
Practical Large-Scale Optimization
for Max-Norm Regularization

Jason Lee
Institute of Computational and Mathematical Engineering

Stanford University
email: jl115@yahoo.com

Benjamin Recht
Department of Computer Sciences
University of Wisconsin-Madison
email: brecht@cs.wisc.edu

Ruslan Salakhutdinov
Brain and Cognitive Sciences and CSAIL

Massachusetts Institute of Technology
email: rsalakhu@mit.edu

Nathan Srebro
Toyota Technological Institute at Chicago

email: nati@ttic.edu

Joel A. Tropp
Computing and Mathematical Sciences

California Institute of Technology
email: jtropp@acm.caltech.edu

Abstract

The max-norm was proposed as a convex matrix regularizer in [1] and was shown
to be empirically superior to the trace-norm for collaborative filtering problems.
Although the max-norm can be computed in polynomial time, there are currently
no practical algorithms for solving large-scale optimization problems that incor-
porate the max-norm. The present work uses a factorization technique of Burer
and Monteiro [2] to devise scalable first-order algorithms for convex programs
involving the max-norm. These algorithms are applied to solve huge collabora-
tive filtering, graph cut, and clustering problems. Empirically, the new methods
outperform mature techniques from all three areas.

1 Introduction
A foundational concept in modern machine learning is to construct models for data by balancing
the complexity of the model against fidelity to the measurements. In a wide variety of applications,
such as collaborative filtering, multi-task learning, multi-class learning and clustering of multivariate
observations, matrices offer a natural way to tabulate data. For such matrix models, the matrix rank
provides an intellectually appealing way to describe complexity. The intuition behind this approach
holds that many types of data arise from a noisy superposition of a small number of simple (i.e.,
rank-one) factors.

Unfortunately, optimization problems involving rank constraints are computationally intractable ex-
cept in a few basic cases. To address this challenge, researchers have searched for alternative com-
plexity measures that can also promote low-rank models. A particular example of a low-rank reg-
ularizer that has received a huge amount of recent attention is the trace-norm, equal to the sum of
the matrix’s singular values (See the comprehensive survey [3] and its bibliography). The trace-
norm promotes low-rank decompositions because it minimizes the `1 norm of the vector of singular
values, which encourages many zero singular values.

Although the trace-norm is a very successful regularizer in many applications, it does not seem to be
widely known or appreciated that there are many other interesting norms that promote low rank. The

1

paper [4] is one of the few articles in the machine learning literature that pursues this idea with any
vigor. The current work focuses on another rank-promoting regularizer, sometimes called the max-
norm, that has been proposed as an alternative to the rank for collaborative filtering problems [1, 5].
The max-norm can be defined via matrix factorizations:

‖X‖max := inf
{
‖U‖2,∞ ‖V ‖2,∞ : X = UV ′

}
(1)

where ‖·‖2,∞ denotes the maximum `2 row norm of a matrix:

‖A‖2,∞ := maxj
(∑

k
A2
jk

)1/2

.

For general matrices, the computation of the max-norm can be rephrased as a semidefinite pro-
gram; see (4) below. When X is positive semidefinite, we may force U = V and then verify that
‖X‖max = maxj xjj , which should explain the terminology.

The fundamental result in the metric theory of tensor products, due to Grothendieck, states that the
max-norm is comparable with a nuclear norm (see Chapter 10 of [6]):

‖X‖max ≈ inf
{
‖σ‖1 : X =

∑
j
σjujv

′
j where ‖uj‖∞ = 1 and ‖vj‖∞ = 1

}
.

The factor of equivalence 1.676 ≤ κG ≤ 1.783 is called Grothendieck’s constant. The trace-norm,
on the other hand, is equal to

‖X‖tr := inf
{
‖σ‖1 : X =

∑
j
σjujv

′
j where ‖uj‖2 = 1 and ‖vj‖2 = 1

}
.

This perspective reveals that the max-norm promotes low-rank decompositions with factors in `∞,
rather than the `2 factors produced by the trace-norm! Heuristically, we expect max-norm regular-
ization to be effective for uniformly bounded data, such as preferences.

The literature already contains theoretical and empirical evidence that the max-norm is superior to
the trace-norm for certain types of problems. Indeed, the max-norm offers better generalization
error bounds for collaborative filtering [5], and it outperforms the trace-norm in small-scale experi-
ments [1]. The paper [7] provides further evidence that the max-norm serves better for collaborative
filtering with nonuniform sampling patterns.

We believe that the max-norm has not achieved the same prominence as the trace-norm because of an
apprehension that it is challenging to solve optimization problems involving a max-norm regularizer.
The goal of this paper is to refute this misconception.

We provide several algorithms that are effective for very large scale problems, and we demonstrate
the power of the max-norm regularizer using examples from a variety of applications. In particular,
we study convex programs of the form

min f(X) + µ ‖X‖max (2)

where f is a smooth function and µ is a positive penalty parameter. Section 4 outlines a proximal-
point method, based on the work of Fukushima and Mine [8], for approaching (2). We also study
the bound-constrained problem

min f(X) subject to ‖X‖max ≤ B. (3)

Of course, (2) and (3) are equivalent for appropriate choices of µ and B, but we describe scenarios
where there may be a preference for one versus the other. Section 3 provides a projected gradient
method for (3), and Section 5 develops a stochastic implementation that is appropriate for decom-
posable loss functions. These methods can be coded up in a few lines of numerical python or Matlab,
and they scale to huge instances, even on a standard desktop machine. In Section 6, we apply these
new algorithms to large-scale collaborative filtering problems, and we demonstrate performance su-
perior to methods based on the trace-norm. We apply the algorithms to solve enormous instances
of graph cut problems, and we establish that clustering based on these cuts outperforms spectral
clustering on several data sets.

2

2 The SDP and Factorization Approaches
The max-norm of an m× n matrixX can be expressed as the solution to a semidefinite program:

‖X‖max = min t subject to
[
W1 X
X ′ W2

]
� 0, diag(W1) ≤ t, diag(W2) ≤ t. (4)

Unfortunately, standard interior-point methods for this problem do not scale to matrices with more
than a few hundred rows or columns. For large-scale problems, we use an alternative formulation
suggested by (1) that explicitly works with a factorization of the decision variableX .

We employ an idea of Burer and Monteiro [2] that has far reaching consequences. The positive
definite constraint in the SDP formulation above is trivially satisfied if we define L andR via[

W1 X
X ′ W2

]
=
[
L
R

] [
L
R

]′
.

Burer and Monteiro showed that as long asL andR have sufficiently many columns, then the global
optimum of (4) is equal to that of

‖X‖max = min
(L,R) : LR′=X

max{‖L‖22,∞ , ‖R‖22,∞} . (5)

In particular, we may assume that the number of columns is less thanm+n. This formulation of the
max-norm is nonconvex because it involves a constraint on the product LR′, but Burer and Mon-
teiro proved that each local minimum of the reformulated problem is also a global optimum [9]. If
we select L andR to have a very small number of columns, say r, then the number of real decision
variables in the optimization problems (2) and (3) is reduced from mn to r(m + n), a dramatic
improvement in the dimensionality of the problem. On the other hand, the new formulation is non-
convex with respect to L and R so it might not be efficiently solvable. In what follows, we present
fast, first-order methods for solving (2) and (3) via this low-dimensional factored representation.

3 Projected Gradient Method
The constrained formulation (3) admits a simple projected gradient algorithm. We replace X with
the product LR′ and use the factored form of the max-norm (5) to obtain

minimize(L,R)f(LR′) subject to max{‖L‖22,∞ , ‖R‖22,∞} ≤ B. (6)

The projected gradient descent method fixes a step size τ and computes updates with the rule[
L
R

]
← PB

([
L− τ∇f(LR)R
R− τ∇f(LR)′L

])
where PB denotes the Euclidean projection onto the set {(L,R) : max(‖L‖22,∞ , ‖R‖22,∞) ≤ B}.
This projection can be computed by re-scaling the rows of the current iterate whose norms exceed√
B so their norms equal

√
B. Rows with norms less than

√
B are unchanged by the projection. The

projected gradient algorithm is elegant and simple, and it has an online implementation, described
below. Moreover, using an Armijo line search rule to guarantee sufficient decrease of the cost
function, we can guarantee convergence to a stationary point of (3); see [10, Sec. 2.3].

4 Proximal Point Method for Penalty Formulation
Solving (2) is slightly more complicated than its constrained counterpart. We employ a classical
proximal point method, proposed by Fukushima and Mine [8], which forms the algorithmic foun-
dation of many popular first-order methods of for `1-norm minimization [11, 12] and trace-norm
minimization [13, 14]. The key idea is that our cost function is the sum of a smooth term plus a
convex term. At each iteration, we replace the smooth term by a linear approximation. The new
cost function can then be minimized in closed form. Before describing the proximal point algorithm
in detail, we first discuss how a simple max-norm problem (the Frobenius norm plus a max-norm
penalty) admits an explicit formula for its unique optimal solution.

Consider the simple regularization problem

minimizeW ‖W − V ‖2F + β ‖W ‖22,∞ (7)

3

Algorithm 1 ComputeW = squash(V , β)

Require: A d×D matrix V , a positive scalar β.
Ensure: A d×D matrixW ∈ arg minZ ‖Z − V ‖2F + β ‖Z‖22,∞.

1: for k = 1 to d set nk ← ‖vk‖2
2: sort {nk} in descending order. Let π denote the sorting permutation such that nπ(j) is the jth

largest element in the sequence.
3: for k = 1 to d set sk ←

∑k
i=1 nπ(i).

4: q ← max{k : nπ(k) ≥ sk

k+β }
5: η ← sq

q+β

6: for k = 1 to d, if k ≤ q, set wπ(k) ← ηvπ(k)/‖vπ(k)‖2. otherwise set wπ(k) ← vπ(k)

where W and V are d × D matrices. Just as with `1-norm and trace-norm regularization, this
problem can be solved in closed form. An efficient algorithm to solve (7) is given by Algorithm 1.
We call this procedure squash because the rows of V with large norm have their magnitude clipped
at a critical value η = η(V , β).

Proposition 4.1 squash(V , β) is an optimal solution of (7)

The proof of this proposition follows from an analysis of the KKT conditions for the regularized
problem. We include a full derivation in the appendix. Note that squash can be computed in
O(dmax{log(d), D}) flops. Computing the row norms requires O(dD) flops, and then the sort
requires O(d log d) flops. Computing η and q require O(d) operations. Constructing W then re-
quires O(dD) operations.

With the squash function in hand, we can now describe our proximal-point algorithm. Replace
the decision variable X in (2) with LR′. With this substitution and the factored form of the max-
norm, (5), Problem (2) reduces to

minimize(L,R)f(LR′) + µmax{‖L‖22,∞ , ‖R‖22,∞} . (8)

For ease of notation, defineA to be the matrix of factors stacked on top of one anotherA =
[
L
R

]
.

With this notation, we have ‖A‖22,∞ = max{‖L‖22,∞ , ‖R‖22,∞}. Also let f̃(A) denote f(LR′),
and ϕ(A) := f̃(A) + µ ‖A‖22,∞ .

Using the squash algorithm, we can solve

minimize〈∇f̃(Ak),A〉+ τ−1
k ‖A−Ak‖2F + µ ‖A‖22,∞ (9)

in closed form. To see this, complete the square and multiply by τk. Then (9) is equivalent to (7)
with the identifications W = A, V = Ak − τk∇f̃(Ak), β = τkµ. That is, the optimal solution
of (9) is squash

(
Ak − τk∇f̃(Ak), τkµ

)
.

We can now directly apply the proximal-point algorithm of Fukushima and Mine, detailed in Algo-
rithm 2. Step 2 is the standard linearized proximal-point method that is prevalent in convex algo-
rithms like Mirror Descent and Nesterov’s optimal method. The cost function f̃ is replaced with a
quadratic approximation localized at the previous iterate Ak, and the resulting approximation (9)
can be solved in closed form. Step 3 is a backtracking line search that looks for a step that obeys
an Armijo step rule. This linesearch guarantees that the algorithm produces a sufficiently large de-
crease of the cost function at each iteration, but it may require several function evaluations to find l.
This algorithm is guaranteed to converge to a critical point of (8) as long as the step sizes are chosen
commensurate with the norm of the Hessian [8]. In particular, Nesterov has recently shown that if f̃
has a Lipschitz-continuous gradient with Lipschitz constant L, then the algorithm will converge at a
rate of 1/k where k is the iteration counter [15].

4

Algorithm 2 A proximal-point method for max-norm regularization

Require: Algorithm parameters α > 0, 1 > γ > 0, εtol > 0. A sequence of positive numbers {τk}.
An initial pointA0 = (L0,R0) and a counter k set to 0.

Ensure: A critical point of (8).
1: repeat
2: Solve (9) to find Âk. That is, Âk ← squash

(
Ak − τk∇f̃(Ak), τkµ

)
.

3: Compute the smallest nonnegative integer l such that

ϕ(Ak + γl(Âk −Ak)) ≤ ϕ(Ak)− αγl‖Ak − Âk‖2F .

4: setAk+1 ← (1− γl)Ak + γlÂk, k ← k + 1.

5: until ‖Ak−Âk‖2F
‖Ak‖2F

< εtol

5 Stochastic Gradient

For many problems, including matrix completion and max-cut problems, the cost function decom-
poses over the individual entries in the matrix, so the function f(LR′) takes the particularly simple
form:

f(L,R) =
∑
i,j∈S

`(Yij ,L′iRj) (10)

where ` is some fixed loss function, S is a set of row-column indices, Yij are some real numbers,
and Li and Rj denote the ith row of L and jth row of R respectively. When dealing with very
large datasets, S may consist of hundreds of millions of pairs, and there are algorithmic advantages
to utilizing stochastic gradient methods that only query a very small subset of S at each iteration.
Indeed, the above decomposition for f immediately suggests a stochastic gradient method: pick one
training pair (i, j) at random at each iteration, take a step in the direction opposite the gradient of
`(Yi,j ,L′iRj) and then either apply the projection PB described in Section 3 or the squash function
described in 4.

The projection PB is particularly easy to compute in the stochastic setting. Namely, if ‖Li‖2 > B,
we project it back so that ‖Li‖ =

√
B, otherwise we do not do anything (and similarly forRj). We

need not look at any other rows of L andR. As we demonstrate in experimental results section, this
simple algorithm is computationally as efficient as optimization with the trace-norm.

We can also implement an efficient algorithm for stochastic gradient descent for problem (2). If we
wanted to apply the squash algorithm to such a stochastic gradient step, only the norms correspond-
ing to Li and Rj would be modified. Hence, in Algorithm 1, if the set of row norms of L and R
is sorted from the previous iteration, we can implement a balanced-tree data structure that allows us
to perform individual updates in amortized logarithmic time. We leave such an implementation to
future work. In the experiments, however, we demonstrate that the proximal point method is still
quite efficient and fast when dealing with stochastic gradient updates corresponding to medium-size
batches {(i, j)} selected from S, even if a full sort is performed at each squash operation.

6 Numerical Experiments

Matrix Completion. We tested our proximal point and projected gradient methods on the Net-
flix dataset, which is the largest publicly available collaborative filtering dataset. The training set
contains 100,480,507 ratings from 480,189 anonymous users on 17,770 movie titles. Netflix also
provides a qualification set, containing 1,408,395 ratings. The “qualification set” pairs were selected
by Netflix from the most recent ratings for a subset of the users. As a baseline, Netflix provided the
test score of its own system trained on the same data, which is 0.9514. This dataset is interesting for
several reasons. First, it is very large, and very sparse (98.8% sparse). Second, the dataset is very
imbalanced, with highly nonuniform samples. It includes users with over 10,000 ratings as well as
users who rated fewer than 5 movies.

5

0 5 10 15 20 25 30 35 40
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Number of epochs

R
M

S
E

Training

Qualification

Proximal Point
Projected Gradient

Training RMSE Qual
Algorithm f(X) ‖X‖max f(X) + f(X)

+ µ ‖X‖max

Proximal Point 0.7676 2.5549 0.7689 0.9150
Projected Gradient 0.7728 2.2500 0.7739 0.9138
Trace-norm - - - 0.9235
Weighted Trace-norm - - - 0.9105

Figure 1: Performance of regularization methods on the Netflix dataset.

For the netflix dataset, we will evaluate our algorithms based on the root mean squared error (RMSE)
of their predictions. To this end, the objective we seek to minimize takes the following form:

minimizeL,R
1
|S|

∑
(i,j)∈S

(Yij −L′iRj)2 + µmax{‖L‖22,∞ , ‖R‖22,∞}

where S here represents the set of observed user-movie pairs and Yij denote the provided ratings.
For all of our experiments, we learned a factorization L′R with k = 30 dimensions (factors).

In our experiments, all ratings were normalized to be zero-mean by subtracting 3.6. To
speed up learning, we subdivided the Netflix dataset into minibatches, each containing 100,000
user/movie/rating triplets. Both proximal-point and projected gradient methods performed 40
epochs (or passes through the training set), with parameters {L,R} updated after each minibatch.
For both algorithms we used momentum of 0.9, and a step size of 0.005, which was decreased by
a factor of 0.8 after each epoch. For the proximal-point method, µ was set to 5×10−4, and for
the projected gradient algorithm, B was set to 2.25. The running times of both algorithms on this
large-scale Netflix dataset is comparable. On a 2.5 GHz Intel Xeon, our implementation of projected
gradient takes 20.1 minutes per epoch, whereas the proximal-point method takes about 19.6 minutes.

Figure 1 shows predictive performance of both the proximal-point and projected gradient algorithms
on the training and qualification set. Observe that the proximal-point algorithm converges consider-
ably faster than projected gradient, but both algorithms achieve a similar RMSE of 0.9150 (proximal
point) and 0.9138 (projected gradient) on the qualification set. Figure 1, left panel, further shows that
the max-norm based regularization significantly outperforms the corresponding trace-norm based
regularization, which is widely used in many large-scale collaborative filtering applications. We
also note that the differences between the max-norm and the weighted trace-norm [7] are rather
small, with the weighted trace-norm slightly outperforming max-norm.

Gset Max-Cut Experiments. In the MAX-CUT problem, we are given a graph G = (V,E), and
we aim to solve the problem

minimize
∑

(i,j)∈E

(1− xixj) subject to x2
i = 1 ∀i ∈ V

The heralded Goemans-Williamson relaxation [16] converts this problem into a constrained, sym-
metric max-norm problem:

minimize
∑

(i,j)∈E

(1−Xij) subject to ‖X‖max ≤ 1, X � 0 .

In our nonconvex formulation, this optimization becomes

minimize
∑

(i,j)∈E

(1−A′iAj) subject to ‖A‖22,∞ ≤ 1 .

Since the decision variable is symmetric and positive definite, we only need one factor A of size
|V | × r. In all of our experiments with MAX-CUT type problems, we fixed r = 20. We used a
diminishing step size rule of τk = τ0√

k
where k is the iteration counter.

6

Primal Time Iterations Time Iterations SDPLR SDPLR
Obj. (.1%) (.1%) (1%) (1%) Obj. Time |V | |E|

G22 14128.5 0.6 150 0.4 100 14135.7 3 2000 19990
G35 8007.4 0.5 200 0.3 100 8014.6 4 2000 11778
G36 7998.3 0.5 200 0.3 100 8005.9 7 2000 11766
G58 20116.6 2 300 .7 100 20135.90 29 5000 29570
G60 15207.0 2.1 400 0.29 50 15221.9 6 7000 17148
G67 7736.4 21.4 2050 1.3 100 7744.1 15 10000 20000
G70 9851.51 8.7 1700 .5 100 9861.2 21 10000 9999
G72 7800.4 13.8 2250 .6 100 7808.2 15 10000 20000
G77 11034.1 18.6 2150 .9 100 11045.1 20 14000 28000
G81 15639.6 28.4 2200 1.35 100 15655.2 33 20000 40000

Table 1: Performance of projected gradient on Gset graphs. Columns show primal objective within .1% of
optimal, running time for .1% of optimal, number of iterations to reach .1% of optimal, running time for 1% of
optimal, number of iterations to reach 1% of optimal, primal objective using SDPLR, running time of SDPLR,
number of vertices, and number of edges. In our experiments, we set τ0 = 1.

(a) Spectral Clustering (b) Max-cut clustering

Figure 2: Comparison of spectral clustering (left) with MAX-CUT clustering (right).

We tested our projected gradient algorithm on graphs drawn from the Gset, a collection of graphs
designed for testing the efficacy of max-cut algorithms [17]. The results for a subset of these appears
in Table 1 along with a comparison against a C implementation of Burer’s SDPLR code which has
been optimized for the particular structure of the MAX-CUT problem [18]. On the same modern
hardware, a Matlab implementation of our projected gradient method can reach .1% of the optimal
value faster than the optimized and compiled SDPLR code.

2-class Clustering Experiments. For the 2-class clustering problem, we first build a K-nearest
neighbor graph with K = 10 and weights wij defined as wij = max(si(j), sj(i)), with si(j) =

exp
(
− ||xi−xj ||2

2σ2
i

)
and σi equal to the distance from xi to its Kth closest neighbor. We then choose

a scalar δ > 0 and define an inverse similarity adjacency matrixQ byQij = δ−Wij . The parameter
δ controls the balancing of the clusters, a large value of δ forces the clusters to be of equal size. We
solve the MAX-CUT problem on the graphQ to find our cluster assignments.

As a synthetic example, we generated a “two moons” dataset consisting of two half-circles in R2

with the bottom half circle shifted to the right by 1/2 and shifted up by 1/2. The data is then
embedded into RD and each embedded component is corrupted with Gaussian noise with variance
σ2. For the two moons experiments, we fix D = 100, n = 2000 and σ =

√
.02 as done in [19]. The

parameters are set to δ = .01 and τ0 = 3/2; the algorithm was executed for 1500 iterations. For
the clustering experiments, we repeat the randomized rounding technique [16] for 100 trials, and we
choose the rounding with highest primal objective.

We compare our MAX-CUT clusterings with the spectral clustering method [20] and the Total Vari-
ation Graph Cut algorithm [19]. Figure 2 shows the clustering results for spectral clustering and
maxcut clustering. In all the trials, spectral clustering incorrectly clustered the two ends of both
half-circles. For the clustering problems, the two measures of performance we consider are mis-
classification error rate (number of misclassified points divided by n) and cut cost. The cut cost is
defined as

∑
i∈V1,j∈V2

Wij . The MAX-CUT clustering obtained smaller misclassification error in 98
of the 100 trials we performed and smaller cut cost in every trial.

On the MNIST database, we build the 10-NN graph described above on the digits 4 and 9, where
we set δ = .001 and r = 8. The NN-graph is of size 14, 000 and the MAX-CUT algorithm takes

7

max-cut spectral TV
Error Rate Cost Time min(|V1|,|V2|)

|V1|+|V2|
Error Rate Cost Error Rate

Two Moons 0.053 311.9 13 .495 0.171 387.8 0.082
MNIST 4 and 9 0.021 1025.5 90 .493 0.458 1486.5 N/A
MNIST 3 and 5 0.016 830.9 53 .476 0.092 2555.1 N/A

Table 2: Clustering results. Error rate, cut cost, and running time comparison for MAX-CUT, spectral, and
total variation (TV) algorithms. The balance of the cut is computed as min(|V1|,|V2|)

|V1|+|V2|
. The two moons results

are averaged over 100 trials.

approximately 1 minute to run 1,000 iterations. The same procedure is repeated for the digits 3 and
5. The results are shown in Table 2. Our MAX-CUT clustering algorithm again performs substantially
better than the spectral method.

7 Summary
In this paper we presented practical methods for solving very large scale optimization problems
involving a max-norm constraint or regularizer. Using this approaches, we showed evidence that
the max-norm can often be superior to established techniques such as trace-norm regularization and
spectral clustering, supplementing previous evidence on small-scale problems. We hope that the
increasing evidence of the utility of max-norm regularization, combined with the practical optimiza-
tion techniques we present here, will reignite interest in using the max-norm for various machine
learning applications.

Acknowledgements
RS supported by NSERC, Shell, and NTT Communication Sciences Laboratory. JAT supported by
ONR award N00014-08-1-0883, DARPA award N66001-08-1-2065, and AFOSR award FA9550-
09-1-0643. JL thanks TTI Chicago for hosting him while this work was completed.

A Proof of the correctness of squash

Rewrite (7) as the constrained optimization

minimizeW ,t

Pd
i=1 ‖wi − vi‖2 + βt

subject to ‖wi‖2 ≤ t for 1 ≤ i ≤ d

Forming a Lagrangian with a vector of Lagrange multipliers p ≥ 0

L(W , t,p) =

dX
i=1

‖wi − vi‖2 + βt+

dX
i=1

pi(‖wi‖2 − t) ,

the KKT conditions for this problem thus read (a) wi = 1
1+pi

vi, (b) p ≥ 0, (c)
Pd
i=1 pi = β, (d) ‖wi‖2 ≤ t

for 1 ≤ i ≤ d, (e) pi > 0 =⇒ ‖wi‖2 = t, and (f) ‖wi‖2 < t =⇒ pi = 0.

With our candidate W = squash(V , β), we need only find t and p to verify the optimality conditions. Let π
be as in Algorithm 1 and set t = η2 and

pk =

(
‖vk‖
η
− 1 1 ≤ π(k) ≤ q

0 otherwise

This definition of p immediately gives (a). For (b), note that by the definition of q, ‖vk‖ ≥ η for 1 ≤ π(k) ≤ q.
Thus, p ≥ 0. Moreover,

dX
k=1

pk =

P
1≤π(k)≤q ‖vk‖

η
− q = q + β − q = β ,

yielding (c). Also, by construction, ‖wk‖ = η if π(k) ≤ q verifying (e). Finally, again by the definition of q,
we have

‖vπ(q+1)‖ <
1

β + q + 1

q+1X
k=1

‖vπ(k)‖ =
1

β + q + 1
‖vπ(q+1)‖+

β + q

β + q + 1
η

which implies ‖vπ(q+1)‖ < η. Since ‖vk‖ ≤ ‖vπ(q+1)‖ for π(k) > q, this gives (d) and the slackness
condition (f).

8

References
[1] Nathan Srebro, Jason Rennie, and Tommi Jaakkola. Maximum margin matrix factorization. In Advances

in Neural Information Processing Systems, 2004.

[2] Samuel Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming (Series B), 95:329–357, 2003.

[3] Benjamin Recht, Maryam Fazel, and Pablo Parrilo. Guaranteed minimum rank solutions of matrix
equations via nuclear norm minimization. SIAM Review, 2007. To appear. Preprint Available at
http://pages.cs.wisc.edu/˜brecht/publications.html.

[4] Francis R. Bach, Julien Marial, and Jean Ponce. Convex sparse matrix factorizations. Preprint available
at arxiv.org/abs/0812.1869, 2008.

[5] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In 18th Annual Conference on
Learning Theory (COLT), 2005.

[6] G. J. O. Jameson. Summing and Nuclear Norms in Banach Space Theory. Number 8 in London Mathe-
matical Society Student Texts. Cambridge University Press, Cambridge, UK, 1987.

[7] Ruslan Salakhutdinov and Nathan Srebro. Collaborative filtering in a non-uniform world: Learning with
the weighted trace norm. Preprint available at arxiv.org/abs/1002.2780, 2010.

[8] Masao Fukushima and Hisashi Mine. A generalized proximal point algorithm for certain non-convex
minimization problems. International Journal of Systems Science, 12(8):989–1000, 1981.

[9] Samuel Burer and Changhui Choi. Computational enhancements in low-rank semidefinite programming.
Optimization Methods and Software, 21(3):493–512, 2006.

[10] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd edition, 1999.

[11] T Hale, W Yin, and Y Zhang. A fixed-point continuation method for l 1-regularized minimization with
applications to compressed sensing. Dept. Computat. Appl. Math., Rice Univ., Houston, TX, Tech. Rep.
TR07-07, 2007.

[12] Stephen J. Wright, Robert Nowak, and Mário A. T. Figueiredo. Sparse reconstruction by separable ap-
proximation. Journal version, to appear in IEEE Transactions on Signal Processing. Preprint available at
http:http://www.optimization-online.org/DB_HTML/2007/10/1813.html, 2007.

[13] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm for
matrix completion. To appear in SIAM J. on Optimization. Preprint available at http://arxiv.org/
abs/0810.3286, 2008.

[14] Shiqian Ma, Donald Goldfarb, and Lifeng Chen. Fixed point and Bregman iterative methods for matrix
rank minimization. Preprint available at http://www.optimization-online.org/DB_HTML/
2008/11/2151.html, 2008.

[15] Yurii Nesterov. Gradient methods for minimizing composite objective function. To appear. Preprint
Available at http://www.optimization-online.org/DB_HTML/2007/09/1784.html,
September 2007.

[16] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

[17] The Gset is available for download at http://www.stanford.edu/˜yyye/yyye/Gset/.

[18] Samuel Burer. Sdplr. Software available at http://dollar.biz.uiowa.edu/˜sburer/www/
doku.php?id=software#sdplr.

[19] Arthur Szlam and Xavier Bresson. A total variation-based graph clustering algorithm for cheeger
ratio cuts. To appear in ICML 2010. Preprint available at ftp://ftp.math.ucla.edu/pub/
camreport/cam09-68.pdf, 2010.

[20] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

9

