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Abstract—We consider an overlay architecture where ser-
vice providers deploy a set of service nodes (called MSNs) in
the network to efficiently implement media-streaming appli-
cations. These MSNs are organized into an overlay and act
as application-layer multicast forwarding entities for a set of
clients.

We present a decentralized scheme that organizes the
MSNs into an appropriate overlay structure that is particu-
larly beneficial for real-time applications. We formulate our
optimization criterion as a “degree-constrained minimum
average-latency problem” which is known to be NP-Hard.
A key feature of this formulation is that it gives a dynamic
priority to different MSNs based on the size of its service set.

Our proposed approach iteratively modifies the overlay
tree using localized transformations to adapt with changing
distribution of MSNs, clients, as well as network conditions.
We show that a centralized greedy approach to this problem
does not perform quite as well, while our distributed itera-
tive scheme efficiently converges to near-optimal solutions.

I. INTRODUCTION

In this paper we consider a two-tier infrastructure to ef-
ficiently implement large-scale media-streaming applica-
tions on the Internet. This infrastructure, which we call the
Overlay Multicast Network Infrastructure (OMNI), con-
sists of a set of devices called Multicast Service Nodes
(MSNs [13]) distributed in the network and provides ef-
ficient data distribution services to a set of end-hosts 1.
An end-host (client) subscribes with a single MSN to re-
ceive multicast data service. The MSNs themselves run a
distributed protocol to organize themselves into an over-
lay which forms the multicast data delivery backbone.
The data delivery path from the MSN to its clients is in-
dependent of the data delivery path used in the overlay
backbone, and can be built using network layer multicast
application-layer multicast, or a sequence of direct uni-
casts. The two-tier OMNI architecture is shown in Fig-
ure 1.

In this paper, we present a distributed iterative scheme
that constructs “good” data distribution paths on the�

Similar models of overlay multicast have been proposed in the lit-
erature (e.g. Scattercast [7] and Overlay Multicast Network [13]).
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Fig. 1. OMNI Architecture.

OMNI. Our scheme allows a multicast service provider to
deploy a large number of MSNs without explicit concern
about optimal placement. Once the capacity constraints of
the MSNs are specified, our technique organizes them into
an overlay topology, which is continuously adapted with
changes in the distribution of the clients as well as changes
in network conditions.

Our proposed scheme is most useful for latency-
sensitive real-time applications, such as media-streaming.
Media streaming applications have experienced immense
popularity on the Internet. Unlike static content, real-time
data cannot be pre-delivered to the different distribution
points in the network. Therefore an efficient data delivery
path for real-time content is crucial for such applications.
The quality of media playback typically depends on
two factors: access loads experienced by the streaming
server(s) and jitter experienced by the traffic on the end-
to-end path. Our proposed OMNI architecture addresses
both these concerns as follows: (1) being based on an
overlay architecture, it relieves the access bottleneck at
the server(s), and (2) by organizing the overlay to have
low-latency overlay paths, it reduces the jitter at the
clients.

For large scale data distributions, such as live webcasts,
we assume that there is a single source. The source is con-
nected to a single MSN, which we call the root MSN. The
problem of efficient OMNI construction is as follows:

Given a set of MSNs with access bandwidth
constraints distributed in the network, construct
a multicast data delivery backbone such that the
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overlay latency to the client set is minimized.
Since the

�
goal of OMNIs is to minimize the latencies to the

entire client set, MSNs that serve a larger client population
are, therefore, more important than the ones which serve
only a few clients. The relative importance of the corre-
sponding MSNs vary, as clients join and leave the OMNI.
This, in turn, affects the structure of the data delivery path
of the overlay backbone. Thus, one of the important con-
siderations of the OMNI is its ability to adapt the overlay
structure based on the distribution of clients at the different
MSNs.

Our overlay construction objective for OMNIs is related
to the objective addressed in [14]. In [14] the authors
propose a centralized greedy heuristic, called the Com-
pact Tree algorithm, to minimize the maximum latency
from the source (also known as the diameter) to an MSN.
However the objective of this minimum diameter degree-
bounded spanning tree problem does not account for the
difference in the relative importance of MSNs depend-
ing on the size of the client population that they are serv-
ing. In contrast we formulate our objective as the mini-
mum average-latency degree-bounded spanning tree prob-
lem which weights the different MSNs by the size of the
client population that they serve. We propose an itera-
tive distributed solution to this problem, which dynami-
cally adapts the tree structure based on the relative impor-
tance of the MSNs. Additionally we show how our solu-
tion approach can be easily augmented to define an equiva-
lent distributed solution for the minimum diameter degree-
bounded spanning tree problem.

The rest of the paper is structured as follows: In the next
section we formalize and differentiate between the defini-
tion of these problems. In Section III we describe our so-
lution technique. In Section IV we study the performance
of our technique through detailed simulation experiments.
In Section V we discuss other application-layer multicast
protocols that are related to our work. Finally, we present
our conclusions in Section VI.

II. PROBLEM FORMULATION

In this section we describe the network model and state
our solution objectives formally. We also outline the prac-
tical requirements that our solution is required to satisfy.

The physical network consists of nodes connected by
links. The MSNs are connected to this network at different
points through access links.

The multicast overlay network is the network induced
by the MSNs on this physical topology. It can be mod-
eled as a complete directed graph, denoted by �������
	���
 ,
where � is the set of vertices and ��������� is the set of
edges. Each vertex in � represents an MSN. The directed

edge from node � to node � in � represents the unicast path
from MSN � to MSN � in the physical topology The la-
tency of an edge ����	���� corresponds to the unicast path la-
tency from MSN � to MSN � .

The data delivery path on the OMNI will be a directed
spanning tree of � rooted at the source MSN, with the
edges directed away from the root. Consider a multicast
application in which the source injects traffic at the rate of�

units per second. We will assume that the the capacity of
any incoming or outgoing access link is no less than

�
. Let

the outgoing access link capacity of MSN � be ��� . Then the
MSN can send data to at most � � � �!� �#" �%$ other MSNs.
This imposes an out-degree bound at MSN � on the overlay
tree of the OMNI 2.

The overlay latency & �(' ) from MSN � to MSN � is the
summation of all the unicast latencies along the overlay
path from � to � on the tree, * . The latency experienced by
a client (attached to MSN � ) consists of three parts: (1) the
latency from the source to the root MSN, + , (2) the latency
from the MSN � to itself, and (3) the overlay latency &-,.' �
on the OMNI from MSN + to MSN � . The arrangement of
the MSNs affects only the overlay latency component, and
the first two components do not depend on the OMNI over-
lay structure. Henceforth, for each client we only consider
the overlay latency & ,.' � between the root MSN and MSN� as part of our minimization objective in constructing the
OMNI overlay backbone.

We consider two separate objectives. Our first objective
is to minimize is the average (or total) overlay latency of
all clients. Let / � be the number of clients that are served
by MSN � . Then minimizing the average latency over all
clients translates to minimizing the weighted sum of the
latencies of all MSNs, where /�� denote the MSN weights.

The second objective is to minimize the maximum
overlay latency for all clients. This translates to minimiz-
ing the maximum of the overlay latency of all MSNs. Let0

denote the set of all MSNs other than the source. Then
the two problems described above can be stated as follows:

P1: Minimum average-latency degree-bounded directed
spanning tree problem: Find a directed spanning tree, *
of � rooted at the MSN, + , satisfying the degree-constraint
at each node, such that 1 �!243 / � & ,.' � is minimized.

P2: Minimum maximum-latency degree-bounded directed
spanning tree problem: Find a directed spanning tree, *
of � rooted at the MSN, + , satisfying the degree-constraint
at each node, such that 57698 �(2:3 & ,.' � is minimized.;

Internet measurements have shown that links in the core networks
are over-provisioned, and therefore are not bottlenecks [3].
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The minimum average-latency degree-bounded di-
rected spanning tree problem, as well as the minimum
maximum-latency degree-bounded directed spanning tree
problem, are NP-hard [4], [14]. For brevity, in the rest
of this paper, we will refer to these problems as the min
avg-latency problem and the min max-latency problem,
respectively. We focus on the min avg-latency problem
because we believe that by weighting the overlay latency
costs by the number of clients at each MSN, this problem
better captures the relative importance of the MSNs in
defining the overlay tree. In this paper we describe an
iterative heuristic approach that can be used to solve the
min avg-latency problem. In the solution description
we also briefly highlight the changes necessary to our
distributed solution to solve the min max-latency problem
that has been addressed in prior work [14].

The development of the our approach is motivated by
the following set of desirable features that make the solu-
tion scheme practical.
Decentralization: We require a solution to be to imple-
mentable in a distributed manner. It is possible to think of
a solution where the information about the client sizes of
the MSNs and the unicast path latencies are conveyed to
a single central entity, which then finds a “good” tree (us-
ing some algorithm), and then directs the MSNs to con-
struct the tree obtained. However, the client population
can change dynamically at different MSNs which would
require frequent re-computation of the overlay tree. Simi-
larly, changes in network conditions can alter latencies be-
tween MSNs which will also incur tree re-computation.
Therefore a centralized solution is not practical for even
a moderately sized OMNI.
Adaptation: The OMNI overlay should adapt to changes
in network conditions and changes in the distribution of
clients at the different MSNs.
Feasibility: The OMNI overlay should adapt the tree
structure by making incremental changes to the existing
tree. However at any point in time the tree should satisfy
all the degree constraints at the different MSNs. Any vi-
olation of degree constraint would imply an interruption
of service for the clients. Therefore, as the tree adapts its
structure towards an optimal solution using a sequence of
optimization steps, none of the transformations should vi-
olate the degree constraints of the MSNs.

Our solution, as described in the next section, satisfies
all the properties stated above.

III. SOLUTION

In this section we describe our proposed distributed it-
erative solution to the problem described in Section II that

meets all of the desired objectives. In this solution descrip-
tion, we focus on the min avg-latency problem and only
point out relevant modifications needed for the min max-
latency problem.

A. State at MSNs

For an MSN � , let Children �.�.
 indicate the set of chil-
dren of � on the overlay tree and let / � denote the number
of clients being directly served by � . We use the term ag-
gregate subtree clients (

0 � ) at MSN � to denote the entire
set of clients served by all MSNs in the subtree rooted at� . The number of such aggregate subtree clients, < � �>= 0 � =
is given by: < � ��/ �@? A)�2 Children B �DC < )
For example in Figure 1, <FEG�IH , <FJK�ML , <ONM� P ,<9QR�TS , <OUV�XW , and <OYZ�[PO\ . We also define a term
called aggregate subtree latency ( ] � ) at any MSN, � , which
denotes the summation of the overlay latency of each MSN
in the subtree, from MSN � which is weighted by the num-
ber of clients at that MSN. This can be expressed as:

] � �>^`_ if � is a leaf MSN1 )�2 Children B �DC < )Fab�(' )c? ] ) otherwise

where, aD�(' ) is the unicast latency between MSNs � and � .
In Figure 1, assuming all edges between MSNs have unit
unicast latencies, ]
Ed�e]
Jf�e]
Ne� _ , ]gQh��H , ]
Uf��S ,
and ]
Yd�ji4H . The optimization objective of the min avg-
latency problem is to minimize the average subtree latency
of the root, k] , , (also called the average tree latency) 3.

Each MSN � keeps the following state information:l The overlay path from the root to itself: This is used to
detect and avoid loops while performing optimization
transformations.l The value, < � , representing the number of aggregate
subtree clients.l The aggregate subtree latency: This is aggregated on
the OMNI overlay from the leaves to the root.l The unicast latency between itself and its tree neigh-
bors: Each MSN periodically measures the unicast
latency to all its neighbors on the tree.

Each MSN maintains state for all its tree neighbors and
all its ancestors in the tree. If the minimum out-degreem

The maximum subtree latency, n9oqp#rs at an MSN, t , is the overlay
latency from t to another MSN u which has the maximum overlay la-
tency from t among the MSNs in the subtree rooted at t , i.e. n oqp#rs vwgxzy4{�| s~} ��� u�� Subtree(i) � . The optimization objective of the min
max-latency problem is to minimize the maximum subtree latency of
the root.
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Procedure : CreateInitialTree( +�	 0 )
SortedS�M� Sort

0
in increasing order of dist. from +�

Assert: SortedS �DPO����+���h� P����� ��� i to �h� ������(�b� SortedS ���#��� NumChildren � SortedS �������DegBd� ?�?
end while
SortedS � � ���Parent � SortedS ���#�
SortedS ���#���NumChildren ?�?

end for

Fig. 2. Initial tree creation algorithm for the initialization phase.¡ is the root MSN, ¢ is an array of all the other MSNs and £ is the
number of MSNs.

bound of an MSN is two, then it maintains state for at most¤ � degree ?¦¥D§4¨ �¦
 other MSNs.
We decouple our proposed solution into two parts —

an initialization phase followed by successive incremen-
tal refinements. In each of these incremental operations
no global interactions are necessary. A small number of
MSNs interact with each other in each transformation to
adapt the tree so that the objective function improves.

B. Initialization

In a typical webcast scenario data distribution is sched-
uled to commence at a specific time. Prior to this instant
the MSNs organize themselves into an initial data deliv-
ery tree. Note that the clients of the different MSNs join
and leave dynamically. Therefore no information about
the client population sizes is available a priori at the MSNs
during the initialization phase.

Each MSN that intends to join the OMNI measures
the unicast latency between itself and the root MSN and
sends a JoinRequest message to the root MSN. This mes-
sage contains the tuple � LatencyToRoot 	 DegreeBound � .
The root MSN gathers JoinRequests from all the different
MSNs, creates the initial data delivery tree using a simple
centralized algorithm, and distributes it to the MSNs.

This centralized initialization procedure is described in
pseudo-code in Figure 2. We describe this operation us-
ing the example in Figure 3. In this example, all MSNs
have a maximum out-degree bound of two. The root, + ,
sorts the list of MSNs in an increasing order of distance
from itself. It then fills up the available degrees of MSNs
in this increasing sequence. It starts with itself and chooses
the next closest MSNs (1 and 2) to be its children. It next
chooses its closest MSN (1) and assigns MSNs 3 and 4 (the
next closest MSNs with unassigned parents) as its chil-
dren. Continuing this process, the tree shown in Figure 3
is constructed.

r

1 2

3
4

8
7 6 5

Source

Fig. 3. Initialization of the OMNI using Procedure CreateInitialTree.¡ is the root MSN of the tree. The remaining MSNs are labeled in the
increasing order of unicast latencies from ¡ . In this example, we as-
sume that each MSN has a maximum out-degree bound of two.

The centralized algorithm guarantees the following (see
proof in the Appendix):

If the triangle inequality holds on the overlay
and if the degree bound of each MSN is at least
2, then overlay latency from the root MSN to
any other MSN, � , is bounded by i aD,.' �F¥D§4¨ � ,
where � is the number of MSNs in the OMNI,
and aD,.' � is the direct unicast latency between the
root MSN, + , and MSN � .

The centralized computation of this algorithm is accept-
able because it operates off-line before data delivery com-
mences. An optimal solution to the min avg-latency prob-
lem is NP-Hard and would typically require

¤ �.�ª©F
 la-
tency measurements (i.e. between each pair of MSNs).
In contrast, the centralized solution provides a reasonable
latency bound using only

¤ ���¦
 latency measurements
(one between each MSN and the root MSN). Note that
the ¥~§«¨ � approximation bound is valid for each MSN.
Therefore this initialization procedure is able to guarantee
a ¥D§4¨ � approximation for both the min avg-latency prob-
lem as well as the min max-latency problem.

The initialization procedure, though oblivious of the
distribution of the clients at different MSNs, still creates
a“good” initial tree. This data delivery tree will be con-
tinuously transformed through local operations to dynam-
ically adapt with changing network conditions (i.e. chang-
ing latencies between MSNs) and changing distribution of
clients at the MSNs. Additionally new MSNs can join and
existing MSNs can leave the OMNI even after data deliv-
ery commences. Therefore the initialization phase is op-
tional for the MSNs, which can join the OMNI, even after
the initialization procedure is done.

C. Local Transformations

We define a local transformation as one which requires
interactions between nearby MSNs on the overlay tree. In
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Fig. 4. Child-Promote operation. ¬ is the grand-parent, ­ is the parent
and ® is the child. The maximum out-degree of all MSNs is three. MSN® is promoted in this example.
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Fig. 5. Parent-Child Swap operation. ¬ is the grand-parent, ­ is the
parent and ® is the child. Maximum out-degree is three.

particular these MSNs are within two levels of each other.
We define five such local transformation operations that
are permissible at any MSN of the tree. Each MSN period-
ically attempts to perform these operations. This period is
called the transformation period and is denoted by ¯ . The
operation is performed if it reduces the average-latency of
the client population.

Child-Promote: If an MSN ° has available degree, then
one of its grand-children (e.g. MSN / in Figure 4) is pro-
moted to be a direct child of ° if doing so reduces the ag-
gregate subtree latency for the min avg-latency problem.
This is true if: � a~± ' ²´³ aµ± ' ¶·³ a ¶�' ²¸
�<�²
¹ _
For the min max-latency problem, the operation is per-
formed only if it reduces the maximum subtree latency at° which can be verified by testing the same condition as
above.

If the triangle inequality holds for the unicast latencies
between the MSNs, this condition will always be true. If
multiple children of º are eligible to be promoted, a child
which maximally reduces the aggregate (maximum) sub-
tree latency for the min avg-latency (min max-latency)
problem is chosen.

Parent-Child Swap: In this operation the parent and
child are swapped as shown in Figure 5. Note grand-
parent, ° is the parent of / after the transformation and / is
the parent of º . Additionally one child of / is transferred to
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Fig. 6. Iso-level-2 Swap operation. ¬ is the grand-parent, ­ and » are
siblings. ¼ and ½ are swapped.
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Fig. 7. Aniso-level-1-2 Swap operation. ­ is the parent of ® . ¼ and ½
are swapped.

º . This is done if and only if the out-degree bound of / gets
violated by the operation (as in this case). Note that in such
a case only one child of / would need to be transferred andº would always have an available degree (since the trans-
formation frees up one of its degrees). The swap operation
is performed for the min avg-latency (min max-latency)
problem if and only if the aggregate (maximum) subtree
latency at ° reduces due to the operation. Like the previ-
ous case, if multiple children of º are eligible for the swap
operation, a child which maximally reduces the aggregate
(maximum) subtree latency for the min avg-latency (min
max-latency) problem is chosen.

Iso-level-2 Swap: We define an iso-level operation as
one in which two MSNs at the same level swap their po-
sitions on the tree. Iso-level-k denotes a swap where the
swapped MSNs have a common ancestor exactly ¾ levels
above. Therefore, the iso-level-2 operation defines such a
swap for two MSNs that have the same grand-parent. As
before, this operation is performed for the min avg-latency
(min max-latency) problem between two MSNs ¿ and À if
and only if it reduces the aggregate (maximum) subtree la-
tency (e.g. Figure 6).

Iso-level-2 Transfer: This operation is analogous to the
previous operation. However, instead of a swap, it per-
forms a transfer. For example, in Figure 6, Iso-level-2
transfer would only shift the position of MSN ¿ from child
of º to child of Á . MSN À does not shift its position. This
operation is only possible if Á has available degree.

Aniso-level-1-2 Swap: An aniso-level operation in-
volves two MSN that are not on the same level of the over-
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Fig. 8. Example where the five local operations cannot lead to opti-
mality in the min avg-latency problem. All MSNs have maximum out-
degree bound of two. ¡ is the root. Arrow lengths indicate the distance
between MSNs.

lay tree. An aniso-level- � -� operation involves two MSNs¿ and À for which the ancestor of ¿ , � levels up, is also the
ancestor of À , � levels up. Therefore the defined swap op-
eration involves two MSNs ¿ and À where the parent of¿ is the same as the grand-parent of À (as shown in Fig-
ure 7). The operation is performed if and only if it reduces
the aggregate (maximum) subtree latency at º for the min
avg-latency (min max-latency) problem.

Following the terminology as described, the Child-
Promote operation is actually the Aniso-level-1-2 transfer
operation.

D. Probabilistic Transformation

Each of the defined local operations reduce the aggre-
gate (maximum) subtree latency on the tree for the min
avg-latency (min max-latency) problem. Performing these
local transformations will guide the objective function to-
wards a local minimum. However, as shown in the exam-
ple in Figure 8, they alone cannot guarantee that a global
minimum will be attained. In the example, the root MSN
supports 4 clients. MSNs in level 1 (i.e. 1 and 2) support
3 clients each, MSNs in level 2 support 2 clients each and
MSNs in level 3 support a single client each. The arrow
lengths indicate the unicast latencies between the MSNs.
Initially a ¶9' Â ?ea!Ã ' ÄÅ¹ a ¶�' Ä ?ea!Ã ' Â and the tree as shown in
the initial configuration was formed. The tree in the ini-
tial configuration was the optimal tree for our objective
function. Let us assume that due to changes in network
conditions (i.e., changed unicast latencies) we now havea~¶�' ÂÆ?>a Ã ' Ä>Ç[a~¶�' Ä�?>a Ã ' Â . Therefore the objective func-
tion can now be improved by exchanging the positions of
MSNs ¿ and À in the tree. However, this is an iso-level-3
operation, and is not one of the local operations. Addition-
ally it is easy to verify that any local operation to the initial
tree will increase the objective function. Therefore no se-
quence of local operation exists that can be applied to the
initial tree to reach the global minima.

Therefore we define a probabilistic transformation step
that allows MSNs to discover such potential improve-
ments to the objective function and eventually converge

to the global minima. In each transformation period, ¯ , an
MSN will choose to perform a probabilistic transformation
with a low probability, º rand.

If MSN � chooses to perform a probabilistic transforma-
tion in a specific transformation period, it first discovers
another MSN, � , from the tree that is not its descendant.
This discovery is done by a random-walk on the tree, a
technique proposed in Yoid [9]. In this technique, MSN� transmits a Discover message with a time-to-live (TTL)
field to its parent on the tree. The message is randomly
forwarded from neighbor to neighbor, without re-tracing
its path along the tree and the TTL field is decremented at
each hop. The MSN at which the TTL reaches zero is the
desired random MSN.

Random Swap: We perform the probabilistic transfor-
mation only if � and � are not descendant and ancestor of
each other. In the probabilistic transformation, MSNs �
and � exchange their positions in the tree. For the min
avg-latency (min max-latency) problem, let È denote the
increase in the aggregate (maximum) subtree latency of
MSN ¾ which is the least common ancestor of � and � on
the tree (in Figure 8, this is the root MSN, + ). ¾ is identified
by the Discover message as the MSN where the message
stops its ascent towards the root and starts to descend. For
the min avg-latency problem, È can be computed as fol-
lows: È`�É��&-ÊË ' � ³d& Ë ' � 
�< ��? ��&-ÊË ' ) ³f& Ë ' ) 
�< )
where, & Ê Ë ' � and & Ê Ë ' ) denote the latencies from ¾ to � and �
respectively along the overlay if the transformation is per-
formed, and & Ë ' � and & Ë ' ) denotes the same prior to the
transformation. Each MSN maintains unicast latency es-
timates of all its neighbors on the tree. The Discover mes-
sage aggregates the value of & Ë ' ) on its descent from ¾ to� from these unicast latencies. Similarly, a separate Tree-
Latency message from ¾ to � computes the value of & Ë ' � .
(We use a separate message from ¾ to � since we do not
assume symmetric latencies between any pair of MSNs.)
The & Ê values is computed from the & values and pair-wise
unicast latencies between � , � and their parents. Thus, no
global state maintenance is required for this operation.

We use a simulated annealing [2] based technique to
probabilistically decide when to perform the swap opera-
tion. The swap operation is performed: (1) with a prob-
ability of P if ÈX¹ _ , and (2) with a probability Ì�ÍqÎÐÏ¸Ñ ifÈRÒ _ , where * is the “temperature” parameter of the sim-
ulated annealing technique. In the min avg-latency (min
max-latency) problem The swap operation is performed
with a (low) probability even if the aggregate (maximum)
subtree latency increases. This is useful in the search for a
global optimum in the solution space. Note that the proba-



7

p

1 2 3

4
c

nJoin

p

1 2 3

1: Join at available degree

4
c

nJoin

2: Split edge and Join

5

p

1 2 3

4
c

n

JoinRequest p

1 2 3

4
c

n
JoinRequest 5

3: Re-try at next level

Fig. 9. Join operation for a new MSN. At each level there are three choices available to the joining MSN as shown. For each MSN, the maximum
out-degree bound is 3.

bility of the swap gets exponentially smaller with increase
in È .

E. Join and Leave of MSNs

In our distributed solution, we allow MSNs to arbitrar-
ily join and leave the OMNI overlay. In this section, we
describe both these operations in turn.

Join: A new MSN initiates its join procedure by send-
ing the JoinRequest message to the root MSN. JoinRe-
quest messages received after the initial tree creation phase
invokes the distributed join protocol (as shown in Fig-
ure 9). At each level of the tree, the new MSN, Ó , has three
options.

1) Option 1: If the currently queried MSN, º , has avail-
able degree, then Ó joins as its child. Some of the
current children of / (i.e. 1 and 2) may later join as
children of Ó in a later Iso-level-2 transfer operation.

2) Option 2: Ó chooses a child, / , of º and attempts to
split the edge between them and join as the parent of/ . Additionally some of the current children of / are
shifted as children of Ó .

3) Option 3: Ó re-tries the join process from some
MSN, / .

Option 1 has strict precedence over the other two cases. If
option 1 fails, then we choose the lowest cost option be-
tween 2 and 3. The cost for option 2 can be calculated
exactly through local interactions between Ó , º , / and the
children of / . The cost of option 3 requires the knowledge
of exactly where in the tree Ó will join. Instead of this ex-
act computation, we compute the cost of option 3 as the
cost incurred if Ó joins as a child of / . This leads to some
inaccuracy which is later handled by the cost-improving
local and probabilistic transformations.

Leave: If the leaving MSN is a leaf on the overlay tree,
then no further change to the topology is required 4. Oth-
erwise, one of the children of the departing MSN is pro-
moted up the tree to the position occupied by the departingÔ

The clients of the leaving MSNs need to be re-assigned to some
other MSN, but that is an orthogonal issue to OMNI overlay construc-
tion.

2 3

5

1

4

7
6

Leaving
MSN 2

5

1

4

7
6

Fig. 10. Leave operation of an MSN. The maximum out-degree of
each MSN is two.

MSN. We show this with an example in Figure 10. When
MSN 3 leaves, one of its children (4 in this case) is pro-
moted. For the min avg-latency (min max-latency) prob-
lem the child is chosen such that the aggregate (maximum)
subtree latency is reduced the most. The other children
of the departing MSN join the subtree rooted at the newly
promoted child. For example, 5 attempts to join the sub-
tree rooted at 4. It applies the join procedure described
above starting from MSN 4, and is able to join as a child
of MSN 7.

Note that MSNs are specially managed infrastructure
entities. Therefore it is expected that their failures are
rare and most departures from the overlay will be volun-
tary. In such scenarios the overlay will be appropriately
re-structured before the departure of an MSN takes effect.

IV. SIMULATION EXPERIMENTS

We have studied the performance of our proposed dis-
tributed scheme through detailed simulation experiments.
Our network topologies for these experiments were gen-
erated using the Transit-Stub graph model of the GT-ITM
topology generator [5]. All topologies in these simulations
had P _ 	 _«_4_ nodes (representing network routers) with an
average node degree between H and \ . MSNs were at-
tached to a set of these routers, chosen uniformly at ran-
dom. As a consequence unicast latencies between differ-
ent pairs of MSNs varied between 1 and 200 ms. The num-



8

120

125

130

135

140

145

150

155

160

0 2 4 6 8 10

A
ve

ra
ge

 T
re

e 
La

te
nc

y 
(m

s)

Time (units of Transformation Period)

Overlay of 16 MSNs (p = 0.10 and T = 10.0)

Greedy

No Initialization
With Initialization

Fig. 11. Effect of the initialization phase (16 MSNs).

124

126

128

130

132

134

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
re

e 
La

te
nc

y 
(m

s)

Time (units of Transformation Period)

Overlay of 16 MNs (T = 10.0, Initialization used)

No random swap
p = 0.02
p = 0.05
p = 0.10

Fig. 12. Varying the probability of performing the random-swap
operation for the different MSNs (16 MSNs).

124

125

126

127

128

129

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
re

e 
La

te
nc

y 
(m

s)

Time (units of Transformation Period)

Overlay of 16 MSNs (p = 0.10, Initialization used)

T = 5.0
T = 10.0
T = 20.0

Fig. 13. Varying the temperature parameter for simulated-annealing
(16 MSNs).

ber of MSNs was varied between 16 and 512 for different
experiments.

In our experiments we compare the performance of our
distibuted iterative scheme to these other schemes:l The optimal solution: We computed the optimal

value of the problem by solving an Integer Program
(IP) using the CPLEX tool 5. We describe the for-
mulation of this IP in the Appendix. Computation of
the optimal value using an IP requires a search over a¤ ��Õ�Ö×
 solution space, where Õ is the total num-
ber of clients and � is the number of MSNs. We
were able to compute the optimal solution for net-
works with upto 100 clients and 16 MSNs.l A centralized greedy heuristic solution: This heuris-
tic is a simple variant of the Compact Tree algorithm
proposed in [14]. It incrementally builds a spanning
tree from the root MSN, + . For each MSN Ø thatÙ

Available from http://www.ilog.com.

is not yet in the partial tree * , we maintain an edgeÌ���ØÚ
×� �ÜÛ 	�Ø@� to an MSN
Û

in the tree;
Û

is chosen
to minimize a cost metric Ý«��ØÚ
��[��& ,.' Þ�?ßabÞ�' à 
 " / à
where, & ,.' Þ is the overlay latency from the root of the
partial tree to

Û
and / à is the number of clients be-

ing served by Ø . At each iteration we add one MSN
(say Ø ) to the partial tree which has minimum value
for Ý4�.Ø@
 . Then for each MSN á not in the tree, we
update Ì���á%
 and Ý«��á%
 .
The centralized greedy heuristic proposed in [14]
addresses the min max-latency problem. Our sim-
ple modification to that algorithm only changes the
cost metric and is the equivalent centralized greedy
heuristic for the min avg-latency problem as de-
scribed in Section II.

A. Convergence

We first present convergence properties of our solution
for OMNI overlay networks. Figures 11, 12 and 13 show
the evolution of the average tree latency, k] , , (our mini-
mization objective) over time for different experiment pa-
rameters for an example network configuration consisting
of 16 MSNs. The MSNs serve between 1 and 5 clients,
chosen uniformly at random for each MSN. In these ex-
periments the set of 16 MSNs join the OMNI at time zero.
We use our distributed scheme to let these MSNs organize
themselves into the appropriate OMNI overlay. The x-axis
in these figures are in units of the transformation period pa-
rameter, ¯ , which specifies the average interval between
each transformation attempt by the MSNs. The ranges of
the axes in these plots are different, since we focus on dif-
ferent time scales to observe the interesting characteristics
of these results.

Figure 11 shows the efficacy of the initialization phase.
When none of the MSNs make use of the initialization
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phase, the initial tree has k] , �KP�L4WÚ��â4i ms. In contrast,
if the initialization phase is used by all MSNs, the initial
tree has k] , �ßP�H4HÚ�DP�W ms, a 16% reduction in cost. In both
cases, however, the overlay quickly converges (within ¹�W
transformation periods) to a stable value of k] ,hã P�i:\q��L
ms. The optimal value computed by the IP for this ex-
periment was 113.96 ms. Thus, the cost of our solution
is about 9% higher than the optimal. We ran different ex-
periments for different network configurations and found
that our distributed scheme converges to within L
³�â % of
the optimum in all cases. A greedy approach to this prob-
lem does not work quite as well. The centralized greedy
heuristic gives a solution with value 151.59 ms, and is
about 21% higher than the converged value of the dis-
tributed scheme. In both these cases we had chosen the
probability of a random-swap, º rand, at the MSNs to be
0.1 and the * parameter of simulated-annealing to be 10.

In Figure 12 we show how the choice of º rand affects
the results. The initialization phase is used by MSNs for

all the results shown in this figure. The local transforma-
tions occur quite rapidly and quickly reduces the cost of
the tree for all the different cases. The º rand � _ case
has no probabilistic transformations and is only able to
reach a stable value of 129.51 ms. Clearly, once the ob-
jective reaches a local minimum it is unable to find a bet-
ter solution that will take it towards a global minimum.
As º rand increases, the search for a global minimum be-
comes more aggressive and the objective function reaches
the lower stable value rapidly. Figure 13 shows the cor-
responding plots for varying the * parameter. A higher* value in the simulated-annealing process implies that a
random swap that leads to cost increment is permitted with
a higher probability. For the moderate and high value of *
(10 and 20), the schemes are more aggressive and hence
the value of k]
, experiences more oscillations. In the pro-
cess both these schemes are aggressively able to find better
solutions to the objective function. The oscillations are re-
stricted to within 2% of the converged value.

Figures 14, 15, and 16 show the corresponding plots for
experiments with 256 MSNs. Note that for the 256 MSN
experiments, the best solution found by different choice of
parameters has k] , �MP�W@P4��L«H ms. Our distributed solu-
tion converges to this value after 7607 transformation pe-
riod ( ¯ ) units. However, it converges to within 15% of the
best solution within 5 transformation periods. Figure 16
shows the effect of the temperature parameter for the con-
vergence. As before the oscillations are higher for higher
temperatures, but are restricted to less than 1% of the con-
verged value (the y-axis is magnified to illustrate the os-
cillations in this plot). This experiment also indicates that
a greedy approach does not work well for this problem.
The solution found by the greedy heuristic for this network
configuration is 43% higher than the one found by our pro-
posed technique.
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Number Distributed Centralized Greedy/Iterative
of MSNsä Iterative Scheme Greedy Scheme Ratio

16 146.81 174.32 1.17
32 167.41 231.64 1.34
64 182.60 258.88 1.40

128 194.49 291.44 1.49
256 191.51 289.67 1.51
512 171.77 262.94 1.53

TABLE I
COMPARISON OF THE BEST SOLUTION (IN MS) OF THE AVERAGE

TREE LATENCY OBTAINED BY OUR PROPOSED DISTRIBUTED

ITERATIVE SCHEME AND THE CENTRALIZED GREEDY HEURISTIC

WITH VARYING OMNI SIZES, AVERAGED OVER 10 RUNS EACH.

We present a comparison of our scheme with the greedy
heuristic in Table I. We observe that the performance of
our proposed scheme gets progressively better than the
greedy heuristic with increasing size of the OMNI overlay.

B. Adaptability

We next present results of the the adaptability of our dis-
tributed scheme for MSN joins and leaves, changes in net-
work conditions and changing distribution of client popu-
lations.
MSNs join and leave: We show how the distributed
scheme adapts the OMNI as different MSNs join and leave
the overlay. Figure 17 plots the average tree latency for a
join-leave experiment involving 248 MSNs. In this exper-
iment, 128 MSNs join the OMNI during the initialization
phase. Every 1500 transformation periods (marked by the
vertical lines in the figure), a set of MSNs join or leave.
For example, at time 6000, 64 MSNs join the OMNI and at
time 7500, 64 MSNs leave the OMNI. These bulk changes
to the OMNI are equivalent to a widespread network out-
age, e.g. a network partition. The other changes to the
OMNI are much smaller, e.g. 8-32 simultaneous changes
as shown in the figure. In each case, we let the OMNI con-
verge before the next set of changes is effected. In all these
changes the OMNI reaches to within 6% of its converged
value of k] , within 5 transformation periods.

In Figure 18 we show the distribution of the number of
transformations that happen in the first 10 transformation
periods after a set of changes. (We only plot these distri-
butions for 5 sets of changes — initial join of 128 MSNs,
8 MSNs join at time 1500, 64 MSNs join at time 6000,
64 MSNs leave at time 7500, and 8 MSNs leave at time
12000.) The bulk of the necessary transformations to con-
verge to the best solution occur within the first 5 transfor-
mation periods after the change. Of these a vast majority
(more than 97%) are due to local transformations.

These results suggest that the transformation period at
the MSNs can be set to a relatively large value (e.g. 1
minute) and the OMNI overlay would still converge within
a short time. It can also be set adaptively to a low value
when the OMNI is experiencing a lot of changes for faster
convergence and a higher value when it is relatively sta-
ble.
Changing client distributions and network conditions:
A key aspect of the proposed distributed scheme is its abil-
ity to adapt to changing distribution of clients at the differ-
ent MSNs. In Figure 19, we show a run from a sample ex-
periment involving 16 MSNs. In this experiment, we al-
low a set of MSNs to join the overlay. Subsequently we
varied the number of clients served by MSN ¿ over time
and observed its effects on the tree and the overlay latency
to MSN ¿ . The figure shows the time evolution of the rel-
evant subtree fragment of the overlay.

In its initial configuration, the overlay latency from
MSN 0 to MSN ¿ is 59 ms. As the number of clients in-
creases to 7, the importance of MSN ¿ increases. It even-
tually changes its parent to MSN 4 (Panel 1), so that its
overlay latency reduces to 54 ms. As the number of clients
increases to 9, it becomes a direct child of the root MSN
(Panel 2) with an even lower overlay latency of 51 ms.
Subsequently the number of clients of MSN ¿ decreases.
This causes ¿ to migrate down the tree, while other MSNs
with larger client sizes move up. This example demon-
strates how the scheme prioritizes the MSNs based on the
number of clients that they serve.

We also performed similar experiments to study the ef-
fects of changing unicast latencies on the overlay struc-
ture. If the unicast latency on a tree edge between parent
MSN ¿ and one of its children, MSN À , goes up, the dis-
tributed scheme simply adapts the overlay by finding a bet-
ter point of attachment for MSN À . Therefore, in one of our
experiments, we picked an MSN directly connected to the
root and increased its unicast latencies to all other MSNs
(including the root MSN). A high latency edge close to the
root affects a large number of clients. Therefore our dis-
tributed scheme adapted the overlay to reduce the average
tree latency by moving this MSN to a leaf position in the
tree, so that it cannot affect a large number of clients.

V. RELATED WORK

A number of other projects (e.g. Narada [8], NICE [1],
Yoid [9], Gossamer [7],Overcast [10],ALMI [11],
Scribe [6], Bayeux [15] multicast-CAN [12]) have ex-
plored implementing multicast at the application layer.
However, in these protocols the end-hosts are considered
to be equivalent peers and are organized into an appro-
priate overlay structure for multicast data delivery. In
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contrast, our work in this paper describes the OMNI ar-
chitecture which is defined as a two-tier overlay multicast
data delivery architecture.

An architecture similar to OMNI has also been proposed
in [13] and their approach of overlay construction is re-
lated to ours. In [14] and [13] the authors proposed cen-
tralized heuristics to two related problems — minimum
diameter degree-limited spanning tree and limited diame-
ter residual-balanced spanning tree. The minimum diam-
eter degree-limited spanning tree problem is same as the
min max-latency problem. The focus of our paper is the
min avg-latency problem, which better captures the rela-
tive importance of different MSNs based on the number
of clients that are attached to them. In contrast to the cen-
tralized greedy solution proposed in [14], we propose an
iterative distributed solution to the min avg-latency prob-
lem and show how it can be adapted to solve the min
max-latency problem as well. Scattercast [7] defines an-
other overlay-based multicast data delivery infrastructure,
where a set of ScatterCast Proxies (SCXs) have responsi-
bilities equivalent to the MSNs in the OMNI architecture.

The SCXs organize themselves into a data delivery tree us-
ing the Gossamer protocol [7], which as mentioned before,
does not organize the tree based on the relative importance
of the SCXs. Clients register with these SCXs to receive
multicast data.

VI. CONCLUSIONS

We have presented an iterative solution to the min avg-
latency problem in the context of the OMNI architecture.
Our solution is completely decentralized and each opera-
tion of our scheme requires interaction between only the
affected MSNs. This scheme continuously attempts to im-
prove the quality of the overlay tree with respect to our ob-
jective function. At each such operation, our scheme guar-
antees that the feasibility requirements, with respect to the
MSN out-degree bounds, are met. Finally, our solution is
adaptive and appropriately transforms the tree with join
and leave operations of MSNs, changes in network con-
ditions and distribution of clients at different MSNs.
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APPENDIX

I: PROOF OF APPROXIMATION RATIO

Here we show that our initialization procedure (Sec-
tion III-B) ensures that the overlay latency of any MSN
is at most i ¥D§4¨ © � times the direct unicast latency of the
MSN from the root MSN.

We assume that unicast latencies follow the triangle in-
equality. We also assume that unicast path latencies are
symmetric, i.e., for any ���z	����Ð÷Å� , aD�(' ) � a~).' � .

Consider any MSN � in the OMNI constructed by our
initialization procedure. Note that the MSNs were added
in the increasing order of their unicast latencies from the
root MSN, + . Therefore, for any MSN � that lies in the

overlay path from + to � , aD,.' )ùø�aD,.' � . Thus for any two nodes� and ¾ on the overlay path from + to � , a ).' Ë ø�a ).' , ?Åa ,.' Ë �ab,.' )Æ?>ab,.' Ë ø i ab,.' � (using symmetry and the triangle in-
equality). Let � �dú � be the set of edges in the over-
lay path from + to � . Since the minimum out-degree of any
MSN is two, it follows that =è� � = ø�¥D§4¨ © � . Let � �ùú �
be the set of edges on the overlay path from + to � . Thus& ,.' � ��1 B ).' Ë C�2 J s a~)�' Ë ø i ab,.' � =è� � = ø i ab,.' ��¥~§«¨ © � .

II: INTEGER-PROGRAMMING FORMULATION

Here we present a linear integer programming formu-
lation for the avg-latency problem, which can be used to
solve the problem optimally using CPLEX. Developing a
nonlinear integer programming formulation for this prob-
lem is not difficult. However, CPLEX is typically much
more efficient in solving linear integer programs. In the
formulation described below, the number of variables and
constraints are also linear in the size of the OMNI.

For each edge ����	��q�û÷j� in graph � , define two vari-
ables: a binary variable ¿@�(' ) , and a non-negative real (or
integer) variable ü �(' ) , where ¿ �(' ) denotes whether or note
the edge ����	��q� is included in the tree and ü �(' ) denotes the
number of clients which are served through edge ���z	���� .

Then the avg-latency problem can be formulated as:

minimize
P� Aý �(' )¸þ�2 J ab�!' ) ü �(' )

subject toAË 24ÿ����.��� ü Ë ' ��³ AË 24ÿ����.��� ü9�(' Ë � /���� � ÷ �	� � +«� (1)

_ ø ü �(' ) ø 
 ¿ �(' ) �Ð���z	���� ÷Å� (2)Aý �!' )�þ#2 J ¿ �(' ) ø �V³�P (3)

¿ �(' ) ÷ � _ 	�P�� �Ð���z	����Ð÷Å� (4)

In Constraint 3 and in the objective function, � is the to-
tal number of MSNs. In Constraint 2, 
 is the total number
of clients served by the OMNI. The objective function, as
well as Constraint 1, follow from the definition of the vari-
ables ü �(' ) . Constraint 2 ensure that the variable ü �(' ) is zero
if ¿ �(' ) is zero. Constraint 3 is necessary to enforce the tree
structure of the OMNI overlay. All the contraints together
ensure that the solution is a spanning tree rooted at + .


