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ABSTRACT
In this paper we seek to improve our understanding of human mo-
bility in terms of social structures, and to use these structures in
the design of forwarding algorithms for Pocket Switched Networks
(PSNs). Taking human mobility traces from the real world, we dis-
cover that human interaction is heterogeneous both in terms of hubs
(popular individuals) and groups or communities. We propose a so-
cial based forwarding algorithm,BUBBLE, which is shown empir-
ically to improve the forwarding efficiency significantly compared
to oblivious forwarding schemes and toPROPHETalgorithm. We
also show how this algorithm can be implemented in a distributed
way, which demonstrates that it is applicable in the decentralised
environment of PSNs.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems; I.6 [Computing Method-
ologies]: Simulation and Modeling

General Terms
Measurement, Experimentation, Algorithms

Keywords
Social Network, Forwarding, Delay Tolerant Network, Pocket
Switched Network, Community, Centrality

1. INTRODUCTION
We envision a future in which a multitude of devices carried by
people are dynamically networked. We aim to build PSN [10]: a
type of Delay Tolerant Networks (DTN) [6] for such environments.
A PSN uses contact opportunities to allow humans to communi-
cate without network infrastructure.1 We require an efficient data

1Regarding the motivations of PSN, there is a huge amount of un-
tapped resources in portable networked devices such as laptops,
PDAs and mobile phones, including local wireless bandwidth (e.g.
802.11 and Bluetooth), storage capacity, CPU power, and multime-
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forwarding mechanism over the temporal graph of the PSN [15],
that copes with dynamical, repeated disconnection and re-wiring.
End-to-end delivery through traditional routing algorithms is not
applicable.

Many MANET and some DTN routing algorithms [14] [19] pro-
vide forwarding by building and updating routing tables whenever
mobility occurs. We believe this approach is not cost effective for
a PSN, since mobility is often unpredictable, and topology changes
can be rapid. Rather than exchange much control traffic to create
unreliable routing structures, we prefer to search for some charac-
teristics of the network which are less volatile than mobility. A PSN
is formed by people. Those people’s social relationships may vary
much more slowly than the topology, and therefore can be used for
better forwarding decisions. Furthermore, if we can detect these
social mobility patterns online in a decentralised way, we can put
the algorithms into practical applications.

In this paper, we focus on two specific aspects of society: com-
munity and centrality. Community is an important attribute of
PSNs. Cooperation binds, but also divides human society into com-
munities. Human society is structured. Within a community, some
people are more popular, and interact with more people than others
(i.e.have highcentrality); we call them hubs. Popularity ranking is
one aspect of the population. For an ecological community, the idea
of correlated interaction means that an organism of a given type is
more likely to interact with another organism of the same type than
with a randomly chosen member of the population [27]. This cor-
related interaction concept also applies to human, so we can exploit
this kind of community information to select forwarding paths.

Methodologically, community detection [25] [4] can help us to
understand local community structure in both offline mobile trace
analysis and online applications, and is therefore helpful in design-
ing good strategies for information dissemination. Freeman [8] de-
fined several centrality metrics to measure the importance of a node
in a network. Betweenness centrality measures the number of times
a node falls on the shortest path between two other nodes. This
concept is also valid in a DTN. In a PSN, it can represent the im-
portance of a node as a potential traffic relay for other nodes in the

dia data. These resources should be utilised. Furthermore, the com-
munication between users is not always necessarily to pass through
the Internet. According to a questionnaire survey amount 70 par-
ticipants in the Computer Laboratory University of Cambridge,
around 50% of their email exchanges are among people they met
daily. Another motivation is that the information provide by the
Internet may not best satisfy the interest of the local users, for ex-
ample an user may be more interested in a video clip of his friend,
Britney Spears, instead of the MTV of the singer Britney Spears
that is usually what Google search will return to you. Empirical re-
sult about social search are also observed by other researchers [21].
In this aspect, PSN unleashes the power of local, social and com-
munity search and communication.
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Experimental data set Infocom05 Hong-Kong Cambridge Infocom06 Reality
Device iMote iMote iMote iMote Phone

Network type Bluetooth Bluetooth Bluetooth Bluetooth Bluetooth
Duration (days) 3 5 11 3 246

Granularity (seconds) 120 120 600 120 300
Number of Experimental Devices 41 37 54 98 97

Number of internal contacts 22,459 560 10,873 191,336 54,667
Average # Contacts/pair/day 4.6 0.084 0.345 6.7 0.024

Table 1: Characteristics of the five experimental data sets

system. The main contributions of this paper are to answer these
questions:

1. How does the variation in node popularity help us to forward
in a PSN?

2. Are communities of nodes detectable in PSN traces?
3. How well does social based forwarding work, and how does

it compare to other forwarding schemes in a real (emulated)
environment?

4. Can we devise a fully decentralised way for such schemes to
operate?

Quick answers to the above questions, we evaluate the impact
of community and centrality on forwarding, and propose a hybrid
algorithm, BUBBLE, that selects high centrality nodes and com-
munity members of destination as relays. We demonstrate a sig-
nificant improvement in forwarding efficiency over oblivious for-
warding and thePROPHETalgorithm [19], which uses patterns of
movement, rather than the longer term social relationships that our
scheme infers. In a PSN, there may be no a priori information. By
definition, we are also in a decentralised world without access to
infrastructure. Therefore the distributed detection and dissemina-
tion of node popularity and node communities, and the use of these
for forwarding decisions are crucial. We verify that this is not only
possible, but works well in terms of packet delivery performance
and efficiency compared to prior schemes.

The rest of this paper is structured around the theme of social
based forwarding as follows. In Section 2, we introduce the exper-
imental datasets used in the paper. We then introduce the general
ideas ofBUBBLE in Section 3, followed by the study of centralised
community detection algorithms in Section 4. We show the possi-
bility of a distributed implementation forBUBBLE in Section 5. In
Section 6, we empirically evaluate theBUBBLE algorithm. Related
work is described in Section 7. Finally we conclude the paper with
a brief discussion and suggested future work.

2. EXPERIMENTAL DATASETS
In this paper, we use three experimental datasets gathered by the
Haggle Project2 over two years, referred to asHongKong, Cam-
bridge, Infocom06; one dataset from the MIT Reality Mining
Project [5], referred to asReality. Previously, the characteris-
tics of these datasets such as inter-contact and contact distribu-
tion have been explored in several studies [2] [10] [18], to which
we refer the reader for further background information. We be-
lieve these four datasets cover a rich diversity of environments
from busy metropolitan city (HongKong) to quite university town
(Cambridge), with an experimental period from several days (Info-
com06) to almost one year (Reality).

• In Infocom05, the devices were distributed to approximately
fifty students attending the Infocom student workshop. Par-
ticipants belong to different social communities (depending

2http://www.haggleproject.org

on their country of origin, research topic, etc.). However,
they all attended the same event for 4 consecutive days and
most of them stayed in the same hotel and attended the same
sections (note, though, that Infocom is a multi-track confer-
ence).

• In Hong-Kong, the people carrying the wireless devices were
chosen independently in a Hong-Kong bar, to avoid any par-
ticular social relationship between them. These people have
been invited to come back to the same bar after a week. They
are unlikely to see each other during the experiment.

• In Cambridge, the iMotes were distributed mainly to two
groups of students from University of Cambridge Computer
Laboratory, specifically undergraduate year1 and year2 stu-
dents, and also some PhD and Masters students. This dataset
covers 11 days.

• In Infocom06, the scenario was very similar toInfocom05
except that the scale is larger, with 80 participants. Partici-
pants were selected so that 34 out of 80 form 4 subgroups by
academic affiliations.

• In Reality, 100 smart phones were deployed to students and
staff at MIT over a period of 9 months. These phones were
running software that logged contacts with other Bluetooth
enabled devices by doing Bluetooth device discovery every
five minutes.

The five experiments are summarised in Table 1.

3. BUBBLE RAP FORWARDING
In previous work, Huiet al. introduced theLABEL scheme [11].
Each node is assumed to have a label that informs other nodes of
its affiliation; next-hop nodes are selected if they belong to the same
affiliation (same label) as the destination. It was demonstrated that
LABEL significantly improves forwarding efficiency over oblivious
forwarding using their one dataset (Infocom06). This is a beginning
of social based forwarding inPSN, but without a concise concept
of community and lack of mechanisms to move messages away
from the source when the destinations are socially far away(such as
Reality 3).

Here we propose theBUBBLE algorithm, with the intention of
bringing in a concise concept of community intoPSNforwarding to
achieve significant improvement of forwarding efficiency.BUBBLE
combines the knowledge of community structure with the knowl-
edge of node centrality to make forwarding decisions. There are
two intuitions behind this algorithm. Firstly, people have varying
roles and popularities in society, and these should be true also in
the network – the first part of the forwarding strategy is to forward

3We show the details of these datasets in the following paragraphs
of this section.
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messages to nodes which are more popular than the current node.
Secondly, people form communities in their social lives, and this
should also be observed in the network layer – hence the second
part of the forwarding strategy is to identify the members of desti-
nation communities, and to use them as relays. Together, we call
this BUBBLE forwarding.

For this algorithm, we make two assumptions:

• Each node belongs to at least one community. Here we allow
single node communities to exist.

• Each node has a global ranking (i.e.global centrality) across
the whole system, and also a local ranking within its local
community. It may also belong to multiple communities and
hence may have multiple local rankings.

Forwarding is carried out as follows. If a node has a message des-
tined for another node, this node firstbubbles the message up the
hierarchical ranking tree using the global ranking, until it reaches a
node which is in the same community as the destination node. Then
the local ranking system is used instead of the global ranking, and
the message continues to bubble up through the local ranking tree
until the destination is reached or the message expires. This method
does not require every node to know the ranking of all other nodes
in the system, but just to be able to compare ranking with the node
encountered, and to push the message using a greedy approach.
In order to reduce cost, we also require that whenever a message is
delivered to the community, the original carrier can delete this mes-
sage from its buffer to prevent further dissemination. This assumes
that the community member can deliver this message. We call this
algorithmBUBBLE, using the metaphor ofbubble for a community.

Algorithm 1 : BUBBLE RAP
begin

foreachEncounteredNode_i do
if (LabelOf(currentNode) == LabelOf(destination)) then

if (LabelOf(EncounteredNode_i) ==
LabelOf(destination))

and
(LocalRankOf(EncounteredNode_i) >

LocalRankOf(currentNode))
then

EncounteredNode_i.addMessageToBuffer(message)

else
if (LabelOf(EncounteredNode_i) ==

LabelOf(destination))
or

(GlobalRankOf(EncounteredNode_i) >

GlobalRankOf(currentNode))
then

EncounteredNode_i.addMessageToBuffer(message)

end

The forwarding process fits our intuition and is taken from real
life experiences. First you try to forward the message via surround-
ing people more popular than you, and then you bubble it up to
well-known popular people in the wider-community, such as a post-
man. When the postman meets a member of the destination com-
munity, the message will be passed to that community. The first
community member who receives the message will try to identify
more popular members within the community, and bubble the mes-
sage up again within the local hierarchy, until the message reaches
a very popular member, or the destination itself, or the message ex-
pires. Figure 1 illustrates theBUBBLE algorithm and Algorithm 1
summarise the operations in a flat community (not hierarchical4)
4We will discuss the hierarchical structures in the conclusion sec-
tion.

Ranking

Source

Destination

Global Community

Sub community

Sub community

Subsub community

Figure 1: Illustration of the BUBBLE algorithm

space.
In the rest of this paper, we evaluateBUBBLE to confirm our intu-

ition that social based forwarding in general, andBUBBLE specifi-
cally, form a viable and effective approach in PSNs, and answer the
four questions posed in the introduction.

We answer the first question by looking at the human hetero-
geneity in the dataset. To calculate the individual centrality value
for each node, we take an numerical approach. First we carry out
a large number of emulations of unlimited flooding with different
uniformly distributed traffic patterns created using theHaggleSim
emulator [11], which can replay the collected mobility traces and
emulate different forwarding strategies for every contact event.
Then we count the number of times a node acts as a relay for other
nodes on all the shortest delay deliveries. Here the shortest delay
delivery refers to the case when the same message is delivered to
the destination through different paths, and we only count the de-
livery with the shortest delay. We call this number the betweenness
centrality of this node in this temporal graph5. Of course, we can
normalise it to the highest value found. Here we use unlimited
flooding since it can explore the largest range of delivery alterna-
tives with the shortest delay. This definition captures the spirit of
the Freeman centrality [8].

Initially, we only consider a homogeneous communications pat-
tern, in the sense that every destination is equally likely, and we do
not weigh the traffic matrix by locality. We then calculate the global
centrality value for the whole homogeneous system. Later, we will
analyse the heterogeneous system, once we have understood the
community structure.

Figure 2 shows the number of times a node falls on the shortest
paths between all other node pairs. We can simply treat this as
the centrality of a node in the system. We observed a very wide
heterogeneity in each experiment. This clearly shows that there is a
small number of nodes which have extremely high relaying ability,
and a large number of nodes have moderate or low centrality values,
across all experiments. The 30, 70 percentiles and the means of
normalised individual node centrality are shown in Table 2, which
tell the heterogeneity of each system.

This matches well with our intuition of human heterogeneity.
People differ in their popularity. For instance, a salesperson or
politician interacts with many others, making themselves highly-
ranked nodes in our graph, compared to (say) the average computer

5We will show in Section 5 how to approximate it in a distributed
way.
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Figure 2: Frequency of nodes as relays

scientist. Homogeneity might favour different forwarding strate-
gies for PSNs. In contrast, we want to employ heterogeneous pop-
ularity to help designing more efficient forwarding strategies: we
prefer to choose popular hubs as relays rather than unpopular ones.

Dataset 30 percentile 70 percentile Mean
HongKong 0.000 0.000 0.017

Reality 0.005 0.050 0.070
Infocom06 0.121 0.221 0.188
Cambridge 0.052 0.194 0.220

Table 2: Normalised node centrality across experiments

4. INFERRING HUMAN COMMUNITIES
A social network consists of a set of people forming socially mean-
ingful relationships, where prominent patterns or information flow
are observed. In PSN, social networks could map to computer net-
works since people carry the computer devices. To answer the sec-
ond question we need community detection algorithms. In this sec-
tion, we introduce and evaluate two centralised community detec-
tion algorithms:K-CLIQUE by Pallaet al. and weighted network
analysis (WNA) by Newman [28] [24]. We use these two centralised
algorithm to uncover the community structures in the mobile traces,
and we believe our evaluation of these algorithms is also beneficial
for the future traces study by the mobile research community.

Many centralised community detection methods have been pro-
posed and examined in the literature (see the recent review papers
by Newman [25] and Danonet al. [4]). The criteria we use to se-
lect a centralised detection method are the ability to uncover over-
lapping communities, and a high degree of automation (low man-
ual involvement). In real human societies, one person may belong
to multiple communities and hence it is important to uncover this
feature when we study human networks.K-CLIQUE method can
satisfy this requirement, but was designed for binary graphs, thus
we must threshold the edges of the contact graphs in our mobility
traces to use this method and it is difficult to choose an optimum
threshold manually [28]. On the other hand, (WNA) can work on
weighted graphs directly, and doesn’t need thresholding, but it can-
not detect overlapping communities [24]. Thus we chose to use
bothK-CLIQUE and WNA; they have favourable features and can
compliment each other.

W388800, k=3 W388800, 
k=4

W648000,  
k=3

W648000, k=4

Figure 3: Communities based on contact durations with weight
threshold = 388800s (4.5days), 648000s (7.5days) and k=3,4 (Re-
ality)

4.1 K-CLIQUE Community Detection
Pallaet al. define ak-clique community as a union of allk-cliques
(complete subgraphs of sizek) that can be reached from each other
through a series of adjacentk-cliques, where twok-cliques are said
to be adjacent if they sharek − 1 nodes. Ask is increased, the
k-clique communities shrink, but on the other hand become more
cohesive since their member nodes have to be part of at least onek-
clique. We have applied this on all the datasets above. Here we take
Reality as an example, since it contains a reasonably large number
of nodes, and lasts for a long period of time. Out of 100 exper-
imental participants, 75 are either students or faculty in the MIT
Media Laboratory, while the remaining 25 are incoming students
at the adjacent MIT Sloan business school. Of the 75 users at the
Media lab, 20 are incoming masters students and 5 are incoming
MIT freshmen.

First we look at communities detected by using a contact thresh-
old of 388,800 seconds or 4.5 days on the 9 monthsReality
dataset. The threshold was obtained from assuming 3 lectures
per week;with 4 weeks per month and a total trace duration of 9
months(2% of the total links are taken into consideration). Re-
search students in the same office may stay together all day, so
their contact duration threshold could be very large. For students
attending lectures, this estimation can be reasonable. Using a looser
threshold still detects the links with much stronger fit. We observe
8 communities of size (16,7,7,7,6,5,4,3) whenk = 3. Whenk = 4,
the 3-clique community is eliminated and other communities shrink
or are eliminated, and only 5 communities of size (13,7,5,5,4) left.
All of these 5 communities are disjoint. Whenk = 5, 3 commu-
nities of size (9,6,5) remains, the size-9 one and the size-5 one are
split from the 13-sized one in the 4-clique case. Moving tok = 6
andk = 7, there are 2 communities and 1 community respectively.
We are also interested in knowing about small groups which are
tightly knit. We set a strict threshold of 648,000 seconds, that is
on average 1 hour per weekday, 4 weeks per month, and for a total
of 9 months. Around 1% of the links are taken into account for
the community detection. Whenk = 3, there are three disjoint
communities of size (12,7,3). Whenk = 4, there are only two
communities left of size (8,6). Figure 3 shows the 3-clique and 4-
clique communities of 648,000 seconds threshold with its counter
parts of 388,800 seconds. A single 7-clique community remains in
k = 5 andk = 6 cases, this 7-clique community is the same as in
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the 388,800 second case. These 7 people could be people from a
same research group, they know each other and have long contact
with each other.

4.2 Weighted Network Analysis
In this section, we implement and apply Newman’s weighted net-
work analysis (WNA) for our data analysis [24].6 Our contribution
is also the extension of the unweightedmodularity proposed in [26]
to a weighted version, and use this as a measurement of the fitness
of the communities it detects.

For each community partitioning of a network, one can compute
the corresponding modularity value using the following definition
of modularity (Q):

Q =
X

vw

»

Avw

2m
−

kvkw

(2m)2

–

δ(cv,cw) (1)

whereAvw is the value of the weight of the edge between vertices
v andw, if such an edge exists, and 0 otherwise; theδ-function
δ(i, j) is 1 if i = j and 0 otherwise;m = 1

2

P

vw
Avw; kv is the

degree of vertexv defined as
P

w
Avw; andci denotes the com-

munity of which vertexi belongs to. Therefore the term in the
formula

P

vw
Avw

2m
δ(cv,cw) is equal to

P

vw
Avwδ(cv,cw)

P

vw
Avw

, which is
the fraction of the edges that fall within communities.Modularity
is defined as the difference between this fraction and, the fraction
of the edges that would be expected to fall within the communities
if the edges were assigned randomly but keeping the degrees of the
vertices unchanged. The algorithm is essentially a genetic algo-
rithm, using the modularity as the measurement of fitness. Instead
of testing on some mutations of the current best solutions, it enu-
merates all possible merges of any two communities in the current
solution, evaluates the relative fitness of the resulting merges, and
chooses the best solution as the seed for the next iteration.

Table 3 summarises the communities detected by applying WNA
on the four datasets. According to Newman [24], nonzeroQ values
indicate deviations from randomness; values around 0.3 or more
usually indicate good divisions. For theInfocom06 case, theQmax

value is low; this indicates that the community partition is not very
good in this case. This also agrees with the fact that in a conference
the community boundary becomes blurred. For theReality case, the
Q value is high; this reflects the more diverse campus environment.
For theCambridge data, the two groups spound by WNA is exactly
matched the two groups (1st year and 2nd year) of students selected
for the experiment.

Dataset Info06 Camb Reality HK

Qmax 0.2280 0.4227 0.5682 0.6439

Max. Community Size 13 18 23 139

No. Communities 4 2 8 19

Avg. Community Size 8.000 16.500 9.875 45.684

No. Community Nodes 32 33 73 868

Total No. of Nodes 78 36 97 868

Table 3: Communities detected from the four datasets

These centralised community detection algorithms give us rich
information about the human social clustering and are useful for
offline data analysis on mobility traces collected. We can use them
to explore structures in the data and hence design useful forwarding
strategies, security measures, and killer applications.

6During the implementation, we found two different interpretations
of the algorithm in the paper. We believe that we have chosen the
correct one after the confirmation of the author.
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Figure 4: Correlation of rank with total degree and rank with
unit time degree (Reality)

5. DISTRIBUTED BUBBLE RAP
For practical applications, we want to look further into howBUB-
BLE can be implemented in a distributed way. To achieve this, each
device should be able to detect its own community and calculate
its centrality values. Huiet al. proposed three algorithms, named
SIMPLE, K-CLIQUE and MODULARITY , for distributed commu-
nity detection, and they proved that the detecting accuracy can be
up to 85% of the centralisedK-CLIQUE algorithm [12]. Here we
introduce our distributedBUBBLE algorithm,DiBuBB, which uses
the methods of Huiet al. [12] to detect communities and uses our
approximation method to calculate individual centrality value in a
decentralised manner.

From trace analysis, we found that the total degree (unique nodes
seen by a node throughout the experiment period) is not a good ap-
proximation of the node centrality. Instead the degree per unit time
(for example the number of unique nodes seen per 6 hours7) and
the node centrality have a high correlation value. We can see from
Figure 4 that some nodes with a high total degree are still not good
carriers. It also shows that the 6-hour degree is well correlated to
the centrality value, with correlation coefficient as high as 0.9511.
Therefore the number of people you know is less important matter
too much, but how frequently you interact with these people does
matter. For convenience of notation, we refer to this average unit-
time degree asDEGREE.

However, the average unit-time degree calculated throughout the
whole experimental period is still difficult for each node to calcu-
late individually. We then consider the degree for previous unit-
time slot (we call this the slot window) such that when two nodes
meet each other, they compare how many unique nodes they have
met in the previous unit-time slot (e.g. 6 hours). We call this ap-
proach the single window (S-Window). Another approach is to cal-
culate the average value on all previous windows, such as from yes-
terday to now, then calculate the average degree for every 6 hours.
We call this approach the cumulative window (C-Window). This
technique is similar to exponential smoothing [31], which we will
investigate in further work.

We will further show in Section 6 thatDEGREE, S-Window, and
C-Window can approximate the pre-calculated centrality quite well
and the centrality measured in the past can be used as future pre-
dictor. Here we first specifyDiBuBB as an algorithm, which uses
the distributedK-CLIQUE algorithm to detect local commmunity
and C-Window to approximate its own global and local centrality
values. Besides that, it operate exactly likeBUBBLE.

7We chose 6 hours here based on our intuition that daily life is di-
vided into 4 main periods – morning, afternoon, evening and night
– each almost 6 hours. But we want to examine the impact of this
period in the future.
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6. RESULTS AND EVALUATIONS
In order to evaluate different forwarding algorithms, we use the
sameHaggleSim emulator as we used in Section 3. The original
trace files are divided into discrete sequential contact events, and
they are fed into the emulator as inputs. For every discrete en-
counter event, the emulator makes a forwarding decision based on
the forwarding algorithm under study.

For each emulation in this paper, 1000 messages are created, uni-
formly sourced between all node pairs. Each emulation is repeated
20 times with different random seeds for statistical confidence. For
all the emulations we have conducted for this work, we have mea-
sured the following metrics and for all the metrics, we compute the
95th percentile using t-distribution.
Delivery ratio: The proportion of messages that have been deliv-
ered out of the total unique messages created.
Delivery cost: The total number of messages (include duplicates)
transmitted across the air. To normalize this, we divide it by the
total number of unique messages created.
Hop-distribution for deliveries: The distribution of the number of
hops needed for all the deliveries. This reveals the social distance
between sources and destinations.

We compare our algorithms against the following five bench-
mark algorithms8

WAIT: Hold on to a message until the sender encounters the re-
cipient directly, which represents the lower bound for delivery and
cost.
FLOOD: Messages are flooded throughout the entire system,
which represents the upper bound for delivery and cost.
MCP: Multiple-Copy-Multiple-Hop. Multiple Copies are sent sub-
ject to a time-to-live hop count limit on the propagation of mes-
sages. By exhaustive emulations, a 4-copy-4-hopMCP scheme is
found to be most cost effective scheme in term of delivery ratio
and cost for all naive schemes among all the datasets except the
HongKong data. Hence for fair comparison, we evaluate our algo-
rithms against the 4-copy-4-hopMCP scheme in most of the cases.
LABEL: A social based forwarding algorithm introduced by Hui
et. al [11]. Messages are only forwarded to the nodes in the same
community (i.e.with the same label) as the destination.
PROPHET: A standard non-oblivious benchmark that has been
evaluated against several previous works[19]. It calculates the de-
livery predictability at each node for each destination by using his-
tory of encounters and transitivity. A message is forwarded to a
node if it has higher delivery predictability than the current node
for that particular destination.

A complete evaluation ofDiBuBB need to analyse the effect of
dynamic Familiar Set thresholds, the evolution of the communi-
ties detected at different times, and also the effect of aging of
the contacts(see Section 5.3 of [12]), which would be out of the
length of this paper. In this paper, we focus on the evaluation us-
ing centralisedK-clique communities and pre-calculated central-
ities. However we also show the evaluation results ofDEGREE,
S-Window, C-Window, and predictability of centrality as part of
divide-and-conquer solution ofDiBuBB(DiBuBB consists of two
modules: distributed community detection and distributed central-
ity approximation). We will put the complete analysis ofDiBuBB
in another paper as a follow up.

6.1 Two-Community Case
In order to make the analysis more systematic, we start with the

8In some graphs we only show the performance of optimisedMCP,
BUBBLE, andLABEL , in order to focus on the comparison among
them.

Group A Group B

Figure 5: Node centrality in 2 groups (Cambridge)

two-community case. We use theCambridge dataset for this study.
TheCambridge data can clearly be divided into two communities -
the undergraduate year 1 (Group A) and year 2 (Group B) groups,
both by experimental design, and as confirmed by our community
detection algorithms.

First we look at the simplest case, for the centrality of nodes
within each group. In this case, the traffic is created only between
members of the same community and only members in the same
community are chosen as relays for messages. We can see clearly
from Figure 5 that the centrality of each node is different inside
a community. In Group B, there are two nodes which are very
popular, and relayed most of the traffic. All the other nodes have
very low centrality values. Forwarding messages to the popular
nodes would make delivery more cost effective for messages within
the same community.

(a) (b)

Figure 6: Inter-group centrality(left) and correlation between
intra and inter-group centrality(right), ( Cambridge)

Then we consider traffic which is created from one group and
only destined for members in another group. To eliminate other
outside factors, we use only members from these two groups as re-
lays. Figure 6(a) shows the individual node centrality when traffic
is created from one group to another. Figure 6(b) shows the corre-
lation of node centrality within an individual group and inter-group
centrality. We can see that points lie more or less around the diago-
nal line. This means that the inter- and intra- group centralities are
quite well correlated. Active nodes in a group are also active nodes
for inter-group communication. There are some points on the left
hand side of the graph which have very low intra-group centrality
but moderate inter-group centrality. These are nodes which move
across groups. They are not important for intra-group communica-
tion but can perform certainly well when we need to move traffic
from one group to another. We can see from Figure 7 thatBUBBLE
achieves almost the same delivery success rate as the 4-copy-4-hop
MCP but with only 45% of its cost. These two groups share the
same education building and usually would overlap with each other

6



(a) (b)

Figure 7: Comparisons of several algorithms onCambridge dataset, delivery and cost.

(a) (b)

Figure 8: Comparisons of several algorithms onReality dataset, single group.

in the common area, soLABEL behaves quite well in this environ-
ment but still has a delivery ratio around 20% to 30% lower than
BUBBLE.

6.2 Multiple-Community Case
To study the multiple-community case, we use theReality dataset.
To evaluate the forwarding algorithm, we extract a 3 week session
during term time from the whole 9 month dataset. Emulations were
run over this dataset with uniformly generated traffic. There is a to-
tal 8 groups within the whole dataset. We observed that within each
individual group, the node centralities demonstrate diversity simi-
lar to theCambridge case. In order to make our study easier, we
first isolate just one group, consisting of 16 nodes. In this case, all
the nodes in the system create traffic for members of this group.
We can see from Figure 8(a) thatBUBBLE performs very similarly
to MCP most of the time in the single-group case, and even outper-
form MCPwhen the time TTL is set to be longer than 1 week. From
Figure 8(b), we can see thatBUBBLE only has 55% of the cost of
MCP. We can say that theBUBBLE algorithms are much more cost
effective thanMCP, with high delivery ratio and low delivery cost.

After the single-group case, we start looking at the inter-group
communication for multiple-group. We want to find the upper cost
bound forBUBBLE algorithm, so we do not consider local ranking;
messages can now be sent to all members in the group. We do
not implement the mechanism to remove the original message after
it has been delivered to the group member, so the cost here will
represent an upper bound forBUBBLE type algorithms.

From Figure 9(a) and Figure 9(b), we can see that of course
flooding achieves the best for delivery ratio, but the cost is 2.5 times
that ofMCP, and 5 times that ofBUBBLE. BUBBLE is very close in
performance toMCP in the multiple-group case as well, and even
outperforms it when the time TTL of the messages is allowed to be
larger than 2 weeks. However, the cost is only 50% that ofMCP.

Regarding our critics aboutLABEL in Section 3, we can observe

from Figure 9 thatLABEL only achieves around 55% of the deliv-
ery ratio of theMCP strategy and only 45% of the flooding delivery
although the cost is also much lower. However it is not an ideal sce-
nario forLABEL . In this environment, people do not mix as well as
in a conference [11]. A person in one group may not meet members
in another group so often, waiting to meet a member of the destina-
tion group before transmitting is not effective. Figure 10 shows the
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Figure 10: Correlation of nth-hop nodes with the source group
and destination group (Reality)

correlation of thenth-hop relay nodes to the source and destination
groups (S-Group and D-Group) for the messages on all the shortest
paths, that is the percentage of thenth-hop relay nodes that are still
in the same group as the source or already in the same group as the
destination. We can see that more than 50% of the nodes on the
first hops (from the S-Group plot) are still in the source group of
the message and only around 5% of the first hop nodes (from the
D-Group plot) are in the same group as the destination. This ex-
plains whyLABEL is not effective, since it is far from discovering
the shortest path.

In order to further justify the significance of social based for-
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(a) (b)

Figure 9: Comparisons of several algorithms onReality dataset, all groups

warding, we also compareBUBBLE with a benchmark ‘non-
oblivious’ forwarding algorithm,PROPHET[19]. PROPHETuses the
history of encounters and transitivity to calculate the probability
that a node can deliver a message to a particular destination. Since
it has been evaluated against other algorithms before and has the
same contact-based nature asBUBBLE (i.e. do not need location
information), it is a good target to compare withBUBBLE.

PROPHEThas four parameters. We use the defaultPROPHETpa-
rameters as recommended in [19]. However, one parameter that
should be noted is the time elapsed unit used to age the contact
probabilities. The appropriate time unit used differs depending on
the application and the expected delays in the network. Here, we
age the contact probabilities at every new contact. In a real applica-
tion, this would be a more practical approach since we do not want
to continuously run a thread to monitor each node entry in the table
and age them separately at different time.

(a) (b)

Figure 11: Comparisons ofBUBBLE and PROPHET on Reality
dataset

Figure 11 (a) and (b) shows the comparison of the delivery ratio
and delivery cost ofBUBBLE andPROPHET. Here, for the delivery
cost, we only count the number of copies created in the system for
each message as we have done before for the comparison with the
‘oblivious’ algorithms. We did not count the control traffic created
by PROPHETfor exchanging routing table during each encounter,
which can be huge if the system is large (PROPHETuses flat ad-
dressing for each node and its routing table contains entry for each
known node). We can see that most of the time,BUBBLE achieves
a similar delivery ratio toPROPHET, but with only half of the cost.

Considering thatBUBBLE does not need to keep and update an
routing table for each node pairs, the improvement is significant.
Similar significant improvements by usingBUBBLE are also ob-
served in other datasets, these demonstrate the generality of the
BUBBLE algorithm, but because of page limit, we can not include
the results here.

6.3 Approximating Centrality
For convenience of notation and evaluation of distributed central-

ity, we introduce an algorithm calledRANK here, which is a com-
ponent ofBUBBLE, using only centrality information. InRANK,
messages are pushed to nodes which have a higher ranking than the
current node, until either they reach the destinations or they expire.
In order to verify that theDEGREEis as good as or close to the cen-
tralise centrality, we ran another set of emulations usingDEGREE
instead of the pre-calculated centrality (i.e.RANK). We find out that
RANK andDEGREEperform almost the same with the delivery and
cost lines overlapping each other. They not only have similar de-
livery ratios but also similar costs.

For S-Window and C-Window, we can see from Figure 12(a)
and (b) that the S-Window approach reflects more recent context
and achieves maximum of 4% improvement in delivery ratio than
RANK, but at double the cost. The C-Window approach measures
more of the cumulative effect, and gives more stable statistics about
the average activeness of a node. However, its cumulative measure-
ment is not as good an estimate asRANK, which averages through-
out the whole experimental period. It does not achieve as good de-
livery asRANK (not more than 10% less in term of delivery), but it
also has lower cost. C-Window is easy to implement in reality and
has similar delivery and cost toRANK (pre-calculated centrality),
which is why we chose it forDiBuBB in Section 5.

(a) (b)

Figure 12: Comparisons of delivery (left) and cost (right) of
RANK , S-Window and C-Window (Reality)

Furthermore, we want to verify whether the centrality measured
in the past is useful as a predictor for the future. As well as the
subset of the data we used in section 6.2, we extracted another two
3-week sessions from the dataset. We run a set of greedyRANK em-
ulations on these, but using the centrality values from section 6.2.
We found out that the delivery ratio and cost ofRANK on the 2nd
data session is as good as in the original dataset. Similar perfor-
mance is also observed in the 3rd data session. These results imply
some level of human mobility predictability, and show empirically
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that past contact information can be used in the future. This past
centrality can be used as a compliment of C-Window forDiBuBB,
regarding that C-Window is around 10% less in term of delivery
thanRANK.

7. RELATED WORK
Several efficient forwarding algorithms for DTNs have been pro-
posed. A majority of the algorithms are based on epidemic routing
protocols [30], where messages are simply flooded when a node en-
counters another node. The optimisation of epidemic routing by re-
ducing the number of copies of the message has been explored. For
example, in [29], spray and wait routing assigns a limited number
of copies. Many approaches calculate the probability of delivery to
the destination node, where the metrics are derived from the history
of node contacts, spatial information and so forth. The pattern-
based Mobyspace Routing by Leguayet al. [17], location-based
routing by Lebrunet al. [16], context-based forwarding by Mu-
solesiet al. [22] andPROPHETRouting [19] fall into this category.
PROPHETuses past encounters to predict the probability of future
encounters. The transitive nature of encounters is exploited, where
indirectly encountering the destination node is evaluated. Message
Ferry by Zhaoet al. [33] takes a different approach by controlling
the movement of each node.

Recent attempts to uncover a hidden stable network structure
in DTNs such as social networks have been emerged. For exam-
ple, SimBet Routing [3] uses ego-centric centrality and its social
similarity. Messages are forwarded towards the node with higher
centrality to increase the possibility of finding the potential car-
rier to the final destination. In [11], we use small labels to help
forwarding in PSNs based on the simple intuition that people be-
longing to the same community are likely to meet frequently, and
thus act as suitable forwarders for messages destined for members
of the same community. The evaluation demonstrates that even
such a basic approach results in a significant reduction in routing
overheads.RANK algorithm introduced in this paper uses between-
ness centrality in a similar manner to SimBet routing. On the other
hand,BUBBLE exploits further community structures and combines
it with RANK for further improvement of forwarding algorithms.
We have also exploit the closeness centrality to build an overlay
over communities for multi-point asynchronous communications
[32]. The mobility-assisted Island Hopping forwarding [23] uses
network partitions that arise due to the distribution of nodes in
space. Their clustering approach is based on the significant loca-
tions for the nodes and not for clustering nodes themselves. Clus-
tering nodes is a complex task to understand the network structure
for aid of forwarding.

In this paper, we have also shown how to uncover social struc-
tures from real world human connectivity traces. Discovering
cliques or tightly connected clusters, i.e. communities, by look-
ing for similar relation has also been studied in social network re-
search such as World Wide Web [7], biological networks [9], so-
cial networks [25], and the Internet [20]. Graphs are a powerful
tool to represent social relations and are structured in a quantified
and measurable manner. The recent reviews [25] and [4] serve as
introductory reading in community detection methods. Our cur-
rent approach uses the duration and frequency of node connection
for community definition and exploring further discovery of social
community structure including further social contexts is left as fu-
ture work. Finally, we emphasise that we take an experimental
rather than theoretical approach, which makes a further difference
from the other work described above.

8. CONCLUSION AND FUTURE WORK

We have shown that it is possible to detect characteristic properties
of social grouping in a decentralised fashion from a diverse set of
real world traces. We have demonstrated that such characteristics
can be effectively used in forwarding decisions. Our algorithms
are designed for a delay-tolerant network environment, built out of
human-carried devices, and we have shown that they have similar
delivery ratio to, but much lower resource utilisation than flooding,
control flooding, andPROPHET.

Our decentralised approximation for centrality relates to the pre-
dictability of human mobility. We have made an additional contri-
bution in this area by using similarity measures such as the Jaccard
index [13]. Further improvement would entail more work on the-
oretical aspects of graph similarity [1]. In Section 5 we chose 6
hours as basic unit of centrality approximation. This appears to
work well on the datasets we used; however, in future work we will
examine the sensitivity of the system to this choice of period.

On forwarding, we have not directly emulated the distributed
BUBBLE in this paper. Instead, we chose a divide-and-conquer
method, showing separately the feasibility of decentralised approx-
imation of centrality due to its inherent predictability. In principle,
BUBBLE is supposed to work with a hierarchical community struc-
ture, but because of the limited size of data (each experiment is not
large enough for us to extract hierarchical structure), the current al-
gorithm and evaluation focus on a flat community structure. This
can later be extended to a hierarchical structure. We will further
verify our results when more mobility traces are available.

We believe that this paper represents a first step in combining
rich multi-level information of social structures and interactions to
drive novel and effective means for disseminating data in DTNs. A
great deal of future research can follow.
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