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ABSTRACT

In this paper we examine several different apodization approaches to achieving

high-contrast imaging of extrasolar planets and compare different designs on a

selection of performance metrics. These approaches are characterized by their

use of the pupil’s transmission function to focus the starlight rather than by

masking the star in the image plane as in a classical coronagraph. There are two

broad classes of pupil coronagraphs examined in this paper: apodized pupils with

spatially varying transmision functions and shaped pupils, whose transmission

values are either 0 or 1. The latter are much easier to manufacture to the needed



– 2 –

tolerances. In addition to comparing existing approaches, numerical optimization

is used to design new pupil shapes. These new designs can achieve nearly as high

a throughput as the best apodized pupils and perform significantly better than

the apodized square aperture design. The new shaped pupils enable searches of

50% - 100% of the detectable region, suppress the star’s light to below 10−10

of its peak value and have inner working distances as small as 2.8 λ/D. Pupils

are shown for terrestrial planet discovery using square, rectangular, circular, and

elliptical apertures. A mask is also presented targeted at Jovian planet discovery,

where contrast is given up to yield greater throughput.

1. Introduction

With over 80 extrasolar planets discovered to date, interest in planet finding is becom-

ing intense. Both the scientific community and the public are increasingly enthusiastic for

new ideas and efforts toward discovering and characterizing extrasolar earthlike planets —

something that current ground based searches cannot accomplish. It is generally agreed that

terrestrial planet discovery, at least in the foreseeable future, will be accomplished via direct

imaging by a space based observatory.

In December, 2001 NASA completed a two year study by four industry teams of various

architecture concepts for the Terrestrial Planet Finder (TPF). In a well published conclusion,

NASA indicated the consensus that two approaches merit further study—an infra-red nulling

interferometer and a filled aperture, visible light coronagraph. Two of the teams proposed

apodization concepts for a coronagraph. One of them, the Ball Aerospace team, of which the

authors are members, focused on optimal shaped pupil coronagraphs, where the transmission

values are either 0 or 1.

In this paper we compare and contrast two different methods for achieving high con-

trast images. In particular, we restrict ourselves to examining apodized and shaped pupil

coronagraphs, excluding for now classical Lyot coronagraphs that control the diffracted light

by masking the star’s image. While in the literature apodization typically refers to any

modification of the aperture to alter the point spread function, here, to avoid confusion, we

use apodization to refer to smooth attenuation and reserve the terms “shaped aperture” or

“shaped pupil” for modifications to the pupil shape. We describe the tradeoffs in evaluating

various coronagraph options, developing the methodology in section 2 and various metrics

for comparison in section 3, and conclude that these favor shaped pupils over apodized

apertures. We then present recent results from numerical optimization approaches for both

square and circular shaped pupil coronagraphs.
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2. Pupil Apodization

The objective of an apodized or shaped pupil planet finding system is to tailor the

PSF in such a way as to make planet discovery and characterization possible. In contrast

to a classical coronagraph, where the bright stellar image is blocked in the image plane,

an apodized or shaped pupil system modifies the pupil to create a PSF with the needed

contrast at the planet location. In such a system, the PSF of the planet and star are

identical, merely shifted to correspond to their relative location in the sky and scaled by the

ratio of irradiances, Is/Ip, where Is is the irradiance of the star and Ip is the irradiance of the

planet. In this section, we briefly derive the relevant relationships for the PSF of telescopes

with different shapes and apodizations.

The principals of telescope apodization and diffraction theory are well established—see,

e.g., (Hecht 1998) and (Born and Wolf 1999). We only review here the basic equations in

order to establish notation and provide convenient references for the essential results. Our

notation follows closely that of Hecht (1998). We consider only Fraunhofer diffraction theory,

where the field in the image plane is the Fourier Transform of the entrance field. We also

assume perfect, aberration free optics with a Strehl of one. Detailed discussions of sensitivity

and error will be considered in a future paper.

We consider the electric field response from plane parallel light waves arriving at the

entrance pupil as Huygen’s wavelets with source strength εA per unit area constant across

the aperture, and passing through an arbitrary aperture apodization Ã(ỹ, z̃) (here written

in rectangular coordinates):

E(Y, Z) =
εAei(ωt+kR)

R

∫ ∞

−∞

∫ ∞

−∞
Ã(ỹ, z̃)e−ik(Y ỹ+Zz̃)/Rdỹdz̃ = F{Ã(ỹ, z̃)} (1)

where Y and Z are positions on the image plane, k = 2π
λ

is the wavenumber of the incoming

light, R is the focal length, ỹ and z̃ are the position across the pupil, and 0 ≤ Ã(ỹ, z̃) ≤ 1

(we assume here that there is no phase effect from the apodization). Note that the aperture

can be open, which we refer to here as a shaped aperture, where Ã(ỹ, z̃) takes on values of

only 0 or 1, or it can include a smooth transmission mask, which we will refer to here as

apodization, where Ã(ỹ, z̃) takes on a continuum of values.

It is useful when comparing different designs to change independent variables to a dimen-

sionless form. If we consider a rectangular telescope opening with length a in the y-direction

and b in the z-direction, the electric field can be written in the dimensionless form:

E(ξ, ζ) =
AεAei(ωt+kR)

R

∫ b/2a

−b/2a

∫ 1/2

−1/2

A(y, z)e−2πi(ξy+ζz)dydz (2)
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where A = a2 is the area of an open (unapodized) fiducial a × a square aperture, y and z

are dimensionless positions in the pupil, and ξ and ζ are dimensionless angular positions in

the image plane in units of λ/a, i.e.,

ξ =
aY

λR
, ζ =

aZ

λR

The image plane detector measures the irradiance of the arriving field, I = cεo

2h
|E|2, in

photon sec−1 m−2 µm−1, where c denotes the speed of light, h is Planck’s constant and εo is

the permittivity of free space. Squaring the magnitude of the electric field Eq. (2) provides

the irradiance equation of interest,

I(ξ, ζ) = IoP (ξ, ζ) (3)

where Io is the normalized irradiance of the source (planet or parent star) entering an aperture

of area A before apodization,

Io =
cεo

2h

A2ε2
A

R2
, (4)

and P (ξ, ζ) is the point spread function (PSF) for the apodization or embedded shaped

pupil,

P (ξ, ζ) =

∣∣∣∣∣
∫ b/2a

−b/2a

∫ 1/2

−1/2

A(y, z)e−2πi(ξy+ζz)dydz

∣∣∣∣∣
2

.

Note that for an open square aperture, P (0, 0) = 1. Hence, I(0, 0) = Io and the

irradiance for the square aperture is:

I(ξ, ζ) = Io

(
sin πξ

πξ

)2 (
sin πζ

πζ

)2

.

We have used a slightly unconventional form for the irradiance and the PSF. The ob-

jective later in the paper is to compare different apodizations in throughput or integration

time and other metrics. In order to have a meaningful comparison, we constrain all designs

to have preapodized apertures of a given area. Thus the irradiance in Eq. (4) is the same

for all designs—the same amount of light enters the telescope. The spatial frequency axis

has been scaled by the length of the equivalent square aperture with area A. For apertures

of other shapes (including the optimal shapes we present below), the point spread function

must be properly scaled so that Io is the same for each one. For example, an open rectangular

aperture with area A but aspect ratio r < 1 has the point spread function:

I(ξ, ζ) = Io

(
sin πξ/

√
r

πξ/
√

r

)2 (
sin πζ

√
r

πζ
√

r

)2

.
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As expected, P (0, 0) = 1 as before since the area, and thus throughput, is unchanged but

the PSF has become narrower by
√

r in the ξ-direction and wider by 1/
√

r in the ζ-direction.

Important special cases of shaped apertures are the common circular aperture (where

the PSF in Eq. (2) reduces to the Hankel Transform) and stretched elliptical apertures. An

elliptical aperture has the same effect as the rectangular one above—narrowing the PSF on

one axis for the same area (it also has the benefit of being easier to fit into a typical launch

vehicle shroud).

As an example, for the cirular pupil the two-dimensional Fourier Transform in Eq. (1)

reduces to the one-dimensional Hankel Transform. For a circular aperture with area A = a2

and thus diameter a′ = 2a/
√

π, the irradiance becomes:

I(ρ) = IoP (ρ) (5)

where Io is again given by Eq. (4) and the point spread function is dependent on the

normalized image plane radius only,

P (ρ) =

[
2π

∫ 1/
√

π

0

rA(r)Jo(2πrρ)dr

]2

. (6)

Again, this is slightly different from conventional usage because we are making an equal area

comparison to the square result (in other words, a circular telescope with the same area as

a square has a slightly larger diameter and thus slightly better resolution). As before, the

image plane coordinate ρ is the angular position in the image plane in units of λ/a.

As with the square aperture, it is straightforward to calculate the PSF for an open

circular pupil (where A(r) = 1) to find the modified Airy function:

P (ρ) =
J2

1 (2
√

πρ)

(
√

πρ)2
. (7)

Again, for the open pupil and the normalizations used here, the PSF at the origin is unity and

I(0) = Io. These forms of the PSF for the open apertures will form important benchmarks

for comparison as they represent the maximum system throughput for a given size and shape

of telescope.

Finally, in some cases it is useful to consider an elliptical aperture (such as the proposed

TPF architecture from the Ball Aerospace studies (Kilston 2001)). Omitting the details for

brevity, the irradiance for the equal area ellipse can again be put in the form of Eq. (3),

where Io is the same as Eq. (4), a′ = 2a/
√

πr is twice the semi-major axis (y-direction) and

b′ = ra′ is twice the semi-minor axis dimension (z-direction) (as for the rectangle, r < 1 is
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the aspect ratio of the ellipse). The point spread function is then given by:

P (ξ, ζ) =

∣∣∣∣∣∣
∫ 1/

√
πr

−1/
√

πr

∫ √
r
π

(1−πry2

4
)

−
√

r
π

(1−πry2

4
)

A(y, z)e−i2π(ξy+ζz)dydz

∣∣∣∣∣∣
2

, (8)

where ξ and ζ are in units of λ/a. For a symmetric apodization, where A varies with y only,

this simplifies to:

P (ξ, ζ) =

∣∣∣∣∣
∫ 1/

√
πr

−1/
√

πr

A(y) sin(πζ
√

r
π
(4− πry2))

πζ
e−i2πζydy

∣∣∣∣∣
2

(9)

While it is possible to find a closed form for the PSF for the open elliptical pupil, the

expression is complicated so we omit it here. We do note, however, that this normalization

again results in P (0, 0) = 1 for the open, elliptical pupil.

The main advantage of the elliptical pupil is that, for the same collecting area, it allows

for a much higher resolution in one axis for planet finding, which we’ll call the sensitive axis.

It is also easier to fit in a launch vehicle and weighs less than a rectangular telescope with

the same resolution in the sensitive axis.

3. Optimization Criteria

Qualitatively, it is possible to describe the basic features of an ideal planet finding

system. The background at the planet location, either due to the star’s PSF or due to

scattered light from imperfections in the system, must be low enough to allow detection

and characterization of the dim planet. The system throughput must be high enough such

that sufficient light from the planet arrives at the detector in a reasonable integration time.

In addition, we desire the ability to detect planets as close as possible to the star with a

field large enough to find planets in the fewest exposures. Thus, the PSF of the system

must be such as to maximize contrast while also maximizing planet throughput in some

to-be-determined sense.

It is also useful to distinguish between statistical noise and systematic errors. In the

ideal system, the PSF is designed to accomplish detection in a minimum integration time,

considering only the statistical noise due to the planet and background. In addition to

this, however, systematic effects must also be considered, such as scatter from poor optics

(“speckles” in the image plane), manufacturing errors in the coronagraph, telescope pointing

errors, thermal stability, and finite stellar image size, to name a few. In this paper, we

consider only the statistical noise when designing an optimal coronagraph. We separate the
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systematic errors and consider them as errors on the statistical performance, compenstated

for in either observatory design or by an adaptive optics system. More detailed considerations

of these systematic effects will be presented in a later paper.

We also distinguish between planet detection and characterization. For detection, only

sufficient signal in a pixel area is needed to determine the existence of the planet. In contrast,

for characterization photometry is performed on the planet signal, thus requiring sufficient

photons to estimate the planet irradiance to a desired accuracy. For the optimizations here

we will focus only on the problem of planet detection, leaving a detailed description of planet

photometry and its relationship to the point spread function to another paper.

There are three quantitative criteria we will use for measuring the effectiveness of a

planet detection system—contrast ratio, integration time, and inner working distance (IWD).

In the following subsections we detail the relationships among these and the point spread

function of the telescope. These can then be used for both comparisons of different designs

as well as for direct optimization.

3.1. Contrast

Brown and Burrows (1990) introduce the contrast quotient, Q, defined as the ratio of

the mean central irradiance of the planet image to the mean surface irradiance of the local

background on the detector. The local background is dominated by the value of the diffracted

starlight and any scattered light due to imperfections in the optics1. Thus, the contrast can

be partitioned into two terms—Qss (for suppressed star) and Qsc (for scattered starlight).

Using Ip to represent the peak irradiance of the planet and Is to represent the peak irradiance

of the star, located on the telescope axis, Qss is given by:

Qss =
IpP (0, 0)

IsP (ξp, ζp)

where P (0, 0) is the central value of the PSF and P (ξp, ζp) is the value of the PSF at the

location of the center of the planet image, (ξp, ζp). For the planet to be detectable in a

reasonable integration time, it is desirable that the contrast ratio Q be greater than or equal

to 1.

It is shown in Brown and Burrows (1990), Brown et al. (2002), and Traub (in prepara-

tion) that for the star systems of interest, the flux ratio of the star and planet, Ip/Is, is as

1Here we are ignoring the smaller contribution due to the mean local and exozodiacal light.
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small as 1× 10−10. In order to achieve a unit contrast ratio, Q = 1, for the dimmest planet,

the final PSF of any planet detecting system must have an inherent contrast,

C =
P (ξp, ζp)

P (0, 0)
≤ 10−10

Note that we are making a distinction here between the commonly used contrast ratio,

Q, and the PSF contrast, C. The first is an observed quantity dependent upon the particular

planetary system being detected and can vary with each observation. The second is a fixed

property of the point spread function of the telescope and is a design requirement in our

optimizations. We show in the next subsection that the performance of the system is strongly

dependent on Q, the contrast in the observation, with a premium placed on high Q, thus

establishing a requirement on C in our design process.

The same definition for Q can be applied to the contrast due to scattered light. Phase

and amplitude errors introduced because the primary mirror is not perfect produce a halo

of scattered light in the image plane. The mean value of this halo must be less than the

peak of the planet image as well, introducing the same requirement on Qsc. This reduction

in scattered light is accomplished via wavefront control using an array of actuators across

the diameter of a reimaged pupil. The properties of such a system are described in Brown

and Burrows (1990) and Brown et al. (2002). In this paper, we simply assume a fixed (and

generally known) background due to both diffracted starlight and scatter, where the scatter

has been reduced to the level of the stellar PSF and the system is assumed stable during

an observation (some relaxations to these considerations will be discussed below). The total

contrast ratio is then given by:

Q ≡
(

1

Qss

+
1

Qsc

)−1

We note that, in principal, planet detection is possible with Q much less than one, as-

suming a stable diffraction pattern that can be calibrated. However, as we will show next,

statistical considerations show that the integration time in order to average the resulting

photon noise due to the suppressed star background becomes unreasonably long and system-

atic considerations introduce severe requirements on system stability (Brown et al. 2002). Of

course, a large Q can also be considered, increasing the requirement on C for the dimmest

planets. However, producing a Q much larger than 1 offers little improvement in integration

time (as this becomes dominated by the planet photon noise and detector noise) while it

introduces tremendously difficult requirements on the optics.
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3.2. Integration Time

The most important performance metric for a planet finding system is integration time.

Integration time here is defined as the observing time necessary to guarantee a detection

with some confidence. In general this is different than the time needed for photometry

(characterization), i.e., for determining the planet irradiance with some relative accuracy.

The optimizations we explore strive to minimize the integration time for a planet detection.

Minimizing integration time allows for the most possible observations during the mission as

well as relaxes requirements on system stability.

The difficulty is that there are many possible ways to define the integration time, each

a function of the particular numerical process used to process the planet and star signal.

While it is possible to consider many approaches to the planet detection problem (simple

detection, photometry, least squares fitting, bayesian decision making, hypothesis testing,

and maximum likelihood estimation to name a few), it is beyond the scope of this paper

to explore these in detail. Instead, we present two methods that can be used to find an

integration time formula for optimization and evaluation. These provide the advantages of

being straightforward to compute, being in common use, and providing equations that are

easily utilized in an optimization scheme. Both approaches involve defining how to estimate

the signal S and the noise N . Planet detection is defined as the time at which the ratio S/N

reaches a certain value, typically S/N = 5.

3.2.1. Detection Time

In the first case, we consider the integration time needed to detect a planet, with ir-

radiance Ip, in a known and uniform background (suppressed starlight and scatter) with

irradiance Ib = Iss + Isc. Photons are collected in a region of normalized area ∆S about the

central peak of the PSF, with the arrival of the photons governed by a Poisson process with

rate

Ipt∆P + Ibt∆S

where t is the integration time, Ip and Ib are the normalized peak irradiances of the planet

and background respectively and ∆P is the integral of the PSF over ∆S:

∆P =

∫
∆S

P (ξ, ζ)dξdζ (10)

The signal-to-noise ratio is defined as the expected mean planet signal, Ipt∆P , divided by

the residual background photon noise remaining after subtracting the mean level of the back-

ground,
√

Ibt∆S. We are confident in a detection when this signal-to-noise ratio achieves
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a certain value, e.g., S/N = 5. In other words, a bright spot in the image plane is consid-

ered a planet when its irradiance is greater than 5 standard deviations above the expected

background noise.

The resulting equation for S/N can be rearranged to provide an equation for the inte-

gration time necessary to achieve the desired signal-to-noise ratio:

t1 =
(S/N)2P (0, 0)∆S

IpQ∆P 2

The integration time is dependent upon the size of the region of the PSF being collected,

the shape of the PSF, and the contrast of the observation. There is also a minimum inte-

gration time for some collecting area—too small an area results in too few photons and too

large an area results in too much background relative to the signal as the PSF is decreasing

while the background remains uniform. For most PSF’s considered, this is usually a bit

larger than the full-width-half-max (FWHM) point.

3.2.2. Characterization Time

A second approach to detection is to perform photometry on the signal, computing an

estimate of the planet irradiance. This is equivalent to the planet characterization problem.

A straightforward hypothesis test is used to examine the estimated value—if it is larger than

the expected error in the estimate by some amount, then we accept the hypothesis that there

is a planet at that location. We form a signal-to-noise ratio as the planet irradiance divided

by the estimate error and accept the hypothesis for S/N greater than some amount, again

usually S/N = 5.

There are a variety of ways to perform photometry on the measured signal. Perhaps the

most straightforward is to collect photons in some region, ∆S, as above. It can be shown that

estimating the irradiance based on the total integrated intensity in a region, however, will

always produce a longer integration time than the simple detection rule described previously

because of the impact of the planet photon noise on the estimate, while providing no benefit

to the detection problem. A more common approach to photometry is to fit the known PSF

to the measured signal (demodulation) in the same bright central region. This is an efficient

and accurate characterization method but again provides little benefit to detection in the

case of a known background. In the case of an unknown background, however, the peak

detection described above is impractical as it requires subtraction of a known background

level. In many cases separate estimates of the background may not be available or we may

not have confidence that the background is uniform across the discovery space. The only
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alternative for detection in that case is to perform photometry, simultaneously estimating

the background and planet irradiance by fitting the PSF, and testing for a planet.

The most straightforward estimation approach in this case is to use a simple unweighted

least-squares fitting procedure of the expected planet PSF and a constant background. The

details of the two-dimensional estimation are omitted for brevity. The resulting estimate for

the planet irradiance is given by:

Îp =
∆S∆α

∑
i,j ∆Pi,jzi,j −∆α2

∑
i,j ∆Pi,j

∑
i,j zi,j

t

[
∆α∆S

∑
i,j ∆P 2

i,j −∆α2
(∑

i,j ∆P
)2

]
where zi,j is the measured photon count at the i, j pixel in the image plane, ∆α is the

normalized area of each pixel, and ∆Pi,j is the integrated value of the PSF over the i, j pixel.

The integration time for this estimate is found by computing the mean square error and

dividing by Ip. Here we need to consider the contribution to the error from both the planet

photon noise and the background. The result one obtains, assuming small pixel sizes relative

to PSF width, is:

t2 =
(S/N)2P (0)

Ip

[
∆S∆2P − (∆P )2]

{
∆S2∆3P − (∆P )3

P (0, 0)
[
∆S∆2P − (∆P )2] +

∆S

Q

}

where ∆P is the integral over ∆S as in Eq. (10) and:

∆2P =

∫
∆S

P 2(ξ, ζ)dξdζ

∆3P =

∫
∆S

P 3(ξ, ζ)dξdζ

This integration time equation is important both because it quantifies detection in an

unknown and uniform background and because of the balance between the PSF and contrast.

For a given size region, ∆S, this equation will provide a shorter integration time for some

Q than does t1. In particular, for small Q where the background is larger than the planet

irradiance, this will provide a shorter detection. However, as an optimization requirement

it is much too complicated. We therefore use t1 in our optimizations and only examine t2
for comparisons, both because the nominal detection case is for Q = 1 and because the

computations are greatly simplified.
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3.3. Inner Working Distance

Inner working distance (IWD) is defined as the smallest angular separation from the

star for which the PSF contrast, C, reaches the required value of 10−10. In words, it is the

closest position to the star at which a detection is possible. For TPF, the coronagraphic

system must achieve an IWD at the inner edge of the habitable zone of the most distant

candidate systems. A coronagraph with a smaller IWD allows discovery at more distant

stars and, consequently, a larger sampling of systems. We note that IWD is not defined

as the closest discovery with the integration times quantified above. We recognize that for

planets at the very edge of the IWD the PSF may be distorted by the coronagraph, resulting

in larger integration times. For the purposes of integration time comparison, we assume a

location that is more than one FWHM from the IWD. We use IWD as a separate metric.

3.4. Discovery Space

In this context, discovery space refers to the region of the image plane within which

a detection is possible—that is, the region where C = 10−10. For an achievable IWD, this

defines the azimuthal region where dark contrast is maintained as well as the outer working

distance (OWD) or field of view of possible discoveries. A classical coronagraph, for example,

has a full 2π discovery space around the central star location. In contrast, the apodized

square aperture (ASA) of Nisenson and Papaliolios (2001) has a narrow discovery space

around the diagonals of the square (when near the IWD). The single Spergel pupil (Spergel

2000) has an even narrower discovery space about the axis in the image plane. For any

system with a discovery space less than 2π, some rotation of the telescope or optical system

will be necessary for detection. This results in an effective increase in the integration time

by the number of orientations required to fully scan the habitable zone around the target

star.

It is worth observing again at this point that these various metrics are interdependent

and a variety of tradeoffs are possible. For instance, shorter integration times can often be

achieved by narrowing the search space or smaller inner working distances can be accom-

plished by greatly reducing the outer working distance or field-of-view of the telescope. It

is likely that a visible light coronagraphic version of TPF will be equipped with a variety of

stellar suppression masks allowing observations to be modified for each system.
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4. Apodized Pupils

In this section we review some proposed apodized apertures for achieving the needed

contrast, C = 10−10. There is a long history of apodization concepts, many dealing with

the high contrast imaging problem (Indebetouw 1990; Jacquinot and Roizen-Dossier 1964;

Watson et al. 1991). A particularly comprehensive review can be found in Jacquinot and

Roizen-Dossier (1964). Recently, Nisenson and Papaliolios (2001) proposed an apodized

square aperture for TPF with separate apodizations in each direction, that is, A(y, z) =

A1(y)A1(z). This square, cross apodization results in a strong attenuation on the diagonals

in the image plane. It also greatly simplifies the analysis as the resulting point spread

function is the product of the Fourier transforms. For the apodization they proposed sonine

functions:

A1(y) = (1− 4y2)ν−1 ,

where ν is either 3, 4, or 5. Larger ν creates a smaller inner working distance at the expense

of throughput.

Fig. 1 shows the image plane response and diagonal cross section of the ASA for ν = 5.

Unfortunately, the ASA is less than optimal on all the metrics described. Its inner working

distance along the diagonal is 5 λ/a, deteriorating rapidly for other azimuths. It has a

narrow discovery space, and, as shown in Table 1, it has large integration times because of

the low throughput, aggravated by the need for many rotations to cover fully all azimuths

at the closest IWD.

Alternatively, Slepian (1965) found the compactly supported function that maximally

concentrates energy in the frequency domain—the zero-order prolate spheroidal wave func-

tion. In other words, it maximizes ∆P under a fixed throughput constraint. This is very

close to directly optimizing t1. Slepian showed how this function can be used to apodize a

square aperture in one direction, resulting in the PSF in Fig. 2. This PSF has a better IWD

and Table 1 shows that it has a considerably improved integration time. While, like the ASA,

it must be rotated for detection, two rotations cover the discovery space and even at twice

the integration time it is better. Also notable is its performance for unknown background.

Because of its increased sharpness, it is dramatically better in integration time even when

using only a small portion of the PSF.

The IWD can be improved off axis by using a circularly symmetric apodization at the

slight expense of integration time. Here, Slepian (1965) proposed the use of the general-

ized prolate spheroidal functions. These functions solve the same optimization problem for

circularly symmetric pupils (that is, maximally concentrating the energy in the Hankel trans-
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form). Fig. 3 displays the PSF of a Slepian apodization in an equal area circular pupil. 2

This apodization has a full 360 deg discovery zone, so no rotations are necessary, and the

smallest IWD. The integration time is considerably smaller than the effective integration

time for the square apodizations, where rotations are necessary for a full detection, and on

the same order as that for the 1-D prolate spheroidal apodization.

It is possible to further optimize the apodizations. For instance, we can numerically

optimize the integration times directly or we can search for apodizations with narrower

discovery regions and smaller IWDs. However, because of the fundamental limitations of

apodized approaches, this effort is not warranted. Apodized pupils suffer from a severe

sensitivity to the quality of the apodization.

In fact, very slight changes to the apodization function, particularly in the dark areas,

result in significant degradations in performance. There is currently no available process that

can achieve the required accuracy on graded masks. For example, Fig. 4 shows the point

spread function for the one-dimensional prolate spheroidal apodization with an extremely

small additive error of 6 × 10−12 Hz−2 (where Hz is in units of λ/a). Even with this slight

error the contrast ratio increases by over an order of magnitude, directly affecting integration

time and the ability to detect planets.

5. Shaped Pupils

Because of the limitations in manufacturability of apodized apertures, we turn to shaped

pupils as an alternative. Spergel (2000) first introduced the concept of using a Gaussian

shaped aperture to achieve high contrast on-axis. In Kasdin et al. (2002) an optimal shaped

pupil was proposed using the prolate spheroidal wave function. This can easily be seen

by modifying Eq. (2) for a shaped aperture rather than an apodization. If w(y) ≥ 0 is

the height of the opening as a function of y across the aperture, then one of the transform

integrals is easily computed resulting in:

E(ξ, ζ) =
AεAei(ωt+kR)

R

∫ 1/2

−1/2

sin(2πζw(y))

2πζ
e−2πiξydy

The response on axis (ζ = 0) is identical to the one-dimensional apodization equation. Thus,

on-axis the optimal solution is the same as the prolate spheroidal apodization discussed above

2Since the computation of the generalized prolate spheroidal functions is quite involved, these results
were obtained by direct numerical optimization.



– 15 –

and shown in cross section in Fig. 2. Fig. 5 shows a single prolate spheroidal pupil of width

a inscribed in a circular aperture and the corresponding point spread function.

The biggest advantage of using a shaped pupil is in the ease of manufacturing. For

example, a 1 micron rms error in cutting a 1 cm pupil, something easily achieved in practice,

has no effect on the point spread function and thus no effect on contrast. In addition, for

the single shaped pupil, the integration time is substantially decreased, with a t1 of 4.6 and

a t2 at full width of 8.

The most significant drawback of the single prolate spheroidal pupil is the rapid decrease

in contrast off axis and thus the very small discovery space near the IWD. It was shown in

Kasdin et al. (2002), however, that this discovery space can be increased by using multiple

pupil openings with little to no effect on throughput. In what follows, we present a selection

of optimal multi-opening pupils to achieve high contrast at minimum integration time. These

pupils were computed by numerical optimization using the second author’s loqo (Vanderbei

1999). The optimization problems are expressed in the ampl (Fourer et al. 1993) language.

ampl models for any of the designs can be provided on request.

The apodization/mask functions to be found by optimization are represented by dis-

crete approximation over a fine grid. The optimization requirements involve the electric field

in the image plane, which is a Fourier integral of the entrance pupil. Those integrals that

can be evaluated explicitly are. Those that can’t are approximated by their Riemann sum.

After optimization, approximating grids are refined by a factor of 3, the optimal functions

are extended to the refined grid, and then figures and metrics are produced from this re-

fined representation. In the following subsections, we present a selection of five optimized

pupils. While not necessarily definitive, these pupils indicate the utility of a shaped-pupil

optimization approach.

5.1. Non-Azimuthally Symmetric Pupils

We begin with pupils that are symmetric with respect to reflection in the y and z axes

but are azimuthally asymmetric. An example of such a pupil is the prolate spheroidal mask

shown in Fig. 5. We consider such pupils with multiple openings. Let the j-th opening in the

upper halfplane be given by two even functions vj and wj: {y, z : vj(y) ≤ z ≤ wj(y)}. The

corresponding opening in the lower halfplane is then given by {y, z : −wj(y) ≤ z ≤ −vj(y)}.
Of course, we impose constraints that ensure that these openings do not overlap. The
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problem is to maximize throughput

4
n∑

j=1

∫ 1/2

0

(wj(y)− vj(y))dy

subject to the constraint that the contrast is at least 10−10 throughout a pair of annular

sectors covering the y-axis and extending from an IWD ρ0 to an OWD ρ1. For example, in

polar coordinates, a 90 deg annular sector over the positive y-axis is given by

{ρ, φ : ρ0 ≤ ρ ≤ ρ1,−π/4 ≤ φ ≤ π/4}.

We represent this continuum of constraints by a finite set layed out on a polar grid over this

set. This problem is not precisely that of minimizing integration time but is more tractable

and achieves essentially the same goal. In any case, we evaluate the quality of our pupils

with integration time as the metric.

Using an IWD of 4.2, an OWD of 29.3, and a 1.0× 0.7 rectangular pupil design space,

we get the pupil and PSF shown in Fig. 6. With this pupil, the entire 360-deg habitable

zone can be explored in just two integrations (see Table 2). Another pupil designed for a

1.0 × 0.4 elliptical mirror, an IWD of 2.8, and an OWD of 14.8, is shown in Fig. 7. While

it requires four integrations to cover 360 degrees, this pupil has such high throughput that

the total integration time is lower than for the rectangular one. The drawback of this mask

is that the OWD is rather modest. As an alternative, we set the OWD to 67 and found the

mask shown in Fig. 8. It has an IWD of 4.5. Integration times are shown in Table 2.

Lastly, in Fig. 9 we show an 8 pupil opening inscribed in a circular telescope. This

pupil was designed for the Eclipse mission, a proposed Discovery class mission for detecting

extrasolar Jupiter size planets (T.Hull et al. 2002). Because it is searching for brigher and

larger planets, the contrast needs to be only 10−8 rather than 10−10. This relaxation can be

used to improve integration time. Table 2 shows that, as expected, the Eclipse mask has the

lowest total integration time.

5.2. Azimuthally Symmetric Pupils

The generalized prolate spheroidal apodization function discussed earlier and illustrated

in Fig. 3 is the solution to the following optimization problem:

minimize
∫∞

ρ0
P (ρ)dρ

subject to: A(0) = 1,

A(r) ≥ 0, for 0 ≤ r ≤ 1/2.
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Here, α denotes a given lower bound on throughput.

Since the habitable zone does not extend indefinitely, it is reasonable to consider chang-

ing the integral to one of finite extent, say from an inner working distance ρ0 to an outer

working distance ρ1. Furthermore, since apodizations are harder to manufacture than masks,

we also can impose the constraint that the function A(r) be 0-1 valued. The mask then con-

sists of concentric open rings. Using an IWD of 3.5, an OWD of 42.5, and 26 rings, we found

the mask shown in Fig. 10. Of course, one must figure out how to support these concentric

rings. Embedding them in a transmissive material is one possibility but raises concerns of

scatter from imperfections in the material. Alternatively one can use spokes (i.e., a spider)

to support them. Initial analysis seems to indicate that using lots of very fine spokes has

less impact on the PSF than a smaller number of thicker spokes, however, more study is

required.

Integration times for all of the binary masks are shown in Table 2.

6. Conclusions

There are several pupil apodization approaches that will achieve the needed contrast for

discovery and characterization of extrasolar terrestrial planets—planets within the habitable

zone of sunlike stars out to 10 or 20 pc. However, the differences in integration times and

discovery space (including inner working distance) are notable and optimization can provide

substantial benefit. Traditional pupil apodization is effective, with a circularly symmetric

pupil using the generalized prolate spheroidal function of Slepian (1965) by the far the

best choice—it has the closest inner working distance for a given area and the shortest

integration time while searching a full 360 degrees in one observation. However, we showed

that apodized techniques can be very problematic for terrestrial planet finding because of the

extreme sensitivity of the PSF to errors in apodization. It is difficult to maintain a contrast

of 10−10 even with very precise manufacturing control. Instead, we proposed shaped pupils.

Optimal shaped pupils can achieve close to the same or better integration times while

being far easier to manufacture using current technology. By taking advantage of elongated

apertures, such as rectangles and ellipses, it is also possible to achieve extremely small IWDs

for a given area with very little penalty on integration time. While shaped pupil apertures

require multiple rotated exposures for planet discovery, the full 360 degrees at the smallest

IWD can be searched with no more than 4 exposures at integration times comparable to the

best apodizations. For characterization and spectroscopy, the planet location is known and

shaped pupils with the narrowest discovery region are optimal as they provide the shortest
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integration time for photometry (e.g., the single prolate spheroidal pupil has a normalized

t2 for photometry of 8 and the elliptical shaped pupil a t2 of 9.5 compared with 34 for the

generalized prolate apodization and 48 for the ASA). The results in this paper were only a

small sample of the optimal shaped pupils we are studying. For example, we are continuing

to pursue designs with additional openings to decrease integration times for the same IWD. It

is also possible to decrease integration time for elongated pupils by sacrificing IWD. Because

of their promise, further work is warranted to achieve the best possible shapes and to study

in more detail the effects of manufacturing error and aberrations.
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ASA with Sonine Apodization, nu = 5
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Fig. 1.— Left The PSF for a unit-area apodized square aperture (Nisenson and Papaliolios

2001) (ASA) with a sonine apodization (ν = 5) plotted on a logarithmic scale with black

areas 10−10 below brightest. Right Cross section of ASA on diagonal showing inner working

distance of 5λ/a. This mask has a single-exposure normalized discovery integration time of

25.5 with a small discovery space at the inner working distance (IWD).
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1-D Prolate Spheroidal ASA
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Fig. 2.— Top Left The PSF for the one-dimensional prolate spheroidal apodized square

aperture (Slepian 1965) of unit area plotted on a logarithmic scale with black areas 10−10

below brightest. Top Right On-axis cross section of the PSF showing an inner working

distance of 4λ/a. Bottom Diagonal cross section of the PSF showing an inner working

distance of approximately 5λ/a. This mask has a single-exposure normalized discovery

integration time of 9.5 with a discovery space covered by two exposures.
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Generalized Prolate Spheroidal Apodization
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Fig. 3.— Left The PSF for the azimuthally symmetric generalized prolate spheroidal

apodized circular aperture (Slepian 1965) of unit area plotted on a logarithmic scale with

black areas 10−10 below brightest. Right Cross section of the PSF showing an inner working

distance of 3.5λ/a. This mask has a single-exposure normalized discovery integration time

of 17 that fully covers the discovery space.
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1-D Prolate Spheroidal Apodization PSF with Error
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1-D Prolate Spheroidal On-Axis Cross Section with Error
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Fig. 4.— Top Left The PSF for the one-dimensional prolate spheroidal apodized square

aperture (Slepian 1965) with a white apodization error of 6 × 10−12 Hz−2 plotted on a

logarithmic scale with black areas 10−10 below brightest. Top Right On-axis cross section of

the PSF showing four orders of magnitude degradation. Bottom Diagonal cross section of

the PSF showing a similar degree of degradation.
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PSF for Single Prolate Spheroidal Pupil

Fig. 5.— Left The single prolate spheroidal wave function shaped pupil aperture (Slepian

1965) inscribed in a circular aperture of unit area. Right The corresponding PSF plotted on

a logarithmic scale with black areas 10−10 below brightest. This mask has a single-exposure

normalized discovery integration time of 4.6 with a small discovery space at the inner working

distance (IWD).
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Fig. 6.— Top A six-pupil opening inscribed in a rectangular aperture of unit area. Bottom

Left The corresponding PSF plotted on a logarithmic scale with black areas 10−10 below

brightest. Bottom Right On-axis cross section showing inner working distance of 4.2λ/a.

This mask has a single-exposure normalized discovery integration time of 15 and requires

two exposures to cover the discovery space.
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Fig. 7.— Top A six-pupil opening inscribed in an elliptical aperture of unit area. Bottom

Left The corresponding PSF plotted on a logarithmic scale with black areas 10−10 below

brightest. Bottom Right On-axis cross section showing inner working distance of 2.8λ/a.

This mask has a single-exposure normalized discovery integration time of 6.5 and requires

four exposures to cover the discovery space.
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Fig. 8.— Top A six-pupil opening inscribed in an elliptical aperture of unit area with larger

OWD than the mask in Fig. 7. Bottom Left The corresponding PSF plotted on a logarithmic

scale with black areas 10−10 below brightest. Bottom Right On-axis cross section showing

inner working distance of 4.5λ/a. This mask has a single-exposure normalized discovery

integration time of 4.8 and requires four exposures to cover the discovery space.
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Fig. 9.— An Eclipse Telescope Mask. Top An eight-pupil opening inscribed in a circular

aperture of unit area. Bottom Left The corresponding PSF plotted on a logarithmic scale

with black areas 10−8 below brightest. Bottom Right On-axis cross section showing inner

working distance of 3.5λ/a. This mask has a single-exposure normalized discovery integration

time of 7.9 and requires two exposures to cover the discovery space.
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Fig. 10.— Top A 26-ring azimuthally symmetric pupil inscribed in a circular aperture of unit

area. Black rings are opaque and white rings are open. Bottom Left The corresponding PSF

plotted on a logarithmic scale with black areas 10−10 below brightest. Bottom Right On-axis

cross section showing inner working distance of 3.5λ/a. This mask has a single-exposure

normalized discovery integration time of 18 and requires one exposure to cover the discovery

space.
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Type t1Ip

(S/N)2
t2Ip

(S/N)2
IWD Discovery Space

Sonine, ν = 5 25.5 48 5 (diag), 13 (on-axis) < 1/2

Sonine, ν = 4 19 35 7 (diag) , 15 (on-axis) < 1/2

1-D Prolate 9.5 16.5 5 (diag), 4 (on axis) 1/2

Generalized Prolate 17 34 3.5 full

Table 1: Integration time comparisons for four different pupil apodizations in equal area

apertures. Integration times are for a single exposure and have been normalized by planet

irradiance and signal-to-noise ratio. The integration time t1 assumes a known background

level and is for planet discovery only. The integration time t2 simultaneously estimates planet

and background irradiance by using a region of the image plane slightly larger than the full

width of the main lobe.

Type t1Ip

(S/N)2
t2Ip

(S/N)2
IWD Discovery Space

single prolate 4.6 8 4 � 1/2

6 pupil rectangle 15 21 4.2 1/2

6 pupil ellipse small OWD 6.5 9.5 2.8 1/4

6 pupil ellipse large OWD 4.8 7 4.5 1/4

8 pupil Eclipse 7.9 11 3.5 1/2

Concentric Rings 18 25 3.5 full

Table 2: Integration time comparisons for three different shaped pupil apodizations in equal

area apertures. Integration times are for a single exposure and have been normalized by

planet irradiance and signal-to-noise ratio. The integration time t1 assumes a known back-

ground level and is for planet discovery only. The integration time t2 simultaneously esti-

mates planet and background irradiance by using a region of the image plane slightly larger

than the full width of the main lobe.


