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Abstract 

This thesis examines the performance of five option pricing models with respect to the pricing of 

barrier options. The models include the Black-Scholes model and four stochastic volatility 

models ranging from the single-factor stochastic volatility model first proposed by Heston (1993) 

to a multi-factor stochastic volatility model with jumps in the spot price process. The stochastic 

volatility models are calibrated using four different loss functions to examine the loss functions 

effect on the resulting barrier option prices. Our results show that the Black-Scholes model yields 

significantly different prices than the stochastic volatility models for barriers far from the current 

spot price. The prices of the four stochastic volatility models are however very similar. We also 

show that the choice of loss function for parameter estimation has little effect on the obtained 

barrier option prices. 
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1. Introduction 

Ever since the presentation of the famous Black & Scholes model [7], academics and 

practitioners have made numerous attempts to relax the restrictive assumptions that make the 

model inconsistent with observed prices in the market. Particular interest has been directed 

towards the assumption of constant volatility, which makes the model unable to generate non-

normal return distributions and the well-known volatility smile, consistent with empirical 

findings on asset returns [12]. 

Examples of extensions of the Black-Scholes model include models that allow for stochastic 

volatility and jumps in the underlying return process. Many different models have been proposed, 

ranging from single-factor stochastic volatility models, to multi-factor models with log-normally 

distributed jumps in the stock price process as well as stochastic interest rates (see e.g. [3], [4], 

[5], [11], [19] and [27]). 

In a recognized paper, Schoutens, Simons & Tistaert [23] show that although there are many 

option pricing models available that very accurately can explain observed prices of plain vanilla 

options, the models may produce inconsistent prices when applied to more exotic derivatives. In 

this thesis, we extend the results of [23] by conducting a similar analysis with four stochastic 

volatility models, including two multi-factor stochastic volatility models not examined in [23]. 

All four models allow for non-normal return distributions and non-constant volatility and have 

proven to be effective in the pricing of plain vanilla call and put options (see e.g. [3], [5] and 

[23]). We also extend the estimation technique by calibrating the models using four different loss 

functions, and examine how the choice of loss function potentially affects the pricing 

performance of the models.  

To estimate the model parameters, we use the same data set as in [23], i.e. the implied volatility 

surface of the Eurostoxx 50 index on the 7
th

 of October 2003. Using the estimated model 

parameters, we analyze the models’ pricing performance with respect to the commonly traded 

exotic options called barrier options, and compare the obtained prices using the different models 

and loss functions.  

Our results show that the prices of barrier options differ significantly between the Black-Scholes 

model and the stochastic volatility models. We also show that the choice of loss function for 

estimation of model parameters in the stochastic volatility models have little effect on the 

resulting barrier option prices. 

1.1. Barrier options 

A barrier option is a path-dependent option whose pay-off at maturity depends on whether or not 

the underlying spot price has touched some pre-defined barrier during the life of the option. In 

this thesis, we will limit our attention to four of the most common barrier options, namely up-

and-in (UI), up-and-out (UO), down-and-in (DI) and down-and-out (DO) call options. 
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To describe the pay-off structures of the barrier options, define the maximum and the minimum 

of the spot price process 𝑆 =  𝑆𝑡 , 0 < 𝑡 < 𝑇  as 𝑚𝑆 = inf   𝑆𝑡 ; 0 < 𝑡 < 𝑇  and 𝑀𝑆 =

sup   𝑆𝑡 ; 0 < 𝑡 < 𝑇 . 

The UI call option is worthless unless the underlying spot price 𝑆 hits a pre-determined barrier 

𝐻 > 𝑆0 during the life of the option, in which case it becomes a standard call option. Hence, its 

pay-off at maturity is: 

 Φ𝑈𝐼 𝑆𝑇 ,𝑀𝑆 =  𝑆𝑇 − 𝐾 +𝟏(𝑀𝑆 ≥ 𝐻) (1.1) 

where 𝟏(𝑀𝑆 ≥ 𝐻) is an indicator function equal to one if 𝑀𝑆 ≥ 𝐻 and zero otherwise. 

For the UO call option, the relationship is reversed: the UO call option is a standard call option 

unless the underlying spot price hits the barrier, in which case it becomes worthless: 

 Φ𝑈𝑂 𝑆𝑇 ,𝑚𝑆 =  𝑆𝑇 − 𝐾 +𝟏(𝑚𝑆 < 𝐻) (1.2) 

For DI and DO call options, the barrier 𝐻 is set below the spot price at inception, 𝐻 < 𝑆0. The 

pay-off structures of the DI and DO options follow analogously: the DI call option is worthless 

unless the barrier 𝐻 is reached some time during the life of the trade, in which case it becomes a 

plain vanilla call option. The DO option, on the other hand, is a standard call option unless the 

spot price reaches the lower barrier during the life of the option, in which case it becomes 

worthless. The pay-off structures of the DI and DO call options are: 

 Φ𝐷𝐼 𝑆𝑇 ,𝑚𝑆 =  𝑆𝑇 −𝐾 +𝟏(𝑚𝑆 ≤ 𝐻) (1.3) 

 Φ𝐷𝑂 𝑆𝑇 ,𝑀𝑆 =  𝑆𝑇 −𝐾 +𝟏(𝑀𝑆 > 𝐻) (1.4) 

2. Model presentation 

We will assume that the reader has a basic knowledge of the basic Black-Scholes framework and 

will thus refrain from describing the Black-Scholes model in detail. The interested reader is 

referred to [21] for an economic outline and to [6] for a description of the mathematical 

framework. 

For all models, we consider the risk-neutral dynamics of the stock price. We let 𝑆 =

 𝑆𝑡 , 0 ≤ 𝑡 ≤ 𝑇  denote the stock price process and 𝜑𝑇(∙) denote the characteristic function of the 

natural logarithm of the terminal stock price 𝑠𝑇 = log 𝑆𝑇 , where log ∙  denotes the natural 

logarithm function. The constants 𝑟 and 𝛿 will denote the, both constant and continuously 

compounded, interest rate and dividend yield, respectively. Further, we let 𝑊𝑡
ℚ

 denote a ℚ-

Wiener process. 
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2.1. Stochastic volatility model (SV) 

Many different stochastic volatility models have been proposed, but we will limit our attention to 

the Heston [19] stochastic volatility model, henceforth denoted SV, in which the spot price is 

described by the following stochastic differential equations (SDEs) under ℚ: 

 
𝑑𝑆𝑡
𝑆𝑡

=  𝑟 − 𝛿 𝑑𝑡 +  𝑉𝑡𝑑𝑊𝑡
ℚ (1)

 (2.1) 

 𝑑𝑉𝑡 = 𝜅 𝜃 − 𝑉𝑡 𝑑𝑡 + 𝜍 𝑉𝑡𝑑𝑊𝑡
ℚ  2 

 (2.2) 

 𝑑𝑊𝑡
ℚ  1 𝑑𝑊𝑡

ℚ  2  = 𝜌𝑑𝑡 (2.3) 

where 𝑉𝑡  is the stochastic variance and the parameters 𝜅, 𝜃, 𝜍 and 𝜌 represent the speed of mean 

reversion, the long-run mean of the variance, the volatility of the variance process and the 

correlation between the variance and stock price processes, respectively. In addition to these 

parameters, the model requires the estimation of the instantaneous spot variance 𝑉0. 

Using the same representation of the parameters as in equations (2.1) – (2.3), the characteristic 

function of 𝑠𝑇  takes the following form: 

 𝜑𝑇
𝑆𝑉 𝑢 = 𝑆0

𝑖𝑢𝑓(𝑉0 ,𝑢,𝑇) (2.4) 

where 

 𝑓 𝑉0,𝑢,𝑇 = exp 𝐴 𝑢,𝑇 + 𝐵 𝑢,𝑇 𝑉0  (2.5) 

 𝐴 𝑢,𝑇 =  𝑟 − 𝛿 𝑖𝑢𝑇 +
𝜅𝜃

𝜍2
 (𝜅 − 𝜌𝜍𝑖𝑢 − 𝑑)𝑇 − 2 log 

1 − 𝑔𝑒−𝑑𝑇

1 − 𝑔
   (2.6) 

 𝐵 𝑢,𝑇 =
 𝜅 − 𝜌𝜍𝑖𝑢 − 𝑑

𝜍2
 

1 − 𝑒−𝑑𝑇

1 − 𝑔𝑒−𝑑𝑇
  (2.7) 

 𝑑 =   𝜌𝜍𝑖𝑢 − 𝜅 2 + 𝜍2(𝑖𝑢 + 𝑢2) (2.8) 

 𝑔 = (𝜅 − 𝜌𝜍𝑖𝑢 − 𝑑)/(𝜅 − 𝜌𝜍𝑖𝑢 + 𝑑) (2.9) 

 

2.2. Stochastic volatility model with jumps (SVJ) 

We extend the SV model in the previous section along the lines of [4], by adding log-normally 

distributed jumps to the stock price process. In this model, here denoted SVJ, the return process 

of the spot price is described by the following set of SDEs under ℚ: 

 
𝑑𝑆𝑡
𝑆𝑡

=  𝑟 − 𝛿 − 𝜆𝜇𝐽  𝑑𝑡 +  𝑉𝑡𝑑𝑊𝑡
ℚ (1)

+ 𝐽𝑡𝑑𝑌𝑡  (2.10) 

 𝑑𝑉𝑡 = 𝜅 𝜃 − 𝑉𝑡 𝑑𝑡 + 𝜍 𝑉𝑡𝑑𝑊𝑡
ℚ  2 

 (2.11) 

 𝑑𝑊𝑡
ℚ  1 𝑑𝑊𝑡

ℚ  2 = 𝜌𝑑𝑡 (2.12) 

where 𝑌 =  𝑌𝑡 , 0 ≤ 𝑡 ≤ 𝑇  is a Poisson process with intensity 𝜆 > 0 and 𝐽𝑡  is the jump size 

conditional on a jump occurring. All other parameters are defined as in (2.1) – (2.3). The 

subtraction of 𝜆𝜇𝐽  in the drift term compensates for the expected drift added by the jump 
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component, so that the total drift of the process, as required for risk-neutral valuation, remains 

(𝑟 − 𝑞)𝑑𝑡. 

As mentioned, the jump size is assumed to be log-normally distributed: 

 log   1 + 𝐽𝑡  ~ 𝑁 log   1 + 𝜇𝐽  −
𝜍𝐽

2

2
,𝜍𝐽

2  (2.13) 

Further, it is assumed that 𝑌𝑡  and 𝐽𝑡  are independent of each other as well as of 𝑊𝑡
ℚ (1)

 

and 𝑊𝑡
ℚ (2)

. 

Using the independence of 𝑌𝑡 , 𝐽𝑡  and the two Wiener processes, one can show that the 

characteristic function of the SVJ model is [15]: 

 𝜑𝑇
𝑆𝑉𝐽

(𝑢) = 𝜑𝑇
𝑆𝑉(𝑢) ∙ 𝜑𝑇

𝐽
(𝑢) (2.14) 

where: 

 𝜑𝑇
𝐽 = exp{−𝜆𝜇𝐽 𝑖𝑢𝑇 + 𝜆𝑇((1 + 𝜇𝐽) 𝑖𝑢 exp(𝜍𝐽

2 (𝑖𝑢/2)(𝑖𝑢 − 1)) − 1)} (2.15) 

and 𝜑𝑇
𝑆𝑉(𝑢) is defined as in (2.4). 

2.3. Multi-factor stochastic volatility model (MFSV) 

The multi-factor stochastic volatility model is an extension of the SV model and has been studied 

by e.g. [5] and [10]. We denote the multi-factor stochastic volatility model MFSV and let the 

following set of SDEs describe the return process under the risk-neutral measure: 

 
𝑑𝑆𝑡
𝑆𝑡

=  𝑟 − 𝛿 𝑑𝑡 +  𝑉𝑡
(1)

𝑑𝑊𝑡
ℚ (1)

+  𝑉𝑡
(2)

𝑑𝑊𝑡
ℚ (2)

 (2.16) 

 𝑑𝑉𝑡
 1 = 𝜅1  𝜃1 − 𝑉𝑡

 1  𝑑𝑡 + 𝜍1 𝑉𝑡
 1 𝑑𝑊𝑡

ℚ  3 
 (2.17) 

 𝑑𝑉𝑡
 2 = 𝜅2  𝜃2 − 𝑉𝑡

 2  𝑑𝑡 + 𝜍2 𝑉𝑡
 2 𝑑𝑊𝑡

ℚ  4 
 (2.18) 

where the parameters have the same meaning as in (2.1) – (2.3) and the subscripts 1 and 2 

indicate to which variance process the parameter is related. 

The dependence structure is assumed to be as follows: 

 𝑑𝑊𝑡
ℚ  1  𝑑𝑊𝑡

ℚ  3 = 𝜌1𝑑𝑡 (2.19) 

 𝑑𝑊𝑡
ℚ  2 𝑑𝑊𝑡

ℚ  4 = 𝜌2𝑑𝑡 (2.20) 

 𝑑𝑊𝑡
ℚ  𝑖 

𝑑𝑊𝑡
ℚ  𝑗  

= 0,      𝑖, 𝑗 =  1,2 ,  1,4 ,  2,3 , (3,4) (2.21) 
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In other words, each variance process is correlated with the corresponding Wiener process in the 

return process, i.e. the diffusion term of which the respective variance process determines the 

magnitude. 

By the independence structure described above, the added diffusion term is independent of the 

nested SV model return SDE. Since the characteristic function of the sum of two independent 

variables is the product of their individual characteristic functions, the characteristic function of 

the MFSV model is determined as: 

 𝜑𝑇
𝑀𝐹𝑆𝑉 (𝑢) = 𝔼0

ℚ
 𝑒𝑖𝑢𝑠𝑇  = 𝑆0

𝑖𝑢𝑓  𝑉0
 1 ,𝑉0

 2 ,𝑢,𝑇  (2.22) 

where: 

 𝑓  𝑉0
 1 

,𝑉0
 2 

,𝑢,𝑇 = exp  𝐴 𝑢,𝑇 + 𝐵1 𝑢,𝑇 𝑉0
 1 

+ 𝐵2 𝑢,𝑇 𝑉0
 2 

  (2.23) 

 𝐴 𝑢,𝑇 =  𝑟 − 𝛿 𝑖𝑢𝑇 +  𝜍𝑗
−2𝜅𝑗𝜃𝑗   𝜅𝑗 − 𝜌𝑗𝜍𝑗 𝑖𝑢 − 𝑑𝑗  𝑇 − 2 log 

1 − 𝑔𝑗 𝑒
−𝑑𝑗𝑇

1 − 𝑔𝑗
  

2

𝑗=1
 (2.24) 

 𝐵𝑗  𝑢,𝑇 = 𝜍𝑗
−2(𝜅𝑗 − 𝜌𝑗𝜍𝑗 𝑖𝑢 − 𝑑𝑗 )  

1 − 𝑒−𝑑𝑗𝑇

1 − 𝑔𝑗𝑒
−𝑑𝑗𝑇

  (2.25) 

 𝑔𝑗 =
𝜅𝑗 − 𝜌𝑗𝜍𝑗 𝑖𝑢 − 𝑑𝑗

𝜅𝑗 − 𝜌𝑗𝜍𝑗 𝑖𝑢 + 𝑑𝑗
 (2.26) 

 𝑑𝑗 =   𝜌𝑗𝜍𝑗 𝑖𝑢 − 𝜅𝑗  
2

+ 𝜍 𝑗
2(𝑖𝑢 + 𝑢2) (2.27) 

2.4. Multi-factor stochastic volatility model with jumps (MFSVJ) 

The multi-factor stochastic volatility model with jumps that we use in this paper is a variation of 

the model presented in [5]. However, we use a different approach in the sense that we estimate 

the model to only one day’s data whereas [5] uses a data set spanning over 7 years. We denote 

the multi-factor stochastic volatility model with jumps MFSVJ, and let the risk-neutral stock 

price dynamics be described by the following set of SDEs: 

 
𝑑𝑆𝑡
𝑆𝑡

=  𝑟 − 𝛿 − 𝜆𝜇𝐽 𝑑𝑡 +  𝑉𝑡
(1)

𝑑𝑊𝑡
ℚ (1)

+  𝑉𝑡
(2)

𝑑𝑊𝑡
ℚ (2)

+ 𝐽𝑡𝑑𝑌𝑡 (2.28) 

 𝑑𝑉𝑡
 1 = 𝜅1  𝜃1 − 𝑉𝑡

 1  𝑑𝑡 + 𝜍1 𝑉𝑡
 1 𝑑𝑊𝑡

ℚ  3 
 (2.29) 

 𝑑𝑉𝑡
 1 = 𝜅2  𝜃2 − 𝑉𝑡

 2  𝑑𝑡 + 𝜍2 𝑉𝑡
 2 𝑑𝑊𝑡

ℚ  4 
 (2.30) 

where all parameters and variables are defined as in equations (2.1) – (2.3) and (2.10). The 

distributions of 𝐽𝑡  and 𝑌𝑡  are log-normal and Poisson, respectively, according to equations (2.10) 

and (2.13), and the two variables are independent, both of each other and of the four Wiener 

processes. The dependence structure between the Wiener processes is the same as in the MFSV 

model according to equations (2.19) – (2.21). 
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Due to the independence between the added jump factor and the SDE of the MFSV model, the 

characteristic function of 𝑠𝑇  is obtained in the same way as in the SVJ model, i.e. as the product 

of the jump-term characteristic function and the characteristic function of the MFSV model: 

 𝜑𝑇
𝑀𝐹𝑆𝑉𝐽

(𝑢) = 𝜑𝑇
𝑀𝐹𝑆𝑉 (𝑢) ∙ 𝜑𝑇

𝐽
(𝑢) (2.31) 

where 𝜑𝑇
𝑀𝐹𝑆𝑉(𝑢) and 𝜑𝑇

𝐽  𝑢  are defined in equations (2.22) and (2.15), respectively. 

3. Vanilla option pricing 

3.1. Option pricing in the Black-Scholes model 

One of the most appealing features of the Black-Scholes model is the existence of an analytical 

formula for the pricing of European call and put options. Given that the model parameters 

(essentially 𝜍) are known, the Black-Scholes price of a European call or put option is calculated 

as: 

 𝑃𝑟𝑖𝑐𝑒𝑡
𝐵𝑆 = 𝑆𝑡𝑒

−𝛿(𝑇−𝑡)𝑁 𝜔𝑑1 − 𝜔𝐾𝑒−𝑟(𝑇−𝑡)𝑁 𝜔𝑑2  (3.1) 

where 𝑆𝑡  denotes the spot price, 𝐾 the strike price, 𝑟 the interest rate, 𝑞 the dividend yield, 𝑇 − 𝑡 

the time to maturity and 𝜔 is a binary operator equal to 1 for call options and −1 for put options. 

Further, we have that: 

 
𝑑1 =

log  
𝑆𝑡
𝐾
 +  𝑟 − 𝛿 +

𝜍2

2
  𝑇 − 𝑡 

𝜍 𝑇 − 𝑡
 

(3.2) 

 𝑑2 = 𝑑1 − 𝜍 𝑇 − 𝑡 (3.3) 

in which 𝜍 is the volatility of the spot price.  

3.2. Option pricing in stochastic volatility models 

Assuming that the characteristic function of the log-stock price is known analytically, the price of 

plain vanilla options can be determined using the Fast Fourier Transform (FFT) method first 

presented in [8]. Using this approach, the call price is expressed in terms of an inverse Fourier 

transform of the characteristic function of the log-stock price under the assumed stochastic 

process. The resulting formula can then be re-formulated to enable computation using the FFT 

algorithm that significantly decreases computation time compared to standard numerical methods 

such as the discrete Fourier transform.  

To derive the call price function in the FFT approach, we follow closely the method of [8], while 

also allowing for a continuous dividend yield  𝛿 . Denote by 𝑠𝑇  and 𝑘 the natural logarithm of 

the terminal stock price and the strike price 𝐾, respectively. Further, let 𝐶𝑇 𝑘  denote the value of 

a European call option with pay-off function 𝑓 𝑆𝑇 =  𝑆𝑇 − 𝐾 + =  𝑒𝑠𝑇 − 𝑒𝑘 + and maturity at 

time  𝑇. The discounted expected pay-off under ℚ is then: 
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 𝐶𝑇 𝑘 = 𝔼𝑡
ℚ 𝑒−𝑟𝑇 𝑆𝑇 − 𝐾 + =  𝑒−𝑟𝑇 𝑒𝑠𝑇 − 𝑒𝑘 𝑞𝑇 𝑠𝑇 𝑑𝑠𝑇

∞

𝑘

 (3.4) 

where 𝑞𝑇(𝑠) is the risk-neutral density of 𝑠𝑇 . As 𝑘 tends to −∞, (3.4) translates to: 

 lim
k→−∞

𝐶𝑇 𝑘 =  𝑒−𝑟𝑇𝑒𝑠𝑇𝑞𝑇 𝑠𝑇 𝑑𝑠𝑇

∞

−∞

= 𝑒−𝑟𝑇𝔼𝑡
ℚ 𝑆𝑇 = 𝑆0 (3.5) 

This is on the one hand reassuring, as the price of a call with a strike price of zero should 

equal 𝑆0. On the other hand, in order to apply the Fourier transform to 𝐶𝑇(𝑘) it is required that 

the function is square integrable for all 𝑘, i.e. that   𝐶𝑇 𝑘  
2𝑑𝑠𝑇 < ∞

∞

−∞
 ∀ 𝑘 ∈ ℝ. However, by 

(3.5), as 𝑘 tends to −∞: 

 lim
k→−∞

  𝐶𝑇 𝑘  
2

∞

−∞

𝑑𝑠𝑇 =   𝑆0 
2

∞

−∞

𝑑𝑠𝑇 → ∞ (3.6) 

showing that 𝐶𝑇 𝑘  is not square integrable. This problem is solved by introducing the modified 

call price function: 

 𝑐𝑇 𝑘 = 𝑒𝛼𝑘𝐶𝑇 𝑘  (3.7) 

for some 𝛼 > 0. The modified call price function, 𝑐𝑇(𝑘), is then expected to be square integrable 

for all 𝑘 ∈ ℝ, provided that 𝛼 is chosen correctly. The Fourier transform of 𝑐𝑇 𝑘  takes the 

following form: 

 𝔉 𝑐𝑇(𝑘) =  𝑐𝑇 𝑘 𝑒
𝑖𝜉𝑘

∞

−∞

𝑑𝑘 = 𝜓𝑇 𝜉  (3.8) 

Combining (3.4), (3.7) and (3.8), we obtain: 

 

𝜓𝑇 𝜉 =  𝑒𝑖𝜉𝑘  𝑒𝛼𝑘𝑒−(𝑟−𝛿)𝑇 𝑒𝑠𝑇 − 𝑒𝑘 𝑞𝑇 𝑠𝑇 𝑑𝑠𝑇

∞

𝑘

∞

−∞

𝑑𝑘 

=  𝑒−(𝑟−𝛿)𝑇𝑞𝑇(𝑠𝑇)   𝑒𝑠𝑇+𝛼𝑘 − 𝑒 1+𝛼 𝑘 𝑒𝑖𝜉𝑘𝑑𝑘𝑑𝑠𝑇

𝑠𝑇

−∞

∞

−∞

 

=  𝑒−(𝑟−𝛿)𝑇𝑞𝑇 𝑠𝑇 

∞

−∞

 
𝑒 𝛼+1+𝑖𝜉  𝑠𝑇

𝛼 + 𝑖𝜉
−
𝑒 𝛼+1+𝑖𝜉  𝑠𝑇

𝛼 + 1 + 𝑖𝜉
 𝑑𝑠𝑇 

=
𝑒−(𝑟−𝛿)𝑇

𝛼2 + 𝛼 − 𝜉2 + 𝑖 2𝛼 + 1 𝜉
 𝑒 −𝛼𝑖−𝑖+𝜉 𝑖𝑠𝑇𝑞𝑇 𝑠𝑇 𝑑𝑠𝑇

∞

−∞

 

 (3.9) 
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where 𝜑𝑇(∙) denotes the characteristic function of 𝑠𝑇 . The call price can then be obtained by 

Fourier inversion of 𝜓𝑇(𝜉) and multiplication by 𝑒−𝛼𝑘 : 

 

𝐶𝑇 𝑘 = 𝑒−𝛼𝑘 ∙ 𝔉−1 𝜓𝑇 𝜉  =
𝑒−𝛼𝑘

2𝜋
 𝑒−𝑖𝜉𝑘𝜓𝑇 𝜉 

∞

−∞

𝑑𝜉 =
𝑒−𝛼𝑘

𝜋
 𝑒−𝑖𝜉𝑘
∞

0

𝜓𝑇 𝜉 𝑑𝜉 

≈
𝑒−𝛼𝑘

𝜋
 𝑒−𝑖𝜉𝑗𝑘𝜓𝑇 𝜉𝑗  𝜂

𝑁

𝑗=1

,          𝑗 = 1,… ,𝑁. 
(3.10) 

where 𝜉𝑗 = 𝜂(𝑗 − 1) and 𝜂 is the step size in the integration grid. Equation (3.10) can be re-

written as: 

 𝐶𝑇 𝑘𝑢 =
𝑒−𝛼𝑘𝑢

𝜋
 𝑒−𝑖

2𝜋
𝑁

 𝑗−1  𝑢−1 

𝑁

𝑗=1

𝑒𝑖𝑏𝜉𝑗𝜓 𝜉𝑗  
𝜂

3
 3 +  −1 𝑗 − 𝟏 𝑗 − 1  0    (3.11) 

where 𝑏 = 𝜋/𝜂; 𝑘𝑢 = −𝑏 +  2𝑏 𝑁   𝑢 − 1 , 𝑢 = 1,… ,𝑁 + 1; and 𝟏 𝑥 ℳ is the indicator 

function equal to 1 if 𝑥 ∈ ℳ and 0 otherwise. The term 1/3 ∙  3 +  −1 𝑗 − 𝟏 𝑗 − 1  0   is 

obtained using the Simpson rule for numerical integration. Note that evaluating (3.10) will give 

call prices for a range of strikes  𝑘𝑢 . The grid of strikes will be dependent on the choice of the 

parameters 𝜂 and 𝑁, and call prices for specific strike prices can be obtained e.g. through 

interpolation. 

Now, the idea of writing the call price on the form (3.11) is that it enables the use of the FFT. The 

FFT is an algorithm to efficiently evaluate summations on the form: 

 X 𝑘 =  𝑒−𝑖
2𝜋
𝑁

 𝑗−1  𝑘−1 𝑥(𝑗)

𝑁

𝑗=1

,          𝑘 = 1,… ,𝑁 (3.12) 

With 𝑥𝑗 = 𝑒𝑖𝑏𝜉𝑗𝜓 𝜉𝑗  
𝜂

3
 3 +  −1 𝑗 − 𝟏 𝑗 − 1  0  , (3.11) is a special case of (3.12) and can thus 

be evaluated using the FFT. 

4. Parameter estimation 

In order to use the defined models to price options, we must estimate model parameters under the 

equivalent martingale measure ℚ. As all four stochastic volatility models describe incomplete 

markets, i.e. markets where we have more sources of risk than traded assets, it follows that the 

equivalent martingale measure is not unique [6]. In order to find parameter estimates under the 

equivalent martingale measure, we calibrate the models to fit observed market prices as closely as 

possible in some sense (see Section 4.2 below). As a consequence, the estimated model 

parameters will be according to the market’s choice of ℚ. 
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4.1. Data 

The data set consists of 144 call options written on the Eurostoxx 50 index on the 7
th

 of October 

2003 and is the same data set used in [23]. The options have maturities between one month and 

five years and strike prices ranging from 1082 to 5440, with the spot price being 2461.44. As in 

[23], we also assume a constant interest rate of 3 % and a dividend yield of 0 %. The implied 

volatilities of all options in the data set are shown in Appendix B. Figure 1 shows the implied 

volatility surface spanned by the options in the data set. The surface has been obtained using the 

stochastic volatility inspired (SVI) method introduced in [17]. 

Figure 1 

Implied volatility surface of the Eurostoxx 50 index on the 7
th
 of October 2003 obtained using the 

stochastic volatility inspired (SVI) method described in [17]. 

 

4.2. Loss function 

As discussed in the previous section, all models are defined under the risk-neutral measure. 

Hence, parameter estimates are obtained by calibrating the model to fit observed option prices 

(i.e. by making the model match observed option prices by altering the parameters). More 

formally, optimal parameter estimates under the risk-neutral measure are obtained by solving an 

optimization problem on the form: 
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 Θ = arg min
Θ

𝔏 {𝐶 (Θ)}𝑛 ,  𝐶 𝑛  (4.1) 

where Θ is the parameter vector. {𝐶 (Θ)}𝑛  is a set of 𝑛 option prices obtained from the model, 

 𝐶 𝑛  is the corresponding set of observed option prices in the market and 𝔏 ∙  is some loss function that 

quantifies the model’s goodness of fit with respect to observed option prices. In this thesis, we 

consider four of the most common loss functions found in the literature, namely are the dollar 

mean squared error ($ MSE), the log-dollar mean squared error (L$ MSE) the percentage mean 

squared error (% MSE) and the implied volatility mean squared error (IV MSE): 

 $ 𝑀𝑆𝐸 Θ =
1

𝑛
 𝑤𝑖  𝐶𝑖 − 𝐶 𝑖 Θ  

2
𝑛

𝑖=1

 (4.2) 

 𝐿$ 𝑀𝑆𝐸 Θ =
1

𝑛
 𝑤𝑖

𝑛

𝑖=1

 log 𝐶𝑖 − log  𝐶 𝑖 Θ   
2
 (4.3) 

 % 𝑀𝑆𝐸 Θ =
1

𝑛
 𝑤𝑖  

𝐶𝑖 − 𝐶 𝑖 Θ 

𝐶𝑖
 

2𝑛

𝑖=1

 (4.4) 

 𝐼𝑉 𝑀𝑆𝐸 Θ =
1

𝑛
 𝑤𝑖 𝜍𝑖 − 𝜍 𝑖 Θ  

2
𝑛

𝑖=1

 (4.5) 

where 𝜍𝑖  is the Black-Scholes implied volatility of option 𝑖, and 𝜍 𝑖 Θ  denotes the corresponding 

Black-Scholes implied volatility obtained using the model price as input, and 𝑤𝑖  is an 

appropriately chosen weight. 

The choice of loss function is important and has many implications. The $ MSE function 

minimizes the squared dollar error between model prices and observed prices and will thus favor 

parameters that correctly price expensive options, i.e. deep in-the-money (ITM) and long-dated 

options. The log-dollar MSE function mitigates this problem as the logarithm of the prices are 

more similar in magnitude than the actual prices. The % MSE function adjusts for price level by 

dividing the error by the market price, making it less biased towards correctly pricing expensive 

options. On the contrary, the % MSE function will put emphasis on options with prices close to 

zero, i.e. deep out-of-the-money (OTM) and short-dated options. The IV MSE function instead 

minimizes implied volatility errors, making options with higher implied volatility carry greater 

importance in the estimation. Due to the shape of the volatility smirk, this will in general put 

more weight on options with low strike prices, and less weight on options with high strike prices. 

The existing literature has focused on the choice of loss function both for evaluation purposes 

[10], as well as for computational purposes. The reason for the latter is that most commonly 

proposed loss functions are non-convex and have several local (and perhaps global) minima, 

making standard optimization techniques unqualified [13]. Detlefsen & Härdle [14] study four 

different loss functions for estimation of stochastic volatility models and conclude that the most 

suitable choice once the models of interest have been specified is an implied volatility error 

metric, as this best reflects the characteristics of an option pricing model that is relevant for 
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pricing out-of-sample. They also show that this choice leads to good calibrations in terms of 

relatively good fits and stable parameters. On a technical note, the IV MSE function is sometimes 

preferred to the other loss functions because it does not have the same problems with 

heteroskedasticity that can affect the estimation [10]. 

It has also been shown, e.g. by [22], that the choice of weighting (𝑤𝑖) has a large influence on the 

behavior of the loss function for optimization purposes, and thus must be made with care. Two 

common methods are to either include the bid-ask spread of the options as a basis for weighting, 

giving less weight to options of which there is greater uncertainty of the true price (i.e. options 

wide a wide bid-ask spread) or to choose weights according to the number of options within 

different maturity categories. 

In this thesis, we consider all loss functions (4.2) – (4.5). As the calculation of the Black-Scholes 

implied volatility has to be carried out numerically, calibration under the IV MSE loss function is 

very time consuming. To mitigate this problem, we instead consider an approximate IV MSE loss 

function: 

 𝐼𝑉 𝑀𝑆𝐸 Θ =
1

𝑛
 𝑤𝑖 𝜍𝑖 − 𝜍 𝑖 Θ  

2
𝑛

𝑖=1

≈
1

𝑛
 𝑤𝑖  

𝐶𝑖 − 𝐶 𝑖 Θ 

𝒱𝑖
𝐵𝑆  

2𝑛

𝑖=1

 (4.6) 

where 𝒱𝑖
𝐵𝑆  denotes the Black-Scholes Vega

1
 of option 𝑖. 

The modified IV MSE loss function (4.6), where the pricing error is divided by the Black-Scholes 

Vega, is obtained by considering the first order approximation: 

 𝐶 𝑖 Θ ≈ 𝐶𝑖 + 𝒱𝑖
𝐵𝑆 ∙  𝜍 𝑖 Θ − 𝜍𝑖  (4.7) 

Re-arranging the terms yields: 

 𝜍 𝑖 Θ − 𝜍𝑖 ≈
𝐶 𝑖 Θ − 𝐶𝑖

𝒱𝑖
𝐵𝑆  (4.8) 

Similar methods are used by [2], [9], [11], [24] and [25], among others, and significantly reduce 

computation time. 

For all loss functions, we choose the weighting 𝑤𝑖  such that all maturities are given the same 

weight in the calibration. Within each maturity category, all options are assigned equal weights. 

Our weighting is thus defined as: 

 𝑤𝑖 =
1

𝑛𝑚 ∙ 𝑛𝑘𝑚
 (4.9) 

                                                 
1
 Vega is the sensitivity of the option price with respect to volatility in the Black-Scholes model, i.e. 𝒱𝑖

𝐵𝑆 =
𝜕𝐶𝑖

𝐵𝑆/𝜕𝜍𝑖 . 
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where 𝑛𝑚  is the number of maturities and 𝑛𝑘𝑚 is the number of options with the same maturity as 

option 𝑖. This choice of weighting is also used in [14]. 

4.3. Estimation procedure 

The estimation was carried out using the lsqnonlin function in MATLAB. Since lsqnonlin is 

a local optimizer, we cannot know if the obtained solutions are the global minimums of the loss 

function. In order to maximize the chances of obtaining global solutions, each model was 

estimated ten times with different sets of starting values for the parameters. The starting values 

were randomly chosen on uniform intervals based on parameter estimates in previous studies 

such as [3], [11] and [23]. 

Apart from obvious bounds on the parameters, such as e.g. non-negative speed of mean-reversion 

and variances, we have implemented the so called Feller [15] condition, namely that 2𝜅𝜃 < 𝜍2. 

The Feller condition ensures that the variance process is strictly positive and cannot reach zero. 

We implement the Feller condition by introducing the auxiliary variable Ψ = 2𝜅𝜃 − 𝜍2, and 

optimize using this variable rather than 𝜅 itself. The Feller condition then reduces to Ψ > 0, and 

𝜅 can subsequently be calculated as 𝜅 = (Ψ + 𝜍2)/2𝜃. 

5. Barrier option pricing 

5.1. The Black-Scholes model 

One of the most appealing features of the Black-Scholes model is that it does not only provide 

analytical formulas for the pricing of vanilla options, but also for a range of exotic options. The 

price of a barrier option will depend on the regular Black-Scholes parameters 𝑆0,𝐾, 𝑟, 𝛿,𝑇,𝜍 as 

well as on the barrier level, denoted 𝐻. 

We obtain the pricing formulas from [26], where also derivations and intuition is provided. As 

mentioned in Section 1, we consider down-barrier call options with 𝐻 < 𝐾 and up-barrier call 

options with 𝐻 > 𝐾. All options considered are struck at the money (ATM), i.e. 𝐾 = 𝑆0. 

Denote by 𝐶𝐵𝑆(𝑆,𝐾) and 𝑃𝐵𝑆(𝑆,𝐾) the Black-Scholes price of plain vanilla call and put options, 

respectively (the variables 𝑟, 𝛿,𝑇 and 𝜍 are in all instances) and let 𝜈 = 𝑟 − 𝛿 −
𝜍2

2
 and 

𝑑𝐵𝑆 𝑆,𝐾 =
log (𝑆/𝐾)+𝜈𝑇

𝜍 𝑇
. Further, we denote by Φ 𝑥  the standard normal cumulative distribution 

function. 

Using this notation, the prices of the barrier options can be calculated as: 

 
𝑈𝐼𝐵𝑆 =  

𝐻

𝑆
 

2𝜈
𝜍2

 𝑃𝐵𝑆  
𝐻2

𝑆
,𝐾 − 𝑃𝐵𝑆  

𝐻2

𝑆
,𝐻 +  𝐻 − 𝐾 𝑒−𝑟𝑇Φ −𝑑𝐵𝑆 𝐻, 𝑆    

           +𝐶𝐵𝑆 𝑆,𝐻 +  𝐻 − 𝐾 𝑒−𝑟𝑇Φ 𝑑𝐵𝑆 𝑆,𝐻   (5.1) 
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           𝑈𝑂𝐵𝑆 = 𝐶𝐵𝑆 𝑆,𝐾 − 𝐶𝐵𝑆 𝑆,𝐻 −  𝐻 − 𝐾 𝑒−𝑟𝑇Φ 𝑑𝐵𝑆 𝑆,𝐻   

                      − 
𝐻

𝑆
 

2𝜈
𝜍2

 𝐶𝐵𝑆  
𝐻2

𝑆
,𝐾  − 𝐶𝐵𝑆  

𝐻2

𝑆
,𝐻 −  𝐻 − 𝐾 𝑒−𝑟𝑇Φ 𝑑𝐵𝑆 𝐻, 𝑆    

(5.2) 

 

 𝐷𝐼𝐵𝑆 =  
𝐻

𝑆
 

2𝜈
𝜍2

𝐶𝐵𝑆  
𝐻2

𝑆
,𝐾  (5.3) 

 

 𝐷𝑂𝐵𝑆 = 𝐶𝐵𝑆 𝑆,𝐾 −  
𝐻

𝑆
 

2𝜈
𝜍2

𝐶𝐵𝑆  
𝐻2

𝑆
,𝐾  (5.4) 

By definition, we have that 𝐷𝐼𝐵𝑆 + 𝐷𝑂𝐵𝑆 = 𝑈𝐼𝐵𝑆 + 𝑈𝑂𝐵𝑆 = 𝐶𝐵𝑆 , i.e. that the sum of a knock-in 

call option and a knock-out call option with the same strike price and barrier will equal the price 

of a vanilla call option. 

To implement the Black-Scholes model, we need to estimate the volatility parameter 𝜍. A 

common approach to finding the appropriate sigma is to observe the implied volatility surface 

(see Figure 1 in Section 4) and choose a volatility corresponding to the strike price and maturity 

in question. As neither the skew nor the term structure are incredibly steep around the ATM level 

for the considered maturities of one and three years, we have chosen to use the implied 

volatilities of the options with strike price and maturity closest to 2461.44 (ATM) and 𝑇 = 1 and 

𝑇 = 3. This leads to 𝜍1𝑦 = 24.46 % and 𝜍3𝑦 = 24.00 %.
2
 

5.2. Monte Carlo simulation 

In order to price the path-dependant barrier options using the stochastic volatility models, we use 

Monte Carlo simulation. The first step towards pricing options using Monte Carlo simulation is to 

re-formulate the continuous processes of the various models to discrete time. For this purpose we 

use Euler-schemes. 

Although we have implemented the Feller condition, there will be a risk that the variance process 

take negative values due to the discretization of the processes. For that reason, in each time step, 

we insert 𝑉𝑡
+ = max(𝑉𝑡 , 0) instead of 𝑉𝑡 , i.e. we floor the variance at zero. Other methods include 

reflecting barriers, i.e. using |𝑉𝑡| rather than 𝑉𝑡
+. It has however been shown that the former 

method is less biased [15]. Note that when the variance is zero in a period, the variance process 

will have deterministic drift equal to 𝜅𝜃𝑑𝑡 in the next period. 

For all models we use a time step of 𝑑𝑡 = 1/252, corresponding to one trading day, and 100 000 

simulations. 

  

                                                 
2
 The actual strike price of the chosen options is 101.55 % of the spot price and the maturities are 1.19 and 2.19 

years, respectively. See Appendix B for the implied volatilities of all options in the data set. 
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5.2.1. SV model 

The Euler-scheme of the SV model takes the form: 

 𝑆𝑡 = 𝑆𝑡−1 +  𝑟 − 𝛿 𝑑𝑡 +  𝑉𝑡
+  𝑑𝑡 𝑍𝑡

 1 
 (5.5) 

 𝑉𝑡 = 𝑉𝑡−1
+ + 𝜅 𝜃 − 𝑉𝑡−1

+  𝑑𝑡 + 𝜍 𝑉𝑡
+ 𝑑𝑡 𝑍𝑡

 2 
 (5.6) 

where 𝑍𝑡
 1 

 and 𝑍𝑡
 2 

are correlated 𝑁(0,1) variables with correlation coefficient 𝜌. 

5.2.2. SVJ model 

The Euler-scheme of the SV model takes the form: 

 𝑆𝑡 = 𝑆𝑡−1 +  𝑟 − 𝛿 𝑑𝑡 +  𝑉𝑡
+  𝑑𝑡 𝑍𝑡

 1 + 𝐽𝑡𝑋𝑡𝑆𝑡−1 (5.7) 

 𝑉𝑡 = 𝑉𝑡−1
+ + 𝜅 𝜃 − 𝑉𝑡−1

+  𝑑𝑡 + 𝜍 𝑉𝑡
+ 𝑑𝑡 𝑍𝑡

 2 
 (5.8) 

where 𝑍𝑡
 1 

 and 𝑍𝑡
 2 

 are defined as in equation (5.5). 𝑑𝑋𝑡  is a Poisson counter with intensity 𝜆 and 

is simulated as Pr 𝑋𝑡 = 1 = 𝜆𝑑𝑡 and Pr 𝑋𝑡 = 0 = 1 − 𝜆𝑑𝑡. Recall from equation (2.13) that 

the jump size 𝐽𝑡  is log-normally distributed. Regular standardization yields: 

 
log 1 + 𝐽𝑡 − log 1 + 𝜇𝐽 + 𝜍𝐽

2/2

𝜍𝐽
~𝑁(0,1) (5.9) 

If we let 𝑈𝑡  be an 𝑁(0,1) variable, we can simulate the jump size through: 

 𝐽𝑡 = exp 𝜍𝐽𝑈𝑡 + log 1 + 𝜇𝐽  −
𝜍2

2
 − 1 (5.10) 

5.2.3. MFSV model 

The discretization of the MFSV model is a natural extension of equations (5.5)–(5.6): 

 𝑆𝑡 = 𝑆𝑡−1 +  𝑟 − 𝛿 𝑑𝑡 +  𝑉𝑡
 1  +  𝑑𝑡 𝑍𝑡

 1 +  𝑉𝑡
 2  +  𝑑𝑡 𝑍𝑡

 2 
 (5.11) 

 𝑉𝑡
 1  + = 𝑉𝑡−1

 1 + + 𝜅  𝜃 − 𝑉𝑡−1
 1  + 𝑑𝑡 + 𝜍 𝑉𝑡

 1  + 𝑑𝑡 𝑍𝑡
 3 

 (5.12) 

 𝑉𝑡
 2  + = 𝑉𝑡−1

 2 + + 𝜅  𝜃 − 𝑉𝑡−1
 2  + 𝑑𝑡 + 𝜍 𝑉𝑡

 2  + 𝑑𝑡 𝑍𝑡
 4 

 (5.13) 

where 𝑍𝑡
 1 

 and 𝑍𝑡
 3 

 are correlated 𝑁 0,1  variables with correlation 𝜌1 and 𝑍𝑡
 2 

and 𝑍𝑡
 4 

 are 

correlated 𝑁(0,1) variables with correlation 𝜌2. 
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5.2.4. MFSVJ model 

The discrete form of the MFSVJ model is simply obtained by adding the jump factor from 

equation (5.7) to equation (5.11): 

 𝑆𝑡 = 𝑆𝑡−1 +  𝑟 − 𝛿 𝑑𝑡 +  𝑉𝑡
 1  +

  𝑑𝑡 𝑍𝑡
 1 

+  𝑉𝑡
 2  +

  𝑑𝑡 𝑍𝑡
 2 

+ 𝐽𝑡𝑋𝑡𝑆𝑡−1 (5.14) 

 𝑉𝑡
 1  +

= 𝑉𝑡−1
 1  +

+ 𝜅  𝜃 − 𝑉𝑡−1
 1  +

 𝑑𝑡 + 𝜍 𝑉𝑡
 1  +

 𝑑𝑡 𝑍𝑡
 3 

 (5.15) 

 𝑉𝑡
 2  +

= 𝑉𝑡−1
 2  +

+ 𝜅  𝜃 − 𝑉𝑡−1
 2  +

 𝑑𝑡 + 𝜍 𝑉𝑡
 2  +

 𝑑𝑡 𝑍𝑡
 4 

 (5.16) 

where all variables are defined as in equations (5.10) – (5.13). 

6. Results 

6.1. Parameter estimates and in-sample fit 

Table 1 summarizes the results of the parameter estimation and also display the root mean 

squared dollar error ($ RMSE) for the four models. Parameter estimates obtained using the IV 

RMSE, % MSE and Log $ MSE loss functions are shown in Tables A.1 – A.3 in Appendix A. 

Table 1 

Parameter estimates obtained by minimizing the squared dollar error to a sample of 144 call options on the 

Eurostoxx 50 index on the 7
th
 of October 2003. 

 
𝜿 𝜽 𝝈 𝝆 𝝀 𝝁𝑱 𝝈𝑱 𝑽𝟎 $ 𝑹𝑴𝑺𝑬 

SV 0.5249 0.0705 0.2720 -0.7360 
   

0.0649 2.4956 

          
SVJ 0.5365 0.0630 0.2601 -0.9959 0.4978 0.1258 0.0534 0.0576 1.9178 

          
MFSV 0.7057 0.0673 0.3082 -1.0000 

   
0.0505 1.6832 

 
0.5545 0.0033 0.0602 0.8981 

   
0.0154 

 

          
MFSVJ 0.6779 0.0670 0.3014 -0.9999 0.0706 0.0346 0.0536 0.0509 1.6808 

 
0.6068 0.0039 0.0690 0.8123 

   
0.0150 

 

Unsurprisingly, the more advanced multi-factor model produces lower RMSEs than the single-

factor models. Common for all models is a strong negative correlation between the return process 

and the variance process, which adds the empirically observed skew to the return distribution. 

Notable is however that for both multi-factor models, the second stochastic volatility factor, in 

both cases with significantly smaller magnitude than the first factor, is positively correlated with 

the return process. 

The estimated parameters are similar across all loss functions. The most notable difference is that 

the IV MSE loss function result in higher estimates of the speed of mean-reversion  𝜅  and the 
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volatility of the variance  𝜍  than the other loss functions. This however has rather small effect 

on the in-sample fit, regardless of loss function. The reason for this is that the parameters 𝜅 and 𝜍 

have opposite effects on the behavior of the spot price process. A high value of 𝜅 will decrease 

volatility risk, as the volatility will be more quickly mean-reverting, making volatility shocks less 

persistent. On the contrary, a high value of 𝜍 will increase the magnitude of volatility shocks, 

increasing volatility risk. The trade-off is visualized in Figure 2 showing an error surface for 

different choices of 𝜅 and 𝜍. We can see that the shape of the error surface more resembles a 

valley than a bowl, i.e. that the many combinations of 𝜅 and 𝜍 along the bottom of the valley 

yield errors of similar magnitude. 

Figure 2 

Error surface of the SV model for different choices of 𝜅 and 𝜍.

 
As concluded in [23], the in-sample fit of the models is almost perfect. Figure A.1 in Appendix A 

shows the in-sample fits of the four stochastic volatility models. The figure shows the in-sample 

fit under the $ MSE loss function, but the corresponding plots for the other loss functions are 

almost identical. 

6.2. Barrier option prices 

Tables A.4 – A.11 in Appendix A show the obtained barrier option prices for the five models and 

the four loss functions used for estimation. We also show the probabilities that the studied 

barriers are breached for each model under each loss function in Tables A.12 – A.15. 
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The prices of the four stochastic volatility models are of similar magnitude in most instances. 

However, for down-and-in options with very low barriers and up-and-out options with barriers 

close to 𝑆0, we observe large relative price differences simply because the prices are very close to 

zero making relative price differences very sensitive. 

We do not observe any large differences in the prices between loss functions, pointing towards 

the conclusion that the choice of loss function is not essential for the purpose of barrier option 

pricing. It should however be noted that that may be a consequence of the data set at hand, in 

which all loss functions yield very similar parameter estimates. Rather than to neglect the 

importance of the choice of loss function, these results should be seen as a motivation to 

conducting larger scale studies on more extensive data sets to examine the importance of the 

choice of loss function for the purpose of exotic option pricing. 

As for the Black-Scholes model, we observe large price differences in comparison to the 

stochastic volatility models. First, we note that the Black-Scholes price of down-and-in options is 

significantly lower than the corresponding prices of the stochastic volatility models for barriers 

below 85 % of the spot price. This observation is rather expected, as one of the main purposes of 

introducing stochastic volatility models is to model the empirical fact that volatility tends to 

increase in declining markets. Hence, the stochastic volatility models will introduce a higher 

probability of the stock price breaching the barrier far below the spot price. In other words, the 

probability distribution of the stock price at any future time point will be right skewed as 

compared to the normal distribution, implying higher probabilities of large declines in the stock 

price that are necessary for down-and-in options with low barriers to end up in the money. This is 

confirmed by the probabilities shown in Tables A.12 – A.15 in Appendix A. The probabilities of 

the spot price breaching the lower barriers is significantly higher in the stochastic volatility 

models for barriers of 80 % of the spot price and below, regardless of loss function used for 

parameter estimation. Given that there are rather small price differences between the vanilla call 

prices of the models, the relation 𝐷𝑂 + 𝐷𝐼 = 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 states that if there is a difference in 

price between down-and-in options, there must be a corresponding reverse price difference in the 

down-and-out options. However, as the prices of the down-and-out options for very low barriers 

obviously are much higher than the corresponding down-and-in options, the relative price 

difference is much smaller. Hence, the relative price differences of several hundred percent for 

down-and-in options only correspond to relative price differences of a few percent for the down-

and-out options.  

Second, we note that the Black-Scholes prices of up-and-in barrier options are significantly 

higher than the corresponding prices of the stochastic volatility models for high barriers, e.g. 

barriers above 25 % of the spot price. The pattern is most evident for the short maturity options 

(short in this case meaning a maturity of one year), whereas the difference for the 3-year options 

becomes evident at even higher levels of the barrier. The probabilities in Tables A.12 – A.15 in 

Appendix a reveal that this stems from an increased probability that the upper barrier is breached 

in the Black-Scholes model as compared to the stochastic volatility models. As we have not 
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derived the actual distributions of the stock price under the stochastic volatility models, this 

pattern is more difficult to explain. A plausible explanation to the findings is however that the 

skewness of the distributions of the stock price under the stochastic volatility models decrease the 

amount of probability mass in the right tail of the distribution, making extreme events on the 

upside less likely than in the normal distribution assumed in the Black-Scholes model. Although 

the stochastic volatility models also add kurtosis to the stock price distribution, resulting in 

distributions with fatter tails than the normal distribution, it seems that in this case the effect of 

the skewness is more prominent. The pattern is confirmed when looking at the prices of the up-

and-out barrier options. As expected given the recently discussed observations, the prices of the 

up-and-out options are lower in the Black-Scholes model than in the stochastic volatility models, 

with relative price differences being the largest for barriers close to the spot price. 

7. Conclusion 

This thesis examines the performance of the Black-Scholes model and four stochastic volatility 

models with respect to the pricing of barrier options. Our results show that the choice of loss 

function for estimation of the model parameters of the stochastic volatility models have little 

effect on the resulting prices of both vanilla options and barrier options. This result motivates 

further studies of the impact of the loss function on exotic option prices and parameter 

estimation. 

Further, our results show that the Black-Scholes model yields barrier option prices that differ 

significantly from the corresponding prices obtained from the stochastic volatility models, 

although vanilla call prices are very similar. The reason for this is that the stochastic volatility 

models give rise to a skewed distribution of future spot prices, resulting in higher probabilities of 

breaching low barriers and lower probabilities of breaching high barriers as compared to the 

symmetrical normal distribution underlying the Black-Scholes model. For barrier levels close to 

the spot price, however, the prices are in many cases of similar magnitude. 

As for the relationship between the stochastic volatility models, we find that all four models yield 

similar prices both with respect to vanilla call options and the path-dependent barrier options. 

This confirms the notion of [23], where it is concluded that large differences in exotic option 

prices are observed between different classes of models rather than between different models 

within the same category. 
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Appendix A: Tables and graphs 
Table A.1 

Parameter estimates obtained by minimizing the squared implied volatility error (IV MSE) to a sample of 

144 call options on the Eurostoxx 50 index on the 7
th
 of October 2003. 

 
𝜿 𝜽 𝝈 𝝆 𝝀 𝝁𝑱 𝝈𝑱 𝑽𝟎 $ 𝑹𝑴𝑺𝑬 

SV 0.8753 0.0691 0.3478 -0.7613 
   

0.0673 0.0059 

          
SVJ 0.7051 0.0609 0.2931 -0.9940 0.5286 0.0490 0.1202 0.0596 0.0039 

          
MFSV 1.0637 0.0661 0.3749 -1.0000 

   
0.0500 0.0051 

 
0.8527 0.0032 0.0734 0.5981 

   
0.0169 

 

          
MFSVJ 0.9197 0.0644 0.3442 -1.0000 0.3402 -0.0703 0.0558 0.3402 0.0558 

 
0.8044 0.0024 0.0622 0.1411 

   
-0.0703 

 
 

 

 

 

Table A.2 

Parameter estimates obtained by minimizing the squared percentage error (% MSE) to a sample of 144 

call options on the Eurostoxx 50 index on the 7
th
 of October 2003. 

 
𝜿 𝜽 𝝈 𝝆 𝝀 𝝁𝑱 𝝈𝑱 𝑽𝟎 $ 𝑹𝑴𝑺𝑬 

SV 0.4802 0.0676 0.2548 -0.6701 
   

0.0631 0.0149 

          
SVJ 0.4907 0.0631 0.2488 -0.9570 0.4588 0.1192 0.0669 0.0575 0.0121 

          
MFSV 0.4040 0.0703 0.2383 -0.9241 

   
0.0522 0.0122 

 
1.1390 0.0067 0.1231 0.7282 

   
0.0113 

 

          
MFSVJ 0.4662 0.0686 0.2529 -0.9999 0.1105 0.1044 0.2099 0.1105 0.2099 

 
1.0426 0.0025 0.0716 -0.9755 

   
0.1044 
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Table A.3 

Parameter estimates obtained by minimizing the squared log-dollar error (L$ MSE) to a sample of 144 call 

options on the Eurostoxx 50 index on the 7
th
 of October 2003. 

 
𝜿 𝜽 𝝈 𝝆 𝝀 𝝁𝑱 𝝈𝑱 𝑽𝟎 $ 𝑹𝑴𝑺𝑬 

SV 0.4803 0.0676 0.2548 -0.6692 
   

0.0631 0.0149 

          
SVJ 0.4947 0.0626 0.2489 -0.9432 0.5569 0.0899 0.0814 0.0576 0.0122 

          
MFSV 0.3747 0.0714 0.2314 -0.9237 

   
0.0527 0.0122 

 
1.2456 0.0067 0.1295 0.7891 

   
0.0106 

 

          
MFSVJ 0.3860 0.0697 0.2319 -0.9999 0.1288 0.1040 0.1928 0.1288 0.1928 

 
1.1813 0.0038 0.0947 -0.9120 

   
0.1040 
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Figure A.1 

In-sample fits of the stochastic volatility models with parameters estimated using the $ MSE loss function. The corresponding plots using the other 

loss functions are identical. In the plots, rings correspond to actual option prices and crosses to model prices. 
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Table A.4 

Prices for 1-year barrier options with parameters estimated using the $ MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.0000 0.0081 0.0060 0.0030 0.0081 274.1900 275.0006 277.3064 274.1703 274.5192 

0.55𝑆0 0.0001 0.0263 0.0122 0.0098 0.0631 274.1900 274.9824 277.3002 274.1635 274.4642 

0.60𝑆0 0.0020 0.1285 0.1884 0.0733 0.1399 274.1881 274.8803 277.1240 274.1000 274.3874 

0.65𝑆0 0.0332 0.5236 0.5625 0.3668 0.4214 274.1568 274.4851 276.7499 273.8065 274.1059 

0.70𝑆0 0.3203 1.6186 1.7434 1.4280 1.5160 273.8697 273.3901 275.5690 272.7453 273.0113 

0.75𝑆0 1.9838 4.6841 5.0824 4.5179 4.7918 272.2062 270.3247 272.2299 269.6554 269.7355 

0.80𝑆0 8.5831 12.9257 13.8146 12.1983 12.6703 265.6069 262.0830 263.4978 261.9750 261.8570 

0.85𝑆0 27.7719 31.7671 33.3594 30.6729 30.4424 246.4182 243.2417 243.9530 243.5004 244.0849 

0.90𝑆0 71.0483 69.0367 71.4286 68.5413 67.1866 203.1417 205.9721 205.8838 205.6320 207.3407 

0.95𝑆0 150.4820 136.6473 139.7326 136.3818 135.4948 123.7081 138.3614 137.5798 137.7915 139.0325 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 274.0687 274.7038 277.0395 273.9142 274.2368 0.1214 0.3050 0.2729 0.2591 0.2905 

1.10𝑆0 272.5252 271.4839 273.9226 270.9683 271.2352 1.6648 3.5249 3.3898 3.2050 3.2921 

1.15𝑆0 267.2057 260.8833 262.7319 260.8001 260.7290 6.9843 14.1254 14.5805 13.3732 13.7983 

1.20𝑆0 256.3696 240.1548 238.9201 239.8235 239.5080 17.8205 34.8539 38.3922 34.3498 35.0193 

1.25𝑆0 239.7287 209.6527 202.2006 209.3548 207.7613 34.4613 65.3561 75.1118 64.8185 66.7660 

1.30𝑆0 218.3152 174.0841 157.7766 173.7639 168.6309 55.8748 100.9247 119.5358 100.4094 105.8964 

1.35𝑆0 193.8843 136.4678 119.4497 137.0955 127.9099 80.3057 138.5409 157.8627 137.0778 146.6174 

1.40𝑆0 168.3121 101.7691 91.8452 104.9172 91.7985 105.8780 173.2396 185.4672 169.2561 182.7288 

1.45𝑆0 143.2018 73.7787 70.2569 78.0326 63.9862 130.9883 201.2300 207.0555 196.1407 210.5411 

1.50𝑆0 119.7156 51.8687 52.1443 56.8645 44.5079 154.4744 223.1401 225.1681 217.3088 230.0194 
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Table A.5 

Prices for 1-year barrier options with parameters estimated using the IV MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.0000 0.0086 0.0047 0.0023 0.0000 274.1900 277.9274 279.1101 277.0044 277.2151 

0.55𝑆0 0.0001 0.0693 0.0204 0.0302 0.0142 274.1900 277.8667 279.0944 276.9765 277.2010 

0.60𝑆0 0.0020 0.2525 0.1635 0.1180 0.0776 274.1881 277.6835 278.9514 276.8886 277.1376 

0.65𝑆0 0.0332 0.7507 0.6064 0.4770 0.4064 274.1568 277.1853 278.5085 276.5296 276.8087 

0.70𝑆0 0.3203 2.2140 2.0046 1.5776 1.5202 273.8697 275.7220 277.1103 275.4290 275.6949 

0.75𝑆0 1.9838 6.0663 5.6497 4.7862 4.6622 272.2062 271.8696 273.4652 272.2205 272.5529 

0.80𝑆0 8.5831 15.3985 14.2835 13.2063 12.8485 265.6069 262.5374 264.8314 263.8004 264.3667 

0.85𝑆0 27.7719 33.9319 33.2627 31.8497 31.1045 246.4182 244.0040 245.8522 245.1569 246.1106 

0.90𝑆0 71.0483 71.6079 70.5652 68.8335 67.9186 203.1417 206.3281 208.5497 208.1732 209.2966 

0.95𝑆0 150.4820 139.8692 138.7984 136.3370 134.9312 123.7081 138.0667 140.3165 140.6697 142.2840 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 274.0687 277.5996 278.8460 276.6731 276.9129 0.1214 0.3363 0.2689 0.3336 0.3023 

1.10𝑆0 272.5252 274.0553 275.6274 273.1450 273.7037 1.6648 3.8807 3.4875 3.8616 3.5114 

1.15𝑆0 267.2057 262.3678 264.5739 261.4563 263.0633 6.9843 15.5682 14.5410 15.5504 14.1518 

1.20𝑆0 256.3696 239.2286 239.9937 238.4828 241.9611 17.8205 38.7074 39.1212 38.5238 35.2540 

1.25𝑆0 239.7287 204.8924 198.7799 205.3381 210.1468 34.4613 73.0435 80.3350 71.6685 67.0683 

1.30𝑆0 218.3152 163.4746 147.1112 167.3054 171.3472 55.8748 114.4614 132.0037 109.7012 105.8680 

1.35𝑆0 193.8843 120.8413 100.4014 130.2004 131.6120 80.3057 157.0946 178.7135 146.8063 145.6031 

1.40𝑆0 168.3121 84.2200 75.5922 96.7098 95.4904 105.8780 193.7159 203.5227 180.2968 181.7247 

1.45𝑆0 143.2018 55.8416 60.2651 70.5457 67.2887 130.9883 222.0944 218.8497 206.4610 209.9265 

1.50𝑆0 119.7156 34.8531 46.7368 48.9921 44.1533 154.4744 243.0829 232.3781 228.0145 233.0619 
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Table A.6 

Prices for 1-year barrier options with parameters estimated using the % MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.50 0.0000 0.0081 0.0060 0.0030 274.1900 275.0006 277.3064 274.1703 274.5192 

0.55𝑆0 0.55 0.0001 0.0263 0.0122 0.0098 274.1900 274.9824 277.3002 274.1635 274.4642 

0.60𝑆0 0.60 0.0020 0.1285 0.1884 0.0733 274.1881 274.8803 277.1240 274.1000 274.3874 

0.65𝑆0 0.65 0.0332 0.5236 0.5625 0.3668 274.1568 274.4851 276.7499 273.8065 274.1059 

0.70𝑆0 0.70 0.3203 1.6186 1.7434 1.4280 273.8697 273.3901 275.5690 272.7453 273.0113 

0.75𝑆0 0.75 1.9838 4.6841 5.0824 4.5179 272.2062 270.3247 272.2299 269.6554 269.7355 

0.80𝑆0 0.80 8.5831 12.9257 13.8146 12.1983 265.6069 262.0830 263.4978 261.9750 261.8570 

0.85𝑆0 0.85 27.7719 31.7671 33.3594 30.6729 246.4182 243.2417 243.9530 243.5004 244.0849 

0.90𝑆0 0.90 71.0483 69.0367 71.4286 68.5413 203.1417 205.9721 205.8838 205.6320 207.3407 

0.95𝑆0 0.95 150.4820 136.6473 139.7326 136.3818 123.7081 138.3614 137.5798 137.7915 139.0325 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 274.0687 274.7038 277.0395 273.9142 274.2368 0.1214 0.3050 0.2729 0.2591 0.2905 

1.10𝑆0 272.5252 271.4839 273.9226 270.9683 271.2352 1.6648 3.5249 3.3898 3.2050 3.2921 

1.15𝑆0 267.2057 260.8833 262.7319 260.8001 260.7290 6.9843 14.1254 14.5805 13.3732 13.7983 

1.20𝑆0 256.3696 240.1548 238.9201 239.8235 239.5080 17.8205 34.8539 38.3922 34.3498 35.0193 

1.25𝑆0 239.7287 209.6527 202.2006 209.3548 207.7613 34.4613 65.3561 75.1118 64.8185 66.7660 

1.30𝑆0 218.3152 174.0841 157.7766 173.7639 168.6309 55.8748 100.9247 119.5358 100.4094 105.8964 

1.35𝑆0 193.8843 136.4678 119.4497 137.0955 127.9099 80.3057 138.5409 157.8627 137.0778 146.6174 

1.40𝑆0 168.3121 101.7691 91.8452 104.9172 91.7985 105.8780 173.2396 185.4672 169.2561 182.7288 

1.45𝑆0 143.2018 73.7787 70.2569 78.0326 63.9862 130.9883 201.2300 207.0555 196.1407 210.5411 

1.50𝑆0 119.7156 51.8687 52.1443 56.8645 44.5079 154.4744 223.1401 225.1681 217.3088 230.0194 
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Table A.7 

Prices for 1-year barrier options with parameters estimated using the L$ MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.0000 0.0009 0.0140 0.0000 0.0000 274.1900 274.8604 277.2472 274.8902 275.2893 

0.55𝑆0 0.0001 0.0154 0.0437 0.0152 0.0225 274.1900 274.8459 277.2175 274.8750 275.2668 

0.60𝑆0 0.0020 0.1650 0.1520 0.0968 0.1189 274.1881 274.6963 277.1093 274.7933 275.1704 

0.65𝑆0 0.0332 0.5541 0.5494 0.4000 0.3789 274.1568 274.3072 276.7119 274.4901 274.9104 

0.70𝑆0 0.3203 1.7318 1.8732 1.5002 1.3393 273.8697 273.1295 275.3880 273.3899 273.9500 

0.75𝑆0 1.9838 5.0142 5.3108 4.5790 4.3979 272.2062 269.8471 271.9505 270.3111 270.8915 

0.80𝑆0 8.5831 13.0531 13.7304 12.4231 12.3933 265.6069 261.8082 263.5309 262.4671 262.8960 

0.85𝑆0 27.7719 30.6487 32.5291 30.3278 30.2435 246.4182 244.2126 244.7321 244.5624 245.0458 

0.90𝑆0 71.0483 68.4832 70.6815 67.3655 67.3389 203.1417 206.3781 206.5797 207.5247 207.9504 

0.95𝑆0 150.4820 136.1956 138.0895 136.6247 136.6379 123.7081 138.6657 139.1718 138.2655 138.6514 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 274.0687 274.5579 276.9783 274.6182 275.0049 0.1214 0.3034 0.2829 0.2720 0.2845 

1.10𝑆0 272.5252 271.3023 273.8376 271.8167 272.1384 1.6648 3.5589 3.4236 3.0735 3.1509 

1.15𝑆0 267.2057 261.0447 262.9868 262.1867 262.4753 6.9843 13.8166 14.2744 12.7035 12.8141 

1.20𝑆0 256.3696 240.6990 239.7447 241.8668 241.9726 17.8205 34.1623 37.5165 33.0234 33.3167 

1.25𝑆0 239.7287 210.7009 203.6684 211.6293 210.4443 34.4613 64.1603 73.5928 63.2609 64.8450 

1.30𝑆0 218.3152 174.7820 160.6701 174.9527 171.0036 55.8748 100.0793 116.5911 99.9375 104.2857 

1.35𝑆0 193.8843 136.9364 122.0361 138.6404 127.7421 80.3057 137.9249 155.2251 136.2497 147.5473 

1.40𝑆0 168.3121 102.4555 92.5817 105.3404 90.6287 105.8780 172.4058 184.6795 169.5497 184.6606 

1.45𝑆0 143.2018 73.7968 69.9429 76.8820 62.3988 130.9883 201.0645 207.3184 198.0082 212.8906 

1.50𝑆0 119.7156 52.2538 52.4665 56.4194 43.9130 154.4744 222.6075 224.7948 218.4708 231.3763 
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Table A.8 

Prices for 3-year barrier options with parameters estimated using the $ MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.1166 1.9247 1.2530 1.0890 1.1407 502.5648 508.1323 509.9314 507.4075 507.4944 

0.55𝑆0 0.6225 4.3752 3.4383 2.8419 2.9701 502.0589 505.6818 507.7460 505.6546 505.6650 

0.60𝑆0 2.4522 8.9627 8.2221 6.9322 6.9653 500.2292 501.0943 502.9622 501.5643 501.6697 

0.65𝑆0 7.6039 18.3658 17.0392 14.8029 14.8295 495.0775 491.6912 494.1451 493.6936 493.8056 

0.70𝑆0 19.4850 32.9504 32.7477 28.8935 29.1749 483.1964 477.1066 478.4366 479.6030 479.4602 

0.75𝑆0 42.8235 56.8495 56.5884 52.5148 52.7284 459.8578 453.2075 454.5960 455.9817 455.9067 

0.80𝑆0 83.0905 93.2038 94.5855 90.0343 90.4168 419.5909 416.8532 416.5988 418.4622 418.2183 

0.85𝑆0 145.6252 148.6478 150.1778 145.6288 145.6908 357.0562 361.4092 361.0065 362.8677 362.9443 

0.90𝑆0 234.7899 227.1328 228.4069 224.5524 224.8729 267.8915 282.9242 282.7775 283.9441 283.7622 

0.95𝑆0 353.4216 333.7625 335.6141 333.0173 332.7560 149.2598 176.2945 175.5702 175.4792 175.8791 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 502.6577 509.9615 511.0834 508.4074 508.5364 0.0237 0.0955 0.1009 0.0892 0.0987 

1.10𝑆0 502.3408 509.1370 510.1631 507.5046 507.6697 0.3406 0.9200 1.0213 0.9919 0.9654 

1.15𝑆0 501.1482 506.3800 506.9940 504.4785 504.6730 1.5331 3.6769 4.1904 4.0180 3.9621 

1.20𝑆0 498.4097 500.3307 500.1837 497.9418 498.1854 4.2716 9.7263 11.0007 10.5547 10.4497 

1.25𝑆0 493.5500 490.1939 488.4480 486.9378 487.5194 9.1314 19.8631 22.7363 21.5587 21.1157 

1.30𝑆0 486.1892 474.8442 471.0262 470.2683 471.0341 16.4922 35.2128 40.1581 38.2282 37.6010 

1.35𝑆0 476.1741 454.9283 446.6772 448.2589 449.2228 26.5073 55.1287 64.5071 60.2377 59.4123 

1.40𝑆0 463.5600 429.6798 416.8228 421.2235 421.8716 39.1213 80.3772 94.3616 87.2730 86.7635 

1.45𝑆0 448.5679 399.7850 383.3252 390.7613 391.4846 54.1134 110.2720 127.8591 117.7352 117.1505 

1.50𝑆0 431.5319 366.8493 348.2312 357.7234 357.9545 71.1494 143.2077 162.9531 150.7732 150.6806 
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Table A.9 

Prices for 3-year barrier options with parameters estimated using the IV MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.1166 1.5235 1.3932 0.7854 0.8006 502.5648 512.7988 513.1338 510.7359 512.4673 

0.55𝑆0 0.6225 3.8782 3.4164 2.3797 2.4523 502.0589 510.4441 511.1106 509.1416 510.8156 

0.60𝑆0 2.4522 8.3593 7.7924 6.0164 6.1387 500.2292 505.9630 506.7346 505.5049 507.1292 

0.65𝑆0 7.6039 17.0926 16.1282 13.5809 13.8102 495.0775 497.2296 498.3988 497.9404 499.4577 

0.70𝑆0 19.4850 32.3303 31.1647 28.1240 28.3985 483.1964 481.9919 483.3623 483.3973 484.8694 

0.75𝑆0 42.8235 56.2368 55.9693 52.0375 51.8495 459.8578 458.0854 458.5577 459.4838 461.4184 

0.80𝑆0 83.0905 93.6866 93.4484 89.6516 89.6601 419.5909 420.6357 421.0786 421.8697 423.6078 

0.85𝑆0 145.6252 150.0554 148.5529 145.3007 145.2336 357.0562 364.2669 365.9741 366.2206 368.0343 

0.90𝑆0 234.7899 228.7264 227.7369 225.2156 224.8512 267.8915 285.5958 286.7901 286.3057 288.4167 

0.95𝑆0 353.4216 335.4520 335.1454 333.4146 332.3035 149.2598 178.8703 179.3816 178.1067 180.9644 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 502.6577 514.2255 514.4189 511.4200 513.1748 0.0237 0.0967 0.1081 0.1013 0.0931 

1.10𝑆0 502.3408 513.2524 513.5219 510.4408 512.1824 0.3406 1.0699 1.0051 1.0805 1.0855 

1.15𝑆0 501.1482 510.3158 510.3676 507.1494 509.3456 1.5331 4.0064 4.1594 4.3719 3.9223 

1.20𝑆0 498.4097 504.3269 503.6635 500.5208 503.2223 4.2716 9.9954 10.8635 11.0005 10.0456 

1.25𝑆0 493.5500 494.5497 492.1019 489.6629 492.9901 9.1314 19.7726 22.4251 21.8584 20.2778 

1.30𝑆0 486.1892 479.7334 474.8366 473.6068 477.8161 16.4922 34.5888 39.6904 37.9145 35.4518 

1.35𝑆0 476.1741 459.7841 451.6709 452.1582 457.8200 26.5073 54.5382 62.8561 59.3631 55.4479 

1.40𝑆0 463.5600 434.7156 423.0536 425.5116 432.8808 39.1213 79.6066 91.4734 86.0097 80.3871 

1.45𝑆0 448.5679 405.6125 390.3201 394.9992 404.7058 54.1134 108.7098 124.2069 116.5221 108.5621 

1.50𝑆0 431.5319 371.9016 353.5464 362.1855 371.8962 71.1494 142.4207 160.9806 149.3358 141.3717 
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Table A.10 

Prices for 3-year barrier options with parameters estimated using the % MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.1166 1.7404 1.5626 1.6054 1.3501 502.5648 503.6872 511.0489 506.3453 508.1788 

0.55𝑆0 0.6225 4.1793 3.7445 3.7865 3.3151 502.0589 501.2484 508.8670 504.1643 506.2138 

0.60𝑆0 2.4522 8.9276 8.1212 8.3693 7.5328 500.2292 496.5001 504.4903 499.5814 501.9962 

0.65𝑆0 7.6039 17.4066 17.0913 17.5545 15.7692 495.0775 488.0211 495.5202 490.3962 493.7598 

0.70𝑆0 19.4850 32.1160 32.7321 32.1154 29.8968 483.1964 473.3117 479.8794 475.8353 479.6322 

0.75𝑆0 42.8235 55.7912 58.1686 56.7650 53.4617 459.8578 449.6365 454.4428 451.1858 456.0672 

0.80𝑆0 83.0905 92.4371 95.9873 93.6330 90.6377 419.5909 412.9906 416.6241 414.3177 418.8913 

0.85𝑆0 145.6252 144.7426 150.3621 147.5742 145.3039 357.0562 360.6851 362.2494 360.3766 364.2250 

0.90𝑆0 234.7899 223.3466 227.8481 226.2646 223.6534 267.8915 282.0811 284.7634 281.6862 285.8755 

0.95𝑆0 353.4216 330.7993 337.0078 332.8813 331.7967 149.2598 174.6284 175.6037 175.0695 177.7323 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 502.6577 505.3378 512.5204 507.8871 509.4388 0.0237 0.0898 0.0911 0.0636 0.0901 

1.10𝑆0 502.3408 504.4254 511.6130 507.1414 508.5102 0.3406 1.0023 0.9985 0.8094 1.0188 

1.15𝑆0 501.1482 501.5254 508.6607 504.6485 505.5199 1.5331 3.9022 3.9508 3.3023 4.0090 

1.20𝑆0 498.4097 495.4492 502.0150 498.8955 499.1183 4.2716 9.9785 10.5965 9.0552 10.4107 

1.25𝑆0 493.5500 485.2651 490.7827 488.9692 488.0400 9.1314 20.1626 21.8287 18.9816 21.4889 

1.30𝑆0 486.1892 469.7046 473.1524 473.3601 472.2255 16.4922 35.7231 39.4591 34.5907 37.3034 

1.35𝑆0 476.1741 449.3348 449.8940 452.7337 450.1750 26.5073 56.0929 62.7174 55.2171 59.3539 

1.40𝑆0 463.5600 424.4657 420.8375 426.6148 423.1582 39.1213 80.9619 91.7740 81.3359 86.3707 

1.45𝑆0 448.5679 394.8396 387.6430 396.2492 391.1637 54.1134 110.5881 124.9685 111.7016 118.3652 

1.50𝑆0 431.5319 362.7651 351.5801 363.5622 355.6086 71.1494 142.6626 161.0314 144.3885 153.9204 
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Table A.11 

Prices for 3-year barrier options with parameters estimated using the L$ MSE loss function. 

 

Down-and-in barrier option Down-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.1166 1.8213 1.4078 1.5752 1.2631 502.5648 506.4842 509.9652 509.6144 508.0357 

0.55𝑆0 0.6225 4.1917 3.4542 3.7666 3.3675 502.0589 504.1137 507.9188 507.4230 505.9312 

0.60𝑆0 2.4522 8.7155 8.0933 8.6851 7.5311 500.2292 499.5899 503.2797 502.5045 501.7676 

0.65𝑆0 7.6039 17.4098 16.8459 17.7770 16.0722 495.0775 490.8957 494.5271 493.4125 493.2266 

0.70𝑆0 19.4850 31.7345 32.0136 32.8229 29.9369 483.1964 476.5709 479.3594 478.3666 479.3619 

0.75𝑆0 42.8235 55.0120 55.9222 57.3852 54.0816 459.8578 453.2935 455.4508 453.8044 455.2172 

0.80𝑆0 83.0905 91.8509 94.3488 95.7342 91.5664 419.5909 416.4545 417.0241 415.4554 417.7323 

0.85𝑆0 145.6252 147.1173 149.3706 151.1974 147.6444 357.0562 361.1881 362.0024 359.9922 361.6544 

0.90𝑆0 234.7899 223.9602 227.4672 229.3696 224.7491 267.8915 284.3452 283.9058 281.8200 284.5497 

0.95𝑆0 353.4216 330.1831 333.2652 335.8637 332.4321 149.2598 178.1223 178.1078 175.3259 176.8666 

 
 

Up-and-in barrier option Up-and-out barrier option 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

1.05𝑆0 502.6577 508.2358 511.2855 511.1219 509.2215 0.0237 0.0697 0.0875 0.0677 0.0773 

1.10𝑆0 502.3408 507.3842 510.3989 510.4288 508.4099 0.3406 0.9212 0.9740 0.7607 0.8889 

1.15𝑆0 501.1482 504.3765 507.4626 508.1051 505.7000 1.5331 3.9289 3.9104 3.0845 3.5988 

1.20𝑆0 498.4097 498.1795 500.8697 502.6892 499.7790 4.2716 10.1260 10.5033 8.5003 9.5197 

1.25𝑆0 493.5500 487.6471 489.1923 492.8148 489.3262 9.1314 20.6584 22.1806 18.3747 19.9725 

1.30𝑆0 486.1892 472.2957 471.6178 477.7649 473.4243 16.4922 36.0098 39.7552 33.4247 35.8744 

1.35𝑆0 476.1741 451.6957 448.6112 457.0704 452.1559 26.5073 56.6098 62.7618 54.1192 57.1428 

1.40𝑆0 463.5600 426.7686 419.8896 431.0010 424.8611 39.1213 81.5368 91.4834 80.1886 84.4377 

1.45𝑆0 448.5679 397.3830 388.3640 400.2333 392.4640 54.1134 110.9225 123.0090 110.9563 116.8348 

1.50𝑆0 431.5319 365.1018 353.7794 367.0294 357.3844 71.1494 143.2037 157.5935 144.1602 151.9144 
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Table A.12 

Probabilities that the spot price breaches the respective barriers with model parameters estimated using the $ MSE loss function. 

 

 

1 year to maturity 3 years to maturity 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.45% 3.68% 3.92% 4.15% 4.12% 9.83% 17.86% 18.38% 18.68% 18.61% 

0.55𝑆0 1.33% 5.90% 6.28% 6.61% 6.56% 15.18% 22.37% 22.96% 23.18% 23.17% 

0.60𝑆0 3.40% 9.14% 9.65% 9.87% 9.82% 21.88% 27.53% 28.05% 28.94% 28.91% 

0.65𝑆0 7.33% 13.59% 14.12% 14.38% 14.37% 29.97% 33.50% 34.02% 34.74% 34.77% 

0.70𝑆0 13.67% 19.50% 19.94% 20.06% 20.03% 38.81% 40.17% 40.56% 41.30% 41.20% 

0.75𝑆0 22.58% 26.95% 27.28% 27.28% 27.29% 48.12% 47.54% 47.91% 48.62% 48.54% 

0.80𝑆0 34.29% 36.24% 36.51% 36.45% 36.47% 58.50% 55.65% 55.97% 56.55% 56.48% 

0.85𝑆0 48.31% 47.69% 47.75% 47.77% 47.82% 68.66% 64.89% 64.95% 65.56% 65.44% 

0.90𝑆0 64.08% 61.34% 61.23% 61.37% 61.44% 78.68% 74.90% 75.20% 75.32% 75.31% 

0.95𝑆0 80.54% 77.46% 77.35% 77.49% 77.48% 88.65% 85.71% 85.80% 86.43% 86.36% 

 
          

1.05𝑆0 81.24% 82.90% 82.32% 83.28% 83.21% 89.14% 89.74% 89.37% 89.80% 89.71% 

1.10𝑆0 67.14% 68.74% 68.12% 69.24% 69.24% 80.65% 81.85% 80.94% 81.58% 81.60% 

1.15𝑆0 54.46% 55.22% 53.89% 55.45% 55.45% 72.55% 74.07% 72.79% 73.73% 73.83% 

1.20𝑆0 43.47% 42.49% 40.35% 42.51% 42.51% 65.17% 66.32% 64.74% 66.17% 66.21% 

1.25𝑆0 34.19% 31.48% 28.11% 31.39% 31.33% 58.40% 58.85% 57.11% 58.89% 58.76% 

1.30𝑆0 26.62% 22.18% 17.89% 22.27% 22.21% 52.21% 52.04% 49.74% 51.66% 51.49% 

1.35𝑆0 20.55% 14.96% 12.21% 15.39% 15.35% 46.82% 45.64% 42.89% 44.78% 44.91% 

1.40𝑆0 15.92% 9.62% 8.70% 10.39% 10.36% 41.70% 39.66% 36.46% 38.64% 38.78% 

1.45𝑆0 12.11% 5.87% 5.85% 6.73% 6.71% 37.16% 33.90% 30.68% 32.83% 32.92% 

1.50𝑆0 9.09% 3.55% 3.82% 4.35% 4.35% 33.14% 28.80% 25.54% 28.03% 27.97% 
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Table A.13 

Probabilities that the spot price breaches the respective barriers with model parameters estimated using the IV MSE loss function. 

 

 

1 year to maturity 3 years to maturity 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.40% 4.26% 4.22% 4.14% 4.20% 9.71% 18.23% 18.28% 18.06% 18.60% 

0.55𝑆0 1.29% 6.73% 6.69% 6.57% 6.57% 15.06% 22.58% 22.90% 23.01% 23.14% 

0.60𝑆0 3.33% 10.04% 10.03% 9.82% 9.89% 21.86% 27.75% 28.19% 28.58% 28.36% 

0.65𝑆0 7.27% 14.48% 14.55% 14.47% 14.25% 29.51% 33.95% 33.99% 34.54% 34.26% 

0.70𝑆0 13.52% 20.24% 20.34% 20.19% 20.09% 38.42% 40.66% 40.92% 41.20% 40.95% 

0.75𝑆0 22.50% 27.54% 27.77% 27.56% 27.32% 48.14% 47.97% 48.02% 48.69% 48.51% 

0.80𝑆0 34.25% 36.58% 36.84% 36.85% 36.49% 58.36% 56.34% 56.19% 56.79% 56.86% 

0.85𝑆0 48.19% 47.67% 47.84% 48.08% 47.74% 68.70% 65.26% 65.37% 65.92% 66.30% 

0.90𝑆0 63.93% 60.91% 61.02% 61.46% 61.23% 79.06% 75.35% 75.40% 75.75% 76.11% 

0.95𝑆0 80.54% 77.04% 77.02% 77.41% 77.36% 88.96% 86.16% 85.88% 86.46% 86.50% 

 
          

1.05𝑆0 81.31% 83.06% 82.83% 83.66% 83.19% 89.21% 89.89% 89.24% 90.46% 89.98% 

1.10𝑆0 67.06% 68.95% 68.46% 69.93% 69.10% 80.92% 81.86% 80.86% 82.21% 81.92% 

1.15𝑆0 54.41% 55.20% 54.32% 56.76% 55.48% 72.72% 74.20% 72.68% 74.46% 73.94% 

1.20𝑆0 43.50% 42.28% 40.57% 44.21% 42.85% 65.00% 66.35% 64.80% 66.82% 66.04% 

1.25𝑆0 34.23% 30.62% 28.07% 32.72% 31.41% 58.44% 59.34% 57.41% 59.62% 58.92% 

1.30𝑆0 26.58% 20.94% 17.36% 22.87% 22.14% 52.12% 52.47% 50.00% 52.97% 52.02% 

1.35𝑆0 20.51% 13.51% 9.99% 15.06% 14.87% 46.73% 45.86% 42.94% 46.63% 45.60% 

1.40𝑆0 15.53% 8.38% 6.72% 9.20% 9.59% 41.33% 39.48% 36.60% 40.58% 39.50% 

1.45𝑆0 11.76% 4.88% 4.85% 5.14% 5.98% 36.59% 33.88% 30.75% 35.02% 33.94% 

1.50𝑆0 8.87% 2.74% 3.46% 2.66% 3.69% 32.27% 28.79% 25.48% 29.95% 28.91% 
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Table A.14 

Probabilities that the spot price breaches the respective barriers with model parameters estimated using the % MSE loss function. 

 

 

1 year to maturity 3 years to maturity 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.43% 3.00% 3.57% 3.16% 3.21% 9.85% 16.74% 18.24% 18.15% 17.90% 

0.55𝑆0 1.32% 5.06% 5.80% 5.40% 5.39% 15.34% 21.42% 22.69% 22.56% 22.41% 

0.60𝑆0 3.33% 8.29% 9.05% 8.52% 8.48% 22.26% 26.71% 27.85% 27.68% 27.50% 

0.65𝑆0 7.11% 12.51% 13.55% 12.84% 12.94% 29.95% 32.55% 33.90% 33.56% 33.67% 

0.70𝑆0 13.37% 18.22% 19.50% 18.62% 18.63% 38.91% 39.24% 40.46% 40.19% 40.42% 

0.75𝑆0 22.53% 26.06% 27.12% 26.30% 26.31% 48.30% 46.99% 47.74% 47.74% 47.79% 

0.80𝑆0 34.39% 35.43% 36.30% 35.86% 35.84% 58.99% 55.58% 56.19% 55.78% 56.29% 

0.85𝑆0 48.18% 47.00% 47.49% 47.48% 47.59% 69.20% 64.91% 65.23% 65.02% 65.25% 

0.90𝑆0 63.89% 60.98% 61.15% 61.23% 61.19% 79.21% 74.78% 74.73% 74.90% 75.32% 

0.95𝑆0 80.37% 77.40% 77.37% 77.56% 77.50% 88.80% 85.58% 85.78% 85.62% 85.80% 

 
          

1.05𝑆0 81.36% 82.58% 82.19% 83.03% 82.28% 89.23% 89.69% 89.34% 90.13% 89.48% 

1.10𝑆0 67.05% 68.16% 67.57% 68.78% 67.51% 80.55% 81.39% 80.77% 82.29% 80.94% 

1.15𝑆0 54.56% 54.62% 53.53% 55.00% 53.73% 72.49% 73.43% 72.64% 74.28% 72.76% 

1.20𝑆0 43.55% 42.03% 40.22% 42.28% 40.88% 64.97% 65.52% 64.71% 66.49% 64.70% 

1.25𝑆0 34.44% 31.14% 28.44% 31.26% 29.86% 58.00% 57.90% 56.63% 58.90% 57.28% 

1.30𝑆0 26.76% 22.16% 18.83% 22.20% 20.58% 51.72% 50.63% 49.35% 51.96% 49.99% 

1.35𝑆0 20.60% 15.29% 12.45% 15.35% 13.55% 46.11% 44.24% 42.42% 45.15% 43.13% 

1.40𝑆0 15.66% 10.05% 8.56% 10.31% 8.43% 40.98% 38.00% 36.10% 38.82% 36.87% 

1.45𝑆0 11.85% 6.51% 5.92% 6.89% 5.12% 36.40% 32.40% 30.56% 33.12% 31.24% 

1.50𝑆0 8.93% 4.08% 4.06% 4.52% 3.21% 32.43% 27.60% 25.66% 28.00% 26.10% 
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Table A.15 

Probabilities that the spot price breaches the respective barriers with model parameters estimated using the L$ MSE loss function. 

 

 

1 year to maturity 3 years to maturity 

Barrier (H) BS SV SVJ MFSV MFSVJ BS SV SVJ MFSV MFSVJ 

0.50𝑆0 0.39% 3.06% 3.57% 3.21% 3.08% 9.80% 16.69% 17.70% 17.83% 17.68% 

0.55𝑆0 1.27% 5.22% 5.83% 5.43% 5.24% 15.07% 21.20% 22.36% 22.21% 22.36% 

0.60𝑆0 3.37% 8.33% 9.10% 8.60% 8.46% 21.90% 26.40% 27.73% 27.75% 27.70% 

0.65𝑆0 7.29% 12.67% 13.60% 12.97% 12.82% 29.80% 32.32% 33.77% 33.54% 33.65% 

0.70𝑆0 13.58% 18.45% 19.60% 18.83% 18.72% 38.89% 39.18% 40.29% 40.37% 40.40% 

0.75𝑆0 22.60% 26.10% 26.98% 26.43% 26.12% 48.48% 46.97% 47.68% 47.95% 47.64% 

0.80𝑆0 34.38% 35.60% 36.31% 35.77% 35.55% 58.60% 55.30% 55.96% 56.01% 56.23% 

0.85𝑆0 48.22% 47.13% 47.47% 47.34% 47.18% 68.46% 64.20% 64.92% 65.05% 65.22% 

0.90𝑆0 64.00% 60.98% 61.17% 61.46% 61.08% 78.73% 74.44% 74.70% 74.92% 75.23% 

0.95𝑆0 80.59% 77.47% 77.52% 77.66% 77.44% 88.66% 85.51% 85.58% 85.71% 86.02% 

 
          

1.05𝑆0 81.27% 82.53% 82.23% 83.09% 82.42% 89.09% 89.54% 89.38% 90.04% 89.42% 

1.10𝑆0 67.11% 68.11% 67.75% 69.01% 67.84% 80.51% 81.34% 80.90% 82.07% 80.94% 

1.15𝑆0 54.45% 54.59% 53.67% 55.29% 53.92% 72.61% 73.16% 72.55% 74.28% 72.77% 

1.20𝑆0 43.52% 41.98% 40.35% 42.68% 41.33% 65.22% 65.70% 64.58% 66.54% 65.04% 

1.25𝑆0 34.39% 31.11% 28.72% 31.52% 30.10% 58.25% 58.48% 56.82% 59.20% 57.44% 

1.30𝑆0 26.81% 22.26% 19.34% 22.46% 20.80% 52.10% 51.30% 49.61% 52.33% 50.11% 

1.35𝑆0 20.74% 15.24% 12.68% 15.46% 13.64% 46.63% 44.54% 42.79% 45.89% 43.42% 

1.40𝑆0 15.83% 10.14% 8.62% 10.36% 8.46% 41.50% 38.67% 36.53% 39.43% 37.50% 

1.45𝑆0 11.99% 6.60% 5.99% 6.85% 5.09% 36.66% 33.03% 30.94% 33.81% 31.90% 

1.50𝑆0 9.00% 4.22% 4.08% 4.49% 3.28% 32.55% 28.17% 26.18% 28.75% 26.54% 
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Appendix B: Data 
Table B.1 

Implied volatilities of options written on the Eurostoxx 50 index on the 7
th
 of October 2003. The data set 

was obtained from [23]. 

 

 
Maturity (years) 

 Strike price 0.0361 0.2000 1.1944 2.1916 4.2056 5.1639 

1081.82 
  

0.3804 0.3451 0.3150 0.3137 

1212.12 
  

0.3667 0.3350 0.3082 0.3073 

1272.73 
  

0.3603 0.3303 0.3050 0.3043 

1514.24 
  

0.3348 0.3116 0.2920 0.2921 

1555.15 
  

0.3305 0.3084 0.2899 0.2901 

1870.3 
 

0.3105 0.2973 0.2840 0.2730 0.2742 

1900.00 
 

0.3076 0.2946 0.2817 0.2714 0.2727 

2000.00 
 

0.2976 0.2858 0.2739 0.2660 0.2676 

2100.00 0.3175 0.2877 0.2775 0.2672 0.2615 0.2634 

2178.18 0.3030 0.2800 0.2709 0.2619 0.2580 0.2600 

2200.00 0.2990 0.2778 0.2691 0.2604 0.2570 0.2591 

2300.00 0.2800 0.2678 0.2608 0.2536 0.2525 0.2548 

2400.00 0.2650 0.2580 0.2524 0.2468 0.2480 0.2505 

2499.76 0.2472 0.2493 0.2446 0.2400 0.2435 0.2463 

2500.00 0.2471 0.2493 0.2446 0.2400 0.2435 0.2463 

2600.00 
 

0.2405 0.2381 0.2358 0.2397 0.2426 

2800.00 
  

0.2251 0.2273 0.2322 0.2354 

2822.73 
  

0.2240 0.2263 0.2313 0.2346 

2870.83 
  

0.2213 0.2242 0.2295 0.2328 

2900.00 
  

0.2198 0.2230 0.2288 0.2321 

3000.00 
  

0.2148 0.2195 0.2263 0.2296 

3153.64 
  

0.2113 0.2141 0.2224 0.2258 

3200.00 
  

0.2103 0.2125 0.2212 0.2246 

3360.00 
  

0.2069 0.2065 0.2172 0.2206 

3400.00 
  

0.2060 0.2050 0.2162 0.2196 

3600.00 
   

0.1975 0.2112 0.2148 

3626.79 
   

0.1972 0.2105 0.2142 

3700.00 
   

0.1964 0.2086 0.2124 

3800.00 
   

0.1953 0.2059 0.2099 

4000.00 
   

0.1931 0.2006 0.2050 

4070.00 
    

0.1988 0.2032 

4170.81 
    

0.1961 0.2008 

4714.83 
    

0.1910 0.1957 

4990.91 
    

0.1904 0.1949 

5000.00 
    

0.1903 0.1949 
5440.18 

     
0.1938 

 


