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Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal
to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum
spanning tree of a graph withvertices andn edges that runs in tim®(7 *(m, n)) where7 * is the
minimum number of edge-weight comparisons needed to determine the solution. The algorithm is
quite simple and can be implemented on a pointer machine.

Although our time bound is optimal, the exact function describing it is not known at present. The
current best bounds known f@r* are7 *(m, n) = ©(m) and7 *(m, n) = O(m- «(m, n)), wherex is
a certain natural inverse of Ackermann’s function.

Even under the assumption that is superlinear, we show that if the input graph is selected from
Gn,m, our algorithm runs in linear time with high probability, regardless,oh, or the permutation of
edge weights. The analysis uses a new martingal&fgs similar to the edge-exposure martingale
for Gn p.

Categories and Subject Descriptors: F.240dlysis of Algorithms and Problem Complexity]:
General; G.2.2Discrete Mathematicg: Graph Theory—graph algorithms G.3 [Probability and
Statisticq

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Graph algorithms, minimum spanning tree, optimal complexity

1. Introduction

The minimum spanning tree (MST) problem has been studied for much of this
century and yet despite its apparent simplicity, the problem is still not fully under-
stood. Graham and Hell [1985] give an excellent survey of results from the earliest
known algorithm of BouVka [1926] to the invention of Fibonacci heaps, which
were central to the algorithms in Fredman and Tarjan [1987] and Gabow et al.
[1986]. Chazelle [1997] presented an MST algorithm based on the Soft Heap
[Chazelle 2000a] having complexi®(ma(m, n) loga(m, n)), wherea is a cer-

tain inverse of Ackermann’s function. Recently Chazelle [2000b] modified the
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algorithm in Chazelle [1997] to bring down the running timeQ¢m - «(m, n)).

Later a similar algorithm of the same running time was presented by Pettie [1999],
which gives an alternate exposition of tbém - «(m, n)) result. This is the tightest
time bound for the MST problem to date, though not known to be optimal.

All algorithms mentioned above work on a pointer machine [Tarjan 1979a] un-
der the restriction that edge weights may only be subjected to binary comparisons.
If, in addition, we have access to a stream of perfectly random bits, Karger et al.
[1995] showed that the MST can be computed in linear time with high probabil-
ity. Fredman and Willard [1994] gave a deterministic linear time MST algorithm
under the unit-cost RAM model, assuming edge weights are integers represented
in binary.

Itis stillunknown whether these more powerful models are necessary to compute
the MST inlinear time. However, inthis article, we give a deterministic, comparison-
based MST algorithm that runs on a pointer machin®{@*(m, n)) time, where
T7*(m, n) is the number of edge-weight comparisons needed to determine the MST
on any graph wittm edges and vertices. Additionally, we show that our algorithm
runs in linear time for the vast majority of graphs, regardless of the number of edges
in the graph or the permutation of edge weights.

Because of the nature of our algorithm, its exact running time is not known.
This might seem paradoxical at first. The source of our algorithm’s optimality,
and its mysterious running time, is the use of precomputed “MST decision trees”
whose exact depth is unknown but nonetheless provably optimal. The technique
of obtaining optimal algorithms via precomputation was used in a simpler setting
in Larmore [1990] for searching convex matrices and in Dixon et al. [1992] for
MST sensitivity analysis. We should point out that precomputing optimal deci-
sion trees doegot increase the constant factor hidden by big-Oh notation, nor
does it result in a nonuniform algorithm. A trivial lower bound on the running
time of our algorithm is@2(m); the best upper bound)(ma(m, n)), is due to
Chazelle [2000Db].

Our optimal MST algorithm should be contrasted with the complexity-theoretic
result that any optimal verification algorithm for some problem can be used to
construct an optimal algorithm for the same problem [Jones 1997]. Though asymp-
totically optimal, this construction hides astronomical constant factors and proves
nothing about the relationship between algorithmic complexity and decision-tree
complexity. See Section 8 for a discussion of these and other related issues.

Inthe next sections, we review some well-known MST results that are used by our
algorithm. In Section 3, we prove a key lemma and give a procedure for partitioning
the graph in an MST-respecting manner. Section 4 gives an overview of our optimal
algorithm and discusses the structure and use of precomputed decision-trees for the
MST problem. Section 5 gives the algorithm and a proof of optimality. Section 6
shows how the algorithm may be modified to run on a pointer machine. In Section 7,
we show our algorithm runs in linear-time with high probability if the input graph
is selected at random. Sections 8 and 9 discuss related problems and algorithms,
open questions, and the actual complexity of MST.

2. Preliminaries

The inputis an undirected gra@h= (V, E) where each edge is assigned a distinct
real-valuedveight By convention|V| = n and|E| = m. Theminimum spanning
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forest(MSPH problem asks for a spanning acyclic subgrapldiaving the least

total weight. In this article, we assume for convenience that the input graph is
connected, since otherwise we can find its connected components in linear time
and then solve the problem on each connected component. Thus, the MSF problem
is identical to the minimum spannirgee problem.

It is well known that one can identify edges provably in the MSF using:thie
property, and edges provably not in the MSF using diele property. The cut
property states that the lightest edge crossing any patrtition of the vertex set into
two parts must belong to the MSF. The cycle property states that the heaviest edge
in any cycle in the graph cannot be in the MSF.

2.1. BoROVKA STEPs The earliest known MSF algorithm is due to Buka
[1926]. The algorithm is quite simple: It proceeds in a sequence of stages, and in each
stage, oBorlivka stepit identifies a foresF consisting of the minimum-weight
edge incident to each vertex in the grapfthen forms the grapG, = G\F as the
input to the next stage. He&\ F denotes the graph derived fraghby contracting
edges inF (by the cut property these edges belong to the MSF.) EaciMRarstep
takes linear time, and since the number of vertices is reduced by at least half in
each step, Bavka’s algorithm take©(mlogn) time.

Our optimal algorithm uses a procedure called BoruvieaX, G'). This proce-
dure executes two Bavka steps on the input gragh and returns the contracted
graphG’ as well as the set of edgésidentified as part of the MSF during these
two steps.

2.2. DISKTRA-JARNIK-PRIM ALGORITHM. Another early MSF algorithm that
runs inO(mlogn) time is the one by Jark[1930], rediscovered by Dijkstra [1959]
and Prim [1957]. We refer to this algorithm as h&P algorithm. Briefly, the DJP
algorithm grows the MSH one edge at a time. Initiallyf is an arbitrary vertex.
In each step of the DJP algorithri, is augmented with the least-weight edge
(X, y) such thatx e T andy ¢ T. By the cut property, all edges addedTare in
the MSF.

LEMMA 2.1. Let T be the tree formed after the execution of some number of
steps of the DJP algorithm. Let e and f be two arbitrary edges, each with exactly
one endpoint in Tand let g be the maximum weight edge on the path from e to f
in T. Then g cannot be heavier than both e and f.

PROOF LetP be the path ifil connectinge and f, and assume the contrary,
that g is the heaviest edge i® U {e, f}. Now consider the moment whanis
selected by DJP and I&t be the portion ofP present in the tree. There are exactly
two edges in® — P’) U {e, f} that are eligible to be chosen by the DJP algorithm
at this moment, one of which is the edgelf the other edge is ifP, then by our
choice ofg it must be lighter thawg. If the other edge is eithexor f, then by our
assumption it must be lighter than In both casegj could not be chosen next by
the DJP algorithm, a contradiction]

2.3. THE DENSECASEALGORITHM. The algorithms presented in Fredman and
Tarjan [1987], Gabow et al. [1986], Chazelle [1997, 2000b], and Pettie [1999] will
find the MSF of a graph in linear time if the graph is sufficiently dense, that is,
has a sufficiently Iar%;e edge-to-vertex ratio. For our purposgficiently dense
will meanmyn > log® n. All of the above algorithms run in linear time for that
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density, the simplest of which is easily that of Fredman and Tarjan [1987]. This
algorithm executes a number of phases, where the purpose of each phase is to
amplify the “nominal density” of the graph by contracting a large number of MSF
edges; here theominal densitys the ratiom/n’, wherem, as usual, is the number

of edges in the original graph, andis the number of vertices in the current graph.
Each phase of the algorithm runs@(m + n) time, and works by executing the

DJP algorithm many times, each for a limited number of steps.iff the number

of vertices before a phase, the number of vertices after the phase is no more than
n’/2™" hence no more than lé@ — log*(m/n) phases are needed.

The procedure DenseCagg(F) takes as input an-node graphG and returns
the MSFF of G in linear time for graphs with density at least {8a.

Our optimal algorithm will actually call DenseCase on a graph derived from
an n-node,m-edge graph by contracting vertices so that the number of vertices
is reduced by a factor of at least [@q1. The number of edges in the contracted
graph is no more tham. Hence, DenseCase will run @(m + n) time on such
a graph.

2.4. SFTHEAP. The main data structure used by our algorithm isSbft Heap
[Chazelle 2000a]. The Soft Heap is a kind of priority queue that gives us an optimal
trade-off between accuracy and speed. It is parameterized by an error tolerance
and supports the following operations:

—MakeHeap(): returns an empty soft heap.
—Insert(S, x): insert itemx into heapS.
—Findmin(S): returns item with smallest key in he&p
—Delete(S, X): deletex from heapsS.

—Meld(S, $): create new heap containing the union of items stores| in
and$, destroyingS, andS; in the process.

All operations take constant amortized time, except for Insert, which takes
O(log(1/€)) time. To save time the Soft Heap allows items to be grouped together
and treated as though they have a single key. An item adopts the largest key of any
item in its group.corrupting the item if its new key differs from its original key.
Thus, the original key of an item returned by Findmin (i.e., any item in the group
with minimum key) is no more than the keys of all uncorrupted items in the heap.
The guarantee is that aftednsert operations, no more than corrupted items are
in the heap. The following result is shown in Chazelle [2000a].

LEMMA 2.2. Fixany parametef < € < 1/2, and beginning with no prior data,
consider a mixed sequence of operations that includes n inserts. On a Soft Heap,
the amortized complexity of each operation is constant, except for insert, which
takes (log(1/€)) time. At mostn items are corrupted at any given time.

3. AKey Lemma and Procedure

3.1. A RoBUST CONTRACTION LEMMA. It is well known that if T is a tree
of MSF edges, we caoontract T into a single vertex while maintaining the in-
variant that the MSF of the contracted graph plugives the MSF for the graph
before contraction.
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In our algorithm, we find a tree of MSF edg&sin a corruptedgraph, where
some of the edge weights have been increased due to the use of a Soft Heap. In the
lemma given below, we show that useful information can be obtained by contracting
certain corrupted trees, in particular those constructed using some number of steps
from the Dijkstra—Jarnik—Prim (DJP) algorithm. Ideas similar to these are used in
Chazelle’s [1997] algorithm and more explicitly in the recent algorithm of Chazelle
[2000b] (see also Pettie [1999]).

Before stating the lemma, we need some notation and preliminary concepts. Let
V(G) andE(G) be the vertex and edge sets®fandn andm be their cardinality,
respectively. Let th&-weight of an edge be its weight in gra@h(the G may be
omitted if implied from context).

For the following definitionsM andC are subgraphs d&. Denote byG 1 M
some graph derived fron® by raising the weight of each edge M by ar-
bitrary amounts (these edges are said to be corrupted)Mcebe the set of
edges inM with exactly one endpoint i€. Let G\C denote the graph obtained
by contracting all connected components inducedyythat is, by replacing
each connected component with a single vertex and reassigning edge endpoints
appropriately.

Definition 3.1. A subgraplC is said to beDJP-contractible with respect tG
if after executing th®JP algorithm onG for some number of steps, with a suitable
start vertex irC, the tree that results is a spanning treeGor

LEmMMA 3.2. Let M be a set of edges in a graph G. If C is a subgraph of
G that is DJP-contractible with respect to § M, then MSKG) is a subset of
MSHC) U MSHG\C — M¢c) U Mc.

PROOF Each edge irC that is not in MSFC) is the heaviest edge on some
cycle inC. Since that cycle exists i@ as well, that edge is not in MSE). So we
need only show that edges@\C that are not in MSKG\C — M¢) U Mc are also
not in MSF@G).

Let H = G\C — Mc; hence, we need to show that no edgédlin- MSHH) is
in MSHG). Letebe inH — MSHH), that is,eis the heaviest edge on some cycle
x in H. If x does not involve the vertex derived by contract@ydhen it exists in
G as well ande ¢ MSHG). Otherwise x forms apath in G whose endpoints,
sayx andy, are both inC. Let the end edges @? be x, w) and , z). SinceH
includes no corrupted edges with one endpointijrthe G-weight of these edges
is the same as thei5( 1} M)-weight.

Let T be the spanning tree & ft M derived by the DJP algorithn® be the
path inT connectingx andy, andg be the heaviest edge . Notice thatP U Q
forms a cycle. By our choice @, it must be heavier than botk,(w) and {, 2),
and by Lemma 2.1, the heavier of,{wv) and {, z) is heavier than the@ {4 M)-
weight ofg, which is an upper bound on tl&weights of all edges Q. So with
respect toG-weights, e is the heaviest edge on the cydRU Q and cannot be
in MSHG). O

3.2. THE PARTITION PROCEDURE Our algorithm uses the Partition procedure
that is given below. This procedure finds DJP-contractible subg@aphs. , Cx in
which edges are progressively being corrupted by the Soft HeapMgetontain
only those corrupted edges with one endpoirirat the time it is completed.
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Partition(G, mazsize,e; Mc,C)
A1l vertices are initially ‘‘live’’
Me =0
1:=0
While there is a live vertex
Increment ¢
Let V; := {v}, where v is any live vertex
Create a Soft Heap consisting of v’s edges (uses ¢€)
While all vertices in V; are live and |V;| < mazsize
Repeat
Find and delete min-weight edge (z,y) from Soft Heap
W.l.o.g, assume z €V
Until y € V;
Vi:=ViU{y}
If y is live then insert each of y’s edges into the Soft Heap
Set all vertices in V; to be dead
Let My, be the corrupted edges with one endpoint in V;
Me := Mc U MVi
G:.=G- MV,'
Dismantle the Soft Heap
Let C := {C1,...,C;} where C, is the subgraph of G induced by V,
Exit.

Fic. 1. The Partition procedure.

Each subgrapl; will be DJP-contractible with respect to a graph derived from
G by several rounds of contractions and edge deletions. ViZhénfinished, it is
contracted and all incident corrupted edges are discarded. By applying Lemma 3.2
repeatedly, we see that aft@r is built, the MSF ofG is a subset of

U MSHC;j)u MSF(G\ UCJ- — U MCJ) U U Mc;.
j=1 ' j=1 j=1

=1

The Partition procedure is shown in Figure 1. The arguments appearing before the

semicolon are inputs; the others are outptits: {C, ..., Cy} is a set of subgraphs
of G, andMc¢ is a set of corrupted edges with endpoints in diffel@rg. No edge
will appear in more than one &fl., Cq, ..., Cy.

Initially, Partition sets every vertex to bize. The objective is to convert each
vertex todead signifying that it is part of a compone@t with < maxsizesertices
and part of a&onglomeratef > maxsizevertices, where a conglomerate is a con-
nected component of the graphE(C;). Intuitively a conglomerate is a collection
of Ci’s linked by common vertices. This scheme for growing components is similar
to the one given in Fredman and Tarjan [1987].

We grow theCi’s one at a time according to the DJP algorithm, except that we
use a Soft Heap. A component is done growing if it reachagsizevertices or if
it attaches itself to an existing component. Clearly, if a component does not reach
maxsizevertices, it has linked to a conglomerate of at leagksizevertices. Hence,
all its vertices can be designated dead. Upon completion of a compGnene
discard the set of corrupted edges with one endpoi@}.in



22 S. PETTIE AND V. RAMACHANDRAN

The running time oPartition is dominated by the heap operations, which depend
on ¢. Each edge is inserted into a Soft Heap no more than twice (once for each
endpoint), and extracted no more than once. We can charge the cost of dismantling
the heap to the insert operations which created it; hence, the total running time is
O(mlog(1/€)). By Lemma 2.2, the number of discarded edges is bounded by the
number of insertions scaled lythus,|M¢| < 2em. Thus, we have

LEmMmA 3.3. Givenagraph GanyO < e < 1/2,and a parameter maxsize, Par-
tition finds edge-disjoint subgraphsgMCy, ..., Cy in time O(|E(G)| - log(1/¢))
while satisfying several conditions:

(a) Forallv € V(G), there is some i such thate V(C;).
(b) Foralli, [V(Ci)| < maxsize.

(c) For each conglomerate R  J; Ci, |V(P)| > maxsize.
(d) IE(Mc)| < 2¢ - |[E(G)I.

(e) MSHG) < |J; MSHC;) U MSHG\(LU; Ci) — M¢) U Mc.

We observe that the full suite of soft heap operations is not needed as we never
employ themeldoperation. We can therefore use a more space-efficient version of
the soft heap where its nodes are placed in an array and the links between them
represented implicitly, as in a binary heap.

4. Overview of the Optimal Algorithm
Here is an overview of our optimal MSF algorithm.

—In the first stage, we find DJP-contractible subgraphsC,, ..., Cx with their
associated set of edgés: = |, Mc,, whereMc, consists of corrupted edges
with one endpoint irC;.

—In the second stage we find the M3 of eachC;, and the MSFF, of the
contracted grap®s\(_; Ci) — M¢. By Lemma 3.2, the MSF of the whole graph
is contained withinFo U (|J; Fi) U Mc. Note that, at this point, we have not
identified any edges as being in the MSF of the original gi@ph

—In the third stage, we find some MSF edges, vialB&a steps, and recurse on
the graph derived by contracting these edges.

We execute the first stage using the Partition procedure described in the pre-
vious section.

We execute the second stage wathtimal decision treesEssentially, these are
hardwired algorithms designed to compute the MSF of a graph using an optimal
number of edge-weight comparisons. In general, decision trees are much larger
than the size of the problem that they solve and finding optimal ones is very time
consuming. We can afford the cost of building decision trees by guaranteeing that
each one is extremely small. At the same time, we make each conglomerate formed
by theC; to be sufficiently large so that the M3 of the contracted graph can be
found in linear time using the DenseCase algorithm.

Finally, in the third stage, we have areduction in vertices due to thevRarsteps,
and a reduction in edges due to the application of Lemma 3.2. In our optimal algo-
rithm, both vertices and edges reduce by a constant factor, thus resulting in the re-
cursive applications of the algorithm on graphs with geometrically decreasing sizes.
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4.1. DECISIONTREES Consider a computation that takes as input a fixed graph
G and computes the minimum spanning tree @for any given permutation of
edge weights. If we are only interested in the edge-weight comparisons performed,
this computation can be described in terms ofN&F decision tredor G. An
MSF decision tree is a rooted tree having an edge-weight comparison associated
with each internal node (e.gweight(x, y) < weight(w, z)). Each internal node
has exactly two children, one representing that the comparison is true, the other
that it is false. The leaves of the tree list off the edges in some spanning tree of
the graph. An MSF decision tree f@ is said to becorrectif the edge-weight
comparisons encountered on any path from the root to a leaf uniquely identify
the spanning tree at that leaf as the MSF. A decision treesfos said to be
optimal if it is correct and there exists no correct decision tree @Gmwith
lesser depth.

Let us bound the time needed to find(rSthimaI decision trees for all graphs on
r vertices by brute force search. There afesch graphs and for each graph we
must check all possible decision trees bounded by a sufficient depth. Since the DJP
algorithm uses no more thaifr — 1) comparisons on any graph orvertices, a
depth ofr 2 is sufficient. Hence, the tree has fewer th&riternal nodes. There are
<r* possibilities for each internal node (its comparison must identify two edges);
hence, there are:r? ** distinct decision trees to check. To determine if a decision
tree is correct, we generate all possible permutations of the edge weights and for
each, solve the MSF problem on the given graph. Now we simultaneously check
all permutations against a decision tree as follows: First, we place all permutations
at the root; then move them to the left or right child depending on the truth or
falsity of the edge-weight comparison with respect to each permutation. We repeat
this step until all permutations reach a leaf. If for each leaf, all permutations
sharing that leaf agree on the MSF, then the decision tree is correct. This process
takes no longer tham{ + 1)! for each decision tree, hence the total time required
to find an optimal decision tree for all graphs on fewer tharrtices is bounded
by 2°.r27. (r2+ 1)!, which is less than2 ™. Settingr = log® n allows us to
precompute all optimal decision treesdgn) time !

Observe that, in the high-level algorithm we gave in Section 4, if the maximum
size of each componef; is sufficiently small, the components can be organized
into a relatively small number of groups of isomorphic components (ignoring edge
weights). For each group, we use a single precomputed optimal decision tree to
determine the MSF of components in that group.

In our optimal algorithm, we use a procedure DecisionWe&(), which takes
as input a collection of graphg, each with at most vertices, and returns their
minimum spanning forests A using the precomputed decision trees.

5. The Algorithm

As discussed above, the optimal MSF algorithm is as follows: First, precompute the
optimal decision trees for all graphs withlog® n vertices. Next, divide the input
graph into subgraphs;, C,, ..., Cy, discarding the set of corrupted edddg, as

1 We can set as high as/loglogn — 1; however, this provides no benefit to our algorithm.



24 S. PETTIE AND V. RAMACHANDRAN

eachC; is completed. Use the decision trees found earlier to compute theRISF
of eachC;, then contract each connected component spannde by --- U Fy
(i.e., each conglomerate) into a single vertex. The resulting grapkimamg® n
vertices since each conglomerate has at leaS? logertices by Lemma 3.3. Hence,
we can use the DenseCase algorithm to compute its MShR time linear inm.
At this point, by Lemma 3.2 the MSF is now contained in the edgé&get - - - U
Fk U Mc, U - -+ U Mc,. On this graph, we apply two Bovka steps, reducing the
number of vertices by a factor of four, and then compute recursively. The algorithm
is given below.
Lete = 1/8 (this is used by the Soft Heap in the Partition procedure).
Precompute optimal decision trees for all graphs witbg® ng vertices, where
Np is the number of vertices in the original input graph.

OptimalMSF (G)
If E(G) =0 then Return(¥)
r:= [log® |V(G)[1
Partition(G,r,¢; M,C)
DecisionTree(C; F)
Let k:=|C| and let C ={Cy,..., C, F={Fs,..., Fy}
Gy =G\(FLU---UR)—M
DenseCase(Ga; Fo)
Gy =FUFRU---URUM
Boruvka2(Gp; F', G¢)
F := OptimalMSF(Gc)
Return(F U F’)

Apart from recursive calls and using the decision trees, the computation per-
formed by OptimalMSF is clearly linear since Partition takd@nlog(1/¢)) time,
and owing to the reduction in vertices, the call to DenseCase also takes lin-
ear time. Fore =1/8, the number of edges passed to the final recursive call is
<m/4 + n/4 < m/2, giving a geometric reduction in the number of edges. Since
no MSF algorithm can do better than linear time, the bottleneck, if any, must lie in
using the decision trees, which are optimal by construction.

More concretely, leT (m, n) be the running time of OptimalMSF. L&t*(m, n)
be the optimal number of comparisons needed to determine the MSF on any graph
with n vertices andm edges and leT*(H) be the optimal number of compar-
isons needed on specificgraphH. That is,7*(m, n)= max7 *(H):|V(H)| =
n, |E(H)|=m}. We also refer t& * as thedecision-tree complexityf MSF, as it
corresponds to the height of an optimal decision-tree. The recurrence relation for
T is given below. For the base case, note that the graphs in the recursive calls will
be connected if the input graph is connected. Hence, the base case graph has no
edges and one vertex, and we hay@, 1) equal to a constant

m n

T(m,n) < chT*(Ci)JrT( )+cz-m.

It is straightforward to see that, #*(m, n) = O(m), then the above recurrence
givesT(m, n) = O(m). One can also show tha@t(m, n) = O(7*(m, n)) for many
natural functions foZ * (includingm - «(m, n)). However, to show that this result
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holds no matter what the function describifigm, n) is, we need to establish some
results on the decision tree complexity of the MSF problem, which we do in the
next section.

5.1. ME RESULTS FORMSF DecISION TREES In this section, we establish
some results on MSF decision trees that allow us to establish our main result that
OptimalMSF runs inO(7 *(m, n)) time.

PROPOSITIONS.1. Form,n>2,7*(m, n) > m/2.

PrROPOSITIONS.2. For n'>n, 7*(m,n)>7*m,n), and for m>m,
7*(m', n) > 7*(m, n).

Proposition 5.1 is true since fan, n > 2 every edge can be placed on some
cycle, and must therefore participate in at least one comparison. Proposition 5.2
holds since we can always add isolated vertices or edges of very high weight, neither
of which affects the MSF.

We now state a property that is used by Lemmas 5.4 and 5.5.

PROPERTY 5.3. Let H be a graph which is the union of edge-disjoint sub-
graphs G, ..., Ck. The structure of H dictates that M$A) = MSF(C,) U---U
MSF(Cy).

If Cyq, ..., Ck are the components returned by Partition, it can be seen that the
graphH = | J; G satisfies Definition 5.3 since every simple cycle in this graph
must be contained in exactly one of t@e To see this, consider any simple cycle
and leti be the largest index such th@t contains an edge in the cycle. Since each
Ci shares no more than one vertex with _; C;, this cycle cannot contain an edge

from U;_; Cj.

LEMMA 5.4. If Property5.3holds for H,then there exists an optimal MSF deci-
sion tree for H that makes no comparisons of the formewhere e C;, f € C;
andi#j.

ProoOF Consider a subsé of the permutations of all edge weights where for
ee G, f € Cjandi < |, it holds thatweigh(e) < weigh( f). Permutations
in P have two useful attributes that can be readily verified. First, any number of
intercomponent comparisons shed no light on the relative weights of edges in the
same component. Second, any spanning forest of a component is the MSF of that
component for some permutation7

Now consider any optimal decision tréefor H. Let T’ be the subtree of that
contains only leaves that can be reached by some permutaffarEach intercom-
ponent comparison node T must have only one child, and by the first attribute,
the MSF at each leaf was deduced using only intracomponent comparisons. By the
second attributel " must determine the MSF of each component correctly, and thus
by Property 5.3 it must determine the MSF of the grapltorrectly. Hence, we
can contracfl’ into a correct decision tre€” by replacing each one-child node
with its only child. O

LEMMA 5.5. If Property5.3holds for H then7*(H) = >, 7%(C)).
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PrROOF.  Given optimal decision tre€k for theC; we can construct a decision
tree forG by replacing each leaf of; by T,, and in general replacing each leaf
of T; by T;1 and by labeling each leaf of the last tree by the union of the labels
of the original trees along this path. Clearly, the height of this tree is the sum of
the heights of theT;, and henceZ7*(G) < > ; 7*(C;). So we need only prove
that no optimal decision tree f@ has height less than the sum of the heights of
theT,.

Let T be an optimal decision tree f@ that has no intercomponent compar-
isons (as guaranteed by Lemma 5.4). We show Thaan be transformed into
a “canonical” decision tred’ for G of the same height a§, such that inT’,
all comparisons foC; precede all comparisons f@; . ;, for eachi, and further,
the subtrees of ' containing intra€; comparisons are all identical. That is, they
have the same shape and the same comparisons are associated with correspond-
ing nodes. This establishes the desired result siriceust contain a path that
is the concatenation of the longest path in an optimal decision tree for each of
theC;.

We first prove this result for the case when there are only two compor@nts,
andC,. Assume inductively that the subtrees rooted at all vertices at a certain depth
d in T have been transformed to the desired structure of havinGtkemparisons
occur before he&C, comparisons, and with all subtrees o5 within each of the
subtrees rooted at depttbeing identical. (This is trivially the case whdns equal
to the height ofT .)

Consider any node& at depthd — 1. If the comparison at that node isG
comparison, then all, subtrees at descendent nodes must compute the same set of
leaves foIC,. Hence, the subtree rootedvatan be converted to the desired format
simply by replacing alC, subtrees by one having minimum depth (note that there
are at most two differen®, subtrees: all those descending fraimleft child (right
child) are identical). If the comparison atis aC, comparison, we know that the
C; subtrees rooted at its left chikland its right childy must both compute the
same set of leaves f@;. Hence, we pick th€, subtree of smaller height (without
loss of generality, let its root b€ and replace by X, together with theC, subtree
rooted atx. We then copy the comparison at nodéo each leaf position of this
C, subtree. For each such copy, we place one of the isomorphic copies©f the
subtree that is a descendant»ofis its left subtree, and tHe, subtree that is a
descendant of as its right subtree. The subtree rooted,atvhich is now at depth
d — 1, is now in the desired form; it computes the same result d5 and there
was no increase in the height of the tree. Hence, by induciiaran be converted
into canonical decision tree of no greater height.

Assume inductively that the result hold for upke- 1 > 2 components. The
result easily extends to components by noting that we can group the first 1
components a€; and letCy beC,. By the above method, we can transfofnto a
canonical tree in which th€, comparisons appear as leaf subtrees. We now strip
the Cy subtrees from this canonical tree and then, by the inductive assumption, we
can perform the transformation for remainikg- 1 components. []

COROLLARY 5.6. Letthe G be the components formed by the Partition routine
applied to graph Glet H = [ J; C; and let G have m edges and n vertices. Then
> THCi) =T*(H) < T*(m,n).

COROLLARY 5.7. Foranymand n2-7*(m,n) < 7*(2m, 2n).
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We can now solve the recurrence relation for the running time of OptimalMSF
given in the previous section.

m n
T(m,n) < c17*(C; T(—=, -
(m.m < > e (@) + (37
m n
—,—)+¢c,-m (Corollary 5.6
2,4>+ 2 ( y 5.6)
m n
2°4
c »
7*(m, n) (cl + > + 2c2) (Corollary 5.7 and Proposition$.1, 5.2)

>+c2-m

IA

¢ 7*(m,n) + T(

IA

c7*(mn)+c- T*( ) + C; - m (assume inductively

A

A

c-7*(m, n) (for c = 2c; + 4cy; this completes the inductipn
This gives us the desired theorem.

THEOREM 5.8. Let7*(m, n) be the decision-tree complexity of the MSF prob-
lem on graphs with m edges and n nodes. AlgoritpnimalMSF computes the
MSF of a graph with m edges and n vertices deterministically (@ @m, n)) time.

6. Avoiding Pointer Arithmetic

We have not precisely specified what is required of the underlying machine
model. Upon examination, the algorithm does not seem to require the full power
of a random access machine (RAM). No bit manipulation is used and arith-
metic can be limited to just the increment operation. However, if procedure
DecisionTree is implemented in the obvious manner, it will require using a ta-
ble lookup, and thus random access to memory. In this section, we outline the
pointer machine [Tarjan 1979a] a model that does not allow random access to
memory, and describe some techniques we use for implementing the Decision-
Tree procedure on a pointer machine. Our method is similar to that described in
Buchsbaum et al. [1998], but we ensure that the time overhead in performing the ta-
ble look-ups during a call to DecisionTree is linear in the size ottireentinput to
DecisionTree.

A pointer machine distinguishes pointers from all other data types. The only
operations allowed on pointers are assignment, comparison for equality and deref-
erencing. Memory is organized into records, each of which holds some constant
number of pointers and normal data words (integers, floats, etc.). Given a pointer
to a particular record, we can refer to any pointer or data word in that record in
constant time. On nonpointer data, the usual array of logical, arithmetic, and binary
comparison operations are allowed.

Every MSF decision tree solves the MSF problem on a particular graph topology:
we call this thegeneric graphin order to solve the MSF problem onactualgraph,
we bind corresponding edges of the actual and generic graphs, such that given one
edge the other can be found in constant time. Comparisons in the MSF decision
tree refer to edges in the generic graph; hence, they too can be translated into
comparisons in the actual graph in constant time.

We match up identical actual graphs and generic graphs using the method
given in Buchsbaum et al. [1998]. If all graphs have fewer tharertices we
represent the graphs as a string of numbers between 1Ir atiten perform
a lexicographic sort [Aho et al. 1974] on all the graphs (both actual and generic).
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A generic graph will appear adjacent to all identical actual graphs. All that remains
to be done is bind the actual graphs to the appropriate generic graph and run the
associated MSF decision tree. If the total size of all actual subgraptgs s m),

the sorting step take®(s + r22"*) time, which isO(m + n) for r = log® n. The
lexicographic sort guarantees that in the recursive calls it suffices to scan an initial
prefix of the sorted list whose size is linear in the size of the current graph.

7. Performance on Random Graphs

Even if we assume that MST has some super-linear complexity, we show below that
our algorithm runs in linear time for nearly all graphs, for arbitrarily chosen edge
weights. This improves upon the expected linear-time result of Karp and Tarjan
[1980], which depended on the edge weights being chosen randomly. Our result
may also be compared with the randomized algorithm of Karger et al. [1995],
which is shown to run ir©(m) time with high probability. However, for any given
graph the Karger et al. [1995] algorithm can be made to rufe(mlogn) time

by an adversary that controls the edge weights. In contrast, we show below that
our algorithm runs in linear time for the vast majority of graphs, for every possible
assignment of edge weights.

None of the earlier published MST algorithms appear to have this property of
running in linear time with high probability on random graphs for all edge-weights.
Using the analysis of this section and suitably souped-up versions of earlier algo-
rithms [Fredman and Tarjan 1987; Gabow et al. 1986; Chazelle 2000b], we may
obtain similar high probability results.

Our analysis hinges on the observation that for sparse random graphs, with high
probability any subgraph constructed by the Partition routine has only a miniscule
number in edges in excess of the number of spanning forest edges in that subgraph.
The MST of such graphs can be computed in linear time, and hence the computation
on optimal decision trees takes linear time on these graphs.

Throughout this sectiony will denotec(m, n).

The random graph mod@&,, ., [Erdés and Rhyi 1961] assigns aIFrzer) graphs
with medges equal probability. @, , any graph omedges is assigned probability
p™(1 — p)®-™. In other words, each possible edge is included independently with
probability p.

THEOREM 7.1. The MST of a graph can be found in linear time with probability
(1) 1 — exg—Q(m/a?)), for a graph drawn from G,
(2) 1— exd—Q(pn?/«?)), for a graph drawn from G p.

Both (1) and(2) hold regardless of the permutation of edge weights.

In the next section, we describe thege-addition martingal®r theG,, ,, model.
In Section 7.2, we use this martingale and Azuma’s inequality to prove part (1) of
Theorem 7.1. Part (2) is shown to follow from part (1).

7.1. THE EDGE-ADDITION MARTINGALE. It was observed Ems and Rhyi
[1961] that a random graph from tl&, , model can be generated in an incre-
mental fashion as follows: We begin withlabeled vertices, adding one random
edge at a time that was not previously selected X;dte a random edge such that
Xi # Xjfor j <i,andG; = {Xg,..., X} be the graph made up of the fiist
edges, withGg being the graph on vertices having no edges.
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A martingale is a sequence of random variablés, ..., Y, such that
E[Y; |Yi_1]=Yi_1 for 0 < i < m. We now prove that ifj is any graph-theoretic
function andge (Gi) = E[g(Gm)|Gi], thenge(Gi), for 0 <i < mis a martingale.

LEMMA 7.2. The sequencegdGi) = E[g(Gn) | Gi], forO < i < m,is a
martingale where g is any graph theoretic functioB is the edge-free graph on
n vertices and G is derived from G_; by adding a random edge not injG
to Gi—l-

PROOF Let Xij = {Xi, ..., Xj}. Given thatG;_; has been fixed,
E[ge(Gi)] = Z Pr[Xi = X | Gi_1]
XiZXi
Y PrIXi=x0Gi—1, Xi = x]-9(Gi-1 U X")
Xha=x11

= Z Pr[Xim = Xim‘Gi—l] . g(Gi_l U xim)
Xim:Xim

= E[9(Gm) | Gi_1] = ge(Gi_1). 0

We call the sequence proved to be a martingale in Lemma 7 &digpe-addition
martingale in contrast to trexdge-exposumartingale forGy, p.

We now recall the well-known Azuma’s inequality (see, e.g., Alon and
Spencer [1992]).

THEOREM 7.3 (AZUMA’SINEQUALITY). Let Yy, ..., Yy be a martingale with
Yi —VYi_1] < 1for0 < i < m. Leta > 0 be arbitrary. ThenPr[|Yy — Yo| >

/M| < exp(—12/2).

To facilitate the application of Azuma’s inequality to our edge-addition martin-
gale, we establish the following lemma:

LEMmMA 7.4. Consider the sequence proved to be a martingale in Leiha
Let g be any graph-theoretic function such thg{G) — g(G’)| < 1for any pair of
graphs G and Gof the form G= H U {e} and G = H U {€'}, for some graph H.
Then|ge(Gi) — 9e(Gi-1)I <1, forO <i <m.

PROOF.  ge(G) andge(Gi_1) are the average @f(G; U X{,) andg(G;_1 U
X" where X" ; and X{" range over their possible outcomes, givenandG;_1,
respectively. We identify each outcome Mfrng with equal-size disjoint sets of
outcomes ofX{" that cover all outcomes oX{". Thenge(G;_1) may be regarded
as an average of set averages. If, for each set corresponding to an olRcoime
X" ;, we establish that the set average differs fig(@; U P) by no more than 1,
the Lemma follows.

The correspondence is as follows: &t = G;_; U {a} (i.e., Xj = a). For each
outcomex!™ ;, the corresponding set consists of outcomes of the fqrma X1
fori <j < m(i.e., the same graph batappears at different times), and of the
form x; x™ ; wherex; ranges over all edges not appearingan.; andx™ ;. For
each outcomd® = x, of X}, and allQ in P’s associated sefg(G; U P) —
g(Gi_1 U Q)| < 1 since the graphs differ in at most one edge. Clefgl; U P)

— AVGo{g(Gi-1 U Q)}| < 1 holds as well, where the average is over outco@es

in P’s associated set.[]
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7.2. ANALYSIS. We define thexces®f a subgrapid to be|E(H)| — |F(H)],
whereF (H) is any spanning forest dfl. Let f(G) be the maximum excess of the
graph made up of intracomponent edgebkere the sets of components range over
all possible sets returned by the Partition procedL(néecaII that the size of any
component is no more than= maxsize= log® n.)

Define fg(Gj) = E[ f (Gn)|Gi].

The key observation leading to our linear-time result is that each pass of our
optimal algorithm definitely runs in linear time if (G) < m/a(m, n). To see
this, note that if this bound ori (G) holds, we can reduce thetal number of
intracomponent edges te2m/« in linear time using log Borlivka steps, and
then, clearly, the MST of the resulting graph can be determin&2{(im) time. We
show below that if a graph is randomly chosen fr&qy, f(G) < m/a(m, n) with
high probability.

We now show that Lemma 7.4 applies to the graph-theoretic funétiand then
apply Azuma'’s inequality to obtain our desired result.

LEMMA 7.5. LetG= H U {e} and G = H U {€} be two graphs on a set of
labeled vertices that differ by no more than one edge. THéG) — f(G')| < 1.

PROOF  Suppose without loss of generality the{G) — f(G’) > 1, then we
could apply the optimal set of components®to G'. Every intracomponent edge
of G remains an intracomponent edge, except possblyhis can reduce the
excess by no more than one, a contradiction. The possibilitethay become an
intracomponent edge can only help the argumet.

LEMMA 7.6. fe(Gp) = o(m/w).

ProOF. Notice that ifm/n > «k, it is simply impossible to haveya intra-
component edges, so we assum@ < ak.

An upper bound orfg(Gy) is the expected number of indicesuch that edg;
completed a cycle of lengthk in G;_1, since all edges which causédo increase
must have satisfied this criterion. Let be the probability thaiX; completed a
cycle of length<k. By bounding the number of such cycles, and the probability
they exist in the graph, we have

j—1

(gt
= < :k if m = Q(n)

or=0 <ﬂ2> if m=o(n)

n3

) (recall thati < m)

In either casefg(Go) < ) ; p = o(m/x). [
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LEMMA 7.7. Let G be chosen from (. Then Pr[f(G)>m/a] <
exg(—Q(m/a?)).

ProOOF. By applying Azuma’sinequality, we have that g (G ) — fe(Go)| >
/M| < exp(=A?/2). Settingh = /m/a — fe(Gg)//m gives the lemma. Note
that, by Lemma 7.6f£(Go) is quite insignificant. [

We are now ready to prove Theorem 7.1.

PROOF  We examine only the first Idgpasses of our optimal algorithm, since
all remaining passes certainly takém) time. Lemma 7.7 assures us that the first
pass runs in linear time with high probability. However, the topology of the graph
examined in later passdsesdepend on the edge weights. Assuming theuska’
steps contract all parts of the graph at a constant rate, which can easily be enforced,
a partition of the graph in one pass of the algorithm corresponds to a partition of
the original graph into components of size less tkarfor some fixed. Usingk®
in place ofk does not affect Lemma 7.6, which gives the TheoremGgg,, that
is, part (1). ForGy, p, note that the probability that there are i@tpn?) edges is
exponential in—Q(pn?); hence, the probability that the algorithm fails to run in
linear time is dominated by the bound in part ()]

For the sparse case wheam< n/«, Theorem 7.1 part (1) holds with proba-
bility 1, and for p < 1/n«, by a Chernoff bound, part (2) holds with probability
1 — exp(—(n/a)).

8. Discussion

An intriguing aspect of our algorithm is that we do not know its precise deter-
ministic running time although we can prove that it is within a constant factor of
optimal. Results of this nature have been obtained in the past for sensitivity anal-
ysis of minimum spanning trees [Dixon et al. 1992] and convex matrix searching
[Larmore 1990]. Also, for the problem of triangulating a convex polygon, it was
observed in Dixon et al. [1992] that an alternate linear-time algorithm could be
obtained using optimal decision trees on small subproblems. However, these ear-
lier algorithms make use of decision trees in more straightforward ways than the
algorithm presented here.

As noted in Section 4.1, the construction of optimal decision trees takes sublin-
ear time. Thus, it is important to observe that our use of decision trees does not
result in a large constant factor in the running time. Further, this construction of
optimal decision trees is performed by a straightforward brute-force search; hence,
the resulting algorithm isiniform (i.e., it is a fixed algorithm that works for all
problem sizes).

It was mentioned in the introduction that an optimal algorithm can be con-
structed for any problem, given an optimal verification algorithm for that problem.
We briefly sketch this construction [Jones 1997]. Consider a problem that has an
optimal verification algorithm that runs in timén(n). The above-mentioned con-
struction produces an algorithm that enumerates prog@mp,, ... for some
machine model and executes them incrementally as follows: for ieach for
every two operations executed by progrBnprogramp, ; executes one operation.
Whenever any of the programs halts the verifier checks its output for correctness.
The algorithm terminates once the verifier determines that a correct output has been
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produced by one of the programsH{ is the optimal program for the problem with
running timeOpt(n), then this construction gives an algorithm that takes no more
than Z+1(Opt(n) + Ver(n)) steps. Sinc€ is a constant ander(n) = O(Opt(n)),

this gives an algorithm that is within a constant factoOgft(n).

Using a linear-time MST verification algorithm such as Dixon et al. [1992],
King [1997], and Buchsbaum et al. [1998], the above construction yields an
optimal MST algorithm; however, it is unsatisfactory for several reasons. It is
truly impractical since it asks for an enumeration of all possible algorithms
and its constant factor is exponential in the position of the actual optimal algo-
rithm in this enumeration. Further, it sheds no light on the relation between the
algorithmic and decision-tree complexity of the problem. Our result, in con-
trast, has a very reasonable constant factor in the running time, and it is ro-
bust in that it ties the algorithmic complexity of MST to its decision-tree com-
plexity, a limiting factor in any machine model. It is not always the case that
algorithmic complexity and decision-tree complexity are asymptotically equiva-
lent: for instance, two sorting-type problems whose decision-tree complexity and
algorithmic complexity provably diverge are described in Goddard et al. [1993]
and [Pettie and Ramachandran [2002a, Sect. 8]. In fact, one can easily con-
coct simple problems that are NP-hard but nevertheless have polynomial-depth
decision-trees.

9. Conclusion

We have presented a deterministic MSF algorithm that is provably optimal. The
algorithm runs on a pointer machine, and on graphs witlertices andn edges,

its running time isO(7*(m, n)), where7 *(m, n) is the decision-tree complex-

ity of the MSF problem om-node,m-edge graphs. Also, on random graphs our
algorithm runs in linear time with high probability for all possible edge-weights. In
fact, a hybrid of our algorithm and the randomized algorithm of Karger et al.
[1995] runs in expected linear time using only legrandom bits [Pettie and
Ramachandran 2000b]. Although the exact running time of our algorithm is not
known, we have shown that the time bound depends only on the number of
edge-weight comparisons needed to determine the MSF, and not on any data
structural issues.

Determining the worst-case complexity of our algorithm is the main open ques-
tion remaining in the MSF problem; however, there is a subtler open question.
We have given an optimal uniform algorithm for the MSF problem that uses pre-
computed decision trees. Is there an optimal uniform algorithm that mimese
precomputed decision trees (or some similar technique)? More generally, are there
problems where precomputation is necessary? One may wish to study this issue in
a simpler setting, say the MSF verification problem on a pointer machine. Here,
there is still anx(m, n) factor separating the best pointer machine algorithm that
uses precomputed decision trees [Buchsbaum et al. 1998] and the one which does
not [Tarjan 1979b].

One may also ask for the parallel complexity of the MSF problem. Here, re-
solved recently were the deterministic time complexity [Chong et al. 2001] and the
randomized work-time complexity [Pettie and Ramachandran 1999] of the MSF
problem on the EREW PRAM. An open question that remains here is to obtain a
deterministic work-time optimal parallel MSF algorithm. Parallelizing our optimal
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algorithm is not at all straightforward. Although handling decision trees does not
present any problems in the parallel context, we still need a method for identifying
contractible components in parallel and a base case algorithm that performs linear
work for graph-densities of 18§ n. Existing sequential algorithms that are suit-
able for the base case, such as the one in Fredman and Tarjan [1987] are also not
easily parallelizable.
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