
International Journal of Soft Computing and Engineering (IJSCE)
 ISSN: 2231-2307, Volume-1, Issue-5, November 2011

132

A Consistent Protected Structural Design for
Mobile Agents In Open Network Systems

Arihant Khicha, Neeti Kapoor

ABSTRACT-A system in which user programs (the agent) may
willingly and separately travel from one the host to the mobile
agent server is a mobile-agent system. A large exploitation of
mobile agent systems is not possible without gratifying security
structural design. The attack of a visiting code by a malicious
host is the major barrier facing wide exploitation of mobile
agents. The fact that host computers have complete control over
all the programs of a visiting agent makes it very hard to protect
agents from untrusted hosts. This has resulted to restricted
exploitation of mobile agents to acknowledged hosts in
congested networks where the agent’s security is assured.
However, this restriction negates the original major concept of
sovereignty on the basis of which mobile agent technology is
established. This paper proposed a dynamic protected structural
design for mobile agents systems, using Platform Registry and
Travel Diary Protection Scheme. The scheme protects and
allows mobile agents to travel liberally in open networks
environment.

Keywords-Mobile Agents, Travel Diary, Security, Platform
Registry

I. INTRODUCTION

Mobile agent is an agent that can be simply consider as a
unit run in dynamic environment with independent ability
and mobility. This technology has great significance in data
mining, e- Commerce, distributed computing, network
management etc. Security is the main issue that prevents
mobile agent from being widely used. There are two
aspects in which Security problems lie: security of host and
security of agent.

The first difficulty has many common characteristics of
conventional computer security; so to solve the difficulty
with satisfactory results equivalent conventional methods
are used. But the second difficulty is still a major
challenge. Our study concentrates on the mobile agent’s
security on a host platform. Moreover, an agent can get on
two categories of expedition: the first is expedition with a
diary containing pre-defined itinerary and second is
expedition in which the mobile agent has no fore
knowledge of the host to visit. It is called a free-roaming
mobile agent whose protection is more difficult. Methods
used to defend an agent’s data and its state count on the
category of the agents’ expedition.

These free-roaming agents can face more complex attacks
such as replay attacks, colluded truncation attack, or many
other host attacks on a visiting agent if traveling dairy does
not specify where to visit.

-Manuscript received July 09, 2011
Arihant Khicha,Information Technology,RIET,Jaipur, India,
9001099903, (e-mail: arihantkhicha@gmail.com).
Neeti Kapoor, Information Technology, RTU, Jaipur,India,(e-mail:
neeti.kapoor87@gmail.com).

This paper focuses on security of free-roaming agents in
open net environments and it also presents a security
protocol which performed a good role in preventing
attacks.

II. LITERATURE ANALYSIS

Many security issues have been identified since beginning
of mobile agent. These issues were classified according to
the unit being attacked: attack of agents against agents,
attack of agents against hosts, and attack of hosts against
agents and the source of the attack. The first type is
categorized as – attack of agents against agents in which
we find attacks where the agents access or modify another
agent’s data, masquerade their identity in order to make a
transaction forged, or repetitively it also send messages to
another agent in order to initiate a denial of service attack,
among others. The second type is attack of agents against
host and it includes threats in which agents use system
resources unnecessary, access resource which they can
access as well as perform malicious action, expand access
to a service to which they are not permitted, and so on. For
the first two categories, where agent is an attacker already
a sound solutions is proposed. Along with the solutions that
provide a satisfactory level of protection, the most
resourceful is Software-Based Fault Isolation [3]. This
method, also known as sandboxing based on limiting
program accessibility in a congested field, in such a way
that the available resources and program address space are
restrained within this field. The different method for these
kinds of attacks consists: using safe code interpretation [4],
where it prevents the agent from attacking the host by
using the set of available instructions: providing the
authentication to the agent owner by signing the code, as
well as also include some method to check the owner level
of trust [10], , in order to proof that the implementation of
that code is secure [11], along with the code it also send
logical demonstrations. Concerning the second category -
agents against host, in this any peripheral entity can be
source of the attack if it is also not part of the agent
platform. This peripheral entity can perform attacks against
the host’s communications with the outside or against the
platform resources (files, communication ports, etc.). In
these cases, to a great extent, the mechanism on which
security depends is provided by the operating system.

Transport Layer Security [12], secure communication
channel, which is established using mechanisms is used to
provide the secure communication between the host and
other parties. The third category that is host against agents
is very difficult to prevent. It is evident that if a host wants
to execute an agent, it must have complete access to the
agent state, code, and data. It is difficult to

mailto:neeti.kapoor87@gmail.com

A Consistent Protected Structural Design for Mobile Agents In Open Network Systems

133

prevent the host to analyze the agent code, corrupting its
state or data, modifying its execution environment, or
execute it multiple times, for example, generate multiple
purchases in a shopping scenario. If we want to keep an
agent’s data secret to prevent it from the host, then it must
be stored in a way that even the agent itself cannot directly
access it encrypted with the key of a different host
platform.

To deal with the malicious host server problem several
mechanisms have been projected. Few of the solutions of
the malicious host problem are impractical. They have
been designed for particular situation that are actually
rarely found in real-life applications. Some of the better
known ones are:

 Execution tracing
 Obfuscation
 Computing with encrypted functions
 Tamper-proof devices

A. Execution Tracing

Execution tracing [13] is a procedure that allows
unauthorized modifications of an agent to be detected upon
completion of the agent execution. The protocol proposed
in [14] records the agent’s behavior on each platform to
trace its execution. The trace consists of a sequence of
identifiers according to the operations executed by the
agent. Platforms maintain and produce traces of all
executed agents, and after the termination of agent’s
execution agent owners can request these traces and from
this it can be verified that the agent code or state is
maliciously modified or not. But this approach has several
drawbacks, such as the number of logs and size to be
reserved by platforms, or once the agent has returned to the
home platform there is a lack of connection between the
owner and the platforms. Moreover, the verification
mechanism is only used when the owner has a disbelief
that the agent execution has been corrupted and this
mechanism is too expensive to be applied systematically.

B. Obfuscation

The aim of Code obfuscation [13] is to generate executable
agents who cannot be attacked by manipulating or reading
their code. This procedure transforms the agent code in
such a way that it is functionally identical to the original
one. There is also a time interval during which the agent
and its sensitive data are applicable. After this time elapses,
any attempt to attack the agent becomes useless. The main
limitation of these techniques is that an attacker gets
difficulty in establishing the time to understand an
obfuscated code. Likewise, there is no mechanism
currently known by which an agent quantify time to
accomplish its task, especially in heterogeneous
environments. As a result, restricting the lifetime of a
mobile agent is not feasible in practice.

C. Computing with Encrypted Functions

It is a technique proposed by Sander and Tschudin [12] to
achieve code integrity and code privacy. In this technique
encrypted programs are created that can be executed

without decrypting them. If a mobile agent execute a
certain function f then that function f is encrypted to obtain
E (f) and a program is created that implements E (f).
Platforms execute E (f) on a clear text input value x,
without knowing what function they actually computed.
The execution yields E (f(x)), and only the agent owner
can decrypted this value to obtain the desired result f(x).
The main limitation of this technique is that the encryption
schemes are applicable for polynomials, using function
composition techniques and homomorphism encryption.
Thus, their proposal is not suitable for general
programming.

D. Tamper-Proof Devices

A tamper-proof device is based on the entire agent
execution on a physically sealed environment, which can
be trusted to execute the agent correctly. Tamper-proof
devices are provided by a trusted third party and they can
be checked from time to time to verify that their security
has not been compromised. It can be used to perform
cryptographic operations with a private key that must be
kept secret from the remote host. They can also have their
own private key, for example, to sign partial results
generated by the agent. This approach has two limitations:
the costing of tamper-proof device on every platform.
Secondly, the approach is only suitable for closed
environments, such as corporate networks such as within in
a group of banks in a geographic political area. As a result,
the technique implies a loss of agent sovereignty. Hence
this paper focuses

on pragmatic protocol that solves the malicious host
problem.

III. OVERVIEW OF MOBILE AGENT
ARCHITECTURE

Figure 1 to 5 given below specifies the structure of mobile
agent systems. In a network environment Mobile agents
move around it and visit every computer, hopping from
one host to others. Mobile agent servers handle the
execution of the program code and dispatch agents to
different computers. each agent has its own thread and host
severs execute it. Through message any communication is
done between agents of different servers.
A. Mobile Agents Interactions an a Server

Figure 1 specifies the relationships between various agents
and also show that how they complete the execution tasks
through communicating using messages. The resources
needed by visiting agents is provided by host

Fig. 1

B. Mobile Agent Server Architecture

 The structure of a mobile agent server is shown in Figure
2. The activities of the visiting quest agents
are coordinated by the server.

International Journal of Soft Computing and Engineering (IJSCE)
 ISSN: 2231-2307, Volume-1, Issue-5, November 2011

134

Fi.g 2

C. Transfer of Mobile Agents between Servers

 Fig 3

Fig. 4

Fig. 5

When an agent completes its task on a host, it either switch
to another host platform or returns to its home host. The
figure 3 given below shows how object serialization/de-
serialization is used in dispatching agents from one host to
another .The process of converting a data structure or
object into a format that can be stored (for example, in a
file or memory buffer, or transmitted across a network
connection link) and "resurrected" later in the same or
another computer environment [14] is called Object
serialization. In the mobile agent communication Messages
passing form an important component; semantically
identical clone of the original object is created by message
passing. De-serialization is the process of restoring the
object.

D. Message Exchange between Agents on the Same Server

The exchange of messages between two or more agents on
the host and between different hosts is facilitated by the
host platform .The roles of the server in intra/inter server
agents’ communication is shown in Figure 4 shows while
figure 5 illustrates message exchange between agents on
different servers.

E. Agent’s Security Challenge

The mobile agent architecture given in figures 1 to 5 shows
that agent has to face many security challenges while
moving through the network to perform its duties. A lot of
research has been done to solve the security problems in
mobile agent systems. This research differs in its aim,
emphasis, base, and technique. Some works concentrates
on building the foundations for the security of a mobile
agent system; some offer security mechanisms following
different approaches; some work introduce security
mechanisms into the architectures of mobile code systems;
and others implement real applications with security
features.

Nevertheless, these research works didn’t provide any
protection framework for protecting mobile agents on the
host server they execute on. This is the problem that this
work addressed.

IV. THE APPROACH

A. Agent’s Itinerary

There are several protocols which protect theagent’s
itinerary. In these protocols the itinerary information is
stored in a separate data structure, and after that
cryptographic mechanism is used to protect this data
structure. If this information is maintained and stored
outside the main agent code, it is said to be explicit, and its
protection is considerably simplified.
However these protocols do not support the protection of
free-roaming agents. Agents then enforced to travel static
itineraries, in which all host are known in advance. On the
other hand, for free roaming agents the most functional and
realistic mobile agent-based applications should be based
on using dynamic itineraries, where some host platforms
are discovered at runtime.

B. Securing Dynamic Itineraries

A Consistent Protected Structural Design for Mobile Agents In Open Network Systems

135

 To support free-roaming agents, we use a protection
scheme in which trusted locations are introduced into the
agent’s route. The information associated with dynamically
located host can be stored by introducing some trusted
hosts into the itinerary in our architecture.

Platform Registries

Platform registries are digital security infrastructures,
maintained by trusted certificate authorities, such as
Entrust Secure Server Certification Authority, RSA Data
Security Inc, Baltimore Cyber Trust, , Equifax Secured
Certificate Authority, , e.t.c. It is use for the registration
and insurance of trusted digital certificates to public mobile
agents’ host platforms
Assumptions Made with Regard to Trusted Platforms
The main purpose to introduce trusted platform registries
into agent’s itinerary was to execute the agent task on the
expected platform. The structural design presented in this
scheme assumes that a agent’s task is executed by trusted
platform honestly. Furthermore, it is assumed that to
prevent attacks from third parties who alter the agent
execution the trusted agent platforms are protected with
appropriate mechanisms. In this scenario, security depends
on the mechanisms provided by good design of associated
protocols and the operating system .These protocol also
assumes the existence of a security infrastructure that
allows users and agent developers to conclude whether a
platform is reliable or not. An example of this security
infrastructure can be found in [14]. In this work, the
authors illustrate a security structure for a mobile agent
system which incorporates a simple trust model. Such
model establish trust relationships in a way similar to that
used to handle distributed authentication in public key
infrastructures
The identification of reliable platforms can also be ashore
on simpler mechanisms, such as relying on real world trust
relationships. For example, the platform from which the
agent was first launched or the platform associated with a
bank where the user has an account, can be safely
introduced into the agent’s itinerary as trusted platforms.

C. The Protection Architecture

This protection architecture intended to protect flexible
dynamic mobile agent itineraries. There are three main
objectives of architecture:

 Integrity: Platforms is not able to modify the
agent’s itinerary gradually.

 Authenticity: Platforms is not able to verify the
identity of the agent owner.

 Confidentiality: Platforms is not able to access
itinerary information of other platforms.

The Idea

The general initiative of this protection architecture is to
construct a chain of digital envelopes, which contain two
elements: the data, and the encrypted key which allows the
decryption the following envelope. The proposal is
illustrated in figure 6 below.

The entry of the protected itinerary is shown in this figure
6 envelopes. Each envelope, (ej) is encrypted using a
random symmetric key (kj), and further this symmetric key
is encrypted using the public key, (pj) of the host j,
permitted to open the envelope. Thus, only the intended

host can decrypt each envelope. Moreover, the symmetric
key used to decrypt an envelope is protected inside the
previous envelope so the envelope is only opened in the
correct order.

Fig. 6

D. Supports for Dynamic Itinerary

It is impossible to build a chain of digital envelopes if in
the problem of protecting dynamic itineraries all public
keys are not known in advance. In particular, the agent
discovered the hosts that will be visited to execute an
itinerary dynamically at runtime. Therefore, when the
itinerary is created, the public keys of such platforms are
not obtainable. So to solve this problem, a novel protection
scheme is developed based on the agent itinerary
protection, on the dynamically discovered platforms, using
the public keys obtained from their corresponding platform
registries. This proposal use platform registries discussed
above by changing the chain of digital envelopes, as shown
in figure 7.
When an agent asks a dynamically located platform for the
purpose of obtaining its public key, for its platform registry
identifier, and this host fallaciously gives a wrong id, then
it is either the host itself will be unable to decrypt the
message meant for it or the registry will be unable to
supply its id. In either of the two cases, the agent is
protected from this malicious host.

Fig. 7

International Journal of Soft Computing and Engineering (IJSCE)
 ISSN: 2231-2307, Volume-1, Issue-5, November 2011

136

E. Securing Itinerary

For every itinerary host, a random symmetric key k1, k2,
kn is created to secure an itinerary. From a host i to j, each
possible migration is denoted by tij is constructed as

 t i j = a j P i (si (id kj aj)) (1)

Where pi refer to an asymmetric encryption function using
the public key of platform i, aj refer to the address of host j
, si refer to a digital signature function using the private
key of host i

From the equation, the transition from host i to host j
contain the random symmetric key Kj associated with host
j. When going to host j this key is used to encrypt the
envelope of the protected itinerary. Platform j is encrypted
using the public key of host j to ensure that it has access to
Kj . Finally, tij consist of a unique agent identifier id that is
used to thwart from replay attacks. Both id and Kj are
signed by the agent’s owner so that host j will be able to
verify the agent’s identity and integrity of the information
it carries. The equation 1which is used to build agent
transitions tij from host i to j is useful only when the host j
is not dynamically located at runtime, that is aj and the
public key of host j is known at the agent home before the
start of migration. When host j is located at runtime, then

t i j = a j? (2)

Therefore P i (si (id kj aj)) is replaced with ?, an unknown
value. This is because at the time of creating the itinerary
aj is not known and the public key needed to compute (si (
id kj aj)) is not available. In this scenario, when the host is
located at runtime, its
address a j and its corresponding agent Platform Registry
Identifier (regIdj) will be obtained from this host for the
reason of getting its equivalent public key needed to
calculate kj

The transition from the current host i to the dynamically
located host j is now calculated as

P j = platformReg(a j regId)
t i j = a j P i (si (id kj aj)) (3)

The equation 3 is correspondent to equation 1 above. The
main difference is that kj is replaced with the random
symmetric key for the new host, a j , generated from the

public platform registry access function that takes an agent

host address and its corresponding platform registry

identifier and return the host public key, if the host is

registered with the registry and null otherwise. To obtain a
host’s public key, pj from the host directly is not safe.

The agent owner digitally signed the symmetric keys k1,
k2. kn , which are used to encrypt the entries of the
protected itinerary. It ensures that attackers can neither
modify existing ones nor generate their own itinerary
entries.

Also, the entries previously generated by the same owner
are prevented for reuse by the unique agent identifier id.
Therefore the integrity of the protected itinerary is

guaranteed. Moreover, every transition to a host j includes
address a j of the host. Consequently the hosts can verify
that they were really part of the itinerary.

F. Simulation

We performed and implement two multi-phased
experiments to prove the viability of the proposed
structural design. Experiments first part was based on the
proposed security architecture, simulating a simple mobile
agent-based application on a hotel search and reservation
system, using a local area network (LAN) of thirteen
computers, with three serving as platform registries and ten
serving as host servers. Each of the ten computers was
setup to act as mobile agent server to their respective hotels
and configured with appropriate programs to make them
malicious and very hostile to visiting mobile agents. The
user preferences are considered with regard to room
facilities and guest services and according to that the
system allows an individual to find the cheapest hotel in a
given destination. The application allows the user to define
search criteria. After defining the search criteria, to obtain
a list of the five cheapest hotels in the destination, a mobile
agent is started querying a remote hotel search engine.

The agent then visits each one of these hotels and then the
room availability is checked for the desired rates, as well
as their room facilities; services, etc are also checked.
Besides this, a special discount is also negotiated by the
agent for long stays. Our dispatched agent randomly
visited eight of the ten servers and after execution log on
each server visit it eventually returned to home.

Experiment second part was the same to the first except
that the dispatched agent employed obfuscation methods
for its itinerary without the proposed new protection
scheme.

Number of
Mobile Agents

on Hotel
Reservation
Assignment

Mobile-agent
without Platform

Registry Protection
Protocols

Mobile agent
with Platform

Registry
Protection
Protocol

13 Altered
Unaltered

Killed

Altered
Unaltered

Killed

Table 1

G. Analysis of the Log Files

In our experiments the agent code was designed to return
its execution log on each server visited. By this we can
analyze its venerability to attacks by its hosts. Using this
same proposed protocol the execution log files at each
server were encrypted with the public key of the agent
home platform. By analyzing the log files showed it is
clear that no successful attempts were prepared to read the
agent’s itinerary which included the packets for the next
host to be visited from the current server and packets from
the agent’s previously visited servers. The packet that was
previously encrypted with its own public key obtained
from one of the platform registries could only open by the
current host server. While, in our second experiment,
where we don’t used obfuscation methods with our
proposed protection architecture, the analysis of the
returned log files show that four of the host

A Consistent Protected Structural Design for Mobile Agents In Open Network Systems

137

servers visited was able to access the agent’s data packets
that were not meant for these hosts. Table 1 show mobile
agents with and without platform registry protection
scheme. As shown in table 1, our proposal made it difficult
for the host to alter the packet.

In relation to time performance factor, the execution time
of the agents with our proposed scheme was compared to
the execution time of the agents in our second experiment,
that is, the roaming agents without our proposed protection
framework, to determine if the proposed protection
architecture increased the execution times considerably.
We find that approximately 40.6%, the execution time of
the agents with our protocol is increased in comparison of
the unprotected agent’s execution time as shown in figure
8. This increase is largely due to the time required to
execute complex cryptographic protection protocol at
platform registries and on each of the host platforms
visited. We also found out that the time increase is a linear
function of the number of hosts visited. If the actual task to
be performed by an agent on each server is itself complex
and time consuming then the increase in time would be
negligible.

V. CONCLUSION

In open network environment this paper proposes the use
of a chain of digital envelopes with platform registries to
support dynamic agents’ itineraries. This proposal prevents
a host server to gain access to the information carried by a
mobile agent that is not meant for it, that is, the current
host. In terms of data integrity and security ,this proposal
display better performance when compared to the results
obtained from obfuscation methods. However, in
comparison to obfuscation methods this offer consume a
little more time in visiting platform registries and to
execute complex cryptographic functions .

VI. REFERENCES

[1] Wahbe R., S, Lucco, T.E. Anderson and Graham S.L., 1993, Efficient
Software Based Fault Isolation, In Proceedings of the 14th ACM
Symposium on Operating Systems Principle, pp 203-216, ACM

[2] Jacob Y. Levy, John K. Ousterbhout and Brent B Welch, 1997, The
safe Tcl Security Model Technical Report, Sun Microsystems

[3] Sreekanth V., S Ramchandram and A. Govardhan, 2010, Mobile Agent
Security and Key Management Technique, Journal of Computing,
Vol. 2, Issue 9, ISSN 2151-9617

[4] Neelesh Kumar Panthi and Chaudhari Neelesh Kumar Panthi, 2010,
Securing Mobile Agent using Dummy and Monitoring Mobile
Agent, International Journal of Computer Science and Information
Technologies, Vol 1 (4), pp 208-211

[5] Sarvarnl Islam Rizvi, Zinat Sultana, Bio Sun and Mid Washiqul Islam,
2010, Security of Mobile Agent in Ad Hoc Network using Threshold
Cryptography, World Academy of Science, Engineering and
Technology, Vol 30, pp 424-427

[6] Sreekanth V., Ranchandra S., and Gavardhan A.,2008, A Novel
Approach for Securing and Integrity of Mobile Agents, ICCBN,
IISC, Bangalore

[7] Tomas Sander and Christian F. Tschudin, 1998, Protecting Mobile
Agent against Malicious Hosts, In Giovanni Vigna, Mobile Agent
Security, pp. 44-60, Springer-Verlag, Herdeberg Germany

[8] Gray R.S., 1995, A Transportable Agent System, In proceedings of
CIKM 95 Workshop on Intelligent Information Agents 14

[9] Dierks T. and Rescorla E., 2006, The Transport Layer Security
Protocol Version, In RFC 4344, IETF

[10] Vigna G., 1998, Cryptographic Traces for Mobile Agents, In Mobile
Agent and Security, Vol., 1419 of Lecture Notes in Computer
Science, pp 137-153, Springer Verlag

[11] Hohl F., 1998, Time Limited Blackbox Security: Protecting Mobile
Agent from Malicious Hosts, In Mobile Agent and Security, Vol.,

1419 of Lecture Notes in Computer Science, pp 92-113, Springer
Verlag

[12] Sander T. and Tschudin C.F., 1998, Protecting Mobile Agents against
Malicious Host, In Mobile Agent and Security, Vol., 1419 of Lecture
Notes in Computer Science, Springer Verlag

[13] Tan H.K. and Morean L 2001, Trust Relationships in a Mobile Agent
System, In Mobile Agent, Vol., 2240 of Lecture Notes in Computer
Science, pp 15-30, Springer Verlag

[14] Carles Garrigne Ollivera Bellaterra, 2008, Contribution to Mobile
Agent Protection, PhD Thesis, Universtat Ant Onoma, De Barcelona

[15] Wikipedia the Free Encyclopedia Serialization,
http://en.wikipedia.org/wiki/serialization

Mr.Arihant Khicha M.Tech , Mca from MSRIT ,
Bangalore, Pursuing his Ph.d , written 5 books on
Database management system, Operating system and
Advance Database management system. He has also
attended various seminar on Networking.

Neeti Kapoor Btech done her Engineering from RCEW
Engineering college Jaipur and Pursuing her M.Tech from
Arya college of Engineering and Technology. She has
written various books on Database Management system ,
operating system .

http://en.wikipedia.org/wiki/serialization

