
Journal of Mechanical Design and Vibration, 2014, Vol. 2, No. 4, 81-86 
Available online at http://pubs.sciepub.com/jmdv/2/4/2 
© Science and Education Publishing 
DOI:10.12691/jmdv-2-4-2 

 

Dynamic Analysis of a Dual-Disk Rotor Bearing System 
with Parametric Excitations 

BSN Murthy1, J. Srinivas2, Ravi Pratap Singh2,*, K. Udaya Sri3, LSNVP Kiran1 

1Mechanical Engineering Department, GITAM University, Visakhapatnam, India 
2Mechanical Engineering Department, NIT, Rourkela, India 

3Mechanical Engineering Department, KG Reddy College of Engg. & Technology, Hyderabad, India 
*Corresponding author: ravipratap1428@gmail.com 

Received July 16, 2014; Revised July 30, 2014; Accepted October 08, 2014 

Abstract This paper deals the dynamic analysis of a flexible low-speed rotor model having both rotational 
asymmetries and transverse shaft cracks. Asymmetric disks or transverse shaft cracks in rotors lead to parametric 
inertia (or stiffness) excitations in rotor-bearing system. When both of them appear in a rotor system, prediction of 
parametric instability behavior has not gained sufficient attention. Disk asymmetry is considered in terms of the 
mass and damping terms and shaft stiffness is dictated by the transverse crack location and depth. The rotor is 
discretized into five elements and the resultant double periodic problem is solved using explicit Runge-Kutta time 
integration scheme. The specialty of the problem is that in every time step of integration, an assembled stiffness and 
mass matrix is formulated. The resulting five coupled nonlinear second-order system of equations are solved and the 
unbalance response of the rotor is obtained under various conditions of relative disk asymmetries and crack depth 
ratio. The present outcomes can be employed for identification of the rotor system from the vibration response. 
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1. Introduction 
In rotating systems, there are several time variable 

loads acting at the bearings, disks as well as on the shaft 
system. These may be due to the nonlinear characteristics 
of ball and roller bearings, internal damping, cracks on the 
shaft under radial clearance and so on. As the rotating 
speed increases, these nonlinearities have vital influence 
on dynamic characteristics. Therefore, accurate 
identification of the model structure and parameters of 
rotor bearing system incorporating such nonlinear effects 
is of utmost importance. Compared to parametric 
estimation, identification of nonlinear model structure is a 
complex issue. There are various other types of 
nonlinearities involved in rotors such as geometric 
stiffening effect, self-excited vibrations due to internal 
friction, forced oscillations of rotor with distributed 
masses, material nonlinearities, internal damping 
mechanism etc. Likewise, parametric instabilities are 
crucial in the design and usage of rotor bearing systems. 
Most of the time parametric instability is caused by 
transverse cracks on the shafts. When the system has 
simultaneous nonlinearities due to transverse cracks on 
shaft and disk asymmetries, the dynamic characteristics of 
the system are tedious to compute. Several authors studied 
the dynamics of rotors subjected to different types of 
parametric excitations and various techniques were 

proposed to identify the nonlinearities in the system. 
Using linear models, comprehensive methodology for 
fault identification of unbalance were studied [eg., [1,2]]. 
Gaetan [3] reviewed some of the popular approaches in 
system identification of nonlinear dynamical structures. 
Shiyu and Jianjun [4] presented an on-line estimation 
method that can simultaneously estimate the parameters 
and determine the significance of the nonlinear and time 
variant effects in the rotor-bearing system, based on an 
order down dating algorithm. D’Sauza and Epureanu [5] 
proposed a generalized minimum rank perturbation theory 
for identifying damage in nonlinear systems. Coulomb 
friction and cubic stiffness nonlinearity have been 
considered. Platten et al. [6] presented the identification 
method for large nonlinear systems based on the use of a 
multi-exciter arrangement with the restoring force surface 
method. Luke et al. [7] highlighted the inadequacy of 
linear-based methodology in handling initially nonlinear 
systems and also shown how the recently developed 
autoregressive support vector machine approach can be 
used for detecting damage in a system that exhibits initial 
nonlinear response. Patel and Darpe [8] investigated the 
influence of the crack breathing models on the nonlinear 
vibration characteristics of the cracked rotors. Redmond [9] 
presented a model which enables dynamic analysis 
flexibly coupled misaligned shafts.  

Often, the disk on rotors have inertial asymmetries as in 
two-blade propeller, fan and pumps, wind turbine etc. 
There is unequal rotary inertia about two principal axes of 
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the rotating disk resulting in unknown dynamics. 
Asymmetry can cause large vibrations due to parametric 
resonances. Recently several authors [10,11,12] modelled 
the dynamics of inertial asymmetric systems. Transverse 
cracks in rotors also cause the parametric instability and 
enormous literature [e.g., [13-17]] is available on 
nonlinear dynamic stability analysis of shafts with 
transverse cracks. Identification of such asymmetry and 
transverse crack in rotor from the dynamic response 
characteristics is of crucial importance in modern 
engineering technology. Present work concentrates first on 
the analysis of a rotor model with disk inertial asymmetry 
(changes in mass) and shaft transverse crack (reduction in 
stiffness). A two rigid disk geometric model is accounted 
with flexible supports. Disk asymmetry is considered in 
terms of the mass and damping changes while, the 

transverse crack (location and depth) alters the stiffness of 
the rotor. Dynamic equations are formulated and solved 
using time integration scheme. The unbalance response of 
the rotor is obtained at different conditions of asymmetric 
angles and geometry and depth of transverse crack. An 
inverse model is developed using neural networks to 
predict disk asymmetry and crack depth using dynamic 
response amplitudes and frequencies.  

2. Mathematical Modelling 

Present model of rotor consists of a shaft system 
carrying two disk as shown in Figure 1, supported over 
flexible bearings.  

 

Figure 1. Cracked rotor with disks having asymmetry 

The shaft is considered to have a transverse crack at 
some location and it is assumed that, both the disks have 
asymmetries. The asymmetric disk has four degrees of 
freedom, including two translations of mass center and 
two rotations. Therefore, it’s nodal displacement vector is 

[ ]Td x yq x y θ θ= . The mass of the disk is md. Three 
moments of inertia about the z-axis, x-axis and y-axis 
(respectively one polar and two diametral) are represented 
by Ip, Ix and Iy. For the inertia asymmetry, Ix ≠ Iy. The 
constant rotational speed of the rotor is denoted byΩ. The 
formulation of the disk in the fixed coordinates is written 
as [10]: 

Where 
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In which Id= (Idx+Idy)/2 is the mean value of the 

diametral moments of inertia and 
2

dx dy
d

d

I I
I
−

∆ =  is the 

relative inertia asymmetry of the disk varying from 0 to 1. 
This indicates, the mass and damping of disk are 
sinusoidal time periodic with frequency twice the 
rotational speed Ω. The shaft crack is assumed at angle φ 
relative to the shaft coordinate axes at a time t=0 as shown 
in Figure 2. 

 

Figure 2. Cross section of the open transverse crack 
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As the shaft rotates, the crack angle changes with the 
negative Y-axis to Ωt+φ. The stress field only changes in 
the region adjacent to the crack. The additional strain 
energy for a crack facilitates in writing the stiffness matrix. 
For the open crack, there are two factors that lead to the 
time-varying moments of inertia of cross-sections: one is 
that the area moments of inertia of the cracked element 
about the X and Y have time-periodic values as the shaft 
rotates and other is that the coordinates of the centroid 
relative to the X and Y axes are also time-variable. The 
open-cracked element stiffness matrix can be written in a 
generalized form as:  

 ( )( )1 2 2K K K COS T φ= + Ω +  (6) 

Where the matrices K1 and K2 are given by  
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Here, 2 212, 6 , 4 , 2a b c d= = = =   are constants and 
I1, I2 are given as: 
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Further, Ix, Iy and A1 are:  
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(2 )γ µ µ= − as dimensionless parameters. Here, R is 
shaft radius and h is the crack depth.  

2.1. Resultant Finite Element Model 

FEM model of rotor system: the assembled finite 
element matrices of the shaft and disk are considered and 
the resultant equations of the motion are written as follows: 
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Here, M, C, G and K are the matrices corresponding to 
shaft obtained as an assemblage of beam elements 
accounting rotary inertia and shear deformation [18], 
while Md(t) and Gd(t) refers to the secondary matrices of 
zero entries except for the disk nodes and Kc(t) is 
invariable stiffness matrix of zero entries except for 
cracked element. Also, f(t) is vector of unbalance and 
gravity forces. The system of equations reduces to second 
order time-varying periodic differential equations with 
frequency 2Ω. Writing y(t) = [ ( ) ( )]Tq t q t , equation (12) 
reduces to  
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3. Results and Discussion 
The present rotor system is analyzed using Runga-Kutta 

constant time step method. A user interactive program is 
developed in MATLAB with five elements. Here, an 
unbalance eccentricity of 60 µm is selected on both the 
disks. The element-4 is considered to have a crack. At 
every time step, the program computes the overall 
stiffness and mass matrices and generates the time history, 
orbit-map and frequency response at required nodes. The 
values of the physical parameters are given in Table 1. 

Table 1. Important physical parameters of rotor-bearing-disk 
system used 

Description Value Description Value 

Length of the 
rotor 0.724 m Disk masses 1.142 kg 

Radius of the 
rotor 0.01088 m Polar moment of 

inertia Ip 
0.0069 
kgm2 

Density of rotor 7800 kg/m3 Diametral moment 
of inertia Id 

0.0035 
kgm2 

Modulus of 
elasticity 2.1 × 1011N/m2 Relative inertial 

asymmetry ∆d 
0 to 1 

Bearing stiffness 7 × 107 N/m Bearing damping 200 
Ns/m 

Figure 3 shows the time histories at disk-1 node. All the 
data is taken at ∆d=0.1 and speed N=1000 rpm. It is 
observed that there is no marked effect of µ on the time 
response. Figure 4 shows the whirl orbits and Figure 5 
shows the corresponding FFT plot at disk 1. It is seen that 
the amplitude in the first mode is larger for µ=0.6 in FFT 
diagram indicating the effect of crack depth on modal 
amplitude.  
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Figure 3. Time histories at disk 1 for φ=0 and ∆d=0.1 

 

Figure 4. Whirl Orbit plot at disk 1 for φ=0 and ∆d=0.1 

 

Figure 5. Frequency response at disk 1 for φ=0 and ∆d=0.1 

 

Figure 6. Frequency response at disk 1 for φ=90 degree and ∆d=0.1 
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Figure 6 shows the frequency response at two different 
values of µ corresponding to φ=90°. There is a marked 
change in the amplitudes when compared with φ=0°. 
Finally Figure 7 shows the effect of ∆d at constant values 
of µ andφ.  

 

Figure 7. Effect of asymmetry at φ=90 degree and) µ=0.3 

It is also observed that beyond ∆d=0.4, the program 
fails to give meaningful result indicating that it would not 
be a physically possible disk condition.  

3.1. Inverse Approach of Prediction of Crack 
State 

As it is obvious that the frequency response is affected 
by all these 3 parameters: µ, ∆d, and φ, in addition to the 
crack location and speed of rotor, we can develop an 
inverse approach using an optimization scheme for 
estimating the crack and asymmetric parameters. In 
present task, the first two natural frequencies from 
frequency response are employed in formulating objective 
function. The methodology is explained in the Figure 8. 

The optimization scheme has to be selected (GA or 
MATLAB toolbox) for this minimization process.  

 

Figure 8. Inverse methodology from frequency response 

3.2. Experimental Methodology 
The double disk rotor system is arranged as shown in 

the Figure 8 and rotor shaft is made to run with D.C. 
motor at various speeds using variable frequency drive 
(VFD).  

 

Figure 9. Experimental setup 

 

Figure 10. Time domain response 
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The Laser Doppler vibrometer (LDV-100) is used to 
take the response data and analyse the data with Polytec 
Vibrometer software (VibSoft) for required information. 
Figure 9 shows the experimental set-up usded for 
measurements. 

Figure 10 shows the time domain response obtained at 
the mid length of the shaft at 2500 rpm and Figure 11 
represents the corresponding FFT plot at node 3. It is seen 
that the approximate natural frequency as around 200 Hz. 

 

Figure 11. FFT at node 3 

Figure 12 shows an equivalent plot obtained from 
computer simulations of original rotor without considering 
disk asymmetry and shaft crack 
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Figure 12. FFT from Similations of original Rotor 

The maximum peak in the response correspond to a 
value close to 200 Hz. It is also necessary to compare the 
affected rotor response using both experimentally and 
numerically. The work is under progress. 

4. Conclusions 
Influence of shaft crack and asymmetric disk 

parameters on the overall frequency response of a dual 
disk rotor supported on flexible bearings has been studied 
in this paper. Even though model is standard, the user 
interactive computer program developed in MATLAB 
helps to assess the vibration response at different locations 
along the rotor length. It is observed that lower crack 
depth maintains stability in the system. Such a parametric 
instability should be studied at higher speeds. As a future 
scope inverse methodology for prediction of disk 
asymmetry and crack parameters from dynamic response 

may be attempted using neural networks and fuzzy logic 
systems. 
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