
Model-Driven Integration of Compression
Algorithms in Column-Store Database Systems

Juliana Hildebrandt, Dirk Habich, and Wolfgang Lehner

Technische Universität Dresden, Database Systems Group,
{juliana.hildebrandt,dirk.habich,wolfgang.lehner}@tu-dresden.de

WWW home page: https://wwwdb.inf.tu-dresden.de

Abstract. Modern database systems are very often in the position to
store their entire data in main memory. Aside from increased main mem-
ory capacities, a further driver for in-memory database systems was the
shift to a decomposition storage model in combination with lightweight
data compression algorithms. Using both mentioned storage design con-
cepts, large datasets can be held and processed in main memory with a
low memory footprint. In recent years, a large corpus of lightweight data
compression algorithms has been developed to efficiently support differ-
ent data characteristics. In this paper, we present our novel model-driven
concept to integrate this large and evolving corpus of lightweight data
compression algorithms in column-store database systems. Core compo-
nents of our concept are (i) a unified conceptual model for lightweight
compression algorithms, (ii) specifying algorithms as platform-independ-
ent model instances, (iii) transforming model instances into low-level
system code, and (iv) integrating low-level system code into a storage
layer.

1 Introduction

With an ever increasing volume of data in the era of Big Data, the storage re-
quirement for database systems grows quickly. In the same way, the pressure
to achieve the required processing performance increases, too. For tackling both
aspects in a consistent and uniform way, data compression plays an important
role. On the one hand, compression drastically reduces storage requirements.
On the other hand, compression also is the cornerstone of an efficient processing
capability by enabling in-memory technologies. This aspect is heavily utilized in
modern in-memory database systems [1, 23] based on a decomposition storage
model (DSM) [7]. For the compression of sequences of integer values like applied
in DSM compression or in the compression of posting lists in the context of
information retrieval, a large corpus of lightweight data compression algorithms
has been developed to efficiently support different data characteristics especially
of sequences of integer values. Examples of lightweight compression techniques
are: frame-of-reference (FOR) [8, 23], delta coding (DELTA) [15, 19], dictionary
compression (DICT) [1, 23], bit vectors (BV) [22], run-length encoding (RLE)
[1, 19], and null suppression (NS) [1, 19]. These algorithms achieve good com-
pression rates and they provide fast compression as well as decompression. The

corpus evolves further because it is impossible to design an algorithm that al-
ways produces optimal results for all kinds of data. As shown, e.g., in [1, 23, 24],
the query performance gain for analytical queries is massive.

From the database system architecture perspective, the most challenging
task is now to define an approach allowing us to integrate this large and evolv-
ing corpus of lightweight compression algorithms in an efficient way. The näıve
approach would be to natively implement the algorithms in the storage layer of
an in-memory database system as done today. However, this näıve approach has
several drawbacks, e.g., (1) massive effort to implement every possible lightweight
compression algorithm as well as (2) database developers or even users are not
able to integrate a specific compression algorithm without a deep system un-
derstanding and implementing the algorithm on a system level. Generally, users
know their data and could design appropriate compression algorithms, however,
database developers have to preserve the generality of the system and cannot im-
plement many algorithms for a small range of applications. To overcome this sit-
uation, we propose our novel model-driven approach to easily and automatically
integrate almost every lightweight data compression algorithm in an in-memory
DSM storage layer. In detail, we address the following points:

1. We start with a brief solution overview in Section 2. As we are going to show,
our solution consists of four components: (i) unified conceptual model for
lightweight compression algorithms, (ii) description approach for algorithms
as model instances, (iii) transforming model instances to executable code
and (iv) integration of generated code into the storage layer.

2. Based on this solution overview, we summarize our conceptual model for
lightweight compression algorithms in Section 3. This specific conceptual
model helps in describing, understanding, communicating, and comparing
the algorithms on a conceptual level.

3. Then, we introduce our description language enabling database developers
to specify algorithms in a platform-independent form based on our model.

4. These platform-independent model instances are the foundation for database
system integration as described in Section 5. Here, we introduce our approach
to transform the platform-independent instances to executable algorithms.

5. We conclude with related work and a summary in Section 6 and 7.

2 Solution Overview

Fundamentally, the model-driven architecture (MDA) is a software design ap-
proach for the development of software systems [14, 21]. In the MDA approach,
the system functionality is defined with a platform-independent model (PIM)
using an appropriate domain-specific language [14, 21]. Then, the PIM is trans-
lated into one or more platform-specific models (PSMs) that can be executed
[14, 21]. The MDA paradigm is widely used in the area of database applications
for database creations. On the one hand, the model-driven data modeling and
the generation of normalized database schemas should be mentioned. On the

Processing Layer

Storage Layer

Durability Layer

Storage
Format

Compression
Format

In-memory DBMS Architecture

In-Memory

Persistence

Model-based Approach for Compression

Compression
Format

Instance 1 Instance n

Model-2-Code-Transformer

COLLATE-Model

Database
Code

Instance 1
Code

Instance n

Integration

Concept

Fig. 1: Model-driven approach for the integration of lightweight data compression
algorithms.

other hand, there is the generation of full database applications, including the
data schema as well as data layer code, business logic layer code, and even user
interface code [10, 18]. Furthermore, the MDA approach has been successfully
applied in the area of data warehouse schema creation [17], as well as the mod-
eling and generation of data integration processes [2, 3]. However, there is little
to no work on the utilization of MDA for database system-internal components.

As depicted on the left side in Fig. 1, the storage layer of an in-memory
database system usually consists of two important components. The first compo-
nent is the storage format, thereby several formats are proposed. One well-known
format is the N-ary storage model (NSM) storing tuples coherently [13]. That
means, the tuple unit is preserved in this storage format. The decomposition
storage model (DSM), proposed in 1985 [7], is a second widely utilized format.
The DSM partitions an n-attribute relation vertically into n sub-relations. Each
sub-relation contains two attributes, a logical record id (surrogate) and an at-
tributed value [7]. In most cases, the surrogate can be neglected due to the order
of the tuples. That means, sub-relation storage equals to a value-based storage
model in form of a sequence of values. While the NSM storage format is used
in disk-based database systems, the DSM is the preferred layout of in-memory
databases [1, 4, 23, 24]. Compression is the second component of the storage layer,
thereby a large and evolving corpus of lightweight data compression algorithms
has been developed to efficiently support different data characteristics [1, 15, 23].

For this compression component, we have developed an MDA-based approach
as illustrated on the right side in Fig. 1. According to the MDA paradigm,
the lightweight data compression algorithms have to be defined in a platform-
independent model. To achieve this, we developed a conceptual model for leight-
weight compression algorithms called COLLATE for this specific class of algo-
rithms. The aim of COLLATE is to provide a holistic and platform-independent
view of necessary concepts including all aspects of data (structure), behavior
(function), and interaction (component interaction). In particular, COLLATE
consists of only five main concepts and we can specify a basic functional ar-
rangement of these concepts as a blueprint for every lightweight data compres-
sion algorithm for DSM (see Section 3). That means, the platform-independent

model of a lightweight data compression algorithm is a specific model instance
of COLLATE expressed in an appropriate language (see Section 4). Then, the
platform-specific model can be transformed into a platform-specific executable
code as presented in Section 5. The generated code can be used in the database
system in a straightforward way. In this paper, we focus on data compression al-
gorithms. The same can be done for the decompression algorithms with a slightly
adjusted conceptual model.

3 Conceptual Model

One of our main challenges is the definition of a conceptual model for the class of
lightweight data compression algorithms. This is the starting point and anchor of
our approach, since all algorithms can be consistently described with this unified
and specific model in a platform-independent manner. In [12], we have proposed
an appropriate model called COLLATE and the development of this model in
detail. In the remainder of this section, we briefly summarize its main aspects.

The input for COLLATE is a sequence of uncompressed (integer) values
due to the DSM storage format. The output is a sequence of compressed val-
ues. Input and output data have a logical representation (semantic level) and a
physical representation (bit or encoding level). Through the analysis of the avail-
able algorithms, we have identified three important aspects. First, there are only
six basic techniques which are used in the algorithms. These basic techniques
are parameter-dependent and the parameter values are calculated within the
algorithms. Second, a lot of algorithms subdivide the input data hierarchically
in subsequences for which the parameters can be calculated. The following data
processing of a subsequence depends on the subsequence itself. That means, data
subdivision and parameter calculation are the adjustment points and the appli-
cation of the basic techniques is straightforward. Third, for an exact algorithm
description, the combination and arrangement of codewords and parameters have
to be defined. Here, the algorithms differ widely.

Based on a systematic algorithm analysis, we defined our conceptual model
for this class of algorithms. The COLLATE model consists of five main concepts—
or building blocks—being required to transform a sequence of uncompressed
values to a sequence of compressed values:

Recursion: Each model instance includes a Recursion per se. This concept
is responsible for the hierarchical sequence subdivision and for applying the
included concepts in the Recursion on each data subsequence.

Tokenizer: This concept is responsible for dividing an input sequence into finite
subsequences of k values (or single values).

Parameter Calculator: The concept Parameter Calculator determines pa-
rameter values for finite subsequences or single values. The specification of
the parameter values is done using parameter definitions.

Encoder: The third concept determines the encoded form for values to be com-
pressed at bit level. Again, the concrete encoding is specified using functions
representing the basic techniques.

Tokenizer
Parameter
Calculator

Encoder/
Recursion

Combiner

Recursion

input
sequence

parameter/
set of valid
tokens/. . .

tail of
input sequence

adapted pa-
rameters/

adapted set of
valid tokens/. . .

fix
para-
meters

adapted value

fix
para-
meters

compressed
value or

compressed
sequence

calculated parameters

token:
finite sequence

encoded
sequence

Fig. 2: Interaction and data flow of COLLATE.

Combiner: The Combiner is essential to arrange the encoded values and the
calculated parameters for the output representation.

In addition to these individual concepts, Fig. 2 illustrates the interactions and
the data flow through our concepts. In this figure, a simple case with only one
pair of Parameter Calculator and Encoder is depicted and can be described
as follows. The input data is first processed by a Tokenizer. Most Tokenizers
need only a finite prefix of a data sequence to decide how many values to out-
put. The rest of the sequence is used as further input for the Tokenizer and
processed in the same manner (shown with a dashed line). Moreover, there are
Tokenizers needing the whole (finite) input sequence to decide how to subdivide
it. A second task of the Tokenizer is to decide for each output sequence which
pair of Parameter Calculator and Encoder is used for the further processing.
Most algorithms process all data in the same way, so we need only one pair of
Parameter Calculator and Encoder. Some of them distinguish several cases, so
that this choice between several pairs is necessary. The finite Tokenizer output
sequences serve as input for the Parameter Calculator and the Encoder.

Parameters are often required for the encoding and decoding. Therefore, we
defined the Parameter Calculator concept, which knows special rules (param-
eter definitions) for the calculation of several parameters. Parameters can be
used to store a state during data processing. This is depicted with a dashed line.
Calculated parameters have a logical representation for further calculations and
the encoding of values as well as a representation at bit level, because on the
one hand they are needed to calculate the encoding of values, on the other hand
they have to be stored additionally to allow the decoding.

The Encoder processes an atomic input, where the output of the Parameter

Calculator and other parameters are additional inputs. The input is a token
that cannot or shall not be subdivided anymore. In practice the Encoder mostly
gets a single integer value to be mapped into a binary code. Similar to the
parameter definitions, the Encoder calculates a logical representation of its input
value and an encoding at bit level using functions. Finally, the Combiner arranges
the encoded values and the calculated parameters for the output representation.

Fig. 3: Class diagram of the COLLATE model and data types in the domain-
specific language Octave

4 Description Language for Model Instances

Based on our conceptual model, we are able to specify lightweight data com-
pression algorithms in a platform-independent way [12]. For the specification
and our overall MDA-based solution, we further require an appropriate language
approach. While we introduce our language concept in Section 4.1 in general, we
describe an example in Section 4.2.

4.1 Language Approach

Instead of developing a completely new language, we decided to use the GNU
Octave1 high-level programming language as a foundation for the functional be-
havior of COLLATE. A COLLATE instance is always a Recursion concept.
A Recursion consists of (1) a Tokenizer, (2) a set of pairs of Parameter

Calculator and a Scheme, and (3) a Combiner concept. A Scheme is either
an Encoder or a Recursion. This relationship can be summarized using a set-
oriented notation as follows:

ModelInstance ∈ Recursion,

Recursion = Tokenizer × PPair × Combiner,

Pair = ParameterCalculator × Scheme,

Scheme = Recursion ∪ Encoder.

(1)

Fig. 3 depicts this organization of the COLLATE concept as a class di-
agram in more detail. As described in the previous section, each Parameter

Calculator can contain several parameter definitions. A parameter definition
consists of a logical mapping to calculate a semantic parameter for a subsequence
and a bit level mapping (physical level) to calculate the encoding for the seman-
tic parameter in case the parameter has to be encoded. Likewise an Encoder

consists of a logical mapping and a physical mapping.

1 https://www.gnu.org/software/octave/

As mentioned in the Section 3, concepts contain functions for data process-
ing. Therefore, we combine functional and object-oriented programming for the
specification of an algorithm in order to preserve the component interaction.
According to the class diagram of Fig. 3 and the set-oriented notation, we are
able to specify a COLLATE model instance as an object of the class Recursion
in the Octave high level programming language. The Recursion class contains
(i) a Tokenizer object which is characterized by a function handle, (ii) an array
of pairs and (iii) a Combiner object which is also defined by a function handle. A
function handle is an anonymous function with the syntax @(argument-list)

expression. The input for a Tokenizer’s function handle is (1) a sequence inp

of values and (2) a structure par. This structure contains one field resp. attribute
for each valid parameter. These attributes might be global parameters that are
valid for each subsequence or each single value, or other calculated parameters.
The output of a Tokenizer’s function handle returns a triple of values. The first
element is the number of output values, the second element is a finite subse-
quence of the input sequence and the third element is a number that indicates,
which of the pairs of Parameter Calculator and Scheme is chosen for the fur-
ther data processing. A Combiner’s function handle has two input values. The
first one is an array inp of tuples of a compressed sequence or a compressed
value inp.enc which is the output of a Scheme and the corresponding output of
the Parameter Calculator, inp.par. The second one is the structure par that
contains all other parameters that are valid for the whole array inp. The output
of a Combiner is a concatenation of compressed sequences or values.

Each pair consists of a Parameter Calculator object which is defined by
several parameter definition objects and an Encoder resp. a Recursion object.
Each parameter definition contains a function handle for the calculation of logical
parameters and a function handle for the calculation of the encoding of the
logical parameter. The input for the logical calculation is (1) the subsequence
inp that is an output of the Tokenizer and (2) a structure par of known and
valid parameters. The output is a logical parameter. Its type is not fix. Often it
is one single value, but it can be a more complex parameter, i.e., a mapping like
a dictionary. The input of the physical calculation is (1) the logical parameter
inp and (2) all other known and valid parameters par. Its output is the encoding
for the parameter. The function composition of both function handles maps a
finite subsequence to a bit level representation of a parameter that is valid for
the sequence inp and the parameters par. It is the same for the logical and
physical function handles of the encoder.

4.2 Example algorithm

To illustrate our Octave language approach, we now present a simple example
lightweight data compression algorithm: frame-of-reference with binary packing
for n values (forbp). Here, an input sequence of arbitrary length is subdivided in
subsequences of n values. The minimum is calculated for each subsequence of n
values as the reference value. So, each value of the subsequence can be mapped
to its difference to the reference value at the logical data level. This technique is

Recursion

Parameter Calculator

mref = (min(•), bin(•, 32))

bw =
(blog2(max(max(•)−mref, 1))c+1,
bin(•, 32))

Recursion

Tokenizer k = n

Combiner (cn : bw : mref)
? : n

Parameter Calculator

Encoder

c = (• −mref,
bin(•, bw))

Tokenizer k = 1

Combiner cn

input sequence • n

t
a
il

n
v
a
lu
e
s

t
a
il

1
v
a
lu
e b
w
,
m

r
e
f

compressed sequence

1 CREATE COMPRESSION forbp int AS

2 tok_n = Tokenizer(
@(inp,par) {par.n.log, [inp(1:par.n.log)], 1});

3 ref = Parameterdefinition("ref",

@(inp,par) min(inp),

@(inp,par) dec2bin(inp,32));

4 bw = Parameterdefinition("bw",

@(inp,par) floor(log2(max(max(inp)-par.ref.log),1))+1,

@(inp,par) dec2bin(inp,32));
5 pcal_n = ParameterCalculator([ref,bw]);

6 tok_1 = Tokenizer(@(inp,par) {1, [inp(1)], 1});

7 pcal_1 = ParameterCalculator([]);

8 enc_1 = Encoder(

@(inp,par) inp(1) - par.ref.log,

@(inp,par) dec2bin(inp,par.bw.log));
9 pair_1 = Pair(pcal_1, enc_1);
10 comb_1 = Combiner(

@(inp,par) reduce(@(b,c) strcat(c.enc,b),inp,""));

11 rec_n = Recursion(tok_1, [pair_1], comb_1);
12 pair_n = Pair(pcal_n, rec_n);

13 comb_n = Combiner(@(inp,par) reduce(

@(b,c) strcat(c.enc,c.par.bw.phys,c.par.ref.phys,b),

inp,par.n.phys));
14 forbp = Recursion(tok_n, [pair_n], comb_n);

Fig. 4: Graphical representation and Octave code representation example

called frame-of-reference (FOR) and it is used to get smaller values, which can be
encoded with a smaller bit width than 32 resp. 64 bits at the physical data level.
The bit level representations of all n deltas can be encoded with a common bit
width. Because the deltas are smaller than the original values, a possible common
bit width might be smaller than 32 resp. 64 bits. This technique is called binary
packing (BP). To guarantee the decodability, the reference value and the used
bit width have to be stored additionally to every sequence of n encoded values.

Fig. 4 depicts the graphical representation of the corresponding COLLATE
instance at the left side and the Octave code representation at the right side. The
input (•) is an arbitrary sequence of 32-bit integer values. The block size n, a
further input, serves as a global parameter to design the algorithm more generic.
The whole model instance is an instance of a Recursion concept. It consists
of a Tokenizer, one pair of a Parameter Calculator and a Recursion and a
Combiner. The Tokenizer outputs the first k := n values. For these n values the
Parameter Calculator determines the minimum as the reference value mref =
min(•) and an appropriate bit width bw = blog2(max(max(•)−mref, 1))c+ 1 at
the logical data level. In the end, both values are encoded in the output with
32 bits each at the physical data level (denoted by the function bin(•, 32)). So
each parameter definition consists of one function that addresses the logical data
level and one function that considers the encoding resp. physical data level. The
next Recursion consists of a Tokenizer, one pair of Paramater Calculator

and Encoder, and a Combiner. This Tokenizer outputs single values (k := 1).
The next Parameter Calculator has no task in this instance. Just as parameter

definitions, the Enocder consists of one function that processes an input value at
the logical level and one function that encodes the value at the physical data level.
The Encoder determines the difference of the single input value and the reference
value at the logical data level (denoted by c = • − mref) and the encoding of
this value with the calculated bit width at the physical data level (denoted
by bin(•, bw)). The inner Combiner concatenates the physical representations
of the n values. This is denoted by cn. Physical representations of values are
underlined in the graphical model and power n indicates the concatenation of n
values. The outer Combiner concatenates the n encoded values with the physical
representation of their reference value and the physical representation of their
bit width for all blocks and the bit level representation of the number n.

The Octave code at the right side contains the same information. In line 2,
a Tokenizer object is defined. A function handle is input for the constructor.
Its return value is the triple consisting of the number n, the first n values of
the input sequence and the number resp. address 1. The whole algorithm as the
Recursion object forbp (line 12) is constructed with the Tokenizer (line 2), an
array with one pair (line 12) of a Parameter Calculator (line 5) and Recursion

(line 11) and a Combiner (line 13). The first calculated parameter is the reference
value mref. The parameter definition is constructed in line 3 with one function
handle for the logical calculation and a second function handle for the physical
calculation. Each concept can be expressed with one or few lines of Octave code.

5 System Integration

The result of the previous two sections is that we are now able to specify
lightweight compression algorithms in a platform-independent way by defin-
ing model instances with an Octave notation. As depicted in Fig. 4, the first
system integration is done using a CREATE COMPRESSION statement to regis-
ter algorithms in the database system under a user-defined name, e.g., forbp
as in this example. This system integration continues with (i) an approach to
transform model instances to executable code and (ii) the specification of the
application of the compression algorithm. For this application, we extended the
CREATE TABLE-syntax in a straightforward way to allow the specification of the
compression algorithm which should be used for each attribute separately:

CREATE TABLE Test (attribute_a int compress forbp(

struct("num",struct("log",128,"phys",dec2bin(128,32))));

In order to execute model instance specifications inside a database system
(e.g. MonetDB [4]), we require an approach to transform model instances to
executable code or platform-specific code. Fig. 5 depicts our developed overall
approach for this challenge. Generally, we follow a generator approach in our
Model-2-Code Transformer. At the moment, the input is (i) an Octave speci-
fication of a model instance and (ii) code templates for our model concepts. On
the COLLATE model level, we have 5 specific concepts. That means, we require
one code template for each model concept to generate executable code. The code

Model Level

Model
Instance Level

System
Integration Level

COLLATE-
Model

Model-2-Code-
Transformer

COLLATE-
Model

Database

Octave
Code

Instance

Code
Instance

Interface

Hardware-
Model,
SIMD

input

input

Concepts

Tokenizer Combiner

Parametercalculator

Encoder Recursion

Concept Templates

Tokenizer Combiner

Parametercalculator

Encoder Recursion

input

Storage Format
(MonetDB)

input

Code-
generation

Specifi-
cation

Im
p
le

m
e
n
ta

ti
o
nuses

input

COLLATE-
Model

Model-2-Code-
Transformer

Fig. 5: Transformation of model instances to executable code.

templates have to be implemented once for each specific database system, e.g.,
MonetDB [4]. This is necessary to get access to data on the specific storage layer
implementation.

Based on this input, our Model-2-Code Transformer generates the exe-
cutable code using a replacement and optimization strategy. In this case, the
Octave specification is parsed and a corresponding arrangement of the code tem-
plates is constructed. The code templates are enriched with the corresponding
parameter calculations or encoding functions. Then, the code template arrange-
ment is optimized by applying typical compiler techniques like loop unrolling or
load constant replacement [11]. The goal of this optimization is to generate code
with less instructions to save as many CPU cycles as possible. This is particularly
crucial for reducing the compression overhead.

The generated code can be seamlessly integrated into the specific database
system since the templates are implemented for the particular system. At the mo-
ment, we are implementing and integrating the whole approach for MonetDB[4],
whereas our Model-2-Code Transformer is implemented using the LLVM com-
piler infrastructure. Unfortunately, the current status does not allow a meaning-
ful evaluation with regard to performance.

6 Related Work

In the previous sections, we explained our overall approach for the integration of
different data compression algorithms in a column-store database system. With
our approach, an in-memory column-store system is extendable with regard to

the bit-level data representation on storage layer level. Generally, extensibility
of DBMS was a research field in the late 80’s and early 90’s [5, 6, 20]. Here, the
focus was the integration of new user defined data types, storage methods and
indexes, but not the extensibility with regard to new algorithms on top of storage
formats. Furthermore, there is also work available focussing on code generation in
database systems. For example, Neumann has proposed a completely new query
processing architecture [16]. Here, a code generator is used to build specialized
query execution plans on demand based on operator templates. He also used the
LLVM framework to merge operations into one machine code function. In our
work, we follow a similar approach for lightweight data compression algorithms.
An interesting research direction would be to combine both approaches for a
compression-aware query processing [9].

7 Conclusion

The efficient storage and processing of large datasets is a challenge in the era of
Big Data. To tackle this challenge, data compression plays an important role from
a system-level perspective. Aside from drastically reducing the storage require-
ment, data compression also enables an efficient processing using ”in-memory”
technologies. In order to do justice to that, we have presented a model-based
approach to integrate a large and evolving corpus of lightweight data compres-
sion algorithms in column-store database systems like MonetDB [4] in this pa-
per. Generally, our approach consists of four components: (i) unified conceptual
model for lightweight compression algorithms, (ii) description approach for al-
gorithms as model instances, (iii) transforming model instances to executable
code and (iv) integration of generated code into the storage layer. In this paper,
we concentrated on data compression. The same is also possible for data decom-
pression. In our further research activities, we want to shift our focus to different
storage formats to cover not only column-store database systems, but also regard
other storage formats, for example row-stores, but our overall approach works.

Acknowledgments

This work was partly funded (1) by the German Research Foundation (DFG) in
the context of the project ”Lightweight Compression Techniques for the Opti-
mization of Complex Database Queries” (LE-1416/26-1) and (2) by the German
Federal Ministry of Education and Research (BMBF) in EXPLOIDS project
under grant 16KIS0523.

References

1. Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution
in column-oriented database systems. In: In SIGMOD. pp. 671–682 (2006)

2. Böhm, M., Wloka, U., Habich, D., Lehner, W.: Model-driven generation and opti-
mization of complex integration processes. In: ICEIS. pp. 131–136 (2008)

3. Böhm, M., Wloka, U., Habich, D., Lehner, W.: GCIP: exploiting the generation
and optimization of integration processes. In: EDBT. pp. 1128–1131 (2009)

4. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in monetdb.
Commun. ACM 51(12), 77–85 (2008)

5. Carey, M., Haas, L.: Extensible database management systems. SIGMOD Rec.
19(4), 54–60 (Dec 1990)

6. Carey, M.J., DeWitt, D.J., Frank, D., Muralikrishna, M., Graefe, G., Richardson,
J.E., Shekita, E.J.: The architecture of the exodus extensible dbms. In: OODS. pp.
52–65 (1986)

7. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. SIGMOD Rec.
14(4), 268–279 (May 1985)

8. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:
ICDE. pp. 370–379 (1998)

9. Habich, D., Damme, P., Lehner, W.: Optimierung der Anfrageverarbeitung mittels
Kompression der Zwischenergebnisse. In: BTW. pp. 259–278 (2015)

10. Habich, D., Richly, S., Lehner, W.: Gignomda - exploiting cross-layer optimization
for complex database applications. In: VLDB (2006)

11. Hänsch, C., Kissinger, T., Habich, D., Lehner, W.: Plan operator specialization
using reflective compiler techniques. In: BTW. pp. 363–382 (2015)

12. Hildebrandt, J., Habich, D., Damme, P., Lehner, W.: COLLATE - a conceptual
model for lightweight data compression algorithms. Tech. rep., Technische Univer-
sitaet Dresden, Database Systems Group (2016), https://goo.gl/SgXm5z

13. Kim, W., Chou, H.T., Banerjee, J.: Operations and implementation of complex
objects. In: ICDE. pp. 626–633 (1987)

14. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley (2003)

15. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Softw., Pract. Exper. 45(1), 1–29 (2015)

16. Neumann, T.: Efficiently compiling efficient query plans for modern hardware.
Proc. VLDB Endow. 4(9), 539–550 (Jun 2011)

17. OMG: Common Warehouse Metamodel (CWM), Version 1.0 (2001)
18. Richly, S., Habich, D., Lehner, W.: Gignomda - generation of complex database

applications. In: Grundlagen von Datenbanken (2006)
19. Roth, M.A., Horn, S.J.V.: Database compression. SIGMOD Record 22(3), 31–39

(1993)
20. Schwarz, P., Chang, W., Freytag, J.C., Lohman, G., McPherson, J., Mohan, C.,

Pirahesh, H.: Extensibility in the starburst database system. In: OODS. pp. 85–92
(1986)

21. Thomas, D., Barry, B.M.: Model driven development: the case for domain oriented
programming. In: OOPSLA (2003)

22. Williams, R.: Adaptive Data Compression. Kluwer international series in engineer-
ing and computer science: Communications and information theory, Springer US
(1991)

23. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache com-
pression. In: ICDE. p. 59 (2006)

24. Zukowski, M., Nes, N., Boncz, P.A.: DSM vs. NSM: CPU performance tradeoffs in
block-oriented query processing. In: DaMoN. pp. 47–54 (2008)

