

Zhan, Z-H., Zhang, J., Li, Y. and Shi, Y-H. Orthogonal learning particle
swarm optimization. IEEE Transactions on Evolutionary Computation, 99
. p. 1. ISSN 1089-778X

http://eprints.gla.ac.uk/44801/

Deposited on: 16 November 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/293.html
http://eprints.gla.ac.uk/view/journal_volume/IEEE_Transactions_on_Evolutionary_Computation.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Orthogonal Learning Particle Swarm Optimization
Zhi-Hui Zhan, Student Member, IEEE, Jun Zhang, Senior Member, IEEE, Yun Li, Member, IEEE,

and Yu-Hui Shi, Senior Member, IEEE

Abstract—Particle swarm optimization (PSO) relies on its
learning strategy to guide its search direction. Traditionally,
each particle utilizes its historical best experience and its neigh-
borhood’s best experience through linear summation. Such a
learning strategy is easy to use, but is inefficient when searching
in complex problem spaces. Hence, designing learning strategies
that can utilize previous search information (experience) more
efficiently has become one of the most salient and active PSO
research topics. In this paper, we proposes an orthogonal learning
(OL) strategy for PSO to discover more useful information that
lies in the above two experiences via orthogonal experimental
design. We name this PSO as orthogonal learning particle swarm
optimization (OLPSO). The OL strategy can guide particles to
fly in better directions by constructing a much promising and
efficient exemplar. The OL strategy can be applied to PSO with
any topological structure. In this paper, it is applied to both glob-
al and local versions of PSO, yielding the OLPSO-G and OLPSO-
L algorithms, respectively. This new learning strategy and the
new algorithms are tested on a set of 16 benchmark functions, and
are compared with other PSO algorithms and some state of the
art evolutionary algorithms. The experimental results illustrate
the effectiveness and efficiency of the proposed learning strategy
and algorithms. The comparisons show that OLPSO significantly
improves the performance of PSO, offering faster global conver-
gence, higher solution quality, and stronger robustness.

Index Terms—Global optimization, orthogonal experimental
design (OED), orthogonal learning particle swarm optimization
(OLPSO), particle swarm optimization (PSO), swarm intelli-
gence.

I. Introduction

PARTICLE swarm optimization (PSO) algorithm is a
global optimization method originally developed by

Kennedy and Eberhart [1], [2]. It is a swarm intelligence
[3] algorithm that emulates swarm behaviors such as birds
flocking and fish schooling. It is a population-based itera-
tive learning algorithm that shares some common character-
istics with other evolutionary computation (EC) algorithms
[4]. However, PSO searches for an optimum through each

Manuscript received September 16, 2009; revised January 6, 2010 and
February 10, 2010. This work was supported in part by the National Natural
Science Foundation of China Joint Fund with Guangdong, under Key Project
U0835002, by the National High-Technology Research and Development
Program (“863” Program) of China, under Grant 2009AA01Z208, and by
the Suzhou Science and Technology Project, under Grant SYJG0919.

Z.-H. Zhan and J. Zhang are with the Department of Computer Science, Sun
Yat-Sen University, Guangzhou 510275, China, with the Key Laboratory of
Digital Life, Ministry of Education, China, and also with the Key Laboratory
of Software Technology, Education Department of Guangdong Province,
China (e-mail: junzhang@ieee.org).

Y. Li is with the Department of Electronics and Electrical Engineering,
University of Glasgow, Glasgow G12 8LT, U.K.

Y.-H. Shi is with the Research and Postgraduate Office and the Department
of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University,
Jiangsu 215123, China.

Digital Object Identifier 10.1109/TEVC.2010.2052054

particle flying in the search space and adjusting its flying
trajectory according to its personal best experience and its
neighborhood’s best experience rather than through particles
undergoing genetic operations like selection, crossover, and
mutation [5]. Owing to its simple concept and high efficiency,
PSO has become a widely adopted optimization technique and
has been successfully applied to many real-world problems
[6]–[13].

The salient feature of PSO lies in its learning mechanism
that distinguishes the algorithm from other EC techniques
[5]. When searching for a global optimum in a hyperspace,
particles in a PSO fly in the search space according to
guiding rules. It is the guiding rules that make the search
effective and efficient. In the traditional PSO, the rules are
the mechanism that each particle learns from its own best
historical experience and its neighborhood’s best historical
experience [1]. According to the method of choosing the
neighborhood’s best historical experience, PSO algorithms are
traditionally classified into global version PSO (GPSO) and
local version PSO (LPSO). In GPSO, a particle uses the best
historical experience of the entire swarm as its neighborhood’s
best historical experience. In LPSO, a particle uses the best
historical experience of the particle in its neighborhood which
is defined by some topological structure, such as the ring
structure, the pyramid structure, or the von Neumann structure
[14]–[16]. Without loss of generality, this paper aims at
improving the performance of both the GPSO and the LPSO
with the ring structure, where a particle takes its left and right
particles (by particle index) as its neighbors [2].

In both GPSO and LPSO, the information of a particle’s best
experience and its neighborhood’s best experience is utilized in
a simple way, where the flying is adjusted by a simple learning
summation of the two experiences which will be given in (1) in
Section II-A. However, this is not necessarily an efficient way
to make the best use of the search information in these two
experiences. For example, in one case, it may cause an “os-
cillation” phenomenon [17] because the guidance of the two
experiences may be in opposite directions. This is inefficient to
the search ability of the algorithm and delays the convergence
speed. In another case, the particle may suffer from the “two
steps forward, one step back” phenomenon [18] that some
components of the solution vector may be improved by one
exemplar but may be deteriorated by the other. This is because
that one exemplar may have good values on some dimensions
of the solution vector while the other exemplar may have good
values on some other dimensions. Hence, how to discover
more useful information embedded in the two exemplars and

1089-778X/$26.00 c© 2010 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

thus how to utilize the information to construct an efficient
and promising exemplar to guide the particle flying steadily
toward the global optimal region are important and challenging
research issues that PSO researchers need to pay attention to.

Because orthogonal experimental design (OED) offers an
ability to discover the best combination levels for differ-
ent factors with a reasonably small number of experimental
samples [19], [20]. In this paper, we propose to use the
OED method to construct a promising learning exemplar.
Here, OED is used to discover the best combination of a
particle’s best historical position and its neighborhood’s best
historical position. The orthogonal experimental factors are the
dimensions of the problem and the levels of each dimension
(factor) are the two choices of a particle’s best position value
and its neighborhood’s best position value on this correspond-
ing dimension. This way, the best combination of the two
exemplars can be constructed to guide the particle to fly more
steadily, rather than oscillatory, because only one constructed
exemplar is used for the guidance. It is thus expected for a
particle to fly more promisingly toward the global optimum
because the constructed exemplar makes the best use of the
search information of both the particle’s best position and its
neighborhood’s best position.

In this paper, the OED is used to form an orthogonal
learning (OL) strategy for PSO to discover and preserve useful
information of a particle’s best position and its neighborhood’s
best position. Owing to the OEDs orthogonal test ability
and prediction ability, the OL strategy could construct a
guidance exemplar with an ability to predict promising search
directions toward the global optimum, therefore results in
faster PSO convergence speed and higher solution accuracy.
The OL strategy is expected to bring better learning efficiency
to PSO and hence better global optimization performance.
This learning strategy is applicable to any kind of PSO
paradigms, including both GPSO and LPSO. In this paper,
the OL strategy-based PSO is termed as orthogonal learning
particle swarm optimization (OLPSO). Its advantages will be
demonstrated by comparing it with PSOs using traditional
learning strategy and with other improved PSOs. Moreover, the
OLPSO algorithm is as easy to understand as the traditional
PSO and retains the simplicity of PSO.

The rest of the paper is organized as follows. In Section II,
the framework of PSO is presented and the researches on
improved PSOs are reviewed. In Section III, the OLPSO
algorithm is proposed by first discussing the deficiency of tra-
ditional learning strategy and then developing the OL strategy.
In Section IV, the benchmark functions are used to test OLPSO
and to compare it with the PSOs using traditional learning
strategy, various improved PSO algorithms, and some state
of the art evolutionary algorithms reported in the literatures,
in order to verify the effectiveness and efficiency of the
OL strategy and the OLPSO in solving global optimization
problems. Finally, conclusions are given in Section V.

II. PSO

A. PSO Framework

When searching in a D-dimensional hyperspace, each parti-
cle i has a velocity vector Vi = [vi1, vi2, . . . , viD] and a position

vector Xi = [xi1, xi2, . . . , xiD] to indicate its current state,
where i is a positive integer indexing the particle in the swarm
and D is the dimensions of the problem under study. Moreover,
particle i will keep its personal historical best position vector
Pi = [pi1, pi2, . . . , piD]. The best position of all the particles in
the ith particle’s neighborhood (the neighborhood of a particle
is defined by a topology structure, e.g., the neighborhood
of particle i includes the particles i–1, i, and i+1 in a ring
topology structure) is denoted as Pn = [pn1, pn2, . . . , pnD].
The vectors Vi and Xi are initialized randomly and are updated
by (1) and (2) generation-by-generation through the guidance
of Pi and Pn

vid = vid + c1r1d(pid − xid) + c2r2d(pnd − xid) (1)

xid = xid + vid. (2)

Coefficients c1 and c2 are acceleration parameters which are
commonly set to 2.0 or are adaptively controlled according to
the evolutionary states [21]. The r1d and r2d are two randomly
generated values within range [0, 1] for the dth dimension. In
order to control the flying velocity within a reasonable range, a
positive value VMAXd is used to clamp the updated velocity. If
|vid |exceeds VMAXd, then it is set to sign(vid)VMAXd . However,
the updated position xid needs not to be clamped if only the
particles within the search space will be evaluated. In this way,
all the particles will be drawn back to the range by Pi and Pn

which are both within the search space [22].
To control or adjust the flying velocity, however, an inertia

weight or a constriction factor is introduced by Shi and
Eberhart [23], and Clerc and Kennedy [24], [25], respectively.
Using inertia weight ω, (1) is modified to be (3), whilst using
the constriction factor χ, (1) is modified to be (4)

vid = ωvid + c1r1d(pid − xid) + c2r2d(pnd − xid) (3)

vid = χ[vid + c1r1d(pid − xid) + c2r2d(pnd − xid)] (4a)

where

χ =
2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ

∣∣∣ (4b)

ϕ = c1 + c2. (4c)

In (3), ω usually decreases linearly from 0.9 to 0.4 during
the run time [23] whereas χ in (4) is preferably set to be
0.729 together with c1 = c2 = 2.05 [24], [25]. Moreover, the
parameter VMAXd can be omitted in a PSO with constriction
factor. However, as pointed out in [26], the inertia weight
and the constriction factor are mathematically equivalent when
(4b) and (4c) are met. Without loss of generality, this paper
concentrates on the PSO with inertia weight.

B. Improved PSOs

Since its introduction in 1995, PSO has been widely ap-
plied to many real-world problems and variants of modified
PSOs have been reported in the literature, with enhanced
search performance, especially for multimodal optimization

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 3

Fig. 1. Oscillation phenomenon in PSO. (a) Flying toward Pn when Li < Ln. (b) Flying toward Pi when Li > Ln.

problems. One active research trend has been to combine
PSO with other EC techniques, and this has led to hybrid
PSOs. Angeline [27] has first introduced into PSO a selection
operator similar to that used in a genetic algorithm (GA).
Hybridization of PSO with GA has also been applied to
recurrent artificial neural network design [28]. Apart from
selection [27], crossover [29], and mutation [30] operations
that have been adopted from GAs, more other operations
have also been utilized. A PSO algorithm with a cooperative
approach called CPSO-Sk was proposed in [18], and a CPSO-
Hk algorithm combining the standard PSO with the CPSO-
Sk was shown offering a significant improvement over the
standard PSO [18]. Further, a re-initialization operation and a
self-organizing hierarchical technique have been used together
with time-varying acceleration coefficients in order to bring
diversity into the population [31]. In addition, Parsopoulos
and Vrahatis [17] have proposed a hybrid of deflection and
stretching techniques to overcome local minima and have also
proposed a repulsion technique to prevent particles moving
toward the previously found minima. Inspired by natural
evolution, some researchers have introduced niche [32], [33]
and speciation techniques [34] into PSO for the purposes of
avoiding swarm crowding too closely and of locating as many
optimal solutions as possible.

Topological structures of PSO have also been studied
widely and various topologies have been suggested. Kennedy
[14], [15] has shown that a small neighborhood might work
better on complex or multimodal problems whilst a larger
neighborhood is better for simpler or unimodal problems.
Further, dynamically changing neighborhood structures have
been proposed by Suganthan [35], Hu and Eberhart [36],
and Liang and Suganthan [37] in order to avoid deficiencies
of fixed neighborhoods. In addition, Peram et al. [38] have
suggested updating the particle velocity by three learning
components, two of which are the personal best position and
the globally best position, and the other is the particle which
has a higher fitness and is nearer to the current particle with
a maximal fitness-to-distance ratio. Full information of the
entire neighborhood is used to guide the particle in a fully
informed particle swarm (FIPS) [39]. That is, all members
in the neighborhood can offer their search information fairly
or weighted by the distance or fitness of their personal best

positions. The cluster centers are calculated in [40] to replace
the personal best position or its neighbor’s best position, or
both. Another modification is the comprehensive learning PSO
(CLPSO) [22], which is shown to enhance the diversity of the
population by encouraging each particle to learn from different
particles on different dimensions, in the metaphor that the best
particle which has the highest fitness does not always offer a
better value in every dimension.

III. OLPSO

In this section, the traditional PSO learning mechanism is
first introduced, followed by the motivations of developing the
new OL strategy. Then, the OED method and implementation
of the OL strategy are presented. Two complete OLPSO
algorithms are derived at the end of the section.

A. Traditional PSO Learning Mechanism

In the traditional PSO, each particle updates its flying ve-
locity and position according to its personal best position and
its neighborhood’s best position. The concept is simple and
appealing, but this learning strategy can cause the “oscillation”
phenomenon [17] and the “two steps forward, one step back”
phenomenon [18].

The “oscillation” phenomenon is likely to be caused by lin-
ear summation of the personal influence and the neighborhood
influence. For the clearness and easiness of understanding,
we first simplify (3) as (5) by removing the inertia weight
component and the random values

vid = (pid − xid) + (pnd − xid). (5)

In (5), we consider the following case for a maximization
problem where the current particle Xi is between its personal
best position Pi and its neighborhood’s best position Pn, as
shown in Fig. 1. At first, the distance between Pn and Xi may
be farther than the one between Pi and Xi, as in Fig. 1(a), then
Xi will move toward Pn because of its larger pull. However,
as moving toward Pn, the distance between Pi and Xi will
increase, as shown in Fig. 1(b). In this case, the particle will
move toward Pi instead. The oscillation would thus occur and
the particle will be puzzled in deciding where to stay [17].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

This oscillation phenomenon causes inefficiency to the search
ability of the algorithm and delays convergence.

Another related phenomenon of the traditional learn-
ing mechanism is the “two step forward, one step back”
phenomenon as described in [18]. For example, given a
3-dimension Sphere functionf (X) = x2

1 +x2
2 +x2

3, whose global
minimum point is [0, 0, 0]. Suppose that the current position
is Xi = [2, 5, 2], its personal best position is Pi = [0, 2, 5]
and its neighborhood’s best position is Pn = [5, 0, 1]. The
updated velocity is Vi = [1, −8, 2] according to (5), and thus
the new position is Xi = Xi + Vi = [3, −3, 4], resulting in
a new position with a cost value of 34 which is worse than
Xi and Pi. Therefore, the particle does not benefit from the
learning from Pi and Pn in this generation. However, vectors
Pi and Pn indeed possess good information in their structures.
For example, if we can discover good dimensions of the two
vectors, we can then combine them to form a new guidance
vector of Po = [0, 0, 1] where the first coordinate 0 comes from
Pi while the second and the third coordinates 0 and 1 come
from Pn (with corresponding dimension). Given the guidance
of Po, the updated velocity become Vi = Po − Xi = [0, 0, 1]
− [2, 5, 2] = [−2, −5, −1]; thus the new position is Xi = Xi

+ Vi = [0, 0, 1], resulting in a new and better position with
a cost f (Xi) = 1 that makes the particle fly faster toward the
global optimum [0, 0, 0].

B. Motivations of the OL Strategy

The first motivation of the OL strategy is that the simple
cases above have illustrated the importance of designing a
guidance vector Po that makes an efficient use of search
information from Pi and Pn. If we exhaustively test all the
combinations of Pi and Pn for the best guidance vector Po,
2D trials are need. This is unrealistic in practice due to the
exponential complexity. With the help of OED [19], [20],
however, we can devise a relatively good vector from Pi and
Pn through only a few experimental tests. In this paper, the
OED method is used to test the combinations of Pi and Pn

for a better Po. The test factors are the D dimensions and the
levels in each factor are 2 for choosing from Pi or Pn.

The second motivation of our work is that recent re-
search has shown that incorporating OED in EC algorithms
can improve their performance significantly [41]–[50]. The
OED method was first introduced into GAs by Zhang and
Leung [41] to enhance the crossover operator for multicast
routing problems. Leung and Wang [42] proposed another
orthogonal GA (OGA/Q) using OED to improve the pop-
ulation initialization and to enhance the crossover operator.
Hu et al. [43] proposed to use OED on chromosomes to
detect surrounding regions for better solutions. Studies in
[44] used OED further with a factor analysis that predicts
the potentially best combinations. The OED has also been
introduced to other optimization algorithms such as simulated
annealing [45], [46], ant colony optimization [47], and PSO
[48]–[50].

The orthogonal PSO (OPSO) reported in [48] uses an “in-
telligent move mechanism” (IMM) operation to generate two
temporary positions, H and R, for each particle X, according
to the cognitive learning and social learning components,

TABLE I

Factors and Levels of the Chemical Experiment Example

Factors A B C
Levels Temp. °C) Time (Min) Alkali (%)

1 L1 80 90 5
2 L2 85 120 6
3 L3 90 150 7

respectively. Then, OED is performed on H and R to obtain
the best position X∗ for the next move, and then the particle
velocity is obtained by calculating the difference between the
new position X∗ and the current position X. Such an IMM
was also used in [49] to orthogonally combine the cognitive
learning and social learning components to form the next
position, and the velocity was determined by the difference
between the new position and the current position. The OED
in [50] was used to help generate the initial population evenly.
Different from previous work and to go steps further, in
this paper, we use the OED to form an orthogonal learning
strategy, which discovers and preserves useful information in
the personal best and the neighborhood best positions in order
to construct a promising and efficient exemplar. This exemplar
is used to guide the particle to fly toward the global optimal
region.

The third motivation of developing the OL strategy is
that the notion of learning strategy has been very appealing
in PSO. A comprehensive learning (CL) strategy has been
proposed to extend PSO to CLPSO for improved performance
on multimodal functions, but it has been weak in refining
solutions, resulting in relatively slow convergence and low-
solution accuracy on unimodal functions [22]. Therefore, this
paper aims to develop the OL strategy to be able to predict
a promising search direction toward the global optimum, for
faster convergence and higher solution accuracy. Details of the
OED method, the OL strategy, and the OLPSO algorithm will
be described in the following sections.

C. OED

In order to illustrate how to use the OED, a simple example
is shown in Table I, which arises from chemical experiments.
In this example, the aim is to find the best level combination
of the three factors involved to increase the conversion ratio.
Table I shows that three factors, which will affect experimental
results, are the temperature, time and alkali, denoted as factors
A, B, and C, respectively. Moreover, there are three levels
(different choices) involved in each factor. For example, the
temperature can be 80 °C, 85 °C, or 90 °C. Thus, there are in
total 33 = 27 combinations of experimental designs. However,
with the help of OED, one can obtain or predict the best
combination by testing only few representative experimental
cases.

1) Orthogonal Array: The OED method works on a
predefined table called an orthogonal array (OA). An OA
with N factors and Q levels per factor is always denoted by
LM(QN), where L denotes the orthogonal array and M is the
number of combinations of test cases. For the example shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 5

TABLE II

Deciding the Best Combination Levels of the Chemical

Experimental Factors Using an OED Method

Combinations A: Temperature °C) B: Time (Min) C: Alkali (%) Results

C1 (1) 80 (1) 90 (1) 5 F1 = 31

C2 (1) 80 (2) 120 (2) 6 F2 = 54

C3 (1) 80 (3) 150 (3) 7 F3 = 38

C4 (2) 85 (1) 90 (2) 6 F4 = 53

C5 (2) 85 (2) 120 (3) 7 F5 = 49

C6 (2) 85 (3) 150 (1) 5 F6 = 42

C7 (3) 90 (1) 90 (3) 7 F7 = 57

C8 (3) 90 (2) 120 (1) 5 F8 = 62

C9 (3) 90 (3) 150 (2) 6 F9 = 64

Levels Factor Analysis

L1 (F1 + F2 + F3)/3 = 41 (F1 + F4 + F7)/3 = 47 (F1 + F6 + F8)/3 = 45

L2 (F4 + F5 + F6)/3 = 48 (F2 + F5 + F8)/3 = 55 (F2 + F4 + F9)/3 = 57

L3 (F7 + F8 + F9)/3 = 61 (F3 + F6 + F9)/3 = 48 (F3 + F5 + F7)/3 = 48

OED Results A3 B2 C2

in Table I, the L9(34) OA given by (6) is suitable [20]

L9(34) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

The OA in (6) has four columns, meaning that it is suitable
for the problems with at most four factors. As any sub columns
of an OA is also an OA, we can to use only the first three
columns (or arbitrary three columns) of the array for the
experiment. For example, the first three columns in the first
row is [1, 1, 1], meaning that in this experiment, the first
factor (temperature), the second factor (time), and the third
factor (alkali) are all designed to the first level, that is, 80 °C,
90 minutes, and 5% as given in Table I. Similarly, combination
of [1, 2, 2] is used in the second experiment, and so on. The
total of nine experiments specified by the L9(34) are presented
in Table II.

2) Factor Analysis: The ability of discovering the best
combination of levels is through the factor analysis (FA). The
FA is based on the experimental results of all the M cases of
the OA. The FA results are shown in Table II and the process
is described as follows.

Let fm denote the experimental result of the mth (1 ≤ m ≤
M) combination and Snq denote the effect of the qth (1 ≤ q ≤
Q) level in the nth (1 ≤ n ≤ N) factor. The calculation of
Snq is to add up all the fm in which the level is q in the nth
factor, and then divide the total count of zmnq, as shown in (7)
where zmnq is 1 if the mth experimental test is with the qth
level of the nth factor, otherwise, zmnq is 0

Snq =

∑M
m=1 fm × zmnq∑M

m=1 zmnq

. (7)

In this way, the effect of each level on each factor can be
calculated and compared, as shown in Table II. For example,
when we calculate the effect of level 1 on factor A, denoted
by element A1, the experimental results of C1, C2, and C3

are summed up for (7) because only these combinations are
involved in level 1 of factor A. Then, the sum divides the
combination number (3 in this case) to yield Snq (SA1 in this
case). With all the Snq calculated, the best combination of the
levels can be determined by selecting the level of each factor
that provides the highest-quality Snq. For a maximization
problem, the larger the Snq is, the better the qth level on
factor n will be. Otherwise, vice versa. As in the maximiza-
tion example shown in Table II, the best result is the combi-
nation of A3, B2, and C2. Although the combination of (A3,
B2, C2) itself does not exist in the nine combinations tested,
it is discovered by the FA process.

D. OL Strategy

Using the OED method, the original PSO can be modified as
an OLPSO with an OL strategy that combines information of
Pi and Pn to form a better guidance vector Po. The particle’s
flying velocity is thus changed as

vid = ωvid + crd(pod − xid) (8)

where ω is the same as in (3) and c is fixed to be 2.0, the same
as c1 and c2, and rd is a random value uniformly generated
within the interval [0, 1].

The guidance vector Po is constructed for each particle i,
respectively, from Pi and Pn as

Po = Pi ⊕ Pn (9)

where the symbol ⊕ stands for the OED operation. Therefore,
the value pod comes from pid or pnd as the construct result
of OED. With this efficient learning exemplar Po, particle i
adjusts its flying velocity, position and updates its personal best
position in every generation. In order to avoid the guidance
changing the direction frequently, the vector Po will be used as
the exemplar for a certain number of generations until it cannot
lead the particle to a better position any more. For example,
if the personal best position Pi has not been improved for G
generations, then particle i will reconstruct a new Po by using
Pi and Pn. On the other hand, as Po is used for some time
until it cannot improve the position, one problem should be
addressed is how to use the information that comes from Pi

and Pn immediately after Pi and Pn go to a better position
during the search process. In our implementations, vector Po

stores only the index of Pi and Pn, not the copy of the
real position values. That is, pod only indicates that the dth
dimension is guided by Pi or Pn, it does not store the current
value of pid or pnd . Thus, in the OLPSO algorithm, when Pi

or Pn moves to a better position, the new information will be
used immediately by the particle through Po.

The construction process of Po is described as the following
six steps.

Step 1) An OA is generated as LM(2D) where M =
2�log2(D+1)�, using the procedure as given in Ap-
pendix.

Step 2) Make up M tested solutions Xj (1 ≤ j ≤ M)
by selecting the corresponding value from Pi or Pn

according to the OA. Here, if the level value in the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

OA is 1, then the corresponding factor (dimension)
selects Pi; otherwise, selects Pn.

Step 3) Evaluate each tested solution Xj (1 ≤ j ≤ M), and
record the best (with best fitness) solution Xb.

Step 4) Calculate the effect of each level on each factor and
determine the best level for each factor using (7).

Step 5) Derive a predictive solution Xp with the levels deter-
mined in Step 4 and evaluate Xp.

Step 6) Compare f (Xb) and f (Xp) and the level combination
of the better solution is used to construct the vector
Po.

In the above process, each of the D dimensions is regarded
as a factor and therefore there are D factors in the OED.
This results in M = 2�log2(D+1)� orthogonal combinations
because the level of each factor is two [20]. Therefore the
M is no larger than 2D, which is significantly smaller than
the total number of combinations 2D. A method to further
reduce the number of the orthogonal combinations is to divide
the dimensions into several disjoint groups and regard each
group as a factor. This method also may be good for the
problems whose dimensions are not independent of each other.
Unfortunately, how many groups should be divided and how
to assign different dimensions to different groups are usually
problem-dependent and difficult to decide [44]. Therefore,
since the problem characteristic is usually unknown, it may
be a good choice to regard each dimension as a factor. In
fact, by using OED, some factors can be regarded as in the
same group when they are with the same level. Therefore, it
is without loss of generality to regard each dimension as a
factor.

E. OLPSO

The OL strategy is a generic operator and can be applied
to any kind of topology structure. If the OL is used for the
GPSO, then Pn is Pg. If it is used for the LPSO, then Pn is
Pl. Either for a global or a local version, when constructing
the vector of Po, if Pi is the same as Pn (e.g., for the
globally best particle, Pi and Pg are identical vectors), the
OED makes no contribution. In such a case, OLPSO will
randomly select another particle Pr, and then construct Po

by using the information of Pi and Pr through the OED.
The flowchart of OLPSO is shown in Fig. 2. As discussed

in the previous section, the particle will use vector Po as the
learning exemplar steadily and reconstruct the Po only after a
stagnation of Pi for G generations. As can be imagined, if G is
too small, the particles will reconstruct the guidance exemplar
Po frequently. This may waste computations on OED when it
is not indeed necessary. Also, the search direction will not be
steady if Po changes frequently. On the other hand, if G is too
large, the particles will waste much computation on the local
optima with a Po which is not effective any longer.

In order to investigate the influence of G on the performance
of the OLPSO algorithm, empirical studies are carried out on
relevant functions, namely the Sphere, Rosenbrock, Schwefel,
Rastrigrin, Ackley, and Grienwank functions listed in Table III
as the f1, f3, f5, f6, f7, and f8, respectively. Different values
for G from 0 to 10 are tested, and two OLPSO versions that
based on a global topology (OLPSO-G) and a local topology

Fig. 2. Flowchart of an OLPSO algorithm.

(OLPSO-L) are simulated. The results of the investigation are
shown in Fig. 3(a) and (b) with averagely 25 independent
runs for the OLPSO-G and the OLPSO-L, respectively. The
figures reveal that a value of G around 5 offers the best
performance. This also indicates OLPSO indeed benefits from
the OL strategy by the steadily guidance of a promising
learning exemplar. Therefore, a reconstruction gap of G = 5
is used in this paper.

IV. Experimental Verification and Comparisons

A. Functions Tested and PSOs Compared

Sixteen benchmark functions listed in Table III are used in
the experimental tests. These benchmark functions are widely
adopted in benchmarking global optimization algorithms [22],
[51], [56]. In this paper, the functions are divided into three
groups. The first group includes four unimodal functions,
where f1 and f2 are simple unimodal, f3 (Rosenbrock) is
unimodal in a 2-D or 3-D search space but can be treated as a
multimodal function in high-dimensional cases [52]–[54], and
f4 is with noisy perturbation. The second group includes six
complex multimodal functions with high dimensionality. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 7

TABLE III

Sixteen Test Functions Used in the Comparison

Test Function D Search Initialization Global fmin Accept Name
Range Range Opt. x∗

Unimodal f1(x) =
∑D

i=1
x2
i

30 [−100, 100]D [−100, 50]D {0}D 0 1 × 10−6Sphere [51]

f2(x) =
∑D

i=1
|xi| +

∏D

i=1
|xi| 30 [−10, 10]D [−10, 5]D {0}D 0 1 × 10−6Schwefel’sP2.22[51]

f ∗
3 (x) =

∑D−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] 30 [−10, 10]D [−10, 10]D {1}D 0 100 Rosenbrock [51]†

f4(x) =
∑D

i=1
ix4

i
+ random[0, 1) 30[−1.28, 1.28]D[−1.28, 0.64]D {0}D 0 0.01 Noise [51]

Multimodal f5(x) = 418.9829 × D −
∑D

i=1
xi sin(

√
|xi|) 30 [−500, 500]D [−500, 500]D {420.96}D 0 2000 Schwefel [51]

f6(x) =
∑D

i=1
[x2

i
− 10 cos(2πxi) + 10] 30[−5.12, 5.12]D [−5.12, 2]D {0}D 0 100 Rastrigin [51]

f7(x) = −20 exp(−0.2

√
1
D

∑D

i=1
x2
i

) − exp(1
D

∑D

i=1
cos 2πxi) + 20 + e 30 [−32, 32]D [−32, 16]D {0}D 0 1 × 10−6Ackley [51]

f8(x) = 1/4000
∑D

i=1
x2
i

−
∏D

i=1
cos(xi/

√
i) + 1 30 [−600, 600]D [−600, 200]D {0}D 0 1 × 10−6Griewank [51]†

f9(x) = π
D

{10 sin2(πy1) +
∑D−1

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2} +

∑D

i=1
u(xi, 10, 100, 4)

whereyi = 1 + 1
4 (xi + 1), u(xi, a, k, m) =

{
k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a

30 [−50, 50]D [−50, 25]D {0}D 0 1 × 10−6Generalized
Penalized [51]

f10(x) = 1
10 {sin2(3πx1) +

∑D−1

i=1
(xi − 1)2[1 + sin2(3πxi+1)] 30 [−50, 50]D [−50, 25]D {0}D 0 1 × 10−6

+(xD − 1)2[1 + sin2(2πxD)]} +
∑D

i=1
u(xi, 5, 100, 4)

Rotated and Shifted

f11(y) = 418.9828 × D −
∑D

i=1
zi,

where zi =

{
yi sin(

√
|yi|), if |yi| ≤ 500

0, otherwise
, yi = y′

i
+ 420.96,

wherer y′ = M∗(x − 420.96), M is an orthogonal matrix

30 [−500, 500]D [−500, 500]D {420.96}D 0 5000 Rotated
Schwefel [22]†

f12(y) =
∑D

i=1
[y2

i
− 10 cos(2πyi) + 10]

where y = M∗x, M is an orthogonal matrix
30[−5.12, 5.12]D [−5.12, 2]D {0}D 0 100 Rotated

Rastrigin [22]†

f13(y) = −20 exp(−0.2

√
1
D

∑D

i=1
y2
i

) − exp(1
D

∑D

i=1
cos 2πyi) + 20 + e

where y = M∗x, M is an orthogonal matrix

30 [−32, 32]D [−32, 16]D {0}D 0 1 × 10−6Rotated
Ackley [22]†

f14(y) = 1/4000
∑D

i=1
y2
i

−
∏D

i=1
cos(yi/

√
i) + 1

where y = M∗x, M is an orthogonal matrix
30 [−600, 600]D [−600, 200]D {0}D 0 1 × 10−6Rotated

Griewank [22]†

f15(x) =
∑D−1

i=1
(100(z2

i
− zi+1)2 + (zi − 1)2) + f bias6, z = x − o + 1,

o = [o1, o2, · · · , oD] : the shifted global optimum
30 [−100, 100]D [−100, 100]D o 390 490 Shifted

Rosenbrock [56]†

f16(x) =
∑D

i=1
(z2

i
− 10 cos(2πzi) + 10) + f bias9, z = x − o,

o = [o1, o2, · · · , oD] : the shifted global optimum
30 [−5, 5]D [−100, 100]D o −330 −230 Shifted

Rastrigin [56]

f ∗
3 is unimodal in a 2-D or 3-D search space but can be treated as a multimodal function in high-dimensional cases.

† The function is non-separable.

Fig. 3. OLPSO performance with various values of the reconstruction gap G. (a) OLPSO with a global topology. (b) OLPSO with a local topology.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE IV

PSO Algorithms for Comparison

Algorithm Parameters Settings Reference

GPSO ω: 0.9∼0.4, c1 = c2 = 2.0, VMAXd = 0.2 × Range [23]

LPSO ω: 0.9∼0.4, c1= c2 = 2.0, VMAXd = 0.2 × Range [15]

SPSO ω = 0.721, c1 = c2 = 1.193, K = 3, without VMAX [55]

FIPS χ = 0.729,
∑

ci = 4.1, VMAXd = 0.5 × Range [39]

HPSO-TVAC ω: 0.9∼0.4, c1: 2.5∼0.5, c2: 0.5∼2.5, VMAXd = 0.5 × Range [31]

DMS-PSO ω: 0.9∼0.2, c1= c2 = 2.0, m = 3, R = 5, VMAXd = 0.2 × Range [37]

CLPSO ω: 0.9∼0.4, c = 1.49445, m = 7, VMAXd = 0.2 × Range [22]

OPSO ω: 0.9∼0.4, c1= c2 = 2.0, VMAXd = 0.5 × Range [48]

OLPSO ω: 0.9∼0.4, c = 2.0, G = 5, VMAXd = 0.2 × Range −

last group includes four rotated multimodal functions and 2
shifted functions defined in [56].

Table III gives the global optimal solution (column 5) and
the global optimal value fmin (column 6). Moreover, biased
initializations (column 4) are used according to the definitions
in [22] for the functions whose global solution point is at the
center of the search range. “Accept” (column 7) is also defined
for each test function. If a solution found by an algorithm falls
between the acceptable value and the actual global optimum
fmin (column 5), the run is judged to be successful.

Variant PSO algorithms, as detailed in Table IV, are
used for comparisons. The parameter configurations are all
based on the suggestions in the corresponding references.
The first two are traditional PSOs of GPSO [23] and
LPSO [15]. The third is the Standard PSO (SPSO) [55].
SPSO is the current standard which is improved by using
a random topology, refer to http://www.particleswarm.info/
Programs.html#Standard−PSO−2007 for more details. The
fourth is a “fully informed” PSO (FIPS) [39] that uses all
the neighbors to influence the flying velocity. The fifth is a
“performance-improvement” PSO by improving the accelera-
tion coefficients, namely hierarchical PSO with time-varying
acceleration coefficients (HPSO-TVAC) [31]. The sixth is a
dynamic multi-swarm PSO (DMS-PSO) [37] which is de-
signed to improve the topological structure in a dynamic way.
The seventh, CLPSO [22], aims to offer a better performance
for multimodal functions by using a CL strategy. The eighth,
the OPSO [48] algorithm, aims to improve the algorithm by
using an OED to generate a better position, not by constructing
a learning exemplar as proposed in this paper. These PSO vari-
ants are used for comparisons because they are typical PSOs
that are reported to perform well on their studied problems.
Moreover, they span a wide time interval from 1998 to 2008,
which witness the developments of PSO on variant aspects.
For OLPSO developed in this paper, we implement the OL
strategy in both the global and the local version PSO, resulting
in two OLPSO algorithms, the OLPSO-G and the OLPSO-L,
respectively. Both will be compared with GPSO, LPSO, SPSO,
FIPS, HPSO-TVAC, DMS-PSO, CLPSO, and OPSO.

For a fair comparison among all the PSOs, they are tested
using the same population size of 40. As the SPSO in [55]
automatically computes a size of 20 for 30-D functions, we
both use SPSO with 20 and 40 particles in the experiments.
The two SPSO variants are denoted as SPSO-20 and SPSO-
40, respectively. Furthermore, all the algorithms use the same
maximum number of function evaluations (FEs) 2×105 in

each run for each test function. Note that the number of FEs
consumed during the construction of the guidance exemplar Po

in OLPSO are included in this maximum FEs number allowed.
Also notice that an L32(231) OA [20], [44] is suitable for all
the test functions because they are all 30 dimensional. For the
purpose of reducing statistical errors, each algorithm is tested
25 times independently for every function and the mean results
are used in the comparison.

B. Solution Accuracy with OL Strategy

The solutions obtained by OLPSOs are compared with
the ones obtained by PSOs without OL strategy in Table V.
Table V compares the mean values and the standard deviations
of the solutions found. The best results are marked in boldface.
The t-test results between OLPSO-G and GPSO, and OLPSO-
L and LPSO are also given, respectively.

1) Unimodal Functions: For the four unimodal func-
tions, the results show that OLPSOs generally outperform
the traditional PSOs. For example, OLPSO-G does better
than GPSO on functions f1, f2, and f3 whilst OLPSO-L
outperforms LPSO on functions f1, f2, f3, and f4. The
experimental results show that the OL strategy brings solution
with much higher accuracy to the problem. For the very simple
unimodal functions f1 and f2, OLPSO-G provides solutions
with the highest quality. However, as the problem becomes
more complex, even become multimodal in high dimension,
such as the Rosenbrock’s function (f3), the performance of
OLPSO-L is much better. This is in coincidence with the
general observation that a LPSO does better than a GPSO on
complex problems. This is because a LPSO draws experience
from locally best particles, as opposed to the interim global
best, and hence avoids a premature convergence, although it
could converge more slowly. As for the Noise function (f4),
we can observe that OLPSO-G does not show an advantage.
This is perhaps because the effect of the OL strategy is largely
canceled out by the random fluctuation.

The plots in Fig. 4 show the convergence progress of the
mean solution values of the 25 trials during the run for func-
tions f1 and f3. It is apparent that OLPSOs perform better than
the traditional PSOs in terms of final solution and convergence
speed. It can be observed from the figures that OLPSOs
with the OL strategy converge considerably faster than the
traditional PSOs (GPSO and LPSO) without an OL strategy.

2) Multimodal Functions: As the efficiency of the OL
strategy provides PSO an ability to discover, preserve, and
utilize useful information of the learning exemplars, it is
expected that OLPSO can avoid local optima and bring about
improved performance on multimodal functions. Indeed, the
experimental results for functions f5–f10 given in Table V
support this intuition. OLPSO-G surpasses GPSO on all the
six multimodal functions. OLPSO-L yields the best perfor-
mance among the four PSOs on all the six multimodal
functions, in terms of mean solutions and standard deviations.
In comparison, GPSO can only reach the global optimum
on function f7 and f9 while LPSO on functions f7, f9,
and f10. Best of all, OLPSO-L is able to find the global
optimum on all the functions and only OLPSO-L can show
significantly improved performance in reaching the global

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 9

TABLE V

Solutions Accuracy (Mean and Standard Deviation) Comparisons Between PSOs With and Without the OL Strategy

Func GPSO OLPSO-G t-Test LPSO OLPSO-L t-Test

f1 2.05 × 10−32 ± 3.56 × 10−32 4.12×10−54±6.34×10−54 2.88† 3.34×10−14±5.39×10−14 1.11×10−38±1.28×10−38 3.10‡

f2 1.49×10−21±3.60×10−21 9.85×10−30±1.01×10−29 2.07† 1.70×10−10±1.39×10−10 7.67×10−22±5.63×10−22 6.12‡

f3 40.70±32.19 21.52±29.92 2.18† 28.08±21.79 1.26±1.40 6.14‡

f4 9.32 × 10−3 ± 2.39 × 10−3 1.16×10−2±4.10×10−3 −2.38† 2.28×10−2±5.60×10−3 1.64×10−2±3.25×10−3 4.96‡

f5 2.48×103±2.97×102 3.84×102±2.17×102 28.53† 3.16×103±4.06×102 3.82×10−4±0 38.95‡

f6 26.03±7.27 1.07±0.99 17.00† 35.07±6.89 0±0 25.46‡

f7 1.31×10−14±2.08×10−15 7.98×10−15±2.03×10−15 8.80† 8.20×10−08±6.73×10−08 4.14×10−15±0 6.09‡

f8 2.12×10−2±2.18×10−2 4.83×10−3±8.63×10−3 3.50† 1.53×10−3±4.32×10−3 0±0 1.77

f9 2.23×10−31±7.07×10−31 1.59×10−32±1.03×10−33 1.46 8.10×10−16±1.07×10−15 1.57×10−32±2.79×10−48 3.80‡

f10 1.32×10−3±3.64×10−3 4.39×10−4±2.20×10−3 1.03 3.26×10−13±3.70×10−13 1.35×10−32±5.59×10−48 4.41‡

f11 4.61×103±6.21×102 4.00×103±6.08×102 3.51† 4.50×103±3.97×102 3.13×103±1.24×103 5.28‡

f12 60.02±15.98 46.09±12.88 3.39† 53.36±13.99 53.35±13.35 0.00

f13 1.93±0.96 7.69×10−15±1.78×10−15 10.01† 1.55±0.45 4.28×10−15±7.11×10−16 17.44‡

f14 1.80×10−2±2.41×10−2 1.68×10−3±4.13×10−3 3.33† 1.68×10−3±3.47×10−3 4.19×10−8±2.06×10−7 2.42‡

f15 427.93±54.98 424.75±34.80 0.24 432.33±43.41 415.95±23.96 1.65

f16 −223.18±38.58 −328.57 ± 1.04 13.65† −234.95±18.82 −330 ± 1.64 × 10−14 25.36‡

†The value of t with 48 degrees of freedom is significant at α = 0.05 by a two-tailed test between GPSO and OLPSO-G.
‡The value of t with 48 degrees of freedom is significant at α = 0.05 by a two-tailed test between LPSO and OLPSO-L.

Fig. 4. Convergence progresses of the PSOs with and without the OL strategy on unimodal functions (a) f1 (Sphere) and (b) f3 (Rosenbrock).

optimum 0 on the Rastrigin’s function (f6) and the Griewank’s
function (f8). These experimental results verify that the OLP-
SOs with the OL strategy offer the ability of avoiding local
optima to obtain the global optimum robustly in multimodal
functions.

The evolutionary progresses of the PSOs in optimizing the
multimodal functions f5 and f6 are plotted in Fig. 5. It can be
observed that OLPSOs are able to improve solutions steadily
for a long period without being trapped in local optima.
OLPSO-L appears to exhibit the strongest search ability and
can converge to the global optimum 0 in about 1.5×105 FEs
on the Rastrigin’s function. The convergent curves on the
Schewefel’s function (f5) also show that OLPSO-L has strong
global search ability to avoid local optima.

3) Rotated and Shifted Functions: Functions f11 to f14

are multimodal functions with coordinate rotation while f15

and f16 are shifted functions. In order to avoid biases of
specific rotations in the tests, a new rotation is computed
before each run of the 25 independent trials. Experimental

results for the four rotated multimodal functions are also
given in Table V and the evolutionary progresses of f13

and f14 are plotted in Fig. 6. It appears that all the PSO
algorithms are affected by the coordinate rotation. However, it
is interesting to observe that the OLPSO algorithms can still
reach the global optima of the rotated Ackley’s function (f13)
and the rotated Grienwank’s function (f14). All the PSOs are
trapped by the rotated Schwefel’s function (f11) and the rotated
Rastrigin’s function (f12) as they become much more difficult
after coordinate rotation [22]. However, OLPSOs still perform
better than traditional PSOs on these two problems. The
experimental results also show that OLPSO-G and OLPSO-L
outperform GPSO and LPSO, respectively, on the two shifted
function f15 and f16. Moreover, only OLPSO-L can obtain the
global optimum −330 on the shifted Rastrigin’s function (f16).
Overall, even though affected by the rotation and the shift, the
comparisons still indicate that the OL strategy is beneficial to
the PSO performance, and OLPSOs generally perform better
than traditional PSOs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 5. Convergence progresses of the PSOs with and without the OL strategy on multimodal functions (a) f5 (Schwefel) and (b) f6 (Rastrigin).

C. Convergence Speed with OL Strategy

As the OL strategy can provide a promising guidance
exemplar Po, it is natural that OLPSO can reach more accurate
solution with a faster convergence speed. In order to verify
this, more experimental results are given and compared in
Table VI. The results given there are the average FEs needed to
reach the threshold expressed as acceptable solutions specified
in Table III. In addition, successful rate (SR%) of the 25
independent runs for each function are also compared. Note
that the average FEs are calculated only for the runs that have
been “successful.” As some algorithms may not succeed in
reaching the acceptable solution every run on some problems,
the metric success performance (SP), defined as SP = (Average
FEs)/(SR%) [56], is also compared in Table VI.

It can be observed from the table that OLPSO-G and
OLPSO-L are constantly faster than GPSO and LPSO, respec-
tively, on the tested functions. This indeed shows the advan-
tage of the OL strategy in constructing promising exemplar
to guide the flying direction for faster optimization speed.
Moreover, with a reasonable agreement to the fact that GPSO
is always faster than LPSO, OLPSO-G is observed to be faster
than OLPSO-L and is also the fastest algorithm among the
four contenders. Even the slower OLPSO-L (when compared
with OLPSO-G), still converges faster than GPSO (global
version but without OL strategy) on most of the functions.
For example, in solving the Sphere function (f1), average
numbers of FEs 134 561 and 161 985 are needed by GPSO and
LPSO, respectively, to reach the acceptable accuracy 1×10−6.
However, OLPSO-G uses only 89 247 FEs, which indicates
that it is the fastest algorithm. OLPSO-L uses 98 337 FEs to
obtain the solution, which is faster not only than LPSO, but
also than GPSO.

The successful rates shown in the Table VI also indicate that
the OL strategy is very promising in bringing a high reliability
to PSO. The OLPSOs result in higher algorithm reliability
with 100% successful rate on most of the test functions while
traditional PSOs are sometimes trapped in the multimodal,
rotated, or the shifted problems. Overall, OLPSO-L yields
the highest successful rate 93.50% averaged on all the 16
functions, and followed by OLPSO-G, LPSO, and GPSO.

The experimental results have demonstrated that the OL
strategy indeed can provide a much better guidance for the
particles to fly to a promising region faster. The OLPSOs with
the OL strategy are more robust and reliable in solving global
optimization problems.

D. Comparisons with Other PSOs

In this section, the OLPSOs will be compared with some
other improved PSO variants, namely, SPSO-20, SPSO-40,
FIPS, HPSO-TVAC, DMS-PSO, CLPSO, and OPSO, which
have been detailed in Section IV-A. The mean and the standard
deviation (SD) of the final solutions are given and compared
in Table VII. It can be observed that OLPSOs achieve the best
solution on most of the functions. SPSO seems to be good at
simple unimodal functions and SPSO-20 performs best on f1,
and f2. Also SPSO-20 does best on the Noise function (f4),
and the shifted Rosenbrock function (f15). FIPS performs best
on the rotated Griewank’s function (f14). DMS-PSO yields the
best solution on the rotated Rastrigin’s function (f12). CLPSO
obtains the same best mean solution as OLPSO-L does on the
Schewefel’s function (f5) and the shifted Rastrigin function
(f16). Overall, OLPSO-L performs best on f3, f5, f6, f7, f8,
f9, f10, f11, f13, and f16, i.e., 10 out of the 16 functions.

On the unimodal functions, OLPSO-G is shown to offer
superior performance among all the PSOs except SPSO. Note
that the OLPSOs may not be most efficient in solving the
problems with random noise, such as f4. Similarly, OPSO
which also uses an OED method (different from the OL
strategy proposed in this paper) also encounters difficulties
in dealing with this noisy function. This deficiency may be
caused by the OED itself being fluctuated by the random noise.

On the multimodal functions, OLPSOs generally outperform
all the other PSO variants. Only can OLPSO-L and CLPSO
obtain high-quality mean solutions with the error value of 10−4

to the Schwefel’s function (f5) and the Rastrigin’s function
(f6), and only OLPSO-L, CLPSO, and FIPS can obtain high-
quality mean solutions with the error value of 10−9 to the
Griewank’s function (f8).

On the coordinate rotated and shifted functions, OLPSOs
also generally do better than other PSOs. OLPSO-G can still

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 11

Fig. 6. Convergence progresses of the PSOs with and without the OL strategy on rotated multimodal functions (a) f13 (Rotated Ackley) and (b) f14 (Rotated
Griewank).

TABLE VI

Convergence Speed, Algorithm Reliability, and Success Performance Comparisons

Function GPSO OLPSO-G LPSO OLPSO-L
FEs SR% SP FEs SR% SP FEs SR% SP FEs SR% SP

f1 134 561 100 134 561 89 247 100 89 247 161 985 100 161 985 98 337 100 98 337
f2 141 262 100 141 262 101 698 100 101 698 171 962 100 171 962 114 441 100 114 441
f3 126 343 100 126 343 78 749 100 78 749 137 934 100 137 934 92 233 100 92 233
f4 171 048 60 285 080 150 238 40 375 595 × 0 × 186 351 4 4 658 775
f5 117 710 8 1 471 375 40 533 100 40 533 × 0 × 51 498 100 51 498
f6 75 274 100 75 274 37 783 100 37 783 76 061 100 76 061 43 635 100 43 635
f7 152 659 100 152 659 109 627 100 109 627 189 154 100 189 154 126 571 100 126 571
f8 137 576 32 429 925 93 336 68 137 258.8 171 756 80 214 695 107 217 100 107 217
f9 128 474 100 128 474 80 761 100 80 761 153 943 100 153 943 90 610 100 90 610
f10 135 620 88 154 113.6 86 667 96 90 278.13 168 060 100 168 060 97 534 100 97 534
f11 77 083 76 101 425 54 901 92 59 675 89 029 88 101 169.3 54 097 96 56 351.04
f12 100 215 100 100 215 66 023 100 66 023 107 072 100 107 072 68 809 100 68 809
f13 163 356 16 1 020 975 111 961 100 111 961 × 0 × 129 946 100 129 946
f14 146 446 32 457 643.8 112 053 84 133 396.4 186 771 68 274 663.2 137 850 96 143 593.8
f15 37 203 84 44 289.29 101 632 96 105 866.7 42 935 84 51 113.1 113 317 100 113 317
f16 4758 56 8496.429 37 143 100 37 143 16 999 60 28 331.67 43 393 100 43 393
Ave. SR 72.00% 92.25% 73.75% 93.50%

Convergence speed being measured on the mean number of FEs required to reach an acceptable solution among successful runs, algorithm reliability
(SR%) being the percentage of trial runs successfully reaching acceptable accuracy, and success performance (SP) is defined as the quotient of the
mean FEs and SR%.

obtain the global optimum of the rotated Ackley function
(f13) while OLPSO-L can still obtain the global optima of the
rotated Ackley (f13) and the rotated Griewank (f14) functions.
Same as other PSOs, the OLPSO algorithms failed on the
rotated Schwefel (f11) and Rastrigin (f12) functions, as they
become much harder after rotation [22]. However, OLPSO-L is
still the best algorithm on f11 and the results are comparable
with DMS-PSO on f12. Only can FIPS, DMS-PSO, OPSO,
and our OLPSOs achieve the global optimum on f13, only
can FIPS and OLPSO-L achieve the global optimum on f14,
and only CLPSO and OLPSO-L achieve the global optimum
on f16.

Table VII also ranks the algorithms on performance in terms
of the mean solution accuracy. It can be observed from the final
rank that OLPSO-L offers the best overall performance, while
OLPSO-G is the second best, followed by CLPSO, SPSO-40,

DMS-PSO, FIPS, HPSO-TVAC, OPSO, SPSO-20, GPSO, and
LPSO.

In order to compare the convergence speed, algorithm
reliability, and success performance, Table VIII gives the
mean FEs to reach the acceptable accuracy among the success
runs, the successful rate, and the success performance. The
results show that SPSO converges very fast on most of the
function, while HPSO-TVAC is fastest on f6 and f12, and
OPSO is fastest on f11. However, OLPSOs do much better
in reaching the global optima robustly, as measured by the
successful rate. Even though OLPSOs are sometimes slower
than SPSO and HPSO-TVAC, they are still general faster than
many other PSOs. Moreover, OLPSOs generally outperform
the contenders with higher successful rate. OLPSO-L has the
highest successful rate of 93.50%, OLPSO-G has the second
highest one of 92.25%, followed by FIPS, CLPSO, SPSO-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE VII

Search Result Comparisons of PSOs on 16 Global Optimization Functions

Function GPSO LPSO SPSO-20 SPSO-40 FIPS HPSO-TVAC DMS-PSO CLPS OPSO OLPSO-G OLPSO-L

Mean 2.05×10−32 3.34×10−14 4.08×10−160 2.29×10−96 2.42×10−13 2.83×10−33 2.65×10−31 1.58×10−12 6.45×10−18 4.12×10−54 1.11×10−38

f1 SD 3.56×10−32 5.39×10−14 1.36×10−159 9.48×10−96 1.73×10−13 3.19×10−33 6.25×10−31 7.70×10−13 4.64×10−18 6.34×10−54 1.28×10−38

Rank 6 9 1 2 10 5 7 11 8 3 4

Mean 1.49×10−21 1.70×10−10 3.99×10−81 1.74×10−53 2.76×10−8 9.03×10−20 1.57×10−18 2.51×10−8 1.26×10−10 9.85×10−30 7.67×10−22

f2 SD 3.60×10−21 1.39×10−10 1.33×10−80 1.58×10−53 9.04×10−9 9.58×10−20 3.79×10−18 5.84×10−9 5.58×10−11 1.01×10−29 5.63×10−22

Rank 5 9 1 2 11 6 7 10 8 3 4

Mean 40.70 28.08 3.13 13.50 25.12 23.91 41.58 11.36 49.61 21.52 1.26
f3 SD 32.19 21.79 3.48 14.63 0.51 26.51 30.25 9.85 36.54 29.92 1.40

Rank 9 8 2 4 7 6 10 3 11 5 1
Mean 9.32×10−3 2.28×10−2 3.80×10−3 4.02×10−3 4.24×10−3 9.82×10−2 1.45×10−2 5.85×10−3 5.50×10−2 1.16×10−2 1.64×10−2

f4 SD 2.39×10−3 5.60×10−3 1.60×10−3 1.66×10−3 1.28×10−3 3.26×10−2 5.05×10−3 1.11×10−3 1.70×10−3 4.10×10−3 3.25×10−3

Rank 5 9 1 2 3 11 7 4 10 6 8

Mean 2.48×103 3.16×103 3.64×103 3.14×103 9.93×102 1.59×103 3.21×103 3.82×10−4 2.93×103 3.84×102 3.82×10−4

f5 SD 2.97×102 4.06×102 6.59×102 7.81×102 5.09×102 3.26×102 6.51×102 1.28×10−07 5.57×102 2.17×102 0
Rank 6 9 11 8 4 5 10 2 7 3 1
Mean 26.03 35.07 56.00 41.03 65.10 9.43 27.15 9.09×10−5 6.97 1.07 0

f6 SD 7.27 6.89 15.75 11.09 13.39 3.48 6.02 1.25×10−4 3.07 0.99 0
Rank 6 8 10 9 11 5 7 2 4 3 1
Mean 1.31×10−14 8.20×10−8 1.28 3.73×10−2 2.33×10−7 7.29×10−14 1.84×10−14 3.66×10−7 6.23×10−9 7.98×10−15 4.14×10−15

f7 SD 2.08×10−15 6.73×10−8 1.00 0.19 7.19×10−8 3.00×10−14 4.35×10−15 7.57×10−8 1.87×10−9 2.03×10−15 0
Rank 3 7 11 10 8 5 4 9 6 2 1
Mean 2.12×10−2 1.53×10−3 8.47×10−3 7.48×10−3 9.01×10−12 9.75×10−3 6.21×10−3 9.02×10−9 2.29×10−3 4.83×10−3 0

f8 SD 2.18×10−2 4.32×10−3 9.79×10−3 1.25×10−2 1.84×10−11 8.33×10−3 8.14×10−3 8.57×10−9 5.48×10−3 8.63×10−3 0
Rank 11 4 9 8 2 10 7 3 5 6 1
Mean 2.23×10−31 8.10×10−16 0.37 7.47×10−2 1.96×10−15 2.71×10−29 2.51×10−30 6.45×10−14 1.56×10−19 1.59×10−32 1.57×10−32

f9 SD 7.07×10−31 1.07×10−15 0.53 3.11 1.11×10−15 1.88×10−29 1.02×10−29 3.70×10−14 1.67×10−19 1.03×10−33 2.79×10−48

Rank 3 7 11 10 8 5 4 9 6 2 1
Mean 1.32×10−3 3.26×10−13 0.19 1.76×10−3 2.70×10−14 2.79×10−28 2.64×10−3 1.25×10−12 1.46×10−18 4.39×10−4 1.35×10−32

f10 SD 3.64×10−3 3.70×10−13 0.73 4.11×10−3 1.57×10−14 2.18×10−28 4.79×10−3 9.45×10−13 1.33×10−18 2.20×10−3 5.59×10−48

Rank 8 5 11 9 4 2 10 6 3 7 1

Mean 4.61×103 4.50×103 5.29×103 4.57×103 4.41×103 5.32×103 4.04×103 4.39×103 4.48×103 4.00×103 3.13×103

f11 SD 6.21×102 3.97×102 5.45×102 6.28×102 9.94×102 7.00×102 5.68×102 3.51×102 1.03×103 6.08×102 1.24×103

Rank 9 7 10 8 5 11 3 4 6 2 1
Mean 60.02 53.36 56.76 43.42 1.50×102 52.90 41.97 87.14 63.78 46.09 53.35

f12 SD 15.98 13.99 19.03 17.38 14.48 12.54 9.74 10.76 19.73 12.88 13.35

Rank 8 6 7 2 11 5 1 10 9 3 4

Mean 1.93 1.55 1.40 9.24×10−2 3.16×10−7 9.29 2.42×10−14 5.91×10−5 1.49×10−8 7.69×10−15 4.28×10−15

f13 SD 0.96 0.45 1.06 0.32 1.00×10−7 2.07 1.52×10−14 6.46×10−5 6.36×10−9 1.78×10−15 7.11×10−16

Rank 10 9 8 7 5 11 3 6 4 2 1
Mean 1.80×10−2 1.68×10−3 1.17×10−2 3.05×10−3 1.28×10−8 9.26×10−3 1.02×10−2 7.96×10−5 1.28×10−3 1.68×10−3 4.19×10−8

f14 SD 2.41×10−2 3.47×10−3 1.57×10−2 5.70×10−3 4.29×10−8 8.80×10−3 1.24×10−2 7.66×10−5 3.70×10−3 4.13×10−3 2.06×10−7

Rank 11 5 10 7 1 8 9 3 4 6 2

Mean 427.93 432.33 402.15 424.28 424.83 494.20 502.51 403.07 2.45×107 424.75 415.94

f15 SD 54.98 43.41 31.74 48.94 25.37 96.54 95.18 13.50 4.40×107 34.80 23.96

Rank 7 8 1 4 6 9 10 2 11 5 3

Mean −223.18 −234.95 −277.47 −291.79 -245.77 −318.33 -303.17 −330 -284.11 −328.57 −330
f16 SD 38.58 18.82 17.31 11.18 22.08 5.75 5.01 3.39×10−5 13.62 1.04 1.64×10−14

Rank 11 10 8 6 9 4 5 2 7 3 1
Ave. rank 7.38 7.50 7.00 6.13 6.56 6.75 6.50 5.38 6.81 3.81 2.19

Final rank 10 11 9 4 6 7 5 3 8 2 1

Algorithms GPSO LPSO SPSO-20 SPSO-40 FIPS HPSO-TVAC DMS-PSO CLPSO OPSO OLPSO-G OLPSO-L

40, OPSO, DMS-PSO, LPSO, GPSO, HPSO-TVAC, and
SPSO-20.

E. Comparisons With Other Evolutionary Algorithms

The proposed OLPSOs are further compared with some
state of the art evolutionary algorithms (EAs) in Table IX.
These algorithms include variants of EAs, such as fast evo-
lutionary programming (FEP) with Cauchy mutation [51],
orthogonal GA with quantization (OGA/Q) [42], estimation
of distribution algorithm with local search (EDA/L) [57], evo-
lution strategy with covariance matrix adaptation (CMA-ES)
[58], and adaptive differential evolution (JADE) with optional
external archive [59]. As OLPSO-L generally outperforms
OLPSO-G in global optimization, we only compare OLPSO-L
with these algorithms in Table IX. The results of the compared
algorithms are all derived directly from their corresponding

references except that the results of CMA-ES are obtained by
our independent experiments on these functions based on the
provided source code [58].

OGA/Q is an EA with orthogonal initialization and orthog-
onal crossover. It yielded good performance and did best on
5 of the 10 functions, indicating the advantages of the OED
method. Our OLPSO-L also does best on 5 of the 10 functions.
Specifically, OGA/Q seems to be better than OLPSO-L on
unimodal functions (e.g., f1 and f2) while OLPSO-L does
better than OGA/Q on some of the multimodal functions (e.g.,
f9 and f10). CMA-ES does best on the Rosenbrock function
(f3) and JADE did best on the Noise function (f4). The results
show that OLPSO-L has very competitive performance when
compared with these state of the art EAs, especially for its
strong global search ability on multimodal functions. OLPSO-
L works best on f5, f9, and f10, the same best with OGA/Q,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 13

TABLE VIII

Convergence Speed, Algorithm Reliability, and Success Performance Comparisons of PSOs on 16 Global Optimization Functions

Function GPSO LPSO SPSO-20 SPSO-40 FIPS HPSO-TVAC DMS-PSO CLPSO OPSO OLPSO-G OLPSO-L

FEs 134 561 161 985 12 352 20 536 118 306 63 982 138 103 139 554 92 908 89 247 98 337

f1 SR% 100 100 100 100 100 100 100 100 100 100 100
SP 134 561 161 985 12 352 20 536 118 306 63 982 138 103 139 554 92 908 89 247 98 337

FEs 141 262 171 962 18 071 29 006 165 502 78 944 147 644 172 886 134 640 101 698 114 441

f2 SR% 100 100 100 100 100 100 100 100 100 100 100
SP 141 262 171 962 18 071 29 006 165 502 78 944 147 644 172 886 134 640 101 698 114 441

FEs 126 343 137 934 8277 16 062 48 456 50 628 125 573 108 669 71 654 78 749 92 233

f3 SR% 100 100 100 100 100 100 100 100 100 100 100
SP 126 343 137 934 8277 16 062 48 456 50 628 125 573 108 669 71 654 78 749 92 233

FEs 171 048 × 86 978 80 368 91 081 × 194 220 133 550 × 150 238 186 351

f4 SR% 60 0 100 100 100 0 24 100 0 40 4

SP 285 080 × 86 978 80 368 91 081 × 809 250 133 550 × 375 595 4 658 775

FEs 117 710 × × 22 640 133 646 56 683 104 422 65 429 43 200 40 533 51 498

f5 SR% 8 0 0 12 100 92 4 100 4 100 100
SP 1 471 375 × × 188 666.7 139 214.6 61 611.96 2 610 550 65 429 1 080 000 40 533 51 498

FEs 75 274 76 061 6361 14 384 79 421 6096 74 803 44 000 24 768 37 783 43 635

f6 SR% 100 100 100 100 100 100 100 100 100 100 100
SP 75 274 76 061 6361 14 384 79 421 6096 74 803 44 000 24 768 37 783 43 635

FEs 152 659 189 154 18 526 30 290 183 341 102 496 162 400 190 767 155 088 109 627 126 571

f7 SR% 100 100 24 96 100 100 100 100 100 100 100
SP 152 659 189 154 77 192 31 552.08 183 341 102 496 162 400 190 767 155 088 109 627 126 571

FEs 137 576 171 756 12 933 21 035 133 787 66 965 141 489 167 486 110 232 93 336 107 217

f8 SR% 32 80 48 64 100 28 56 100 80 68 100
SP 429 925 214 695 26 944 32 867.19 133 787 239 160.7 252 658.9 167 486 137 790 137 258.8 107 217

FEs 128 474 153 943 17 830 22 845 94 368 74 033 137 909 124 779 77 587 80 761 90 610

f9 SR% 100 100 48 84 100 100 100 100 100 100 100
SP 128 474 153 943 37 146 27 196.43 94 368 74 033 137 909 124 779 77 587 80 761 90 610

FEs 135 620 168 060 15 390 21 670 107 315 75 483 145 063 138 209 86 716 86 667 97 534

f10 SR% 88 100 76 84 100 100 76 100 100 96 100
SP 154 113.6 168 060 20 250 25 797.62 107 315 75 483 190 872.4 138 209 86 716 90 278.13 97 534

FEs 770 83 89 029 61 346 47 672 115 196 66 394 109 220 128 544 31 920 54 901 54 097

f11 SR% 76 88 24 68 68 28 96 100 60 92 96

SP 101 425 101 169.3 255 608 70 105.88 169 405.9 237 121.4 113 770.8 128 544 53 200 59 675 56 351.04

FEs 100 215 107 072 33 057 27 220 × 8208 88 935 146 299 107 942 66 023 68 809

f12 SR% 100 100 100 100 0 100 100 92 100 100 100
SP 100 215 107 072 33 057 27 220 × 8208 88 935 159 020.7 107 942 66 023 68 809

FEs 163 356 × 18 963 30 749 187 032 × 169 314 × 161 856 111 961 129 946

f13 SR% 16 0 24 92 100 0 100 0 100 100 100
SP 1 020 975 × 79 013 33 422.83 187 032 × 169 314 × 161 856 111 961 129 946

FEs 146 446 186 771 17 004 28 126 150 433 105 910 163 996 × 161 083 112 053 137 850

f14 SR% 32 68 36 76 100 32 36 0 88 84 96

SP 457 643.8 274 663.2 47 233 37 007.89 150 433 330 968.8 455 544.4 × 183 048.9 133 396.4 143 593.8

FEs 37 203 42 935 29 798 44 489 75 137 129 660 140 749 129 159 75 960 101 632 113 317

f15 SR% 84 84 96 84 92 48 56 100 24 96 100
SP 44 289.29 51 113.1 31 039.58 52 963.1 81 670.65 270 125 251 337.5 129 159 316 500 105 866.7 113 317

FEs 4758 16 999 5788 12 289 98 131 27 875 57 607 39 619 25 459 37 143 43 393

f16 SR% 56 60 100 100 68 100 100 100 100 100 100
SP 8496.429 28 331.67 5788 12 289 144 310.3 27 875 57 607 39 619 25 459 37 143 43 393

Ave. SR 72.00% 73.75% 67.25% 85.00% 89.00% 70.50% 78.00% 87.00% 78.50% 92.25% 93.50%

SR rank 9 8 11 5 3 10 7 4 6 2 1

Algorithms GPSO LPSO SPSO-20 SPSO-40 FIPS HPSO-TVAC DMS-PSO CLPSO OPSO OLPSO-G OLPSO-L

Convergence speed being measured on the mean number of FEs required to reach an acceptable solution among successful runs, algorithm reliability (SR%) being the percentage of trial runs
successfully reaching acceptable accuracy, and success performance (SP) is defined as the quotient of the mean FEs and SR%.

TABLE IX

Result Comparisons of OLPSO-L and Some State of the Art Evolutionary Computation Algorithms

With the Existing Results Reported in the Corresponding References

Func FEP [51] OGA/Q [42] EDA/L [57]† CMA-ES [58]‡ JADE [59] OLPSO-L

f1 5.7×10−4±1.3×10−4 0±0 N/A 4.54×10−16±1.13×10−16 1.3×10−54±9.2×10−54 1.11×10−38±1.28×10−38

f2 8.1×10−3±7.7×10−4 0±0 N/A 2.32×10−3±9.51×10−3 3.9×10−22±2.7×10−21 7.67×10−22±5.63×10−22

f3 5.06±5.87 0.75±0.11 4.324×10−3 2.33×10−15±7.73×10−16 0.32±1.1 1.26±1.40

f4 7.6×10−3±2.6×10−3 6.30×10−3±4.07×10−4 N/A 5.92×10−2±1.73×10−2 6.8×10−4±2.5×10−4 1.64×10−2±3.25×10−3

f5 14.98±52.6♠ 3.03×10−2±6.447×10−4♠ 2.9×10−3♠ 3.15×103±5.79×102 7.1±28 3.82×10−4±0
f6 4.6×10−2±1.2×10−2 0±0 0 1.76×102±13.89 0±0 0±0
f7 1.8×10−2±2.1×10−3 4.440×10−16±3.989×10−17 4.141×10−15 12.12±9.28 4.4×10−15±0 4.14×10−15±0

f8 1.6×10−2±2.2×10−2 0±0 0±0 9.59×10−16±3.51×10−16 2.0×10−4±1.4×10−3 0±0
f9 9.2×10−6±3.6×10−6 6.019×10−6±1.159×10−6 3.654×10−21 1.63×10−15±4.93×10−16 1.6×10−32±5.5×10−48 1.57×10−32±2.79×10−48

f10 1.6×10−4±7.3×10−5 1.869×10−4±2.615×10−5 3.485×10−21 1.71×10−15±3.70×10−16 1.4×10−32±1.1×10−47 1.35×10−32±5.59×10−48

†The standard deviation is not available in [57] and N/A means the results are nor available.

‡The results of CMA-ES are obtained by our independent experiments on these functions.

♠ The mean value of f5 has been added to 418.9829×D to make the global optimal value is equal to 0.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

EDA/L, and JADE on f6, the same best with OGA/Q and
EDA/L on f8, and the second best on f7.

F. Discussions
Experimental results and comparisons verify that the OL

strategy indeed helps the OLPSOs perform better than the
traditional PSOs and most existing improved PSO variants
on most of the test functions, in terms of solution accuracy,
convergence speed, and algorithm reliability. OLPSOs offer
not only better performance in global optimization, but also
finer-grain search ability, owing to the OL strategy that can
discover, preserve, and utilize useful information from the
search experiences.

The OPSO in [48] also uses the OED method to improve the
algorithm performance. The particle in OPSO uses OED on
both the cognitive learning and social learning components to
construct the position for the next move. The particle velocity
is obtained by calculating the difference between the new
position and the current position. Differently, our proposed
OLPSO emphasizes the learning strategy and uses OED to
design an OL strategy. The OL strategy uses OED to construct
a promising and efficient exemplar to guide the particle’s
flying. OLPSO works under the framework of traditional PSO
except that particle in OLPSO learns from its constructed
guidance exemplar Po instead of Pi and Pn, i.e., uses (8)
instead of (3). Therefore, the useful information in Pi and
Pn can be discovered and preserved through the OL strategy.

OLPSO benefits from the following three advantages. First,
since only one learning exemplar Po is used, the guidance
would be more steady and can weaken the “oscillation”
phenomenon. Second, as Po is constructed via OED on Pi and
Pn, the useful information can be discovered and preserved to
predict promising region for guiding the particle, weakening
the “two steps forward, one step back” phenomenon. Third,
as the Po is used as the learning exemplar steadily until
it can not improve the particle’s fitness for G generations
(which has been investigated in Section III-E), it can guide the
particle to fly toward the promising region steadily, resulting
in better global search performance. The experimental results
and comparisons support these advantages.

The comparisons between OLPSO-G and OLPSO-L show
that for unimodal functions OLPSO-G outperforms OLPSO-L
on both accuracy and speed, whilst for multimodal functions
OLPSO-L is better for final solution accuracy. This may be
due to that OLPSO-L is based on the local version PSO that
provides a better diversity and avoids premature convergence.
Nevertheless, OLPSO-L can also do very well on unimodal
functions and it outperforms most of the existing PSOs. Hence,
OLPSO-L is the recommended global optimizer here. More-
over, the comparisons with some state of the art EAs show
that OLPSO-L is generally better than, or at least comparable
to, these variants of EAs.

V. Conclusion

In this paper, we presented a new OLPSO by designing an
OL strategy to discover useful information from a particle’s
personal best position Pi and its neighborhood’s best position

Pn. This new OL strategy helps a particle construct a more
promising and efficient guidance exemplar Po to adjust its
flying velocity and direction, which results in easing the
“oscillation” phenomenon [17] and the “two steps forward,
one step back” phenomenon [18]. OL is an operator and can
be applied to PSO with any topological structures, such as the
star (global version), the ring (local version), the wheel, and
the von Neumann structures [15]. Without loss of generality,
we applied it is to both the global and the local versions of
PSO, yielding the novel OLPSO-G and OLPSO-L algorithms.

Comprehensive experimental tests have been conducted on
16 benchmarks including unimodal, multimodal, coordinate-
rotated, and shifted functions. The experimental results
demonstrate the high effectiveness and the high efficiency
of the OL strategy and the OLPSO algorithms. The resul-
tant OLPSO-G and OLPSO-L algorithms both significantly
outperform other existing PSO algorithms on most of the
functions tested, contributing to higher solution accuracy,
faster convergence speed, and stronger algorithm reliability.
Comparisons are also made with some state of the art EAs,
and the OLPSO algorithm shows very promising performance.

The original PSO is easy to understand and implement due
to its simple concept and learning strategy. The OL strategy
proposed in this paper follows the same philosophy that a
particle learns not only from its own experience but also from
its neighbors’ experiences, it is thus also easy to understand
and implement.

Appendix

A. Construction of the OA with Two Levels for the
D-Dimensional Problem [20], [44]

Step 1: Determine the row number M = 2�log2(D+1)�, the
column number N = M − 1, and the basic column number
u = log2(M).

Step 2: The elements in the basic columns are set as:

L[a][b] =

(⌊
a − 1

2u−k

⌋)
mod 2 (A1)

where a = 1, 2, . . . , M is the row index, b = 2k−1 is the basic
column index, and k = 1, 2, . . . , u.

Step 3: The elements in other columns are set as

L[a][b + s] = (L[a][s] + L[a][b]) mod 2 (A2)

where a = 1, 2, . . . , M is the row index, b = 2k−1 is the basic
column index, s = 1, 2, . . . , b − 1, and k = 2, . . . , u.

Step 4: For all the elements in the OA, transform the level
value to 1 for the first level and the level value to 2 for the
second level

L[a][b] =

{
1, if L[a][b] = 0
2, if L[a][b] = 1

(A3)

where a = 1, 2, . . . , M is the row index, and b = 1, 2, . . . , N

is the column index.

References

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., vol. 4. 1995, pp. 1942–1948.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: ORTHOGONAL LEARNING PARTICLE SWARM OPTIMIZATION 15

[2] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micromach. Human Sci., 1995, pp. 39–
43.

[3] J. Kennedy, R. C. Eberhart, and Y. H. Shi, Swarm Intelligence. San
Mateo, CA: Morgan Kaufmann, 2001.

[4] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[5] Y. H. Shi and R. C. Eberhart, “Comparison between genetic algorithms
and particle swarm optimization,” in Proc. 7th Int. Conf. Evol. Program.,
LNCS 1447. Mar. 1998, pp. 611–616.

[6] R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: Develop-
ments, applications and resources,” in Proc. IEEE Congr. Evol. Comput.,
2001, pp. 81–86.

[7] X. H. Hu, Y. H. Shi, and R. C. Eberhart, “Recent advances in particle
swarm,” in Proc. IEEE Congr. Evol. Comput., 2004, pp. 90–97.

[8] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez,
and R. G. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power system,” IEEE Trans. Evol. Comput., vol. 12,
no. 2, pp. 171–195, Apr. 2008.

[9] M. P. Wachowiak, R. Smolikova, Y. F. Zheng, J. M. Zurada, and A. S.
Elmaghraby, “An approach to multimodal biomedical image registration
utilizing particle swarm optimization,” IEEE Trans. Evol. Comput., vol.
8, no. 3, pp. 289–301, Jun. 2004.

[10] L. Messerschmidt and A. P. Engelbrecht, “Learning to play games
using a PSO-based competitive learning approach,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 280–288, Jun. 2004.

[11] N. Franken and A. P. Engelbrecht, “Particle swarm optimization ap-
proaches to coevolve strategies for the iterated prisoner’s dilemma,”
IEEE Trans. Evol. comput., vol. 9, no. 6, pp. 562–579, Dec. 2005.

[12] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple
objectives with particle swarm optimization,” IEEE Trans. Evol. Com-
put., vol. 8, no. 3, pp. 256–279, Jun. 2004.

[13] X. D. Li and A. P. Engelbrecht, “Particle swarm optimization: An
introduction and its recent developments,” in Proc. Conf. Genet. Evol.
Comput., 2007, pp. 3391–3414.

[14] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance,” in Proc. IEEE Congr. Evol.
Comput., 1999, pp. 1931–1938.

[15] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proc. IEEE Congr. Evol. Comput., 2002, pp. 1671–
1676.

[16] J. Kennedy and R. Mendes, “Neighborhood topologies in fully informed
and best-of-neighborhood particle swarm,” IEEE Trans. Syst., Man.
Cybern. C, vol. 36, no. 4, pp. 515–519, Jul. 2006.

[17] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global
minimizers through particle swarm optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.

[18] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[19] D. C. Montgomery, Design and Analysis of Experiments, 5th ed. New
York: Wiley, 2000.

[20] Math. Stat. Res. Group, Chinese Acad. Sci., Orthogonal Design (in
Chinese). Beijing, China: People Education Pub., 1975.

[21] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle
swarm optimization,” IEEE Trans. Syst., Man, Cybern. B, vol. 39,
no. 6, pp. 1362–1381, Dec. 2009.

[22] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun.
2006.

[23] Y. H. Shi and R. C. Eberhart, “A modified particle swarm optimizer,”
in Proc. IEEE World Congr. Comput. Intell., 1998, pp. 69–73.

[24] M. Clerc, “The swarm and the queen: Toward a deterministic and
adaptive particle swarm optimization,” in Proc. IEEE Congr. Evol.
Comput., 1999, pp. 1951–1957.

[25] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 58–73, Feb. 2002.

[26] R. C. Eberhart and Y. H. Shi, “Comparing inertia weights and constric-
tion factors in particle swarm optimization,” in Proc. IEEE Congr. Evol.
Comput., 2000, pp. 84–88.

[27] P. J. Angeline, “Using selection to improve particle swarm optimization,”
in Proc. IEEE Congr. Evol. Comput., 1998, pp. 84–89.

[28] C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimiza-
tion for recurrent network design,” IEEE Trans. Syst., Man, Cybern. B,
vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[29] M. Lovbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm
optimizer with breeding and subpopulations,” in Proc. Genet. Evol.
Comput. Conf., 2001, pp. 469–476.

[30] P. S. Andrews, “An investigation into mutation operators for particle
swarm optimization,” in Proc. IEEE Congr. Evol. Comput., 2006, pp.
1044–1051.

[31] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-organizing hier-
archical particle swarm optimizer with time-varying acceleration coef-
ficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255, Jun.
2004.

[32] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “A niching particle
swarm optimizer,” in Proc. 4th Asia-Pacific Conf. Simul. Evol. Learn.,
2002, pp. 692–696.

[33] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “Locating multiple
optima using particle swarm optimization,” Appl. Math. Comput., vol.
189, no. 2, pp. 1859–1883, Jun. 2007.

[34] D. Parrott and X. D. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 440–458, Aug. 2006.

[35] P. N. Suganthan, “Particle swarm optimizer with neighborhood operator,”
in Proc. IEEE Congr. Evol. Comput., 1999, pp. 1958–1962.

[36] X. Hu and R. C. Eberhart, “Multiobjective optimization using dynamic
neighborhood particle swarm optimization,” in Proc. IEEE Congr. Evol.
Comput., 2002, pp. 1677–1681.

[37] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm
optimizer,” in Proc. Swarm Intell. Symp., Jun. 2005, pp. 124–129.

[38] T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distance-ratio
based particle swarm optimization,” in Proc. Swarm Intell. Symp., 2003,
pp. 174–181.

[39] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, no.
3, pp. 204–210, Jun. 2004.

[40] J. Kennedy, “Stereotyping: Improving particle swarm performance with
cluster analysis,” in Proc. Congr. Evol. Comput., 2000, pp. 1507–1512.

[41] Q. Zhang and Y.-W. Leung, “An orthogonal genetic algorithm for
multimedia multicast routing,” IEEE Trans. Evol. Comput., vol. 3, no.
1, pp. 53–62, Apr. 1999.

[42] Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with
quantization for global numerical optimization,” IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 41–53, Feb. 2001.

[43] X. M. Hu, J. Zhang, and J. H. Zhong, “An enhanced genetic algorithm
with orthogonal design,” in Proc. IEEE Congr. Evol. Comput., 2006, pp.
3174–3181.

[44] S.-Y. Ho, L.-S. Shu, and J.-H. Chen, “Intelligent evolutionary algorithms
for large parameter optimization problems,” IEEE Trans. Evol. Comput.,
vol. 8, no. 6, pp. 522–541, Dec. 2004.

[45] S.-Y. Ho, S.-J. Ho, Y.-K. Lin, and W. C.-C. Chu, “An orthogonal
simulated annealing algorithm for large floorplanning problems,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 12, no. 8, pp. 874–877, Aug.
2004.

[46] S.-J. Ho, S.-Y. Ho, and L.-S. Shu, “OSA: Orthogonal simulated anneal-
ing algorithm and its application to designing mixed H2/H8 optimal
controllers,” IEEE Trans. Syst., Man, Cybern. A, vol. 34, no. 5, pp.
588–600, Sep. 2004.

[47] X. M. Hu and J. Zhang, “Orthogonal methods based ant colony search
for solving continuous optimization problems,” J. Comput. Sci. Technol.,
vol. 23, no. 1, pp. 2–18, Jan. 2008.

[48] S.-Y. Ho, H.-S. Lin, W.-H. Liauh, and S.-J. Ho, “OPSO: Orthogonal
particle swarm optimization and its application to task assignment prob-
lems,” IEEE Trans. Syst., Man, Cybern. A, vol. 38, no. 2, pp. 288–298,
Mar. 2008.

[49] J.-L. Liu and C.-C. Chang, “Novel orthogonal momentum-type parti-
cle swarm optimization applied to solve large parameter optimization
problems,” J. Artif. Evol. Appl., vol. 1, pp. 1–9, Jan. 2008.

[50] S. N. Sivanandam and P. Visalakshi, “Dynamic task scheduling with
load balancing using parallel orthogonal particle swarm optimization,”
Int. J. Bio-Inspired Comput., vol. 1, no. 4, pp. 276–286, 2009.

[51] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[52] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, 2001.

[53] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evol. Comput., vol. 10,
no. 4, pp. 371–395, 2002.

[54] Y. W. Shang and Y. H. Qiu, “A note on the extended Rosenbrock
function,” Evol. Comput., vol. 14, no. 1, pp. 119–126, 2006.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[55] Particle Swarm Central [Online]. Available: http://www.particleswarm.
info

[56] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” in Proc. IEEE
Congr. Evol. Comput, 2005, pp. 1–50.

[57] Q. Zhang, J. Sun, E. Tsang, and J. Ford, “Hybrid estimation of
distribution algorithm for global optimization,” Eng. Comput., vol. 21,
no. 1, pp. 91–107, 2004.

[58] A. Auger and N. Hansen, “Performance evaluation of an advanced local
search evolutionary algorithm,” in Proc. IEEE Congr. Evol. Comput.,
2005, pp. 1777–1784.

[59] J. Q. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

Zhi-Hui Zhan (S’09) received the Bachelors degree
in computer science and technology from Sun Yat-
Sen University, Guangzhou, China, in 2007, where
he is currently working toward the Ph.D. degree.

His current research interests include particle
swarm optimization, ant colony optimization, ge-
netic algorithms, differential evolution, and their
applications in real-world problems.

Jun Zhang (M’02–SM’08) received the Ph.D. de-
gree in electrical engineering from the City Uni-
versity of Hong Kong, Kowloon, Hong Kong, in
2002.

From 2003 to 2004, he was a Brain Korean
21 Post-Doctoral Fellow with the Department
of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technol-
ogy, Daejeon, South Korea. Since 2004, he has been
with Sun Yat-Sen University, Guangzhou, China,
where he is currently a Professor and the Ph.D.

Supervisor with the Department of Computer Science. He has authored seven
research books and book chapters, and over 80 technical papers in his research
areas. His research interests include computational intelligence, data mining,
wireless sensor networks, operations research, and power electronic circuits.

Dr. Zhang is currently an Associate Editor of the IEEE Transactions on

Industrial Electronics. He is the Chair of the IEEE Beijing (Guangzhou)
Section Computational Intelligence Society Chapter.

Yun Li (S’87–M’90) received the B.S. degree in
radio electronics science from Sichuan University,
Chengdu, China, in 1984, the M.Eng. degree in
electronic engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, in 1987, and the Ph.D. degree in comput-
ing and control engineering from the University of
Strathclyde, Glasgow, U.K., in 1990.

From 1989 to 1990, he was with the U.K. National
Engineering Laboratory and with Industrial Systems
and Control Ltd., Glasgow. In 1991, he was a

Lecturer with the University of Glasgow, Glasgow. In 2002, he was a Visiting
Professor with Kumamoto University, Kumamoto, Japan. He is currently a
Senior Lecturer with the University of Glasgow and a Visiting Professor with
UESTC. In 1996, he independently invented the “indefinite scattering matrix”
theory, which opened up a ground-breaking way for microwave feedback
circuit design. From 1987 to 1991, he carried out leading work in parallel
processing for recursive filtering and feedback control. In 1992, he achieved
the first symbolic computing for power electronic circuit design, without
needing to invert any matrix, complex-numbered or not. In 1992, he pioneered
into design automation of control systems and discovery of novel systems
using evolutionary learning and intelligent search techniques. He established
the IEEE Computer-Aided Control System Design Evolutionary Computation
Working Group and the European Network of Excellence in Evolutionary
Computing Workgroup on Systems, Control, and Drives in 1998. He has
supervised 15 Ph.D. students in this area and has over 140 publications.

Dr. Li is a Chartered Engineer, and a member of the Institution of
Engineering and Technology.

Yu-Hui Shi (SM’98) received the Ph.D. degree in
electronic engineering from South-East University,
Nanjing, China, in 1992.

He is currently a Professor with the Depart-
ment of Electrical and Electronic Engineering, Xi’an
Jiaotong-Liverpool University, Suzhou, China. He is
also the Director of the Research and Postgraduate
Office, Xi’an Jiaotong-Liverpool University. Before
joining Xi’an Jiaotong-Liverpool University, he was
with Electronic Data Systems Corporation, Indi-
anapolis, IN. His current research interests include

the areas of computational intelligence techniques (including swarm intelli-
gence) and their applications.

Dr. Shi is the Editor-in-Chief of the International Journal of Swarm
Intelligence Research, and an Associate Editor of the IEEE Transactions

on Evolutionary Computation. He is the Chair of the IEEE Chief
Information Officer Task Force on Swarm Intelligence.

	citation_temp.pdf
	http://eprints.gla.ac.uk/44801/

