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Abstract

The objective of this paper is large scale object instance

retrieval, given a query image. A starting point of such sys-

tems is feature detection and description, for example us-

ing SIFT. The focus of this paper, however, is towards very

large scale retrieval where, due to storage requirements,

very compact image descriptors are required and no infor-

mation about the original SIFT descriptors can be accessed

directly at run time.

We start from VLAD, the state-of-the art compact de-

scriptor introduced by Jégou et al. [8] for this purpose,

and make three novel contributions: first, we show that

a simple change to the normalization method significantly

improves retrieval performance; second, we show that vo-

cabulary adaptation can substantially alleviate problems

caused when images are added to the dataset after initial

vocabulary learning. These two methods set a new state-

of-the-art over all benchmarks investigated here for both

mid-dimensional (20k-D to 30k-D) and small (128-D) de-

scriptors.

Our third contribution is a multiple spatial VLAD repre-

sentation, MultiVLAD, that allows the retrieval and local-

ization of objects that only extend over a small part of an

image (again without requiring use of the original image

SIFT descriptors).

1. Introduction

The area of large scale particular object retrieval has

seen a steady train of improvements in performance over

the last decade. Since the original introduction of the bag

of visual words (BoW) formulation [16], there have been

many notable contributions that have enhanced the descrip-

tors [1, 15, 19], reduced quantization loss [6, 14, 18], and

improved recall [1, 3, 4].

However, one of the most significant contributions in

this area has been the introduction of the Vector of Locally

Aggregated Descriptors (VLAD) by Jégou et al. [8]. This

image descriptor was designed to be very low dimensional

(e.g. 16 bytes per image) so that all the descriptors for very

large image datasets (e.g. 1 billion images) could still fit into

main memory (and thereby avoid expensive hard disk ac-

cess). Its introduction has opened up a new research theme

on the trade-off between memory footprint of an image de-

scriptor and retrieval performance, e.g. measured by aver-

age precision.

We review VLAD in section 2.1, but here mention that

VLAD, like visual word encoding, starts by vector quan-

tizing a locally invariant descriptor such as SIFT. It differs

from the BoW image descriptor by recording the difference

from the cluster center, rather than the number of SIFTs

assigned to the cluster. It inherits some of the invariances

of the original SIFT descriptor, such as in-plane rotational

invariance, and is somewhat tolerant to other transforma-

tions such as image scaling and clipping. Another differ-

ence from the standard BoW approach is that VLAD re-

trieval systems generally preclude the use of the original

local descriptors. These are used in BoW systems for spa-

tial verification and reranking [6, 13], but require too much

storage to be held in memory on a single machine for very

large image datasets. VLAD is similar in spirit to the earlier

Fisher vectors [11], as both record aspects of the distribution

of SIFTs assigned to a cluster center.

As might be expected, papers are now investigating how

to improve on the original VLAD formulation [2, 5]. This

paper is also aimed at improving the performance of VLAD.

We make three contributions:

1. Intra-normalization: We propose a new normalization

scheme for VLAD that addresses the problem of bursti-

ness [7], where a few large components of the VLAD vec-

tor can adversely dominate the similarity computed between

VLADs. The new normalization is simple, and always im-

proves retrieval performance.

2. Multi-VLAD: We study the benefits of recording mul-

tiple VLADs for an image and show that retrieval perfor-

mance is improved for small objects (those that cover only

a small part of the image, or where there is a significant

scale change from the query image). Furthermore, we pro-

pose a method of sub-VLAD localization where the window

corresponding to the object instance is estimated at a finer

resolution than the the VLAD tiling.
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3. Vocabulary adaptation: We investigate the problem of

vocabulary sensitivity, where a vocabulary trained on one

dataset, A, is used to represent another dataset B, and the

performance is inferior to using a vocabulary trained on

B. We propose an efficient, simple, method for improving

VLAD descriptors via vocabulary adaptation, without the

need to store or recompute any local descriptors in the im-

age database.

The first two contributions are targeted at improving

VLAD performance. The first improves retrieval in gen-

eral, and the second partially overcomes an important de-

ficiency – that VLAD has inferior invariance to changes in

scale (compared to a BoW approach). The third contribu-

tion addresses a problem that arises in real-world applica-

tions where, for example, image databases grow with time

and the original vocabulary is incapable of representing the

additional images well.

In sections 3–5 we describe each of these methods in

detail and demonstrate their performance gain over earlier

VLAD formulations, using the Oxford Buildings 5k and

Holidays image dataset benchmarks as running examples.

The methods are combined and compared to the state of the

art for larger scale retrieval (Oxford 105k and Flickr1M) in

section 6.

2. VLAD review, datasets and baselines

We first describe the original VLAD computation

and subsequent variations, and then briefly overview the

datasets that will be used for performance evaluation and

those that will be used for vocabulary building (obtaining

the cluster centers required for VLAD computation).

2.1. VLAD

VLAD is constructed as follows: regions are extracted

from an image using an affine invariant detector, and de-

scribed using the 128-D SIFT descriptor. Each descriptor

is then assigned to the closest cluster of a vocabulary of

size k (where k is typically 64 or 256, so that clusters are

quite coarse). For each of the k clusters, the residuals (vec-

tor differences between descriptors and cluster centers) are

accumulated, and the k 128-D sums of residuals are con-

catenated into a single k × 128 dimensional descriptor; we

refer to it as the unnormalized VLAD. Note, VLAD is sim-

ilar to other descriptors that record residuals such as Fisher

vectors [11] and super-vector coding [20]. The relationship

between Fisher vectors and VLAD is discussed in [12].

In the original scheme [8] the VLAD vectors are L2 nor-

malized. Subsequently, a signed square rooting (SSR) nor-

malization was introduced [5, 9], following its use by Per-

ronnin et al. [12] for Fisher vectors. To obtain the SSR nor-

malized VLAD, each element of an unnormalized VLAD

is sign square rooted (i.e. an element xi is transformed into

sign(xi)
√

|xi|) and the transformed vector is L2 normal-

ized. We will compare with both of these normalizations in

the sequel, and use them as baselines for our approach.

Chen et al. [2] propose a different normalization scheme

for the residuals and also investigate omitting SIFT descrip-

tors that lie close to cluster boundaries. Jégou and Chum [5]

extend VLAD in two ways: first, by using PCA and whiten-

ing to decorrelate a low dimensional representation; and

second, by using multiple (four) clusterings to overcome

quantization losses. Both give a substantial retrieval per-

formance improvement for negligible additional computa-

tional cost, and we employ them here.

2.2. Benchmark datasets and evaluation procedure

The performance is measured on two standard and pub-

licly available image retrieval benchmarks, Oxford build-

ings and Holidays. For both, a set of predefined queries

with hand-annotated ground truth is used, and the retrieval

performance is measured in terms of mean average preci-

sion (mAP).

Oxford buildings [13] contains 5062 images downloaded

from Flickr, and is often referred to as Oxford 5k. There are

55 queries specified by an image and a rectangular region

of interest. To test large scale retrieval, it is extended with a

100k Flickr images, forming the Oxford 105k dataset.

Holidays [6] contains 1491 high resolution images contain-

ing personal holiday photos with 500 queries. For large

scale retrieval, it is appended with 1 million Flickr images

(Flickr1M [6]), forming Holidays+Flickr1M.

We follow the standard experimental scenario of [5] for

all benchmarks: for Oxford 5k and 105k the detector and

SIFT descriptor are computed as in [10]; while for Holi-

days(+Flickr1M) the publicly available SIFT descriptors are

used.

Vocabulary sources. Three different datasets are used for

vocabulary building (i.e. clustering on SIFTs): (i) Paris

6k [14], which is analogous to the Oxford buildings dataset,

and is often used as an independent dataset from the Oxford

buildings [1, 3, 5, 14]; (ii) Flickr60k [6], which contains

60k images downloaded from Flickr, and is used as an in-

dependent dataset from the Holidays dataset [6, 7, 8]; and,

(iii) ‘no-vocabulary’, which simply uses the first k (where

k is the vocabulary size) SIFT descriptors from the Holi-

days dataset. As k is typically not larger than 256 whereas

the smallest dataset (Holidays) contains 1.7 million SIFT

descriptors, this vocabulary can be considered independent

from all datasets.

3. Vocabulary adaptation

In this section we introduce cluster adaptation to improve

retrieval performance for the case where the cluster centers

used for VLAD are not consistent with the dataset – for ex-

ample they were obtained on a different dataset or because
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Figure 1: VLAD similarity measure under different clusterings. The Voronoi cells illustrate the coarse clustering used

to construct VLAD descriptors. Red crosses and blue circles correspond to local descriptors extracted from two different

images, while the red and blue arrows correspond to the sum of their residuals (differences between descriptors and the

cluster center). Assume the clustering in (a) is a good one (i.e. it is representative and consistent with the dataset descriptors),

while the one in (b) is not. By changing the clustering from (a) to (b), the sign of the similarity between the two images (from

the cosine of the angle between the residuals) changes dramatically, from negative to positive. However, by performing

cluster center adaptation the residuals are better estimated (c), thus inducing a better estimate of the image similarity which

is now consistent with the one induced by the clustering in (a).

new data has been added to the dataset. As described earlier

(section 2.1), VLAD is constructed by aggregating differ-

ences between local descriptors and coarse cluster centers,

followed by L2 normalization. For the dataset used to learn

the clusters (by k-means) the centers are consistent in that

the mean of all vectors assigned to a cluster over the entire

dataset is the cluster center. For an individual VLAD (from

a single image) this is not the case, or course, and it is also

not the case, in general, for VLADs computed over a dif-

ferent dataset. As will be seen below the inconsistency can

severely impact performance. An ideal solution would be

to recluster on the current dataset, but this is costly and re-

quires access to the original SIFT descriptors. Instead, the

method we propose alleviates the problem without requir-

ing reclustering.

The similarity between VLAD descriptors is measured

as the scalar product between them, and this decomposes as

the sum of scalar products of aggregated residuals for each

coarse cluster independently. Consider a contribution to the

similarity for one particular coarse cluster k. We denote

with x
(1)
k and x

(2)
k the set of all descriptors in image 1 and

2, respectively, which get assigned to the same coarse clus-

ter k. The contribution to the overall similarity of the two

VLAD vectors is then equal to:
1

C(1)

∑

i

(x
(1)
k,i − µk)

T 1

C(2)

∑

j

(x
(2)
k,j − µk) (1)

where µk is the centroid of the cluster, and C(1) and C(2)

are normalizing constants which ensure all VLAD descrip-

tors have unit norm. Thus, the similarity measure induced

by the VLAD descriptors is increased if the scalar product

between the residuals is positive, and decreased otherwise.

For example, the sets of descriptors illustrated in figure 1a

are deemed to be very different (they are on opposite sides

of the cluster center) thus giving a negative contribution to

the similarity of the two images.

It is clear that the VLAD similarity measure is strongly

affected by the cluster center. For example, if a different

center is used (figure 1b), the two sets of descriptors are now

deemed to be similar thus yielding a positive contribution to

the similarity of the two images. Thus, a different clustering

can yield a completely different similarity value.

We now introduce cluster center adaptation to improve

residual estimates for an inconsistent vocabulary, namely,

using new adapted cluster centers µ̂k that are consistent

when computing residuals (equation (1)), instead of the

original cluster centers µk. The algorithm consists of two

steps: (i) compute the adapted cluster centers µ̂k as the

mean of all local descriptors in the dataset which are as-

signed to the same cluster k; (ii) recompute all VLAD de-

scriptors by aggregating differences between local descrip-

tors and the adapted centers µ̂k. Note that step (ii) can be

performed without actually storing or recomputing all lo-

cal descriptors as their assignment to clusters remains un-

changed and thus it is sufficient only to store the descriptor

sums for every image and each cluster.

Figure 1c illustrates the improvement achieved with cen-

ter adaptation, as now residuals, and thus similarity scores,

are similar to the ones obtained using the original clustering

in figure 1a. Note that for an adapted clustering the cluster

center is indeed equal to the mean of all the descriptors as-

signed to it from the dataset. Thus, our cluster adaptation

scheme has no effect on VLADs obtained using consistent

clusters, as desired.

To illustrate the power of the adaptation, a simple test is

performed where the Flickr60k vocabulary is used for the

Oxford 5k dataset, and the difference between the original

vocabulary and the adapted one measured. The mean mag-

nitude of the displacements between the k = 256 adapted

and original cluster centers is 0.209, which is very large

keeping in mind that RootSIFT descriptors [1] themselves

all have a unit magnitude. For comparison, when the Paris

vocabulary is used, the mean magnitude of the difference is

only 0.022.

Results. Figure 2 shows the improvement in retrieval per-

formance obtained when using cluster center adaptation

(adapt) compared to the standard VLAD under various
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Figure 2: Retrieval performance. Six methods are compared,

namely: (i) baseline: the standard VLAD, (ii) intra-normalization,

innorm (section 4), (iii) center adaptation, adapt (section 3), (iv)

adapt followed by innorm, (v) baseline: signed square rooting

SSR, (vi) aided baseline: adapt followed by SSR. Each result cor-

responds to the mean result obtained from four different test runs

(corresponding to four different clusterings), while error bars cor-

respond to one standard deviation. The results were generated us-

ing RootSIFT [1] descriptors and vocabularies of size k = 256.

dataset sources for the vocabulary. Center adaptation im-

proves results in all cases, especially when the vocabulary

was computed on a vastly different image database or not

computed at all. For example, on Holidays with Paris vo-

cabulary the mAP increases by 9.7%, from 0.432 to 0.474;

while for the no-vocabulary case, the mAP improves by

34%, from 0.380 to 0.509. The improvement is smaller

when the Flickr60k vocabulary is used since the distribution

of descriptors is more similar to the ones from the Holidays

dataset, but it still exists: 3.2% from 0.597 to 0.616. The im-

provement trends are similar for the Oxford 5k benchmark

as well.

Application in large scale retrieval. Consider the case of

real-world large-scale retrieval where images are added to

the database with time. This is the case, for example, with

users uploading images to Flickr or Facebook, or Google

indexing images on new websites. In this scenario, one is

forced to use a fixed precomputed vocabulary since it is im-

practical (due to storage and processing requirements) to

recompute too frequently as the database grows, and reas-

sign all descriptors to the newly obtained clusters. In this

case, it is quite likely that the obtained clusters are incon-

sistent, thus inducing a bad VLAD similarity measure. Us-

ing cluster center adaptation fits this scenario perfectly as

it provides a way of computing better similarity estimates

without the need to recompute or store all local descriptors,

as descriptor assignment to clusters does not change.

4. Intra-normalization

In this section, it is shown that current methods for nor-

malizing VLAD descriptors, namely simple L2 normaliza-

tion [8] and signed square rooting [12], are prone to putting

too much weight on bursty visual features, resulting in a

suboptimal measure of image similarity. To alleviate this

problem, we propose a new method for VLAD normaliza-

tion.

The problem of bursty visual elements was first noted in

the bag-of-visual-words (BoW) setting [7]: a few artificially

large components in the image descriptor vector (for exam-

ple resulting from a repeated structure in the image such as

a tiled floor) can strongly affect the measure of similarity

between two images, since the contribution of other impor-

tant dimensions is hugely decreased. This problem was al-

leviated by discounting large values by element-wise square

rooting the BoW vectors and re-normalizing them. In a sim-

ilar manner VLADs are signed square root (SSR) normal-

ized [5, 9]. Figure 3 shows the effects these normalizations

have on the average energy carried by each dimension in a

VLAD vector.

We propose here a new normalization, termed intra-

normalization, where the sum of residuals is L2 normal-

ized within each VLAD block (i.e. sum of residuals within

a coarse cluster) independently. As in the original VLAD

and SSR, this is followed by L2 normalization of the entire

vector. This way, regardless of the amount of bursty im-

age features their effect on VLAD similarity is localized to

their coarse cluster, and is of similar magnitude to all other

contributions from other clusters. While SSR reduces the

burstiness effect, it is limited by the fact that it only dis-

counts it. In contrast, intra-normalization fully suppresses

bursts, as witnessed in figure 3c which shows absolutely no

peaks in the energy spectrum.

Discussion. The geometric interpretation of intra-

normalization is that the similarity of two VLAD vectors

depends on the angles between the residuals in correspond-

ing clusters. This follows from the scalar product of equa-

tion (1): since the residuals are now L2 normalized the

scalar product depends only on the cosine of the differences

in angles of the residuals, not on their magnitudes. Chen

et al. [2] have also proposed an alternative normalization

where the per-cluster mean of residuals is computed instead

of the sum. The resulting representation still depends on

the magnitude of the residuals, which is strongly affected

by the size of the cluster, whereas in intra-normalization

it does not. Note that all the arguments made in favor of

cluster center adaptation (section 3) are unaffected by intra-

normalization. Specifically, only the values of C(1) and

C(2) change in equation (1), and not the dependence of the

VLAD similarity measure on the quality of coarse cluster-

ing which is addressed by cluster center adaptation.
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Figure 3: The effect of various normalizing schemes for

VLAD. The plots show the standard deviation (i.e. energy) of the

values for each dimension of VLAD across all images in the Hol-

idays dataset; the green lines delimit blocks of VLAD associated

with each cluster center. It can be observed that the energy is

strongly concentrated around only a few components in the VLAD

vector under the original L2 normalization scheme (3a). These

peaks strongly influence VLAD similarity scores, and SSR does

indeed manage to discount their effect (3b). However, even with

SSR, it is clear that the same few components are responsible for

a significant amount of energy and are still likely to bias similar-

ity scores. (c) Intra-normalization completely alleviates this effect

(see section 4). The relative improvement in the retrieval perfor-

mance (mAP) is 7.2% and 13.5% using innorm compared to SSR

and VLAD, respectively. All three experiments were performed on

Holidays with a vocabulary of size k = 64 (small so that the com-

ponents are visible) learnt on Paris with cluster center adaptation.

Results. As shown in figure 2, intra-normalization (in-

norm) combined with center adaptation (adapt) always im-

proves retrieval performance, and consistently outperforms

other VLAD normalization schemes, namely the original

VLAD with L2 normalization and SSR. Center adaptation

with intra-normalization (adapt+innorm) significantly out-

performs the next best method (which is adapt+SSR); the

average relative improvement on Oxford 5k and Holidays

is 4.7% and 6.6%, respectively. Compared to SSR without

center adaptation our improvements are even more evident:

35.5% and 27.2% on Oxford 5k and Holidays, respectively.

5. Multiple VLAD descriptors

In this section we investigate the benefits of tiling an im-

age with VLADs, instead of solely representing the image

by a single VLAD. As before, our constraints are the mem-

ory footprint and that any performance gain should not in-

volve returning to the original SIFT descriptors for the im-

age. We target objects that only cover a small part of the

image (VLAD is known to have inferior performance for

these compared to BoW), and describe first how to improve

their retrieval, and second how to predict their localization

and scale (despite the fact that VLAD does not store any

spatial information).

The multiple VLAD descriptors (MultiVLAD) are ex-

tracted on a regular 3 × 3 grid at three scales. 14 VLAD

descriptors are extracted: nine (3 × 3) at the finest scale,

four (2 × 2) at the medium scale (each tile is formed by

2×2 tiles from the finest scale), and one covering the entire

image. At run time, given a query image and region of in-

terest (ROI) covering the queried object, a single VLAD is

computed over the ROI and matched across database VLAD

descriptors. An image in the database is assigned a score

equal to the maximum similarity between any of its VLAD

descriptors and the query.

As will be shown below, computing VLAD descriptors

at fine scales enables retrieval of small objects, but at the

cost of increased storage (memory) requirements. However,

with 20 bytes per image [8], 14 VLADs per image amounts

to 28 GB for a 100 million images, which is still a manage-

able amount of data that can easily be stored in the main

memory of a commodity server.

To assess the retrieval performance, additional ROI an-

notation is provided for the Oxford 5k dataset, as the orig-

inal only specifies ROIs for the query images. Objects are

deemed to be small if they occupy less than 300× 300 pix-
els squared. Typical images in Oxford 5k are 1024 × 768,
thus the threshold corresponds to the object occupying up to

about 11% of an image. We measure the mean average pre-

cision for retrieving images containing these small objects

using the standard Oxford 5k queries.

We compare to two baselines a single 128-D VLAD

per image, and also a 14 × 128 = 1792-D VLAD. The

latter is included for a fair comparison since MultiVLAD

requires 14 times more storage. MultiVLAD achieves a

mAP of 0.102, this outperforms the single 128-D VLAD

descriptors, which only yield a mAP of 0.025, and also the

1792-D VLAD which obtains a mAP of 0.073, i.e. a 39.7%

improvement. MultiVLAD consistently outperforms the

1792-D VLAD for thresholds smaller than 4002, and then

is outperformed for objects occupying a significant portion

of the image (more than 20% of it).

Implementation details. The 3 × 3 grid is generated by

splitting the horizontal and vertical axes into three equal

parts. To account for potential featureless regions near im-

age borders (e.g. the sky at the top of many images often

contains no interest point detections), we adjust the outer

boundary of the grid to the smallest bounding box which

contains all interest points. All the multiple VLADs for an

image can be computed efficiently through the use of an in-

tegral image of unnormalized VLADs.
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Figure 4: Variation of VLAD similarity with region overlaps. (b) The value plotted at each point (x, y) corresponds to the VLAD

similarity (scalar product between two VLADs) between the VLAD of the region of interest (ROI) in (a) and the VLAD extracted from

the 200 × 200 pixel patch centered at (x, y). (c) The proportion of each patch from (b) that is covered by the ROI from (a). (d) Residuals

obtained by a linear regression of (c) to (b). (e) A 1-D horizontal slice through the middle of (b) and (c). Note that residuals in (d) and (e)

are very small, thus VLAD similarities are very good linear estimators of region overlap.

Figure 5: Fine versus greedy localization. Localized object:

ground truth annotation (green); greedy method (red dashed rect-

angles); best location using the fine method of section 5.1 (yellow

solid rectangles).

5.1. Fine object localization

Given similarity scores between a query ROI and all the

VLADs contained in the MultiVLAD of a result image, we

show here how to obtain an estimate of the corresponding

location within the result image. To motivate the method,

consider figure 4 where, for each 200× 200 subwindow of

an image, VLAD similarities (to the VLAD of the target

ROI) are compared to overlap (with the target ROI). The

correlation is evident and we model this below using linear

regression. The procedure is similar in spirit to the interpo-

lation method of [17] for visual localization.

Implementation details. A similarity score vector s is

computed between the query ROI VLAD and the VLADs

corresponding to the image tiles of the result image’s Mul-

tiVLAD. We then seek an ROI in the result image whose

overlap with the image tiles matches these similarity scores

under a linear scaling. Here, overlap v(r) between an ROI

r and an image tile is computed as the proportion of the im-

age tile which is covered by the ROI. The best ROI, rbest, is

determined by minimizing residuals as

rbest = argmin
r

min
λ

||λv(r)− s|| (2)

where any negative similarities are clipped to zero. Re-

gressed overlap scores mimic the similarity scores very

well, as shown by small residuals in figure 4d and 4e.

Note that given overlap scores v(r), which are easily

computed for any ROI r, the inner minimization in (2) can

be solved optimally using a closed form solution, as it is a

simple least squares problem: the value of λ which mini-

mizes the expression for a given r is λ = s
T
v(r)

v(r)Tv(r) .

To solve the full minimization problem we perform a

brute force search in a discretized space of all possible rect-

angular ROIs. The discretized space is constructed out of

all rectangles whose corners coincide with a very fine (30

by 30) regular grid overlaid on the image, i.e. there are 31

distinct values considered for each of x and y coordinates.

The number of all possible rectangles with non-zero area is
(

31
2

)2
which amounts to 216k.

The search procedure is very efficient as least squares

fitting is performed with simple 14-D scalar product com-

putations, and the entire process takes 14 ms per image on

a single core 3 GHz processor.

Localization accuracy. To evaluate the localization quality

the ground truth and estimated object positions and scales

are compared in terms of the overlap score (i.e. the ratio be-

tween the intersection and union areas of the two ROIs), on

the Oxford 5k dataset. In an analogous manner to comput-

ing mean average precision (mAP) scores for retrieval per-

formance evaluation, for the purpose of localization evalu-

ation the average overlap score is computed for each query,

and averaged across queries to obtain the mean average

overlap score.

For the region descriptors we use MultiVLAD descrip-

tors with center adaptation and intra-normalization, with

multiple vocabularies trained on Paris and projected down

to 128-D. This setup yields a mAP of 0.518 on Oxford 5k.

The fine localization method is compared to two base-

lines: greedy and whole image. The whole image baseline

returns the ROI placed over the entire image, thus always

falling back to the “safe choice” and producing a non-zero

overlap score. For the greedy baseline, the MultiVLAD re-

trieval system returns the most similar tile to the query in

terms of similarity of their VLAD descriptors.

The mean average overlap scores for the three systems

are 0.342, 0.369 and 0.429 for the whole image, greedy and



Method Holidays Oxford 5k

BoW 200k-D [9, 16] 0.540 0.364

BoW 20k-D [9, 16] 0.452 0.354

Improved Fisher [12] 0.626 0.418

VLAD [8] 0.526 -

VLAD+SSR [9] 0.598 0.378

Improved det/desc: VLAD+SSR [9] - 0.532

This paper: adapt+innorm (mean) 0.646 0.555

This paper: adapt+innorm (single best) 0.653 0.558

Table 1: Full size image descriptors (i.e. before dimensionality

reduction): comparison with state-of-the-art. Image descrip-

tors of medium-dimensionality (20k-D to 32k-D) are compared

in terms of retrieval performance (mAP) on the Oxford 5k and

Holidays benchmarks. Reference results are obtained from the pa-

per of Jégou et al. [9]. For fair comparison, we also include our

implementation of VLAD+SSR using the detector [10] and de-

scriptor [1] which give significant improvements on the Oxford 5k

benchmark. The mean results are averaged over four different runs

(corresponding to different random initializations of k-means for

vocabulary building), and the single best result is from the vocab-

ulary with the highest mAP.

fine respectively; the fine method improves the two base-

lines by 25% and 16%. Furthermore, we also measure the

mean average number of times that the center of the es-

timated ROI is inside the ground truth ROI, and the fine

method again significantly outperforms others by achieving

a score of 0.897, which is a 28% and 8% improvement over

whole image and greedy, respectively. Figure 5 shows a

qualitative comparison of fine and greedy localization.

6. Results and discussion

In the following sections we compare our two improve-

ments of the VLAD descriptor, namely cluster center adap-

tation and intra-normalization, with the state-of-the-art.

First, the retrieval performance of the full size VLAD de-

scriptors is evaluated, followed by tests on more compact

descriptors obtained using dimensionality reduction, and

then the variation in performance using vocabularies trained

on different datasets is evaluated. Finally, we report on

large scale experiments with the small descriptors. For

all these tests we used RootSIFT descriptors clustered into

k = 256 coarse clusters, and the vocabularies were trained

on Paris and Flickr60k for Oxford 5k(+100k) and Holi-

days(+Flickr1M), respectively.

Full size VLAD descriptors. Table 1 shows the perfor-

mance of our method against the current state-of-the-art for

descriptors of medium dimensionality (20k-D to 30k-D).

Cluster center adaptation followed by intra-normalization

outperforms all previous methods. For the Holidays dataset

we outperform the best method (improved Fisher vec-

tors [12]) by 3.2% on average and 4.3% in the best case,

and for Oxford 5k we achieve an improvement of 4.3% and

4.9% in the average and best cases, respectively.

Method Holidays Oxford 5k

GIST [9] 0.365 -

BoW [9, 16] 0.452 0.194

Improved Fisher [12] 0.565 0.301

VLAD [8] 0.510 -

VLAD+SSR [9] 0.557 0.287

Multivoc-BoW [5] 0.567 0.413

Multivoc-VLAD [5] 0.614 -

Reimplemented Multivoc-VLAD [5] 0.600 0.425

This paper: adapt+innorm 0.625 0.448

Table 2: Low dimensional image descriptors: comparison

with state-of-the-art. 128-D dimensional image descriptors are

compared in terms of retrieval performance (mAP) on the Oxford

5k and Holidays benchmarks. Most results are obtained from the

paper of Jégou et al. [9], apart from the recent multiple vocabulary

(Multivoc) method [5]. The authors of Multivoc do not report the

performance of their method using VLAD on Oxford 5k, so we

report results of our reimplementation of their method.

Small image descriptors (128-D).We employ the state-of-

the-art method of [5] (Multivoc) which uses multiple vocab-

ularies to obtain multiple VLAD (with SSR) descriptions of

one image, and then perform dimensionality reduction, us-

ing PCA, and whitening to produce very small image de-

scriptors (128-D). We mimic the experimental setup of [5],

and learn the vocabulary and PCA on Paris 6k for the Ox-

ford 5k tests. For the Holidays tests they do not specify

which set of 10k Flickr images are used for learning the

PCA. We use the last 10k from the Flickr1M [6] dataset.

As can be seen from table 2, our methods outperform

all current state-of-the-art methods. For Oxford 5k the im-

provement is 5.4%, while for Holidays it is 1.8%.

Effect of using vocabularies trained on different

datasets. In order to assess how the retrieval performance

varies when using different vocabularies, we measure the

proportion of the ideal mAP (i.e. when the vocabulary is

built on the benchmark dataset itself) achieved for each of

the methods.

First, we report results on Oxford 5k using full size

VLADs in table 3. The baselines (VLAD and VLAD+SSR)

perform very badly when an inappropriate (Flickr60k)

vocabulary is used achieving only 68% of the ideal

performance for the best baseline (VLAD+SSR). Using

adapt+innorm, apart from improvingmAP in general for all

vocabularies, brings this score up to 86%. A similar trend is

observed for the Holidays benchmark as well (see figure 2).

We next report results for 128-D descriptors where,

again, in all cases Multivoc [5] is used with PCA to per-

form dimensionality reduction and whitening. In addition

to the residual problems caused by an inconsistent vocabu-

lary, there is also the extra problem that the PCA is learnt

on a different dataset. Using the Flickr60k vocabulary with

adapt+innorm for Oxford 5k achieves 59% of the ideal per-

formance, which is much worse than the 86% obtained



Method \vocabulary Ox5k Paris Flickr60k

VLAD 0.519 0.508 (98%) 0.315 (61%)

VLAD+SSR 0.546 0.532 (97%) 0.374 (68%)

VLAD+adapt 0.519 0.516 (99%) 0.313 (60%)

VLAD+adapt+SSR 0.546 0.541 (99%) 0.439 (80%)

VLAD+adapt+innorm 0.555 0.555 (100%) 0.478 (86%)

Table 3: Effect of using different vocabularies for the Oxford

5k retrieval performance. Column one is the ideal case where

retrieval is assessed on the same dataset as used to build the vocab-

ulary. Full size VLAD descriptors are used. Results are averaged

over four different vocabularies for each of the tests. The propor-

tion of the ideal mAP (i.e. when the vocabulary is built on Oxford

5k itself) is given in brackets.

with full size vectors above. Despite the diminished per-

formance, adapt+innorm still outperforms the best baseline

(VLAD+SSR) by 4%. A direction of future research is to

investigate how to alleviate the influence of the inappropri-

ate PCA training set, and improve the relative performance

for small dimensional VLAD descriptors as well.

Large scale retrieval. With datasets of up to 1 million im-

ages and compact image descriptors (128-D) it is still pos-

sible to perform exhaustive nearest neighbor search. For

example, in [5] exhaustive search is performed on 1 mil-

lion 128-D dimensional vectors reporting 6 ms per query

on a 12 core 3 GHz machine. Scaling to more than 1 mil-

lion images is certainly possible using efficient approximate

nearest neighbor methods.

The same 128-D descriptors (adapt+innorm VLADs re-

duced to 128-D using Multivoc) are used as described

above. On Oxford 105k we achieve a mAP of 0.374, which

is a 5.6% improvement over the best baseline, being (our

reimplementation of) Multivoc VLAD+SSR. There are no

previously reported results on compact image descriptors

for this dataset to compare to. On Holidays+Flickr1M,

adapt+innorm yields 0.378 compared to the 0.370 of Mul-

tivoc VLAD+SSR; while the best previously reported mAP

for this dataset is 0.370 (using VLAD+SSR with full size

VLAD and approximate nearest neighbor search [9]). Thus,

we set the new state-of-the-art on both datasets here.

7. Conclusions and recommendations

We have presented three methods which improve stan-

dard VLAD descriptors over various aspects, namely clus-

ter center adaptation, intra-normalization and MultiVLAD.

Cluster center adaptation is a useful method for large

scale retrieval tasks where image databases grow with time

as content gets added. It somewhat alleviates the influence

of using a bad visual vocabulary, without the need of re-

computing or storing all local descriptors.

Intra-normalization was introduced in order to fully sup-

press bursty visual elements and provide a better measure

of similarity between VLAD descriptors. It was shown to

be the best VLAD normalization scheme. However, we

recommend intra-normalization always be used in conjunc-

tion with a good visual vocabulary or with center adaptation

(as intra-normalization is sometimes outperformed by SSR

when inconsistent clusters are used and no center adaptation

is performed). Although it is outside the scope of this paper,

intra-normalized VLAD also improves image classification

performance over the original VLAD formulation.
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