
An Optimal Minimum Spanning Tree Algorithm

SETH PETTIE AND VIJAYA RAMACHANDRAN

The University of Texas at Austin, Austin, Texas

Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal
to its decision-tree complexity. Specifically, we present a deterministic algorithm to find a minimum
spanning tree of a graph withn vertices andm edges that runs in timeO(T ∗(m, n)) whereT ∗ is the
minimum number of edge-weight comparisons needed to determine the solution. The algorithm is
quite simple and can be implemented on a pointer machine.

Although our time bound is optimal, the exact function describing it is not known at present. The
current best bounds known forT ∗ areT ∗(m, n) = Ä(m) andT ∗(m, n) = O(m ·α(m, n)), whereα is
a certain natural inverse of Ackermann’s function.

Even under the assumption thatT ∗ is superlinear, we show that if the input graph is selected from
Gn,m, our algorithm runs in linear time with high probability, regardless ofn, m, or the permutation of
edge weights. The analysis uses a new martingale forGn,m similar to the edge-exposure martingale
for Gn,p.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]:
General; G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms; G.3 [Probability and
Statistics]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Graph algorithms, minimum spanning tree, optimal complexity

1. Introduction

The minimum spanning tree (MST) problem has been studied for much of this
century and yet despite its apparent simplicity, the problem is still not fully under-
stood. Graham and Hell [1985] give an excellent survey of results from the earliest
known algorithm of Bor˚uvka [1926] to the invention of Fibonacci heaps, which
were central to the algorithms in Fredman and Tarjan [1987] and Gabow et al.
[1986]. Chazelle [1997] presented an MST algorithm based on the Soft Heap
[Chazelle 2000a] having complexityO(mα(m, n) logα(m, n)), whereα is a cer-
tain inverse of Ackermann’s function. Recently Chazelle [2000b] modified the

A preliminary version of this article appeared inProceedings of the 27th International Colloquium on Automata,

Languages and Programming(ICALP) (Geneva, Switzerland). Springer-Verlag, New York, 2000.

Part of this work was supported by Texas Advanced Research Program Grant 003658-0029-1999.

S. Pettie was also supported by an MCD Graduate Fellowship.

Authors’ address: The University of Texas at Austin, Department of Computer Science, Taylor Hall 2.124
(Mailcode 0500), Austin, TX 78712, e-mail:{seth;vlr}@cs.utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0004-5411/02/0100–0016 $5.00

Journal of the ACM, Vol. 49, No. 1, January 2002, pp. 16–34.

An Optimal Minimum Spanning Tree Algorithm 17

algorithm in Chazelle [1997] to bring down the running time toO(m · α(m, n)).
Later a similar algorithm of the same running time was presented by Pettie [1999],
which gives an alternate exposition of theO(m ·α(m, n)) result. This is the tightest
time bound for the MST problem to date, though not known to be optimal.

All algorithms mentioned above work on a pointer machine [Tarjan 1979a] un-
der the restriction that edge weights may only be subjected to binary comparisons.
If, in addition, we have access to a stream of perfectly random bits, Karger et al.
[1995] showed that the MST can be computed in linear time with high probabil-
ity. Fredman and Willard [1994] gave a deterministic linear time MST algorithm
under the unit-cost RAM model, assuming edge weights are integers represented
in binary.

It is still unknown whether these more powerful models are necessary to compute
the MST in linear time. However, in this article, we give a deterministic, comparison-
based MST algorithm that runs on a pointer machine inO(T ∗(m, n)) time, where
T ∗(m, n) is the number of edge-weight comparisons needed to determine the MST
on any graph withmedges andn vertices. Additionally, we show that our algorithm
runs in linear time for the vast majority of graphs, regardless of the number of edges
in the graph or the permutation of edge weights.

Because of the nature of our algorithm, its exact running time is not known.
This might seem paradoxical at first. The source of our algorithm’s optimality,
and its mysterious running time, is the use of precomputed “MST decision trees”
whose exact depth is unknown but nonetheless provably optimal. The technique
of obtaining optimal algorithms via precomputation was used in a simpler setting
in Larmore [1990] for searching convex matrices and in Dixon et al. [1992] for
MST sensitivity analysis. We should point out that precomputing optimal deci-
sion trees doesnot increase the constant factor hidden by big-Oh notation, nor
does it result in a nonuniform algorithm. A trivial lower bound on the running
time of our algorithm isÄ(m); the best upper bound,O(mα(m, n)), is due to
Chazelle [2000b].

Our optimal MST algorithm should be contrasted with the complexity-theoretic
result that any optimal verification algorithm for some problem can be used to
construct an optimal algorithm for the same problem [Jones 1997]. Though asymp-
totically optimal, this construction hides astronomical constant factors and proves
nothing about the relationship between algorithmic complexity and decision-tree
complexity. See Section 8 for a discussion of these and other related issues.

In the next sections, we review some well-known MST results that are used by our
algorithm. In Section 3, we prove a key lemma and give a procedure for partitioning
the graph in an MST-respecting manner. Section 4 gives an overview of our optimal
algorithm and discusses the structure and use of precomputed decision-trees for the
MST problem. Section 5 gives the algorithm and a proof of optimality. Section 6
shows how the algorithm may be modified to run on a pointer machine. In Section 7,
we show our algorithm runs in linear-time with high probability if the input graph
is selected at random. Sections 8 and 9 discuss related problems and algorithms,
open questions, and the actual complexity of MST.

2. Preliminaries

The input is an undirected graphG = (V, E) where each edge is assigned a distinct
real-valuedweight. By convention,|V | = n and|E| = m. Theminimum spanning

18 S. PETTIE AND V. RAMACHANDRAN

forest(MSF) problem asks for a spanning acyclic subgraph ofG having the least
total weight. In this article, we assume for convenience that the input graph is
connected, since otherwise we can find its connected components in linear time
and then solve the problem on each connected component. Thus, the MSF problem
is identical to the minimum spanningtreeproblem.

It is well known that one can identify edges provably in the MSF using thecut
property, and edges provably not in the MSF using thecycle property. The cut
property states that the lightest edge crossing any partition of the vertex set into
two parts must belong to the MSF. The cycle property states that the heaviest edge
in any cycle in the graph cannot be in the MSF.

2.1. BORŮVKA STEPS. The earliest known MSF algorithm is due to Bor˚uvka
[1926]. The algorithm is quite simple: It proceeds in a sequence of stages, and in each
stage, orBorůvka step, it identifies a forestF consisting of the minimum-weight
edge incident to each vertex in the graphG, then forms the graphG1 = G\F as the
input to the next stage. HereG\F denotes the graph derived fromG by contracting
edges inF (by the cut property these edges belong to the MSF.) Each Bor˚uvka step
takes linear time, and since the number of vertices is reduced by at least half in
each step, Bor˚uvka’s algorithm takesO(m logn) time.

Our optimal algorithm uses a procedure called Boruvka2(G; F,G′). This proce-
dure executes two Bor˚uvka steps on the input graphG and returns the contracted
graphG′ as well as the set of edgesF identified as part of the MSF during these
two steps.

2.2. DIJSKTRA-JARNÍK-PRIM ALGORITHM. Another early MSF algorithm that
runs inO(m logn) time is the one by Jarn´ık [1930], rediscovered by Dijkstra [1959]
and Prim [1957]. We refer to this algorithm as theDJPalgorithm. Briefly, the DJP
algorithm grows the MSFT one edge at a time. Initially,T is an arbitrary vertex.
In each step of the DJP algorithm,T is augmented with the least-weight edge
(x, y) such thatx ∈ T andy 6∈ T . By the cut property, all edges added toT are in
the MSF.

LEMMA 2.1. Let T be the tree formed after the execution of some number of
steps of the DJP algorithm. Let e and f be two arbitrary edges, each with exactly
one endpoint in T, and let g be the maximum weight edge on the path from e to f
in T. Then g cannot be heavier than both e and f .

PROOF. LetP be the path inT connectinge and f, and assume the contrary,
that g is the heaviest edge inP ∪ {e, f }. Now consider the moment wheng is
selected by DJP and letP ′ be the portion ofP present in the tree. There are exactly
two edges in (P − P ′)∪ {e, f } that are eligible to be chosen by the DJP algorithm
at this moment, one of which is the edgeg. If the other edge is inP, then by our
choice ofg it must be lighter thang. If the other edge is eithere or f, then by our
assumption it must be lighter thang. In both cases,g could not be chosen next by
the DJP algorithm, a contradiction.

2.3. THE DENSECASEALGORITHM. The algorithms presented in Fredman and
Tarjan [1987], Gabow et al. [1986], Chazelle [1997, 2000b], and Pettie [1999] will
find the MSF of a graph in linear time if the graph is sufficiently dense, that is,
has a sufficiently large edge-to-vertex ratio. For our purposes,sufficiently dense
will mean m/n ≥ log(3) n. All of the above algorithms run in linear time for that

An Optimal Minimum Spanning Tree Algorithm 19

density, the simplest of which is easily that of Fredman and Tarjan [1987]. This
algorithm executes a number of phases, where the purpose of each phase is to
amplify the “nominal density” of the graph by contracting a large number of MSF
edges; here thenominal densityis the ratiom/n′, wherem, as usual, is the number
of edges in the original graph, andn′ is the number of vertices in the current graph.
Each phase of the algorithm runs inO(m+ n) time, and works by executing the
DJP algorithm many times, each for a limited number of steps. Ifn′ is the number
of vertices before a phase, the number of vertices after the phase is no more than
n′/2m/n′, hence no more than log∗ n− log∗(m/n) phases are needed.

The procedure DenseCase(G; F) takes as input ann-node graphG and returns
the MSFF of G in linear time for graphs with density at least log(3) n.

Our optimal algorithm will actually call DenseCase on a graph derived from
an n-node,m-edge graph by contracting vertices so that the number of vertices
is reduced by a factor of at least log(3) n. The number of edges in the contracted
graph is no more thanm. Hence, DenseCase will run inO(m+ n) time on such
a graph.

2.4. SOFTHEAP. The main data structure used by our algorithm is theSoft Heap
[Chazelle 2000a]. The Soft Heap is a kind of priority queue that gives us an optimal
trade-off between accuracy and speed. It is parameterized by an error toleranceε,
and supports the following operations:

—MakeHeap(): returns an empty soft heap.
—Insert(S, x): insert itemx into heapS.
—Findmin(S): returns item with smallest key in heapS.
—Delete(S, x): deletex from heapS.
—Meld(S1, S2): create new heap containing the union of items stored inS1

andS2, destroyingS1 andS2 in the process.

All operations take constant amortized time, except for Insert, which takes
O(log(1/ε)) time. To save time the Soft Heap allows items to be grouped together
and treated as though they have a single key. An item adopts the largest key of any
item in its group,corrupting the item if its new key differs from its original key.
Thus, the original key of an item returned by Findmin (i.e., any item in the group
with minimum key) is no more than the keys of all uncorrupted items in the heap.
The guarantee is that aftern Insert operations, no more thanεn corrupted items are
in the heap. The following result is shown in Chazelle [2000a].

LEMMA 2.2. Fix any parameter0<ε <1/2,and beginning with no prior data,
consider a mixed sequence of operations that includes n inserts. On a Soft Heap,
the amortized complexity of each operation is constant, except for insert, which
takes O(log(1/ε)) time. At mostεn items are corrupted at any given time.

3. A Key Lemma and Procedure

3.1. A ROBUST CONTRACTION LEMMA. It is well known that if T is a tree
of MSF edges, we cancontract T into a single vertex while maintaining the in-
variant that the MSF of the contracted graph plusT gives the MSF for the graph
before contraction.

20 S. PETTIE AND V. RAMACHANDRAN

In our algorithm, we find a tree of MSF edgesT in a corruptedgraph, where
some of the edge weights have been increased due to the use of a Soft Heap. In the
lemma given below, we show that useful information can be obtained by contracting
certain corrupted trees, in particular those constructed using some number of steps
from the Dijkstra–Jarnik–Prim (DJP) algorithm. Ideas similar to these are used in
Chazelle’s [1997] algorithm and more explicitly in the recent algorithm of Chazelle
[2000b] (see also Pettie [1999]).

Before stating the lemma, we need some notation and preliminary concepts. Let
V(G) andE(G) be the vertex and edge sets ofG, andn andm be their cardinality,
respectively. Let theG-weight of an edge be its weight in graphG (theG may be
omitted if implied from context).

For the following definitions,M andC are subgraphs ofG. Denote byG ⇑ M
some graph derived fromG by raising the weight of each edge inM by ar-
bitrary amounts (these edges are said to be corrupted). LetMC be the set of
edges inM with exactly one endpoint inC. Let G\C denote the graph obtained
by contracting all connected components induced byC, that is, by replacing
each connected component with a single vertex and reassigning edge endpoints
appropriately.

Definition 3.1. A subgraphC is said to beDJP-contractible with respect toG
if after executing theDJPalgorithm onG for some number of steps, with a suitable
start vertex inC, the tree that results is a spanning tree forC.

LEMMA 3.2. Let M be a set of edges in a graph G. If C is a subgraph of
G that is DJP-contractible with respect to G⇑ M , then MSF(G) is a subset of
MSF(C) ∪MSF(G\C − MC) ∪ MC.

PROOF. Each edge inC that is not in MSF(C) is the heaviest edge on some
cycle inC. Since that cycle exists inG as well, that edge is not in MSF(G). So we
need only show that edges inG\C that are not in MSF(G\C− MC)∪ MC are also
not in MSF(G).

Let H = G\C − MC; hence, we need to show that no edge inH −MSF(H) is
in MSF(G). Let e be in H −MSF(H), that is,e is the heaviest edge on some cycle
χ in H . If χ does not involve the vertex derived by contractingC, then it exists in
G as well ande 6∈ MSF(G). Otherwise,χ forms apathP in G whose endpoints,
sayx andy, are both inC. Let the end edges ofP be (x,w) and (y, z). SinceH
includes no corrupted edges with one endpoint inC, theG-weight of these edges
is the same as their (G ⇑ M)-weight.

Let T be the spanning tree ofC⇑M derived by the DJP algorithm,Q be the
path inT connectingx andy, andg be the heaviest edge inQ. Notice thatP ∪Q
forms a cycle. By our choice ofe, it must be heavier than both (x,w) and (y, z),
and by Lemma 2.1, the heavier of (x,w) and (y, z) is heavier than the (G⇑M)-
weight ofg, which is an upper bound on theG-weights of all edges inQ. So with
respect toG-weights,e is the heaviest edge on the cycleP ∪Q and cannot be
in MSF(G).

3.2. THE PARTITION PROCEDURE. Our algorithm uses the Partition procedure
that is given below. This procedure finds DJP-contractible subgraphsC1, . . . ,Ck in
which edges are progressively being corrupted by the Soft Heap. LetMCi contain
only those corrupted edges with one endpoint inCi at the time it is completed.

An Optimal Minimum Spanning Tree Algorithm 21

FIG. 1. The Partition procedure.

Each subgraphCi will be DJP-contractible with respect to a graph derived from
G by several rounds of contractions and edge deletions. WhenCi is finished, it is
contracted and all incident corrupted edges are discarded. By applying Lemma 3.2
repeatedly, we see that afterCi is built, the MSF ofG is a subset of

i⋃
j=1

MSF(Cj) ∪MSF

(
G\

i⋃
j=1

Cj −
i⋃

j=1

MCj

)
∪

i⋃
j=1

MCj .

The Partition procedure is shown in Figure 1. The arguments appearing before the
semicolon are inputs; the others are outputs.C = {C1, . . . ,Ck} is a set of subgraphs
of G, andMC is a set of corrupted edges with endpoints in differentCi ’s. No edge
will appear in more than one ofMC,C1, . . . ,Ck.

Initially, Partition sets every vertex to belive. The objective is to convert each
vertex todead, signifying that it is part of a componentCi with≤ maxsizevertices
and part of aconglomerateof ≥ maxsizevertices, where a conglomerate is a con-
nected component of the graph

⋃
E(Ci). Intuitively a conglomerate is a collection

of Ci ’s linked by common vertices. This scheme for growing components is similar
to the one given in Fredman and Tarjan [1987].

We grow theCi ’s one at a time according to the DJP algorithm, except that we
use a Soft Heap. A component is done growing if it reachesmaxsizevertices or if
it attaches itself to an existing component. Clearly, if a component does not reach
maxsizevertices, it has linked to a conglomerate of at leastmaxsizevertices. Hence,
all its vertices can be designated dead. Upon completion of a componentCi , we
discard the set of corrupted edges with one endpoint inCi .

22 S. PETTIE AND V. RAMACHANDRAN

The running time ofPartition is dominated by the heap operations, which depend
on ε. Each edge is inserted into a Soft Heap no more than twice (once for each
endpoint), and extracted no more than once. We can charge the cost of dismantling
the heap to the insert operations which created it; hence, the total running time is
O(m log(1/ε)). By Lemma 2.2, the number of discarded edges is bounded by the
number of insertions scaled byε; thus,|MC| ≤ 2εm. Thus, we have

LEMMA 3.3. Given a graph G, any0<ε <1/2,and a parameter maxsize, Par-
tition finds edge-disjoint subgraphs MC,C1, . . . ,Ck in time O(|E(G)| · log(1/ε))
while satisfying several conditions:

(a) For all v ∈ V(G), there is some i such that v∈ V(Ci).
(b) For all i , |V(Ci)| ≤ maxsize.
(c) For each conglomerate P∈⋃i Ci , |V(P)| ≥ maxsize.
(d) |E(MC)| ≤ 2ε · |E(G)|.
(e) MSF(G) ⊆⋃i MSF(Ci) ∪MSF(G\(⋃i Ci)− MC) ∪ MC .

We observe that the full suite of soft heap operations is not needed as we never
employ themeldoperation. We can therefore use a more space-efficient version of
the soft heap where its nodes are placed in an array and the links between them
represented implicitly, as in a binary heap.

4. Overview of the Optimal Algorithm

Here is an overview of our optimal MSF algorithm.

—In the first stage, we find DJP-contractible subgraphsC1,C2, . . . ,Ck with their
associated set of edgesMC =

⋃
i MCi , whereMCi consists of corrupted edges

with one endpoint inCi .
—In the second stage we find the MSFFi of eachCi , and the MSFF0 of the

contracted graphG\(⋃i Ci)−MC . By Lemma 3.2, the MSF of the whole graph
is contained withinF0 ∪ (

⋃
i Fi) ∪ MC . Note that, at this point, we have not

identified any edges as being in the MSF of the original graphG.
—In the third stage, we find some MSF edges, via Bor˚uvka steps, and recurse on

the graph derived by contracting these edges.

We execute the first stage using the Partition procedure described in the pre-
vious section.

We execute the second stage withoptimal decision trees. Essentially, these are
hardwired algorithms designed to compute the MSF of a graph using an optimal
number of edge-weight comparisons. In general, decision trees are much larger
than the size of the problem that they solve and finding optimal ones is very time
consuming. We can afford the cost of building decision trees by guaranteeing that
each one is extremely small. At the same time, we make each conglomerate formed
by theCi to be sufficiently large so that the MSFF0 of the contracted graph can be
found in linear time using the DenseCase algorithm.

Finally, in the third stage, we have a reduction in vertices due to the Bor˚uvka steps,
and a reduction in edges due to the application of Lemma 3.2. In our optimal algo-
rithm, both vertices and edges reduce by a constant factor, thus resulting in the re-
cursive applications of the algorithm on graphs with geometrically decreasing sizes.

An Optimal Minimum Spanning Tree Algorithm 23

4.1. DECISIONTREES. Consider a computation that takes as input a fixed graph
G and computes the minimum spanning tree forG for any given permutation of
edge weights. If we are only interested in the edge-weight comparisons performed,
this computation can be described in terms of anMSF decision treefor G. An
MSF decision tree is a rooted tree having an edge-weight comparison associated
with each internal node (e.g.,weight(x, y)<weight(w, z)). Each internal node
has exactly two children, one representing that the comparison is true, the other
that it is false. The leaves of the tree list off the edges in some spanning tree of
the graph. An MSF decision tree forG is said to becorrect if the edge-weight
comparisons encountered on any path from the root to a leaf uniquely identify
the spanning tree at that leaf as the MSF. A decision tree forG is said to be
optimal if it is correct and there exists no correct decision tree forG with
lesser depth.

Let us bound the time needed to find optimal decision trees for all graphs on
r vertices by brute force search. There are 2

(r2)
such graphs and for each graph we

must check all possible decision trees bounded by a sufficient depth. Since the DJP
algorithm uses no more thanr (r − 1) comparisons on any graph onr vertices, a
depth ofr 2 is sufficient. Hence, the tree has fewer than 2r 2

internal nodes. There are
<r 4 possibilities for each internal node (its comparison must identify two edges);
hence, there are<r 2r 2+2

distinct decision trees to check. To determine if a decision
tree is correct, we generate all possible permutations of the edge weights and for
each, solve the MSF problem on the given graph. Now we simultaneously check
all permutations against a decision tree as follows: First, we place all permutations
at the root; then move them to the left or right child depending on the truth or
falsity of the edge-weight comparison with respect to each permutation. We repeat
this step until all permutations reach a leaf. If for each leaf, all permutations
sharing that leaf agree on the MSF, then the decision tree is correct. This process
takes no longer than (r 2+ 1)! for each decision tree, hence the total time required
to find an optimal decision tree for all graphs on fewer thanr vertices is bounded
by 2r 2 · r 2r 2+2 · (r 2+ 1)!, which is less than 22

r 2+o(r)
. Settingr = log(3) n allows us to

precompute all optimal decision trees ino(n) time.1

Observe that, in the high-level algorithm we gave in Section 4, if the maximum
size of each componentCi is sufficiently small, the components can be organized
into a relatively small number of groups of isomorphic components (ignoring edge
weights). For each group, we use a single precomputed optimal decision tree to
determine the MSF of components in that group.

In our optimal algorithm, we use a procedure DecisionTree(G;F), which takes
as input a collection of graphsG, each with at mostr vertices, and returns their
minimum spanning forests inF using the precomputed decision trees.

5. The Algorithm

As discussed above, the optimal MSF algorithm is as follows: First, precompute the
optimal decision trees for all graphs with≤ log(3) n vertices. Next, divide the input
graph into subgraphsC1,C2, . . . ,Ck, discarding the set of corrupted edgesMCi as

1 We can setr as high as
√

log logn− 1; however, this provides no benefit to our algorithm.

24 S. PETTIE AND V. RAMACHANDRAN

eachCi is completed. Use the decision trees found earlier to compute the MSFFi
of eachCi , then contract each connected component spanned byF1 ∪ · · · ∪ Fk
(i.e., each conglomerate) into a single vertex. The resulting graph has≤n/ log(3) n
vertices since each conglomerate has at least log(3) n vertices by Lemma 3.3. Hence,
we can use the DenseCase algorithm to compute its MSFF0 in time linear inm.
At this point, by Lemma 3.2 the MSF is now contained in the edge setF0 ∪ · · · ∪
Fk ∪ MC1 ∪ · · · ∪ MCk . On this graph, we apply two Bor˚uvka steps, reducing the
number of vertices by a factor of four, and then compute recursively. The algorithm
is given below.

Let ε = 1/8 (this is used by the Soft Heap in the Partition procedure).
Precompute optimal decision trees for all graphs with≤ log(3) n0 vertices, where

n0 is the number of vertices in the original input graph.

OptimalMSF (G)
If E(G) = ∅ then Return(∅)
r := dlog(3) |V(G)|e
Partition(G, r, ε; M, C)
DecisionTree(C; F)
Let k := |C| and let C = {C1, . . . ,Ck}, F = {F1, . . . , Fk}
Ga := G\(F1 ∪ · · · ∪ Fk)− M
DenseCase(Ga; F0)
Gb := F0 ∪ F1 ∪ · · · ∪ Fk ∪ M
Boruvka2(Gb; F ′,Gc)
F := OptimalMSF(Gc)
Return(F ∪ F ′)

Apart from recursive calls and using the decision trees, the computation per-
formed by OptimalMSF is clearly linear since Partition takesO(m log(1/ε)) time,
and owing to the reduction in vertices, the call to DenseCase also takes lin-
ear time. Forε= 1/8, the number of edges passed to the final recursive call is
≤m/4+ n/4 ≤ m/2, giving a geometric reduction in the number of edges. Since
no MSF algorithm can do better than linear time, the bottleneck, if any, must lie in
using the decision trees, which are optimal by construction.

More concretely, letT(m, n) be the running time of OptimalMSF. LetT ∗(m, n)
be the optimal number of comparisons needed to determine the MSF on any graph
with n vertices andm edges and letT ∗(H) be the optimal number of compar-
isons needed on aspecificgraphH . That is,T ∗(m, n)= max{T ∗(H) : |V(H)| =
n, |E(H)| =m}. We also refer toT ∗ as thedecision-tree complexityof MSF, as it
corresponds to the height of an optimal decision-tree. The recurrence relation for
T is given below. For the base case, note that the graphs in the recursive calls will
be connected if the input graph is connected. Hence, the base case graph has no
edges and one vertex, and we haveT(0, 1) equal to a constant

T(m, n) ≤
∑

i

c1T ∗(Ci)+ T
(m

2
,

n

4

)
+ c2 ·m.

It is straightforward to see that, ifT ∗(m, n) = O(m), then the above recurrence
givesT(m, n) = O(m). One can also show thatT(m, n) = O(T ∗(m, n)) for many
natural functions forT ∗ (includingm · α(m, n)). However, to show that this result

An Optimal Minimum Spanning Tree Algorithm 25

holds no matter what the function describingT ∗(m, n) is, we need to establish some
results on the decision tree complexity of the MSF problem, which we do in the
next section.

5.1. SOME RESULTS FORMSF DECISION TREES. In this section, we establish
some results on MSF decision trees that allow us to establish our main result that
OptimalMSF runs inO(T ∗(m, n)) time.

PROPOSITION 5.1. For m, n> 2, T ∗(m, n) ≥ m/2.

PROPOSITION 5.2. For n′> n, T ∗(m, n′)≥ T ∗(m, n), and for m′>m,
T ∗(m′, n)≥ T ∗(m, n).

Proposition 5.1 is true since form, n> 2 every edge can be placed on some
cycle, and must therefore participate in at least one comparison. Proposition 5.2
holds since we can always add isolated vertices or edges of very high weight, neither
of which affects the MSF.

We now state a property that is used by Lemmas 5.4 and 5.5.

PROPERTY 5.3. Let H be a graph which is the union of edge-disjoint sub-
graphs C1, . . . ,Ck. The structure of H dictates that MSF(H) = MSF(C1) ∪ · · · ∪
MSF(Ck).

If C1, . . . ,Ck are the components returned by Partition, it can be seen that the
graphH = ⋃

i Ci satisfies Definition 5.3 since every simple cycle in this graph
must be contained in exactly one of theCi . To see this, consider any simple cycle
and leti be the largest index such thatCi contains an edge in the cycle. Since each
Ci shares no more than one vertex with

⋃
j<i Cj , this cycle cannot contain an edge

from
⋃

j<i Cj .

LEMMA 5.4. If Property5.3holds for H, then there exists an optimal MSF deci-
sion tree for H that makes no comparisons of the form e< f where e∈Ci , f ∈Cj
and i 6= j .

PROOF. Consider a subsetP of the permutations of all edge weights where for
e ∈ Ci , f ∈ Cj and i < j , it holds thatweight(e) < weight(f). Permutations
in P have two useful attributes that can be readily verified. First, any number of
intercomponent comparisons shed no light on the relative weights of edges in the
same component. Second, any spanning forest of a component is the MSF of that
component for some permutation inP.

Now consider any optimal decision treeT for H . Let T ′ be the subtree ofT that
contains only leaves that can be reached by some permutation inP. Each intercom-
ponent comparison node inT ′ must have only one child, and by the first attribute,
the MSF at each leaf was deduced using only intracomponent comparisons. By the
second attribute,T ′must determine the MSF of each component correctly, and thus
by Property 5.3 it must determine the MSF of the graphH correctly. Hence, we
can contractT ′ into a correct decision treeT ′′ by replacing each one-child node
with its only child.

LEMMA 5.5. If Property5.3holds for H, thenT ∗(H) =∑i T ∗(Ci).

26 S. PETTIE AND V. RAMACHANDRAN

PROOF. Given optimal decision treesTi for theCi we can construct a decision
tree forG by replacing each leaf ofT1 by T2, and in general replacing each leaf
of Ti by Ti+1 and by labeling each leaf of the last tree by the union of the labels
of the original trees along this path. Clearly, the height of this tree is the sum of
the heights of theTi, and henceT ∗(G) ≤ ∑

i T ∗(Ci). So we need only prove
that no optimal decision tree forG has height less than the sum of the heights of
theTi.

Let T be an optimal decision tree forG that has no intercomponent compar-
isons (as guaranteed by Lemma 5.4). We show thatT can be transformed into
a “canonical” decision treeT ′ for G of the same height asT, such that inT ′,
all comparisons forCi precede all comparisons forCi+1, for eachi , and further,
the subtrees ofT ′ containing intra-Ci comparisons are all identical. That is, they
have the same shape and the same comparisons are associated with correspond-
ing nodes. This establishes the desired result sinceT ′ must contain a path that
is the concatenation of the longest path in an optimal decision tree for each of
theCi.

We first prove this result for the case when there are only two components,C1
andC2. Assume inductively that the subtrees rooted at all vertices at a certain depth
d in T have been transformed to the desired structure of having theC1 comparisons
occur before heC2 comparisons, and with all subtrees forC2 within each of the
subtrees rooted at depthd being identical. (This is trivially the case whend is equal
to the height ofT .)

Consider any nodev at depthd − 1. If the comparison at that node is aC1
comparison, then allC2 subtrees at descendent nodes must compute the same set of
leaves forC2. Hence, the subtree rooted atv can be converted to the desired format
simply by replacing allC2 subtrees by one having minimum depth (note that there
are at most two differentC2 subtrees: all those descending fromv’s left child (right
child) are identical). If the comparison atv is aC2 comparison, we know that the
C1 subtrees rooted at its left childx and its right childy must both compute the
same set of leaves forC1. Hence, we pick theC1 subtree of smaller height (without
loss of generality, let its root bex) and replacev by x, together with theC1 subtree
rooted atx. We then copy the comparison at nodev to each leaf position of this
C1 subtree. For each such copy, we place one of the isomorphic copies of theC2
subtree that is a descendant ofx as its left subtree, and theC2 subtree that is a
descendant ofy as its right subtree. The subtree rooted atx, which is now at depth
d − 1, is now in the desired form; it computes the same result as inT, and there
was no increase in the height of the tree. Hence, by induction,T can be converted
into canonical decision tree of no greater height.

Assume inductively that the result hold for up tok − 1 ≥ 2 components. The
result easily extends tok components by noting that we can group the firstk − 1
components asC′1 and letCk beC′2. By the above method, we can transformT to a
canonical tree in which theCk comparisons appear as leaf subtrees. We now strip
theCk subtrees from this canonical tree and then, by the inductive assumption, we
can perform the transformation for remainingk− 1 components.

COROLLARY 5.6. Let the Ci be the components formed by the Partition routine
applied to graph G, let H = ⋃i Ci and let G have m edges and n vertices. Then,∑

i T ∗(Ci) = T ∗(H) ≤ T ∗(m, n).

COROLLARY 5.7. For any m and n, 2 · T ∗(m, n) ≤ T ∗(2m, 2n).

An Optimal Minimum Spanning Tree Algorithm 27

We can now solve the recurrence relation for the running time of OptimalMSF
given in the previous section.

T(m, n) ≤
∑

i

c1T ∗(Ci)+ T
(m

2
,

n

4

)
+ c2 ·m

≤ c1T ∗(m, n)+ T
(m

2
,

n

4

)
+ c2 ·m (Corollary 5.6)

≤ c1T ∗(m, n)+ c · T ∗
(m

2
,

n

4

)
+ c2 ·m (assume inductively)

≤ T ∗(m, n)
(
c1+ c

2
+ 2c2

)
(Corollary 5.7and Propositions5.1, 5.2)

≤ c · T ∗(m, n) (for c = 2c1+ 4c2; this completes the induction).

This gives us the desired theorem.

THEOREM 5.8. LetT ∗(m, n) be the decision-tree complexity of the MSF prob-
lem on graphs with m edges and n nodes. AlgorithmOptimalMSF computes the
MSF of a graph with m edges and n vertices deterministically in O(T ∗(m, n)) time.

6. Avoiding Pointer Arithmetic

We have not precisely specified what is required of the underlying machine
model. Upon examination, the algorithm does not seem to require the full power
of a random access machine (RAM). No bit manipulation is used and arith-
metic can be limited to just the increment operation. However, if procedure
DecisionTree is implemented in the obvious manner, it will require using a ta-
ble lookup, and thus random access to memory. In this section, we outline the
pointer machine [Tarjan 1979a] a model that does not allow random access to
memory, and describe some techniques we use for implementing the Decision-
Tree procedure on a pointer machine. Our method is similar to that described in
Buchsbaum et al. [1998], but we ensure that the time overhead in performing the ta-
ble look-ups during a call to DecisionTree is linear in the size of thecurrentinput to
DecisionTree.

A pointer machine distinguishes pointers from all other data types. The only
operations allowed on pointers are assignment, comparison for equality and deref-
erencing. Memory is organized into records, each of which holds some constant
number of pointers and normal data words (integers, floats, etc.). Given a pointer
to a particular record, we can refer to any pointer or data word in that record in
constant time. On nonpointer data, the usual array of logical, arithmetic, and binary
comparison operations are allowed.

Every MSF decision tree solves the MSF problem on a particular graph topology:
we call this thegeneric graph. In order to solve the MSF problem on anactualgraph,
webindcorresponding edges of the actual and generic graphs, such that given one
edge the other can be found in constant time. Comparisons in the MSF decision
tree refer to edges in the generic graph; hence, they too can be translated into
comparisons in the actual graph in constant time.

We match up identical actual graphs and generic graphs using the method
given in Buchsbaum et al. [1998]. If all graphs have fewer thanr vertices we
represent the graphs as a string of numbers between 1 andr , then perform
a lexicographic sort [Aho et al. 1974] on all the graphs (both actual and generic).

28 S. PETTIE AND V. RAMACHANDRAN

A generic graph will appear adjacent to all identical actual graphs. All that remains
to be done is bind the actual graphs to the appropriate generic graph and run the
associated MSF decision tree. If the total size of all actual subgraphs iss (s ≤ m),
the sorting step takesO(s+ r 22r 2

) time, which isO(m+ n) for r = log(3) n. The
lexicographic sort guarantees that in the recursive calls it suffices to scan an initial
prefix of the sorted list whose size is linear in the size of the current graph.

7. Performance on Random Graphs

Even if we assume that MST has some super-linear complexity, we show below that
our algorithm runs in linear time for nearly all graphs, for arbitrarily chosen edge
weights. This improves upon the expected linear-time result of Karp and Tarjan
[1980], which depended on the edge weights being chosen randomly. Our result
may also be compared with the randomized algorithm of Karger et al. [1995],
which is shown to run inO(m) time with high probability. However, for any given
graph the Karger et al. [1995] algorithm can be made to run inÄ(m logn) time
by an adversary that controls the edge weights. In contrast, we show below that
our algorithm runs in linear time for the vast majority of graphs, for every possible
assignment of edge weights.

None of the earlier published MST algorithms appear to have this property of
running in linear time with high probability on random graphs for all edge-weights.
Using the analysis of this section and suitably souped-up versions of earlier algo-
rithms [Fredman and Tarjan 1987; Gabow et al. 1986; Chazelle 2000b], we may
obtain similar high probability results.

Our analysis hinges on the observation that for sparse random graphs, with high
probability any subgraph constructed by the Partition routine has only a miniscule
number in edges in excess of the number of spanning forest edges in that subgraph.
The MST of such graphs can be computed in linear time, and hence the computation
on optimal decision trees takes linear time on these graphs.

Throughout this section,α will denoteα(m, n).

The random graph modelGn,m [Erdös and R´enyi 1961] assigns all ((n2)
m

) graphs
with medges equal probability. InGn,p any graph onmedges is assigned probability
pm(1− p)(n2)−m. In other words, each possible edge is included independently with
probability p.

THEOREM 7.1. The MST of a graph can be found in linear time with probability
(1) 1− exp(−Ä(m/α2)), for a graph drawn from Gn,m
(2) 1− exp(−Ä(pn2/α2)), for a graph drawn from Gn,p.

Both(1) and(2) hold regardless of the permutation of edge weights.

In the next section, we describe theedge-addition martingalefor theGn,m model.
In Section 7.2, we use this martingale and Azuma’s inequality to prove part (1) of
Theorem 7.1. Part (2) is shown to follow from part (1).

7.1. THE EDGE-ADDITION MARTINGALE. It was observed Erd¨os and R´enyi
[1961] that a random graph from theGn,m model can be generated in an incre-
mental fashion as follows: We begin withn labeled vertices, adding one random
edge at a time that was not previously selected. LetXi be a random edge such that
Xi 6= Xj for j < i , andGi = {X1, . . . , Xi } be the graph made up of the firsti
edges, withG0 being the graph onn vertices having no edges.

An Optimal Minimum Spanning Tree Algorithm 29

A martingale is a sequence of random variablesY0, . . . ,Ym such that
E[Yi |Yi−1]=Yi−1 for 0 < i ≤ m. We now prove that ifg is any graph-theoretic
function andgE(Gi) = E[g(Gm)|Gi], thengE(Gi), for 0≤ i ≤ m is a martingale.

LEMMA 7.2. The sequence gE(Gi) = E[g(Gm) |Gi], for 0 ≤ i ≤ m, is a
martingale, where g is any graph theoretic function, G0 is the edge-free graph on
n vertices, and Gi is derived from Gi−1 by adding a random edge not in Gi−1
to Gi−1.

PROOF. Let X j
i = {Xi , . . . , X j }. Given thatGi−1 has been fixed,

E[gE(Gi)] =
∑
Xi=xi

Pr[Xi = xi |Gi−1]

·
∑

Xm
i+1=xm

i+1

Pr
[
Xm

i+1= xm
i+1

∣∣Gi−1, Xi = xi
] · g(Gi−1 ∪ xm

i

)
=

∑
Xm

i =xm
i

Pr
[
Xm

i = xm
i

∣∣Gi−1
] · g(Gi−1 ∪ xm

i

)
= E[g(Gm) |Gi−1] = gE(Gi−1).

We call the sequence proved to be a martingale in Lemma 7.2 theedge-addition
martingale in contrast to theedge-exposuremartingale forGn,p.

We now recall the well-known Azuma’s inequality (see, e.g., Alon and
Spencer [1992]).

THEOREM7.3 (AZUMA’S INEQUALITY). Let Y0, . . . ,Ym be a martingale with
|Yi − Yi−1| ≤ 1 for 0 < i ≤ m. Letλ > 0 be arbitrary. ThenPr[|Ym − Y0| >
λ
√

m] < exp(−λ2/2).

To facilitate the application of Azuma’s inequality to our edge-addition martin-
gale, we establish the following lemma:

LEMMA 7.4. Consider the sequence proved to be a martingale in Lemma7.2.
Let g be any graph-theoretic function such that|g(G)− g(G′)| ≤ 1 for any pair of
graphs G and G′ of the form G= H ∪ {e} and G′ = H ∪ {e′}, for some graph H.
Then|gE(Gi)− gE(Gi−1)| ≤ 1, for 0< i ≤ m.

PROOF. gE(Gi) andgE(Gi−1) are the average ofg(Gi ∪ Xm
i+1) andg(Gi−1 ∪

Xm
i) whereXm

i+1 andXm
i range over their possible outcomes, givenGi andGi−1,

respectively. We identify each outcome ofXm
i+1 with equal-size disjoint sets of

outcomes ofXm
i that cover all outcomes ofXm

i . ThengE(Gi−1) may be regarded
as an average of set averages. If, for each set corresponding to an outcomeP of
Xm

i+1, we establish that the set average differs fromg(Gi ∪ P) by no more than 1,
the Lemma follows.

The correspondence is as follows: LetGi = Gi−1 ∪ {a} (i.e., Xi = a). For each
outcomexm

i+1, the corresponding set consists of outcomes of the formx j
i+1 a xm

j+1
for i < j ≤ m (i.e., the same graph buta appears at different times), and of the
form xi xm

i+1 wherexi ranges over all edges not appearing inGi−1 andxm
i+1. For

each outcomeP = xm
i+1 of Xm

i+1 and all Q in P’s associated set,|g(Gi ∪ P) −
g(Gi−1 ∪ Q)| ≤ 1 since the graphs differ in at most one edge. Clearly,|g(Gi ∪ P)
−AVGQ{g(Gi−1∪ Q)}| ≤ 1 holds as well, where the average is over outcomesQ
in P’s associated set.

30 S. PETTIE AND V. RAMACHANDRAN

7.2. ANALYSIS. We define theexcessof a subgraphH to be|E(H)| − |F(H)|,
whereF(H) is any spanning forest ofH. Let f(G) be the maximum excess of the
graph made up of intracomponent edges, where the sets of components range over
all possible sets returned by the Partition procedure. (Recall that the size of any
component is no more thank = maxsize= log(3) n.)

Define fE(Gi) = E[f (Gm)|Gi].
The key observation leading to our linear-time result is that each pass of our

optimal algorithm definitely runs in linear time iff (G) ≤ m/α(m, n). To see
this, note that if this bound onf (G) holds, we can reduce thetotal number of
intracomponent edges to≤2m/α in linear time using logα Borůvka steps, and
then, clearly, the MST of the resulting graph can be determined inO(m) time. We
show below that if a graph is randomly chosen fromGn,m, f (G) ≤ m/α(m, n) with
high probability.

We now show that Lemma 7.4 applies to the graph-theoretic functionf , and then
apply Azuma’s inequality to obtain our desired result.

LEMMA 7.5. Let G = H ∪ {e} and G′ = H ∪ {e′} be two graphs on a set of
labeled vertices that differ by no more than one edge. Then| f (G)− f (G′)| ≤ 1.

PROOF. Suppose without loss of generality thatf (G) − f (G′)> 1, then we
could apply the optimal set of components ofG to G′. Every intracomponent edge
of G remains an intracomponent edge, except possiblye. This can reduce the
excess by no more than one, a contradiction. The possibility thate′may become an
intracomponent edge can only help the argument.

LEMMA 7.6. fE(G0) = o(m/α).

PROOF. Notice that ifm/n ≥ αk, it is simply impossible to havem/α intra-
component edges, so we assumem/n < αk.

An upper bound onfE(G0) is the expected number of indicesi such that edgeXi
completed a cycle of length≤k in Gi−1, since all edges which causedf to increase
must have satisfied this criterion. Letpi be the probability thatXi completed a
cycle of length≤k. By bounding the number of such cycles, and the probability
they exist in the graph, we have

pi <

k∑
j=3

nj−2

(
j−1∏
`=1

i − `(n
2

)− (`− 1)

)

<
1

n

k∑
j=3

(
nm(n

2

)) j−1

(recall thati ≤ m)

= O

(
k

mk−1

nk

)
if m= Ä(n)

or = O

(
m2

n3

)
if m= o(n)

In either case,fE(G0) ≤
∑

i pi = o(m/α).

An Optimal Minimum Spanning Tree Algorithm 31

LEMMA 7.7. Let G be chosen from Gn,m. Then Pr[f (G)>m/α] <
exp(−Ä(m/α2)).

PROOF. By applying Azuma’s inequality, we have that Pr[| fE(Gm)− fE(G0)| >
λ
√

m] < exp(−λ2/2). Settingλ = √m/α − fE(G0)/
√

m gives the lemma. Note
that, by Lemma 7.6,fE(G0) is quite insignificant.

We are now ready to prove Theorem 7.1.

PROOF. We examine only the first logk passes of our optimal algorithm, since
all remaining passes certainly takeo(m) time. Lemma 7.7 assures us that the first
pass runs in linear time with high probability. However, the topology of the graph
examined in later passesdoesdepend on the edge weights. Assuming the Bor˚uvka
steps contract all parts of the graph at a constant rate, which can easily be enforced,
a partition of the graph in one pass of the algorithm corresponds to a partition of
the original graph into components of size less thankc, for some fixedc. Usingkc

in place ofk does not affect Lemma 7.6, which gives the Theorem forGn,m, that
is, part (1). ForGn,p, note that the probability that there are not2(pn2) edges is
exponential in−Ä(pn2); hence, the probability that the algorithm fails to run in
linear time is dominated by the bound in part (1).

For the sparse case wherem< n/α, Theorem 7.1 part (1) holds with proba-
bility 1, and for p< 1/nα, by a Chernoff bound, part (2) holds with probability
1− exp(−Ä(n/α)).

8. Discussion

An intriguing aspect of our algorithm is that we do not know its precise deter-
ministic running time although we can prove that it is within a constant factor of
optimal. Results of this nature have been obtained in the past for sensitivity anal-
ysis of minimum spanning trees [Dixon et al. 1992] and convex matrix searching
[Larmore 1990]. Also, for the problem of triangulating a convex polygon, it was
observed in Dixon et al. [1992] that an alternate linear-time algorithm could be
obtained using optimal decision trees on small subproblems. However, these ear-
lier algorithms make use of decision trees in more straightforward ways than the
algorithm presented here.

As noted in Section 4.1, the construction of optimal decision trees takes sublin-
ear time. Thus, it is important to observe that our use of decision trees does not
result in a large constant factor in the running time. Further, this construction of
optimal decision trees is performed by a straightforward brute-force search; hence,
the resulting algorithm isuniform (i.e., it is a fixed algorithm that works for all
problem sizes).

It was mentioned in the introduction that an optimal algorithm can be con-
structed for any problem, given an optimal verification algorithm for that problem.
We briefly sketch this construction [Jones 1997]. Consider a problem that has an
optimal verification algorithm that runs in timeVer(n). The above-mentioned con-
struction produces an algorithm that enumerates programsP1, P2, . . . for some
machine model and executes them incrementally as follows: for eachi ≥ 1, for
every two operations executed by programPi , programPi+1 executes one operation.
Whenever any of the programs halts the verifier checks its output for correctness.
The algorithm terminates once the verifier determines that a correct output has been

32 S. PETTIE AND V. RAMACHANDRAN

produced by one of the programs. IfPC is the optimal program for the problem with
running timeOpt(n), then this construction gives an algorithm that takes no more
than 2C+1(Opt(n)+ Ver(n)) steps. SinceC is a constant andVer(n) = O(Opt(n)),
this gives an algorithm that is within a constant factor ofOpt(n).

Using a linear-time MST verification algorithm such as Dixon et al. [1992],
King [1997], and Buchsbaum et al. [1998], the above construction yields an
optimal MST algorithm; however, it is unsatisfactory for several reasons. It is
truly impractical since it asks for an enumeration of all possible algorithms
and its constant factor is exponential in the position of the actual optimal algo-
rithm in this enumeration. Further, it sheds no light on the relation between the
algorithmic and decision-tree complexity of the problem. Our result, in con-
trast, has a very reasonable constant factor in the running time, and it is ro-
bust in that it ties the algorithmic complexity of MST to its decision-tree com-
plexity, a limiting factor in any machine model. It is not always the case that
algorithmic complexity and decision-tree complexity are asymptotically equiva-
lent: for instance, two sorting-type problems whose decision-tree complexity and
algorithmic complexity provably diverge are described in Goddard et al. [1993]
and [Pettie and Ramachandran [2002a, Sect. 8]. In fact, one can easily con-
coct simple problems that are NP-hard but nevertheless have polynomial-depth
decision-trees.

9. Conclusion

We have presented a deterministic MSF algorithm that is provably optimal. The
algorithm runs on a pointer machine, and on graphs withn vertices andm edges,
its running time isO(T ∗(m, n)), whereT ∗(m, n) is the decision-tree complex-
ity of the MSF problem onn-node,m-edge graphs. Also, on random graphs our
algorithm runs in linear time with high probability for all possible edge-weights. In
fact, a hybrid of our algorithm and the randomized algorithm of Karger et al.
[1995] runs in expected linear time using only log∗ n random bits [Pettie and
Ramachandran 2000b]. Although the exact running time of our algorithm is not
known, we have shown that the time bound depends only on the number of
edge-weight comparisons needed to determine the MSF, and not on any data
structural issues.

Determining the worst-case complexity of our algorithm is the main open ques-
tion remaining in the MSF problem; however, there is a subtler open question.
We have given an optimal uniform algorithm for the MSF problem that uses pre-
computed decision trees. Is there an optimal uniform algorithm that doesnot use
precomputed decision trees (or some similar technique)? More generally, are there
problems where precomputation is necessary? One may wish to study this issue in
a simpler setting, say the MSF verification problem on a pointer machine. Here,
there is still anα(m, n) factor separating the best pointer machine algorithm that
uses precomputed decision trees [Buchsbaum et al. 1998] and the one which does
not [Tarjan 1979b].

One may also ask for the parallel complexity of the MSF problem. Here, re-
solved recently were the deterministic time complexity [Chong et al. 2001] and the
randomized work-time complexity [Pettie and Ramachandran 1999] of the MSF
problem on the EREW PRAM. An open question that remains here is to obtain a
deterministic work-time optimal parallel MSF algorithm. Parallelizing our optimal

An Optimal Minimum Spanning Tree Algorithm 33

algorithm is not at all straightforward. Although handling decision trees does not
present any problems in the parallel context, we still need a method for identifying
contractible components in parallel and a base case algorithm that performs linear
work for graph-densities of log(3) n. Existing sequential algorithms that are suit-
able for the base case, such as the one in Fredman and Tarjan [1987] are also not
easily parallelizable.

REFERENCES

AHO, A. V., HOPCROFT, J. E.,AND ULLMAN , J. D. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass.

ALON, N., AND SPENCER, J. 1992. The Probabilistic Method.Wiley, New York.
BORU

o

VKA , O. 1926. O jist´em problému minimaálńim. Moravsḱe P̆rírodovĕdecḱe Spolĕcnosti 3, 37–58.
(In Czech.)

BUCHSBAUM, A. L., KAPLAN, H., ROGERS, A., AND WESTBROOK, J. R. 1998. Linear-time pointer-
machine algorithms for least common ancestors, MST verification, and dominators. InProceedings of
the ACM Symposium on the Theory of Computing. ACM, New York, 279–288.

CHAZELLE, B. 1997. A faster deterministic algorithm for minimum spanning trees. InProceedings of the
IEEE Symposium on Foundations of Computing Science.IEEE Computer Society Press, Los Alamitos,
Calif., 22–31.

CHAZELLE, B. 2000a. The soft heap: An approximate priority queue with optimal error rate.J. ACM 47,
6, 1012–1027.

CHAZELLE, B. 2000b. A minimum spanning tree algorithm with inverse-Ackermann type complexity.
J. ACM 47, 6, 1028–1047.

CHONG, K. W., HAN, Y., AND LAM, T. W. 2001. Concurrent threads and optimal parallel minimum
spanning trees algorithm.J. ACM 48, 2, 297–323.

DIJKSTRA, E. W. 1959. A note on two problems in connexion with graphs.Numer. Math. 1, 269–271.
DIXON, B., RAUCH, M., AND TARJAN, R. E. 1992. Verification and sensitivity analysis of minimum

spanning trees in linear time.SIAM J. Comput. 21, 1184–1192.
ERDÖS, P., AND RÉNYI, A. 1961. On the evolution of random graphs.Bull. Inst. Internat. Statist. 38,

343–347.
FREDMAN, M. L., AND TARJAN, R. E. 1987. Fibonacci heaps and their uses in improved network opti-

mization algorithms.J. ACM 34, 596–615.
FREDMAN, M., AND WILLARD , D. E. 1994. Trans-dichotomous algorithms for minimum spanning trees

and shortest paths.J. Comput. Syst. Sci. 48, 3, 533–551.
GABOW, H. N., GALIL , Z., SPENCER, T., AND TARJAN, R. E. 1986. Efficient algorithms for finding

minimum spanning trees in undirected and directed graphs.Combinatorica 6, 109–122.
GRAHAM, R. L., AND HELL, P. 1985. On the history of the minimum spanning tree problem.Ann. Hist.

Comput. 7, 43–57.
GODDARD, W., KENYON, C., KING, V., AND SCHULMAN, L. 1993. Optimal randomized algorithms for

local sorting and set-maxima.SIAM J. Comput. 22, 2, 272–283.
JARNÍK, V. 1930. O jistém problému minimaálńim. Moravsḱe P̆rírodovĕdecḱe Spolĕcnosti 6, 57–63.

(In Czech.)
JONES, N. 1997. Computability and Complexity: From a Programming Perspective. MIT Press,

Cambridge, Mass.
KARGER, D. R., KLEIN, P. N., AND TARJAN, R. E. 1995. A randomized linear-time algorithm to find

minimum spanning trees.J. ACM 42, 321–328.
KARP, R. M., AND TARJAN, R. E. 1980. Linear expected-time algorithms for connectivity problems.

J. Algorithms 1, 4, 374–393.
KING, V. 1997. A simpler minimum spanning tree verification algorithm.Algorithmica 18, 2, 263–270.
LARMORE, L. L. 1990. An optimal algorithm with unknown time complexity for convex matrix searching.

Infor. Process. Lett. 36, 147–151.
PETTIE, S. 1999. Finding minimum spanning trees inO(mα(m, n)) time. Tech. Rep. TR99-23. Univ. of

Texas at Austin, Austin, Tex.
PETTIE, S., AND RAMACHANDRAN , V. 1999. A randomized time-work optimal parallel algorithm for

finding a minimum spanning forest. InProceedings of RANDOM ’99. Lecture Notes in Computer Science,
vol. 1671. Springer-Verlag, New York, 233–244.

34 S. PETTIE AND V. RAMACHANDRAN

PETTIE, S.,AND RAMACHANDRAN , V. 2002a. Computing shortest paths with comparisons and additions.
In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 267–276.

PETTIE, S.,AND RAMACHANDRAN , V. 2002b. Minimizing randomness in minimum spanning tree, parallel
connectivity, and set maxima algorithms. InProceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms. ACM, New York, 713–722.

PRIM, R. C. 1957. Shortest connection networks and some generalizations.Bell Syst. Tech. J. 36, 1389–
1401.

TARJAN, R. E. 1979a. A class of algorithms which require nonlinear time to maintain disjoint sets.
J. Comput. Syst. Sci. 18, 2, 110–127.

TARJAN, R. E. 1979b. Applications of path compression on balanced trees.J. ACM 26, 4, 690–715.

RECEIVED AUGUST2000;REVISED OCTOBER2001;ACCEPTED NOVEMBER2001

Journal of the ACM, Vol. 49, No. 1, January 2002.

