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Applying conventional reinforcement to complex domains requires the use of an

overly simplified task model, or a large amount of training experience. This problem

results from the need to experience everything about an environment before gaining

confidence in a course of action. But for most interesting problems, the domain is far too

large to be exhaustively explored. We address this disparity with reward shaping – a

technique that provides localized feedback based on prior knowledge to guide the

learning process. By using localized advice, learning is focused into the most relevant

areas, which allows for efficient optimization, even in complex domains.

We propose a complete theory for the process of reward shaping that demonstrates

how it accelerates learning, what the ideal shaping rewards are like, and how to express

prior knowledge in order to enhance the learning process. Central to our analysis is the

idea of the reward horizon, which characterizes the delay between an action and accurate

estimation of its value. In order to maintain focused learning, the goal of reward shaping

is to promote a low reward horizon. One type of reward that always generates a low

reward horizon is opportunity value. Opportunity value is the value for choosing one

action rather than doing nothing. This information, when combined with the native

rewards, is enough to decide the best action immediately. Using opportunity value as a

model, we suggest subgoal shaping and dynamic shaping as techniques to communicate

whatever prior knowledge is available.

We demonstrate our theory with two applications: a stochastic gridworld, and a

bipedal walking control task. In all cases, the experiments uphold the analytical

predictions; most notably that reducing the reward horizon implies faster learning. The

bipedal walking task demonstrates that our reward shaping techniques allow a

conventional reinforcement learning algorithm to find a good behavior efficiently despite

a large state space with stochastic actions.
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CHAPTER1

Introduction

Most research in comparative psychology accepts that the conditioning process

is of wide generality, common at least to most vertebrates, and allows them to

learn about the important contingencies in their environment – what events

predict danger, what signs reliably indicate the availability of food, how to take

effective action to avoid predators or capture prey; in short, to learn about the

causal structure of their world. – Nicholas J. Mackintosh [1999]

Conditioning is a learning process common to many forms of life that develops an

association between a behavior and an unconditional stimulus given experiences in which

the two are closely paired. The famous example of conditioning is the Skinner box, in

which an animal learns to press on levers to either receive food, or avoid being shocked.

The unconditional stimulus, such as food or shock, is known as the reinforcer. The ability

to associate cause and effect by means of the reinforcer is a basic learning process

allowing many organisms to optimize behavior according to their environment.

While in the general setting, conditioning serves to create simple cause and effect

mappings, it can also be used to develop complex behaviors with strategic application.

Shaping is a variant of operant conditioning that rewards any action resulting in progress

toward a target behavior. For example, rather than waiting for an animal to accidentally

discover that pressing a lever drops out food, feeding the animal when it approaches the

lever can build the target behavior faster. As the relationship between the ultimate goal

presented by the reinforcer, and the individual actions that make up the desired behavior
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becomes less immediate, conditioning is less likely to be successful simply because the

correlation between behavior and reinforcement is no longer apparent. Shaping alleviates

such occurrences by involving each action with its own reinforcer, implementing

conditioning on a local scale.

For this reason, we believe that the incorporation of prior knowledge is the key to

efficiently training artificial intelligence (AI) agents to learn complex concepts. Many

tasks that are simple for people to learn implicitly rely on pre-conditioned behaviors. For

example navigating a new building to find a particular room is greatly impacted by

knowledge of what elevators do, where stairwells are typically located, and the

relationship between a room number and its location. When the same problem is

attempted by an AI agent, it is traditionally expressed as a simple mathematical model,

devoid of many of the external stimuli that trigger conditioned responses. While the basic

coordinates of the agent within the building are given in a state description, other

characteristics of the problem, such as the ringing noise as the elevator arrives, the

stairway signs, and the building directory, are left out. The problem is that, although these

factors are important, there are significantly more that are not. Therefore, a minimal task

description has the considerable advantage of simplicity and conciseness, but inherently

complicates the desired behavior. To allow for efficient learning in these circumstances,

advice that conveys relevant pre-conditioned behaviors can be used to shape the

underlying task model into one in which the correlation between individual actions and

the ultimate reinforcer is effectively communicated.

This work investigates the use of shaping to enhance conventional reinforcement

learning (RL) techniques. Reinforcement learning is a computational method for

optimizing behavior in an unknown environment by executing actions and experiencing

the consequent rewards. Because of its basis on the conditioning of an action to every

state through reward feedback, reinforcement learning can readily accept the advice

shaping has to offer. A shaping strategy can convey the intended behavior to the learning

agent by ensuring that the feedback from each individual action is consistent with the

performance of the behavior it produces. For example, shaping would reward an action

that brought an animal closer to the feeding lever, while penalizing an action that did
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nothing, or even moved away. The same approach can be directly implemented into

reinforcement learning by adding artificial shaping rewards to the native task rewards.

Because rewards are already part of reinforcement learning, and they also fit the role

of the reinforcer for shaping, they are a natural means of communicating prior

knowledge. However, the practice of reward shaping for reinforcement learning also

faces several challenges. How can we characterize shaping rewards that are guaranteed to

accelerate the learning process? The process of conditioning points toward a strong

association between feedback and the intended behavior. What type of information

should shaping rewards convey? For rewards to relate accurate feedback, they should

describe more than just the immediate gain or loss for taking an action. How can prior

knowledge be formulated as rewards that impart the appropriate shaping information? It

is not always apparent that general concepts describing intended behaviors can be

translated into meaningful numeric rewards.

We address the concerns of applying prior knowledge through artificial rewards with

a theory of reward shaping. Our analytical results establish a formal structure with which

to interpret the improvement provided by shaping rewards. A critical concept that

characterizes the strength of the shaping approach is the reward horizon. The horizon

represents the delay between executing an action and understanding its true value. As the

horizon is reduced, the disparity between behavior and reinforcer is lessened, and

therefore learning can progress at a faster rate. This result implies that the goal of shaping

is to reduce the reward horizon. The ideal quantity that can accomplish this is opportunity

value – the benefit in achieving the resultant state of an action over the initial state.

Shaping with opportunity value not only enforces the lowest possible reward horizon of

one, but also preserves optimality. With these concepts in mind, we show several

techniques to approximate the opportunity value, given the available prior knowledge.

We demonstrate the use of reward shaping in reinforcement learning through

experimentation in two domains. The first is a standard test domain for reinforcement

learning: a stochastic gridworld. We use this problem to demonstrate empirically the

analytical results and thereby verify our theory of shaping. In addition we explore the

control task of driving a bipedal walking mechanism to maximize average walking speed.
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This second task demonstrates how to use reward shaping to condition a complex

behavior using a conventional reinforcement learner, task experience, and simple prior

knowledge.
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CHAPTER2

Reward Shaping

Reward shaping for reinforcement learning is the natural extension of the concept of

operation conditioning from psychology to the computation-oriented view of machine

learning. Reward shaping attempts to mold the conduct of the learning agent by adding

additional localized rewards that encourage a behavior consistent with some prior

knowledge. As long as the intended behavior corresponds to good performance, the

learning process will lead to making good decisions. And because the shaping rewards

offer localized advice, the time to exhibit the intended behavior can be greatly reduced.

This chapter provides background information on reinforcement learning, defines the

process of reward shaping, and outlines the contributions of this research.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm for learning in an

unknown environment based on reward feedback. The environment is unknown in the

sense that the learning agent knows neither the effects of its actions nor the value of those

effects until after performing them. Within this unknown setting, agents face the task of

learning the best sequences of decisions that maximize the total achieved reward.

Reinforcement learning has been successfully used in tasks like playing backgammon

[Tesauro, 1992], riding a bicycle [Randløv & Alstrøm, 1998], and making taxi fares

[Dietterich, 2000]. However, without the use of prior knowledge, such successes usually

involve a simplified model of the task, or a large amount of experience of the domain.
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Figure 2.1. A Conventional Reinforcement Learning Approach

The challenge placed before reinforcement learning in many interesting problems is a

daunting one: to optimize expected behavior over a large state space for which transitions

and rewards between states are unknown, and potentially random.

The reinforcement learning task is to achieve maximum expected, discounted reward

in a Markov decision process (MDP). A Markov decision process is given its name

because it must uphold the Markov property, which states that the choice of the best

decision at any time only depends on the current state. A common MDP model of the

task environment is a collection of six elements, },,,,,{ ITRAS γ : the set of states S, the

set of actions A, the reward distributions R, the transition probabilities T, the discount

factorγ, and the distribution of initial states I. States and actions are the basic elements of

the problem, indicating where the agent is, and what it may attempt. The reward

distribution draws a random reward from the distribution determined by a state, action,

next state triple (s, a, s′). Likewise, the transition probabilities map state, action pairs, to a

distribution which returns a random next state. The discount factor allows for the

devaluation of future rewards by setting its value less than one. The initial states

determine where the agent will start its interaction with the process.

A policy is a function that maps states to actions. The goal of the agent is to find a

policy that achieves maximal expected discounted total reward by learning from

experience of outcomes in the process. Figure 2.1 illustrates the basic reinforcement

learning process. For each step in the learning process, the agent chooses an action and

transitions to a new state by the dynamics of the domain modeled in the transition

distributions T. Each transition provides some reward based on the native reward

function R. This experience provides the learner with information to update not only the

usefulness the starting state of that transition, but also to update the usefulness of its

previous behavior, which allowed the agent to reach the start state. After using this

example
(s, a, s’ transition) R native reward

update
policy
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information to update the current policy, the agent, based on its exploration strategy and

current policy, picks another action to execute.

Several aspects of reinforcement learning make it a challenging task, including a

large state space, randomness, and lack of supervision. As is common for state

descriptions, the set of states is usually described by the value of a set of features.

Consequently, the size of the state space is exponential in the number of these features.

This poses difficulties for conventional approaches that require storing values for all

states (or even state, action pairs). Furthermore, current approaches require a polynomial

number of visits to every state for convergence [Kearns & Singh, 1998; Brafman &

Tennenholtz, 2002]. Randomness can also hinder the learning process, since executing

one action from the same state, may have stochastic consequences. In particular, not only

are transitions potentially random, but also the reward experienced for an individual

transition may be random. Successful exploration of such random events necessarily

requires repeated sampling of the same state in order to characterize the randomness with

some degree of confidence. But perhaps the biggest challenge is known as the temporal

credit assignment problem. This problem is the task of determining how the total reward

experienced from a policy relates to the individual decisions. Since the task is not directly

supervised, the agent must rank decisions on its own, in essence determining local

utilities from the global feedback of a policy. Reinforcement learning is faced with

obtaining numerous samples of random feedback from each state and then developing a

global understanding of how to act such that its behavior is optimal in the long run.

Although many techniques demonstrate empirical success, few are able to address

the challenges of reinforcement learning in a general setting, and as a result there is a

problem with scaling reinforcement learning to complex domains. In their survey on

reinforcement learning, Kaelbling, Littman, and Moore [1996] conclude with the

following remarks:

There are a variety of reinforcement-learning techniques that work effectively

on a variety of small problems. But very few of these techniques scale well to

larger problems. This is not because researchers have done a bad job of

inventing learning techniques, but because it is very difficult to solve arbitrary
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problems in the general case. In order to solve highly complex problems, we

must give uptabula rasalearning techniques and begin to incorporate bias that

will give leverage to the learning process.

It is precisely for this reason that we investigate reward shaping. Shaping expresses

prior knowledge through rewards as a means to condition good behavior. Since prior

knowledge is commonly available, and reward is universal to reinforcement learning,

shaping shows promise as a general technique for solving larger tasks. But it is crucial

that we understand how it works in order to guarantee that the successes of shaping are

more than solutions to a variety of small problems. By providing a foundation of

theoretical results, we take the first steps to promote shaping as a robust method for

applying the bias that is needed to succeed in complex problems of diverse domains.

2.2 Shaping with Rewards

The technique of reward shaping works to alleviate the temporal credit assignment

problem by making the correct behavior apparent through localized advice. The localized

advice is applied via a shaping function, F, which acts similarly to the native reward

function R. On each transition, the shaping function makes some judgment on the

experience, and returns a corresponding reward value. The goal of shaping is to make use

of prior knowledge to correctly lead the agent toward good performance overall, thereby

accelerating the process of converging to an acceptable policy.

Reward shaping can be directly applied to reinforcement learning by adding the

shaping rewards to the native rewards after every transition (Figure 2.2). Consequently,

the process of shaping is equivalent to learning in a more supportive environment. The

new environment is the transformation of the native MDP to a shaped MDP with

augmented rewards. Using the notation for a Markov decision process, the native MDP

},,,,,{ ITRASM γ= is converted to the shaped MDP },,,,,{' ITFRASM γ+= . Any

conventional RL algorithm can be used on the shaped process M′, just as if it were a

separate problem. Successful shaping transforms the native process M such that the

shaped process is easier to learn, but still preserves the optimal policy of M.
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Figure 2.2. Reinforcement Learning with Reward Shaping

2.3 Contributions

The primary contribution of this work is the first comprehensive theory on the field

of reward shaping. The main areas of interest are:

1. An analysis of the effects of reward shaping on the speed of reinforcement

learning. We conclude that the reward horizon is the important parameter that

relates the effectiveness of shaping, and prove that it has the strongest influence

on running time for a simple reinforcement learning algorithm. Furthermore,

when learning makes use of the reward horizon, it is possible to learn an

approximately optimal policy in time that does not depend on the size of the state

space, but rather on the number of states within the horizon.

2. The definition of an ideal shaping reward. We prove that opportunity value is the

ideal shaping reward in the sense that it will reduce the reward horizon to one, and

preserve the optimal solution of the native task.

3. Several practical shaping techniques to employ imperfect and imprecise prior

knowledge to approximate opportunity value. Among these are subgoal shaping

and dynamic shaping which demonstrate the potential to accelerate learning by

reducing the reward horizon with localized advice.

4. Two experimental investigations into the application of reward shaping. We

conduct experiments in a stochastic gridworld, and bipedal walking task. These

experiments validate our analytical claims and provide evidence to support the

use of our practical shaping techniques.

example
(s, a, s’ transition)

R native reward

shaping reward

update
policy

F
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CHAPTER3

The Reward Horizon

The capacity to adapt and learn quickly depends on accurate judgments of

performance that criticize deficient areas and offer advice of how to improve. This idea is

especially relevant for reinforcement learning (RL), where the rewards that provide

judgments can range from misleading to perfect guidance. Naturally, such a range of

possibilities impacts the ability to learn quickly. In this chapter, we define the reward

horizon, a metric that summarizes the varied inaccuracies of the judgments of individual

rewards. Because it captures the quality of the feedback of a task, the reward horizon also

describes the rate at which the process as a whole can be learned.

Policy acquisition in reinforcement learning can be viewed as solving a set of

classification learning tasks, but with several significant complications. The learning

tasks are to label each state (or state-action pair) with its utility. The primary

complications in solving this task are that the training feedback on a state classification is

ambiguous and delayed. The ambiguity is a result of the stochastic nature of the problem.

When executing the policy for a given state, both the next state and the reward

experienced may be random. A higher variance for either the next state or the reward

makes any estimate of the utility less confident. Delayed feedback [Tesauro, 1992] results

from reward schemes that separate a decision from a good estimate of its return with

several intermediate actions. For example, playing a game of backgammon with a reward

of one for winning and zero otherwise, introduces a delay between decision and

feedback. As the delay increases, the number of reachable states and potentially relevant

rewards can increase exponentially. And since utility is the maximum expected value
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over these rewards, a reliable estimate may require exponentially more samples as the

delay increases.

We encapsulate the factors that complicate learning in the notion of the reward

horizon. The reward horizon is a measure of the number of decisions a learning agent

must make before experiencing accurate feedback. The reward horizon determines a

boundary around each state such that, given a reasonable amount of experience within the

boundary, a good action can be reliably chosen. Therefore, as the horizon shrinks, the

ambiguity and delay of the reward process must also decrease. And as these

complications are reduced, so is the difficulty of learning. In this way, we identify low

reward horizons with easy-to-learn Markov decision processes (MDPs).

3.1 A Path-Based Perspective

The reward horizon requires that the total reward within a bounded region of states

provides the same decision ordering as the global return of the process. One way to

understand this concept more formally is to cast reinforcement learning concepts into a

path-based frame work. Within a finite horizon, each path is rated by a discounted sum of

local rewards. Local utilities are the expectation of the finite path sums over the

distribution of paths resulting from applying the optimal policy. The critical property that

makes a problem easy to solve is that the local utilities reflect good performance on a

global scale. In other words, local utilities must rank their initial decisions according to

the global utilities. The transition from finite path sums, to local utilities, to global

utilities illustrates the process we use to identify the reward horizon of a MDP.

Finite path sums are the discounted total of all rewards along a bounded sequence of

transitions. In the reward shaping framework, this means using the sum of all the native

rewards from the function R, and all the shaping rewards from the function F. The

shaping function transforms the native process M, which optimizes using only R, to a

new process Mÿ, which optimizes R+F. To analyze the effectiveness of the shaping

function, we look at the discounted total return of R+F over a finite path. A path p, of

length n, is written p = (s0 a0, s1 a1, … sn), where each si is the state reached after i

actions, and ai is the action executed in state si. Each state, action, next state triple along
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the path determines both native and shaping rewards: Ri = R(si, ai, si+1) and likewise Fi =

F(si, ai, si+1). W use R(si, ai, si+1) to denote the mean reward for the transition, rather than

random output of the corresponding reward distribution. Using this notation, we have a

compact description of finite path sums.

Definition 3.1 Thefinite path sumof a path p = (s0 a0, s1 a1, … sn) is

( )ÿ
−

=

−−
−

−−
−
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++++=
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It is also useful to describe the distribution of paths driven by a given policy. A path

of length n, driven by policyπ is p = (s0 π(s0), s1 π(s1), … sn). If we consider p a random

variable drawn from all possible paths that start in state s0 and execute the policyπ for n

steps, then its distribution is writtenπ
0sP . Likewise it is useful to consider the distribution

of paths that first execute some action a, and then follow policyπ. We denote such a

distribution π
a,s0

P .

We can write the traditional RL utilities as the expectation of path sums over these

distributions. These utilities are the expected path sums over the distribution of paths that

executes the global optimal policy of the shaped process,*
M'� . Because they are the

expected sum of an infinite (discounted) series of rewards, and thus encompass the entire

problem, we describe these utilities as global.

Definition 3.2 The global state utility for executing the global optimal policy
*
M'

* �=π , starting in state s, in the MDP Mÿ is
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Definition 3.3 The global Q-valuefor executing action a in state s, and then the

global optimal policy *
M'

* �=π , in the MDP Mÿ is
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Notation Scope Process Description

)(sV , ),( asQ Global Shaped Utility

)(sVn , ),( asQn Local Shaped Utility

)(sV M , ),( asQM Global Native Utility

*π Global Shaped Optimal Policy
*

)(' sM n
π Local Shaped Optimal Policy

*
Mπ Global Native Optimal Policy

Table 3.1. Utility and Policy Notation

Although traditional utilities are infinite sums, localized learning will only

experience finite path sums. We call the expected return of the finite path sums local

utility. Let *
(s)M'n

� denote the policy for the MDP Mÿ that maximizes the total expected,

discounted return from performing n actions starting in state s. The policy*
(s)M'n

� is a

local optimal policy, making its decisions from only a limited region of the entire

process. Local utilities are the expected finite path sums over the distribution of paths that

executes local optimal policy of the shaped process.

Definition 3.4 The local state utility for executing the local optimal policy
*

(s)M'
*

n
�=π , starting in state s, in the MDP Mÿ is
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Definition 3.5 The local Q-valuefor executing action a in state s, and then the local

optimal policy *
(s)M'

*
n

�=π , in the MDP Mÿ is
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As our discussion ranges across native and shaped processes on both local and global

scales, we simplify notation by assuming that utilities and policies relate to the shaped

MDP unless otherwise written. Table 3.1 summarizes the notation, and any deviations

from this method will be made explicitly noted. For this notation, the shaped process Mÿ

is implied, and the subscript “n” indicates local scope.
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Another useful quantity is path utility. Path utility is the total return for following a

finite length path, and then following the global optimal policy. Path utility defines the

exact value of following a specific path. Therefore path utility characterizes the ideal

feedback for a sequence of actions. A reward scheme whose finite path sums rank paths

according to their path utilities gives accurate feedback.

Definition 3.6 Thepath utility for following a path p of length n in the MDP Mÿ is

)()()()()(
1

0
n

n
n

i
ii

i
n

n
n sVFRsVpSpV γγγ ++=+= ÿ

−

=

The path utility becomes a useful intermediate term to describe both the global state

utility and the global Q-value. Taking the expectation over
*

sPπ , E[V(p)] = V(s). Also,

taking the expectation over
*

as,Pπ , E[V(p)] = Q(s, a). If the local optimal policy makes the

same decisions as the global optimal policy, then the expected path utility shows that the

global utilities are local utilities, E[Sn(p)], plus the expected discounted utilities of the

terminal states, E[γn V(sn)]. This property suggests a way to create a good shaping

function. If the sum of the shaping function along each path is equal to the native utility

of the final (nth) state, then the finite path sums in the shaped process will be path utilities

of the native process, and therefore convey accurate feedback. Chapter 4 discusses this

idea of inducing a reward horizon in more detail, but this concept is rooted in the idea

that the path utility defines accurate feedback. Because of this idea, a path-based

perspective gives insight into a successful shaping process.

3.2 Defining the Horizon

The central idea that allows rewards to accelerate learning is that good advice will

reduce the length of the finite path sums that provides accurate judgments. The important

bound in this context is the minimum length that allows the finite path sums to remain

informative. The reward horizon is the property of the reward structure that determines

this bound. Choosing a good action from the reward and transition information inside the

horizon yields a good action for the global process. Furthermore, the process of choosing

a good action, locally, can be done efficiently. Therefore, the reward horizon allows a
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process to be broken into local sub-problems, which focuses experience on relevant areas

and improves the learning rate.

A complete optimal policy maps every state to the action that promotes the highest

expected, discounted total reward. However, in many cases the Markov process that

results from applying the optimal policy will not visit all of the state space. Spending

time to optimize behavior for those states that are very unlikely to be reached

unnecessarily complicates the learning process. For example, a tennis player will not

spend time training how to return an opponent’s smash while facing backwards.

Although this is a possible configuration in the state space, it is hardly necessary to

optimize in order to perform well. We can describe the set of all useful states as those that

may be reached by following the optimal policy from any of the possible initial states.

This set of states is the ideal critical region for the MDP.

Definition 3.7 The ideal critical region, CR, of an MDP M, is the set of all states

that may be reached by starting in any initial state of M, and executing the optimal

policy.

The ideal critical region is another way viewing convergence to the optimal policy.

We have an optimal solution if we can (1) identify all states in the ideal critical region,

and (2) make the optimal decision for each of these states. Notice that this region can be

small in many cases. For deterministic cases, it is only the length of that path from the

initial state to the goal state, or the length of the highest return cycle. Otherwise, the CR

grows with the randomness imparted by the transition probabilities.

Our goal is to identify an approximately optimal policy, which achieves a total

expected return withinε of the optimal. Because these policies make different choices

than the optimal, they may visit a different subset of the state space when executed.

However, it is sufficient to know only one such subset. Therefore, we refer to a critical

region as a subset of the state space that is reachable from any initial state executing any

near-optimal policy.

Definition 3.8 A critical region of an MDP M, is the set of all states that may be

reached by starting in any initial state of M, and executing one near-optimal policy.
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Figure 3.1. The Reward Horizon, H, and a Critical Region for an Example State Space
with Start State S and Terminal State G

We focus on convergence by learning a critical region in steps: looking at a local

piece of the MDP to optimize one state, and in turn growing a working set that

approximates the region. Figure 3.1 shows the Markov process (using arrows) resulting

from applying a near optimal policy starting from state S. Each local problem is

determined by a start state and a maximum number of actions to be executed from the

state, H. To learn the best action for the start state, the agent gets information within the

region bounded by H. After sufficient exploration of this region, the next state in the

critical region is chosen. This process continues until an entire critical region (dark grey)

is found by exploring all the horizon bounded states (light grey). As long as H allows for

enough information to give accurate feedback, the local choices will perform well on a

global scale. The reward horizon is the minimum of such action limits that allows for the

local problem around any state in the critical region to determine good actions.

The reward horizon has two characteristics that guarantee is ability to specify the

correct and useful size for the local problems. The first is that solving the local problems,

with a maximum number of actions equal to the reward horizon, will find a near-optimal

first action. The second is that this solution process can be done efficiently. The second

characteristic will necessarily follow if we accept that a near-optimal local solution is

sufficient globally. That is, we choose a policyπ, through some process that samples the

information in the horizon-bounded local problem, such that the expected return ofπ is

within ε of the best possible return with probability 1-δ. In this case, the choice ofπ is not

Unexplored State

Explored within H

Critical Region

H
S

G
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arbitrarily hard, and independent to how close competing polices may be. This allowsπ

to be chosen efficiently, and is acceptable as long as the first action ofπ is near-optimal

globally.

Definition 3.9 A MDP M has areward horizonof H, if and only if for every state s

in a critical region of M, choosingâ such that ε≤− )ˆ,()( asQsV HH with

probability δ−1 , implies ε2)ˆ,()( ≤− asQsV with probability δ21− .

The reward horizon has a simple interpretation: selecting an approximately optimal

action from the information in the region bounded by H results in an approximately

optimal return for the entire MDP. The choice to double the final approximation and

chance of failure is not significant; it simply allows for some slack in the translation of

local utilities to global utilities. The reward horizon translates good local performance to

good global performance. This property relates reducing the horizon to providing more

immediate feedback. And this localized advice, in turn, focuses exploration, making the

identification of the critical region easier, and therefore speeding convergence.

3.3 Using the Reward Horizon

We have argued that the reward horizon explains the success of shaping by

describing a minimal search boundary. This section uses knowledge of the reward

horizon to derive the amount of work needed to converge to an approximately optimal

policy. Based on this analysis, we will show that a simple algorithm can learn efficiently,

by disregarding irrelevant parts of the state space.

Any given MDP will have a reward horizon. The reward horizon may be as long as

ε-horizon time [Kearns & Singh, 1998]. Theε-horizon time is the number of steps that

the learner must take before the rest of the discounted future return can be at mostε. In

this case, there is no locality to the rewards; all information is delayed until the end. A

reward horizon equal to theε-horizon time means that no algorithm could pick the best

action until it sees everything in the problem that could have a significant impact on the

total return. On the other extreme, the reward horizon may be one, meaning that the

feedback from a single transition is enough to determine the best decision. More
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commonly, we expect that shaping can transform a reward structure with a large horizon

to one with a lesser value. This ability of shaping with prior knowledge motivates our

research on the reward horizon.

We wish to investigate the effects of learning while exploiting the reward horizon.

The approach we propose is to grow a set of known states that will eventually include

enough states to reliably conclude that the policy computed from these states is very close

to the optimal. In essence, we learn a critical region. Marking a state known indicates that

we have sufficient information to reliably decide on the best action for that state. We

develop known states by solving the relevant local problems bounded by the reward

horizon. Growing the set is a forward-chaining operation; as early actions become fixed,

later elements in the critical region are visited more frequently and subsequently become

known. Once enough states are known, we continue to follow the current policy until

enough evidence is gathered to support termination with a good policy.

Next, we present a learning algorithm that specifies this approach. The remainder of

this section formally specifies and provides an analysis of this algorithm that leads to its

running time. Our analysis discusses in detail how to make a state known, how to learn a

sufficient portion of a critical region, and how to conclude that the algorithm has

converged to an approximately optimal solution.

3.3.1 THE HORIZON _LEARN ALGORITHM

The Horizon-Learn algorithm (Figure 3.2) outlines a general procedure to make use

of the reward horizon for reinforcement learning. The basic process is to estimate the best

action for each state, and mark them known, based on sampling the information in the

local horizon-bounded problem. When enough samples of the transition and reward

structure are experienced, the local problem around a state is solved, and the state

becomes known. As more states become known, the set of all known states begins to

approximate the critical region of the process for some near-optimal policy. Every time a

state is marked known, it will execute the action it has decided is best. Because these

actions are near-optimal by definition of the reward horizon, future exploration is focused

on important states. This efficient use of experience promotes accelerated learning. Once
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Figure 3.2. The Horizon-Learn Algorithm

enough states are marked known, so that many consecutive states visited by the learner

have all been known states, the algorithm has converged, and returns its policy.

On a local level, sampling the unknown transitions (step 6), deciding when a state

has enough information to make a reliable choice of its best action (step 7), and solving

the local problem (step 8) are the core of the learning process. For our analysis, we use a

simple exploration process for local sampling. With a reward horizon of H, each state

samples the return of every H-step policy. When each policy has been sufficiently

sampled, we can confidently choose the best one, satisfying the local performance

requirement of the reward horizon definition. Therefore, the first action of the chosen

local policy is a good one, and we can make the state known. This procedure has an

expensive sampling cost, since no information is shared between local problems.

However, testing if a state becomes known (step 7), and solving for the optimal local

policy (step 8) are easy.

On a global scale, we require that enough states are made known so that we have a

good approximate of a critical region, and thus are confident that the current policy has a

near optimal return with high probability (step 2). In order to make this guarantee, we use

a confidence interval around the expected return of the current policy. A sufficient

HORIZON_LEARN (MDP Mÿ, Reward Horizon H)

Initialize policyπ randomly. (1)

Until enough successive episodes occur visiting only known states:(2)

Assign s the current state of Mÿ. (3)

If s is terminal, reset to an initial state. (4)

If s is known, executeπ(s). (5)

Otherwise:

Sample transitions that are still required to know s. (6)

If s becomes known: (7)

Solve for the optimal local policy, *
(s)M'H

� (8)

Setπ(s) = (s)�*
(s)M'H

. (9)

Returnπ. (10)
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condition that implies near optimal performance is to repeatedly visit states that the

current policy has already optimized, gaining confidence from each episode that visits

only known states. So once the number of consecutive known states is high enough, the

algorithm terminates with near-optimal performance. The total time for this to occur is

the time it takes to acquire a good approximation of the critical region plus the time it

takes to guarantee that performance using the optimized critical region is acceptable.

3.3.2 EXPLORATION AND RECOGNIZING KNOWN STATES

A known state is a state for which we believe we have found an approximately

optimal action with some level of confidence. States are marked known by local problem

exploration and solving, steps 6-8 of Horizon-Learn. Gaining experience in each local

problem eventually allows for the confident choice of a good local action. When each

local problem is bounded by the reward horizon, by definition, the local action is also a

good global action. After a state becomes known, its successor states enter the critical

region, and the process of creating known states continues forward.

We outline a simple, policy-based procedure for solving local problems. Namely, we

will acquire a number of samples of every policy within the region around a state

bounded by the horizon, and choose the policy with the highest sample mean. Because

the true mean of a policy is estimated from experience, it is not possible to know the best

action with zero probability of error. We require a sampling method that will correctly

choose the optimal policy within a reasonable chance of error. The following results

derive such a method.

Theorem 3.1Consider two policies that will accumulate a reward between –rMAX

and rMAX for H steps. Then choosing the policy with the higher sample mean over

( )
�
�

�
�
�

�
= 2

221ln32

ε
δ MAXrH

n

samples will result in choosing a policy with total expected discounted return within

ε of the best policy with probability 1-δ.
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Proof. We apply a version the Hoeffding Inequality. Given random variablesiX ,

such that 1≤iX , and ( ) 0=iXE ,

( )2expPr 2

1

ntntX
n

i
i −≤�

�

�
�
�

�
≥ÿ

=

Let 1
iR and 2

iR be the random variables describing the total expected discounted

return of policies one and two during the ith trial. Let the mean of the return of the

policies on any trial be 1µ and 2µ respectively. Without loss of generality, let

εµµ ≥− 21 . (Choosing policy one as the better policy is a naming convention, and if

εµµ <− 21 , the theorem is already proven.) Let 21
iii RRD −= .

Then,
( )

MAX

i
i Hr

D
Y

4
21 −−= µµ

is a random variable with 1≤iY , and ( ) 0=iYE .

By Hoeffding’s Inequality,
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1
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n
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i −≤�

�

�
�
�

�
≥ÿ
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( ) ( )2exp4Pr 2
21
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n
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�

�
�
�

�
+−−≥−ÿ

=
µµ

( )[ ] ( )2exp4Pr 2
21 nttHrD MAX −≤−−≤ µµ
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MAXHr
t

4
21 µµ −= .
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�
�
�
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�
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2
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RRD

µµ

The probabilityD is less than zero is the probability we make a mistake, and choose

policy two because its sample mean was higher. We require this chance to be less

thanδ.

( ) δµµ ≤��
�

�
�
�
�

� −− 22

2
21

32
exp

MAXrH

n

( ) ( )δµµ
1ln

32 22

2
21 ≥−

MAXrH
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( )
( )221

221ln32

µµ
δ
−

≥ MAXrH
n and since εµµ ≥− 21 ,

( )
2

221ln32

ε
δ MAXrH

n ≥ �

Theorem 3.1 gives the number of samples required to guarantee that the policy

corresponding to the higher sample mean of two policies will perform well. We can

readily generalize these results to the comparison of several policies. With multiple

policies, an error is made if any policy with poor performance is chosen. The following

bounds the number of samples needed for the worst case, when every possible competitor

policy is a poor choice, just below the threshold for being acceptable.

Theorem 3.2Consider m policies that will accumulate a reward between –rMAX and

rMAX for H steps. Then choosing the policy with the higher sample mean over

( )
�
�
�

�

�
�
�

�
=

−

2

221ln32

ε
δ MAX

m rH
n

samples will result in choosing a policy with total expected discounted return within

ε of the best policy with probability 1-δ.

Proof. Let R1… Rm be the random variables describing the total expected discounted

return of policies one to m, respectively. Without loss of generality, let the policy

with the highest return be policy one. Letp~ = Pr( 1R < 2R OR 1R < 3R … OR

1R < mR ) where each iR for i = 2 to m has a mean iµ such that εµµ ≥− i1 or

i1 RR < is excluded fromp~ . Then p~ is the chance of error by picking a policy with

return more thanε below the best policy, and may be at mostδ. We can boundp~

with the sum of the probability of the individual comparisons. Let

( )ÿ <=
i

i1 RRPrp̂ , for each iR in p~ .

Then p̂p~ ≤ , since the events 1R < iR are not mutually exclusive.

For each policy, calculate the sample mean from
( )

�
�
�

�

�
�
�

�
=

−

2

221ln32

ε
δ MAX

m rH
n .

Then either εµµ ≥− i1 and ( )≤< i1 RRPr 1−m
δ by Theorem 3.1, or the term

( )i1 RRPr < is excluded from pˆ (because it is not an error). Therefore, δ≤≤ p̂p~ . �
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Theorem 3.2 provides an effective sampling method if the number of policies that

are being compared is known. We provide an upper bound to the number of policies to

apply Theorem 3.2 more generally. In order to count the maximum number of policies

within a given horizon, we must characterize the randomness of the domain. To this end,

we define a branching factor b, the maximum number of successor states for any state-

action. The maximum number of policies is then bH-1|A|H, allowing for |A| decisions at

the start state, and b|A| decisions branching from each step in the policy up to H. Using

this bound, we can define the maximum number of visits to a state before it becomes

known.

Corollary 3.3 Let Mÿ be a MDP with horizon H and rewards with absolute value

bounded by rMAX. Then a state s in Mÿ becomes known, choosing an action withinε

of the best H step return with probability 1-δ, after sampling every local policy

evenly, with at most

( ) ��
�

�
��
�

�
=

−
−

δε
δε

HH

MAX
HH

known
Ab

rHAbn
||

ln
1

||32
1

2
221,

visits to the state s.

Corollary 3.3 is the result of Theorem 3.2 with m = bH-1|A|H, multiplied by the

maximum number of local polices. This corollary serves as the formal definition of

known states, which implements the steps 6-8 of Horizon-Learn (Figure 3.2) using direct

policy-based sampling.

3.3.3 LEARNING A CRITICAL REGION

On a global scale, the major task of learning under our framework is identifying a

sufficient portion of a critical region such that we meet a high level of performance with a

small chance of failure. We might think of learning the entire CR. In this case, we would

achieve near optimal return without ever reaching a state that is unknown. The drawback

is that we must learn every state, regardless of how improbable, or unrewarding. In fact,

the difficulty in reaching unknown states in the CR plays a major role in the time it takes
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to learn. In order to reduce the number of unlikely states to learn, we choose to learn a

subset of the critical region.

The idea of learning a critical region is to gather a number of states in the CR

through diligent exploration, such that our chance of visiting only known states is high.

Once this probability is high enough, we will experience many applications of the current

policy which visit no unknown states. In other words, we have a policy which, although

not guaranteed for every state, executes near-optimal actions for all of the most common

paths. Each time an execution introduces no unknown states, we gain evidence to bound

the expected return of the current policy. If there is sufficient number of such

observations, we can conclude that the current policy is very likely to be approximately

optimal.

The performance criterion we guarantee for a policy is the initial state return. The

following results ensure that the total expected discounted return over the random initial

states determined by the MDP is approximately optimal with high confidence.

Definition 3.10 The initial state returnof a policy π , πµ , in a MDP M with initial

state distribution I, is the expected utility of executingπ from initial states,

( )�
�

�
�
�

�= ∞ )(
~~

pSEE
sPpIs π

πµ .

The initial state return measures how well a policy will perform on average during an

episode. Each episode is a period starting from some initial state, until the process is reset

to a new initial state drawn from I. Aside from explicitly episodic domains, we emphasize

that initial state return can apply to any domain with a process that makes one sequence

of actions independent of another. We refer to such a process as a reset. For example, if

applying π to an MDP M yields an ergodic Markov chain, and the initial state

distribution of M is the stationary distribution of the ergodic process, then a long enough

sequence of actions will act as a reset. The cost of the reset is the number of actions it

takes to reach the stationary distribution. On the other hand, a MDP that explicitly draws

a next state from the distribution I after reaching a terminal state, resets with no actions,

and has a cost of zero. A more general case is that some mechanism is able to reach any

desired initial state within some polynomial time reset cost. In this case, an episode is the
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process of approaching the total discounted return of an initial state by executingπ , then

drawing a new initial state from I, and using the reset mechanism to reach that state.

One way to estimate the total return of discounted rewards is to sample the return for

a number of steps equal to theε-horizon time. [Kearns & Singh, 1998]. Theε-horizon

time is the number of actions after which the total discounted future return can be at most

ε. The following definition shows how theε-horizon time can be computed from the

properties of a given MDP.

Definition 3.10 The ε-horizon time, T, of a MDP with discount factorγ and

maximum reward rMAX is ( ) ( )γγε
1

)1( lnln −≥ MAXrT .

We gain confidence in the current policy by sampling its initial state return over

many episodes. Each episode samples the initial state return ofπ for T actions, π
TR , and

then applies the reset mechanism. Repeating this sampling process determines a

confidence interval for πµT , the mean initial state return executing T actions ofπ .

The following theorems define how many episodes are needed until we are sure that

the initial state return from the current policy (and critical region approximation) is near

optimal. This establishes the test for terminating the main loop of the Horizon-Learn

algorithm (step 2). Theorems 3.4 and 3.5 operate in a MDP M, with discount factorγ, and

rewards between –rMAX and rMAX.

Theorem 3.4Let π
TR be the sample mean of ( ) ( ) �����

� −= −

2

51
12
2ln50 ε

γεδ
MAXrn samples of

the initial state return for executing T actions ofπ , where T is the 5/ε -horizon

time. Then, the T-step initial state return forπ has the confidence interval

[ ] δεµε πππ −≥+≤≤− 15/5/Pr TTT RR .

Proof. We use the general form of the Hoeffding Inequality.

( )[ ] ( ) ��
�

�
��
�

�
−−≤−≤ ÿ

=

n

i
ii abtntXXE

1

2222expPr and

( )[ ] ( ) ��
�

�
��
�

�
−−≤+≥ ÿ

=

n

i
ii abtntXXE

1

2222expPr

with each iX independent and iii bXa ≤≤ .
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We have each π
TR independent, because they are from different episodes, and

5151
ε

γ
πε

γ −≤≤+ −−
− MAXMAX r

T
r R by the definition of the 5/ε -horizon time. Therefore,

( ) ( )251
1

2 4 ε
γ −=− −

=
ÿ MAXr
n

i
ii nab , with

( )5/5/Pr εµε πππ −≤≤+ TTT RR ≤ ( ) �
�
��

�
� −− −

2

51
2 50exp ε

γε MAXrn .

We divide the chance of excluding the mean from the confidence interval evenly

above and below, so that

( ) 2/50exp
2

51
2 δε ε

γ ≤�
�
��

�
� −− −

MAXrn . Solving for n, ( ) ( )251
12
2ln50 ε

γεδ −≥ −
MAXrn .

So with n sufficiently large, ( )5/Pr εµ ππ −≤ TT R and ( )5/Pr εµ ππ +≥ TT R are each less

than 2/δ . �

A confidence interval alone is not enough to guarantee near optimal performance. It

must also be the case that the confidence interval is in a region with good performance.

We need to show that the initial state return for the optimal policy is very likely to be

close to the confidence interval for the performance of the current policy. If the current

policy samples its initial state return, and finds only known states, the following theorem

demonstrates that it will be approximately optimal with high probability.

Theorem 3.5Let π be a policy visiting ( ) ( ) �����
� −= −

2

51
12
2ln50 ε

γεδ
MAXrn episodes of only

known states. Then for an 5/ε -horizon time T, if each known state s satisfies

TssQsV
γ
γεπ

−
−≤−

1

1
5))(,()( , then the initial state return ofπ is within ε of the optimal

return with probability δ−1 .

Proof. Since we have visited only known states, there exists some policyπ̂ that

executes the same actions asπ for the known states, and has its mean T-step return

within 5/ε of the optimal. That is, let )()(ˆ ss ππ = on known states, and

)()(ˆ * ss ππ = otherwise. Then the worst return forπ̂ visits T known states, so that

51

1
5

1

0

ˆ* ε
γ
γεγµµ ππ =

−
−≤− ÿ

−

=
T

T

i

i
TT
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Becauseπ̂ executes the same actions asπ in known states, and each episode has

visited only known states, the confidence interval of Theorem 3.4 also applies toπµ ˆ
T .

Using these properties ofπ̂ we have

( ) 2/5/Pr ˆ δεµ ππ ≤+≥ TT R

( ) 2/5/5/Pr * δεεµ ππ ≤+≥− TT R

( ) 2/5/2Pr * δεµ ππ ≤+≥ TT R

Recall from Theorem 3.4, we also know( ) 2/5/Pr δεµ ππ ≤−≤ TT R . Therefore, given

the n observed T-step initial state returns, 5/3* εµµ ππ ≤− TT with probability δ−1 .

And because T is the 5/ε -horizon time, 5/** εµµ ππ −≥T and 5/εµµ ππ +≤T . Then

we have that ( ) 5/35/5/* εεµεµ ππ ≤+−− , and thus εµµ ππ ≤−* with probability

δ−1 . �

Theorems 3.4 and 3.5 outline the number of episodes visiting only known states

needed to verify that a policy is near optimal. To complete this analysis, we need to

consider the chance of failure due to assuming a state is known, when in fact it makes a

bad choice (theδ in δε ,
knownn ). If π visits m distinct states each with aδk chance of

mistakenly making a state known, then the overall chance of failure is increased by at

most mδk.

Corollary 3.6 Let )1(5
)1(

1

1
5 γε

γε
γ
γεε −−

−
−
− ==

MAX

MAX
T r

r
k and let each known state result from

kk
knownn δε , experiences of that state. If a policy π visits only known states for

( ) ( )251
12,

min 2ln50 ε
γεδ

δε −≥ −
MAX

t

t r
altern consecutive episodes, for a total of m distinct known

states, then the initial state return ofπ is within ε of the optimal with probability at

least kt mδδ −−1 .

We would like to determine a subset of the critical region such that we can reach the

termination condition in Corollary 3.6. However, this is possible for any nonempty subset

that contains a complete path. To specify an approximate critical region, we need another

parameter,α. This parameter denotes the probability that the next nterminal episodes will

visit only known states – the chance of immediate termination with a near-optimal policy.
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Definition 3.11 The approximate critical region, CRα, is any subset of the critical

region such that the probability of visiting only its elements is at leastterminal1 nα on

any given episode, executing a policy which knows near-optimal actions for every

element.

The notion ofα is an artificial one; we are not interested in specifying it, but rather

we use it to illustrate the amount of approximation that will occur. Rather than try to

identify a goodα prior to learning, we will continually add to the approximate critical

region until termination. This idea will automatically determine an appropriateα. If

several states in the critical region are very unlikely, we will tend toward a lower alpha. If

most states are easily explored, alpha will tend to be close to one.

3.3.4 REACHING CONVERGENCE

We have analyzed the local procedure of making states known and the global system

to detect convergence. The final part of our analysis is to count the number of episodes

that are needed for both to occur. The local process must meet the condition of Corollary

3.3 for a sufficient number of states to create the approximate critical region. Next, we

must gain confidence in the policy created by optimizing the approximate critical region.

This requires meeting the termination condition of Corollary 3.6.

Theorem 3.7Let CRα be a subset of the critical region with size |CRα| and let p

denote the probability of reaching the least probable state within CRα . Then, with

probability 1-δ, every state in CRα becomes known in ( )||
1 1||

α

δ
α CRlocal FCRn −⋅= −

episodes. F is the cumulative distribution function for the negative binomial

distribution with kk
knownn δε , successes and probability of success p.

Proof. The number of episodes for the least probable state to become known, t, is a

negative binomial random variable with kk
knownn δε , number of successes, and probability

of success equal to p. For t, a success is simply a visit to that state. The chance of

failure is the probability that a given state is not visited enough (kk
knownn δε , times). The

least probable state becomes known in ( )||
1 1

α

δ
CRMAX Ft −= − with || α

δ
CR chance of

error. Since all other states are more probable,MAXt represents an upper bound for
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the number of episodes to learn any state in the approximate critical region. Thus,

|CRα| MAXt episodes must make all the required states known with acceptable

probability. �

Theorem 3.8 Let CRα be an approximate critical region in which all states are

known, and the probability to experience nterminal successive episodes staying only

within CRα is α. Then, nterminal successive episodes staying only within CRα will

occur with probability 1-δ in ( )δ−⋅= − 11
min Gnn alterglobal episodes. G is the

cumulative distribution function for the geometric distribution withα probability of

success.

Proof. Let one trial be a sequence of nterminal episodes. A trial is successful if it visits

only known states. The number of trials for a success is a geometric random variable

with chance of successα. We bound the number of trials with the acceptable chance

of error,δ, and multiply by the length of a trial to obtain the stated result. �

Theorems 3.7 and 3.8 show that the total work to reach convergence is globallocal nn +

episodes. Convergence will be near optimal if the approximation errorε and total chance

of failure δ are divided appropriately. The approximation error will be divided as

suggested in the Corollary 3.6; each state gets a fraction of the total error

)1(5
)1(

1

1
5 γε

γε
γ
γεε −−

−
−
− ==

MAX

MAX
T r

r
k . The total chance of failure is also divided among its various

potential causes. The chance that any state does not find a good action in the time given

to given for a state to become known is .||4/ αδδ CRk = The chance of termination

without being within ε of optimal (the confidence interval around the initial state

performance was erroneous) is .4/δδ =t The chance that any state in the approximate

critical region is not made known within the given time is ||4/ αδδ CRl = . The chance

that the algorithm does not terminate within the given time, once the approximate critical

region has been learned is .4/δδ =g

With this notation, we consolidate our results and derive the total number of episodes

for the learning process. Table 3.2 explains all the parameters of Theorem 3.9 and the

relevant terms from our previous results. Each parameter is given with its highest order

term showing its contribution to the total running time.



30

Theorem 3.9 The total number of episodes to learn a policy, using policy-based

sampling of reward-horizon bounded local utilities, with an initial state return within

ε of the optimal with probability δ−1 is at most

�
�
�

�
�
�
�

�
+��
�

�
��
�

�
⋅≤

gl

knownknown
total

t

alter
kkkk nn

p

n
CRn

δαδ

δεδεδε

α
1

lnln||
,,,

min

for anyα between zero and one.

Proof. Corollary 3.6 shows that learning the states in αCR to kε accuracy is

sufficient for initial state return withinε. Likewise the total chance of failure is at

most gltk CRCR δδδδ αα +++ |||| which is by definition at mostδ . The rest of the

proof consists of substituting terms with previous results, and simplifying. F is the

cumulative distribution function for the negative binomial distribution with kk
knownn δε ,

successes and probability of success p. G is the cumulative distribution function for

the geometric distribution withα probability of success.

globallocaltotal nnn +≤

= ( ) ( )gl GnFCR t

alter
δδ δε

α −⋅+−⋅ −− 11|| 1,1
min

≤ �
�
�

�
�
�
�

�
⋅+��

�

�
��
�

�
⋅

gl

knownknown t

alter

kkkk

n
n

p

n
CR

δαδ
δε

δεδε

α
1

ln
1

ln|| ,
,,

min

= ( ) �
�
��

�
�⋅

−−
k

HH

k

Ab
pMAX

HH rHAbCR δεα
||11221 1

2 ln||32||

( ) �
�
��

�
� �

�
��

�
�⋅

−−
k

HH

kl

Ab
MAX

HH rHAb δεδ
||11221 1

2 ln||32ln

( ) ( ) ( )
g

MAX

t

r
δα

ε
γεδ

11
2

51
12 lnln50 2 ⋅−+ −

= ( ) ( ) �
�
��

�
�⋅

−

−
−−−

δγε
γε

α
α

HH
MAX AbCRr

p
HH HAbCR ||||4

)1(

)1(5121
1

22

2

ln||32||

( ) ( )
�
�
��

�
� �

�
��

�
�⋅

−

−
−−−

δγε
γε

δ
αα

HH
MAX AbCRrCRHH HAb ||||4

)1(

)1(5||421 1

22

2

ln||32ln

( ) ( )[ ] ( ) ( )( )2lnlnln50 828
2

51
11
2 δδ

ε
γεα −−+ −

MAXr �



31

Term Definition Dependence
H Reward horizon. 4)exp( HH ⋅
b Maximum number of successor states for any state-action. [ ]21 )ln(bbH −

|| A Number of actions available. [ ]2|)ln(||| AA H

MAXr Maximum absolute value of any reward. ( )MAXMAX rr ln2

ε Acceptable error in the expected return of the final policy. ( )εε 1ln1 2 ⋅
γ Discount factor. ( )γγ −−

⋅ 1
1

)1(
1 ln2

|| αCR Size of the approximate critical region. [ ]2||ln|| αα CRCR

p Probability of reaching least likely state in αCR . p1

α Chance of immediate termination given αCR is known. α1

δ Acceptable chance of failure. ( )[ ]21ln δ

Table 3.2. Terms from Theorem 3.9 and Their Contribution to the Total Running Time

Theorem 3.9 is the main result of this chapter: the total number of episodes for

Horizon-Learn to converge, using policy-based sampling. This result can be translated to

the total number of actions require using a simple transformation. If T is the5/ε -horizon

time, and c is the cost of the reset mechanism, then the maximum number of actions for

convergence is ( )cTntotal + . Furthermore, we can eliminate having the reward horizon as

an input to Horizon-Learn by trying horizons in succession, starting from one. In this case

we require an outside method to determine when the experimental reward horizon input

is in fact correct. Any knowledge that could evaluate a policy and decide whether it is

acceptable would suffice. Using this learning procedure would take at mosttotalHn

episodes to converge, where H is the true reward horizon.

We have proven that learning time can be accelerated by decreasing the reward

horizon. Table 3.2 shows that this increase can be exponential. The exponential

dependence on H results from the largest number of states within H transitions,( )HbA || .

If, as is true for many problems, the number of reachable states within the horizon is

polynomial in H, then the effects of the horizon are more realistically understood. For

example, in a grid world problem, in which an agent can move in one of four directions

in each state, the maximum number of states within a horizon of H is 122 2 ++ HH .

Clearly, the dependence on H is still a strong one, but it is not generally an exponential
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one. For these types of situations, a learning algorithm that samples state information,

rather than policies, could learn in polynomial time, although the task of identifying

known states would be more complicated. The fundamental idea from Theorem 3.9 is

that the reward horizon dominates the running time of Horizon-Learn.

Aside from the dependence on the reward horizon, the learning time is polynomial in

its parameters, and does not depend on the size of the state space. The most demanding

parameters areb and || A , which are polynomial in the reward horizon. Every other

parameter has a dependence that is less than cubic. In particular, the learning time of

Horizon-Learn is not even quadratic in the size of the approximate critical region. This

means that whenever the number of states that a policy must see to have a good initial

state return is less than the entire state space, Horizon-Learn will learn faster than other

algorithms that must visit every state. In other words, Horizon-Learn is able to leverage

the knowledge of a reward horizon to ignore (potentially large) irrelevant regions of the

state space, to promote focused learning, efficient exploration, and faster learning.
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CHAPTER4

Inducing a Reward Horizon

Shaping rewards can improve reinforcement learning rates by reducing the reward

horizon of a MDP. Reducing the horizon makes the delay between an action decision and

the reliable evidence of the decision’s utility shorter. Because the advice is more

immediate, the learning agent has the potential to ignore parts of the state space during its

exploration. Overall, such focused training experience allows for faster learning and

scalability to larger domains. The reward horizon defines a search radius such that the

information within the radius is enough to pick an action that is near optimal for the

entire process. In this chapter, we investigate how reward shaping can promote a minimal

search radius, and therefore a low reward horizon and faster learning.

Of primary interest are those shaping functions for which locally approximate

optimal actions in the shaped process are globally optimal in the native process. This is

the idea of inducing a reward horizon. A shaping function that induces a reward horizon

not only localizes the problem, but also retains high performance in the original task.

Preserving the optimal is not a trivial task. For example, it is very easy to foster a low

horizon by selecting any action at random and giving it a very large reward. Such an

action is both locally and globally optimal in the shaped process, because it receives a

large artificial reward. But reward shaping of this kind is uninteresting. We require

reward shaping to accelerate learning while maintaining the meaning of optimality that

the native task defines.

Ng, Harada, and Russell [1999] suggest a way to preserve the optimal policy through

potential-based shaping functions. By using a potential function over all states, they
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prove that rewards computed as the difference of state potentials as rewards will not alter

the optimal policy of the native task. The best policy of the shaped process Mÿ must also

be the best policy of the native process M. This result, while powerful, does not describe

how shaping can accelerate learning.

Opportunity value, a difference between state utilities on a transition, combines the

ideas of preserving the optimal through potential-based shaping with reducing the reward

horizon for faster learning. Because it both accelerates learning and preserves the

optimal, opportunity value serves as insight into how successful shaping works to induce

a reward horizon. In fact, we demonstrate that scaled opportunity value is the ideal

shaping reward, in that it induces a reward horizon of one. Opportunity value guarantees

that shaping can reduce the reward horizon of any nontrivial problem, and provides an

ideal model for successful reward shaping.

4.1 Inducing a Reward Horizon

While a low reward horizon increases the locality of the rewards in a process, the

concept of inducing a reward horizon implies both increasing locality and preserving the

optimal. The goal of shaping is to optimize the native task more quickly. Unfortunately,

learning quickly and optimizing the native task are often at odds. While many types of

poor feedback can learn a bad solution quickly, only meaningful advice can teach the

correct concept. Therefore, it is important that any successful shaping technique not only

reduce the reward horizon, but also remain relevant to the native task. This is the idea of

inducing a reward horizon.

Definition 4.1 Let F be a shaping function that transforms a native MDP M to a

shaped MDP Mÿ. F induces a reward horizonof H, if and only if for every state s in

a critical region of Mÿ, choosingâ such that ε≤− )ˆ,()( asQsV HH with probability

δ−1 , implies ε2)ˆ,()( ≤− asQsV MM with probability δ21− .

This definition is similar to the reward horizon, except that for inducing a reward

horizon, local optimality implies global optimality in the native process. When an action

is near the best of all its local competitors, the difference between the optimal local utility
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and its local utility is small, ε≤− )ˆ,()( asQsV HH . If this local action works well globally

in the shaped process, we have a reward horizon. If the local action works well globally

in the native process, the difference between the optimal global native utility and the

global native Q-value is small, ε2)ˆ,()( ≤− asQsV MM . When this occurs, reward shaping

has induced a reward horizon.

The goal of reward shaping is to induce a low reward horizon. Successful shaping

drives the reward horizon lower by creating a shaping function that in some way judges a

course of action more immediately than the underlying problem. In other words, shaping

should cause the finite path sums, )( pSn , to rank paths nearly the same as the native path

utility, )( pV M . With such a ranking, accurate feedback is presented to the learner after at

most n actions. This allows for the speedup of a reward horizon of n, in addition to the

optimality provided by making decisions based on a native utility-based feedback.

4.2 Opportunity Value

A successful shaping function adds information that will cause the path return to

rank the path according to its native utility. A quantity that upholds this ranking property

is the opportunity value.

Definition 4.2 The opportunity valuefor a transition in the native MDP M, is the

difference of the final and initial state utilities, ).()'()',,( sVsVsasOPV MM −= γ

The opportunity value describes the change in return from moving to a new state,

given the current state. This quantity is suggested by the experimentation of Ng, Harada,

and Russell [1999]. We now analyze opportunity value in the context of the reward

horizon in order to demonstrate analytically how it causes speedup. Opportunity value

represents the additional information that is needed to judge a transition locally. If we

view reward as the metric for rating the action that takes the agent from s to sÿ,

opportunity value is the complimentary information that rates the return for performing

the transition to sÿ, rather than another state. Together, the native reward and opportunity

value provide a rating of the true utility of the transition.
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The idea of opportunity value need not be potential based. Although Definition 4.2

uses native global utilities as a potential function, opportunity value can also include

reward information, which is sensitive to actions, and therefore no longer applicable as a

purely potential-based shaping function. The advantage of adding reward information is

so that the overall shaping reward can be scaled. Scaled rewards can help make different

the difference between alternatives more apparent. The following definition shows how

to scale opportunity value.

Definition 4.3 Thescaled opportunity valuefor a transition in the native MDP M is,

for any constant k > 0, ( ) ( )( ))',,(1)()'()',,( sasRksVsVksasOPV MM
k −+−= γ .

The scaled opportunity value causes path sums to equal a scaled multiple of the path

utility. As long as k is greater than one, the scaling will increase the difference between

returns of competing policies. This allows for a faster, or more accurate, estimation of the

maximum return by gathering samples experiences in the task.

Because opportunity value, combined with native reward, provides accurate

feedback about a path of any length, it becomes the ideal candidate for a shaping

function. The following theorem formalizes this notion.

Theorem 4.1Let the shaping function that converts the native MDP M to the shaped

MDP Mÿ be ( ) ( )( ))',,(1)()'()',,( sasRksVsVksasF MM −+−= γ . With k sufficiently

large, F induces a horizon of one, and all higher horizons in Mÿ.

Proof.The finite path sum, over any length, using F is always the path utility minus a

constant. Let )( i
M

i sVV = denote the state utility of the ith state encountered

following a given path. Then the finite path sum is written as follows.
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1.nfor),()( 0 ≥−= skVpkV MM

Because the path sum equals the scaled path utility minus a constant, the local

optimal policy will make the same decisions as the global optimal policy in M. Let
** Mππ = denote the global native optimal policy (which makes the same decisions

as the local shaped optimal policy). Then the following relation between local and

global Q-values holds.

( ) ( ))()()(
*

,
*

, ~~
skVpkVEpSE MM

Pp
n

Pp asas

−=
ππ

)(),(),( skVaskQasQ MM

n
−=

From the definition of inducing a reward horizon, we findâ such that.

ε≤− )ˆ,()( asQsV nn with probability δ−1 . Let *)(* as =π , so that

),()( *asQsV nn = , and ),()( *asQsV MM = . Substituting the results for local Q-

values,

ε≤− )ˆ,(),( * asQasQ nn

( ) ε≤−−− )()ˆ,()(),( * skVaskQskVaskQ MMMM

δε −≤− 1yprobabilitwith,)ˆ,()( kasQsV MM

Therefore, F induces a horizon of n≥ 1, when k is large enough (k≥ .5). �

Theorem 4.1 is a significant result for reward shaping. It proves that there exists a

shaping function for any MDP that will maximally reduce the reward horizon, and

therefore will accelerate any nontrivial problem. In addition, it provides insight for how

successful shaping can be done. Opportunity value defines a good shaping reward that

other shaping techniques should try to approximate. With an approximate opportunity

value, as long as finite path sums eventually rank according to the path utility, in say m

actions, a similar guarantee can be made for inducing a horizon. However, the

approximation will only be strong enough to induce horizons of exactly m, or beyond m,

rather than one. When m is low enough, then the knowledge that generated the

approximate opportunity values is strong enough to accelerate learning.
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We have shown analytically why scaled opportunity value is useful for reward

shaping. This quantity is an ideal shaping reward in the sense that (1) it reduces the

horizon to one, allowing for the fastest solution of the native task, (2) it maintains the

optimal solution of the native task, and (3) it will decrease the approximation error of

local utilities as the scaling factor, k, is increased.
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CHAPTER5

Subgoal Shaping

Opportunity value describes ideal shaping rewards and verifies the existence of a

successful shaping technique capable of inducing a low reward horizon. However, using

opportunity value directly is not practical because it requires complete and precise

knowledge of the state value function. Such knowledge is almost enough to directly

compute the optimal policy (transition probabilities are also needed), which is far too

restrictive of a prerequisite. Although it provides a useful notion of the ideal, opportunity

value cannot be used for any interesting application. The challenge faced by shaping is to

approximate the accelerating effects of opportunity value using weaker prior knowledge.

Rather than requiring state utility knowledge of all states, we focus only on

important states and value them appropriately to promote their exploration. This idea of

assigning a sparse set of states with meaningful values is subgoal shaping. Each subgoal

represents an important state to the optimal policy. If each subgoal is properly rewarded,

the learning problem as a whole can be divided into a sequence of smaller problems. This

coincides exactly with the concept of the reward horizon. An appropriate set of subgoals

and values can be used to approximate the opportunity value approach by setting up a

reasonable sequence of smaller problems. The size of the sub-problems corresponds to

the reward horizon of the shaped process.

Therefore it is reasonable that approximating opportunity value with subgoals can

lead to speedup, although to a lesser extent. A first approximation is to pick a set of

subgoals, each of which is valued by its exact state utility. Any state not chosen as a

subgoal is given some penalizing default value. When the set of subgoals does not



40

include all states, this scheme will require less knowledge than the opportunity value.

However, it can accelerate learning via the reward horizon induced by the subgoals that

are specified. We call this approach shaping with state utility subgoals. A second

approximation is to not only leave out utility information of non-subgoals, but also to

give only inexact, relative value estimates for the subgoals. In this case, no precise state

utility information is needed. Instead, the subgoals are chosen and given relatively high

values to suggest their utility earlier in the process. As long as these approximate

subgoals offer the same advice as the opportunity value, within some limited range of

experience, they can induce a low reward horizon without requiring complete or precise

prior knowledge.

The methodology for subgoal shaping has two parts: subgoal placement and subgoal

valuation. Placing subgoals is the process of identifying states that are important to the

optimal policy. In other words, subgoal placement selects those states which are

favorable according to the prior knowledge. We use a function to specify the subgoal

states. Let )(ssg be a function that returns one if s is a subgoal, and zero otherwise. In

order to encourage the learner to visit the subgoals, each should be assigned a relatively

high value. The value must be enough not only to attract exploration, but also to

propagate the intended sequence of subgoals. Each non-subgoal must also be assigned a

value to deter exploration. We will write )(svalsg for the value given to a subgoal state,

and use )(svalnsg for non-subgoal states, where )()( svalsval nsgsg > for all states s.

We choose a potential-based function to translate the subgoal information into

shaping feedback. Using a potential-based function means that paths that end on a

subgoal will rank the path according to )(svalsg . Likewise, non-subgoals rank as

)(svalnsg . We can use the following potential function to capture this state valuation

knowledge.

Definition 5.1 Thesubgoal potential functionis

otherwise)(

)(

1if)(

sval

s

sg(s)sval

nsg

sg

=Φ

=
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The resulting shaping function )()'()',,( sssasF Φ−Φ= γ will help to eliminate

cycles among subgoals, preserve the optimal policy, and provide the intended placement

and valuation of subgoals. The task for subgoal shaping is to ensure that the intended

placement and valuation are appropriate for a good policy. Using state utility subgoals,

we explore the effects of varying subgoal placement, but using precise state utilities for

each subgoal. The approximate subgoal approach investigates the combination of

imperfect subgoal placement and valuation.

5.1 State Utility Subgoals

One approximation to the opportunity value approach is to assign correct state

utilities to subgoals, while giving all other states a low potential. This technique allows

the shaping function to evaluate paths that end in subgoals correctly, while penalizing any

other paths. As long as most good paths are not penalized, the resulting shaped process

will retain the benefit of more immediate feedback, without the cost of knowing all state

utilities. If we let minV denote the smallest state utility in the native process M, then the

following potential function implements this idea.

Definition 5.2 Theutility subgoal potential functionis

otherwise

)(

1if)(

minV

s

sg(s)sV

u

M

=Φ
=

If all states are subgoals, the utility subgoal potential function degenerates to the

opportunity value. As some subgoals are removed, learning begins to face the challenges

of delayed feedback and reduced accuracy of feedback. We expect that in many

problems, the use of relatively few subgoals will allow F to induce a low reward horizon.

The tradeoff is that the local polices found using a small amount of subgoals can be

subject to more approximation error, and therefore might perform worse on a global

scale. The following theorem demonstrates that utility subgoals induce a reward horizon,

subject to a limit on how misleading the non-subgoals are.
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Theorem 5.1Let the shaping function that converts the native MDP M to the shaped

MDP Mÿ be )()'()',,( sssasF uu Φ−Φ= γ . Then when

( )( )( ) εγγ
π

≤−−≡ min
~

)()(1),(
*

VsVssgEnserr n
n

Mn
n

Pp s

for all states in a critical region of Mÿ using some n≤ H, then F induces a reward

horizon of H in Mÿ.

Proof. The finite path sum using F has two outcomes depending on whether the

terminal (nth) state is a subgoal or not.

otherwise,
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Similar to opportunity value, all the intermediate terms of the finite path sum cancel,

leaving the difference of the potential of the final state and the initial state. The value

C is constant given an initial state s, and will take the value )(sV M if s is a subgoal,

and minV otherwise. Taking the expectation of the finite path sum over paths drawn

by the global optimal policy, we get
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pSE n
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*~ π

CnserrsV M −− ),()(

Using this idea, we can bound the local state utilities. Note that unlike the case for

opportunity value, the local optimal policy may make different decisions than the

global optimal policy. Therefore, the expectation above is not equal to the local state

utility. However, the local policy must do at least as well as the global optimal

policy.

CnserrsVsV M
n −−≥ ),()()( .
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Furthermore, every local Q-value must be less than the unpenalized return,

CasQM −),( , for which all terminal states are subgoals.

CasQasQ M
n −≤ )ˆ,()ˆ,(

Combining these inequalities for local utilities,

( )CasQCnserrsVasQsV MM
nn −−−−≥− )ˆ,(),()()ˆ,()(

ε−−≥− )ˆ,()()ˆ,()( asQsVasQsV MM
nn

From the definition of inducing a reward horizon, we findâ such that

ε≤− )ˆ,()( asQsV nn , with probability δ−1 . Then,

εε ≤−≤−− )ˆ,()()ˆ,()( asQsVasQsV nn
MM

ε2)ˆ,()( ≤− asQsV MM , with probability δ−1

Therefore, F meets the requirements, and induces a reward horizon of n. �

Theorem 5.1 offers several valuable insights. As long as all states are at most n steps

away from any subgoal, it is possible to induce a reward horizon of n. This capability is

subject to a limited shaping error, ),( nserr . As fewer states that the global optimal policy

might terminate on after n steps are subgoals, the shaping error can grow quickly. Such

shaping error forces us to either accept a largerε, or to look for a larger horizon. As a

result, the final performance of the learned policy in the native task may suffer. Theorem

5.1 helps explain the familiar tradeoff between speedup and final performance. As we

accept a largerε, learning can proceed faster because a more inaccurate, but more

immediate subgoal placement becomes satisfactory.

We also notice that, due to discounting, ),( nserr naturally decays as n increases.

The limit of this trend, the n for which having no subgoals suffices, is theε-horizon time

described by Kearns and Singh [1998]. This idea places the reward shaping in a new

perspective. Reward shaping is able to accelerate learning because it can reduce the

reward horizon lower than what the discount factor alone dictates.

Overall, utility subgoal shaping shows that relatively few subgoals can suffice to

allow for a powerful shaping function. If a few subgoals cover a large portion of the

probability mass of the optimal policy’s nth states, then shaping error must be small. A
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combination of low shaping error, and short distance between subgoals leads to a low

horizon in the shaped process, and faster learning.

5.2 Approximate Subgoals

We can further relax prior knowledge requirements by eliminating any dependence

of the subgoal potential function on state utilities. The consequence is that, in addition to

the challenge of subgoal placement that utility subgoals face, approximate subgoals will

also need to overcome subgoal valuation. Whereas adding any amount of additional

utility subgoals is effective, the task without such information is to identify highly

probable and valuable subgoals, and to set them apart from competitors using the subgoal

potential function. The following simple extension of Theorem 5.1 identifies two

conditions that are sufficient for effective subgoal shaping.

Corollary 5.2: Let the shaping function F that converts the native MDP M to the

shaped MDP Mÿ satisfy

(1) CsVsV M
n −−≥ 2)()( ε

(2) CasQasQ M
n −+≤ 2),(),( ε

for all states s in a critical region of Mÿ, all actions a that are not globally optimal

for s, and using some n≤ H. Then, F induces a reward horizon of H in Mÿ.

Corollary 5.2 is easily proved using the same procedure as the second half of

Theorem 5.1. These sufficient conditions explicitly require the inequalities that naturally

resulted from bounded-error state utility subgoals.

The interpretation of these conditions for subgoal shaping is that (1) non-subgoals do

not penalize good terminal states too much, and (2) bad actions are not too highly valued.

These ideas outline a strategy for inducing a reward horizon with approximate subgoals.

Assign a low value to states which are not likely to be terminal states after executing the

optimal policy for n steps. Similar to utility subgoals, this satisfies condition 2. To satisfy

the first condition, raise the minimum local utility by picking subgoals that are likely to

be reached only by executing the optimal policy for n steps. Assign such subgoals a high

value. Then condition 1 holds because we know at least the optimal policy will have a
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high value, and condition 2 holds because everyone else is penalized. We organize this

approach with the following definition.

Definition 5.3 Theapproximate subgoal potential functionis

otherwise(s)
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are met as closely as possible, for all s, given the available

prior knowledge.

It is easy to verify that meeting the conditions of the approximate subgoal potential

function exactly results in inducing a reward horizon of n.

Theorem 5.3If a potential-based shaping function F uses the approximate subgoal

potential function and meets all its conditions for some path length n, then F induces

a reward horizon of n.

Proof. Meeting the conditions of Definition 5.3 implies satisfying the conditions of

Corollary 5.2. That is, we can prove that the conditions for approximate subgoal

shaping imply (1) CsVsV M
n −≥ )()( and (2) CasQasQ M

n −≤ ),(),( .

To prove (1), notice that the local optimal policy must make the same decisions as

the global optimal policy, because every path on the optimal policy is rewarded

more, and every path not on the optimal policy is rewarded less. Therefore,
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Similarly, we can prove (2). Letπ be a non-optimal policy that executes action a

first, and executes optimal actions thereafter.
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It is important to realize that the requirements of the approximate subgoal potential

function definition can be broken. For example, giving out too much penalty with

)(min sV or leaving out optimal terminal states can be partially corrected with larger

)(max sV values. The extent to which the requirements are violated dictates the

approximation of the shaping function. A larger approximation means more shaping

error. And just as before, more shaping error requires either accepting a largerε, or

looking farther for a reward horizon.
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CHAPTER6

Dynamic Shaping

Shaping with approximate subgoals is one method to incorporate incomplete and

imperfect prior knowledge into the learning process. But it still requires the ability to

translate knowledge into rewards that a reinforcement learning agent can appreciate and

understand. When such a translation is apparent, the standard method of transforming the

native Markov decision process to a shaped one before learning is a successful technique.

In other cases, the precise choice of subgoals and how to value them may not be well

defined or easy to specify given the prior knowledge. Under these circumstances,

dynamic shaping is available to automatically translate the intended behaviors, in the

language of the prior knowledge, to specific rewards, in the language of reinforcement

learning algorithms.

Prior knowledge is often available in the form of high level concepts that are

ambiguous when interpreted at the low level of rewarding individual decisions. Perhaps

the knowledge is disjunctive, so that a number of mutually exclusive reward functions are

consistent with our prior beliefs. Perhaps it is qualitative. Then our knowledge is

consistent with any element of a parameterized family of reward functions. These types

of knowledge determine a space of possibilities for rewarding a task, but often the best

element is not apparent in advance. Finding the best element can be handled with a new

learning problem – to learn the best shaping function given the prior knowledge and some

experience of the task. This embedded learning problem is dynamic shaping.
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Figure 6.1. Augmenting Conventional Reinforcement Learning for Dynamic Shaping

The goal of dynamic shaping is to use the additional information gained through task

experience to choose the shaping function which best represents the prior knowledge. By

experiencing the native learning task, the learner attempts to find a good element from

the dynamic shaping space. But it is important that the process of learning the shaping

function is significantly easier than solving the reinforcement learning (RL) task. As long

as the dynamic learning task is comparatively simple, the reward structure can converge

and induce a low reward horizon, leading to an overall speedup in the optimization of the

native task. In this chapter, we outline the general process of dynamic shaping and

suggest two implementations.

6.1 Adapting Conventional Reinforcement Learning

Dynamic shaping combines the process of learning a good shaping function with the

normal RL process of maximizing the total expected discounted reward. Specifically,

dynamic shaping is the process of maximizing the reward of a native process, M, using

experiences of both the native rewards of M and an adaptive shaping function F. The

central idea defining its dynamic nature is that F is adaptive: it changes based on

experience. Under this approach we seek to extract more information from experience by

example
(s, a, s’ transition)

R

F

native reward

shaping reward

update
policy

update F

prior
knowledge

parameter
adjustment

shaping
integration
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communicating high level knowledge through F. Since more information is conveyed to

the learner, in particular localized feedback, the learning process is accelerated. In

addition, the effects of imperfect prior knowledge are moderated by experience, which

provides a robust method for achieving high performance.

Conventional reinforcement learning can be adapted to perform dynamic shaping by

implementing two additional procedures. The static shaping RL method is to take the

example transition, experience the native and shaped rewards, and use the sum of the

rewards to update the policy. To perform dynamic shaping, we also need the ability to

update the shaping function itself, and we need to decide how to incorporate the shaping

rewards while they change (Figure 6.1). The process of updating the shaping function is

parameter adjustment, and the process of incorporating is advice is shaping integration.

Parameter adjustment in dynamic shaping is the process of improving the

parameters (θ) of F, so as to formulate rewards that encourage intended behaviors. The

intended behaviors may not be easy to specify directly in the state-action structure of a

Markov decision process (MDP). Parameter adjustment is an automatic way to translate

the intended behaviors into the parameterized language of a specific function, at the cost

of experience in the domain. This process can be done by any learning algorithm able to

optimize F, given its parameter space, and the prior knowledge. Successful dynamic

shaping requires such an algorithm to converge quickly. If F continues to change

throughout the RL process, no one strategy may be consistently reinforced. In this case,

the shaped MDP is not defined, and we may not find a good solution. To limit the

occurrence of such a failure, both the learning algorithm and parameterization of F must

be carefully considered to allow for quick convergence.

A second consideration for dynamic shaping is that of integrating the shaping

function into the native task. In the static case, this is done by adding F to the native

rewards throughout the learning process. However, doing this in the dynamic case may

cause the RL process to fail because the agent learns, if only initially, from a shaping

function that may be incorrect, or misleading. One integration method is to weight the

shaping function by a confidence in its accuracy. By this technique, we minimize the
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Figure 6.2. A Procedure to Dynamically Update a Shaping Potential Function

effects of the initial feedback from F, which may be poor, but exploit F when the

parameter estimation process has reliably converged.

6.2 Learning a Potential Function

One format for dynamic shaping involves developing a potential function from prior

subgoal knowledge and experience. Specifically, the shaping function is potential-based,

)()'()',,( sssasF Φ−Φ= γ , and therefore its parameters are the potential function values,

)(sΦ . Initially, the shaping potential function is zero for all states. As the agent trains, it

can increase or decrease these potentials based on judgments made by the prior

knowledge. The primary advantage to this technique is that shaping integration becomes

very easy. That is, since the shaping rewards are from a potential function, they must

preserve the optimal. Therefore, there is no long-term consequence for trusting the

shaping function at any stage of learning, and the shaping rewards can always be added to

the native rewards. As long as the shaping function converges, then the RL algorithm will

also converge, and the solution will be optimal.

To implement dynamic learning of the potential function, we suggest simple updates

to )(sΦ in the same way Q-learning updates its Q-values. The prior knowledge expresses

conditions that determine when progress has become beneficial or detrimental. In other

words, prior knowledge specifies, at a high level, how to map certain histories of

UPDATE_PHI (Transition s, a, s′)

If p is empty, p← (s, a, s′). (1)

Otherwise p← p + (a, s′). (2)

If )( pPK equals one (s′ is a subgoal): (3)

Let s0 be the first state of p. (4)

Let n be the number of actions in p. (5)

( )( ))'()()()� (s')� (s' 02 spAs n Φ−∆+Φ+← γα (6)

p ← ( s′). (7)
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transitions into a good or bad outcome. The point at which it can make its decision is the

subgoal, and thus we update the potential of the new subgoal state. In this way, we can

automatically generate an approximate subgoal shaping strategy from prior knowledge

and task experience. Let )( pPK be a function that is 1 if the prior knowledge has some

opinion on the path p, and is zero otherwise. The path p represents the history of

transitions from the last subgoal to the current state. Also, consider an advice function

)( pA that provides judgment on the history: -1 if it was detrimental, 0 if it had no gain or

loss, and 1 if it was beneficial. Figure 6.2 shows how to formulate these ideas into a

potential function update algorithm that can be added to any conventional RL algorithm.

The two parameters of the update process are the learning rate,2α , and the subgoal

value amount∆ . The learning rate controls how fast the potential value for any state can

change. This parameter helps to blend the updates for a subgoal across all its predecessor

subgoal potentials (there may be more than one s0). The update equation, step (6) in

Figure 6.2, works to change the potential of the subgoal state just reached, so that

∆=Φ−Φ )()()'( 0 pAssnγ . The subgoal value,∆ , is the amount of change in potential by

following the path p for n steps. Since )( pA provides the judgment if the change was

good or bad, ∆ must be a positive number. The magnitude of∆ determines how

important it is to reach a good subgoal, or likewise, how harmful it can be to reach a bad

one. Under this approach, any conventional RL algorithm can perform dynamic shaping

by defining Update-Phi, running it on every training transition, and adding the shaping

rewards to the native rewards throughout the learning process.

In order that the shaping potential converges, care must be taken to forbid the

introduction of subgoal cycles. That is, the potential function will diverge if a cycle of

updates exists, such as a path where the initial and final subgoals are the same. Any

consistent prior knowledge should disallow a subgoal to gain by revisiting itself (either

directly, or through other subgoals), but caution must be taken because a diverging

potential function prohibits convergence to any solution to the task.

Dynamic potential-based shaping offers an interesting technique to use experience to

automatically generate shaping rewards consistent with the prior knowledge. As long as

the potential function converges, the final policy learned will be optimal. And as long as
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the prior knowledge can provide advice along paths that are relatively short, it can create

a shaping function that will induce a low horizon and accelerate the RL task.

6.3 Learning a Progress Estimator

An alternative to learning a potential function is to use dynamic shaping to find an

accurate progress estimator. A progress estimator is a shaping function that will give

reward feedback to evaluate every transition. In essence, a progress estimator is a shaping

function that acts as an approximate opportunity value for every experience. This

approach is valuable when a simple parameterized shaping function can convey the prior

knowledge, and the prior knowledge is applicable to every transition. The advantage to

this approach is that parameter adjustment can be very easy. The parameter space can be

limited to two or three parameters, for example, rather than one for each state.

Because a progress estimator has an opinion on every transition, it will not need the

function )( pPK to govern when updates can occur. Instead, for every experience of the

task, it should convey both its advice )( pA on whether the transition was good or bad,

and also its judgment of how good or bad it was )( p∆ . Then the update process for the

shaping function F(θ), is to adjust the parametersθ to make the function F consistent with

the observed shaping rewards plus )()( ppA ∆⋅ . A learning algorithm that applies to this

framework is phantom induction [Brodie & DeJong, 2000]. Phantom induction takes an

approximate error judgment, )()( ppA ∆⋅ , and generates a phantom data point of what the

shaping function should have output for that transition. After generating several such

points, phantom induction compiles the data points to obtain updated parameters for the

shaping function F.

Unlike potential functions, the progress estimator function that is learned with

phantom induction may not preserve the optimal policy. This poses a problem for shaping

integration. The simplest solution is to ignore the output of the progress estimator while

the parameters of F are being optimized. This eliminates any chance of causing

irreparable harm through initial shaping rewards. And since the shaping function F can

be optimized quickly, the cost of ignoring the shaping reward for a short time will not
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delay convergence significantly. Once the shaping function converges to a good

parameter set, it can be added to native rewards just as in the static case.

Using phantom induction to learn the parameters of F will find the shaping function

most consistent with the prior knowledge. If the resulting progress estimator

approximates the opportunity value of each transition close enough, then the RL

algorithm can converge to a good policy quickly, since opportunity value induces a

reward horizon of one.
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CHAPTER7

Stochastic Gridworld

A commonly used test application for reinforcement learning algorithms is the

gridworld domain. This problem involves a two dimensional grid state space in which the

learning agent can move in one of four cardinal directions through the extent of the grid.

The learning tasks in such domains are varied, with the most common being moving to

one goal state, moving through a sequence of goal states, navigating mazes, navigating

rooms, and making taxi fares. While simple to design, gridworld problems can be

challenging, and are useful to clearly observe the strengths and weaknesses of an

approach.

We apply reward shaping to a stochastic, goal-state gridworld problem. The

stochastic gridworld is used in other reward shaping work [Ng et al, 1999; Wiewiora et

al, 2003]. For this task, the learning agent must travel from the lower left corner of a

square grid, to the upper right corner in as few actions as possible. The actions are

stochastic, so that they move the agent in unintended directions randomly. We apply

reward shaping to this standard test domain to demonstrate our analytical results and

practical techniques for reward shaping: the reward horizon, opportunity value, subgoal

shaping, and dynamic shaping.

7.1 The Gridworld Task

The stochastic gridworld used in the experiments of this chapter requires a learner to

achieve a goal state with as few actions as possible, using non-deterministic actions. The
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Figure 7.1. An Example 10× 10 Gridworld with Initial State S and Goal State G

task is to move from the lower left corner of a square grid, to the upper right corner. The

agent can execute any of four actions that will move to the adjacent cells of the grid. Each

action moves in the intended direction 80% of the time, and otherwise transitions

uniformly randomly to any of the four possible directions. Attempts to move out of the

grid leave the agent in the same state. The example gridworld in Figure 7.1 shows the

state space and available actions for a 10× 10 example problem. The reward for every

transition is -1 except for those arriving at the goal (upper right) corner. The goal reward

is scaled based on the discount factor and grid size to make the value of following the

shortest path roughly zero. More precisely, for a grid size g (g× g square grid), achieving

the goal earns a reward ( ) ( )gg
goalr 212 )1(1 γγγ −−= − . Each experiment uses a discount

factor of .99 and a 100× 100 grid, making the goal reward a little over 645. These task

components define the native Markov decision process, M, we use for experimentation.

The reinforcement learning algorithm we use in each experiment is Q-learning with

ε-greedy exploration. Aside from being a simple, widely used algorithm, Q-learning is

employed to demonstrate that the effects of shaping to induce a low reward horizon are

not limited only to the Horizon-Learn algorithm. The learning rate is fixed at .1, and the

greedy action is chosen for exploration 90% of the time. Initial Q-values are set

uniformly randomly with mean zero. To judge the level of performance as training

progresses, we evaluate the return of the current policy over ten trials and report the

average. Note that our procedure for evaluating and reporting policy performance differs

from other works in this domain which report the performance observed during training.

Each learning curve is shown with 95% confidence intervals about the average

performance from data generated by 100 trials of the Q-learning process.

•

G

S
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Figure 7.2.The Potential Function
1e� for Experiment 1 with Reward Horizon of Four

7.2 Gridworld Experiments

We use the gridworld task to verify our theory of shaping, and investigate our

practical shaping techniques. Experiments 1 and 2 test the founding principles of shaping:

the effects of reducing the reward horizon on the learning rate, and the use of scaled

opportunity value as a shaping reward. Experiments 3 and 4 explore the usefulness of

both utility and approximate subgoals for approximating opportunity value. Lastly,

experiment 5 applies dynamic shaping to learn subgoals based on simple advice.

7.2.1 EXPERIMENT 1: THE REWARD HORIZON

Chapter 3 proves that learning procedures that operate like Horizon-Learn have a

learning time that is primarily dependent on the size of the reward horizon. However, we

interpret this result as a general statement for any reinforcement learning technique. It

makes sense that any learning procedure that relies on reward feedback to guide its

exploration can benefit from a lower reward horizon. Whether the exploration procedure

directly plans its future path, or usually favors high return states, accurate feedback close

to a decision promotes more efficient use of training experience. We apply Q-learning to

the gridworld task to validate the claim that a lower reward horizon correlates strongly

with faster learning, and is not limited only to the Horizon-Learn algorithm.

The shaping function for this experiment is designed to induce a reward horizon of H

or greater, but no less than H. We implement such a shaping function for the gridworld

domain using a potential function (Figure 7.2) based on the Manhattan distance from the

G

S

Increasing Value
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Figure 7.3. Average Performance vs. Number of Training Actions for Reward Horizons
One to Ten, Using the Shaping Function

1e
F

start state. The state space is divided into regions depending on the value of H. All states

with a distance less than H from the start state are in the first region; all states with

distance from H to less than 2H are in the second region, and so on. Each region is

assigned a potential value equal to the lowest state utility in its region. The exception is

for those states that are exactly a multiple of H steps away from the start state, and the

goal state. These states are given a potential equal to their native state utility. Let)(sd be

the Manhattan distance from state s to the initial state, and let )(nregionH denote the

subset of states for which nHsdHn <≤− )()1( . Then we can define the shaping

potential function for experiment 1 with horizon of H as follows.
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Figure 7.4.Average Performance vs. Number of Training Actions Over the Complete
Range of Reward Horizons, Using the Shaping Function

1e
F

The shaping function )()'()',,(
111

sssasF eee Φ−Φ= γ induces a horizon of H, and no

less. From the initial state, the learner must execute at least H actions before it will

encounter accurate feedback. After choosing H optimal actions, the agent will likely cross

into a region of higher potential, and therefore be correctly reinforced according to its

progress. But because each region takes at least H actions to cross, the reward horizon

can be no less than H. Staying within a region will only give small, identical shaping

rewards to each path, and thus offers no information to rank paths correctly.

Figure 7.3 shows the effects of shaping with
1e

F for the ten lowest reward horizons.

Each reward horizon labels the corresponding learning curve in a numbered circle. The

impact of the reward horizon is very clear. Each successive increment of the reward

horizon decreases the learning rate, shifting the curve up and right. A lower reward

horizon demonstrates accelerated learning.

If we vary the reward horizon over the entire range of the gridworld problem, the

same trend is visible. Figure 7.4 shows the learning curves through the full range of

reward horizons. Here the reward horizon is shown for increments of 25 from one to the
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Figure 7.5.Convergence Time vs. Reward Horizon, Using the Shaping Function
1e

F

maximum horizon of 198. As with the lower horizons, increasing the reward horizon

decreases the learning rate until, at its maximum, the shaped system behaves almost the

same as the un-shaped learning system. However, there is an interesting crossing over of

learning curves from 125, to 150, and then to a horizon of 100.

To study this trend, we plot the convergence time versus the reward horizon in

Figure 7.5. The convergence time is the time it takes for the average performance of three

consecutive policies to fall below 300. Each point is shown with 95% confidence

intervals, although the intervals are very small (at most a width of 220,000) and barely

visible in this scale. Once again, the trend is that the convergence time increases with the

reward horizon. The curve shows a discontinuous slope when the horizon is around 100.

This is the point at which the state space begins to grow at a smaller rate as a function of

the horizon. After a horizon of 99, the top and right walls of the grid place a limitation on

the number of additional states that the agent may encounter. As a result, the minimum

state utilities of the first region grow much more quickly. By the definition of the

potential function for this experiment, this means that reaching the horizon after 100 will
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yield significantly more reward. It is this tradeoff between higher reward for reaching the

horizon and the longer path to the payoff region that creates the shallow slope in the data

after a horizon of 100. In other words, since the gridworld boundaries form a square, they

reduce the number of states close to the goal, and create a payoff-distance tradeoff that

changes the learning rate curve. Regardless, it is clear that the reward horizon is a

significant factor in convergence time, even for the standard Q-learning algorithm.

7.2.2 EXPERIMENT 2: SCALED OPPORTUNITY VALUE

Given that the goal of shaping is to reduce the reward horizon, we need to know

what types of shaping rewards can accomplish this. Chapter 4 proves that scaled

opportunity value is an ideal shaping reward in that it can reduce the reward horizon to

one, and even decrease local approximation error as the scaling constant, k, is increased.

In this experiment, use opportunity value as the shaping function to investigate its

effectiveness empirically.

We test the claim that opportunity value is an ideal shaping reward by training under

its guidance in the gridworld domain. The shaping function for this experiment is the

scaled opportunity value from definition 4.3, ).',,()',,(
2

sasOPVsasF ke = In order to

challenge the shaping functions of this experiment and to more effectively demonstrate

the effects of increasing k, we use a high variance for the initial Q-table entries. Each

initial entry is drawn from a uniform distribution ranging from -75 to 75. This is in

contrast to the other experiments in this chapter, which draw initial values from a uniform

distribution from -1 to 1. Shaping with opportunity value causes the shaped state utilities

to be zero. The larger the variance of the initial Q-table entries, the more likely it is that

significant work must be done in order to record the correct Q-values. The added

variance presents a further obstacle to fast learning, and helps to emphasize the different

scaling factors.

Figure 7.6 shows the learning curves for shaping with opportunity value (
2eF ). The

power of using scaled opportunity value for reward shaping is apparent. Without a

shaping function, every policy, throughout the learning process, takes over 5,000 actions

to reach the goal. However, at the end of two million actions, all the shaped learning
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Figure 7.6. Average Performance vs. Number of Training Actions, Using Scaled
Opportunity Value Shaping with High Variance Initial Q-table

curves are within a few hundred steps of the optimal performance. This occurs despite the

added variance in the initial Q-table. Although not shown here, the unshaped learning

curve does not exhibit a policy with performance under 5,000 until it has executed about

nineteen million training actions. Figure 7.6 also illustrates that increasing the scaling

factor k can accelerate the learning process by quickly adjusting error in the state utility

estimates. This effect is particularly noticeable when, as in this case, the initial Q-values

may have large error, but is also relevant to domains with random rewards or stochastic

actions.

7.2.3 EXPERIMENT 3: UTILITY SUBGOALS

Opportunity value provides a shaping ideal, but it also requires knowledge of all

state utilities. We test the claim that less knowledge is sufficient for accelerated learning

by shaping with utility subgoals. Each utility subgoal effectively carries the same

information as its corresponding opportunity value reward; however, we investigate

leaving out all but the most important states in order to reduce the number of prerequisite

state utilities still accelerating the learning process.
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Figure 7.7. The Potential Function
3e� for Experiment 3 with H = 4

All that is needed to implement the utility subgoal shaping scheme is a selection of

subgoals for which the state utility is known. We implement such a procedure by setting

diagonals of subgoals within the grid such that every H actions that progress toward the

goal, will pass a subgoal. That is, 1)( =ssg if and only if the Manhattan distance from

state s to the initial state in the grid, )(sd , is a multiple of H. This idea is shown in figure

7.7. The parameter H will represent the distance between subgoals and thus the minimum

reward horizon that the utility subgoals can induce. Following the idea from definition

5.2, the utility subgoal potential function for this experiment is the following.
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The learning curves for utility subgoal shaping for several values of H, using the

shaping function )()'()',,(
333

sssasF eee Φ−Φ= γ are compared to the no shape learning

curve in Figure 7.8. The learning curves display the expected characteristics. All of the

shaped curves learn faster, than the no shape curve, and as H is decreased, learning is

accelerated.

We can see from this experiment that incomplete versions of opportunity value still

can have a positive impact on the learning rate. As H is increased from one, more and

more utility values become unnecessary to compute the shaping function. While reducing

the amount of required prior knowledge, increasing H also increases the error of the
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Figure 7.8. Average Performance vs. Number of Training Actions, Using Shaping
Function

3eF (Utility Subgoal Shaping)

shaping function. The increase in error is due to the stochastic nature of the domain, and

the immediate return to the lowest potential, even after reaching a subgoal. With more

steps, the optimal policy will be more likely to terminate on non-subgoal states, which

imposes incorrect penalties. If the learner picked actions solely from information within

its horizon, the growing error could lead to convergence to lower performance. The Q-

learning algorithm chooses actions from all the data, which avoids snap judgments, but

also requires more training to overcome shaping function error. Therefore, for higher

horizons, shaping error can dominate the learning time, indicating that the number of

utility subgoals was too small. Nonetheless, we demonstrate in this experiment that there

is a valuable middle ground between the ideal opportunity value and irreconcilable

shaping error that accelerates learning with incomplete prior knowledge.

7.2.4 EXPERIMENT 4: APPROXIMATE SUBGOALS

Another way to approximate opportunity value is to not only reduce the number of

subgoals, but also value subgoals with some high potential value relative to non-subgoals.

This approach operates with incomplete and imprecise prior knowledge. Rather than
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Figure 7.9. The Potential Function
4e� for Experiment 4 with H = 4

using exact utilities, approximate subgoals attract exploration with high potentials while

discouraging non-subgoals with lower values.

For the gridworld, a simple line of reasoning determines the shaping function for the

experiment. We know that the gridworld domain starts from a potential of about zero and

experiences a reward of -1 on every transition for at least 198 steps until reaching the

goal. Then the minimum state value is zero, and the maximum is the value just before the

goal, which is about 700, based on the discount factor and grid size. Since following the

left wall up prohibits movement to the left, we pick subgoals along the left wall of the

grid and across the top wall to the goal. We multiply the maximum utility by ten to

increase its benefit and divide the result among all the states along the desired path. This

reasoning yields the following shaping potential, where H is the distance between

subgoals, )(sd is the Manhattan distance from state s to the initial state, and 1)( =ssg for

every Hth state along the left and top walls of the grid (Figure 7.9).

otherwise0

)(

1if)(200/70010

4
=Φ

=⋅⋅
s
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e

As before, we define the shaping function )()'()',,(
444

sssasF eee Φ−Φ= γ , and

compare the shaped learning curves, to learning without shaping. Despite breaking most

of the approximate subgoal potential function requirements in definition 5.3, simple prior

knowledge still amounts to accelerated learning. Figure 7.10 once again demonstrates

accelerated learning as H is decreased. When H is four there is a small decrease in

performance as training progresses. This rise in the curve may be due to the left wall
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Figure 7.10. Average Performance vs. Number of Training Actions, Using Shaping
Function

4eF (Approximate Subgoal Shaping)

subgoals attracting policies that cause the agent to inappropriately move left to reach the

subgoals.

This experiment shows that subgoal shaping can succeed with incomplete and

imprecise prior knowledge. This is in contrast to the opportunity value and utility subgoal

approaches which require (at least some) exact utilities. It is surprising to see that the

approximate subgoal shaping curves converge to the optimal solution at similar times as

the utility subgoal approach, despite the different selection and valuation of subgoals.

This may in part be a result of shaping function error, which increases with H again for

this experiment. Despite limited prior knowledge and the corresponding shaping error,

approximate subgoal shaping is effective at inducing a low reward horizon.

7.2.5 EXPERIMENT 5: POTENTIAL FUNCTION DYNAMIC SHAPING

As a final test, we generate approximate subgoal shaping rewards automatically,

using the knowledge that actions that move up and right are beneficial. For this

experiment we implement the dynamic shaping practice outlined in chapter 6 for learning
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Figure 7.11. A Dynamic Shaping Procedure for the GridWorld, Favoring Actions that
Move Up and Right

a potential function. Dynamic shaping allows us to translate the concept that “moving up

and right is good”, without requiring the placement and valuation of subgoals.

We use the Update-Phi-Gridworld (Figure 7.11) function to automatically specify a

reward structure consistent with our prior beliefs. For this domain, the prior knowledge

has an opinion ( 1)( =pPK ) when a single action moves up or right. The advice is that

reaching such a subgoal is good, thus 1)( =pA . Preliminary experiments show that

convergence time is not sensitive to learning rates between .3 and .9, and∆ above five.

Therefore we choose a learning rate of .5 and use∆ = 35, the same as the subgoal value

for experiment 4. Initial shaping potentials are all set to zero.

We compare the learning curves of dynamic shaping for three versions of prior

knowledge in Figure 7.12. One version of knowledge asserts that moving both up and

right is good. The others investigate the effects of rewarding only one of the directions:

one for moving right, and one for moving up. Each method experiences accelerated

learning, with the reward for moving up and right converging before the other two

curves. The curves rewarding just one direction show no significant difference. We can

compare these results to the convergence times in experiment 1. Rewarding both up and

right with dynamic shaping converges in about 800,000 actions on average, which is the

convergence time for a static shaping scheme with a reward horizon of about 12 in the

first experiment. Rewarding either right or up converges in about 3,500,000 actions on

average; the same as a reward scheme with horizon of about 34. It is not correct to say

that the dynamic shaping method has induced these horizons. In fact, the dynamic

shaping methods may be operating with even lower horizons since their total

UPDATE_PHI_GRIDWORLD (Transition s, a, s′)

If s′ is to the right or above s: (1)

( )[ ])'(35)(5.)� (s')� (s' ss Φ−+Φ+← γ (2)
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Figure 7.12. Average Performance vs. Number of Training Actions for Dynamic Shaping
Given Prior Knowledge Valuing Different Sets of Directions

convergence time also includes the time it takes for the shaping function to make useful

distinctions.

Dynamic shaping outperforms approximate subgoal shaping. When dynamic shaping

specifies subgoals for moving both right and up, it converges at about the same rate as the

H = 1, curve in Figure 7.10. But all the other curves for approximate subgoal shaping

illustrate slower convergence than the dynamic curves. There are two main reasons for

this. One is that, although very simple, the prior knowledge used for dynamic shaping in

this experiment is always correct even at the resolution of a single action. In addition,

dynamic shaping continually adjusts itself around the prior knowledge so that, as training

continues, the shaping error for the dynamic potential function is reduced. This idea of

reducing shaping error is very powerful, because, as we saw in experiments 3 and 4,

shaping error can delay convergence, when using Q-learning. Because of this, dynamic

shaping, rather than utility or approximate subgoals, can make the most of imperfect prior

knowledge, at the cost of training experiences for the shaping function.
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CHAPTER8

Bipedal Walking

Although useful to provide a clear demonstration of the principles of shaping, the

stochastic gridworld is an application limited by its simple and artificial nature. For

example, the gridworld has no interesting prior knowledge to apply beyond what we have

already investigated. In order to provide a more complex problem that can use real world

domain knowledge, we investigate the reward shaping process in a bipedal walking task.

In this chapter, we apply reward shaping to bipedal walking with a round-footed

mechanism. The task is to walk as far as possible within a given amount of time, starting

from an upright, motionless position. The control inputs are torques for rocking and leg

swinging. These torques cause rotational accelerations that are configuration dependent,

and thereby interact in nonlinear ways. Control torques are too weak to force the

mechanism to follow an arbitrary trajectory. But by judicious application, they can incite

interacting oscillations that result in walking. The challenge is to pump energy into the

walker and to maintain balance while coordinating rocking and leg swinging.

8.1 The Mechanism

The walker mechanism is composed of three parts (Figure 8.1): two rounded feet

with cylindrical legs, connected by a third cylindrical horizontal bar. The shape of the

feet is a section of a sphere centered at the midpoint of the horizontal bar, split down the

center to divide the feet. The curvature of the feet is determined by the radius,r. Given

this radius, the corresponding geometry of all other parts is defined by the lengths needed
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Figure 8.1. Walker Parameters and Degrees of Freedom

to make each connection. Each leg is rigidly attached to the curve of the foot at its

midpoint in both directions, and the horizontal bar connects the endpoints of the two legs.

A design parameter with the most impact on the dynamics of the walker islcm, the

distance to the center of mass of a foot and leg. Since this distance is below the center of

the sphere, there will be restoring forces on the mechanism that push the walker toward

an upright position. This aspect not only increases the stability of the walker, but also

allows for a natural perpetuation of a steady state walking motion.

The potential motions of the mechanism are determined by its degrees of freedom.

The walker has just three degrees of freedom (Figure 8.1b). – it can lean forward and

back (q1, angle about z-axis), rock side to side (q2, angle about x-axis), and swing the leg

that is off the ground (q3, relative angle of swing leg to stance leg about z-axis). With

these degrees of freedom the walker cannot twist (rotate about the y-axis). This

requirement might be physically realized by padding the foot with soft rubber, which

would passively resist such torques. Consistently, both rolling degrees of freedom,q1 and

q2, assume no slipping when contacting the ground. The swing leg motion experiences

some friction relative to the connecting part of the walker that will draw energy out of the

system gradually. The combination of these constraints requires the walker to move by

rocking side to side, leaning forward and back, and swinging the free leg.

a) Walker Parameters b) Walker Degrees of Freedom

lcm

r
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y

z
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xy-plane
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The mechanism’s design is implemented using a simulator. The equations of motion

for the walker are derived using the Euler-Lagrange method. Motion for one stance leg

and one swing leg is then calculated using numerical integration. Through this technique

the simulator accurately computes state transitions according to the dynamic constraints

of the mechanism. The walking system is nonlinear and complex. No analytic control

solution is known.

8.2 The Task Model

In this section, we discuss several elements of the Markov decision process (MDP)

used to model the walking process for reinforcement learning (RL) and develop a model

for learning based on each component. Technically, the underlying task model is not an

MDP due to the discretization of state. Because state in the simulator is continuous, the

discretized MDP state does not represent all of the information about the system, and thus

the system may lose the Markov property. As long as the discretization for the system is

not too severe, the discretized model can be treated as a MDP, although the discrepancy

between real state and modeled state makes it a particularly challenging task for

reinforcement learning. We use two discretizations of the state space: a small model for

experiments in dynamic shaping with a progress estimator, and a larger model to test the

scalability of reward shaping, and its performance in a complex environment.

The MDP of the learning task is denoted M = (S, A, R, T,γ, I). The set of states, S, is

determined by the continuous position and velocities of its three parts. We simplify this

notion of state in two ways. First, the learner may only select an action in those states just

after the walker changes its support leg, which fixesq2 at π/2. Second, we discretize each

state value. For the small model, each angle is limited to four values, and each angular

velocity to five. The larger model allows each angle and velocity to have nine values.

Each discretization uniformly divides the state space. These restrictions result in the final

form of the discretized state vector, Sqqqqqs >∈=< 33211 ,,,, ÿÿÿ .

The action space, A, can apply two torques: T2 applied to rocking (second degree of

freedom), and T3 applied to swinging the free leg (third degree of freedom). For each

action, the rocking torque is applied until rocking velocity is zero, and then the swing
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Number of Possible State

Values

Model

1q 1qÿ 2qÿ 3q 3qÿ

|A| |S××××A| Action Type

Small 4 5 5 4 5 16 32,000 Deterministic

Large 9 9 9 9 9 16 944,784 Stochastic

Table 8.1. The State and Action Spaces for the Small and Large Models

torque is applied until the walker changes stance legs. Each torque may push hard or

mildly, forward or back leading to 4 choices for T2, and 4 for T3, and so the number of

distinct actions |A| is 16. The small model applies each torque precisely, while the large

model applies some randomness to each selected action. For the large model, a torque

action chosen to apply torque T, will in fact apply a normal random torque with mean T

and variance two. This forces the large model to optimize many configurations that may

occur only by random chance from the stochastic nature of the problem. A summary of

the state and action information for both models is shown in Table 8.1.

The native reward structure R, used for the walking task is based on the immediate

gain of an individual step. This means that we use a local reward scheme based on step

size, rather than only one delayed rewards upon completion of an episode (such as the

large goal reward in the gridworld experiments). While the local rewards are a dramatic

improvement over one delayed reward, they are not a perfect way to assign credit for

decisions. It is not always the best strategy for the walker to take the largest possible step.

Over-reaching at one step can lead to a state from which only short steps are possible or

to a state in which stumbling or falling are unavoidable. In essence, these local rewards

do characterize the immediate gain of a transition, but lack information about the

opportunity value. Learning to maximize the average step size over an entire episode is

challenging.

The rest of model is straightforward. The transition probabilities, T, are determined

by the dynamics of the system as modeled by the numerical simulator. The discount

factor,γ, is set to 0.9. The initial state distribution, I, is a single state in which the walker

is upright and motionless, >=< 0,,2/,0,2/ πππs (in radians and radians per second).
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Using this model, we attempt to find the maximum average walking distance over

each episode: a time interval of about 60 seconds. This interval requires careful choices

for thirty actions per episode. The interval length is chosen for experimentation to

balance experience between building up energy and maintaining a good steady state. A

good policy will spend roughly one third of the interval gaining momentum, and the last

two thirds moving forward with a steady state it finds most appropriate.

8.3 Shaping the Walking Task

The last piece of the experiments left to describe is our shaping strategy. We develop

a progress estimating function that serves as an approximate opportunity value, given

good parameters. We use this progress estimator as the shaping function, and attempt to

apply it both statically, with fixed initial parameters, and dynamically, using the concept

of minimal foot scuffing to derive appropriate parameters. Through these means, we

incorporate prior knowledge into the walking task with the intent of inducing a low

reward horizon for faster learning.

We develop our shaping function using some basic information about the walking

motion. In particular, we know that, for every step, successful walking will include a

rocking motion outward, and a swinging motion. From standing still, each step should

increase the rocking and swinging in a coordinated fashion until achieving the optimal

steady state motion. This leads to the set of parametersθ = {A r, As}, where Ar is the

desired amplitude of the rocking motion (q2), and As is the desired amplitude of the

swinging motion of the free leg (q3). These amplitudes will represent the distance from

the state values of the initial upright position of the walker. Using these parameters we

can construct a shaping function that encourages our intended behavior for walking. We

accomplish this by penalizing deviations from the intended amplitudes specified inθ.

This shaping function will depend on the experienced amplitudes of a state-action

transition ar and as, by the following relation: ( )||||),( ssrrsr AaAaaaF −+−−= . This

shaping function will transform the native walking task into the final shaped RL task.

Specifically, all shaping experiments use the shaped MDP M′ = (S, A, R+F, T,γ, I).
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Parameter Set Ar (radians) As (radians)

Control .15 1.02

Small .05 .2

Medium .1 .5

Large .3 1.2

Table 8.2. Shaping Parameter Sets

Given this form of the shaping function, we must select values for the desired rock

and swing amplitudes, Ar and As. For static shaping we must specify these values directly

from domain knowledge. For the purposes of comparison, we obtain an ideal set of

values by first training a walking policy without shaping. We then extract the amplitudes

from the behavior of the best learned policy. We refer to these values as the control

parameters (Table 8.2). Of course, it is unrealistic in general to require these values, but

they are useful for comparison.

Realistically, we can expect only approximations, which, while perhaps inaccurate,

may enhance learning through shaping. We explore three such estimates. To choose their

values, we notice the fact that the fastest walking occurs by taking the largest step

possible in the time between collisions with the ground. This premise indicates a

dependence on the period of the rocking motion. If the period can be driven to a short

interval, the fastest walking may be several short steps. If the rocking period is long

regardless of the action executed, we expect large steps to be effective. If the action set

allows for partial control of the period, the best course of actions could be medium

optimally timed steps. Based on these ideas, and knowledge of the range of reasonable

values for the rocking and swinging amplitudes, we define the parameter sets shown in

Table 8.2. Using these values, we can apply the amplitude-critic shaping function

statically.

For dynamic shaping, we apply the progress estimator approach from Chapter 6 to

handle parameter adjustment and shaping integration. Parameter adjustment is carried out

using simple domain knowledge, which applies qualitative rules to the all the experience

observed so far. The qualitative constraints for walking can be attained by a simple
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analysis of the quality of steps. For each step, we note that a successful policy will take

the fastest possible step while maintaining a smooth motion that will continue to

propagate good steps. Using this idea, we compute an approximate quality of a step by

subtracting the impact speed of the swing leg from the average walking speed. Using the

notation from Chapter 6 to represent the idea “scuffing feet is bad”, the prior knowledge

advice is 3)()( qxppA ÿÿ −=∆⋅ . This equation takes the average walking speed over the

transition and subtracts the velocity of the swing leg on impact. We use phantom

induction to translate this advice into a good parameter set for F. For each transition,

phantom induction compares the shaping function reward to the quantity specified by the

advice. The difference between the computed shaping reward and the recommended

reward is the approximate error used to generate the next shaping reward. Actually, since

the shaping function computes a cost, and the advice describes a reward, for each path p

= (s, a, s′), we use )()()(1 pFppAerror −∆⋅−= . ( )()( ppA ∆⋅ is always less than one.)

A new set of phantom parameters is then obtained by dividing the error between the two

parameters, and adding it to the current parameter values. After each phantom point, we

compile the phantom points into new shaping parameter values using an average.

The parameter estimation phase must be short in order to maximize the use of the

learned values. This is the case since phantom points are generated for every transition

the learner encounters, and therefore we can obtain good estimates in a small number of

episodes. For the walking task we estimate parameters for 500 episodes (about 15,000

phantom points), after which the parameter values empirically demonstrate very little

change. Since 500 episodes is very short compared to the time it took to learn the control

parameters without shaping, the effect on the overall learning time should be minimal.

For shaping integration, no shaping functions are used for reinforcement during the

initial 500 episodes (parameter adjustment process). Furthermore, all actions are chosen

uniformly and randomly during this period. These two methods attempt to increase the

range of experiences that the agent observes as the shaping parameters are estimated.

After 500 episodes, we proceed to learn from the transformed rewards just as in the static

shaping case, and the exploration strategy is changed to explore the current best estimate

90% of the time under theε-greedy approach. The goal of our shaping integration
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Figure 8.2. Average Learning Curves for Experiment 6 Using the Control Parameters

methodology is to achieve high performance at the cost of ignoring information from the

early shaping functions.

8.4 Walker Experiments

We use the walker for two experiments that investigate the usefulness of dynamic

shaping in a situation with real world prior knowledge, and the application of reward

shaping to a complex domain. The first experiment compares dynamic shaping to static

shaping using the small model. The second investigates the effectiveness of dynamic

shaping in large model with stochastic transitions and a larger state space.

8.4.1 EXPERIMENT 6: PROGRESSESTIMATOR DYNAMIC SHAPING

For this experiment, we investigate the usefulness of dynamic shaping based on

reasonable prior knowledge. Specifically, we learn a progress estimator (the amplitude

critic shaping function) based on the premise that scuffing feet is bad. We compare the
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Figure 8.3. Average Learning Curves for Experiment 6, Using the Small Parameters

learning results using only native rewards to both static and dynamic shaping initialized

with each of four parameter sets: control, small, medium, and large. A standard Q-

learning algorithm is used with a fixed learning rate of 0.1. All learning curves for this

experiment use the small model, described in section 8.2.

According to our analysis of reward shaping, the key to faster learning is a low

reward horizon. Since we are learning a progress estimator shaping function, the intention

is that it will approximate the opportunity value, and therefore induce a horizon of one.

However, even with bad values, a progress estimator can transform the native process to

one with a low horizon, but also with a different notion of optimal. This occurs as long as

the shaping function imparts an opinion consistent with some achievable behavior.

By this reasoning, we formulate several predictions to test. The native rewards lack

any opinion of the opportunity value of a transition, and therefore the reward horizon of

the native process is likely to be high. For this reason, learning without shaping will

progress at the slowest rate, but eventually should reach the best performance. Static

shaping will increase the learning rate, since it uses the progress estimator shaping
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Figure 8.4. Average Learning Curves for Experiment 6, Using the Medium Parameters

function. However, it will likely reach sub-optimal performance when not using the

control-condition parameter values. Dynamic shaping, regardless of the parameter set,

will quickly reach performance near the no-shaping learner, but only after the parameter

estimation period in which performance may be quite poor.

Figures 8.2-8.5 illustrate the results of the shaping techniques using different initial

parameters (Static & Dynamic), compared to learning from only native rewards (No

Shape). Each graph plots the performance of following the policy learned after a given

number of episodes, not the performance achieved during training. All learning curves

are average data from 10 trials. Each test is carried out for 10,000 episodes.

A summary of this information is shown in Figure 8.6, which displays the average

interval performances and their 95% confidence intervals. Here all the data from intervals

of 2000 episodes are averaged. Figure 8.6 displays the learning curves in a corresponding

progression of columns representing each interval.

For comparison, we begin learning to walk without the use of shaping. The total

distance walked jumps rapidly to about 6m, highlighting the benefits of the local step size

rewards. The result of the step size feedback is a stumbling, forward movement. The
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Figure 8.5. Average Learning Curves for Experiment 6, Using the Large Parameters

refinement of this motion progresses more slowly, as the learner plans out the best

actions for faster walking. Finally, the performance levels off around 12m.

The static shaping results demonstrate fast convergence, but widely varying

performance. Using the control parameters for static shaping is successful. The walker

learns to walk 11m very quickly, and reaches 12m before 3000 episodes. Under both the

small and medium parameter sets, we obtain much poorer performance.

Using the small step shaping, the walker is able learn to walk about 3m: a

performance level lower than can be learned almost immediately from local step size

rewards alone. The medium step shaping results improve over the small results and level

off at a performance of 7m. The large step static shaping outperforms all other static

techniques by reaching 12.5m.

The dynamic shaping results all demonstrate a drop in distance walked followed by a

rise to good performance. The drop in performance occurs at 500 episodes, just after

parameter estimation has finished, and shaping rewards are introduced. After this period,

distance walked quickly increases to a level of 11.5m for the small and medium cases,

12m for the control, and 13m for the large parameter set.
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Figure 8.6. Interval Average Performance Summary for Experiment 6

The results demonstrate that the best method for learning depends on the type of

prior knowledge known. When no prior knowledge is available, shaping does not apply,

but Q-learning still finds a good solution. It is surprising to note that the best performance

was not achieved without shaping, however. This indicates that the no shaping learning

curve will continue to improve after 10000 episodes but, as indicated in the later

episodes, this improvement is likely to be slow. When good prior knowledge is known

confidently, static shaping is the most effective technique. The static shaping results

indicate that a large step size achieves fastest walking. Having knowledge of this

beforehand will yield both fast learning and high performance under the static shaping

approach as shown in Figure 8.5. However, static shaping is brittle, and may fail if the

prior knowledge is not good. Both the small and medium parameter sets restrict

performance to low levels. When only qualitative properties of the solution are known,

dynamic shaping works well. Despite the initial cost of translating this knowledge into a

precise reward scheme, dynamic shaping can still find good policies faster than without

any knowledge. For every case, dynamic shaping reaches performances above 11m

before the no shaping technique. Furthermore, dynamic shaping proves to be robust;

regardless of which values are used initially, the walker moves over 11m. Overall, the
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Figure 8.7. Average Learning Curves for Experiment 7, Using the Large Model

learning curves are consistent with our expectations, and clearly shaping provides a

technique that can accelerate learning using prior knowledge.

8.4.2 EXPERIMENT 7: LEARNING IN A COMPLEX DOMAIN

As a final investigation, we apply reward shaping to the more realistic large model

version of walking. This experiment once again applies dynamic shaping to the average

walking speed test, but using the large MDP model, we can see how shaping scales to a

larger state space, and a stochastic action space.

The impact of the reward horizon is closely tied to the number of states that may be

reached within the number of actions defined by the horizon. As we increase the

discretization, as well as entertain stochastic actions, the number of states within a reward

horizon bounded region increases. Therefore, the effects of a given reward horizon

should be more pronounced. This reasoning leads to the prediction that the effects of

dynamic shaping will be more pronounced versus the no shape learning curve, when the

large model is used. Such a result not only confirms the effectiveness of shaping, but also

Dynamic

No Shape
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Figure 8.8. Interval Average Performance Summary for Experiment 7

demonstrates the potential for shaping to help reinforcement learning scale to more

complex domains.

Figure 8.7 compares learning with dynamic shaping rewards to learning with the

native rewards on the large model. Each curve is the average of ten trials of the Q-

learning algorithm. At every data point, and for each trial, the policy performance is

evaluated over 20 attempts, and the average is reported. Dynamic shaping is initialized

with the large parameters. The amplitude critic shaping function from section 8.3 is

divided by four before adding it to the native rewards. This scaling of the shaping

function was done to counteract a thrashing effect that was demonstrated in preliminary

experiments. When the shaping function is divided by four, its rewards are typically of

smaller magnitude than the native rewards. This alleviates the thrashing that occurs when

the large shaping rewards misjudge an action because of a poor random outcome. Aside

from these aspects, the learning curves represent the same shaping process as experiment

6 applied to the large model. An interval summary of the learning curves with 95%

confidence intervals is shown in Figure 8.8.

The large model alleviates the performance variance due to severe discretization.

The large model state space, thirty times larger than the small state space, serves to make

enough distinctions so that performance is almost monotonically increasing. This is in

0

2

4

6

8

10

12

No Shape Dynamic

D
is

ta
nc

e
W

al
ke

d
(m

)

0-2000 2000-4000 4000-6000 6000-8000 8000-10000



82

contrast to the jagged learning curves in experiment seven, and is most likely due to

transition dynamics that much more closely approximate a Markov process. That is,

because the state space is more refined, the optimal action for each state is less

dependent, if at all, on an extended history of previous transitions.

Dynamic shaping outperforms conventional reinforcement learning. After 10,000

training episodes, the no shape learner reaches an average performance of under 8m. On

the other hand, the dynamic shaping curve achieves a performance over 10m, which is

not far off from its typical performance in the simple model. Figure 8.8, shows that after

the first interval, dynamic shaping has an average performance significantly greater than

the performance achieved without shaping. In fact the shaped system outperforms the

best non-shaped policy after only 2000 training episodes. While the effects of the larger

state space and stochastic actions reduce the learning rates in each case, the fact that

dynamic shaping still reaches a high level of performance demonstrates the ability of

shaping to extend reinforcement learning to more complex domains.
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CHAPTER9

Related Work

Several works have provide a strong background and motivation for our work on

reward shaping. This work is primarily in three areas: shaping applications, potential-

based shaping, and other approaches that shape learning without using rewards.

9.1 Empirical Successes with Shaping

Many related works describe the success of shaping through experimentation in

various domains. Each work gives valuable insight into the workings of reward shaping

and presents experiments that demonstrate the value of shaping.

Shaping has been used to train robots to conform to intended behaviors. Dorigo and

Colombetti [1993] train a small mobile robot to perform desired behaviors using shaping.

They describe their approach as supervised reinforcement learning, and advance this idea

as a means of translating suggestions from an external trainer into a desirable control

strategy. Saksida, Raymond, and Touretzky [1998] use the idea of shaping to train a

mobile robot. The authors use a technique for shaping based in animal learning theory,

and promote behavior editing as an underlying mechanism to the shaping process.

Other work focuses directly on modifying the reward structure to enhance the

learning process. Mataric [1994] trains multiple robots in a foraging task. She describes

two ways of enhancing rewards for accelerated learning: using progress estimators, and

reinforcing multiple goals. These ideas are some of the motivating factors in the

development of our subgoal shaping techniques. Randløv and Alstrøm [1998] use a
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shaping function to learn a control policy for riding a bicycle to a goal. The shaping

function provides local feedback that rewards progress toward the goal. The authors

hand-tune the function in order to achieve an appropriate tradeoff between balance and

direction. The need to hand-tune the shaping function led to our research on dynamic

shaping.

9.2 Potential-Based Shaping

The addition of shaping rewards changes the Markov decision process (MDP) to be

solved. Integrating strong advice into a system can accelerate learning, but if the advice is

inaccurate, the resulting policy will demonstrate less than optimal behavior. However,

this transformation need not alter the optimal policy. Ng, Harada, and Russell [1999]

show necessary and sufficient conditions for a policy to remain optimal under addition of

a shaping reward structure. They, like other shaping investigators, demonstrate

accelerated learning empirically, but specify no analytical results along these lines. The

question of what sort of shaping policy will speed rather than delay convergence to the

optimal policy is left largely unanalyzed. The empirical tests from this work lay the

foundation for the stochastic gridworld problem, and suggest that state utilities be used as

the shaping potential. These results motivated the concept of opportunity value for

inducing a reward horizon as an answer to both faster learning, and preserving the

optimal policy.

Potential functions over the state space do not allow the flexibility of action-based

shaping rewards. Wiewiora, Cottrell, and Elkan [2003] extend the idea of potential-based

shaping to offer advice about actions as well as states. They suggest using a potential

field over the combined state-action space. The shaping function becomes the difference

between two state actions, and therefore requires four inputs. Since a transition does not

specify the two actions that they require to compute the difference in potentials, the

authors propose two strategies: look-ahead, and look-back advice. Both types of advice

are shown to preserve the ordering of Q-values, and empirically demonstrate accelerated

learning.



85

9.3 Shaping Without Rewards

There are hierarchical approaches to reinforcement learning, which aim to organize a

complex behavior into a hierarchy of dependent, but simpler sub-tasks. Two of the works

in this area are hierarchical EBRL [Tadepalli & Dietterich, 1997] and the MAXQ

algorithm [Dietterich, 2000]. Hierarchical reinforcement learning build behaviors that

work together to successively approximate a desired behavior. In that sense, it follows the

same motivation as reward shaping, but with a different methodology.

Another alternative to dealing explicitly with rewards is to identify definite points of

progress, and implement mechanisms to reach these subgoals. McGovern and Barto

[2001] present a method to automatically detect subgoals, and to take advantage of the

subgoals by using policies as macro actions, or options. Similarly, Goel and Huber [2003]

apply the same process of subgoal identification and macro actions to the hierarchical

reinforcement learning paradigm. While not directly changing the rewards of the problem

while training, these techniques derive the macro actions via learning in a separate

process, where the reaching the subgoal generates the highest return. The idea of

subgoals ties in closely with the concept of inducing a low reward horizon, and therefore

conditioning a learner with localized feedback.

Other methods mold the learning process by incorporating prior beliefs into the state

and action representations. Even-Dar, Mannor, and Mansour [2003] outline an algorithm

to eliminate actions from consideration when warranted by experience in the domain. By

automatically, and appropriately reducing the size of the action space, they are able to

demonstrate faster learning and a good final policy. Sutton, Precup, and Singh [1999]

introduce the idea of relativized options: related macro actions can implement a simple

behavior in among many related tasks. Relativized options can alleviate the

complications of larger state spaces by suggesting macro actions that apply to

homomorphic regions of states. Other techniques share information between states by

using utility function approximators [Tesauro, 1992; Bertsekas and Tsitsiklis, 1996].
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CHAPTER10

Future Work

We have written, to the best of our knowledge, the first theory of reward shaping that

explains why learning is accelerated through rewards, and describes the ideal information

that shaping rewards should attempt to convey. These results lay the foundation for the

development of successful shaping techniques. Our work on subgoal shaping and

progress estimators is a first attempt to establish such techniques, but it also highlights

several areas to explore further, including shaping reward functions, dynamic shaping

algorithms, and reinforcement learning algorithms more receptive to shaping.

10.1 Shaping Reward Functions

Our work emphasizes the importance of subgoals and progress estimators for

successful shaping functions. However, neither utility subgoals, nor approximate

subgoals were able to scale very far as prior knowledge accuracy was reduced. As the

underlying horizon that was imposed by these methods in experiments three and four

increased, shaping error began to dominate, and learning time was not reduced as

effectively as it could have been (experiment 1). This not only invites research on how to

scale these subgoal techniques, but also suggests that there is room for improvement in

the design of shaping functions overall.

As the distance between subgoals increases in a stochastic environment, the

likelihood of traveling directly from one subgoal to the next decreases. This property

explains why shaping error begins to affect the learning process at higher horizons when
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using simple subgoal techniques. For example, the approximate subgoal potential

function shown in Figure 7.9 uses very few subgoals. While it does encourage the correct

policy within the reward horizon, the expected net gain for following this policy

decreases as the horizon increases. This effect is due to randomness in the environment:

even the best policy has a decreasing probability of reaching that subgoal state as it

moves farther away. An approach is needed that can apply the limited prior knowledge

used by the subgoal shaping techniques to “blanket” an area of important subgoal states

with approximate values such that the best decision is made clear regardless of the

horizon size. Solving this problem will allow shaping to scale up to its potential, as

indicated in experiment one, so that even a subgoal near the final goal state can have an

impact.

There is also evidence to support the investigation of other types of shaping rewards.

The amplitude-critic shaping function from the walking experiments demonstrates

accelerated learning of a good policy, and does not directly involve subgoals or a

potential-based structure. Moreover, while opportunity value can be represented as a

potential function, scaled opportunity value cannot. This is a consequence of including

native reward feedback which inherently depends on actions. We refer to shaping

functions that are not potential based, but still attempt to approximate opportunity value

on every transition as progress estimators. Many useful research topics are relevant here,

such as an investigation on useful types of progress estimator functions, a look at

progress estimators that can withhold an opinion for some transitions, and combinations

of progress estimators based on different prior knowledge.

10.2 Dynamic Shaping

The case for dynamic shaping is also divided between potential-based shaping and

progress estimator shaping. We motivate, present, and demonstrate two dynamic shaping

techniques based on these ideas. There are interesting extensions to these approaches as

well as possibilities for alternative methods.

One interesting extension for potential function dynamic shaping is to represent the

potential field as a function that can generalize over states rather than a tabular approach.
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Similar to the idea of a value function approximator, such as neural nets, the potential

function approximator could represent the potential field values in a parameter space with

a size lower than the size of the state space. Even when the utilities are not approximated

by a function, it is useful to do so for the potential function because a smaller parameter

space could lead to faster learning. And quick convergence is of critical importance for

dynamic shaping. Therefore examining potential function approximators to find those

that provide acceptable accuracy with decreased learning time could have significant

impact to the dynamic shaping process overall.

There are also alternative methods for dynamic shaping. Although we suggest two

techniques, the fundamental process of dynamic shaping – learning the shaping function

through initial experiences of the task – has many possibilities. Of primary interest are

dynamic learning processes that work with any type of shaping function. Our results in

dynamic shaping currently depend on the type of shaping function: potential-based, or

progress estimator. It is valuable to consider refinements of dynamic shaping to these

types of functions, extensions of dynamic shaping to new shaping functions, and even

dynamic shaping that will work independent to the category of shaping function being

used.

10.3 Shaping-Responsive Learning

The experimental work in this paper uses the conventional Q-learning algorithm with

ε-greedy exploration. There are many advantages to this algorithm. Q-learning is

responsive to the reward horizon without requiring it as an input. Furthermore,ε-greedy

requires no overhead to plan its course of exploration. However, the Horizon-Learn

algorithm suggests that other learning algorithms may be more responsive to shaping if

they can focus all exploration into regions warranted by the reward horizon. Horizon-

Learn develops conditions that judge a state a known, which has the power to eliminate

all further exploration from that state.

Combining the ability of Horizon-Learn to make accurate snap judgments with the

simple effectiveness of Q-learning may lead to the development of a shaping-responsive

learner. The intent is that by explicitly designing the idea of the reward horizon into a
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utility value reinforcement learner, it may become more sensitive to shaping advice, and

enhance the speedup and scalability even further from what we demonstrate in this paper.

While explicit use of the horizon can potentially improve speed over that of Q-learning, it

is not a trivial input to require. A powerful result would be to find a learning algorithm

that performs exploration by using a successively expanding horizon, when it is becomes

clear through experience that lower horizons are inconsistent with good global

performance.
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CHAPTER11

Conclusion

We have written a theory of reward shaping that explains the ability of reward

shaping to accelerate the learning process. Central to this work is the concept of a reward

horizon: the delay between an action and an accurate judgment of its effects on a global

scale. This idea is not surprising when viewed in light of the conditioning process from

psychology. Many forms of life learn a causal structure of their environment based on

associations of an unconditional stimulus to other events, or their own behavior. We have

placed this idea within the computational framework of reinforcement learning, and

proven that the strength of that association, the reward horizon, plays the integral role in

determining the learning rate of a behavior in a given environment.

One type of feedback that generates an ideal learning environment is opportunity

value. Opportunity value is the value of the resultant state of an action minus the value of

the initial state. It describes how much better it is to be in the position that resulted from

an action rather than to have not moved at all. Opportunity value is the complementary

information to rewards. While rewards describe the immediate gain of an action,

opportunity value describes the progress on a global scale. Because of this property,

opportunity value is the ideal shaping reward: it induces a reward horizon of one, and

preserves the optimal policy.

The challenge for reward shaping is to convey the available prior knowledge in a

manner that will accelerate learning, but not deteriorate final performance. Opportunity

value is the ideal candidate, but requires complete and perfect knowledge of the state

utilities for the reinforcement learning task. To avoid this unreasonable prerequisite, we
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propose the ideas of subgoal shaping and dynamic shaping. Subgoal shaping gives extra

reinforcement to subgoals states that are known to have some relative benefit or

detriment to the intended behavior. By this process, subgoal shaping allows for

accelerated learning when any prior knowledge is available, even if it is incomplete and

imperfect. Dynamic shaping is a further aid in translating limited prior knowledge into an

augmented reward structure. Dynamic shaping pairs the task of learning appropriate

shaping reward values with the task of finding the optimal behavior. Through the use of

an additional learning task, prior knowledge is freed from the necessity to formulate

precise values. Instead, prior knowledge can be used on a qualitative level to drive the

dynamic shaping process toward a useful augmentation of the native reward by using

experience in the domain.

The theory in this paper presents a complete methodology to effectively

communicate prior knowledge to a reinforcement learning agent and provides guarantees

of its effects on the learning rate and final performance. All aspects of the theory hold up

to experimentation in a stochastic gridworld. Moreover, dynamic shaping allows

reinforcement learning to tackle the challenging task of bipedal walking efficiently, even

with a complex model of the domain. The potential for using shaping advice to condition

intended behaviors is apparent in both theory, and application.
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