 2000) Flux
tubes inside the shrinking plasmapause remain on closed
drift paths and thus losses are likely not due to convec-
tion. In order to explain the plasmaspheric density reduc-
tions as well as nighttime enhancements in the mid-latitude
ionosphere,Park(1971) first proposed a draining of the flux
tubes along the magnetic field lines and consequent dump-
ing of plasma into the ionosphere. Enhanced convection
during storms moves nightside plasmaspheric plasma from
higher to lower L-shells with smaller volumes, thus increas-
ing the plasma pressure in the magnetic flux tube and down-
ward plasma fluxes. This draining from the plasmasphere
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may contribute significantly to the positive enhancements ob-
served in the nightside mid-latitude ionosphere (Park, 1974b;
Jakowski et al., 1990; Szuszczewicz et al., 1998). However,
other studies have provided different thoughts to the inter-
pretation.Clilverd et al.(2000) questioned if the downward
flux could suffice or sustain long enough to explain the ob-
served plasmaspheric depletion. Studies byChi et al.(2000)
andKawano et al.(2006) have conjectured that the internal
depletion of the plasmasphere could be due to the reduced
level of ionospheric outflow during concurrent negative iono-
spheric storms.

The large scale redistribution of cold plasma during storm
intervals has wide ranging implications for a variety of other
magnetospheric and ionospheric processes. Storm-time plas-
maspheric structures have been found to be strongly associ-
ated with ionospheric density features, and specifically plas-
maspheric plumes have been linked to the ionospheric storm
enhanced density (SED) feature as well as polar cap patches
(Su et al., 2000; Foster et al., 2002, 2004). Within the inner
magnetosphere, the distribution of cold plasma directly af-
fects resonant wave-particle interactions and thus profoundly
influences energetic particle distributions (e.g.,Horne et al.,
2005; Spasojevic et al., 2005). Eroded plasmaspheric mate-
rial is transported sunward and is regularly observed near the
dayside magnetopause boundary (Freeman, 1969; Carpenter
et al., 1993; Chen and Moore, 2006). Here, the enhanced
dayside plasma density may limit the rate of reconnection
(through a reduction in the Alfv́en speed) and thus influ-
ence the global convection pattern (Hesse and Birn, 2004;
Chen and Moore, 2006; Borovsky and Denton, 2006). Af-
ter reaching the dayside magnetopause, plasmaspheric mate-
rial can then be transported on reconnected field lines over
the polar cap and down the magnetotail (Su et al., 2000,
2001a,b). It is unclear what portion of the formerly plas-
maspheric material is drained down the magnetotail and lost
to the solar wind as opposed to entering the plasma sheet and
being eventually recirculated into the inner magnetosphere
(Freeman et al., 1977; Elphic et al., 1997; Borovsky et al.,
1997). Plasma sheet ion density and composition measure-
ments (e.g.,Lennartsson and Shelley, 1986) suggest that al-
though some fraction of this eroded plasmaspheric material
may join the plasma sheet, the vast majority of it is likely
lost to the solar wind before the field line reconnects in the
distant magnetotail.

In order to further understand the potential influence of
plasmaspheric material on other magnetospheric processes,
it is important to quantify the amount of material removed
from the inner magnetosphere during disturbance intervals.
Previous attempts to quantify plasmaspheric losses during
storms have relied on projections based on local measure-
ments (Park, 1970; Elphic et al., 1997; Foster et al., 2004).
Here we use data collected by the global plasmaspheric im-
ager that operated onboard the IMAGE spacecraft (Burch,
2000) in order to make true global estimates of plasmas-
pheric losses. For a set of five moderate disturbance inter-

vals, we calculate the global loss of plasmaspheric He+ ions
(the second most abundant plasmaspheric species). We re-
late the total loss to degree of solar wind driving, specifi-
cally, the solar wind electric field. Further, we attempt to
estimate the amount of material lost inside versus outside the
new plasmaspause boundary. Finally, using several estimates
of the He+ to H+ density ratio, we calculate the total mass of
material removed from the inner magnetosphere during the
events.

2 Observations

The Extreme Ultraviolet (EUV) imager (Sandel et al., 2000)
provided the first global images of the Earth’s plasmasphere
(e.g.,Sandel et al., 2001, 2003). EUV imaged the He+ dis-
tribution in the inner magnetosphere by detecting resonantly
scattered 30.4-nm solar radiation. The intensity of the de-
tected emission is directly proportional to the He+ column
density along the line of sight from the spacecraft (located
at high altitude above the Northern Hemisphere polar cap)
through the plasmasphere. The images are calibrated using
the instrument response and the 30.4 nm solar EUV flux as
measured by the SOHO CELIAS/SEM and TIMED/SEE in-
struments such that the color scale indicates the He+ column
density (ions per cm2). The uncertainty in the EUV sensitiv-
ity is estimated to be±25%.

The EUV images are mapped to the Solar Magnetic (SM)
equatorial plane using a dipole field model and the minimum-
L technique ofRoelof and Skinner(2000). The minimum-L
technique maps each pixel of the EUV image to the equato-
rial crossing of the minimum dipoleL-shell along the line of
sight. This technique is applicable since densities in the plas-
masphere rapidly fall with increasingL-shell, and thus the
innermost regions penetrated by a given line of sight con-
tribute the most to the observed 30.4-nm intensity (Sandel
et al., 2003). Nevertheless, there are contributions to the col-
umn density from higherL values mapped at any given equa-
torial pixel. This becomes important for estimates of loss in-
side the new plasmapause location in Sect.5. We also note
that the mapping of images to the equatorial plane first re-
quires that the Earth’s center position be manually selected,
a procedure which constitutes a small source of uncertainty
in the mapping.

Since the EUV technique relies on solar illumination, the
column density values in the shadow of the Earth are in-
valid. For the May/June 2001 period, we find that the Earth’s
shadow primarily affects the images (reduces the nightside
intensity) out to a radial distance of about 3.5RE. Beyond
that distance, the image intensity appears to be insensitive to
the shadow possibly as a result of the large dipole tilt during
those months. In addition, the instrument has some residual
sensitivity at longer wavelengths. At low altitudes, the im-
ages are contaminated by atmospheric He 58.4-nm and O+

53.9-nm emissions. Therefore, for the analysis performed

Ann. Geophys., 28, 27–36, 2010 www.ann-geophys.net/28/27/2010/



M. Spasojevic and B. R. Sandel: Plasmaspheric losses 29

18 Jun 01 02:53 UT +14.1 hrs

 

 

lo
g 

H
e+

 C
ol

um
n 

D
en

si
ty

, c
m

−
2

10.5

11

11.5

00:00 03:00 06:00 09:00 12:00 15:00 18:00
−5

0

5

UT

E
y,

 m
V

/m

Solar Wind Electric Field, Ey

Fig. 1. Equatorially mapped EUV images of the plasmasphere before the disturbance onset (left) and at the beginning of the disturbance
recovery (right) for 18 June 2001 with the sun being to the right of the images. The image has been masked out forL < 1.5, L > 5.5, and
in the Earth’s shadow region. The white circle indicatesL = 4. The images are calibrated and the gray scale indicates the log of the He+

column density. The bottom panel is the solar wind electric field,Ey, derived from ACE spacecraft measurements and the two vertical bars
indicate the times of the two images.

here, the region inside 1.5RE and in the shadow of the Earth
extending to 3.5RE is masked out. In addition, the images
are masked outside of 5.5RE in order to compare identical
viewing areas for all events.

3 Event analysis

Five disturbance periods are examined in order to study the
global loss of plasmaspheric material. These events were se-
lected from a relatively active solar interval in 2001 and also
at a time when the apogee of IMAGE was high in the North-
ern Hemisphere and thus the EUV field of view contained the
majority of the plasmasphere in a near-equatorial projection
for a long period of time. The event periods are 8–9 May
2001 (minimum Sym-H =−72 nT), 28 May 2001 (−48 nT),
2 June 2001 (−47 nT), 18 June 2001 (−84 nT) and 26 June
2001 (−33 nT). For each disturbance, two EUV images were
selected, one from before or near the disturbance onset and
another from near the end of the main phase or the begin-
ning of recovery. The two images were selected one orbit
apart with the requirement that at all magnetic local times,
L ≤ 5.5 was within the field of view. The total time between
the “before” and “after” images was between 12.4 and 15.5 h
for each of the five events.

Figure1 shows an example from 18 June 2001. The EUV
image at 02:53 UT (left panel) captured the He+ distribu-

tion in the plasmasphere before the disturbance onset. The
plasmasphere is expanded with the plasmapause located be-
yond 4RE (white circle) at most local times. The image
from ∼14.1 h later (right) captured the beginning of the re-
covery phase. The plasmapause has been eroded to lowL

and the remnant of a plasmaspheric plume (e.g.,Spasojevic
et al., 2003; Goldstein and Sandel, 2005) can be seen at dusk.
Qualitatively, a comparison of the two EUV images shows
that a large volume of plasma has been removed especially
from the outer plasmasphere. Of particular interest is that
in the noon sector, plasma has been eroded down toL ' 2.
The lower panel of Fig.1 shows the solar driving during the
intervening time between the images. Plotted is the solar
wind electric field,Ey that is the solar wind velocity GSM
x-component,vx, times the GSM z-component of the IMF.
These data were obtained from the ACE MAG (Smith et al.,
1998) and SWEPAM (McComas et al., 1998) instrument and
time shifted to the magnetopause. The solar wind electric
field is a proxy indicator for the strength of magnetospheric
convection (e.g.,Shepherd, 2007). During the intervening
time between the two images, the IMFBz had been strongly
southward for many hours, corresponding to a positive value
of Ey. A plasmaspheric plume had formed in the afternoon
sector and after the northward IMF turning at∼15:00 UT,
began to rotate across dusk.
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Fig. 2. Same as Fig.1 for the other 4 study intervals.
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Fig. 3. The initial and final He+ abundance as well as the loss
percentage for each of the five events.

The other four events are displayed in Fig.2. As can be
seen, both the initial and final distribution of He+ ions in the
plasmasphere is highly variable from event to event, both in
terms of the radial extent of the plasmapause as well as the
density of plasma interior to the boundary.

3.1 Calculation of He+ losses

For each of the five disturbance periods, the total number
of He+ ions in the plasmasphere before and after the distur-
bance was calculated. This was done by integrating the He+

column density over the entire equatorial plane (excluding
the masked out regions). Figure3 shows the initial and fi-
nal number of He+ ions in the inner magnetosphere for each
event. The events are ordered by the He+ loss percentage,
that is the fraction of the initial distribution of He+ that was
removed during the event interval. The initial amount of He+

in the inner magnetosphere for these events was on the order
of ∼3.4–4.3×1030 ions and∼20–40% of the initial distri-
bution was removed within a period of 12.4–15.5 h. Table1
also lists the percentage of He+ ions lost and the total number
of He+ ions lost for each event. The number of ions lost also
includes an estimate of the error associated with the measure-
ment based on the uncertainty in the EUV sensitivity. The
total number of He+ ions lost is in range of∼0.6–2.2×1030

for the five events studied. In this analysis, we have made
no attempt to account for the expected dayside refilling nor
nightside depletion of plasmaspheric material. Our calcu-
lations simply represent the total change in the He+ content
between the two images. We also note that there may be con-
tributions to the column density along the line of sight from
IMAGE that are outside the plasmasphere. However, these
contributions are expected to be small, i.e., significantly less
than the uncertainty in the EUV sensitivity.
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Fig. 4. (a)A histogram of the solar windEy during each of the disturbance intervals.(b) The relationship between the percentage of He+

lost during the event and the number of hours ofEy≥2.5.

Table 1. Summary of the loss calculations for the five disturbance periods.a The total ions lost calculation uses theα ratio from (Craven
et al., 1997).

Event % He+ Lost He+ Ions Lost Total Ions Losta Ey ≥2.5 mV/m

2 Jun 2001 20.3% 0.8±0.2×1030 1.9±0.5×1031 2.0 h
26 Jun 2001 26.3% 0.9±0.2×1030 1.9±0.5×1031 3.3 h
28 May 2001 31.8% 1.4±0.3×1030 2.9±0.7×1031 6.7 h
8 May 2001 32.1% 1.4±0.3×1030 2.2±0.5×1031 6.4 h
18 Jun 2001 41.9% 1.8±0.4×1030 2.3±0.6×1031 8.1 h

4 Correlation of the loss withEy

An attempt was made to correlate the percentage of He+ lost
to various geophysical parameters such as the magnetic in-
dices Kp and Dst as well as solar wind parameters number
density, velocity, and IMF. The best correlation was found
with the strength and direction of the IMFBz component and
similarly the derived quantity solar windEy. This result is
perhaps not surprising given that global magnetospheric con-
vection is driven by magnetic field line reconnection between
oppositely directed solar wind and terrestrial magnetic fields.

Figure4a shows a histogram of the value ofEy during the
disturbance interval (time between the solid vertical lines in
Figs.1 and2). Occurrence is defined as the number of 16 s

samples in each range ofEy values. The events have been
ordered from top to bottom by decreasing total percentage
loss. For the event with the lowest percentage loss, 2 June
2001, the values ofEy are distributed among positive and
negative values, with a low occurrence of strongly positive
values. As the loss percentage increases so does the occur-
rence of positiveEy, and the event with highest loss percent-
age has a peak in the histogram forEy= 4 mV/m. Figure4b
shows a linear relationship between the total number of hours
of Ey≥2.5 mV/m and the loss percentage. A 2.5 mV/m so-
lar wind electric field is equivalent to a solar wind velocity
vx = −500 km/s and an IMFBz= −5 nT. The total number of
hours ofEy>0 did not correlate with loss percentage as well
since the 3 middle events (28 May 2001; 8 May 2001; and 26
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18 Jun 2001 Final Plasmapause Location

Fig. 5. The EUV images for 18 Jun 2001 with the final plasmapause
location selected in the right image (red line) and overlaid on the
initial plasmasphere image on the left (dashed red line).

June 2001) all had more total hours ofEy>0 than the largest
loss event (18 June 2001). Nevertheless, the many hours of
strongly positiveEy appear to be important in contributing to
the large loss percentage on 18 June 2001.

5 Estimation of the partitioning of losses

Next, we make a first order estimate the amount of He+

lost inside versus outside the new plasmapause boundary. In
the second of the two images for each case, a plasmapause
boundary is manually selected using the technique ofGold-
stein et al.(2003b) with the exception that the plasmapause
must be single valued at a given local time. The selected
plasmapause location for 18 June 2001 event is shown in the
right panel of Fig.5, and the final plasmapause location is
overlaid on the initial image in the left panel. As can be
seen, the restriction of the single valued plasmapause causes
the plasmaspheric plume, located near 18 MLT, to be some-
what artificially cut off. In order to select the single valued
plasmapause near the plume region, we follow the western
edge of the plume until it begins to curve to earlier local
times and then draw the boundary across the plume to its
eastern edge. Once the boundary is selected, the losses are
calculated on either side of the final plasmapause location.
Figure6 shows the total number of He+ ions that were lost
inside versus outside of the newly established plasmapause
boundary. For example, for the 18 June 2001 event, 76% of
the loss is estimated to have occurred outside the boundary
while the remaining 24% of the loss occurred inside. For all
except the 2 June 2001 event, a greater percent of the total
loss occurred outside the new plasmapause.

The calculation of the partitioning of the losses inside ver-
sus outside of the plasmapause is considered a first order
estimate for several reasons. First of all, losses within the
shadow region are not accounted for. For each event, the
shadow region is almost entirely contained within the new
plasmapause and comprises∼8–14% of the area inside that
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Fig. 6. The total number of He+ ions removed from the plasma-
sphere is broken down by the estimated amount lost inside versus
outside the new plasmapause boundary. For example on 18 June
2001, 76% of the plasma loss occurred outside the new plasma-
pause boundary.

boundary. Thus, we expect that as a result of a lack of mea-
surements in the shadow region, the percentage of the loss
occurring within the plasmapause is under-estimated using
the current technique. On the other hand, the minimum-
L technique used in mapping the images to the equatorial
plane includes in every pixel contributions from field lines
at higherL. This will then result in an over-estimate of the
losses inside the new boundary. The effect of the image map-
ping could be partially overcome through image inversion,
which would produce a three-dimensional density distribu-
tion. However, this procedure also has uncertainty, since the
inversion inherently depends on the assumed field aligned
distribution. Even after the inversion, densities in the shadow
region would be unknown. In the end, we believe that our
first order estimate of the loss partitioning is a reasonable
one based the competing uncertainties in the calculation.

6 Estimation of the total mass of material lost

Next, we estimate the total number of ions as well as the
mass of material lost from the plasmasphere for each of the
disturbed periods. For this calculation, an assumption needs
to be made as to the relative concentration of He+ to the other
ion species, primarily H+ and O+. One simple approach
is to use a constant density ratio between species through-
out the entire plasmasphere. However, a more accurate esti-
mate can be made by using an empirical relationship derived
from a statistical study of data from the retarding ion mass
spectrometer (RIMS) on the Dynamics Explorer spacecraft
(Craven et al., 1997).

Using DE-1/RIMS data over a 3.25 year period cover-
ing both high and low solar activity,Craven et al.(1997)
examined the He+ to H+ number density ratio defined as
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Fig. 7. The He+ to H+ density ratio from theCraven et al.(1997)
formula as a function of radial distance for the minimum (P = 135)
and maximum (P = 172) solar activity of the five study intervals.

α ≡
nHe+

nH+

and found thatα is primarily a function of geocentric dis-
tance and the solar EUV input. The ratio appeared to have no
dependence on geomagnetic activity, and a weak dependence
on local time, season, latitude andL value. The authors em-
pirically derived the follow expression for the ratio:

log10α = −1.541−0.176r +8.557×10−3P

−1.458×10−5P 2 (1)

wherer is geocentric radial distance inRE andP is a proxy
measure of solar activity defined by

P =
F10.7+F10.7A

2

whereF10.7A is the 81-day average of the daily 10.7-cm solar
flux (F10.7).

Figure7 shows the density ratio computed using Eq. (1)
for the minimum (P = 135) and maximum (P = 172) solar
activity of the five study intervals. Based on this dependence
of α on RE and since EUV measures only the He+ content,
using a constant density ratio will tend to overestimate the
total number density at small radial distances and underesti-
mate the total number density at larger radial distances.

For each of the five study intervals, the total mass of
plasma removed from the plasmasphere was estimated 3
different ways: 1) using Eq. (1) 2) using a constant ratio
α = 0.10, 3) usingα = 0.05. Unfortunately, a large statistical
evaluation of the O+ concentration is not currently available.
Thus, we use a constant H+ to O+ density ratio of 0.01 for
all three estimates consistent with case studies byHorwitz
et al.(1990). The total mass was calculated as the sum of the
total masses of H+, He+, O+ ions with an equal number of
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electrons. As can be seen in Fig.8, the total mass removed
from the plasmasphere for the moderate disturbance events
is rather large, on the order of several tens of metric tons. It
is important to note that the choice ofα can cause the total
estimated mass to vary significantly. When using a constant
ratio, the total mass loss scales linearly with He+ mass lost
(show below the event date). However, the initial plasma dis-
tribution as well as the He+ mass lost contributes to the total
mass lost when using Eq. (1). For example, on both the 28
May 2001 and 8 May 2001 events, about 9.2 metric tons of
He+ was lost, and thus when using the constant ratio, the
total mass lost is similar between the two events. However,
when estimating the total mass lost using Eq. (1), the 28 May
2001 loss estimate is∼15 tons higher than 8 May 2001. This
result is due to the fact that the initial plasma distribution
on 28 May 2001 (Fig.2) extends to higher radial distances
where the He+ distribution underestimates the total distribu-
tion according toCraven et al.(1997). Table1 lists the total
number of ions removed from the plasmasphere, using the
Craven et al.(1997) formula and along with an estimate of
the associated error in the measurement based on the EUV
sensitivity. For the events examined here, the total number of
ions lost is in the range of∼1.4–2.9×1031.

7 Summary

For a set of moderate disturbance periods (none with Sym-
H< −100 nT), we calculate the total amount of He+ removed
from the plasmasphere using calibrated global EUV images.
In each of the events, between∼0.6 and 2.2×1030 He+ ions
are removed from a region of the inner magnetosphere from
L = 1.5 to 5.5. This loss constitutes between 20% and 42%
of the initial He+ distribution. The lost percentage is cor-
related with the number of hours of strongly positive solar
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wind electric field (Ey>2.5 mV/m). From these calculations,
the total amount of material removed from the plasmasphere
is estimated by using several values of the He+ to H+ number
density ratio. The total mass lost is found to be in the range
of 20 to 80 metric tons although for each individual case the
estimate can vary by over 50% depending on assumed den-
sity ratio.

Plasma removed from the plasmasphere during distur-
bance periods is either transported to the dayside boundary
layers or lost to the ionosphere. Although in the current anal-
ysis we cannot distinguish between these two mechanisms,
we did attempt to estimate the loss inside versus outside the
new plasmapause boundary. For the events studied, losses
inside the new plasmapause constitute between 24 and 54%
of the total number of He+ ions lost confirming past local
reports of significant internal plasmasphere depletion dur-
ing storms (Park and Carpenter, 1970; Park, 1973; Carpenter
et al., 1993; Chi et al., 2000)

The calculations presented here were based on global plas-
maspheric data, and our results are consistent with previous
projections of plasmaspheric losses based on local measure-
ments. Park (1970) estimated plasmaspheric losses during a
storm to be∼ 3×1031 electrons based whistler data indicat-
ing the removal of plasma in a belt extending fromL = 3.5
to 5. Similarly in our study, we estimate that the total num-
ber of ions lost from the plasmasphere varied from∼ 1.4 to
2.9×1031 using the He+ to H+ density ratio formulated by
Craven et al.(1997) although we note that our estimate in-
cludes the range ofL = 1.5 to 5.5. Several studies have es-
timated the rate at which plasma within the plasmaspheric
plume is transport sunward during disturbance intervals.El-
phic et al.(1997) used geosynchronous measurements of ion
density and an estimated convection speed to project that ions
could be transported out of the inner magnetosphere at a rate
of 0.37× 1027 ions/s. Similarly,Foster et al.(2004) used
ground-based radar measurements and an EUV measurement
of column densities in the plume during a large storm event
to estimate a loss rate of 1.5×1027 ions/s. To compare to the
current study, we can calculate the average loss rate by divid-
ing the total number of ions lost by the number of hours of
Ey>2.5 mV/m (see Table1) and further assuming that on av-
erage 65% of the ions lost are transported toward the dayside
boundary layers (mean value of our estimated losses outside
the new plasmapause, see Fig.6). Thus, we estimate a aver-
age loss rate of∼ 0.38−2.1×1027 ions/s consistent with the
Elphic et al.(1997) andFoster et al.(2004) studies.

In conclusion, solar-wind driven magnetospheric convec-
tion results in a massive redistribution of cold plasma in the
magnetosphere with several tens of metric tons of material
being removed from the plasmasphere even for relatively
modest storm intervals. The quantification of loss performed
here is an important step in understanding the implications of
this mass redistribution on other magnetospheric and iono-
spheric processes including wave-particle interactions, day-
side reconnection, and magnetosphere-ionosphere coupling.
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