Automata on Guarded Strings and Applications

Dexter Kozen*
Cornell University

February 7, 2003

Abstract

Guarded strings are like ordinary strings over a finite alphabet P, except that
atoms of the free Boolean algebra on a set of atomic tests B aternate with the
symbols of P. The regular sets of guarded strings play the same role in Kleene
algebra with tests as the regular sets of ordinary strings do in Kleene algebra.

In this paper we develop the elementary theory of finite automata on guarded
strings, a generalization of the theory of finite automata on ordinary strings. We
give severa basic constructions, including determinization, state minimization,
and an analog of Kleene's theorem.

Wethen use these resultsto verify aconjecture on the complexity of acomplete
Gentzen-style sequent calculus for partial correctness. We also show that a basic
result of the theory of Boolean decision diagrams (BDDs), namely that minimal
ordered BDDs are unique, is a special case of the Myhill-Nerode theorem for a
class of automata on guarded strings.

1 Introduction

Guarded stringswereintroducedin [4] asan abstract interpretation for program schemes.
Guarded strings are like ordinary strings over afinite alphabet P, except that atoms of
the free Boolean algebraon a set of atomic tests B alternate with the symbolsof P. The
regular sets of guarded strings over P and B form a Kleene algebra with tests (KAT)
and play the same role in KAT as the regular sets of ordinary strings do in Kleene
algebra; specifically, they form the free KAT on generatorsP,B [8].

Guarded strings are useful in other contexts. In[10], we devel oped acompl ete Gentzen-
style sequent calculus S for partial correctness. Guarded strings played a central role

*Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA.
kozen@cs.cornell.edu

in the completeness proof. We also conjectured that the decision problem for S was
PSPACE-compl ete.

In this paper we verify that conjecture. The proof requires the development the ele-
mentary theory of finite automata on guarded strings, a generalization of the theory
of finite automata on ordinary strings. We give several basic constructions, including
determinization, state minimization, and an analog of Kleene's theorem. We also point
out a connection to the complexity of BDDs (binary or Boolean decision diagrams), a
well-studied structure in model checking. In particular, we observe that a basic result
of the theory of BDDs, namely that minimal ordered BDDs are unique, is a specia
case of the Myhill-Nerode theorem for a class of deterministic automata on guarded
strings.

2 Kleene Algebrawith Testsand Guarded Strings

2.1 KleeneAlgebrawith Tests

A Kleene algebra (K, +, -, *, 0, 1) is an idempotent semiring under +,-,0, 1 such
that p*q is the <-least solution to ¢ + px < z and gp™ is the <-least solution to
q + xp < z, where < refersto the natural partia order p < ¢ PN p+q=gq.

A Kleenealgebrawith tests (KAT) [6] isatwo-sorted structure (K, B, +, -, *, 7, 0, 1)
such that

o (K, +,-, * 0,1)isaKleeneagebra,
e (B, +,-, 7,0, 1)isaBoolean agebra, and
e (B, +, -, 0, 1)isasubagebraof (K, +, -, 0, 1).

The Boolean complementation operator ~is defined only on B. Syntactically, the lan-
guage of KAT contains two sorts of terms:

tests bye,d. .. = (atomictests) | 0
|

b +c
programs p,q,r,... p ::= (aomic actions) |

|10 | be | b
b|p+qlpg|p*
Standard examples of Kleene algebras include the family of regular sets over a finite
alphabet, the family of binary relations on a set, the family of sets of traces of alabeled
transition system, and the family of n x n matrices over another Kleene algebra. Other
moreexoticinterpretationsincludethe min,+ algebraor tropical semiring used in short-
est path algorithms and models consisting of convex polyhedra used in computational

geometry.

All these Kleene algebras can be extended naturally to Kleene algebras with tests, but
for applications in program verification, the extension makes the most sense in trace
and relation algebras. For example, for the Kleene algebra of binary relations on a set
X, anatural choice for the tests would be the subsets of the identity relation on X.

KAT subsumes propositional Hoare logic; moreover, unlike Hoare logic, KAT is de-
ductively complete for relationally valid propositional Hoare-style rules involving par-
tial correctness assertions|[7].

We refer the reader to [6, 7] for a more thorough introduction to Kleene algebra with
tests.

2.2 Guarded Strings

The family of regular sets of strings over afinite alphabet P is the free Kleene algebra
on generators P. The structure that plays the analogous role in KAT is the family of
regular sets of guarded strings. These objects were first studied by Kaplan in 1969 [4]
as an abstract interpretation for program schemes.

Let B = {b1,...,bx} and P = {p1,...,pm} befixed finite sets of atomic tests and

atomic actions, respectively, and let B %' {5 | b € B}. Tests and programs over P,B

were defined in Section 2.1. The set of all tests over B is denoted 5.

Anatomof Bisaprogramc; ---¢;, suchthat ¢; € {b;,b;}, 1 <1 < k, representing a
minimal nonzero element of the free Boolean algebra on B. We can think of an atom
as atruth assignment to B. Atoms are not to be confused with atomic tests, which are
just the elements of B. We denote by .4 the set of all atoms of B and use the symbols
a, (3, ... exclusively for atoms. For an atom « and atest b, wewritea < bif « — bis
apropositional tautology. For every atom « and test b, either o« < b or o < b. Every
element of afinite Boolean algebra can be represented as a digjoint sum of atoms.

A guarded string is asequence x = aoqoay - - - Qp—1¢n—100,, Wheren > 0 and each
a; € Ag and ¢; € P. We define first(z) = ao and last(z) = a,,. The set of all
guarded strings over P,B is denoted GS. If last(x) = first(y), we can form the fusion
product zy by concatenating = and y, omitting the extra copy of the common atom.
For example, if = apf andy = Bqv, then zy = apBqy. If last(x) # first(y), then
2y does not exist.

For sets X, Y of guarded strings, define X o Y to be the set of all existing fusion
productszy withz € X andy € Y, and define X ™ to be the product of »n copies of X
with respect to this operation. Each program p of KAT denotesa set G (p) of guarded

strings as follows:

) = {apB|a,B € Ag} panaomicaction
) £ {acdg|a<b) Dbatest
Glp+q) = Gp)UGlg)
) = G(p)oGlg)
) = Uemm

n>0

A set of guarded strings over P,B is regular if it is G(p) for some program p. The
family of regular sets of guarded strings over P,B is denoted Reg . It forms the free
Kleene algebra with tests on generators P,B [8]; in other words, G(p) = G(q) iff
p = g isatheorem of KAT. A guarded string = isitself aprogram, and G(x) = {«}.
These are the minimal nonzero elements of Regp 5.

A key lemma used in the completeness proof of [8] is the following result, essentially
dueto Kaplan [4]: for any program p, there exists a program p such that p = pisathe-
orem of KAT and G(p) = R(p), where R is the classical interpretation of regular ex-
pressions over the alphabet P U B U B asregular subsets of (P U B U B)*. Moreover,
if R(q) € GS,then R(q) = G(q); thisisbecause G(q) = J{G(z) | z € R(q)} and
G(r) = {z} forz € GS. Asobservedin[10], thisresult impliesthat Regp g isclosed
under the Boolean operations. Our automata-theoretic characterization of Reg p g Will
give an alternative proof of thisresult.

Programs of KAT can also be interpreted as sets of traces or sets of binary relationsin
Kripke frames. A Kripke frame over P,B isastructure (K, my), where K isaset of
states and

QR XK my : B — 2%,

mg P —
A trace in K is a sequence o of the form sgqps1 - Sp—1qn_15n, Where n. > 0,
si € K,q € P,and (s;,814+1) € mg(g;) for 0 < ¢ < n — 1. The length of
804081 * * * Sn—1Gn—18n 1ISn. We definefirst(o) = s, last(o) = s,, and label(c) =
qo - - - qn—1. For traces of length O, label(s) = 1. If last(o) = first(7), thetrace o7 is
the trace consisting of o followed by 7. If last(o) # first(7), then o7 does not exist.
A trace sgqos1 -+ - Sn—1qn—1Sy iSlinear if the s; are distinct.

Programs are interpreted in K as sets of traces according to the following inductive

definition:
d:ef

[plk {spt| (s,t) e mg(p)}, panaomicaction
[, & mg(b), banatomic test
b1k < K—mg(b)
iy ¥ o
Ip+qlx < [plxU [qlx
Ipglx < Iplxo Iglx
1 < | mpng,
n>0

where X oV &' {07 |0 € X, 7 €Y, o7 exists} and X0 ¥ K, xn+1 ¥ x o x7,
Every trace o has an associated guarded string gs(o) defined by

def
gS(SOQ()Sl T Snflqnflsn) = QpqoQ1 - Op—14n—10n,

where «; is the unique atom of B such that s; € [«;1k, and gs(o) is the unique
guarded string over P, B such that o € [[gs(o)l k. The relationship between trace
semantics and guarded strings is given by the following lemma.

Lemma 2.1 ([10]) Inany trace model K, for any programp andtracer, 7 € [pl x
iff gs(7) € G(p). Inother words, [pll x = gs~*(G(p)). Themap X — gs~1(X)isa
KAT homomorphism from the algebra of regular sets of guarded stringsto the algebra
of regular sets of traces over K.

3 Automataon Guarded Strings

A finite automaton on guarded strings (AGS) over atomic actions P and atomic tests
B is just an ordinary finite automaton with transition labels P U B, where B is the
set of tests built from atomic tests B, except that acceptance is defined differently.
Strictly speaking, 5 is infinite; however, it is finite up to propositional equivalence,
and the semantics of acceptance does not distinguish propositionally equivalent tests.
Transitions labeled with atomic actions are called action transitions and those |abeled
with tests are called test transitions.

Ordinary finite automatawith e-transitions can be regarded as the special caseinwhich
B = @, giving the two-element Boolean algebra {0, 1}. An e-transition is just a test
transition with Boolean label 1. For nonempty B, tests can be more complicated.

Intuitively, nondeterministic automata on guarded strings work as follows. An input to
the automaton is a guarded string over P and B. We start with a pebble on an input

state with the input pointer reading the first atom of the input string. At any pointin
the computation, the pebble is occupying a state, and the input pointer is pointing to
an atom somewhere in the input string. If there is an action transition from the current
state labeled with p € P, and the next program symbol in the input string is p, then we
may nondeterministically choose to move the pebble along that transition and advance
theinput pointer beyond p. If thereisatest transition from the current state labeled with
atest b € B, and if that transition is enabled, then we may nondeterministically choose
to move the pebble along that transition, but we do not advance the input pointer. The
transitionisenabled if the current atom « in theinput string satisfies b, where we regard
« as atruth assignment to B. The input is accepted if the pebble occupies an accept
state while the input pointer is pointing to the last atom in the input string.

Formally, an automaton on guarded strings over P, BisaKripkeframe M = (Q, m »s)
over atomic actionsP U B and atomic tests @, alongwith adistinguishedset S C @ of

start states and a distinguished set F* C @ of final or accept states. We write u % v
if (u,v) € mpr(d),d e PUB,orjustu —L, vif M is understood.

A guarded string y over P, B is said to be accepted by M if y € G(x) for some
xr € R(M), where R(M) isthe set of stringsin (P U B)* accepted by M under the

ordinary definition of finite automaton acceptance. The set of all guarded strings over
P, B accepted by M isdenoted G(M). Formally,

R(M) = {label(o) |first(o) € S, last(c) € F}
G(M) = H(R(M)),
where o representsatracein M and H isthe map

H - 9(PuB)™ _ 9GS
def
H(A) = U,ea G(2).

3.1 Kleene'sTheorem

Thefollowing is the analog of Kleene's theorem for automata on guarded strings. We
need the second clause for our complexity result in Section 4.1.

Theorem 3.1 Automata on guarded strings over P, B accept all and only regular sets.
Moreover, the size of the equivalent automaton M constructed from a given program p
islinear inthe size of p.

Proof. Given a program p over P, B, consider it as aregular expression over the apha-
bet P U B with the classical interpretation, and construct an equival ent finite automaton
M with input aphabet P U B asin the usual proof of Kleene's theorem (see e.g. [9]).

The construction is linear. Conversely, given a finite automaton M with input apha-
bet P U B, construct an equivalent regular expression p. In either direction, let R(p)
denote the regular subset of (P U B)* denoted by p under the classical interpretation
of regular expressions, and let R(M) denote the subset of (P U B)* accepted by M
under the classical semantics of finite automata. By Kleene'stheorem, R(p) = R(M).

We claim that in both constructions, G(p) = G(M) aswell. To show this, it suffices
to show that

G(M) = H(R(M)) 1)
G(p) = H(R(p)).)

The equation (1) is just the definition of acceptance for automata on guarded strings.
The equation (2) was proved in [2]. Briefly, it is easily shown that the map H is
a homomorphism with respect to the operators U, o, and *. Moreover, the maps G
and H o R agree on the generators P and B, since H (R(d)) = H({d}) = G(d) for
d e P UB,and H(R(0)) = G(0) = &. It follows by inductionthat G and H o R
agreeon al regular expressionsover P U 5. 1

3.2 Determinization

In this section we show how to construct a deterministic automaton on guarded strings
equivalent to a given nondeterministic one. Thisis the basis of our PSPACE agorithm
of Section 4.1. The construction is analogous to the standard subset construction for
automata on ordinary strings (see e.g. [9]).

An automaton M on guarded strings is deterministic if it satisfies the following prop-
erties.

(i) Thereisexactly one start state.

(ii) Each state may have either exiting action transitions or exiting test transitions,
but not both. A stateis called an action state or atest state in these two circum-
stances, respectively. Every state is either an action state or atest state.

(iii) Every action state has exactly one exiting action transition for each element of
P.

(iv) Thelabels of the exiting test transitions of atest state are pairwise exclusive and
exhaustive. By this we mean that if the l[abels are ¢y, .. ., ¢y, then¢; + ¢; for
i1 #jandey + - - + ¢, arepropositional tautologies.

(v) Every cycle contains at least one action transition.

(vi) All final states are action states.

Note that M is not a deterministic automaton in the classical sense. Conditions (i)
and (iii) are standard for deterministic automata. Condition (ii) ensures that there is
no ambiguity in whether to continue to test Boolean inputs or whether to read the next
atomic action. Condition (iv) ensuresthat at any test state, exactly oneexiting transition
is enabled. Condition (v) ensures that there can be no endless loop of tests. Condition
(vi) forces al pending tests to be resolved before deciding whether to accept the input.

Lemma 3.2 For any = € GS and state « of a deterministic AGS M, thereis a unique
maximal trace o s (u,) of M suchthatfirst(oas(u, z)) = vandz € G(label(o (u, x))).
Moreover, last (o (u, z)) isan action state.

Proof. This follows from the conditions of determinacy by induction on the length of
z.

We can convert a given nondeterministic automaton N to an equivalent deterministic
automaton M by a subset construction. Suppose N has states @, transition relation
my C Qx (PUB)xQ,satstates S C @, and final states FF C Q. Define M
with states Q" = 29 x {a, t} and deterministic transition relationm,; € Q' x (P U
Ag) x Q' asfollows. The tags a, t determine whether the state is an action or a test
state, respectively.

<d_if’>

(U,a) = (V;t)

V={v|JueUu-v}
M N

= {last(r) | first(r) € U, p = label(7)}

(U.8) 2 (V,a) L&y = {last(n) | first(r) € U, a < label(r)}

g = {last(r) | first(r) € U, a € G(label(r))},

where 7 and 7 represent tracesof NV, p € P, and o € Ag. The unique start state of M
is (S,t) and thefinal statesare {(E,a) | EN F # o}.

Thus (U, a) % (V,t) iff V is the set of states of N reachable from a state in U

viaa single transition with label p, and (U, t) % (V,a) iff V is the set of states of

N reachable from a state in U via a trace whose label is a sequence of tests, all of
which are satisfied by «. Figure 1 illustrates this construction for a nondeterministic
automaton over P = {p} and B = {b,c}. The set of guarded strings accepted by the
two machinesin Figure 1 is {b¢, bc} U {bcpa, bepa | a € Ag}.

The automaton M constructed above is evidently deterministic. Property (v) follows
from the fact that the graph of M is bipartite between action and test states. Properties
(i) and (iv) follow from the fact that V' on the right-hand side of the definition of
the transition relation is unique, and that the atoms of B are pairwise exclusive and
exhaustive. Properties (i), (ii), and (vi) areimmediate from the construction.

({t},a)
be

b ot be(({t,u},a) d ({u},t)
— - (.05

e 1
. \({%a) p
be P
(@,a) %

Figure 1: A nondeterministic automaton and an equivalent deterministic automaton

(,t)

Sincethe graph of M isbipartite between action and test states, and since all test labels
are atoms, the label of any trace consists of aternating atomic actions and atoms of B.
Thusif first(r) = (U, t) and last(r) = (V, a), then label(r) begins and endswith an
atom, so it is a guarded string. Since the start state is of the form (.S, t) and the final
statesare all of theform (E, a), any string accepted by M isaguarded string, therefore
R(M) C GS.

It follows from these remarks and Lemma 3.2 that forall x € GSand U C Q, the
unique maximal trace o ((U, t), z) of M determined by (U, t) and = not only has
x € G(label(op ((U,t),2))), but actually « = label(op ((U,t),x)). Moreover,
last(oa (U, t), z)) isof theform (V, a). Let usdenote by A(U, x) the set V' uniquely
determined by U and x in this way.

Lemma3.3 Forallz e GSandU C Q,
A(U,z) = Alast(o) |first(c) € U, z € G(label(0))},
where o ranges over traces of N.

Proof. We proceed by induction on the length of z. Thebasisz = o € Ag isjust the
definition of % . For z of the form ypa, by the definition of % and % and the

induction hypothesis, we have

AU, x)
= {last(m) | first(r) € {last(7) | first(7) € A(U,y), p = label(r)},
a € G(label(m))}
= {last(m) | first(n) € {last(7) | first(r) € {last(o) | first(c) € U,
y € G(label(o))}, p =label(r)}, a € G(label(n))}
= {s|3o 37 3Ir s=last(n), first(r) = last(r), first(r) = last(o),
first(o) € U, y € G(label(o)), p = label(r), a € G(label(n))}
= {s|3¢3Jo3IrIn { =07, s=last(§), first(§) € U,
y € G(label(o)), p =label(r), a € G(label(n))}
= {last(¢) | first(§) € U, Jo I 3Im € = o7,
y € G(label(o)), p = label(r), a € G(label(n))}

= {last(¢) | first(¢) € U, ypa € G(label(§))}
= {last(¢) | first(§) e U, x € G(label(€))}.

Theorem 3.4 G(M) = G(N).
Proof. We have argued that R(M) C GS. Since G(z) = {z} for guarded strings z,
H istheidentity on subsets of GS, therefore
G(M) = H(R(M)) = R(M).
Now using Lemma 3.3,

R(M) = {z|A(S,z)NF # o}

{z | {last(0) | first(c) € S, z € G(label(o))} N F # &}
{z | Jo first(o) € S, x € G(label(0)), last(c) € F'}
G(N).

3.3 State Minimization

It turns out that the existence of unique minimal deterministic AGSs depends on the
choice of input alphabet and restictions on how inputs can be read. We show in Section
3.3.2that if any test in BB is allowed as an input symbol, unique minimal deterministic
AGSs exist. The test symbols of the minimal AGS can be taken to be the atoms of B.
However, athough the number of states is small, the specification of transitions may
be exponential in the size of B.

10

A more reasonable choice of input aphabet for tests is B U B. There is no loss of
generality in thisrestriction, since al regular sets of guarded strings can still be repre-
sented, but the number of states may increase. Unfortunately, uniqueness of minimal
automata is no longer guaranteed. However, if the automata are constrained to read
their Boolean inputs in a given fixed order—such automata are called ordered—then
minimal automata are unique. We show in Section 4.2 that the Canonicity Lemmafor
reduced ordered Boolean decision diagrams (ROBDDs) (see [1]) is a specia case of
this result.

3.3.1 Ordered AGSs

If we restrict the input alphabet to P U B U B, uniqueness of minimal deterministic
automatais not guaranteed. For example, the automata

over P = @ and B = {b, ¢} represent the same set of guarded strings {b¢, bc}. How-
ever, uniqueness can be guaranteed provided we constrain the automatato test Boolean
inputsin a particular fixed order, say b1, bo, . . ., bi. In such automata, each test stateis
assigned a level between 0 and k& — 1, inclusive. A test state at level 7 has one exiting
transition labeled b, ,; and one labeled b, 1, and the transitions must go either to an
action state or to ahigher-level test state. Such an AGSis called ordered. We show that
there is a unique minimal deterministic ordered AGS with respect to the given linear
order on B. The construction is a generalization of the Myhill-Nerode construction of
classical finite automatatheory (see[5]).

Recdll our definition of an atom of B = {b1,...,bx} asastring ¢; - - - ¢ such that
c; € {bi,b;}, 1 < i < k. A prefix of an atom is a string of the form c1---¢j, Where
0<j<kandc; € {b;b},1<i<j. Theempty stringis allowed; that is the case
j = 0. Thesymbol w is used for prefixes of atoms.

A prefix of aguarded string is astring 2 over P U B U B such that 2y € GS for some
string y over P U B U B. The definition of prefix is with respect to the ordinary string
concatenation operation on strings over P U B U B. A prefix of a guarded string is
similar to a guarded string, except that last(x) may be a prefix of an atom. The set of
al prefixes of guarded stringsis denoted PGS.

We define a binary operation < on PGS as follows. If ¢;---¢,, and dy ---d,, are
prefixes of atoms, define

def €1 Cm, ifn<m
Cl - Cp<ddy---d = .
m " €1 Cmdmt -+ dn, Otherwise.

11

Intuitively, we overlay ¢y - - - ¢,,, On d; - - - d,, resolving disagreements in favor of the
¢ If m =0, theresultisjust d - - - d,. For z,y € PGS, wedefinex < y similarly to
thefusion product xy, except that we perform« at theinterfaceinstead of fusing last(z)
and first(y) asin the fusion product. Unlike fusion product, < is atotal operation. For
example,
bedpbec<abedqgbe = b
bedpbed<be b
It iseasily shown that < is associative.

Now let A C GS. For z,y € PGS, define the Myhill-Nerode relation

T=y PN V2zeGS(zaze A yazeA).

Lemma35 Ifz,y e PGSandz =y, thenxz <z = y < z for any z € PGS.

Proof. Using the associativity of <, forany w € GS, (z < z2) <w € Aiffx < (2 «
w) € Aiffya(zaw) € Aiff (y<az)cw e A1

Lemma36 Ifz,y €« GSandx = y,thenx € Aiffy € A.
Proof. Forany atom o, z € Aiffr<a € Aiffy<a e Aiffy € A. 1

Define level(z) to be the maximum value of |last(y)| over al y = z, where |w| isthe
length of the atom prefix w regarded as astring over B U B. Then0 < level(x) < k,
and level(x) = k iff z is =-equivalent to a guarded string.

We now build a deterministic ordered AGS N over P U B U B from the equivalence

classesof =. Let
(z1 < {yePGS|y=u}.

Thestatesof N are { [z] | z € PGS}. A state [z] isatest stateif 0 < level(x) <
k — 1 and an action state if level(z) = k. Thetransitionsare

[2] = Lab;]
if level(z) = |last(x)| =i—1< k

K

[2] -2 [2h;]
N

[x] % [xp] if level(r) = |last(z)| = k.

The start state of NV is [¢] and thefinal statesare { [x] | z € A}. Thetransitionsare
well defined by Lemma 3.5, and x € A iff [z] isafina state by Lemma3.6.

12

By Lemma 3.2, for any = € GS, there exists a unique maximal trace o n([¢], z)
suchthat first(on ([e],2)) = [€] andz € G(label(on([e],x))). Wewill show in
Lemma3.10that last(on ([e], 7)) = [z].

For any z,y € PGS, let on([z],y) be the longest common prefix of the traces
on([z],y < «) for dl atoms a. We denotethisby lcp,, on([z],y <).

Lemma3.7 Let x € PGS andlet w bea prefix of anatom. If x < =z <w for all n
suchthat |n| = |w|, thenz = z < w.

Proof. For any z € GS, let n;, bethe prefix of first(z) of length |w|. Then

xrd4z€A & x<a(n,<z)€eA
& (zam)<azeA
& (zaw)aze A

Since z was arbitrary, r = x <w. i
Lemma 3.8 The two successors of any test statein IV are distinct.

Proof. Let [x] be atest state. Assume without loss of generality that |last(x)| =

level([z]) =i — 1. Theexiting transitions are [x] L [xb;] and [z] LN [xb;]1,

and we must show that zb; # zb;. But if zb; = xb;, then by Lemma 3.7 we would
have x = xb;, which would contradict the assumption that |last(z)| = level([z]). B

Lemma3.9 For all x € PGS, on([z],¢) = [z].

Proof. We wish to show that Icp,, on([z],«) = [z].If [z] isan action state, then
for al aoms a, on([2],a) = [z], and wearedone. If [z] isatest state, then its
two successors are distinct by Lemma 3.8. We can pick atoms « and 5 with opposite
valuesfor thed € B tested at [x], so the longest common prefix of oy ([2], «) and
on([z1,0)is [z]. Thuson([z],e) =lcp, on([z],a) = [z].1

Lemma3.10 For all z,y € PGS, last(on([z],y)) = [x < yl. In particular,
last(on([el,z)) = [z].

Proof. Assume without loss of generality that |last(z)| = level([z]). First we show

13

theresult for y = w, aprefix of an atom. If |w| < level([z]), then
on([z],w) = lep on([z],w<a)
= le O'N([x]va)

on([z],¢)
[x] by Lemma3.9
= [z<w].

If |w| > level([z]), leti = level([x]) + 1 < |w| and let ¢ € {b;,b;} such that
w < c. For dl atoms «,

on([z],w<aa) = ([z] =5 [zc]) on(lzcl,w<a),
thus
on([z],w) = l(;p on([z],w<a)
= ([z] -5 [xc])- lzp on(lzel,w<a)
= ([z] =% [2c])-on(lzc],w),
therefore

last(on ([2],w)) = last(([z] - [2c])-on([zc],w))

= last(on([zc]l,w))
= [zc<w] by theinduction hypothesis

= [rz<w].

Findly, for ypw € PGS wherey € GS, p € P, and w a prefix of an atom, by the
induction hypothesiswe havelast(o v ([2],y)) = [z <y]. Then

on([z],ypw)
= lep on([z],ypw < a)

= lep (on([2],y) - ([z 9yl = [z <aypl)-on(lz<aypl,w<aa))

«

= on(lz],y) ([x<y] L2, [x<ypl) - -lep on([z <ypl,w <)
= on(lz],y) ([wayl = [waypl) on(lz<aypl,w),
thus
last(on ([2], ypw))
= last(on([2],y) - ([x<ay]l == [z ayp)) on(lz <ypl,w))

= last(on([z aypl,w))
= [(z<yp)<w]l bytheresult for prefixes of atoms proved above
= [z<ypw].

14

Theorem 3.11 Up to isomorphism, the automaton N constructed above is the unique
minimal deterministic ordered AGSfor A. Thusthere are finitely many =-classesiff A
isregular.

Proof. To show that G(N) = A, forany x € GS,z € G(N) iff last(oc n([e],x)) is
afina state of V. By Lemmas 3.6 and 3.10, this occursiff = € A.

For any other deterministic ordered AGS M for A, there is a surjective structure-
preserving map from the accessible states of M tothestatesof N. Forz,y € PGS, de-
finex ~ yiflast(oa (s, z)) = last(oa (s, y)), where s isthe start state of M. Thereis
aone-to-one correspondence between the accessible states of M and the ~-equivalence
classes. Moreover, if z ~ y,thenx <z € Aiff y <« z € A for any z, thereforez = y.
Thus ~ refines =. Thedesired mapislast(oy (s, z)) — [z] =last(on(le]l,x)). B

3.3.2 Unrestricted Tests

If any test in B is alowed as an input symbol, we can adapt the construction of the
previous section to give unique minimal deterministic automata.

Define PGS’ to be the set of prefixes « of guarded strings such that [last(z)| = i.
ThenPGS® = {zp | z € GS, p € P} U {¢} and PGS" = GS. We define < and =
asin Section3.3.1 andtake { [z] | = € PGS° U PGS"} as states of our automaton.
The equivalence classes [x] for x € GS are the action states. The remaining states
aretest states. The transitions are

[y] = [yal (2] 2 [zp]

fora € Ag,p € P,z € GS,andy € PGS° suchthat y # z forany = € GS. The
start state is [¢] and the final statesare { [z] | = € A}. A direct adaptation of the
argumentsof Section 3.3.1 shows that there are finitely many =-classesiff A isregular,
and that this construction gives the minimal deterministic AGSfor A over the a phabet
PUB.

4 Applications

4.1 The Complexity of System S

System S, introducedin [10], is a Gentzen-style sequent calculusfor partial correctness
that subsumes propositional Hoare Logic. It was shown in [10] that the system is sound
and compl ete over relational and trace-based models.

15

The syntax of system S is given in the following grammar. Here we revert to the

notation of [10], in which + is written as & and - as ®. Also, the positive iteration

operator * istaken as primitive, and * is defined by p* N pT. Notethat there are

two kinds of propositions, tests and formulas.

tests bc,d... b:u= (atomictests) | 0 | b — ¢

programs p,q,7,... pu= (atomicactions) | b | p®dq|p®q | p"
formulas o, ,... pu=b|p—oyp

environments I''A,... Tu=e | IT,p| Lp

sequents T'Foe

We abbreviateb — 0 by b, 0 by 1, and p ® ¢ by pq.

A formula is either a test or an expression p — ¢, read “after p, ¢,” where p is a
program and ¢ is aformula. Intuitively, the meaning is similar to the modal construct
[p] ¢ of Dynamic Logic (DL) (see[3]). The operator — associates to the right. The
empty environment is denoted <. Intuitively, an environment describes a previous com-
putation that has led to the current state. Sequents are of the form I" - ¢, where T is
an environment and ¢ isaformula. We write + ¢ for e . Intuitively, the meaning
of ' F ¢ is similar to the DL assertion [I'] ¢, where we think of the environment
I'=...,p,...,9,...astherich-test program--- ;p;--- ;47;--- of DL.

It is shown in [10] how to encode propositional Hoare Logic (PHL). It follows from
the completeness theorem of [10] that al relationally valid Hoare rules are derivable;
thisisfasefor PHL [7, 9].

Programs and tests are interpreted over Kripke frames K as described in Section 2.2.
Additionally, we interpret formulas, environments, and sequents as follows:

Ip—elxg = {s|Vrfirst(r)=sandr € [pllx = last(7) € Tplk}
elrx & K
IT,ATx % [IIxo [ATk.

ThesequentT' - ¢ isvalid inthetrace model K if for al traceso € [T'1 g, last(o) €
[l k; equivaently,if [TTx C [T, ¢l k.

Therulesof S aregivenin Fig. 2. It was shown in [10] that this system is sound and
complete over trace models; that is, the sequent " - ¢ isvalid in al trace models iff it
is derivablein this deductive system.

A ruleisadmissibleif for any substitution instance for which the premises are provable,
the conclusionis al'so provable. It was shown in [10] that the rule and sequent

'kp—oy

(ER —) T pr o

(ident) @k ¢

16

Axiom (bisatest):
bEDb

Test-cut Rule (bisatest):

(test-cut)

L,b,AFe T,b,AF

Introduction Rules:

Ip,g, AFp
Lp@qg Ak

I'pAkgp

(I ®)

(o)

AR

g, Ao

(o) TI,0,AF¢

IpogAbe

Y,p

Ypky
|+
¢ b, pt o

Structural Rules:

AR
Iy, Abe
ke
p,I'Fo

(W)

(W p)

+
(CC+) F7p 7A}_SD

Lpt,pt, Ak

Arrow Rules:
Iipko
R P R
R—) TFpo o
Ip,p, Ak

(=)

Elimination Rules:

Ip—,p, Al

E®) Ff?p?q?f:j
(E1®) 7F’ffjﬁﬁ ; ?
(E2) %

Cut Rule:
(cut) ' = AF',_1/:O,A Fo

Figure 2: Rules of System S [10]

17

areadmissible.

Lemma4.1 The operator ® and rules (I ®) and (E ®) can be extended to pairs of
formulasin the following sense: there exists a map ¢, v — ¢ ® 1 such that therules

F7§0)w5A'_p F7§0®w,Al_p
L@y, Abp Lo, Ak p

are admissible. We use (I ®) and (E ®), respectively, to refer to these extended rules
aswell.

Proof. f o =p; — - = pp —bandyp =q¢ — -+ — ¢, — ¢, define

def - _
@@’lp = (plpmb@q1QnC)_>0

Using (R —), (ER —), and (I ®) and (E ®) on programs, it can be shown that

pr— = pm—b F opropmb—0
propmb—0 F pr—- = py b

We aso have
p—0,¢g—0Fp®q¢g—0 pdg—0Fp—0 pdqg—0F¢g—0
by the following arguments:

p—0Fp—0 q—0Fqg—0
(ER —), (W %) (ER —), (W)
p—0,q—0,p-0 pﬁQQH&qHH@)
p—0,q—0,pDqt0

p—0,q—0Fpdqg—0

R—)

pHqg—0FpDdqg—0
p®q—0,pDdqk0
p®q—0,p-0 p®q—0,q-0

R— R —
p@q—>0|—p—>0() p@q—>0|—q—>0()

(ER —)

(E1®). (E2®)

It follows from (cut) that

o,V oY wRYEp oY

The admissibility of the extended (I ®) and (E ®) then follows from (cut). B

Lemma4.2 Let w = (@ P)* be an expression denoting all guarded strings. The
sequent

(JI_>07p1aq2_>07p2a"'aqn_)0apn F 0 (3)
isvalid if and only if there do not exist guarded strings z 1, . .., z,, suchthat z; - - - x,,

exists, z; € G(pi), 1 <i<m,andz;x;y1 - 2n € Glgiw),1 <i < n.

18

Proof. Suppose such z1,...,z, exist. Let I' be the environment on the left-hand
side of (3). Construct atrace model K consisting of a single linear trace o such that
gs(o) = x1---x,. Themodel is uniquely determined by this specification. Let o,
1 < i < n, bethe unique subtraces of o such that gs(o;) = z; ando = o1 - - - 0. By
LemmaZ2.1, o; € [pilk- Since TiTit1 " Ty ¢ G(qiw), no prefix of TiTig1 " Tp
isin G(g;), so by Lemma 2.1 no prefix of 0;0,41 -0, isin [g; 1. Since these
are the only tracesin K with initia state first(o;), we havefirst(o;) € [g¢; — 01,
thereforeo; € [q; — 0,p; N . Itfollowsthat o € [T'1 . Since [T'T i iSnonempty,
(3) isnot vaid.

Conversely, suppose (3) is not valid. Let K be a trace model and o a trace in K
suchthat 0 € [T'lx. There exist subtraces o; in K, 1 < 7 < n, such that o =
o1 -onado; € [g — 0,p; k. Thenfirst(o;) € [g; — 0l g, S0 no prefix of
0041+ 0n 18N [q; 1k, and o; € [p; k. Let x; = gs(o;). By Lemma2.1, no
prefix of z; 2,11 - - - x,, 1SIN G(g;), thereforex; ;11 - - -z, & G(qw), andz; € G(p;),
1<i<n.ni

Theorem 4.3 The problem of deciding whether a given sequent of System S isvalid is
PSPACE-complete.

Proof. As observed in [10], the problem encodes the equivalence problem for regu-
lar expressions, a well-known PSPACE-complete problem [11], therefore is PSPACE-
hard. It thus remains to show that the problemisin PSPACE.

Suppose we are given a sequent of the form

Q1_>07p17q2_>07p27"'aqn_>07pn F 0.

Using the extended (I ®) and (E ®) of Lemma4.1 along with (ER —) and (R —), we
can transform any given sequent to one of thisform with no significant increasein size,
S0 the assumption is without loss of generdity.

Now build nondeterministic automata M ; from the p; and N; from the ¢;w asin The-
orem 3.1, where w = (€D P)™* is an expression representing all guarded strings. Our
PSPACE algorithm will guess guarded strings x4, . .., z, symbol by symbol in that
order, scanning the automata to check the positive and negative conditions of Lemma
4.2. We must check that the automata M; accept the z; and the automata V; reject
ZT;xiq1 - - Tn. Thisis done by simulating the subset construction of Section 3.2 with
pebbles occupying the states of the M; and NV;. After every guessed atomic action or
atom, the pebbles are moved according to the transitions of the deterministic automata
constructed in Section 3.2. Guessing an atom amounts to guessing a truth assignment
to B; then to determine whether atest transition is enabled, we just evaluate the label
on that truth assignment. We also guess the boundaries between the = ; and =, and
make sure that last(z;) = first(x;41). The entire simulation can be done in PSPACE,
since by Theorem 3.1, the automata M ; and N; arelinear in the size of the expressions
p; and g;w, respectively, and the simulation need only maintain pebble configurations

19

on each nondetermini stic automaton. It does not matter how long the strings = ; are; the
simulation continues to guess symbols until it succeeds (or not). This gives a nondeter-
ministic PSPACE algorithm, which can be made deterministic using Savitch’s theorem.
]

4.2 Boolean Decision Diagrams

We refer the reader to Andersen’s lecture notes [1] for an introduction to BDDs. A
BDD is ordered (OBDD) if the order of the tests along any path is consistent with a
givenlinear order on B. An OBDD isreduced (ROBDD) if (i) notwo nodesthat test the
same Boolean variable have the same true successors and the same false successors,
and (ii) the true and false successors of any node are distinct. The Canonicity Lemma
([1, p. 13]) saysthat any Boolean function hasaunique ROBDD for agiven linear order
on B. The next theorem shows that the Canonicity Lemmais essentially Theorem 3.11
in the specia case P = @.

Theorem4.4 Let P = @. For any A C Ag, the minimal ordered AGSfor A for a
given order on B constructed in Section 3.3.1 is the canonical ROBDD for \/ A with
respect to that order.

Proof. The AGSis apparently an OBDD for \/ A. It therefore remains to check condi-
tions (i) and (ii).

For condition (i), supposelevel([z]) = level([y]) = ¢ — 1. Assume without loss of
generdlity that [last(z)| = [last(y)| = i — 1. If [zb;] = [yb;] and [2b;] = [ybi],
then zb; = yb; and zb; = yb;. Let = € GS be arbitrary. If b; occurs positively in
first(z), thenz <z € Aiff ab; <z € Aiff yb; a2 € Aiffy a2 € A. Similarly, if
b; occurs negatively in first(z), thenz < 2z € Aiff xb; <« z € Aiff yb; < 2z € Aiff
y<dze A Thusz =yand [z] = [y].

Condition (ii) isjust Lemma3.8. B

Acknowledgements

| am indebted to Jerzy Tiuryn for many valuable ideas and engaging discussions. This
work grew out of joint work with him [9, 10]. | also thank the anonymous referee
for valuable suggestions for improving the presentation. This work was supported in
part by NSF grant CCR-0105586 and by ONR Grant NO0014-01-1-0968. The views
and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of these organizations or the US Government.

20

References

(1]

(2]

(3]

[4]

(5]
€]

[7]

(8]

(9]
(10]

(11]

Henrik Reif Andersen. An introduction to binary decision diagrams. Lecture notes,
Department of Information Technology, Technical University of Denmark, Copenhagen.
http://www.itu.dk/peopl e/hra/notes-index.html, April 1998.

Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebrawith
tests. Technical Report 96-1598, Computer Science Department, Cornell University, July
1996.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cambridge,
MA, 2000.

Donald M. Kaplan. Regular expressions and the equivalence of programs. J. Comput. Syst.
i, 3:361-386, 1969.

Dexter Kozen. Automata and Computability. Springer-Verlag, New York, 1997.

Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427-443, May 1997.

Dexter Kozen. On Hoare logic and Kleene algebrawith tests. Trans. Computational Logic,
1(1):60-76, July 2000.

Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decid-
ability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Sci-
ence Logic (CSL’'96), volume 1258 of Lecture Notesin Computer Science, pages 244259,
Utrecht, The Netherlands, September 1996. Springer-Verlag.

Dexter Kozen and Jerzy Tiuryn. On the completeness of propositional Hoare logic. Infor-
mation Sciences, 139(3-4):187-195, 2001.

Dexter Kozen and Jerzy Tiuryn. Substructural logic and partial correctness. Trans. Com+
putational Logic, 4(3), July 2003.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proc.
5th Symp. Theory of Computing, pages 1-9, New York, 1973. ACM.

21

