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Abstract

This paper proposes a uni�ed approach for consistent testing of linear restrictions

on the conditional distribution function of a time series. A wide variety of interesting

hypotheses in economics and �nance correspond to such restrictions, including hypothe-

ses involving conditional goodness-of-�t, conditional homogeneity, conditional mixtures,

conditional quantiles, conditional symmetry, distributional Granger non-causality, and

interval forecasts. The �nite-sample properties are investigated in a set of Monte Carlo

experiments. The proposed tests are conservative but perform well in samples of the

size relevant for empirical �nance.
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1. Introduction

This paper proposes a uni�ed approach for consistent testing of linear restrictions on the

conditional distribution function (d.f.) of a time series. A wide variety of interesting and

important hypotheses in economics and �nance correspond to such restrictions, includ-

ing hypotheses involving conditional goodness-of-�t, conditional homogeneity, conditional

quantiles, conditional symmetry, distributional Granger non-causality, and interval fore-

casts. The tests, for example, are naturally-suited to helping answer questions such as

\Are the distributions of assets, consumption, and income implied by a particular dynamic

macroeconomic model close to the actual distributions in the data?," or \Do di�erences

in microstructure across di�erent asset markets produce di�erences in return distributions,

and if so, are the di�erences consistent with a particular microstructure theory?"

The econometric literature on conditional d.f.s is growing rapidly. For example, speci-

�cation tests for the parametric conditional d.f. for iid observations have been considered

by Heckman (1984), Andrews (1988b, 1997), Stinchcombe and White (1995), and Zheng

(1994, 1996). Moreover, those for dependent observations have been considered recently by

Diebold, Gunther, and Tay (1997) and Bai (1997). This paper di�ers from the literature in

that it considers consistent tests for a much wider range of restrictions on the conditional

d.f.s in a uni�ed framework. Moreover, this paper allows for the possibility of an in�nite

history of information, which is important because many economic and �nancial time series

may not be Markovian. The proposed test is consistent against all alternatives to the null

hypothesis.

The remainder of the paper is organized as follows. Section 2 states the canonical form

2



of the null hypothesis and lists a variety of hypotheses in economics and �nance which imply

linear restrictions on the conditional d.f.s. Section 3 develops an asymptotic theory. Section

4 assesses the �nite-sample performance of the proposed test for conditional goodness-of-

�t restrictions in a set of Monte Carlo experiments. We �nd that the proposed test is

conservative but powerful enough for the sample size relevant for empirical �nance. An

appendix provides proofs of the results given in the paper.

2. Hypothesis of Interest

This section states the canonical form of linear restrictions on the conditional d.f.s and

shows that a wide variety of interesting hypotheses in econometrics imply linear restrictions

on the conditional d.f.s.

Let fztg
1
t=�1 be a strictly stationary sequence of <d-valued random variables. Let

ut(�) = g(zt; �) where g : <d � � ! <r, � � <p, and let Fj(�jZ
t�1
t�m; �) denote the d.f. of

utj(�) conditional on zt�1; zt�2; :::; zt�m. Let c = (c1; c2; :::; cr) 2 <
r, � = (�1; �2; :::; �r) 2

� � <r, and G(�jZt�1
�1; �) be measurable with respect to Zt�1

�1. As shown later, c, �, and

G(�jZt�1
�1; �0) are speci�ed as part of the null hypothesis. The canonical form of the null

hypothesis is that there exists some �0 2 � such that, for all � 2 �,

P
� rX

j=1

cjFj(�j jZ
�1
�1; �0) = G(�jZ�1�1; �0)

�
= 1: (2.1)

In other words, the linear combination of conditional d.f.s is equal to the function G under

the null hypothesis.1 The alternative hypothesis is the negation of the null hypothesis (2.1).

1Note that the null hypothesis does not require the uniqueness of �0 but the existence of �0. The case of

set-valued �0 will be mentioned in Section 3.
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That is, for every � 2 �, there exists some � 2 � such that

P
� rX

j=1

cjFj(�j jZ
�1
�1; �) = G(�jZ�1�1; �)

�
< 1: (2.2)

(2.1) can accommodate and unify a wide variety of interesting hypotheses that arise in

econometric applications as shown below.

2.1. Conditional Goodness of Fit

A conditional goodness-of-�t restriction is

P (yt � �jzt�1; zt�2; :::) = G(�jZt�1
�1; �0) a.s. (2.3)

for all �, where G(�j�; �) is a parametric conditional d.f. That is, the conditional d.f. of

yt given zt�1, zt�2,... is in the parametric family fG(�jZ; �) : � 2 �g. This problem

has been considered by Heckman (1984), Andrews (1988b, 1997), Stinchcombe and White

(1995), and Zheng (1994,1996) in the iid context, and by Diebold, Gunther, and Tay (1997)

and Bai (1997) in the time-series context. Letting r = 1 and c1 = 1, one can express the

conditional goodness-of-�t restriction (2.3) in the form of (2.1).

The conditional goodness-of-�t restriction can be interesting in economics and �nance.

The parametric d.f. G(�j�; �) can be theoretically derived or simulated from a particular eco-

nomic model. In macroeconomics, one can test the speci�cation of a dynamic economic

model by testing the conditional goodness-of-�t restriction. For example, one may test

whether the distributions of assets, consumptions, and income implied by a particular dy-

namic economic model are close to the actual distributions in the data. Diebold et al.

(1997) show that integral transformed random variables are iid uniform under the correct

speci�cation, and they use the result to evaluate the density forecasts of GARCH models.
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Bai (1997) improves upon the test of Diebold et al. (1997) by explicitly taking account

of estimation uncertainty, and he also considers GARCH models as a special case of his

general theory.

2.2. Conditional Homogeneity

A conditional homogeneity restriction is

F1(�jZ
t�1
�1) = F2(�jZ

t�1
�1) (2.4)

for all �, where F1 and F2 are the conditional d.f.s of u1 and u2, respectively. Letting r = 2,

c1 = 1, c2 = �1, G(�j�; �0) = 0, and � = f(�1; �2) 2 <
2 : �1 = �2g, we can write (2.4) in the

form of (2.1).

While tests for unconditional homogeneity have been well studied in the statistical lit-

erature, tests for conditional homogeneity have not. Nonetheless, conditional homogeneity

can be interesting in various contexts of economics and �nance where dynamics and con-

ditioning are often important. In �nancial economics, one might test the di�erence in

market microstructure by testing the equality of conditional d.f.s. between the exchange

rates in New York and in London. In labor economics, one may test the di�erence in wage

distributions between blacks and whites conditional on age, education, and experience.

2.3. Conditional Quantiles

A conditional quantile restriction is the speci�cation of a quantile function and can be

written as

P (yt � qp(xt; �0)jZ
t�1
�1) = p a.s. (2.5)
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for some function qp(�; �) and p 2 (0; 1). The conditional quantile restriction (2.5) is closely

related to the conditional calibration restriction (2.8). While the former restriction is used

for estimation, the latter is motivated by forecasting. When qp(x; �0) = �00x, this restriction

is the quantile regression of Koenker and Bassett (1978). Bierens and Ginther (1997)

consider a consistent speci�cation test of median regression models for iid observations.

Zheng (1998a) develops a kernel-based consistent speci�cation test of quantile regression

models for iid observations. While Bierens and Ginther (1997) do not take into account

estimation uncertainty, Zheng's (1998a) test and ours explicitly do. Let r = 1, c1 = 1,

�1 = f0g, ut(�) = yt � qp(xt; �), and G(0j�; �0) � p. Then (2.5) can be stated in the form

of (2.1).

2.4. Conditional Symmetry

A conditional symmetry (around zero) restriction is

P (yt � f(xt; �0) � ��jZt�1
�1) = P (yt � f(xt; �0) � �jZt�1

�1) (2.6)

for all � 2 <. Fan and Gencay (1995) consider a consistent test for symmetry in linear

regression models for iid observations. Using a kernel method, Zheng (1998b) develops a

consistent test for symmetry in nonlinear models for iid observations. Let r = 2, c1 = 1,

c2 = �1, � = f(�1; �2) 2 <
2 : �1 = �2g, ut1(�) = yt � f(xt; �), ut2(�) = f(xt; �) � yt, and

G(�j�; �0) � 0. Then (2.6) can be written in the form of (2.1).

Symmetry of the disturbance plays an important role in adaptive estimation (see Bickel,

1982 and Newey, 1988), and quasi-maximum likelihood estimation (see Lumsdaine, 1996,

and Newey and Steigerwald, 1997).
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2.5. Distributional Granger Non-causality

We say that yt does not Granger-cause xt in the distributional sense if

P (xt � �jxt�1; xt�2; :::; yt�1; yt�2; :::) = P (xt � �jxt�1; xt�2; :::) a.s. (2.7)

for all � 2 <. While the conventional Granger non-causality restriction is stated in terms

of conditional mean, distributional Granger non-causality is in terms of conditional dis-

tribution. An economic model may imply that no additional economic variable can im-

prove its prediction. By testing the distributional Granger non-causality, one can test

such hypotheses. Linton and Gozalo (1996) consider a nonparametric test for condi-

tional independence which is closedly related to the concept of distributional Granger non-

causality. Let r = 1, c1 = 1, G(�j�; �0) = P (xt � �jxt�1; xt�2; :::). Then the Granger

non-causality restriction (2.7) can take the form of (2.1). In our framework, the speci�ca-

tion of P (xt � �jxt�1; xt�2; :::) must be provided.

2.6. Interval Forecasts

Let (y
�
(�; �0); y�(�; �0)) denote a 100(1� �)% interval forecast of yt. The interval forecast

is correct if and only if

P (y
�
(xt; �0) � yt � y�(xt; �0)jzt�1; zt�2; :::) = 1� �; a.s. (2.8)

Let r = 2, c1 = 1, c2 = �1, �1 = �2 = f0g, ut1(�) = yt � y�(xt; �), ut2(�) = yt � y
�
(xt; �),

G(0j�; �0) � 1 � �, and zt = (xt�1; yt). Then (2.8) can be expressed in the form of (2.1).

While we present the results only for one-step-ahead forecasts, one can always consider

multi-step-ahead forecasts at the expense of additional notation for a forecast horizon.
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While a point forecast predicts a single future realization of a particular random vari-

able, an interval forecast predicts an area in which the random variable falls with a spec-

i�ed probability. Interval forecasts are becoming important in the literature on fore-

casting, especially in the context of risk management. Christo�ersen (1997) shows that

fI(y
�
(xt; �0) � yt � y�(xt; �0))g is a sequence of iid Bernoulli random variables under the

correct speci�cation, and he examines the interval forecasts of GARCH models. While he

does not take into account estimation uncertainty due to replacement for the unknown pa-

rameter �0 by an estimate �̂T , we explicitly do. One can also test the speci�cation of a

particular econometric model by testing whether it produces correct interval forecasts.

3. Asymptotic Theory

Let f�jg
1
j=1 be a sequence of compact subsets of <d, � = (�1; �2; :::) 2 �1 � �2 � � � � = �,


 = (�; �), and � = � ��. Given measurable functions w : < ! < and � : <d ! <d, the

null hypothesis (2.1) implies

E

�
w(

1X
j=1

�j�(z�j))[
rX

j=1

cjFj(�j jZ
�1
�1; �0)�G(�jZ�1�1; �0)]

�
= 0 (3.1)

for all 
 2 �. Because the null (2.1) is equivalent to the unconditional moment restriction

(3.1) under certain conditions on w(�) (see Bierens, 1990, and Stinchcombe and White,

1998), we consider consistent testing of (2.1) based on (3.1). Bierens (1990) is the �rst

to consider consistent tests based on the weight function w(�) = exp(�) in testing for the

conditional moment restriction of a nonlinear regression model. The discontinuity of the

indicator function renders the existing results inapplicable to our problem, however.
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We introduce the following notation.

G�(�jZ
t�1
0 ; �) = @G(�jZt�1

0 ; �)=@�; G�(�jZ
t�1
0 ; �) = @G(�jZt�1

0 ; �)=@�;

G��(�jZ
t�1
0 ; �) = @2G(�jZt�1

0 ; �)=@�@�0; G��(�jZ
t�1
0 ; �) = @2G(�jZt�1

0 ; �)=@�@�0;

gi�(zt; �) = @gi(zt; �)=@�; gi��(zt; �) = @2gi(zt; �)=@�@�
0;

H�(�jZ
t�1
0 ) = @H(�jZt�1

0 )=@�; H��(�jZ
t�1
0 ) = @2H(�jZt�1

0 )=@�@�0;

where g(zt; �) = ut(�) and H(�jZt�1
0 ) =

Pr
j=1 cjFj(�j jZ

t�1
0 ; �1) a.s. where �1 2 �1 � <p.

When �0 is set-valued, let �0 denote one of such �0's from now on. It is possible because

estimation is not necessarily based on (2.1). Let �̂T denote an estimate of �0, and �0 � int�

some neighborhood of �0.

We introduce the following set of assumptions.

ASSUMPTION 1: Under the null hypothesis (2.1),

(a) fztg
1
t=�1 is a strictly stationary �-mixing sequence of <d-valued random variables

with mixing coe�cients of size ��=(� � 2) for some � > 2.

(b) fG2(�jZt�1
0 ; �0)g

1
t=1 is L

2-NED on fztg of size�1=2 and L
�-integrable. fkG(�jZ�1�t ; �0)�

G(�jZ�1�1; �0)k2g
1
t=1 and fkG�(�jZ

�1
�t ; �0) � G�(�jZ

�1
�1; �0)k2g

1
t=1 are of size �1=2.

There exists a sequence of Borel measurable functions f �Gt(zt�1; :::; z0)g
1
t=1 that is

L2-NED of size �1=2 on fztg, L
2�-integrable, and satis�es

jG�i(�jZ
t�1
0 ; �)j � �Gt(zt�1; zt�2; :::; z0) a.s. (3.2)

jG�i�j (�jZ
t�1
0 ; �)j � �Gt(zt�1; zt�2; :::; z0) a.s. (3.3)

jG�i�k (�jZ
t�1
0 ; �)j � �Gt(zt�1; zt�2; :::; z0) a.s. (3.4)

jG�k (�jZ
t�1
0 ; �)j � �Gt(zt�1; zt�2; :::; z0) a.s. (3.5)
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for all � 2 �, � 2 �0, i; j = 1; 2; :::; r, k = 1; 2; :::; p, and t = 1; 2; :::.

(c) g(zt; �) is Borel measurable for all � 2 �. There exists a Borel measurable function

�g(zt) that is L
2�-integrable and satis�es

jgi�j (zt; �)j � �g(zt) a.s. (3.6)

jgi�j�k (zt; �)j � �g(zt) a.s. (3.7)

for i = 1; 2; :::; r, j; k = 1; 2; :::; p, and � 2 �0.

(d) �̂T has a linear expansion such that

T
1
2 (�̂T � �0) = T�

1
2

TX
t=1

 t(zt; zt�1; :::; z0; �0) + op(1); (3.8)

where  t : <
d(t+1)��! <p is Borel measurable for all � 2 � and L2�-integrable, and

E[
TX
t=1

 t(zt; zt�1; :::; z0; �0)jZ
T�1
0 )] =

T�1X
t=1

 t(zt; zt�1; :::; z0; �0) a.s. (3.9)

for all T = 2; 3; :::. There exists a sequence of Borel measurable functions f � t(zt; :::; z0)g
1
t=1

that is L2-NED of size �1=2 on fztg, L
2�-integrable and satis�es

����� 1T
TX
t=1

f t(zt; :::; z0; �
0)�  t(zt; :::; z0; �)g

�����
2

�
1

T

TX
t=1

� t(zt; :::; z0)j�
0� �j+op(1) (3.10)

for all i = 1; 2; :::; p, �; �0 2 �0, and t = 1; 2; :::.

(e) � � <r, �j � <d is compact, �max j = max�j2�j �j = O(j�1��), and �min j =

min�j2�j �j = O(j�1��) for some � > 1=2.

(f) w : < ! < is non-polynomial analytic, and � : <d ! <d is bounded, Borel measurable,

and one-to-one.
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Under the alternative hypothesis, �0 and �0 in the above assumptions are replaced by �1

and �1, respectively, and (3.8) and (3.9) are replaced by

(d')

T
1
2 (�̂T � �1) = Op(1): (3.11)

In addition, we assume that

(g) fH2(�jZt�1
0 )g1t=1 is L

2-NED on fztg of size �1=2 and L�-integrable. fkH(�jZ�1�t ) �

H(�jZ�1�1)k2g
1
t=1 is of size �1=2. There exists a sequence of Borel measurable func-

tions f �Ht(zt�1; zt�2; :::; z0)g
1
t=1 that is L2-NED of size �1=2 on fztg, L

2�-integrable,

and satis�es

jH�i(�jZ
t�1
0 )j � �Ht(zt�1; zt�2; :::; z0) a.s. (3.12)

jH�i�j (�jZ
t�1
0 )j � �Ht(zt�1; zt�2; :::; z0) a.s. (3.13)

for all � 2 �, i; j = 1; 2; :::; r, t = 1; 2; :::.

(h) There exists a <d-valued strictly stationary sequence fvtg
1
t=1 such thatG(�jZ

t�1
0 ; �1) =

Pr
j=1 cjP (vtj � �j jZ

t�1
0 ) a.s.

Before we present our theorem, we will remark on Assumption 1. The conditions on

dependence and moments in Assumptions 1(a)(b)(d)(g) have been commonly used in the

literature on nonlinear econometric models; see Gallant and White (1988). (3.2), (3.3),

(3.4), (3.5), (3.6), (3.7), (3.12), and (3.13) impose a version of the global Lipschitz condition.

Without loss of generality, the same bound functions are used to simplify notation. It is

not restrictive that ut(�) = g(zt; �) depends only on zt. By expanding the dimension of zt,
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ut(�) can depend on more complex dynamics. Assumption 1(d) requires that the estimator

�̂T satisfy the CLT for martingales under the null hypothesis. For example, the ordinary

least squares (OLS) estimator with martingale-di�erence disturbances and the maximum

likelihood estimator (MLE) based on logL(�) =
PT

t=1 log f(ztjzt�1; zt�2; :::; z0; �) satisfy

(3.8) and (3.9) as long as some conditions on the dependence and moments are satis�ed.

GMM estimators based on conditional moment restrictions, such as Euler equations, satisfy

(3.8) and (3.9). Andrews (1997) also requires the estimator to have a linear expansion.

Assumption 1(d') requires that the estimator converges in probability under the alternative

hypothesis.

Assumption 1(e) gives conditions on the space of nuisance parameters which is under

the control of econometricians. The condition on f�jg in Assumption 1(f) guarantees that

the summand in the function w is well-de�ned (c.f., De Jong (1996, equation 12) who uses

�j = [aj ; bj ] where aj ; bj = O(j�2)). The �rst part of Assumption 1(f) is from Theorem 2.3

in Stinchcombe and White (1995) and guarantees the test consistency against all alternative

hypotheses. �1 is the limit of �̂T under the alternative hypothesis. For example, if �̂T is a

MLE, �1 is the limit of the quasi-MLE under the alternative hypothesis.

Let

q1t(
) = w(
tX

j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)]; (3.14)

q2t(�; 
) = w(
tX

j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �)]; (3.15)

q3t(�; 
) = w(
tX

j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�) � �j)�G(�jZt�1
0 ; �0)]; (3.16)

q4t(�; 
) = w(
tX

j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�) � �j)�G(�jZt�1
0 ; �)]: (3.17)
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We consider the Cram�er-von Mises statistics SiT =
R

2�QiT (
)

2d�(
), where Q1T (
) =

T�
1
2
PT

t=1 q1t(
), QiT (
) = T�
1
2
PT

t=1 qit(�̂T ; 
) for i = 2; 3; 4, and �(�) is a probability

measure on � which is absolutely continuous with respect to the Lebesgue measure. 2

When G and g do not depend on � (no parameter uncertainty), S1T should be used. When

only G depends on �, S2T should be used. When only g depends on �, S3T should be used.

When both G and g depend on �, S4T should be used.

THEOREM 3.1: Suppose that Assumption 1 holds.

(a) Under the null hypothesis (2.1),

SiT
d
! Si �

Z

2�

Qi(
)
2d�(
)

where Qi is a mean-zero Gaussian process with covariance kernel:

E[Qi(
)Qi(

0)] = lim

T!1

1

T

TX
t=1

E[rt(
)rt(

0)] (3.18)

for i = 1; 2; 3; 4, where

r1t(
) = q1t(
)

r2t(
) = q1t(
)�E[w(
1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)] t(zt; :::; z0; �0)

r3t(
) = q1t(
) +E[w(
1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)g�(z0; �0)] t(zt; :::; z0; �0)

r4t(
) = q1t(
) +E[w(
1X
j=1

�j�(z�j))(G�(�jZ
�1
�1; �0)g�(z0; �0)�G�(�jZ

�1
�1; �0))] t(zt; :::; z0; �0)

(b) Under the alternative hypothesis (2.2),

plimT!1

1

T

Z

2�

QiT (
)
2d�(
) > 0

2When � is a singleton (e.g., interval forecast restrictions), the average-type test statistic is de�ned asR
�2�

QiT (
)
2d�.
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for i = 1; 2; 3; 4.

Theorem 3.1(a) shows that the null limiting distribution is data-dependent, and Theo-

rem 3.1(b) shows that the test statistic diverges under the alternative hypothesis. In order

to make the test operational, we follow the approach of Bierens and Ploberger (1997). By

Lemma 1 and Theorem 7 in Bierens and Ploberger (1997), we can �nd the upperbounds as

follows.3

lim
T!1

P

�Z
Qi(
)=Vi(
)d�(
) > �

�
� P

0
@sup

n�1

1

n

nX
j=1

�2j > �

1
A (3.19)

where Vi(
) = limT!1
1
T

PT
t=1 V ar(rit(
)) and �j � NID(0; 1). Thus, we need a consistent

estimator for Vi(
). Let

V1T (
) =
1

T

TX
t=1

w(
tX

j=0

�j�(zt�j))
2[

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)]

2

V2T (
) =
1

T

TX
t=1

�
w(

tX
j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �̂T )]

�
1

T

TX
s=1

fw(
sX

j=0

�j�(zs�j))G�(�jZ
s�1
0 ; �̂T )]g (zt; :::; z0; �̂T )

�2
;

V3T (
) =
1

T

TX
t=1

�
w(

tX
j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �̂T )]

+
1

T

TX
s=1

fw(
sX

j=0

�j�(zs�j))G�(�jZ
s�1
0 ; �̂T )]g (zt; :::; z0; �̂T )

�2
;

V4T (
) =
1

T

TX
t=1

�
w(

tX
j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �̂T )]

+
1

T

TX
s=1

fw(
sX

j=0

�j�(zs�j))(G�(�jZ
s�1
0 ; �̂T )�G�(�jZ

s�1
0 ; �̂T ))]g (zt; :::; z0; �̂T )

�2
;

V5T (
) =
1

T

TX
t=1

�
w(

tX
j=0

�j�(zt�j))[
rX

j=1

cjI(utj(�̂T ) � �j)�G(�jZt�1
0 ; �0)]

3When � is not compact, use the change-of-variable technique so that the new integration is taken over

a compact support.
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+
1

2hTT

TX
s=1

w(
sX

j=0

�j�(zs�j))[Ĝ�s(�̂T )g�(zs; �̂T ) (zt; :::; z0; �̂T )
�2
;

where

Ĝ�t(�) = (Ĝ
(1)
�t (�); Ĝ

(2)
�t (�); :::; Ĝ

(r)
�t (�))

0; Ĝ
(i)
�t (�) = ciI(j(uti(�)� �i)=hT j � 1):

THEOREM 3.2: Suppose that Assumption 1 holds.

(a) Under the null hypothesis (2.1), sup
2� jViT (
) � Vi(
)j = op(1) for i = 1; 2; 3; 4.

Under the alternative hypothesis (2.2), sup
2� jViT (
)j = Op(1) for i = 1; 2; 3; 4.

(b) Moreover, assume that hT ! 0 and hTT
1=2 ! 1 as T ! 1. Under the null

hypothesis (2.1), sup
2� jV5T (
) � V3(
)j = op(1). Under the alternative hypothesis

(2.2), sup
2� jV5T (
)j = Op(1).

V5T (�) should be used when the null hypothesis is not parametric.

4. Monte Carlo Experiments

This section investigates the �nite-sample performance of the proposed test for conditional

goodness-of-�t restrictions in a simple set of Monte Carlo experiments. The null hypothesis

is

yt � N(�; �2) (4.20)

for some � and sigma2 > 0. In the notation used in Section 3, ut(�0) = (yt � �0)=� and

zt = yt.

Several alternative hypotheses are considered. Then the �rst alternative hypothesis is

yt = "2t � 1 (4.21)
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where "t � NID(0; 1). The second is a stochastic volatility model, i.e.,

yt = exp(ht=2)"t; ht = c+ �ht�1 + ��t; (4.22)

where ("t; �t)
> � NID(02; I2). The third is an AR(1) model, i.e.,

yt = �yt�1 + "t (4.23)

where "t � N(0; 1).

Without loss of generality, �0 = 0 and �2 = 1. The sample sizes used are T =

250; 500; 1000. We use � = < and �j = [�j�2; j�2] for j = 1; 2; :::; T . The Monte Carlo

integration method is used to compute the Cram�er-von Mises statistic. 300 random vectors,

consisting of a standard normal r.v. and T uniform r.v.s over � � �, are drawn for each

Monte Carlo replication. The number of Monte Carlo replications is set to 1000.

Table 1 shows the rejection frequencies (%). The size here is a pointwise one (for �xed �

and �2) and thus is di�erent from the size in the sense of Lehmann (1986): the supremum of

the type I error probabilities over all possible DGP under the null (for all possible values of �

and �2). Because we are using the upperbound, it is not surprising that the actual rejection

frequenciese are lower than the nominal level. In fact, the actual rejection frequencies turn

out to be zero. The test is not powerful when the sample size is small. However, the power

of the test increases as the sample size increases. The test is practically powerful enough

for the sample size 1000. We also note that the further the alternative hypothesis is from

the null, the more powerful the test is. In practice, the use of the 10% signi�cance level

is recommended to increase the power. As Lehmann (1986), one may want to use higher

values of the signi�cant level than the customary ones, such as 10%.
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Appendix: Proofs of Theorems 3.1 and 3.2

We use the following notation in the proof. Let wmax and wmin denote constants such that

sup
�2�

jw(

1X
j=1

�j�(z�j))j � wmax a.s. and inf
�2�

jw(

1X
j=1

�j�(z�j))j � wmin a.s.;

respectively. Let ~w denote a constant such that jw(x0)� w(x)j � ~wjx0 � xj for all x;x0 2 [�min; �max] where

�1 < �min � inf�2�
P1

j=1
�j�(z�j) a.s. and sup�2�

P1

j=1
�j�(z�j) � �max < 1 a.s. Assumptions 1(e)

and (f) guarantee the existence of wmax, wmin, ~w, �max, and �min. 0d and 1d denote d-dimensional vectors

such that 0d = (0; 0; :::;0)> and 1d = (1; 1; :::;1)>, respectively. When applied to vectors, max and min are

element-by-element. To simplify notation, we assume that � is scalar, i.e., p = 1, and �j = [�min j; �max j ]
d

for some �min j<�max j for j = 1; 2; :::; r. Unless noted otherwise, Oas, oas, Op, and op are uniform in


 2 � (e.g., f(
) = op(1) means sup
2� jf(
)j = op(1)).

Proof of Theorem 3.1(a): Without loss of generality, we prove only the case when i = 4. For notational

simplicity, we omit the subscript 4. The proof of Theorem 3.1(a) consists of the following �ve lemmas.

LEMMA A.1: (�; �) is totally bounded, where � is a metric on � de�ned by

�(
; 
0) =
� 1X

j=1

j�0j � �j j
2j1+� +

rX
j=1

jFj(�
0
j)� Fj(�j)j

2
� 1
2 :

where Fj is the marginal d.f. of utj(�0) = gj(zt; �0).

LEMMA A.2:

1

T

TX
t=1

w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; ��T )g�(zt; ��T )� E[w(

1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)g�(z0; �0)] = op(1);

(A.1)

1

T

TX
t=1

w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; ��T )� E[w(

1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)] = op(1); (A.2)

where f��T g
1
T=1 is an arbitrary sequence such that ��T � �0 = op(1) uniformly in � 2 �. Moreover,

E
�
w(

1X
j=1

�j�(z�j))[G�(�jZ
�1
�1; �0)g�(z0; �0) +G�(�jZ

�1
�1; �0)]

	
(A.3)

is uniformly continuous in 
 2 �.

LEMMA A.3: fT�
1

2

PT

t=1
qt(�0; 
) : 
 2 �gTt=1 is stochastically equicontinuous, i.e., for each � > 0,

lim
�#0

lim sup
T!1

P

 
sup


;
02�:�(
;
0)<�

�����T� 1

2

TX
t=1

[qt(�0; 

0)� qt(�0; 
)]

����� > �

!
= 0: (A.4)

LEMMA A.4:

T�
1

2

TX
t=1

�
qt(�̂T ; 
)� rt(
)

	
= op(1): (A.5)

LEMMA A.5:

T�
1

2

TX
t=1

rt(
)
d
! N(0; V (
)) (A.6)
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for every 
 2 �, where V (
) = limT!1
1
T

PT

t=1
V ar(rt(
)).

Before we prove these lemmas, we shall brie
y sketch the proof of Theorem 3.1(a). By Lemma A.4,

T�1=2
PT

t=1
rt(
) approximates T

�1=2
PT

t=1
qt(�̂T ; 
) uniformly in 
 2 �. By Lemma A.1, (�; �) is totally

bounded. Generalizing Lemma A.5 and applying the Cram�er-Wold device, one can show the �-di convergence

of T�1=2
PT

t=1
rt(
) to Q(
). By Lemmas A.2 and A.3, T�1=2

PT

t=1
rt(
) is stochastically equicontinuous.

Therefore, fQT (
) : 
 2 �g1t=1 weakly converges to fQ(
) : 
 2 �g.

Proof of Lemma A.1: The proof is a slight generalization of and analogous to that of Lemma 1 in De

Jong (1996) and thus is omitted.

Proof of Lemma A.2: Since the proof of (A.2) is analogous to that of (A.1), we prove only (A.1). It

su�ces to show

1

T

TX
t=1

[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; ��T )g�(zt; ��T )� w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)] = op(1);

(A.7)

1

T

TX
t=1

w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)�E[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)] = oas(1);

(A.8)

and

1

T

TX
t=1

E[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)]� E[w(

1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)g�(z0; �0)] = o(1):

(A.9)

First, we shall prove (A.7).

sup

2�

��� 1
T

TX
t=1

[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; ��T )g�(zt; ��T )� w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)]

���
�

2wmax

T

TX
t=1

�Gt(zt�1; :::; z0)�g(zt)j��T � �0j = op(1): (A.10)

The inequality follows from Assumptions 1(b)(c), the triangle inequality, and de�nition of wmax. The equality

follows from Assumptions 1(a)(b)(c)(d) and Theorem 3.1 in McLeish (1975).

Second, we shall prove (A.8). By the uniform SLLN, it su�ces to show the total boundedness of (�; �),

the stochastic equicontinuity

lim
�#0

lim sup
T!1

sup

;
02�:�(
;
0)<�

��� 1
T

TX
t=1

[w(

tX
j=1

�0j�(zt�j))G�(�
0jZt�1

0 ; �0)g�(zt; �0)

�w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)]

��� = 0 a.s. (A.11)

and the pointwise almost sure convergence

1

T

TX
t=1

(
w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)� E[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)]

)
= oas(1);

(A.12)
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for every 
 2 �. (�; �) is totally bounded by Lemma A.1. It is straightforward to show the stochastic

equicontinuity (A.11) by using Assumption 1(a)(b)(e)(f), Theorem 3.1 in McLeish (1975) and Lemma A.1;

therefore, the proof is omitted. We shall apply Theorem 3.1 in McLeish (1975) in order to show (A.12).

Thus, it su�ces to show that

�
w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)

	1
t=1

(A.13)

is L2-NED on fztg
1
t=1 of size �1=2.

sup
t



 w( tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)� E[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)jZ

t+m
t�m ]




2

= sup
t



 w( tX
j=1

�j�(z�j))G�(�jZ
�1
�t ; �0)g�(z0; �0)� E[w(

tX
j=1

�j�(z�j))G�(�jZ
�1
�t ; �0)g�(z0; �0)jZ

m
�m]




2

� sup
t



 w( mX
j=1

�j�(z�j))(G�(�jZ
�1
�t ; �0)g�(z0; �0)� E[G�(�jZ

�1
�t ; �0)g�(z0; �0)jZ

m
�m])




2

+sup
t



 ~w

tX
j=m+1

j�jjf�(z�j)G�(�jZ
�1
�t ; �0)g�(z0; �0)�E[�(z�j)G�(�jZ

�1
�t ; �0)g�(z0; �0)]g




2
:

� wmax sup
t



 G�(�jZ
�1
�t ; �0)g�(z0; �0)� E[G�(�jZ

�1
�t ; �0)g�(z0; �0)jZ

m
�m]




2

(A.14)

+ ~w

1X
j=m+1

j�jj sup
t



 �(z�j)[G�(�jZ
�1
�t ; �0)g�(z0; �0)� E[�(z�j)G�(�jZ

�1
�t ; �0)g�(z0; �0)]




2
: (A.15)

The equality follows from the strict stationarity, the �rst inequality from the triangle inequality, and the

second inequatlity from the Cauchy-Schwarz inequatlity. (A.14) is of size �1=2 by Assumption 1(b). By

Assumption 1(a)(b)(c)(e)(f), supt k � k2 in (A.15) is �nite uniformly in j and t. Because

sup
�2�

1X
j=m+1

j�jj = C

1X
j=m+1

j�1�� = O(m��) (A.16)

for some C > 0 by Assumption 1(e), (A.15) is of size �1=2. Thus, (A.13) is L2-NED on fztg
1
t=1 of size

�1=2. Therefore, the uniform SLLN proves (A.8).

Third, we shall prove (A.9).

�� 1
T

TX
t=1

fE[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)]� E[w(

1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)g�(z0; �0)]g

��

=
�� 1
T

TX
t=1

fE[w(

tX
j=1

�j�(z�j))G�(�jZ
�1
�t ; �0)g�(z0; �0)]� E[w(

1X
j=1

�j�(z�j))G�(�jZ
�1
�t ; �0)g�(z0; �0)]g

��
�

�� 1
T

TX
t=1

E[w(

tX
j=1

�j�(z�j))�w(

1X
j=1

�j�(z�j))]G�(�jZ
�1
�t ; �0)g�(z0; �0)

��
+
�� 1
T

TX
t=1

Ew(

1X
j=1

�j�(z�j))[G�(�jZ
�1
�t ; �0)�G�(�jZ

�1
�1; �0)]g�(z0; �0)]

��
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�
h

~w2

T

TX
t=1

� 1X
j=t+1

j�jj
2j1+�

�
(

1X
j=t+1

Ej�(z�j)j
2j�1��

� i 12 � 1

T

TX
t=1

E[ �Gt(z�1; :::; z�t)�g(z0)]
2
	 1

2 (A.17)

+
wmaxk�g�(z0)k2

T

TX
t=1



G�(�jZ
�1
�t ; �0)�G�(�jZ

�1
�1; �0)




2
: (A.18)

The equality follows from strict stationarity, the �rst inequality from the triangle inequality, and the second

inequality from the Cauchy Schwarz inequality. (A.17) goes to zero uniformly in 
 2 �

lim
T!1

TX
t=1

t�1
1X

j=t+1

j�jj
2j1+�

1X
j=t+1

Ej�(z�j)j
2j�1�� <1: (A.19)

(A.18) goes to zero uniformly in 
 2 � by Assumption 1(b). The proof of the uniform continuity of (A.3) is

straightforward and thus is omitted.

Proof of Lemma A.3: As in the literature on empirical d.f.s (e.g., Bai, 1996, p.610), we focus on

the case � = [0; 1]r in terms of stochastic equicontinuity. For an arbitrary � > 0 and T 2 N , let

(�T (�); JT ; fKTjg
JT
j=1; LT ) be such that sup�;�02�

P1

j=JT+1
j�j � �j � �T (�), LT = [1=�T (j)], KTj =

[(�max j��min j)=�T (�)], �T (�) = �=maxf(�JT
j=1K

2d
Tj)L

2r
T ; T

1=2g. One can show that, as T !1, �T (�)! 0,

JT !1, KTj !1, and LT !1. For j = 1; 2; :::; JT , let

�j(k) = min(�min j1d +�T (�)k; �max j)1d; for 0d � k �KTj :

For all j > JT , let �j(k) = ��j for some ��j 2 �j. For 0r � l � LT , let

�(l) = minf0r +�T (�)l;1rg:

Because

sup

;
02�:�(
;
0)<�

�����T� 1

2

TX
t=1

[qt(�0; 

0)� qt(�0; 
)]

�����
� 3 max

1�k;k0�KT ;1�l;l0�LT :�(
(k;l);
(k0 ;l0))<�

�����T� 1

2

TX
t=1

[qt(�0; 
(k; l))� qt(�0; 
(k; l)))]

�����
+2wmaxT

�1
TX
t=1

�Gt(zt�1; zt�2; :::z0)�

+2jcj ~wT�1
TX
t=1

1X
j=1

j�1�� j�(zt�j)j�: (A.20)

where the inequality follows from the triangle inequality, the Cauchy-Schwarz inequality, Assumption 1(b),

and the de�nition of ~w,

P

 
sup


;
02�:�(
;
0)<�

��� T� 1

2

TX
t=1

[qt(�0; 

0)� qt(�0; 
)]

��� < "

!

� P

 
3 max
k;k0 ;l;l0 :�(
(k;l);
(k0 ;l0))<�

��� T� 1

2

TX
t=1

[qt(�0; 
(k'; l'))� qt(�0; 
(k; l)))]
��� < "=3

!
(A.21)

+P

 
2wmaxT

�1
TX
t=1

j �Gt(zt�1; zt�2; :::z0)j� < "=3

!
(A.22)
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+P

 
2jcj ~wT�1

TX
t=1

1X
j=1

j�1�� j�(zt�j)j� < "=3

!
: (A.23)

Since the limsups of (A.22) and (A.23) are O(�), it su�ces to show that (A.21) is O(�). It follows from

P

 
3 max
k;k0 ;l;l0 :�(
(k;l);
(k0 ;l0))<�

��� T� 1

2

TX
t=1

[qt(�0; 
(k'; l'))� qt(�0; 
(k; l)))]
��� < "=3

!

� K2
TL

2
T max
k;k0 ;l;l0

P

 ��� T� 1

2

TX
t=1

[qt(�0; 
(k'; l'))� qt(�0; 
(k; l)))]
��� < "=3

!

� K2
TL

2
T max
k;k0 ;l;l0

("=3)�2T�1
TX
t=1

E[qt(�0; 
(k'; l'))� qt(�0; 
(k; l)))]
2 (A.24)

and

E[qt(�0; 
(k; l))� qt(�0; 
(k; l)))]
2 � 2w2

max
�Gt(zt�1; :::; z0)�T (�) + 2jcjwmax ~w�T (�) (A.25)

that

P

 
3 max
k;k0 ;l;l0 :�(
(k;l);
(k0 ;l0))<�

��� T� 1

2

TX
t=1

[qt(�0; 
(k'; l'))� qt(�0; 
(k; l)))]
��� < "=3

!

� 2"�2T�1
TX
t=1

[ �Gt(zt�1; :::; z0) + jcjwmax ~w]�: (A.26)

Therefore, Lemma A.3 is proved. Q.E.D.

Proof of Lemma A.4: By Lemma A.2, it su�ces to show

T�
1

2

TX
t=1

w(

tX
j=1

�j�(zt�j))f

rX
j=1

cj[I(utj(�̂T ) � �j)�I(utj(�0) � �j)]�G(�tjZ
t�1
0 ; �0)+G(�jZ

t�1
0 ; �0)g = op(1)

(A.27)

T�
1

2

TX
t=1

w(

tX
j=1

�j�(zt�j))[G(�tjZ
t�1
0 ; �0)�G(�jZt�1

0 ; �0)�G�(�jZ
t�1
�1; ��T )g�(zt; ��T )(�̂T � �0)] = op(1);

(A.28)

and

T�
1

2

TX
t=1

w(

tX
j=1

�j�(zt�j))[G(�jZ
t�1
0 ; �̂T )�G(�jZt�1

0 ; �0)�G�(�jZ
t�1
0 ; ~�T )(�̂T � �0)] = op(1); (A.29)

for some sequences f��T g
1
T=1 and f~�T g

1
T=1 such that ��T � �0 = oas(1) and ~�T � �0 = oas(1) uniformly in

� 2 �, respectively. Let �t = �+ g(zt; �̂T )� g(zt; �0). (A.27) holds by the stochastic equicontinuity (Lemma

A.3). (A.28) and (A.29) follow from the mean-value theorem. Q.E.D.

Proof of Lemma A.5: Exploiting the fact that f(
PT

t=1
rt(
);Z

T�1
0 )g1T=1 is a martingale, we shall apply

the CLT for martingales in Hall and Heyde (1980, Theorem 3.2). We need to show

lim
T!1

1

T

TX
t=1

[rt(
)
2 �Ert(
)

2] = 0: (A.30)

By Theorem 3.1 in McLeish (1988), it su�ces to show that frt(
)
2g1t=1 is L

2-NED on fztg
1
t=�1 of size �1=2.

Since

fE[w(

1X
j=1

�j�(z�j))G�(�jZ
�1
�1; �0)g�(z0; �0) +G�(�jZ

�1
�1; �0)] t(zt; zt�1; :::; z0; �0)g

1
t=1

21



is L2-NED of size �1=2 on fztg, it su�ces to show that fqt(�0; 
)
2g1t=1 is L

2-NED on fztg
1
t=�1 of size �1=2.

sup
t



 w( tX
j=1

�j�(zt�j))
2[

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)]

2

�Efw(

tX
j=1

�j�(zt�j))
2[

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)]

2jZt+m
t�mg




2

= sup
t



 w( tX
j=1

�j�(z�j))
2[

rX
j=1

cjI(u0j(�0) � �j)�G(�jZ�1�t ; �0)]
2

�Efw(

tX
j=1

�j�(z�j))
2[

rX
j=1

cjI(u0j(�0) � �j)�G(�jZ�1�t ; �0)]
2jZm

�mg



2

� w2
max sup

t



 [ rX
j=1

cjI(u0j(�0) � �j)�G(�jZ�1�t ; �0)]
2 � Ef[

rX
j=1

cjI(u0j(�0) � �j)�G(�jZ�1�t ; �0)]
2jZm

�mg



2

(A.31)

+2 ~w

1X
j=m+1

j�jj


 j�(z�j)j[ rX

j=1

cjI(u0j(�0) � �j)�G(�jZ�1�t ; �0)]

�E�(z�j)[

rX
j=1

cjI(u0j(�0) � �j)�G(�jZ�1�t ; �0)]



2
; (A.32)

The �rst equality follows from the strict stationarity, and the last inequality from the mean value theorem.

(A.31) is of size �1=2 by Assumption 1(b). (A.32) is of size �1=2 by sup�2�
P1

j=m+1
j�jj = O(m��) by

Assumption 1(e). Thus, fqt(�0; 
)
2g1t=1 is L2-NED on fztg of size �1=2. Therefore, Lemma A.5 is proved.

Q.E.D.

Proof of Theorem 3.1(b): The proof of Theorem 3.1(b) consists of the following three lemmas.

LEMMA A.6:

p lim
T!1

sup

2�

����� 1T
TX
t=1

Eqt(�1; 
)

����� > 0; (A.33)

LEMMA A.7:

1

T

TX
t=1

[qt(�1; 
)� Eqt(�1; 
)] = op(1); (A.34)

LEMMA A.8:

1

T

TX
t=1

[qt(�̂T ; 
)� qt(�1; 
)] = op(1): (A.35)

Before we prove these lemmas, we shall brie
y sketch the proof of Theorem 3.1(b).

T�
1

2QT (�̂T ; 
) =
1

T

TX
t=1

qt(�̂T ; 
) =
1

T

TX
t=1

qt(�1; 
) + op(1) =
1

T

TX
t=1

Eqt(�1; 
) + op(1) = Op(1) (6= op(1)):

The second equality follows from Lemma A.8, the third from Lemma A.7, and the fourth from Lemma A.6

and the continuity of Eqt(�1; 
).

Proof of Lemma A.6:

�� 1
T

TX
t=1

Eqt(�1; 
)� Ew(

1X
j=1

�j�(zt�j))[H(�jZt�1
�1)�G(�jZt�1

�1; �1)]
��
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=
�� 1
T

TX
t=1

w(

tX
j=1

�j�(z�j))[H(�jZ�1�t )�G(�jZ�1�t ; �1)]� Ew(

1X
j=1

�j�(z�j))[H(�jZ�1�1)�G(�jZ�1�1; �1)]
��

�
�� 1
T

TX
t=1

E[w(

tX
j=1

�j�(z�j))�w(

1X
j=1

�j�(z�j))][H(�jZ�1�t )�G(�jZ�1�t ; �1)]
��

+
�� 1
T

TX
t=1

Efw(

1X
j=1

�j�(z�j))
�
H(�jZ�1�t )�G(�jZ�1�t ; �1)�H(�jZ�1�1) +G(�jZ�1�1; �1)

� ��
�

2jcj ~w

T

TX
t=1

1X
j=t+1

j�jj
2j1+�

1X
j=t+1

Ej�(z�j)j
2j�1��

+
wmax

T

TX
t=1



H(�jZ�1�t )�G(�jZ�1�t ; �1)�H(�jZ�1�1) +G(�jZ�1�1; �1)



2
: (A.36)

The �rst term goes to zero uniformly in 
 2 � since

lim
T!1

TX
t=1

t�1
1X

j=t+1

j�jjj
1+�

1X
j=t+1

Ej�(z�j)jj
�1�� <1: (A.37)

The second term goes to zero uniformly in 
 2 � by Assumptions 1(b)(g). Thus,

lim
T!1

sup

2�

����� 1T
TX
t=1

Eqt(�1; 
)

����� = sup

2�

E

(
w(

1X
j=1

�j�(z�j))[H(�jZ�1�1)�G(�jZ�1�1)]

)
> 0: (A.38)

The proof of the last inequality is analogous to that of Theorem 2 in De Jong (1996, pp.18-19) except that

his Theorem 1 in the proof is replaced by Theorem 2.3 in Stinchcombe and White (1995). Q.E.D.

Proof of Lemma A.7: The left-hand side of (A.34) is less than or equal to

sup

2�

��� 1
T

TX
t=1

w(

tX
j=1

�j�(zt�j))[

rX
j=1

cjI(utj(�1) � �j)�G(�jZt�1
0 ; �1)]

�Efw(

tX
j=1

�j�(z�j))[H(�jZ�1�t )�G(�jZ�1�t ; �1)]g
���

� sup

2�

��� 1
T

TX
t=1

w(

tX
j=1

�j�(zt�j))[

rX
j=1

cjI(utj(�1) � �j)�H(�jZt�1
0 )]

��� (A.39)

+ sup

2�

��� 1
T

TX
t=1

w(

tX
j=1

�j�(zt�j))[H(�jZt�1
0 )�G(�jZt�1

0 ; �1)]

�Efw(

tX
j=1

�j�(zt�j))[H(�jZt�1
0 )�G(�jZt�1

0 ; �1)]g
��� : (A.40)

By the uniform SLLN, it su�ces to show the total boundedness of (�; �), the stochastic equicontinuity of

fw(

tX
j=1

�j�(zt�j))[

rX
j=1

cjI(utj(�1) � �j)�H(�jZt�1
0 )] : 
 2 �g1t=1

and

fw(

tX
j=1

�j�(zt�j))[H(�jZt�1
0 )�G(�jZt�1

0 ; �1)]g
1
t=1;
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and the pointwise convergence. By Lemma A.1, (�; �) is totally bounded. The proof of the stochastic

equicontinuity is analogous to that of Lemma A.3 and thus is omitted. By Theorem 2.15 in Hall and Heyde

(1980), �� TX
t=1

t�1w(

1X
j=1

�j�(zt�j))[

rX
j=1

cjI(utj(�1) � �j)�H(�jZt�1
0 )]

�� <1 a.s. (A.41)

By the Kronecker lemma,

�� 1
T

TX
i=1

w(

tX
j=1

�j�(zt�j))[

rX
j=1

cjI(utj(�1) � �j)�H(�jZt�1
0 )]

�� = oas(1): (A.42)

By Assumptions 1(a)(b)(g) and Theorem 3.1 in McLeish (1975),

1

T

TX
t=1

w(

tX
j=1

�j�(zt�j))[H(�jZt�1
0 )�G(�jZt�1

0 ; �1)]

�Efw(

tX
j=1

�j�(zt�j))[H(�jZt�1
0 )�G(�jZt�1

0 ; �1)]g = oas(1): (A.43)

Thus, both (A.39) and (A.40) are oas(1). The proof of Lemma A.7 is completed. Q.E.D.

Proof of Lemma A.8: The proof is similar to that of Lemma A.3 except that Assumption 1(d') is used

instead of (3.8) and (3.9). Therefore, it is omitted. Q.E.D.

Proof of Theorem 3.2(a): By Lemma A.2, it su�ces to show that

1

T

TX
t=1

f[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�̂T ) � �j)�G(�jZt�1
0 ; �̂T )) +D(
) (zt; :::; z0; �̂T )]

2

�[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)) +D(
) t(zt; :::; z0; �0)]

2g = op(1);

(A.44)

and

1

T

TX
t=1

"
w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)) +D(
) t(zt; :::; z0; �0)

#2
� V (
) = op(1);

(A.45)

where D(
) = Efw(
P1

j=1
�j�(z�j))[G�(�jZ

�1
�1; �0)g�(z0; �0) + G�(�jZ

�1
�1; �0)]g. By the Cauchy-Schwarz

inequality,

sup

2�

j
1

T

TX
t=1

f[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�̂T ) � �j)�G(�jZt�1
0 ; �̂T )) +D(
) (zt; :::; z0; �̂T )]

2

�[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)) +D(
) t(zt; :::; z0; �0)]

2gj

� sup

2�

� 1

T

TX
t=1

[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�̂T ) � �j)�G(�jZt�1
0 ; �̂T )) +D(
) t(zt; :::; z0; �̂T )

+w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0)) +D(
) t(zt; :::; z0; �0)]

2
	 1

2 (A.46)
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� sup

2�

� 1

T

TX
t=1

[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�̂T ) � �j)�G(�jZt�1
0 ; �̂T )) +D(
) t(zt; :::; z0; �̂T )

�w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0))�D(
) t(zt; :::; z0; �0)]

2
	 1

2 : (A.47)

By Assumptions 1(a)(b)(d) and Theorem 3.1 in McLeish (1975), one can show that (A.46) is Oas(1). Thus,

it su�ces to show that (A.47) is oas(1).

1

T

TX
t=1

[w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�̂T ) � �j)�G(�jZt�1
0 ; �̂T )) +D(�) (zt; :::; z0; �̂T )

�w(

tX
j=1

�j�(zt�j))(

rX
j=1

cjI(utj(�0) � �j)�G(�jZt�1
0 ; �0))�D(�) t(zt; :::; z0; �0)]

2

�
4wmax

T

TX
t=1

rX
j=1

c2j [I(utj(�̂T ) � �j)� I(utj(�0) � �j)]
2 (A.48)

+
2wmax

T

TX
t=1

�Gt(zt�1; zt�2; :::; z0)j�̂T � �0j (A.49)

+
4wmax

T

TX
t=1

D(�)2 � t(zt; :::; z0)j�̂T � �0j
2: (A.50)

A similar technique used in the proof of Lemma A.3 proves that (A.48) is oas(1). (A.49) and (A.50) are

oas(1) uniformly in � 2 � by Assumptions 1(a)(b)(d) and Theorem 3.1 in McLeish (1975).

The second part of Theorem 3.2(a) is straightforward and thus is omitted. Q.E.D.

Proof of Theorem 3.2(b): To simplify notation, let r = 1. It su�ces to show

1

2hT T

TX
t=1

w(

tX
j=1

�j�(zt�j))Ĝ�t(�̂T )g�(zt; �̂T )�
1

2hTT

TX
t=1

w(

tX
j=1

�j�(zt�j))Ĝ�t(�0)g�(zt; �0) = op(1);

(A.51)

1

2hTT

TX
t=1

w(

tX
j=1

�j�(zt�j))Ĝ�t(�0)g�(zt; �0)

�
1

2hTT

TX
t=1

w(

tX
j=1

�j�(zt�j))[G(v+ hT jZ
t�1
0 ; �0)�G(v � hT jZ

t�1
0 ; �0)]g�(zt; �0) = op(1); (A.52)

and

1

2hTT

TX
t=1

w(

tX
j=1

�j�(zt�j))[G(v+ hT jZ
t�1
0 )�G(v � hT jZ

t�1
0 )]g�(zt; �0)

�
1

T

TX
t=1

E[w(

tX
j=1

�j�(zt�j))G�(�jZ
t�1
0 ; �0)g�(zt; �0)] = op(1): (A.53)

Since the proofs of (A.51), (A.52), and (A.53) are similar to those of Lemmas A.2, A.3, and A.4, we only

sketch them.
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As in the proof of Lemma A.3, one can show that

1

hTT

TX
t=1

w(

tX
j=1

�j�(zt�j))Ĝ�t(�̂T )g�(zt; �̂T )�
1

ThT

TX
t=1

w(

tX
j=1

�j�(zt�j))Ĝ�t(�0)g�(zt; �0) = Op

�
�̂T � �0
hT

�
:

(A.54)

Since hTT
1=2 !1 as T !1, (A.51) follows.

The proof of (A.52) consists of the proofs of the total boundedness, stochastic equicontinuity, and

pointwise convergence. By Lemma A.1, (�; �) is totally bounded. The proof of stochastic equicontinuity is

analogous to that of Lemma A.4 and thus is omitted. Since

n
w(

tX
j=1

�j�(zt�j))Ĝ�t(�0)g�(zt; �0)�
1

2hTT

TX
t=1

w(

tX
j=1

�j�(zt�j))

�[G(v+ hT jZ
t�1
0 ; �0)�G(v � hT jZ

t�1
0 ; �0)]g�(zt; �0)

o1
T=1

(A.55)

is a martingale di�erence array, one can show the pointwise convergence by Theorem 2 in Andrews (1988a).

Since

lim
hT!0

G(� + hT jzt�1; :::; z0)�G(� � hT jzt�1; :::; z0)

2hT
= G�(�jzt�1; :::; z0) a.s. (A.56)

the proof of (A.53) is straightforward. Q.E.D.
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Table 1

Finite-Sample Performance of Tests for Conditional Goodness-of-Fit Restrictions

H0 : yt = "t; "t � NID(�; �2) for some � and �2

DGP1 yt = "t; "t � NID(0; 1)
T=250 T=500 T=1000

1% 5% 10% 1% 5% 10% 1% 5% 10%
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DGP2 yt = "2
t
� 1; "t � NID(0; 1)

T=250 T=500 T=1000
1% 5% 10% 1% 5% 10% 1% 5% 10%
99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

DGP3 yt = exp(�ht=2)"t; ht = 0:10 + 0:90ht�1+
p
0:3�t("t; �t) � NID(0; I2)

T=250 T=500 T=1000
1% 5% 10% 1% 5% 10% 1% 5% 10%

0.1 2.8 7.0 4.4 26.0 48.9 49.5 91.3 97.9
DGP4 yt = 0:5yt�1+ "t; "t � NID(0; 1)

T=250 T=500 T=1000
1% 5% 10% 1% 5% 10% 1% 5% 10%

0.0 0.1 1.0 0.0 12.2 63.7 39.1 99.6 100.0
DGP5 yt = 0:9yt�1+ "t; "t � NID(0; 1)

T=250 T=500 T=1000
1% 5% 10% 1% 5% 10% 1% 5% 10%

4.1 93.1 99.3 100.0 100.0 100.0 100.0 100.0 100.0

Notes: The Monte Carlo integration method is used to evaluate the test statistics with the number

of repetitions set to 300. The number of Monte Carlo replications is to 1000.
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