
Chapter I - Molecular Symmetry

1.1 Symmetry Operations and Elements in Molecules
You probably remarked at one time or another, " that looks symmetrical."  What does it

mean when an object, such as a pyramid, painting, tree, or molecule has symmetry? This chapter
explores the notion of symmetry quantitatively. This first requires the definition of symmetry
operations and symmetry elements for a molecule.

Symmetry Operation:  A transformation in three-dimensional space that preserves the size
and shape of a molecule, and which brings it into an orientation in three dimensional space
physically indistinguishable from the original one, is called a symmetry operation.

Symmetry Element: The geometrical plane, point, or axis associated with a particular
symmetry operation or set of symmetry operations.

Inversion Operation. One of the simplest symmetry operations encountered is the inversion
operation, whose element is a single point in space. This operation puts a premium on the ability to
recognize the origin of the coordinate system where all symmetry elements intersect. Several
examples of molecules that contain inversion centers appear in Figure 1.1.

Figure 1.1.  Examples of molecules that contain an inversion center
                 a) dioxygen; b) sulfur hexafluoride; c) octachlorodi-
                 rhenate(III) ion.
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A center of inversion may be located at the center of an atom, such as on sulfur in SF6, or between a
pair of inversion related atoms; for example, midway between the O-O bond in O2 or the Re-Re
bond in Re2Cl82-. The inversion operation, denoted i, derives its name because it takes an  atom
with coordinates (x,y,z) and transforms them to  the inverted position (-x,-y,-z). The easiest way to
perform this operation is to draw a line between an atom and the inversion center and then to
continue this line an equal distance through the inversion center. For example in Figure 1.1 the
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three pairs of F atoms in SF6, and the four pairs of Cl atoms related by the inversion operation have
been denoted with subscripts 1,2, 3, and 4.

You might remark, "Wait a minute!  The 6 F in SF6 and 8 Cl in Re2Cl82- are all equivalent."
That is correct, but the inversion, operation only relates pairs of atoms, or the unique sulfur atom to
itself. Additional symmetry operations that belong to these molecules need to be introduced before
the complete picture emerges. Some molecules that look highly symmetrical lack an inversion
center, as shown in Figure 1.2 for tetrahedral TiCl4. Application of the inversion operation centered
at Ti produces an orientation distinguishable from the original one. The chlorine atoms in the
drawing have been subscripted to illustrate where the inversion operation moves them.

Figure 1.2. Illustration of the lack of an inversion center in a
                 tetrahedral molecule, such as TiCl4.
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Other examples of molecules that lack an inversion center include BF3, HCl, and trigonal
bipyramidal Fe(CO)5.

Reflection and Rotation Operations in the Water Molecule. All possible symmetry elements
in the water molecule can be described with the coordinate system defined in Figure 1.3. In this
coordinate system, the molecule lies in the yz plane and the x axis emerges from the plane of the
paper toward you. This book uses right-handed coordinate systems unless specified otherwise. A
right-handed coordinate system is oriented such that the vector cross product z=yxx . The
direction of z  is given by your thumb when curling the fingers of your right hand from the tip of
vector x  toward y  

Reflection in the molecular yz plane of the water molecule leaves the atoms in identical
positions. Therefore the reflection operation, denoted ŝ(yz), is a symmetry operation. A carat
symbol ^ above operations distinguishes them from elements. The geometric yz plane represents
the symmetry element associated with the operation ŝ(yz). An operation can be defined by its effect
on a point (x,y,z) in space. A mirror plane operation reflects an object from one side of the plane to
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the other. For the water molecule, with the specified coordinate system, the x axis lies perpendicular
to the plane (Figure 1.3). Therefore, the effect of the operation is to invert the sign of the x
coordinate and leave the y and z coordinates unchanged. In mathematical parlance, ŝ(yz) (x,y,z) =
(-x,y,z).   It is important to note that the choice of coordinate system is arbitrary. Convention is to
always choose z to lie along the principal rotation axis. The origin may lie at the central atom or
center of mass along z. The orientation of x and y are chosen for convenience, as will be apparent
later.
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Figure 1.3.  Water molecule with defined coordinate system.
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The molecular plane is not the only mirror plane in the water molecule!  Consider the x
plane perpendicular to the plane of the figure, which bisects the H-O-H bond angle. Reflection in
this plane interchanges the two hydrogen atoms (Figure 1.4) but leaves oxygen at the origin.
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Figure 1.4.  Reflection in the xz plane.
Because the two hydrogen atoms are chemically identical, the configuration obtained after the
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reflection operation cannot be distinguished from the original one. Therefore ŝ(xz) is also a
symmetry operation and the xz plane is a symmetry element. In the isotopically labeled system
HDO, the ŝ(xz) would not be a symmetry operation, but ŝ(yz) would remain a symmetry
operation.

Figure 1.5.  Rotation in the xz plane.
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For H2O another symmetry operation exists, rotation by 180o (either clockwise or
counterclockwise) around the z axis (Figure 1.5), which is a symmetry operation denoted Ĉ2(z).
The associated symmetry element, the C2 axis, is the line along z. This operation, which
interchanges the two equivalent hydrogen atoms, may seem to produce the same result as ŝ(xz);
however, a rotation operation differs fundamentally from a reflection operation.

Rotation around the z axis by 180o changes both the x and y coordinates (x,y,z) Æ (-x,-y,z),
but reflection in s(xz) only inverts the y coordinate normal to the plane. Because the x coordinates
of the H atom nuclei are zero, the rotation operation appears to cause the same net effect as the
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reflection; however, this is not true for the electron density distribution in the water molecule. The
region of electron density around H that lies above the plane of the figure (x > 0) remains above the
plane of the figure when ŝ(xz) is applied. The Ĉ2(z) operation moves the electron cloud for x > 0
around a H atom to below the plane of the Figure (x < 0) after rotation. A clearer indication of the
difference between Ĉ2(z) and ŝ(xz) is their effect on a px orbital of oxygen. Recall that a px orbital
has a positive lobe for x > 0 and a negative lobe for x < 0, as shown in the lower left part of Figure
1.5. The Ĉ2 operation interchanges the positive and negative lobes of px (i.e., px Æ -px), but ŝ(xz)
would leave the orbital unchanged (px Æ px). Thus, the difference between the Ĉ2(z) and ŝ(xz) is
physically meaningful for the three-dimensional water molecule. It is important that the novice
transform the idealized two-dimensional projections in this book for point atoms into three-
dimensional reality with the aid of molecular models.

The set {Ĉ2(z), ŝ(yz), ŝ(xz)} spans the entire collection of possible symmetry operations
and associated symmetry elements for the water molecule. The C2 axis in water lies along the
intersection of the two mirror planes. When mirror planes contain the principal rotation axis of a
molecule they are donated sv or s__ The complete set of symmetry elements for the water molecule
can be represented as drawn in Figure 1.6.
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Figure 1.6.  Water molecule with associated symmetry elements.

The choice of coordinate system in any problem is arbitrary, but usually it takes advantage
of the inherent symmetry. For molecules, the conventional origin of the coordinate system lies at the
center of mass. This point in space can be related to the symmetry elements present. The symmetry
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operations of finite bodies in three-dimensional space leave at least one point of the body fixed. All
symmetry elements intersect at this point. Before we consider symmetry operations in a systematic
fashion let's examine a few more examples of molecular symmetry.

Multiple Rotation Axes in Molecules. The next degree of complexity in molecular symmetry
hinges on the ability to recognize the presence of several rotation axes in molecules. While the
absolute sense of a rotation (clockwise or counterclockwise) is as arbitrary as the choice of
coordinate system, it is important to be consistent. Positive rotations are assumed to be
counterclockwise in this text. For the general case of rotation in increments of a degrees about a
symmetry axis, the multiplicity of the Cn axis, n, is given by 360o/a. For a square planar molecule,
such as Ni(CN)42- in Figure 1.7, rotation in 90o increments (90o, 180o, 270o, and 360o = 0o) about
the z axis emerging from the plane of the paper constitutes the set of operations associated with the
C4 symmetry axis.
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Figure 1.7. Rotation axes in square planar Ni(CN)42-.
The z axis of the coordinate system is usually taken to lie along the highest symmetry rotation axis.
The symmetry operations associated with the C4 axis are denoted Ĉ41, Ĉ42, Ĉ43, and Ĉ44 for
successive rotations by 90o, 180o, 270o, and 360o. Further rotation by 90o increments beyond 360o
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is equivalent to one of the preceding operations (e.g., 90o = 360o + 90o = 470o); the periodicity of
rotation around a circle always brings one back to the starting point at 0o. An important exception
may occur for imaginary functions associated with odd-electron spin systems. A discussion of
these complications occurs in Chapter 8.The operations of the C4 axis include the 180o and 360o

rotations, which require the presence of a C2 axis. A simple way to recognize this is to reduce the
exponent m and denominator n of a Ĉnm operation by division with their greatest common divisor,
i.e. Ĉ42 = Ĉ21 = Ĉ2. Notice in this last example that the superscript 1 doesn't have to be written
explicitly. The highest symmetry axis in a molecule, such as C4 in the above example, is the
principal rotation axis. A C4 axis by necessity contains the operations of a coincident C2 axis.

The 0o or 360o rotations, which do nothing, are given the special symbol Ê for the identity
operation. All symmetry operations must give the identity operation when raised to some power.
The minimum power necessary to generate the identity operation defines the order of an
operation. For example, reflection in a mirror plane an even number of times does nothing, and so
ŝ2 = ŝ4 = ... = Ê. Applying the inversion operation an even number of times also generates the
identity operation. Thus, Ĉ4 is an operation of order four and ŝ is an operation of order two, as is
the inversion operation. The identity operation (order 1) acquires greater importance in the
mathematics of symmetry groups.

For molecules that contain an obvious Cn axis, it is important to become adept at
recognizing whether n C2 axes lie in a plane perpendicular to the principal rotation axis. In the plane
of the Ni(CN)42- ion of Figure 1.7, there are four C2 axes labeled C2(a) - C2(d). One pair, C2(a)
and C2(b) seem equivalent, since they pass through opposite cyanide ligands. The other pair, C2(c)
and C2(d), bisect the C-Ni-C angles. Rotation about any of these axes by 180o brings the molecule
into a position that is indistinguishable from the original one. The concept of equivalent C2 axes,
such as C2(a) and C2(b), is an important one. Sets of equivalent symmetry operations derived from
equivalent symmetry elements form a class. Thus, Ĉ2(a) and Ĉ2(b) belong to one class and Ĉ2(c)
and Ĉ2(d) to another class. A Cn axis will always contain either zero or n perpendicular C2 axes .
For even n these  axes, if present, often fall into two classes each containing n/2 operations that
are denoted Ĉ2´  and C2´´^

. For odd n all the n Ĉ2´  operations belong to the same class.
The Ni(CN)42- ion contains several mirror planes that can be grouped into different classes.

A unique mirror plane lies in the plane of the molecule. The important distinguishing feature is that
the mirror plane lies perpendicular to the principal C4 rotation axis. A mirror plane, which lies
perpendicular to a principal rotation axis of the molecule, is denoted sh. Next consider mirror
planes that contain the principal rotation axis. The mirror plane sv(a) contains both the C4 axis and
C2(a) and emerges from the plane of the figure. This mirror plane interchanges the right and left
halves of the molecule. This operation resembles ŝv(b), which contains the C4 axis and C2(b), and
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which reflects the top and bottom halves of the molecule into one another. Both the sv(a) and sv(b)
planes belong to the same class. The other pair of equivalent mirror planes contain the C4 axis, and
either C2(c) or C2(d). These planes, which bisect the C-Ni-C bond angles, are termed dihedral
mirror planes, sd(a) and sd(b). A Cn axis always contains either zero or n mirror planes . For even
n these  planes, if present, fall into two classes with each containing n/2 operations that are
denoted sv and sd. For odd n all the n̂s v operations belong to the same class. The choice of
which class is denoted ŝv and which ŝd is arbitrary, similar to the choice of coordinate system. This
can lead to confusion if two people approach the same problem with different conventions. Before
leaving the present example take note of the inversion center in Ni(CN)42-. The list of symmetry
elements in this molecule includes a principal C4 axis, a sh, 2sd, 2sv, 2C2', 2C2", and ̂i .

Figure 1.8 illustrates the rotation axes present in a planar species that contains an odd order
rotation axis, such as the planar carbonate ion. The rotation and reflection symmetry elements of 
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Figure 1.8.  Rotation axes in trigonal planar CO 3
2 - as

viewed down the C 3 axis .

this molecule are the C3 axis emerging from the plane of the drawing, a sh, 3 C2´ axes
perpendicular to the principal rotation axis (which belong to the same class) and 3 equivalent sv
planes in the same class, which contain the C3 axis and one of the C2 axes. In planar molecules, the
possibility of C2 axes perpendicular to the principal Cn axis were easy to recognize. For nonplanar
molecules, the presence of perpendicular C2 axes may be difficult to visualize.
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Consider an octahedral complex, which contains three bidentate ligands, such as Co(en)33+

[en = ethylenediamine ] or Ga(acac)3 [acac = acetylacetonate]. Frequently we will only be
concerned with pseudosymmetry of a particular fragment in a large molecule or solid. For
example, if one wishes to describe the crystal field splitting of the d orbitals in Co(en)33+ then the
symmetry of the coordination environment about the cobalt(III) ion is most important. For metal
ions doped in solids (e.g. Cr3+ in Al2O3 - the ruby laser) a useful approximation of their electronic
environment is obtained by considering the symmetry of the first coordination sphere (frequently
called the site symmetry of the ion).

The effective symmetry about the metal ion in Co(en)33+ can be described by the simplified
sketch of Figure 1.9. In this model a curved line represents the (CH2)2 groups linking
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Figure 1.9.  Rotation axes in Co(en)3
3+ a) shows one C2 axis

                  and b) the two C2 axes perpendicular to the first.

Co

N6

N2N5

N1

N3

N4

Co

N4

N3

N1

N5 N2

N6

the two NH2 fragments. This model is reasonable because only the lone pair orbitals on the two
nitrogens of ethylenediamine interact with cobalt. The hydrocarbon backbone linking the amine
groups, as well as the hydrogen atoms bound to nitrogen, do not interact with the metal ion - at least
to a first approximation. You might have wondered why we even bothered to add the lines linking
pairs of N atoms in our model. Without them the pseudosymmetry about cobalt would conform to
a perfect octahedron. One effect of the chelate ring that must be considered is the deviation of the
N-Co-N angles from the ideal octahedral value of 90o, because of geometric constraints imposed by
the CH2 linking groups. The lines joining the N atoms help represent the inequivalent angles (and
therefore distances) between pairs of nitrogen atoms. Figure 1.9a depicts a C2 axis, whose
associated operation interchanges N1 with N2, N3 with N4, and N5 with N6. With some three-
dimensional thinking it is apparent that two other C2 axes lie perpendicular to the first one (Figure
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1.9b). The wise reader will examine a molecular model to better visualize this problem in three-
dimensions. For nonplanar molecules, the use of models is essential for the novice.

X

Figure 1.10.  Illustration of the absence of reflection planes in Co(en)3
3+.
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It should be apparent that the symmetry of Co(en)33+ resembles that of a 3-blade propeller. Those
who are unaccustomed to geometric thinking can acquire this ability with the use of models. Careful
inspection of Figure 1.9 and a molecular model shows that this structure possesses no mirror
planes (nor an inversion center). For example, Figure 1.10 illustrates the absence of a possible
mirror plane in a CoN4 plane because it brings the complex ion into an orientation different from
the original one.

Symmetry Aspects of Eclipsed vs. Staggered Conformations - Rotoreflection Axes. Consider the
rotation axes present in molecules that can exist in eclipsed or staggered conformations. The
Re2Cl82- ion adopts an eclipsed geometry in the ground state (Figure 1.11).
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Figure 1.11.  Rotation axes in the eclipsed Re2Cl82-structure .
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In addition to the principal C4 rotation axes, two C2´axes lie perpendicular to the C4 axes. Also, in
the plane of the two C2´ axes lie two C2´´ axes, which are sketched in the right half of the figure.
The C2" axes may appear less obvious than the first two; however, if there is one C2 axis
perpendicular to a Cn axis then there must be n-1 more to find.

The rotation axes present in molecules that exist in a staggered conformation are subtle.
Consider the Re2Cl82- ion in an excited-state staggered conformation, as shown in Figure 1.12.
The presence of a C2' axis perpendicular to the C4 axis, which passes through the midpoint of the
Re-Re bond, is apparent in the end on projection shown in Figure 1.12. The subscripts on the Cl
atoms indicate pairs of atoms interchanged by operation of the designated C2' axis. There will be
four such C2' axes passing through the midpoint of the Re-Re bond. Their location is given by
bisecting the Clback-Re-Re-Clfront dihedral angles in the two-dimensional projection similar to that
for the first such axis. Whenever one encounters a molecule with a staggering of atoms about an
origin, then a careful search must proceed for C2 axes, which interchange atoms between the two
staggered halves. These axes need not be oriented along bond directions as found for the C2" axes
in Figure 1.11 and the C2' axes in Figure 1.12.
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Figure 1.12.  Rotation axes in staggered Re2Cl82- - the drawing
on the right is viewed end on down the Re-Re axis.
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The eclipsed-staggered conformational problem also illustrates a new kind of symmetry element,

the rotoreflection or improper rotation axis, which is given the symbol Ŝn . In the eclipsed
conformation, Re2Cl82- possesses a sh plane, which interchanges the opposite equivalent halves of
the molecule. In the staggered conformation no such plane exists. But if the molecule is rotated by
45o, and then subjected to a sh operation, then the opposite (staggered) halves are interchanged.
This product, illustrated in Figure 1.13, amounts to multiplication of a rotation operation, Ĉ360/45

= Ĉ8, and a reflection ŝh, although neither the Ĉ8 nor ŝh operations exist independently!
Therefore, the product Ĉ8ŝh represents a new symmetry operation, denoted Ŝ8. The Ŝ nm

operation, is generally defined as the product, Ĉ nmŝ h.

shC8

Figure 1.13.  Improper rotation (rotoreflection) S8 symmetry operation
                   in staggered Re2Cl82- viewed down the Re-Re axis.

Cl6

Re Re

Cl8
Cl4

Cl7

Cl1

Cl2

Cl3

Cl5

Cl3 Cl2

Cl1

Cl6 Cl6

Re

Cl1Cl5

Cl7

Cl4

Cl2

Cl8

Cl3

Cl5Cl7

Cl4
Cl8

Although molecules, which adopt a staggered configuration, provide the most striking
examples of Sn axes these symmetry operations are present in tetrahedral and octahedral molecules
as well. Figure 1.14 shows tetrahedral TiCl4 viewed down one of its three S4 axes, and SF6 viewed
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down one of its four S6 axes. Again the feature to recognize is the staggering of the front and back
substituents.

Figure 1.14.  View down the coincident C2 and S4 axes of TiCl4 
                    and down the C3 and S6 axes of SF6.
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Independent existence of a Cn axis and sh clearly requires the presence of an Sn element according
to the definition. Therefore the carbonate ion of Figure 1.8 possesses an S3 axis in addition to the
symmetry elements described earlier. The simplest example of an Ŝn operation is Ŝ2, which is given

the special symbol î  to denote inversion. With a good physical sense for the symmetry operations
possible in molecules, it is now appropriate to be systematic in the classification of symmetry
properties of finite arrangements of atoms.

1.2  Symmetry Point Groups
Group theory is a mathematical formalism that can be used to classify a set of elements

according to their "multiplication" properties. For the applications in this book, the "elements" will
be the complete set of symmetry operations for a molecule. Given some set of elements {q̂1, q̂2, . . .,

q̂n} and a law for group "multiplication" qi.qj, then {q̂1, q̂2, . . ., q̂n} constitute an abstract group, G,
of order n if:
1) The set is closed under group multiplication; i.e., if q̂i and q̂j belong to G then (q̂i.q̂j) = q̂l is

also contained in G.
2) Group multiplication is associative; that is, q̂i(q̂jq̂k) = (q̂iq̂j)q̂k.
3) The set contains an identity, by convention ordered as the first element, q̂1 = ê such that êq̂j

= q̂j ê = q̂j.
4) If q̂i  is contained in set G, then there exists a q̂k in G such that  q̂iq̂k = q̂kq̂i = e. The

operation  is called the inverse of  q̂i and denoted q̂i-1 = q̂k.
It is not necessary that group multiplication be commutative (i.e., q̂iq̂j = q̂jq̂i need not hold);

however, those special groups for which multiplication does commute are called Abelian. The
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order of a group can be infinite, an example being the set of integers with group multiplication
defined as addition. It is important to recognize that the process of "multiplication" is defined for
the operators of a group and need not be restricted to normal scalar multiplication. The behavior of
group elements with respect to "multiplication" can be defined in the form of a multiplication table
shown below.

q̂1 q̂2 ... q̂j q̂n
                                                                 
q̂1 .

.

q̂2 .

q̂i . . . (q̂iq̂j)
q̂n

The element in the i'th row and j'th column equals q̂iq̂j (note the order q̂iq̂j and not  q̂jq̂i is the
convention adopted in this text). For example, consider the group of order three defined by the
multiplication table below.

q̂1 q̂2 q̂3
                                           
q̂1 q̂1 q̂2 q̂3

q̂2 q̂2 q̂3 q̂1

q̂3 q̂3 q̂1 q̂2

You may verify that {q̂1, q̂2, q̂3} constitute an Abelian group of order three. Commutativity is
easily recognized by the symmetry of the multiplication table about the diagonal. By convention, the
group identity is ordered as the first element q̂1 and given the special symbol ê. Therefore, the first
row and first column in the table merely repeat the labeling. This redundancy can be omitted from
in the abbreviated version of the multiplication table shown below.

ê q̂2 q̂3
                             
q̂2 q̂3 ê
q̂3 ê q̂2

An example of Abelian groups that will be important in later applications is the set of cyclic
groups. The cyclic group of order n can be generated from the element, a, that satisfies the
following conditions:
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1) â1 ≠ . . . ≠ ân uniqueness of the powers of a ≤ n under a group multiplication.
2) ân = ê, the element a is of  order n..
Given these properties, the set of elements { â, â2, â3, . . ., ân} comprise an Abelian group of order
n. Now systematically consider abstract groups of low order.

The trivial group of order 1 consists solely of the identity element ê. There is but a single
group of order two.

ê â ê ŝ
                       =                
â ê ŝ ŝ2   =   ê

There are no other possibilities, since that shown below does not satisfy closure.
ê â
              
â b̂

If a molecule possesses a mirror plane as its only symmetry element (e.g. CH2ClBr), then it is
isomorphic to this group termed Cs . Other symmetry point groups that are isomorphic to the group
of order two are defined by molecules that only contain a C2 axis (denoted C2) or molecules that
only contain an inversion center (denoted Ci ). For order three, there is again only one group
possible, the cyclic one shown below.

ê â b̂
                           
â b̂ ê
b̂ ê â

If you have trouble seeing why this is cyclic, verify that in an abstract sense the above group
multiplication table is equivalent to the following.

â3 = ê â â2

                                               
â â2 â3 (note â2 â2 = â3 â = ê â= â
â2 â3 â and we define â2 ≡ b̂)

No matter how one chooses to represent the group of order three, although the symbols may differ,
the structure of the group multiplication table (in other words, the abstract group) remains the same.
If two groups have the same structure, that is, if there is a one-to-one correspondence between
elements of the group multiplication tables, then the groups are said to be isomorphic. All groups
of order 2 and 3 are isomorphic to the cyclic groups of order 2 and 3, respectively. Herein lies the
great power of group theoretical methods. Once the behavior of the cyclic group of order 3 has
been specified, then because of isomorphism, the properties of all groups of order 3 are known.
Before defining these properties, consider groups of order 4. The cyclic group may be constructed
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as in the preceding examples; however, there exists another group of order 4 distinct from the cyclic
one, which has the multiplication table shown.

ê â b̂ ĉ
                                      
â ê ĉ b̂
b̂ ĉ ê â
ĉ b̂ â ê

All groups of order 4 are isomorphic to one of these two groups. The latter group often is referred
to as the Vieregruppe (German for four-group) and given the symbol V . Notice that both are
Abelian.

The water molecule has a symmetry group isomorphic to the Vieregruppe (Figure 1.3-1.6).
The multiplication table can be partly constructed with the initial observation that all elements, Ĉ2,
ŝv(xz), and ŝv(yz), are of order two.

ê Ĉ2 ŝv(xz) ŝv(yz)
                                                               
Ĉ2 ê
ŝv(xz) ê
ŝv(yz) ê

The operations on a point (x,y,z) in space can be used to compute the product operations.

Ĉ2
-x
-y
 z

x
y
z

        

^ x
y
z

 x
-y
 z

sv(xz)

        

ŝv(yz)
-x
 y
 z

x
y
z

Therefore

   

^^^Ĉ2sv(xz)
x
y
z

=   C2
 x
-y
 z

-x
 y
 z

= 
x
y
z

sv(yz)= = 
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The overall effect is the same as ŝv(yz) and therefore Ĉ2ŝv(xz) = ŝv(yz). It is very important to
recognize that x,y,z are mere variables. The equation defining C2 means to invert the x and y
coordinates. That is why in computing the product operation yields.

^ = 
-x
 y
 z

 x
-y
 z

    C2

An alternative method for determining product operations employs a visual approach. This
employs an asymmetrical object, such as a comma, and how it moves under the various symmetry
operations. It is important to use a comma, instead of a period, to distinguish right- and left-handed
images involved in reflections. The sequence Ĉ2ŝ(xz) can be represented as shown in Figure 1.15.
The solid comma represents a position above the plane of the page and a hollow one represents a
position below the plane of the page. The commas in the left- and rightmost figures are related by
reflection in the plane of the page.

Figure 1.15.  The product C2sv(xz) = sv(yz), note that a solid comma
                    represents above the yz plane and the hollow comma
                    denotes below the yz plane.
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This approach can be used to complete the multiplication table shown below:

ê Ĉ2 ŝv(xz) ŝv(yz)
                                                                           
Ĉ2 ê ŝv(yz) ŝv(xz)
ŝv(xz) ŝv(yz) ê Ĉ2

ŝv(yz) ŝv(xz) Ĉ2 ê

This group, which contains Ĉ2 and 2ŝv, is denoted C2 v.
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It is possible for a group to contain a group!  If the elements {e,a,b, . . .} contained in group
G comprise a group under the same law of multiplication used in G, then the set is said to be a
subgroup of G. The group G and the identity e are trivial subgroups, and denoted improper
subgroups of G. All other subgroups are called proper. For example, the cyclic group of order two
is a proper subgroup of the Vieregruppe, as may be verified from the multiplication tables discussed
earlier. In the C2v group, there are three subgroups of order two that consist of the identity
operation and either Ĉ2, ŝv(xz), or ŝv(yz).

Conjugate Classes and Equivalent Symmetry Operations. Special relations may exist
between different elements in a group. If the relation n-1an = b holds for a, b, and n as elements of a
group G, then a and b are said to be related by a similarity transformation. Group elements related
by a similarity transform are said to belong to the same class. Since every element in a group G has
an inverse, then for any element n:

n-1n = n n-1 = e
Consider the product  n-1an, where a also belongs to G. If the group is Abelian, n-1an = an-1n = ae
= a, and every element occurs in a class by itself. In the Abelian group C2 v each operation (even
ŝv(xz) and ŝv(yz)) belongs to a different class. When the group is not Abelian na ≠ an for all
possible combinations of elements. In particular, assume that n and a are two elements that do not
commute. The product n-1an will equal some other element, say b, of G.

n-1an = b
Element b is then said to be conjugate to element a of G. The above operation sometimes is called
a similarity transformation of element a. Physically, the effect of the operation n-1an on a function
f is to change f by operation n, then by operation a, and then undo the change due to n  Intuitively
one expects that b must be an operation of a "similar nature" to a. In molecular symmetry groups,
similar reflection, rotation, and improper rotation operations often can be segregated into classes of
reflections, rotations, and improper rotations. It is useful to arrange the elements of a group into
elements that are conjugate to each other. These sets of equivalent group elements are called
conjugate classes  and elements that belong to different classes commute.

Subgroups and Cosets. An important observation owing to Lagrange is that the order of a
subgroup of a finite group is an integral divisor of the order of the group. The proof runs as
follows. Take the group G of order n and consider the restrictions on the subgroup H of order h. If
H is a trivial subgroups, e.g., G or e, then h is either n/1 or n/n respectively. If H constitutes a
proper subgroup, then consider an element i that is an element of G but not contained in H. Let the
elements of H be denoted {e, H2 H3 . . . Hh}. The collection of products {i.e., iH2, iH3, . . . iHh} is
called the left coset of H and abbreviated as iH. The elements of iH cannot be elements of H since
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iHk = Hj implies that iHkHk-1 = HjHk-1 or that i belongs to H. A similar rule defines the right coset
Hi. If the set of elements eH + iH does not contain all the elements in G, then continue to choose
some element j that belongs neither to H or to iH. At some point 'p' G can be expressed as a sum of
left cosets of H.

G = eH + iH + jH + . . . + pH

Therefore, the order n of G must be some integral multiple of the order h of subgroup H. The order
of an element a is defined as that integral power for which aq = e the identity element. A corollary of
Lagrange's theorem is that the order of an element in a group G of order n must be some integer
divisor of n. This restriction on the elements is very helpful in constructing all possible groups of
order n.

Thus, for a group of order 4 the order of symmetry elements can only be 4, 2, or 1. The
cyclic group C4 , formed by the operations of a molecule with a single C4 axis, illustrates the case
where the order of elements are four (Ĉ44 = ê), two ((Ĉ42)2 = Ĉ44 = ê), and one ( ê). The C2 v

group provides an example where the elements are only of order two (Ĉ2 and 2ŝv) and one ( ê).

Just as a similarity transformation could be applied to an operator, consider the action on a
subgroup H.

n-1Hn = {e, n-1H2n, ..., n-1Hhn}

This set of elements also constitutes a subgroup of G since,

(n-1Hin)(n-1Hjn) = (n-1HiHjn)

and the closure requirement follows because HiHj also must be an element of H. Verification of the
remaining group properties is left as an exercise. When n-1Hn = H then H contains elements in
complete classes. It is called an invariant subgroup. For example, the identity and one ~v from the
point group C3v is not an invariant subgroup, of C3v, since it contains only one of the three ~v

elements.


