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Acoustic Modeling using Deep Belief Networks

Abdel-rahman Mohamed, George E. Dahl, and Geoffrey Hinton

Abstract—Gaussian mixture models are currently the domi- using a feature vector that describes segments of the tampor
nant technique for modeling the emission distribution of hidden eyolution of critical-band spectral densities within a g
Markov models for speech recognition. We show that better cyitical hand. Sub-word posterior probabilities are eatied

phone recognition on the TIMIT dataset can be achieved by . ..
replacing Gaussian mixture models by deep neural networks USINg feedforward neural networks for each critical band an

that contain many layers of features and a very large number these prObabi”tieS are merQEd to prOduce the final estimate
of parameters. These networks are first pre-trained as a multi- of the posterior probabilities using another feedforwazdmal

layer generative model of a window of spectral feature vectors network. In [8], the split temporal context system is intodd
without making use of any discriminative information. Once the which modifies the TRAP system by including, in the middle

generative pre-training has designed the features, we perform | fth t lit fi I f
discriminative fine-tuning using backpropagation to adjust the ayer or the system, Splits over time as well as over irequenc

features slightly to make them better at predicting a probability ~Pands before the final merger neural network. _
distribution over the states of monophone hidden Markov models. ~ Feedforward neural networks offer several potential advan

tages over GMMs:
Index Terms—Acoustic Modeling, deep belief networks, neural ¢ Their estimation of the posterior probabilities of HMM
networks, phone recognition states does not require detailed assumptions about the
data distribution.
l. INTRODUCTION « They allow an easy way of combining diverse features,
including both discrete and continuous features.

Utomatic speech Recognition (ASR) has evolved 5'9”""' « They use far more of the data to constrain each parameter
cantly over the past few decades. Early systems typically o0 se the output on each training case is sensitive to a
discriminated isolated digits or yes/no, whereas currgst s large fraction of the weights

tems can do quite well at recognizing telephone-qualitgnsp The benefit of each weight in a neural network being

_tan_eous gpeech. A huge "?‘T“OU”‘ of progress has been m:%’r?strained by a larger fraction of training cases than each
in improving word recognition rates, but the core acoust

. . . ; arameter in a GMM has been masked by other differences
modeling has remained fairly stable, despite many attem rI\Straining. Neural networks have traditionally been tean
to develop better alternatives.

A typical ASR system uses Hidden Markov Model%urely discriminatively, whereas GMMs are typically traih

. X s generative models (even if discriminative training is- pe
(HMMs) to model the sequential structure of speech signal g ( g'5p

. . . X rmed later in the training procedure). Generative trani
with each HMM state_: using a mixture of Gaussians to mOdeIaﬁﬁows the data to impose many more bits of constraint on the
spectral representation of the sound wave. The most com

0 . )
o ameters (see below), thus partially compensating fer th
spectral representation is a set of Mel Frequency Ceps ( ) P y P 9

. ; ) t that h tofal GMM t be trained
coefficients (MFCCs) derived from a window of about 25 mg veryasnigﬁ frzz?opnogfe?hg dzt:rge must be frained on

of speech. The window is typically advanced by about 10 MS MECCs. GMMs, and HMMs co-evolved as a way of doing

per frame, and each frame of coefficients is augmented WgBeech recognition when computers were too slow to explore

differences and dlffere.ncels of dlﬁereljces with nearbpnﬁ;a ore computationally intensive approaches. MFCCs throw
One research direction involves using deeper acoustic m(g%\?ay a lot of the information in the sound wave, but pre-

els that cc_)ntain many layers of features. The wor_k in [1] P"%arve most of the information required for discriminati@y.
poses a hierarchical framework where each layer is designe cluding temporal differences, MFCCs partially overcotine
capture a set of distinctive feature landmarks. For eadifea o syong conditional independence assumption of HMMs,
a specialized acoustic representation is constructed 'nhNhnamer that successive frames are independent given the

that fegtu_re Is easy to detect. In [2], a probablllst!c 9alee  pidden state of the HMM. The temporal differences also allow
model is introduced where the dynamic structure in the mddaiagonal covariance Gaussians to model the strong temporal
. . . Povariances by reducing these particular pairwise covees
contextual influence across phonetic units. to individual coefficients. As we shall see, a Fourier transf

Feedforward neural networks have been used in Maf¥sed filterbank, densely distributed on a mel-scale, is a

QSRT;’XS;emSh.B]’ [4], 55]' Indsplired bﬁ’ Iinsights Jro;n [6]’p tential alternative to MFCCs for models that can easily
the architecture [7] models a whole second of speegh (" .o alated features [71.

Copyright (c) 2010 IEEE. Personal use of this material is piechi GMMS are easy to fit to .data using the EM alg'orlthm,
However, permission to use this material for any other purposest be especially when they have diagonal covariance matrices$, an

obtained from the IEEE by sending a request to pubs-permis@deee.org. yith enough components they can model any distribution.
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3G4, Canada. (e-mail: asamir@cs.toronto.edu; gdahl@asttoedu; hin- They are, however, statistically inefficient at modelingHh
ton@cs.toronto.edu) dimensional data that has any kind of componential stractur
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Suppose, for example, thaf significantly different patterns many more parameters to be used before overfitting occurs.
can occur in one sub-band aid significantly different pat- The generative pre-training creates many layers of feature
terns can occur in another sub-band. Suppose also that whieltectors that become progressively more complex. A subse-
pattern occurs in each sub-band is approximately indepgnde&uent phase of discriminative fine-tuning, using the steshda
A GMM requires NM components to model this structurebackpropagation algorithm, then slightly adjusts the Ut
because each component must generate both sub-bands (eaelery layer to make them more useful for discrimination.
piece of data has only a single latent cause). On the otidre big advantage of this new way of training multi-layer
hand, a model that explains the data using multiple causesural networks is that the limited amount of information in
only requiresN + M components, each of which is specific tahe labels is not used to design features from scratch. hlis o
a particular sub-band. This exponential inefficiency of GMMused to change the features ever so slightly in order to tdjus
for modeling factorial structure leads to ASR systems th#ie class boundaries. The features themselves are discover
have a very large number of Gaussians, most of which must building a multi-layer generative model of the much riche
be estimated from a very small fraction of the data. information in the window of speech coefficients, and thisglo
In this paper, we focus on a more powerful alternativeot require labeled data.
to GMMs for relating HMM states to feature vectors. In Our approach makes two major assumptions about the
particular, we reconsider the use of multi-layer, feedsfmd nature of the relationship between the input data, whichis t
neural networks that take a window of feature vectors astinptase is a window of speech coefficients, and the labels, which
and produce posterior probabilities of HMM states as outputre HMM states produced by a forced alignment using a pre-
Previous instantiations of the neural network approa@xisting ASR model. First, we assume that the discrimimatio
have used the backpropagation algorithm to train the neuve# want to perform is more directly related to the underlying
networks discriminatively. These approaches coincideglpi causes of the data than to the individual elements of the
with a trend initiated by [9] in which generative modelingdata itself. Second, we assume that a good feature-vector
is replaced by discriminative training. Discriminativaitring representation of the underlying causes can be recoveved fr
is a very sensible thing to do when using computers thitte input data by modeling its higher-order statisticalcture.
are too slow to learn a really good generative model of thelt is easy to dream up artificial tasks in which our two
data. As generative models get better, however, the adyantassumptions are entirely wrong, but a purely discrimirativ
of discriminative training gets smalferand is eventually machine learning approach, such as a support vector machine
outweighed by a major disadvantage: the amount of constratvith a polynomial kernel, would still work very well. Suppas
that the data imposes on the parameters of a discriminatfee example, that the label assigned to a window of speech
model is equal to the number of bits required to specify thwefficients is simply the parity of two particular compotgen
correct labels of the training cases, whereas the amountadfthe binarized data. Our approach would almost certainly
constraint for a generative model is equal to the number @il because this information is unlikely to be preservedhia
bits required to specify the input vectors of the trainingema high-level features and, even if it is preserved, it will e i
So when the input vectors contain much more structure tharmuch more complex form than the simple form it had in
the labels, a generative model can learn many more parasnetbe data. Our claim is that, because of the highly structured
before it overfits. way in which speech is generated, this artificial task is #yac
The benefit of learning a generative model is greatly maghat ASR is not like, and machine learning methods that do
nified when there is a large supply of unlabeled speech mot make use of the huge difference between these two tasks
addition to the training data that has been labeled by a dorceave no long term future in ASR.
HMM alignment. We do not make use of unlabeled data in
this paper, but it could only improve our results relative to |- L EARNING A MULTILAYER GENERATIVE MODEL
purely discriminative approaches. There are two very different ways to understand our ap-
Naturally, many of the high-level features learned by theroach to learning a multi-layer generative model of a wimdo
generative model may be irrelevant for making the requiréd speech coefficients. In thairectedview, we fit a multilayer
discriminations, even though they are important for exptej  generative model that has infinitely many layers of latent
the input data. However, this is a price worth paying ifariables, but uses weight sharing among the higher layers
computation is cheap arsbmeof the high-level features areto keep the number of parameters under control. In the
very good for discriminating between the classes of interesundirected “energy-based” view, we fit a relatively simple
The main novelty of our work is to show that we can achiewype of learning module that only has one layer of latent
consistently better phone recognition performance by -“prgariables, but then we treat the activities of the latenialdes
training” a multi-layer neural network, one layer at a tirag, as data and fit the same type of module again to this new
a generativemodel of the window of speech coefficients. Thisdata”. This can be repeated as many times as we like to
pre-training makes it easier to optimize deep neural ndtsvorlearn as many layers of latent variables as we desire.
that have many layers of hidden units and it also allows
A. Theundirected view

1_It is impossible for a discrimin'a_tively_trained system to proe b_etter The simple Iearning module used in the undirected view is
estimates of the posterior probability ratio of two clasdesntthe ratio of lled a “R icted | hine” . bi
the probabilities of generating the data from a mixture of, talass-specific, called a “Restricted Boltzmann Machine” (RBM). It is a bi-

generative models if these models and their mixing proportiescorrect. ~ partite graph in which visible units that represent obstéoua
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are connected to hidden units that learn to represent Esaturomputed from the data when computing the first term on the
using undirected weighted connections. An RBM is restdicteRHS of Eq. 5.
in the sense that there are no visible-visible or hiddemidd  The contrastive divergence learning rule does not follogv th
connections. In the simplest type of RBM, the binary RBMmaximum likelihood gradient. Understanding why it works at
both the hidden and visible units are binary and stochastic. all is much easier using the directed view, so we defer the
deal with real-valued input data, we use a Gaussian-Bdino@xplanation to the next section. After learning the weights
RBM in which the hidden units are binary but the input unitan RBM module, we use the states of the hidden units, when
are linear with Gaussian noise. We will explain the Gaussiadriven by real data, as the data for training another modiile o
Bernoulli RBM later after first explaining the simpler bigar the same kind. This process can be repeated to learn as many
RBM. layers of features as we desire. Again, understanding wiky th
In a binary RBM, the weights on the connections and thgreedy approach works is much easier using the directed view
biases of the individual units define a probability disttibo For Gaussian-Bernoulli RBMsthe energy of a joint con-
over the joint states of the visible and hidden units via diguration is:

energy function. The energy of a joint configuration is: 2

v
H v,h|f) = WiV a;h; (6)
(v,h|f) = ZZva,h —Zb v; — Zajhj () ; ;le ’ Z ’

i=1j=1 J=1 Since there are no visible-visible connectlons, the coond
where § = (w,b,a) and w;; represents the symmetricdistributionp(v|h,0) is factorial and is given by:
interaction term between visible uritand hidden unig while
b; anda; are their bias terms) and’H are the numbers of p(vi|h, 0) b + Zwlﬂ @)

visible and hidden units.
The probability that an RBM assigns to a visible vector

is: where N (u, V) is a Gaussian with mean and variancel/.
She” (v;h) Apart from these differences, the inference and learnimhgsru
p(v]d) = Sy >, e Elwh) () for a Gaussian-Bernoulli RBM are the same as for a binary

] . RBM, though the learning rate needs to be smaller.
Since there are no hidden-hidden connections, the condltio

distribution p(h|v, #) is factorial and is given by: B. Thedirected view
In the undirected view, it is easy to say what we do, but

hard to justify it. In the alternative “directed” view, thedrning

algorithm is more complicated to explain, but much easier to

where o(z) = (1+e-*)"". Similarly, since there are justify [11].

no visible-visible connections, the conditional disttibn

p(v|h, 0) is factorial and is given by:

Vv
p(hy =1|v,0) = oa; + Y wijv;) (3)

i=1

H
p(vi =1h,0) = o(b; + Zwijhj)v 4)
j=1

Exact maximum likelihood learning is infeasible in a large
RBM because it is exponentially expensive to compute the
derivative of the log probability of the training data. Neve

theless, RBMs have an efficieapproximatetraining proce- hidden
dure called “contrastive divergence” [10] which makes them

suitable as building blocks for learning DBNs. We repeated|

update each weighty;;, using the difference between two

measured, pairwise correlations: visible

Awi; o< (vihj)data— (viltj)reconstruction ®)

The first term on the RHS of Eq_ 5 is the measured frequenﬁg. 1. A multi-layer sigmoid belief net composed of stochabtiary units.
with which visible unit; and hidden unitj are on together
when the visible vectors are samples from the training seét an Consider a sigmoid belief net [12] that consists of multiple
the states of the hidden units are determined by Eq. 3. Tiayers of binary stochastic units as shown in figure 1. The
second term is the measured frequency with whiehdj are higher “hidden” layers represent binary features and thte bo
both on when the visible vectors are “reconstructions” & tHom, “visible”, layer represents a binary data vector (wé wi
data vectors and the states of the hidden units are detetmine, I _ _

To keep the equation simple, we assume that the Gaussian pe&ef

by applying Eq. 3 t_o the reconSthtions' Reconstructioes &l the visible units is fixed at 1. We also normalize the inpatadto have a
produced by applying Eq. 4 to the hidden states that wetted variance ofl for each component over the whole training set.



4 SUBMITTED TO IEEE TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCEB®S5

show how to handle real-valued data later). Generating daligections.

from the model is easy. First, binary states are chosen &r th

top layer of hidden units using their biases to determine thel) Learning with tied weightsConsider a sigmoid belief
log odds of choosing or 0. Given the binary states of thenet with an infinite number of layers and with tied symmetric
units in layerk, binary states are chosen in parallel for alveights between layers as shown in figure 2. In this net, the
of the units in layerk — 1 by applying the logistic sigmoid posterior in the first hidden layer is factorial: The hiddenitsi
functiono(z) = (1 +€71)71 to the total input received from are independent given the states of the visible units. This
the layer above plus the unit's own bias: occurs because the correlations created by the prior coming
from all of the layers above exactly cancel the anti-cotietes

in the likelihood term coming from the layer below [11].
Moreover, the factorial posterior can be computed by simply
multiplying the visible vector by the transposed weight mnxat
and then applying the logistic function to each element:

o=ty W) = o)+ Ywgn) (10

p(h" V=S W) =60+ 3 wPR) (@)
J

whereh(®) is the vector of binary states for laygrand hgk)

is its j'" element.W(*) is the matrix of weights from layer
k to layerk — 1, wif) is an element of that matrix, arhgk) is
the bias of unitj in layer k. The vector of states of the visible
units, v, is also callech(®).

Now consider the problem of adjusting the weights on t
top-down connections so that the model is more likely to ~~~
erate the binary training data on its visible units. Periog
gradient ascent in the expected log probability of geneg
the training data is very simple if we can get unbiased sas
of the hidden states from their posterior distribution gia
observed data vector:

Ay o (W (D = V=1m®, W)} (@)

Notice that this simple operation computes the normalized
product of the prior and the likelihood terms, not the likelod
rm, which is considerably more complicated.

where the angle brackets denote an expectation ove |
training data. If we want to ensure that every weight up
increases the log probability of the data, we need to usey
small learning rate and we need to average over many sa
from the posterior. In practice, it is much more efficient &z
a larger learning rate on small mini-batches of the data.

Unfortunately, getting unbiased samples from the expc |
tially large posterior appears to be intractable for all the
smallest modeld.Consider, for example, the posterior in
first hidden layer. This posterior is the normalized produft
a complicated, non-factorial prior created by the layersva
and a complicated non-factorial “likelihood term” createg
the observed states of the visible units. When generatira |
from the model, the units in the first hidden layer are,
definition, conditionally independent given the states lod

units in the layer above. When inferring the posterior, haew
they are not conditionally independent given the statehe
units in the layer below, even with a uniform prior, due to
phenomenon of “explaining away” [13].

Approximate samples from the posterior can be obte.
by using a slow Markov chain Monte Carlo method [12]

a fast but crude approximation [14]. There is, however, 0
very special form of sigmoid belief net in which samplin
from the posterior distribution in every hidden layer istju
as easy as generating data from the model. In fact, inferer}%eF
and generation are the same process, but running in OpPO§

3In this respect, mixture models appear to be far superior. Teete

posterior over the mixture components is easy to compute bedsosly has

Fig. 2. An infinite sigmoid belief net with tied weights. Altete layers
must have the same number of units. The tied weights make inferanch
simpler in this net than in a general sigmoid belief net.

Once the posterior has been sampled for the first hidden

"“fayer, exactly the same process can be used for the nextrhidde

0rayer. So inference is extremely easy in this special kind of
Wetwork. Learning is a little more difficult because everpyo
%t the tied weight matrix gets different derivatives. Howgev
Swe know in advance that the expected derivatives will be
o for very high level layers. This is because the bottom-
Beinference process is really a Markov chain that eventuall
converges to its stationary distribution in the higher faye
When it is sampling from its stationary distribution, the reunt

as many terms as the number of components. This computationaiatynpl WeightS are perfect for explaining the samples, S0, on geera

however, comes at a terrible price: The whole data vector meistelmerated

by a single component. As we shall see later, it is possiblectoege an
equally simple posterior whilst allowing multiple simultansocauses.

there is no derivative. When the weights and biases are small,
this Markov chain converges rapidly and we can approximate
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gradient ascent in the log likelihood quite well by just adgi  We can repeat the process of freezing and untying the lowest
the derivatives for the first two layers [10]. copy of the currently tied weight matrices as many times as

The tied weights mean that the process of inferrilg’ we like, so we can learn as many layers of features as we
from h()) is the same as the process of generatinffom desire. When we have learndd layers of features, we are
h(). Consequentlyh(® can be viewed as a noisy but unbiasetkft with a directed generative model called a “deep belief
estimate of the probabilities for the visible units preditby net” (DBN) that hasK different weight matrices between
h(, Similarly h®® can be viewed as a noisy estimate of théhe lower layers and an infinite number of higher layers that
probabilities for the units in the first hidden layer preditt all use the K** weight matrix or its transpose. We then
by h(?). We can use these two facts and equation 9 to get simply throw away all layers above th€'" and add a final
unbiased estimate of the sum of the derivatives for the firstoftmax” layer of label units representing HMM states. We
two layers of weights. This gives the following learningeul also jettison the probabilistic interpretation that wagdigo

which is known as “contrastive divergence” [10]: justify the generative learning, and we treat the wholeesyst
(1) ) @), 1) () as a feedforward, deterministic neural network. This netwo
Awg; <hj (vi = h;™) + b= (hy " = h; )> is then discriminatively fine-tuned by using backpropawati

x <vih§1)> _ (hf)hf’)) (11) to maximize the log probability of the correct HMM state

_ ~~ For the softmax final layer, the probability of lablegiven
where the angle brackets denote expectations over thénainthe real-valued activations of the final layer of featurehi@h

data (or a representative mini-batch). we call h() even though they are no longer binary sampled
As the weights and biases grow, it makes sense to agflues) is defined to be

the derivatives for more layers [15] and for learning really (K)

good generative models this is essential [16]. For the mepo p(l|h(K)) _ exp(bi + 30, b "war) (12)

of creating sensible feature detectors, however, even a S explbm + Y, hEK)wim)

rather poorly tuned generative model is good enough, an . . . .

the learning rule in equation 11 is sufficient even when t %erebl is the bias of the label ang; is the weight from

weights get quite large. The approximate maximum likelhoo idden unit; in Iayng to labell. The discriminative training
%%zst learn the weights from the last layer of features to the

derivatives produced by this learning rule become high . .
el units, but it does not need to create any new feature

biased, but they are cheap to compute and they also h ot It simplv fine-t isting feat detecthet
very low variance [17] which is important for allowing a high etectors. 1t simply Tine-tunes existing teature detec

learning rate when the derivatives are estimated from sm¥ffre discovered by the unsupervised "pre-training.

mini-batches of data. These issues are discussed further irTo model re_al valges in th_e VISI.bIe layer, yve S'”?p'y replace
[18] the binary unit by linear units with Gaussian noise that has

a variance of 1. This does not changéh|v) and the
distribution for visible uniti given h") is a Gaussian with

2) Learning different weights in each layemMow that g : )
Rit variance and meapn; given by:

we have efficient inference and learning procedures for Y
infinite sigmoid belief net with tied weights, the next step i = bZ(O) +sz(1_)h(_1) (13)
is to make the generative model more powerful by allowing r

different weights in different layers. First, we learn wél of , , . L
the weight matrices tied together. Then we untie the bottom ' NS ype of generative pre-training followed by discrimi-

weight matrix from the other matrices and freeze the valu8&tVe fine-tuning has been used successtully for handearit
of its weights. This frozen matrix is now calléd (V). Then, character recognition [11], [10], [19], dimensionalitydtestion

keeping all the remaining matrices tied together, we cotin[20]: 3-D object recognition [21], [22], extracting road psa

to learn the higher matrices, treating the inferred statgore from cluttered f"le”al Images .[23]’ information retrleVQHI,. .
h() in just the same way as we previously treatedThis [25] and machine transliteration _[_26]. As we shall see, it is
involves first inferringh") from v by using (W) and iSO very good for phone recognition.

then inferringh®, h®, and h¥ in a similar bottom-up

manner using? or W7 The inference for the higher hidden Ill. USING DEEP BELIEF NETS FOR PHONE RECOGNITION
layers produces unbiased samples gith, but the simple  |n order to apply DBNs with fixed input and output dimen-
inference method no longer gives an exactly unbiased samgignality to phone recognition, we use a context window of
for h) because the higher weight matrices are no longer equakuccessive frames of speech coefficients to set the states
to W1 so they no longer create a prior that exactly cances the visible units of the lowest layer of the DBN. Once
the correlations in the likelihood term. However, the paste it has been pre-trained as a generative model, the resulting
for h(*) is still approximately factorial and it can be provedeedfoward neural network is discriminatively trained tamut

that if we continue to infeh(") as if the higher matrices hada probability distribution over the possible labels of teaizal

not changed, then learning improves a variational lowenbouframe. To generate phone sequences, the sequence of gdedict
on the log probability of the training data [11]
5In a convenient abuse of the correct terminology, we sometinses u
4The proof assumes that each layer of weights is learned bywimlty the “DBN” to refer to a feedforward neural network that was ialized using
maximum likelihood derivative, rather than using the corivasdivergence a generatively trained deep belief net, even though thefdesdrd neural
approximation. network is clearly very different from a belief net.
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probability distributions over the possible labels forleframe The theory used to justify the pre-training algorithm as-
is fed into a standard Viterbi decoder. sumes that when the states of the visible units are recatstu
Strictly speaking, since the HMM implements a prior ovefrom the inferred binary activities in the first hidden layer
states, we should divide out the prior from the posteridhey are reconstructed stochastically. To reduce noiséén t
distribution over HMM states produced by the DBN, althougkearning, we actually reconstructed them determinidticahd

for our particular task it made no difference. used the real values (see [18] for more details).
For fine-tuning, we used stochastic gradient descent with
IV. EXPERIMENTAL SETUP the same mini-batch size as in pre-training. The learnibg ra
A. TIMIT corpus started ab.1. At the end of each epoch, if the substitution error

. . on the development set increased, the weights were rettwned
Phone recognition experiments were performed on ttgﬁ

TIMIT 6 W/ d the 462 K . d eir values at the beginning of the epoch and the learniteg ra
corpus.” We use t € 4be Speaker training set and gz, o halved. This continued until the learning rate fell lelo
moved all SA records (i.e., identical sentences for all kpesa

in the database) since they could bias the results. A separdtDu'ring both pre-training and fine-tuning, a small weight-

development set of 50 speakers was used for tuning all of t@@sﬁ of0.0002 was used and the learning was accelerated by

meta parameters, such as the numper of layers and the sizas(iu g a momentum .9 (except for the first epoch of fine-
each layer. Results are reported using the 24—speakere51relruning which did not use momentum). [18] gives a detailed

set, which excludes the development set. , ..explanation of weight-cost and momentum and sensible ways
The speech was analyzed using a 25-ms Hamming wmd%\f;et them.

with a 10-ms fixed frame rate. In most of the experiments, Figure 3 and figure 4 show the effect of varying the size

we represented the speech using 12th-order Mel frequengyeach hidden layer and the number of hidden layers. For

cepstral coefficients (MFCCs) and energy, along with thest fi i sjicity we used the same size for every hidden layer in a

and second temporal derivatives. For some experiments, M&twork. For these comparisons, the number of input frames
used a Fourier-transform-based filter-bank with 40 coeffits |, - fivad atl1

distributed on a mel-scale (and energy) together with firsir
and second temporal derivatives.

The data were normalized so that, averaged over the trair % ‘ ‘ ‘ T - 4 hid-1024—dev
cases, each coefficient or first derivative or second déresal 2af . *=3 - hid-2048—dev |
had zero mean and unit variance. We used 183 target ¢ —©— hid-3072-dev
labels (i.e., 3 states for each one of the 61 phones). Al ~ “°| - Bulll et

decoding, the 61 phone classes were mapped to a set o
classes as in [27] for scoring. All of our experiments ust
a bigram language model over phones, estimated from
training set.

Phone error rate (PER)

B. Computational setup

Training DBNs of the sizes used in this paper is quite cot
putationally expensive. Training was accelerated by etiptp
graphics processors, in particular GPUs in a NVIDIA Tes 2 ‘ ‘ ‘
S1070 system, using the CUDAMAT library [28]. A single ' Number of layers
pass over the entire training set (an “epoch”) for a modeth wi.

5 hidden layers and 2048 units per layer took about 6 minmﬁ@. 3. Phone error rate on the development set as a functitmeaiumber
during pre-training of the topmost layer and about 11 migutef layers and size of each layer, usihg input frames.
during fine-tuning the whole network with backpropagatian.
single GPU learns at 20 times faster than a siigéi& GHz The main trend visible in figures 3 and 4 is that adding
Xeon core. more hidden layers gives better performance, though the gai
diminishes as the number of layers increases. Using more
V. EXPERIMENTS hidden units per layer also improves performance when the

For all experiments, we fixed the parameters for the ViterBHMber of hidden layers is less than 4, but with more hidden

decoder. Specifically, we used a zero word insertion probapyers the number of units has little effect provided it iteaist
ity and a language model scale factor1of. 1024. The advantage of using a deep architecture is clear if

All DBNs were pre-trained with a fixed recipe usingwe consider the best way to use a totaR6fi8 hidden units:

stochastic gradient decent with a mini-batch size of 128iS better to use two layers af024 or four layers of512

training cases. For Gaussian-binary RBMs, we ran 225 epodfign one layer o2048. _ L
with a fixed learning rate of 0.002 while for binary-binary To benefit from having many hidden layers, it is necessary

RBMs we used 75 epochs with a learning rate of 0.02. to do generative pre-training. With a single hidden layer of
2048 units, generative pre-training gives a phone error rate of

Shttp:/Awww.ldc.upenn.edu/Catalog/CatalogEntry.jgi@togld=LDC93S1. 24.5% and exactly the same fine-tuning algorithm starteah fro
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Fig. 4. Phone error rate on the core test set as a functioneofitimber of Fig. 6. Phone error rate on the core test set as a functioneofitimber of
layers and size of each layer, using 11 input frames. hidden layers using randomly initialized and pretrainedwvoeks.

small random weights gives 24.4%. So generative pre-trginithe development set is achieved usihg 17, or 27 frames
does not help. Adding a second hidden layer causes a larged this is true whatever the number of hidden layers. Much
proportional increase in the number of trainable pararseteamaller { frames) and much bigge8T frames) windows give
than adding a third hidden layer because the input and outgignificantly worse performance. The range frdrtOms to
layers are much smaller than the hidden layers and beca@%eéms covers the average size of phones or syllables. Smaller
adjacent hidden layers are fully connected. This largesime input windows miss important discriminative informatiom i
in capacity makes the model far more flexible, but it alsthe context, while networks with larger windows are prolgabl
makes it overfit far more easily. Figure 5 and figure 6 shogetting distracted by the almost irrelevant informatiom fa
that for networks that are not pre-trained (but still usdyearfrom the center of the window. The TRAP [7] architecture
stopping), these two effects apparently cancel out, wisdira successfully used second long windows, but it dedicates
pre-trained networks there is less overfitting so extrarkyeseparate networks to model different parts of the spectrum
help. Although the advantage of pre-training is not as lage which simplifies the learning task. Larger windows would
for some other tasks [20], [29], it is still required to gain aprobably work better using triphone targets which provige t
advantage from using extra hidden layers. network with more information about the context and make
the peripheral frames more relevant.

23.5 T T T

—O— pretrain—11fr—2048hid—-de
. ; 24.5 T T T T
2 L =0 pretraln—17fr—307-2h|d—de ©— fr17-3k—dev
-+ rand—llfr—2048h!d—dev 24’5” @ - fr27-3k—dev |
% rand—17fr—-3072hid—dev L% fr37—3k—dev
R = == - fr7-3k—dev
2 235} %, .
& [1
=~ & +*-
= AY
2 %‘é G l\‘.‘ *
5} I 4
© § 22.5 i x
= =
S s s
o L L N s S e
221N N g g
_8 \) _«EL,\ x x
~ ~@. + et
N T - i
21.5 I =+ |,
21f Bi= = 2]
20 i i i i i i
1 2 3 4 5 6 7 8
Number of layers 205 i i i i i i

4 5
Number of layers

Fig. 5. Phone error rate on the development set as a functittreaiumber
of hidden layers using randomly initialized and pretrainedworks. Fig. 7. Phone error rate on the development set as a functiteaiumber
of layers, using 3072 hidden units per layer.
Fixing the number of hidden units per layer 3072 and
varying the number of frames in the input window (figures 7 Since all but the output layer weights are pre-trained, it

and 8 and also 3 and 4) shows that the best performanceconld be helpful to introduce a “bottleneck” at the last laye
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26 T T T T T T 235 T T T
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Fig. 8. Phone error rate on the core test set as a functioneohtimber of Fig. 10. Phone error rates as a function of the number of layesisg a
layers, using 3072 hidden units per layer. context window of filter bank coefficients as input featureshite DBN.

of the DBN to combat overfitting by reducing the number dby using a less pre-processed input representation ciogsist
weights that are not pre-trained. A bottleneck layer foBow of a large number of filter-bank coefficients augmented with
by a softmax is exactly equivalent to using a distributegpatit temporal differences and differences of differences. figu
code for each class and then making the class probabilitiE$ shows that a DBN is capable of making good use of
proportional to the exponentiated squared difference &etw the more detailed information available in this larger inpu
the code for a class and the activity pattern in the bottlenegepresentation. For the DBN system that perfomed best on the
layer [30]. Figure 9 shows that having a bottleneck layersdogevelopment set, the phone error rate on the TIMIT core test
not actually improve PER for a typical network with 5 hidderet was 20.7%.

layers of 2048 units and an input window of 11 frames of

TABLE |
MFCCs. Reported results on TIMIT core test set

23.5

‘ —O— dev-11fr-2k-5lay Method [ PER l

- 8- core-11fr—2k-5la Stochastic Segmental Models [31] 36%

23) 4, : o i Conditional Random Field [32] 34.8%

RN REnh Iy Large-Margin GMM [33] 33%

TE--L o CD-HMM [34] 27.3%

& zzs—m/ \Er/ g Augmented conditional Random Fields [34] 26.6%

a Recurrent Neural Nets [35] 26.1%

g Bayesian Triphone HMM [36] 25.6%

5 22 1 Monophone HTMs [37] 24.8%

:'j Heterogeneous Classifiers [38] 24.4%

s Triphone HMMs discriminatively trained w/ BMMI [39] 22.7%

S i Monophone Deep Belief Networks(DBNs) (this work) 20.7%
2 ] Table | compares the best performing DBN model with

previously reported results on the TIMIT core test Set

205 6‘4 1é8 25‘36 5i2 1624 20‘48

Bottleneck size

VI. CONCLUSIONS AND FUTURE WORK

Fig. 9. The effect of the size of the bottleneck on the phomereate fora So far gs \,Ne know, the Work repprted in this paper was t,he

typical network with 11 input frames and 5 hidden layers of@04its per first application to acoustic modeling of neural networks in

layer (except for the last hidden layer). which multiple layers of features are generatively préntd.
Since then, our approach has been extended to explicithemod

In all of the previous experiments MFCCs were usethe covariance structure of the input features [40]. It hesnb

as the input representation. MFCCs attempt to reduce thigo used to jointly train the acoustic and language models

dimensionality of the input by eliminating variations theae using the full utterance rather than a local window of frames

irrelevant for recognition and spoon-feeding the recogniz

with a modest-sized input representation that is designe&'“ [8] a PER of 21.48% is reported on tlemplete test set of TIMIT.

¢ k iti With ful | .. The speech units used are not the same as the standard TIMhitide§
0 make recogniion easy. With a more poweriul learming,q thejr method would very probably give a worse result usfiegstandard
procedure, better recognition performance can be achiewpéech units.
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[41]. It has been also applied to a large vocabulary tagle] G. E. Hinton, “A practical guide to training restrictedoltzmann
[42] where the competing GMM approach uses a very large
number of components. In this latter task it gives a veryelarglg]
advantage relative to the GMM.

We are currently exploring alternatives input represémtat
that allow deep neural networks to see more of the relevasy
information in the sound-wave, such as very precise coinci-
dences of onset times in different frequency bands. We ace aP!!
exploring ways of using recurrent neural networks to gyeatl
increase the amount of detailed information about the past]
that can be carried forward to help in the interpretationhef t
future.
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