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Abstract

Motivated by Chernoff’s bound on asymptotic probability of error we propose the alpha-divergence measure and
a surrogate, the alpha-Jensen difference, for feature classification, indexing and retrieval in image and other databases.
The alpha-divergence, also known as Renyi divergence, is a generalization of the Kullback-Liebler divergence and
the Hellinger affinity between the probability density characterizing image features of the query and the density
characterizing features of candidates in the database. As in any divergence-based classification problem, the alpha-
divergence must be estimated from the query or reference object and the objects in the database. The surrogate for the
alpha-divergence, called the alpha-Jensen difference, can be simply estimated using non-parametric estimation of the
joint alpha-entropy of the merged pairs of feature vectors. Two methods of alpha-entropy estimation are investigated:
(1) indirect methods based on parametric or non-parametric density estimation over feature space; and (2) direct
methods based on combinatorial optimization of minimal spanning trees or other continuous quasi-additive graphs
over feature space. On the basis of mean square error convergence rate comparisons the minimal graph entropy
estimator can have better better performance than an indirect entropy estimator implemented with plug-in density
estimates. We illustrate these results for estimation of dependency in the plane and geo-registration of images.

1 Introduction

A database of image¥ = {X;}K, is queried for content which is closely related to a reference imégeThe

answer to the query is a partial re-indexing of the database in decreasing order of similarity to the reference image
using an index function. This content-based retrieval problem arises in geographical information systems, digital
libraries , medical information processing, video indexing, multi-sensor fusion, and multimedia information retrieval
[38, 42,41, 40]. Common methods for image indexing and retrieval are color histogram matching and texture matching
using cross correlation. While these methods are computationally simple they often lack accuracy and discriminatory
power.

There are three key ingredients to image retrieval and indexing which impact the accuracy and computation effi-
ciency:
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1. selection of image features which discriminate between different image classes yet posess invariances to unim-
portant attributes of the images, e.g. rigid translation, rotation and scale;

2. application of an index function that measures feature similarity and is capable of resolving important differences
between images;

3. query processing and search optimization which allow fast implementation.

While these ingredients are all closely linked, this paper is primarily concerned with the appropriate choice of
the feature similarity measure and its optimization. We consider the classdvfergences, also known aseRyi
divergences, and a surrogate function calleddhi#ensen difference. The-divergences can be roughly viewed as
distances between the probability models underlying the query and the database of images. A speciakcase of
divergence is the Kullback-Liebler (KL) divergence which has been applied to indexing and image retrieval by Stoica,
Zerubia and Francos [40] and Do and Vetterli [10]. A related quantity istiensen difference which is a function
of the jointa-entropy of pairs of feature vectors derived from the query and images in the database-J&hsen
difference was proposed independently by Ma [31, 30] for registering pairs of image modalities and by He, Ben-Hamza
and Krim [19] for registering an arbitrary number of image modalities. Another special case ofdiliergence is
the a-information which is a generalization of the Shannon mutual information. Although we do not explore this
extension here, the-information can be further generalized to theihformation” which has been treated in a recent
paper [35] for medical image registration and generalizes the mutual-information method of Viola and Wells [45]

Here we motivate the-divergence for indexing by decision theoretic considerations and large deviation theory
of detection and classification. A result of this paper is that use of the KL divergeneeX) can be suboptimal
relative to the more generaldivergence. In particular, we establish that when the feature densities are difficult to
discriminate (close together in a weighted sup-norm metric) the theoretically optimal chaide af = 1/2 which
corresponds to the Hellinger affinity, related monotonically to the Hellinger-Battacharya distance, as contrasted to the
KL divergence. We compare the local discrimination capabilities ohttiivergence and the-Jensen difference. In
particular we show that for discrimination between pairs of close feature densitiesdivergence admits a value
a = 1/4 which is universally optimal while for the-Jensen difference the optimal valuecoflepends on the feature
density pair.

When either thex-divergence or the-Jensen difference are used to perform indexing, they must be estimated
from the query and the database. In this paper we focus on estimation @fXbesen difference. When a smooth
parametric model for the feature densities exists this entropy metric is a smooth non-linear function of these parameters
and parametric estimation techniques such as maximum likelihood can be applied [41, 40]. For the parametric case,
the entropy estimation error decreases at iigtg¢'n wheren is the size of the training sample of feature vectors
used for density estimation. When there exists no suitable parametric model for the feature densities non-parametric
density estimation methods can be applied to estimatevttizergence or ther-Jensen difference. This technique
is called a “density plug-in” method. On the other hand, minimal graph entropy estimation techniques, introduced
in Hero and Michel [23], can be applied to directly estimate dhdensen difference. Using recent random graph
convergence rates derived by Hero and Ma [20] for densities of bounded variation, we show that the convergence rate
of non-parametric plug-in methods based on density plug-in estimation are slower than the rate of direct minimal-
graph estimation methods implemented with the minimal spanning tree (MST) or other “continuous quasi-additive”
graphs.

Finally, we show how minimal graphs can be applied to estimatiom-divergence, when a consistent estimator
of the reference density is available; estimation ofdheutual information and--Jensen difference. For purposes of
illustration, we apply these results to a geo-registration problem.



2 Statistical Framework

Let X, be a reference image, called the query, and consider a datdhase= 1, ..., K of images to be indexed
relative to the query. LeZ; be a feature vectors extracted frofip. We assume that imagg;’s feature vectorZ; is
realizationZ generated by a j.p.d.ff(Z|8) which depends on a vector of unknown paramefdysng in a specified
parameter spac®. Under this probabilistic model thie-th observed image feature vectdy, is assumed to have
been generated from modg(Z|4,,), whereg,, is called the “true parameter” underlyig,, ¥ = 1,..., K. Under
this statistical framework the similarity between imagés X; is reduced to similarity between feature probability
modelsf (Z|6,), f(Z16,).

2.1 Divergence Measures of Dissimilarity

Define the densitieg; = f(Z16;),7 =0,..., K. Thea-divergence betweef} andf, of fractional orderx € [0, 1] is
defined as [36, 7, 2]
' 1 fi2) \*
Dail) = opin [ g (£5) s
1 « —
= a_lln/fi (2)f3 *(2)dz (1)
Note thatD,(f:|| fo) = D« (6:]|60) is indexed byd; and6y.

a-Divergence: Special cases

When specialized to various valuescothe a-divergence can be related to other well known divergence measures.
Two of the most important examples are the Hellinger affidity [ \/fi(z) fo(z)dz obtained whemx = 1/2, and is
related to the Hellinger-Battacharya distance squared,

Duvaimger (Fl10) = [ (VE® - VR) ds
= 2 (1 — exp (%D%(fi I fo))) ;

and the Kullback-Liebler (KL) divergence [29], obtained whep» 1,

altlgll Da(fis fo) = /fo(z) In J;(:((j))dz

Only whena = 1/2 is the divergence monotonically related to a true distance metric between two densities.

When the densityf, dominatesf; and is uniform over a compact domath O support{f;} the a-divergence
reduces to the--entropy, also known as thesRyi entropy:

Haf) = 7= [ 17 (s @

3 a-divergence as an Index Function

The ordered sequence of increasimglivergence measure,, (f(1)[lfo), - - -, Da(f(x)l|fo), induces an indexing,
which we call the “true indexing,” of the images

Xi < X; & Dalfillfo) < Da(fllfo)



This indexing is unimplementable given only thgs since it requires the underlying probability modglde known

to the query processor. The non-statistical indexing problem can now be stated as: given a sequence of divergences
{D.(6;]|60)}£ , find the sequence of indices,...,ix which minimize D, (6;,||fo) over the set{1,..., K} —
{it,...ix 1}, k=1,..., K.

Special cases of the indexing problem are

1. Content-based retrieval: the query is the density of an image object and the database consists of image densities
which may “contain” the object in the sense that the object may only be found as a scaled, rotated or ortho-
projected version of the query in the database. An invariant feature set is very important for this application.

2. Image registration: the database consist& afopies ofZ; which are rotated, translated and possibly locally
deformed. The index, finds the pose/orientation in the database closest to that of the query. An invariant
feature set is not desirable in this application. When the feature v&ctisrdefined as the set of pixel pair
gray levels associated with each pair of imaggs X, and the mutual information criterion is applied to the
pixel pair histogram one obtains the method of Viola and Wells [45]. The MI criterion is equivalent to the KL
divergence between the joint distribution of the pixel-pair gray levels and the product of the marginal feature
distributions.

3. Target detection: the query is the distribution of the observations and the database is partitioned into of a family
of densitiesf; = f(Z|6;) part of which corresponds to the “target-absent” hypothesis and the rest to “target-
present.” Target detection is declared if the closest density in the database is in the latter set.

4. Performing parameter estimation by minimizing the Hellinger-Battacharya distance is known as minimum-
Hellinger-distance-estimation (MHDE) introduced by Beran [5]. While there are obvious similarities, relations
of MHDE to indexing will not be explored in this paper.

3.1 Un-normalizeda-Divergence and the Chernoff Error Exponent

Here we argue appropriateness of theivergence on the basis of large deviations theory results on the exponential
rate of decay of the Bayes-optimal classifier between two densities. Note that the Bayes classification error probability
below is different from that defined by Vasconcelos [43, 42] in that here the decision error is averaged over an ensemble
of image models. Define the un-normalizedlivergence as the -log integral in the definition (2) of thdivergence:

Dg(fillfo) = —1H/f“(ZIQ1)f1_"‘(Z|Qo) dZ = (1 — a)Da(fillfo)

Assume that from an i.i.d. sequence of imaged), ..., X (™) we extract feature vectog = [Z(1), ..., Z("] each
having densityf (Z|9) for somed € ©. Consider testing the hypotheses

H() : Q S 60

H1 : Q S @1

where®, and©; partition the parameter spaée In the context of image retrieval the parameter raBgecould

cover theK densities of the images in the database while parameter @gngevers densities outside of the database.

In this case testingl, vs. H; is tantamount to testing whether the query lies in the datalf&gedr not (Hy). If H;

is decided then sequential hypothesis testing could subsequently be performed to completely search the database for
specific query matches by successive refinement of the paramete@pacer a depthog, (K') binary tree.

Let f(#) be a prior ovel©® and assume thd®(H;) = fel f(@)dd and P(Hy) = 1 — P(H) are both positive.
Then for any test oH, vs. H; define the average probability of error

Pe(n) = pB(n)P(Hy)+ a(n)P(Ho)



wheres(n) anda(n) are Type Il and Type | errors of the test, respectively, which depertilinrgeneral. Thex-
divergence measure can be related to the minimum attainable probability of error through the Chernoff bound of large
deviations theory [8]:

lim 1nf In P, =— sup D(f,lIfo), 3
winf W P(n) == sup DT ®3)
wheref,(Z = Jo, [(Z10)f(0)de andf,(Z = Jo, f(Z10)f(0)df. The quantitysup,cro,1 DY(f,lIfo) in (3) is

called theChernoff exponervt/hlch gives the asymptotlcally optimal rate of exponential decay of the error probability
for testingHy vs Hy. The optimala = a, which attains the maximum in (3) is obtained by finding the value of
which maximizeD%(f,||fo)-

o, = argmax,c o, / (2T (2) dz @)

3.2 Selection oty

We have empirically determined that for an image indexing problem arising in georegistration (see Section 5) the value
of a leading to highest resolution seems to cluster around eitbet /2 corresponding to the KL divergence and the
Hellinger affinity respectively [30]. The determining factor appears to be the degree of differentiation between the
densities{ f;} ;. If the densities are very similar, i.e. difficult to discriminate, then the indexing performance of the
Hellinger afflnlty distancedq = 1/2) was observed to be better that the KL divergenee=(1). This is consistent

with the asymptotic local analysis below.

A locally optimuma can be explored by asymptotic analysis of the Chernoff exponent. Specifically, the following
is a direct result of Proposition 7 in Appendix A.

Proposition 1

Dihln) = 205 [UHZREOE 4oy o), ©
whereA € [0,1] is
A@) ~ fol@)
A= @) F fole)

Recall that the detection error probability decreases exponentially with Chernoff expapgaf, 1 DY(fillfo)- A
consequence of (5) is that to ord&f the optimum value o in the Chernoff exponent is/4.

As an illustrative example consider the case whfgrand f; are multivariate Gaussian densities. The KL infor-
mation for such a Gaussian feature model was adopted in [41, 40] for performing image indexifigz;LetA) be
a reald-dimensional normal density with mean vectoand non-singular covariance matrix The un-normalized
a-divergenceD¥( f1||fo) = De(f(x; 11, A1) f(x; o, Ao)) Of ordera is given by (see Proposition 8 in Appendix B).

|A0|a|A1|1foz a(l -
|OéA0 + (]. — Oé)A1| N 2

Term A Term B

Do(f (s pa, A f (2500, A0)) = —5In )AMT(aAo +(1—a)A) tAu (6)

whereAp = p1 — po.

The divergence consists of two termsand B. A is equal to zero wheA, = A; and B is equal to zero when
o = p1. TermA is the log of the ratio of the determinants of the geometric mean and the arithmetic megresnaf



Ao with mean weightsr and1 — «. Term B is the quadratic difference of mean vectors normalized by the arithmetic
mean ofA; andAy with mean weights and1 — a.

An asymptotic expansion yields the following expression for the case\that 0, i.e. equal means,

_ a(l —a)
4

so that locally the Chernoff exponent increases in the trace norm of the differences between the feature covariances
and, as expected, = 1/4 is optimal.

D (fillfo) tr(A1 — Ao)? + o(tr(Ar — Ag)?).

4 Divergence and Entropy Estimation

In practice the image model parametéiss are unknown so that the actual relative orderingaeflivergences
{D,(8,]18,)}i_, is also unknown. The statistical problem of indexing can be stated as follows: based on a sin-

gle realizationX;, = X,gl) of the k-th image,k = 0,..., K, estimate the actual rank ordering @fdivergences
{D,(8,16,)}E | between feature distributions. Divergence estimation is closely related to entropy estimation which
has a long history in the statistics and information theory communities.

Estimation of entropy is an important problem that arises in statistical pattern recognition, adaptive vector quan-
tization, image registration and indexing, and other areas. Non-parametric estimation of Shannon entropy has been
of interest to many in non-parametric statistics, pattern recognition, model identification, image registration and other
areas [18, 27, 1, 44, 4, 45, 11]. EstimationeeEntropy arises as a step towards Shannon entropy estimation, e.g.,
Mokkadem [32] constructed a non-parametric estimate of the Shannon entropy from a convergent seqaence of
entropy estimates. However, estimation of thentropy is of interest in its own right. The problem arises in vector
guantization where &iyi entropy is related to asymptotic quantizer distortion via the Panter-Dite factor and Bennett's
integral [15, 34]. Thex-entropy parametrizes the Chernoff exponent governing the minimum probability of error in
binary detection problems [26, 6]. It also has been used for image registration from multiple modalitiesasda the
Jensen difference [31, 30, 19]. The most natural estimation method is to substitute a non-parametric density estimator
f into the expression for entropy. This method has been widely applied to estimation of the Shannon entropy and
is called “plug-in” estimation in [4]. Other methods of Shannon entropy estimation discussed in [4] include sample
spacing estimators, restrictedde= 1, and estimates based on nearest neighbor distances.

Three general classes of methods can be identified: parametric estimators, non-parametric estimators based on
density or function estimation, and non-parametric estimators based on direct estimation. The first two methods can
be classified aplug-intechniques where a parametric or non-parametric density est'frmtmnction estimatq‘Aa
are simply plugged into the divergence formula. When an accurate parametric model and good parameter estimates
are available parametric plug-in estimates of divergence are attractive due tb/#feiconvergence properties. An
analytical parametric form of the divergence can often be derived over the parametric class of densities considered and
maximum likelihood can be used to estimate parameters in the divergence formula. This approach was adopted under
a multivariate Gaussian image model by Stata [40] for image retrieval. For Gaussighn andf, the KL divergence
D, (f1]fo) has a simple closed form expression, which can be derived as the limit of (&7}a4, and the authors
in [40] proposed using maximum likelihood or least squares estimates of the mean and covariance parameters of each
image.

Non-parametric plug-in divergence estimates do not benefit from closed form parametric expressions for diver-
gence but avoid pitfalls of model dependent estimates. For example, when a nhon-parametric esfiroatd ¢ are
available the following plug-in estimates a@fentropy are natural

1
11—«

Ho(f) = ——In / fo()de @)
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Ho(f) = ——In / o (2)de. (®)

l—«

For the special case of estimation of Shannon enttopy_,; H.(f) = — [ f(2) In f(2)dz recent non-parametric
estimation proposals have included: histogram estimation plug-in [16]; kernel density estimation plug-in [1]; and
sample-spacing density estimator plug-in [17]. The reader is referred to [4] for a comprehensive overview of work
in non-parametric estimation of Shannon entropy. The main difficulties with non-parametric methods are due to the
infinite dimension of the spaces in which the unconstrained densities lie. Specifically: density estimator performance
is poor without stringent smoothness conditions; no unbiased density estimators generally exist; density estimators
have high variance and are sensitive to outliers; the high dimensional integration in (7) might be difficult.

The problems with the above methods can be summarized by the basic observation: on the one hand parame-
terizing the divergence and entropy functionals with infinite dimensional density function models is a costly over-
parameterization, while on the other hand artificially enforcing lower dimensional density parametrizations can pro-
duce significant bias in the estimates. This observation has motivated us to develop direct methods which accurately
estimate the entropy without the need for performing artificial low dimensional parameterizations or non-parametric
density estimation [21, 23, 22]. These methods are based on constructing minimal graphs spanning the feature vectors
in the feature space. The overall length of these minimal graphs can be used to specify a strongly consistent estimator
of entropy for Lebesgue continuous densities. In particulaizlét = {Z(M), ..., Z("} and define the Euclidean
functional of ordery: L, = L. (Z2(™) = min.c¢ 3, |e|” the overall length of a graph spanningi.d. vectorsZ(® in
R? each with density. Herey € (0, d) is real,e are edges in a graph connecting pairgé?’s and the minimization
is over some suitable subsétof the (;‘) edges of the complete graph. Examples include the minimal spanning tree
(MST), Steiner tree (ST), minimal matching bipartite graph, and traveling salesman tour. The asymptotic behavior of
L., over random point€ (™ asn — oo has been studied for over half a decade [3, 46, 39] and, based on these studies,
in [23] we gave conditions under which

Hy(2™W) =L (2™)/n® —1Infr, q )

is an asymptotically unbiased and almost surely consistent estimator of the un-normaénérdpy of f where
a = (d —v)/d andjL_ 4 is a constant bias correction depending on the graph minimality criterion &t
independent of .

As shown in [23], optimal pruning of greedy implementations of the minimal graph can robustify the entropy esti-
mator against outliers from contaminating distributions. This procedure consists of constructinghienal graph
which is defined as the minimum weight minimal graph spanningkaaut of then points in the realization of.
DivergenceD, (f1]|fo) between the observed feature dengitgnd a reference feature densftycan be estimated
similarly via performing a preprocessing step before implementing the minimal-graph entropy estimator. In this pre-
processing step one applies a measure transformation on the feature space which converts the reference density to a
uniform density over the unit cube [22].

As contrasted with density-based estimates of entropy, minimal graph entropy estimators enjoy the following prop-
erties: they can have faster asymptotic convergence rates (see next sub-section), especially for non-smooth densities
and for low dimensional feature spaces; they completely bypass the complication of chosing and fine tuning parameters
such as histogram bin size, density kernel width, complexity, and adaptation speadydremeter in thex-entropy
function is varied by varying the interpoint distance measure used to compute the weight of the minimal graph. On
the other hand, the need for combinatorial optimization may be a bottleneck for a large number of feature samples, for
example the MST or the k-NNG are “almost linear” algorithms of compleXity log n).

Whenf, is known then-divergence can be estimated by minimal graph methods using the measure transformation
method outlined [22]. For unknowyy and unknownf; the existence of consistent minimal-graph estimators of
D, (f1]1fo) is an open problem. The sequel of this paper will be concerned with an alternative index function, called
the a-Jensen difference, which is a function of the joint entropy of the query and candidate image feature sets. This
function can be estimated using the entropy estimation techniques discussed above.



4.1 Robust Entropy Estimation: the k-MST

In Hero and Michel [23] we established strong convergence results for a greedy approximation to the following min-
imal k-point Euclidean graph problem. Assume that one is given &'set {z1,...,z,} of n random points in the

unit cube[0, 1]¢ of dimensiond > 2 following a Lebesgue densitf. Fix k and denote byt,, . a k-point subset of

Xn, 0 < k < n. The minimal k-point Euclidean graph problem is to find the subset of painisand the set of edges
connecting these points such that the resultant graph has minimum total Wéight). This problem arises in many
combinatorial optimization problems, see references in [23] for a partial list. In addition to these problems, in [23] we
noted that the weight functiokrminimal graph could be useful for robust estimation of tlemid ‘entropy of order,

wherev = (d —v)/d € (0,1) is specified by the dimensiah> 2 and a weight exponente (0, d) on the Euclidean
distance between vertices of the graph. The intuition is that4WST tends to only accept those points that are most
clustered near each other, thereby the rejected points tend to be stragglers outsidectidter. In Hero and Michel

[23] we established almost sure (a.s.) convergence of the normalized weight function of a greedy approximation to the
a class ofk-point minimal graphs including the-MST. This normalized weight function converges to a limit which,

for k < n, is a close approximation to the entropy integral in (9). The influence function was investigated in Hero and
Michel [23] and quantitatively establishes theéVIST as a robust estimator of entropy.

The greedy approximation was introduced in [23] to reduce the exponential complexity of thé-@4&dt algo-
rithm yet retain its outlier resistant properties. This greedy approximation involves the following partitioning heuristic:
dissect the support of the densjtyassumed to b, 1]¢, into a set ofn? cells of equal volumes/m?; rank the cells
in increasing order of numbers of points contained; starting with the highest ranked cell and continuing down the list
compute the minimal spanning graphs in each cell until at legstints are covered. Stitching together these small
graphs gives a graph which is an approximation tokkminimal graph and, whek = an, for which the log of
the normalized weight functioﬁn,k/k” converges to an approximation of them/i entropy of order. The com-
putational advantage of the greedy algorithm comes from its divide-and-conquer multi-resolution structure: it only
requires solving the difficult non-linear minimal graph construction on cells containing smaller numbers of points.
Whena = 1 this greedy approximation reduces to a partitioning approximation to the full minimal graph spanning all
of then points. By selecting the “progressive-resolution parameteds a functionn(n) of n we obtain an adaptive
multi-resolution approximation to the MST.

4.2 Entropy Estimator Convergence Comparisons

It can be shown that whefi is a density supported on the unit cupel]? the bias and variance of direct minimal-
graph entropy estimators (9) and indirect density plug-in entropy estimators (7) converge to zero as a function of the
numbem of i.i.d. observations [23, 1]. Here we attack a harder problem: comparing the asymptotic convergence rates
of the mean square error.

The estimators discussed below will be of the fabin = L In I,,, wherel, will be a consistent estimator of
the integral

1) = [ 1@
Given estimates of and f* define the density plug-in estimatb;(f) and function plug-in estimatdcl(f) as
L(f) = [ f@de (10)
and

() = [ F@da. (11)



Define the direct graph-based estimatpas
Io = Ly(Zi,.... Z0)/(Bryan'® ) (12)
where(d — v)/d = «. A standard purturbation analysislaf z) establishes that

o=t = g e oin, - 1.

Thus as a function of the asymptotic rate of converge;ncel?ﬁg — H,(f) will be identical to that off, — I,(f). In
the sequel we will therefore focus on the convergende, of

4.3 Plug-In Estimators

Modern methods of non-parametric density estimation attempt to minimize the estimation error as the density varies
over a function space. Common spaces of variation which are considered addeespacey,(x, c), Besov spaces

- . : . . . d .
By ., and the space of functions of bounded varialddf(c, d). We will restrict the density’ on [0, 1]¢, and associated

functions, to one of thes&dimensional function spaces in this report.
The classt(k, ) of order« Holder continuous functions ovés, 1]¢ are defined as
Salk,0) = {£@) : 1f(@) =P (2)] < e Jlz — 21|~ |
wherep” (2) is the Taylor polynomial (multinomial) of of orderk expanded about the point ||z|| denotes the..
norm and| x| is defined as the greatest integer strictly less thais x becomes large the clad%(x, ¢) contains

functions which are increasingly smooth. For examplg(l, ¢) is the space of Lipschitz functions ant};(co, ¢)
contains all infinitely differentiable functions.

The classBy , (c) of Besov functions ovel0), 1]* is defined

By (&) = {£ :Ifllp +11f = T(H)lg, < e}

where]| f[|,, is the standard., norm and| f —T'(f)||.s  is a norm of the approximation error of the best dyadic spline
approximation tof of orderr, wherer is determined by, p andq (see Devore and Popov [9]).

The clasBV (¢, d) of functions ovef0, 1]¢ is defined as [37]
BV(c,d) = {f : ?“‘iz £ (20) = f(zim1)] < } (13)

where the maximum is taken over all countable sub§etsz», . ..} of points in[0, 1]¢.

We have the following simple results which are given without proof.

Proposition 2 Assume that the Lebesgue dengitis in a function spac€ and thatf is a plug-in estimator with
uniform rms convergence rate of ord@{n ") overC. If [ f* '(z)dz < oo then

d

-] = oo (1)



Whenf* € C = BV(C, d) Proposition 2 can be tightened

Proposition 3 Assume the Lebesgue dengftys such thatf* € BV(C,d). Letha be a plug-in estimator with
uniform rms convergence rate of ord@n ") overBV.

d

4.4 Minimal Graph Estimators

1/2

L -n0f] =06, (15)

For a direct minimal-graph estimator (12) exact convergence rates have been elusive except in some special cases.
Even for a uniform density, exact rates are known only fdr= 2 [39, 46]. Only bounds on convergence rates are
available for this case whed > 2 and these bounds form the basis for proving the convergence results discussed
below. For example it has been shown [46] that wiféa a uniform density the normalized MST length functional

L. /nl4=7/d converges to the integrdly, 4I.(f) with rate upper bounded b§(n—1/?). This bound is tight for

d = 2. In [20] we establish that the rms convergence rate of the normalized MST functional is upper bounded by
n~1/(d+1) for arbitrary densityf such thatf® is of bounded variation. This result holds under the assumptions that

the minimal graph is continuous quasi-additive. This rate is better than the best possible rate attainable by an entropy
plug-in estimator. Specifically, in [20] we establish the following

Proposition 4 Assume that the Lebesgue dengitn [0, 1]¢ is such thatf® € BV(C, d) wherea € [1/2,(d —1)/d],
d > 2. Then, forp = 1,2, ..., and any plug-in estimataf, (f<)

swp BV [|1,(F%) - ()] ] > 0 (w1, (16)
feEBV(C,d)
while for the MST-based entropy estimafgr
sup El/p { ja _ Ia(f)‘p] <0 (n—l/(d+1)) . (17)
feeBV(C,d)

4.4.1 Achievability of Minimal Graph Estimator Bound

Some of the comments below are explored in more detail in Hero and Ma [20]. It is unknown whether the bound (17)
is tight except in the casé= 2, for which the bound only holds fer = 1/2, i.e. estimation of the Hellinger affinity.

We point out that the general bound (17) also holds for other continuous quasi-additive graphs sudhresatiest
neighbor graph. Whea < 1/2 a potentially slower bound of ordé(max{n~/(#+1) n~2/21) is available When

f* € BV(C,d) we conclude from Proposition 4 that the worst case convergenceTat&+!) of the minimal graph
estimator is faster than the best rate'/(+2) of a plug-in estimator using a non-parametric function estimatg*of

In particular, this implies that the rate of convergence of the MST estimator of the Hellinger affinity {/2) is

faster than any estimator based on minimax density estimation. However, the assumptios (d — 1)/d prevents

the application of the rms convergence rate bound (17) to estimates of the Shannon éntrepl). In particular,

we cannot use it to bound the rms of a minimal-graph based analog to the method of Mokkadem [32] in which one
estimates Shannon entropy by a sequefggefn) of a-entropy estimators where, < 1 andlim,, ., o, = 1.

If it is known a priori that f is piecewise constant with known regions of support a faster rate of convergence
bound for the minimal graph estimator than (17) is availalil{max {n—'/¢}). Thus for piecewise constayiitthe
histogram plug in estimator hds\/n rms convergence rate and we conclude that the minimal graph and plug-in
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estimators have identical convergence ratedfer 2. On the other hand, faf > 2 the histogram plug-in estimator
has faster rms convergence rate for piecewise congtaRinally we mention a shortcoming of the minimal graph
estimator: it is not consistent for estimatiagentropy of any singular components of fife.g. dirac delta functions.

Finally we point out that the extension of the rate of convergence bound (17) to the ¢gr&¢8Y¥ algorithm is an
open problem.

4.4.2 Achievability of Plug-In Estimator Bound

The issue of achievability of the minimax bound (16) in Proposition 4 by a specific estimator is of course of interest but
appears to be an open question. Thus the bound may be optimistic and the gap between convergence rates of plug-in
and minimal graph estimators of entropy may be even larger than indicated in Proposition 4. Two classes of estimators
have been introduced for non-parametric function estimation: linear Parzen-Rosenblatt kernel density estimators and
non-linear wavelet shrinkage estimators.

Parzen-Rosenblatt (PR) kernel density estimators are defined as

whereV (z) is a kernel function satisfying V' (z)dz = 1, [ 21V (2)dz < o0, j = 1,2,..., ||, andh,, is a positive
sequence satisfyinlg, — 0 andnh,, — oco. For fixed and knowr the estimator (18) has minimax rate of convergence
over the Holder classZ,(k, ¢) when the kernel-widtth,, is chosen ash,, = an~1/(25+d) for some positive constant

a [25, 28]. The PR estimator has root MISE (rms) asymptotic convergence rate which is constanyj @ue) and
given by

sup FE
fEX (K c)

[ @) - s)ae] 0 (vt (19)

for a positive constanf’. Such linear estimators can achieve rate exponeat1/d + 2 uniformly overX,(1,c).
However, they cannot uniformly achieve this rate over the larger PEC€’, d).

Minimax wavelet shrinkage methods of function estimation were introduced by Donoho and are discussed in detail
in a discussion paper by Donoletal [14]. Therein the authors show that wavelet shrinkage function estimators can
be made to have rms convergence rates of aftigs (" "o/(20+4)) yniformly over functions inBg ., wheree is a
positive constant given by Donolatal [12]. Foro > d/p this rate exponent is nearly equal to the minimax MISE
rate exponenty/(2« + d) over the Besov space of functiod | [14, 13]. As pointed out by these authoisY
can be sandwiched betwe# ; andB] _, so therefore if this “nearly minimax” result could be extended to the case
o = 1 for some generalized class of multidimensional wavelet shrinkage estimators we would have nearly optimal
rms convergence rate exponéhtn)¢1/(d + 2) of the plug-in entropy estimate over the spac®df functions. As
far as we know, existence of such a generalization is an open question.

4.5 -Jensen Difference Index Function

Here we study an alternative index function based on the Jensen entropy difference. This index function was inde-
pendently proposed by Ma [30] and ld&al [19] for image registration problems. L¢ and f; be two densities and

B € [0,1] be a mixture parameter. TheJensen difference is the difference betweendtentropies of the mixture
f=Bfo+ (1 — B)f1 and the mixture of the-entropies off, and f; [2]:

Hol(B, fo, f1) = Ha(Bfo + (1= B) 1) — [BHa(fo) + (1= A)Ha(f)], o € (0,1). (20)
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Thea-Jensen difference is measure of dissimilarity betwgeand f; : as thea-entropyH,, (f) is concave inf it is
clear from Jensen’s inequality thatH (3, fo, f1) = 0iff fo = f1 a.e.

Thea-Jensen difference can be motivated as an index function as follows. Assume that two sets of labeled feature
vectorszZ, = {Zé’)}izl,,,,,no andz; = {Zf’)}izl,,,,,m are extracted from images, and X, respectively. Assume
that each of these sets consist of independent realizations from derfgiies f;, respectively. Define the union
Z = Zy U Z; containingn = ng + ny unlabeled feature vectors. Any consistent entropy estimator constructed on
the unlabeled (Vs will converge toH, (5 fo + (1 — 8) f1) asn — oo wheref = lim,,_, no/n. This motivates the
following consistent minimal-graph estimator of Jensen difference (20j ferny /n:

AH, (8 fo, f1) 2 Ha(Z0U 21) = [BHa(20) + (1 - B)Ha(21)], @€ (0,1).

whereﬁa(Zo U Zl) is the minimal-graph entropy estimator (9) constructed onrthmoint union of both sets of

feature vectors anff, (2,), H,(Z,) are constructed on the individual setsmgfandn, feature vectors, respectively.

We can similarly define the density-based estimator of Jensen difference based on entropy estimates of the form (7)
constructed oy U Z1, Zy and Z;.

For some indexing problems the marginal entrodie, (f;)} £, over the database are all identical so that the
indexing function{ H,, (3 fo + (1— B3) fi) } 1, is equivalenttd AH, (8, fo, fi) }£,. This fact was used in Metal[31]
for registering a query image to a database of images which are generated by entropy-preserving rigid transformations
of a reference image.

4.6 Comparisons ofa-Jensen Difference andy-Divergence

The local discrimination capabilities of theJensen difference and thedivergence can easily be compared using
the results (Propositions 6 and 7) obtained in Appendix A:

nDo(follfi) = ln (Ef% (fof—lf1>2 ) + C1 + o(A?) (21)
- i 27 2
I AHL (B, fo, fi) = In (Efa (fof—%ﬁ) +q fa (E'C; fOf—%f1]> ) + Cy
Fo(A?) _ )

f z
whereE;[g(z)] = [ f(x ) dz, f1 (x ) ffa — is a “tilted” pdf, A is a term that decreases in the difference
fo— f1, and(]l, C, are constants mdependentf@t f1.
There are a number of interesting propertielnab , (fo||f1) andln AH, (8, fo, f1):
e Up to orderA? the leading terms in (21) and (22) are the curvatures of thenkolivergence and the log
a-Jensen difference, respectively. These curvatures are a measure of the sensitivity of these index functions

for discriminating between density paifg, f1. The discrimination capability of tha-divergence is locally
independent oft while that of then-Jensen difference depends®n

¢ Whena approaches 0, tail differences between the two dengigiend f; are influential o \H,, (5, fo, f1).
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e Whena approaches 1, central differences between the two densities become highly pronouhégd iy fo, f1).
Therefore, if the feature densities differ in regions where there is a lot of mass one shouldelobmseeto 1 to
ensure locally optimum discrimination with H,, (3, fo, f1)-

e ANH,(B, fo, f1) has maximal discriminative capability wheh = % i.e., when two images vyield the same
number of feature vectors.

4.7 Estimation of a-Divergence

Here we describe extensions of the entropy estimation procedures described above to information divergence estima-
tion. Letg(z) be a reference density orfRvhich dominates the densitf(z) of a sample point = [z!,...,2z%"

in the sense that for all such thayy(z) = 0 we havef(xz) = 0. The plug-in estimator of the-divergence based on
independent estimation gfand f will have rms convergence rat@(n—'/(?+2)) when f® andg'~* are of bounded
variation. As described below, whelir) is known andf® is of bounded variation the minimal graph estimator can

be applied, achieving faster rms convergence rate of at Wust 1/(?+1)),

As introduced in Hero and Michel [22] minimal graph divergence estimation is performed by constructing a
minimal graph on a transformed sample where the transformation corresponds to a change of measure which flat-
tens the reference distributign For anyz such thatg(z) > 0 let g(z) have the product representatigf) =

g(zVg(z?|zh) .. g(zz?=1, ... ') whereg(z*|z*~1, ... z') denotes the conditional density associated with
of the k-th component. In what follows we will ignore the st : g(z) = 0} since, asf(z) = 0 over this set, it has
probability zero. Now consider generating the vegter [y, ...,y € R? by the following vector transformation
y' = G() (23)
vy’ = G(@|z')
y! = G(zz?L, ... 2t
whereG (27271, ... at) = ff; g(#7|27=1, ..., x')d7’ is the cumulative conditional distribution of thieth com-
ponent, which is monotone increasing except on the zero probabilitjzsetg(z) = 0}. Thus, except for this
probability zero set, the conditional distribution has an inverse G~ (y7 |27, ... ') = G71 (' |y, ..., y!)

and it can be shown (via the standard Jacobian formula for transformation of variables) that the induced joint density,
h(y), of the vectory takes the form:

’Gil(yd|yd71’ e ’yl))
— 24)

hy) = : Lytlyd=1,...,yh)

Y

Now let L(),,) denote the length of the greedy approximation to the MST constructed on the transformed random
variablesy,, = {Y1,...,Y,}. Then, by the consistency property of the MST estimator, we know that

1

Ho(Vn) = 7——

ln/ha(y)dy (a.s.) (25)

and, from Section 4.4, the r.m.s. convergence rate wilDbe~'/(?+1)), Making the inverse transformatign— =
specified by (23) in the above integral, noting that, by the Jacobian forak, g(x)dz, and using the expression
(24) for h, it is easy to see that the integral in the right hand side of (25) is equivalent toetmd Rformation
divergence off (z) with respect tgy(z)

1ialn/ha(y)dy= lialn/ <£Eg>ag(‘”)d’"
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Hence we have established ttat (), ) is a strongly consistent estimator of theri¥i information divergence above.

The results of Hero and Ma [20] and Hero and Michel [23] can thus be easily be extended to classification against any
arbitrary distribution f,,, and not just the uniform distribution initially studied by Hoffman and Jain [24] and Hero and
Michel [21]. This extension also holds for theMST described in Section 4.1.

4.7.1 Application to robust divergence estimation

Here we applied thé&-MST to robustly classify a triangular vs. uniform density on the plane. 256 samples were
simulated from a triangle-uniform mixture densjty= (1 — €) f1 + efo wheref; (z) = (3 — |z' — 3)(3 — |2 — &|)
is a (separable) triangular shaped product densityfgnd 1 is a uniform density, both supported on the unit square
r = (z',2%) € [0,1]2. The Rényi information divergencek(f, fo) andI(f, f1) were estimated bﬁa(Xn) and
I?[a(yn), respectively, forw = ; (y = 1 in the k-MST construction).),, was obtained by applying the mapping
y = (y',y?) = (Fi(z!), F1(2?)) to the data samplé’,,, whereF] (u) is the marginal cumulative distribution function
associated with the triangular density.

In a first sequence of experiments the estimafes.t,,) and H,(),) of the respective quantitie f, fo) and
I(f, f1) were thresholded to decide between the hypothéges ¢ = Ovs. H; : ¢ # 0andHy : ¢ = 1 vs.
H, : e # 1, respectively. The receiver operating characteristic (ROC) curves are indicated in Figures 1 and 2. Note
that, as expected, in each case the detection performance improves as the difference between thélgssutiéd
densities increases.

In a second sequence of experiments we selected two realizations of the triangle-uniform mixture model for the
valuese = 0.1 ande = 0.9. For the former case the triangular is the dominating density and for the latter case the
uniform is the dominating density. In each case#HdST was implementedi(= 90) as a robust clustering algorithm
to identify data points from the dominating densities - in the former cask-M8T was applied directly td’,, while
in the latter case it was applied 3§,. The resultings-MST quantitiesFIa(Xn,k) andﬁa(yn,k) can be interpreted as
robust estimates of the uncontaminatezhi@’information divergences(fi, fo) andI(fo, f1). respectively. Figure
3-5illustrate the effectiveness of these estimates as “outlier rejection” algorithms.

ROC - H -, N=256,£=.1,3,55,.7,.9 ; ref=Uni.

01 02 03 04 05 06 07 08 09 1
PFA

Figure 1: ROC curves for the &yi information divergence test for detecting triangle-uniform mixture derfisity
(1 — e)f1 + €fo (Hy) against the uniform hypothesjs = f, (Hp). Curves are decreasing ia over the range
e € {0.1,0.3,0.5,0.7,0.9}.

4.8 Estimation of Dependency in the Plane

One indexing application is to rank order images according to the degree of feature dependence. For example, if two
featuresX andY are horizontal and vertical changes over local neighborhoods of pixels one can search for evidence
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ROC - K -, N=256, £=.1,3,5,.7,.9 ; ref=Unif,
T

0 01 02 03 04 05 06 07 08 09 1
PFA

Figure 2:Same as Figure 1 except test is against triangular hypothfesisf; (H,). Curves are increasing ia

N=256, k/N=0.9, f =unif, f, =triang

0 01 02 06 07 08 09 1

03 4 0
Clustering in Original Data Domain

Figure 3:A scatterplot of a 256 point sample from triangle-uniform mixture density svth0.1. Labels 'o’ and ™’
mark those realizations from the uniform and triangular densities, respectively. Superimposed-sI8ieimple-
mented directly on the scatterplat, with & = 230.

N=256, k/N=0.9, f =unif, f, =triang

0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
Clustering in InvTriangle Transformed Data Domain

Figure 4: A scatterplot of a 256 point sample from triangle-uniform mixture density sv#h0.9 in the transformed
domain),. Labels '0’ and '* mark those realizations from the uniform and triangular densities, respectively. Super-
imposed is th&-MST implemented on the transformed scatterplpwith £ = 230
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N=256, k/N=0.9, f =unif, f, =triang N=256, k/N=0.9, f =unif, f =triang

o®¥
0 0.2 0.4 0.6 0.8 1
Clustering in InvTriangle Transformed Data Domain

Figure 5: Same as Figure 4 except displayed in the original data domain.

of anisotropy by evaluating a measure of statistical dependendearfdY. One possible measure is the mutual

a-information )

MIo(X,Y) = ——

ln/f“(X,Y)(f(X)f(Y))l_"‘dXdY.

This quantity converges to the standard Shannon mutual information in the limitad and is equal to zero if and
only if X,Y are independent.

Assume that the “two-dimensional functiofit X, Y)® and “one-dimensional functiong™ ~*(X) and f1~2(Y)
are all of bounded variation. If one could find minimax plug-in estimates based on independent estiig¥e3of,
f17%(X) and f'=*(Y), e.g. each based on separate segements of the data sample, this would result in overall
rms convergence rate no less thafm—"'/2) (O(n~'/?) contributed by minimax estimation of the two-dimensional
function andO(n 1) contributed by minimax estimation of the one dimensional functions). Note that this plug-in
estimation procedure requires a.e. positive estimate8 of (X) and f1~2(Y) or at least these marginal density
estimates should dominate the joint estimatg @Y, Y).

A hybrid method of estimation of the mutuatinformation which has faste?(n~2/%) rms convergence rate is
the following. Step 1: generate estimap@(§() andf(Y) of the one-dimensional functions using minimax density
estimation applied to\ andY components. Such estimates will converge a.s. with rms rates greaten than
when the marginals densities are of bounded variation. Step 2: apply the separable measure transfbrfpation
f(x)f(y) to the plane, as described in the previous section, and implement the MST estimator on (tRe¥he
realization imbedded into the transformed coordinates. The resultant estimator will converge a.s. to the:mutual
information with rms convergence rate bounded abov@by /). This procedure easily generalizes to estimating
thea-mutual information of @ dimensional sampleX, Y, . .., Z) for which the rms convergence rates of the minimax
plug in estimator is no less thai(n—'/(¢+2)) and that of the hybrid estimator @(n—'/(?+1)). For an application of
multi-dimensionake-mutual information estimation to image registration see Neemuchwallatahi@3].

The one dimensional density estimation step in the hybrid procedure can be circumvented by considering a related
measure to the mutuatinformation: the mutuad-entropy difference

AOHa(X:Y) = Ha(Xay)_Ha(X)_Ha(Y)

1 [, Y)dxdy
l—a " [ fo(X)dX [ fo(Y)dY

(26)

which also converges to the standard Shannon mutual information in the limit-as1. Given an i.i.d. sample
{(X;,Y3)}, the length of the MSTL, ({(X;,Y:)},) }iy)/n® converges w.p.1 to the numerator of (26) times
the scale factopr, 4, a = (d — )/d. Furthermore, le{x(i)}7_, be a permutation function, selected at random.
Then L, ({ (X (i), Ya(i) }i=1))/n® converges w.p.1 to the denominator of (26) times the same scale factor. It can be
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concluded that a consistent estimator\efH, (X, Y") is given by the ratio

_ 1 LU
AOHa(Xa Y) T 1l—a In L,Y({Xﬂ(i),yﬁ(i)}?zl)

which does not depend on the factér, ;. By comparing this statistic to a threshold we obtain a simple test for
dependence of two random variabl€sY based om i.i.d. observations. To reduce bias for finitdt is suggested

that the denominatak? def Ly ({Xr(i)» Yr(sy }iy) be replaced by a sample averalge = 1/|11| Y, LT where
IT is a set of randomly selected permutation functionsVhen f(X,Y)®, f1=%(X) and f!~%(Y") are of bounded

variation the minimax rms convergence rate of the muwahtropy difference will be)(n—2/3).

5 Application to Geo-Registration

It is desired to register two images taken on different sensor planes by potentially different sensor modalities for geo-
registration applications. Our objective is to register two types of images — a set of electro-optical(EO) images and

a terrain height map. For this multisensor image registration problem, there usually exists distortions between the
two types of images. The distortions are due to difference acquisition conditions of the images such as shadowing,
diffraction, terrain changes over time, clouds blocking the illumination sources, seasonal variations, etc. Existence of
such differences between the images to be registered requires that the registration algorithms to be robust to noise and
other small perturbations in intensity values. Here we describe an application of minimal graph entropy estimation to

a feature set which is the set of gray level pixels.

For this image registration problem the set of EO images are generated frarptiagi digital elevation model
(DEM)? of a terrain patch (the terrain height map) at different look angles (determined by the sensor’s location) and
with different lighting positions. With different sensor and light locations, we can simulate the distortions mentioned
above. For example, shadows are generated by taking into account both the sensor location and the lighting location as
follows. The scene is first rendered using the lighting source as the viewing location. Depth values (distance from the
light source) are generated for all pixels in the scene and stored in a depth buffer. Next, the scene is rendered using the
sensor’s location as the viewpoint. Before drawing each pixel, its depth value as measured from the sensor is compared
to the transformed depth value as measured from the light source. This comparison determines if a particular pixel is
illuminated by the source. Shadows are placed on those pixels that fail this comparison.

Geo-registration of a EO reference image to DEM’s in an image database is accomplished by selecting a candidate
DEM image from the database and projecting it into the EO image plane of the reference image. The objective is to
find the correct viewing angle such that the corresponding EO image is the best match to the EO reference image.
Figure 6 shows an DEM projected into the EO image plane with viewing angles (290, -20, 130) and the reference EO
image. Clearly they are not aligned.

For matching criterion we use the-Jensen difference, with chosen arbitrarily a9.5, applied to grey level
features extracted from the reference images and candidate EO images derived from the DEM database. For illustration
purposes we selected a very simple set of features via stratified sampling of the grey levels with centroid refinements.
This sampling method produces a setathree dimensional feature vectdfs = (z;,y;, F(z;,y;)) whereF (z,y)
is a sample of the grey level at planar positiary. The points{(z;,y;)}_, approximate the centroids of Voronoi
cells and{ F'(z;, y;) } 1, correspond to the set efsamples of the image from which we could reconstruct the original
image with minimum mean square error. For more details see [30]. When the union of features from reference and
target images are rendered as points in three dimensions we obtain a point cloud of features over which the MST can
be constructed and the Jensen difference estimated.

1DEM stores the terrain height information in a three dimensional array where each element of the array consists of the locations (x and y
coordinates) and the height of the terrain at that location.
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Image at 290,-20,130 rotation Reference image

50 100 150 200 250 300 50 100 150 200 250 300

(a) (b)

Figure 6: Misaligned EO and reference images

Figure 7 illustrates the MST-based registration procedure over the union of the reference and candidate image
features for misaligned images, while Figure 8 shows the same for aligned images. In both Figures 7(a) and 8(a),
circle points denote the pixels from Imagg and cross points denote the pixels from Image From Figures 7(a)
and 8(a) we see that for misaligned images, the representation points have larger distances than those for aligned
images. Therefore the corresponding MST for the misaligned images has a longer length than that for the aligned
images (Figures 7(b) and 8(b)).

We repeat this MST construction process over the union of reference features and features derived from each of the
images in the DEM database. The MST length can then be plotted in Figure 9. The x-axis stands for the image index,
which corresponds to the viewing angles from the aircraft. The minimum of MST length indicates the best matching
of the EO image and the reference image, which corresponds to the registered pair in Figure 10.

6 Conclusion

In this report we have discussed and comparelivergence and-entropy estimation techniques using minimal graph
estimation and density plug-in methods. We have also considereddbasen difference for performing indexing and
image retrieval. We have investigated the estimation-d&nsen difference using density plug-in estimators and the
MST minimal graph method. We demonstrated theoretical advantages of the latter method for indexing planar features
or higher dimensional features with feature densities of bounded variation.

Appendix A

Proposition 5 Let f% d:efé(fo + f1). The following local representation of the fractiona®i entropy of a convex
mixture fo + (1 — B) f1 holds for alla, 3 € [0, 1]:

H,(Bfo+ (1—p)f1)
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a fo(z)—fi(x)
ff (0 F1(2) >d~75

2 (222560 f3
B a 1 a (281 fi@) 3
= w4 (93) [ @) -3 (%) [ 75 @ds
) [R50 o))
a 26—-1 fi(@) 5
i () ( [FRCTZ B )
whereA € [0,1] is
p Hol@) — Hi(@)]
A% L NI (28)
proof
Let f1_g(z) = Bfo(z) + (1 — ) fr(z). It can be written as
fiople) = %[fo(w) + (1= B)(fi(@) = folx))] + 5 [ o(z) + B(fo(z) — fi(x))]
= J3 @)+ 528 - D(fol@) ~ fi(2))
= fi( )<1+72f%(m) )
whereA, = (fo(z) — fi(2))/f1 (). A Taylor series expansion gf"_;(z) yields
28 -1 «
fisw) = £ (1+ 252 )
= fi@) <1 + a(%;_ VA, + a(a; D <2ﬂ2_ 1Az> + o(Ag)>
(29)

Taking the logarithm of both sides of (29) and dividingby «

- lialn{/fg(w)da: [1+ affg(x)§2621Az) dx

alorl) [ fo(a (—_1Az) dz
ff1 (z)d

V)
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o () (2821
_ 1 In/fg(x)daurlialn {1+aff;(f9€;§(;)dafz)dx

11—«

22 [ poe) (B2 A ) de

] 7@y +ole)

Sinceln(1+z) =z — ’”2—2 + o(z?), we have

Ha(Bfo+ (1= 1) = = In [ 17 s(a)da
a 2,3—1waf§(x)dx g<2,8—1>2fﬂif§(m)dm
2

= Ho(f)+7—-— [ £3 (@)da 5 IFRCLE
o2 28 -1 2 (f Amfg‘(:r)da:)2 ,
T 2(1-a) < 2 > (f ff(x)dx)2 +o(A%). (30)

This completes the proof of Proposition 5. O

Proposition 6 The following asymptotic representation of the fractional Jensen difference of two defishied f;

holds for alle, 5 € [0, 1]:

AHa(B:vafl)
2 2
i g [T (25E2) e (1 (559 s
-T2 [ 5wy Ti-a [ 5@y
+o(A?%) (31)
wheref, andA are as defined in Proposition 5.
proof
Specializing tg3 = 0 and = 1 in (27) of Proposition 5 we obtain
o f%AIfg(:r)da: oS (%Az)zfg(a:)da:
Hofo) = Halfy)+ l—a [ f¥(z)de 3 J fe(z)de
o I %Azfg(a:)da: 2
= ( IRGE ) Folad 2
o [30:f8@de o [ (30:)° I (@)de
Ho(f) = Halfy) - 1-a ffg(a:)da: +§ ffg(a:)da:
o2 f%AIfg(a:)da: 2
T3i-a) ( FRCLE ) +ola) ¢
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whereA, = (fo(z) — fi(x))/f (). Substituting (27), (32) and (33) into (20), we obtain the expression (31) for the
Jensen difference. This completes the proof of Proposition 6 O

Proposition 7 Thea-divergence of fractional order € (0,1) between two densities and f; has the local repre-

sentation
2
a(follfr) = /f ( i ()> dr + o(A?)

(34)
wheref% andA are as defined in Proposition 5.
proof
Rewrite the density, as
fole) = S(@) + @) + 5 (o(e) = i) = fy @)1+ 384), (35)
whereA, = (fo(z) — fi(z))/f1(x). Similarly,
i) = @0 -8 (36)
Thus, by Taylor series expansion, we have
2
@ = f@-affo(5)+ e (5) ol
Az - — Am ?
Be@ = rwra-an e () S5 ew (5) e
Therefore
2
R@EE = f@ [1 ~a-D5 —at-a) (5) + o(Ai)]
and
Dalfollf) = 1 [ fr(a
2
- Lo / (f; (0) - 2a—1)f <x>% ~alt-a)fy @) (5) +1, <x>o(Ai>> o
2
= ln<1—a l-a /f1 <%> da:+o(A2)>
= /f (—QU) dx + o(A?)
2
= %/f% () (%ﬂ) dz + o(A2).
This completes the proof of Prop. 7. O
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Appendix B

Proposition 8 Let f;(z) = f(z; u1, A1) and fo(z) = f(z; po, Ao) be multivariated-dimensional Gaussian densities
with vector meang, , o and positive definite covariance matricks, Ay. The Fenyi divergence of ordet between
frandfyis

1/2 | Ao|* Ay

(0% _
Dalfilfo) = gt e a2 (eho+ (1= a)h) A (37)

whereAp = puy — po.

Proof

Start from the definition

Da(fillf) = ——1n / £ s, A ) £ (2 0, Ao )

a—1

1
and make a change of variable= A, 2 (z — po) in the integral to obtain

1 _1 1 _1
/ (@, A F (@ 0, Ao)de = [Aof? / P AT A AT TALAY ) (0, Iy, (38)

wherel, is thed x d identity matrix.

By completion of the square and elementary matrix manipulations it is straightforward to show that 6+ any
element vectomn and positive definite x d covariance matrixd

/f‘“(y;m,A)fl’“(y;O,Id)dy

B <|(1 —|j)|A_j‘ Oéfd|> 2 exp (—a(l —a) m"[(1 - a)A+ aly~'m)

1 _1 _1
Finally, identifyingm = A, 2Ap andA = A, 2A;A, 2, substitution of the above into (38) and performing some
matrix algebra we obtain (37).

This completes the proof of Prop. 8. O
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