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Abstract

This paper presents an approach to statically retrofit
legacy servers with mechanisms for authorization policy
enforcement. The approach is based upon the obser-
vation that security-sensitive operations performed by a
server are characterized by idiomatic resource manipula-
tions, called fingerprints. Candidate fingerprints are auto-
matically mined by clustering resource manipulations using
concept analysis. These fingerprints are then used to iden-
tify security-sensitive operations performed by the server.
Case studies with three real-world servers show that the
approach can be used to identify security-sensitive opera-
tions with a few hours of manual effort and modest domain
knowledge.

1. Introduction
Software systems must protect shared resources that they

manage from unauthorized access. This is achieved by for-
mulating and enforcing an appropriate authorization pol-
icy (also called access control policy). The policy spec-
ifies the set ofsecurity-sensitive operationsthat a user
can perform on a resource. For example, a popular pol-
icy on UNIX-like systems allows only theroot to per-
form the security-sensitive operationsRead andWrite on the
/etc/passwd file (the resource). Operating systems have
historically had mechanisms such as reference monitors [4]
to enforce authorization policies. It is also important for
user-space servers, such as middleware, web-, proxy and
window-management servers, to implement such mecha-
nisms because they manage shared resources on behalf of
their clients. Unfortunately, economic and practical consid-
erations force developers to choose functionality and per-
formance over security. As a result, several legacy servers
often completely lack policy enforcement mechanisms. For
example, the X11 server [31] can simultaneously manage
multiple X client windows, but was not built with mecha-
nisms to isolate one X client from another, leading to sev-
eral published attacks [20].

This paper investigates techniques for retrofitting legacy
servers with authorization policy enforcement mechanisms.
The main questions to be addressed when retrofitting a

server arewhat are the security-sensitive operations to be
mediated?andwhere in the server’s source code are these
operations performed?In current practice, these questions
are answered manually. A team of software engineers in-
spects the code of the server to determine locations where
security-sensitive operations are performed, and places ap-
propriate authorization checks guarding these locations.
Not surprisingly, this process is time consuming and er-
ror prone [18, 32]. For example, it took almost two years
each for the Linux Security Modules (LSM) project [30],
where additional authorization checks were added to the
Linux kernel to enable enforcement of mandatory access
control policies, and the X11/SELinux [20] project, where
authorization checks were added to the X11 server. Similar
recent efforts have also been time consuming [13, 17]. In
short, there are no automated techniques to aid the process
of securing legacy servers for authorization.

We build on prior work [15] and develop an approach
using concept analysis [29] to drastically reduce the manual
effort involved in retrofitting legacy servers. Key to our ap-
proach is the observation that security-sensitive operations
performed by a server are associated with idiomatic ways
in which resources are manipulated by the server. Such
idioms, which we callfingerprints, are code-level descrip-
tions of the security-sensitive operations that they represent.
Each fingerprint is expressed as a combination of several
abstract syntax trees (ASTs), calledcode patterns. We use
static program analysis in combination with concept anal-
ysis to automatically mine candidate fingerprints. These
are then examined and refined manually by a domain ex-
pert. After refinement, we statically match each fingerprint
against the code of the server to determine locations where
the corresponding security-sensitive operation is performed.
We then weave hooks to a reference monitor at all these lo-
cations to authorize that security-sensitive operation. This
ensures that security-sensitive operations performed by the
server are mediated by authorization policy lookups.

Our results demonstrate the effectiveness of our ap-
proach. We conducted case studies on three real-world sys-
tems of significant complexity: the ext2 file system, a subset
of the X11 window-management server, and PennMUSH,
an online game server [2]. In each case, our approach re-
duced the analysis of several thousand lines of code to the



analysis of under 115 candidate fingerprints with fewer than
4 code patterns each (on average). For example, our ap-
proach reduced the analysis of PennMUSH, a server with
94,014 lines of C code, to the analysis of 38 candidate fin-
gerprints, with an average of 1.42 code patterns each. We
then refined these candidate fingerprints manually and de-
termined whether each refined fingerprint indeed denoted
a security-sensitive operation or not. It took just a few
hours of manual effort and modest domain knowledge to
find security-sensitive operations in each of our case stud-
ies. Without our approach, the entire code base must be
examined to find such security-sensitive operations.

The approach presented in this paper overcomes two im-
portant limitations of our prior work [15]. While we in-
troduced fingerprints in that work, our approach for find-
ing fingerprints (i) required a high-level description of
security-sensitive operations, and (ii) used dynamic pro-
gram analysis to find fingerprints. Both (i) and (ii) pre-
vented our approach from easily being applied to a wide va-
riety of servers. In particular, while a high-level description
of security-sensitive operations was available for the case
study that we considered (the X server), this may not be the
case with other servers, as indeed was the case with Pen-
nMUSH. A dynamic approach to fingerprint-finding meant
that the fingerprints found were restricted to code paths ex-
ercised by the manually chosen inputs to the server. This
paper directly addresses both these shortcomings. Concept
analysis automatically mines candidate fingerprints without
the need for ana priori description of security-sensitive op-
erations. Further, because static program analysis ensures
better coverage than dynamic analysis, the approach pre-
sented here can mine more fingerprints than our prior work.

In summary, our main technical contributions are:

(a) A fully static approach to retrofit policy enforcement
into legacy servers. The key observation used by the ap-
proach is that security-sensitive operations performed by
a server are associated with idiomatic resource manipula-
tions, called fingerprints.

(b) A novel algorithm using concept analysis to automati-
cally mine fingerprints of security-sensitive operations. To
our knowledge, this is the first application of concept anal-
ysis to mine security properties of software.

(c) Case studies on three real-world servers of significant
complexity. Our case studies demonstrate that our approach
is efficient and effective. Our analysis completed in just over
310 seconds even for the largest of our benchmarks and pro-
duced manageable concept lattices. In each case, we were
able to inspect the lattice and identify security-sensitive op-
erations with a few hours of manual effort and modest do-
main knowledge.

Note that our approach to retrofit legacy servers follows
the aspect-oriented paradigm. In particular, each fingerprint
denotes a region of code before which a reference monitor

hook must be placed, and thus helps identify join points [5,
19]. The reference monitor query that executes as a result
of the hook call is the body of the advice at that join point.
Fingerprint-mining is thus aspect mining to find join points
relevant to security.

2. Approach overview
We give a high-level overview of our approach, depicted

in Figure 1. Using a running example, we show how a soft-
ware engineer would use our approach to mine fingerprints
of security-sensitive operations and place hooks. We have
currently implemented our analysis to work with C pro-
grams, but the underlying principles apply to servers written
in other languages as well.

2.1. Running example

We use a subset of ext2, a Linux file system, and one
of the case studies inSection 5as our running example. In
particular, ext2 is responsible for laying out and interpreting
disk blocks as belonging to specific files or directories. It
represents metadata information using several internal data
structures. This metadata is used to retrieve files and direc-
tories from raw disk blocks.

File systems on Linux are pluggable, and must thus ex-
port a standard API to the kernel. A system call that ma-
nipulates files or directories ultimately resolves to one or
more calls to this API. The relevant file system functions
then serve this request. Thus a file system is a server
that manages files and directories. For ext2, we consid-
ered 10 API functions related to manipulation of directories
(e.g.,ext2 rmdir, ext2 mkdir andext2 readdir). We show
how our approach can identify security-sensitive operations
that ext2 performs on directories.

2.2. Step A: From source code to candidate fingerprints

In the first step, we employ static source code analysis
and identify different ways in which ext2 accesses shared
resources in response to client requests. This analysis is
based upon two assumptions.

First, we assume that it suffices to examine accesses to
internal data structures that ext2 uses to represent files and
directories. These data structures are specified by a do-
main expert, and for ext2 they are variables of typeinode,
ext2 dirent, ext2 dir entry 2 and address space, each
of which is a Cstruct. Second, we assume that a client ac-
cesses server resources only via the server’s API. With ext2,
this is indeed the case, and as mentioned earlier ext2 exports
a well-defined API to the kernel. The inputs to our static an-
alyzer are thus the source code of ext2, and two files, speci-
fying, respectively, the types of critical data structures to be
tracked, and a set of API functions.

The static analyzer identifies how these tracked data
structures are manipulated by the ext2 API. It does so
by distilling each statement of ext2 source code into a
(possibly empty) set ofcode patterns. A code pattern



Resource types
Legacy server Candidate fingerprints

Constraints
Fingerprints of security

sensitive operations Retrofitted serverBA C
Step Description Techniques used

A Extraction of candidate fingerprints from source code. Static analysis and concept analysis.
B Refinement of candidate fingerprints using constraints. Application of constraints and interpretation of fingerprints.
C Authorization hook placement using fingerprints. Pattern (fingerprint) matching and weaving hook calls.

Figure 1. Steps to retrofit policy enforcement, and the techniques used in each step.

is either a Read, Write or a Call and is expressed in
terms of abstract syntax trees (seeFigure 2). For ex-
ample, the C statementde->file type = 0, wherede is
a variable of typeext2 dirent is distilled to Write 0 To
ext2 dirent->file type. Note in particular that this trans-
formation ignores specific variable names and focuses in-
stead on types of variables. As a result, we identify generic
resource manipulations but not the specific instance of the
resource (e.g.,the instancede) that they happen on. State-
ments that do not manipulate tracked data structures are
ignored. Call code patterns correspond to calls via unre-
solved function pointers. For each functionext2 api in
the ext2 API, the static analyzer then aggregates code pat-
terns of all statements potentially reachable via a call to
ext2 api. Thus, at the end of this step each ext2 API func-
tion ext2 api is associated with a set of code patternsCode-
Pats(ext2 api). Intuitively, CodePats(ext2 api) denotes all
possible ways in whichext2 api can potentially manipulate
tracked resources.

Code-pattern := Call AST | ReadAST
|Write Valueto AST

Value := constant| AST | ⊥ (unknown)
AST := (type-name->)∗field

Figure 2. Grammar for code patterns.

The next step is to identify idiomatic resource manipula-
tions by the ext2 API. The goal here is to find sets of code
patterns that always appear together during server execu-
tion. That is, if one code pattern from a set of code patterns
appears in an execution of ext2, then all the other code pat-
terns from that set appear in that execution as well. Note
that we can have sets{pat} with singleton code patterns as
well, denoting that no other code pattern always appears to-
gether with{pat}. Each set of such code patterns denotes an
idiomatic way in which a resource is manipulated by ext2,
and potentially indicates a security-sensitive operation. We
call each such set afingerprint.

We identify candidate fingerprints using concept anal-
ysis [29], a well-known hierarchical clustering technique.
At a high-level (details are presented inSection 3), con-
cept analysis identifies candidate fingerprints, as well as the
API functions whose code pattern sets contain these can-
didate fingerprints. We use the termcandidate fingerprints
because as described in Step B, imprecisions introduced in
the program analysis step means that each candidate finger-
print may contain multiple fingerprints.

For example, concept analysis inferred that the set of
six code patterns shown inFigure 3is a candidate finger-
print, and that it appears inCodePats(ext2 rename), Code-
Pats(ext2 rmdir) andCodePats(ext2 unlink).

(1) Readaddress space->host
(2) Readext2 dir entry 2->rec len
(3) Write 0 To ext2 dir entry 2->inode
(4) Readinode->i mtime
(5) Readinode->u->ext2 inode info->i dir start lookup
(6) Write⊥ To inode->u->ext2 inode info->i dir start lookup

Figure 3. One of the candidate fingerprints
that concept analysis identifies for ext2.
For ext2, we identified 18 such candidate fingerprints,

each denoting a unique way in which ext2 manipu-
lates files and directories. While concept analysis is
asymptotically inefficient—its complexity is exponential in
maxi(|CodePats(ext2 apii)|)—our experiments showed that
it is efficient in practice. In particular, our analysis com-
pleted in about 2 seconds for ext2, and in just over 310 sec-
onds even for the largest of our case studies.

2.3. Step B: Refining candidate fingerprints

In the second step, a domain expert (i) refines candi-
date fingerprints obtained from Step A and (ii) post refine-
ment, determines, for each fingerprint, whether it embodies
a security-sensitive operation that must be mediated by an
authorization policy lookup.

Refinement of candidate fingerprints is necessary for two
reasons. The first reason is because code analysis employed
in Step A is imprecise. As a result, multiple fingerprints
may be combined into a single candidate fingerprint. There
are two ways in which precision is lost:

(a) Code analysis isflow-insensitive. A candidate finger-
print may contain a pair of code patternspat1, pat2 that do
not always appear together in all executions of the server.

(b) We ignore specific instances of resources that are ma-
nipulated and focus instead on their types. Thus, a candidate
fingerprint may contain manipulations of multiple, possibly
unrelated, resources.

We employprecision constraintsto identify such cases
and enable refinement of each candidate fingerprint, sep-
arating the code patterns that it contains into several fin-
gerprints. Intuitively, a precision constraint is a rule that
determines the set of code patterns that can be grouped to-
gether in a fingerprint. The second reason why refinement



is necessary is because a domain expert may deem that a set
of code patterns is irrelevant for the authorization policies
to be enforced for the server, or may wish to separate (or
group together) a pair of code patterns in a fingerprint of
a security-sensitive operation. Suchdomain-specific con-
straintsfurther refine candidate fingerprints.

For example, consider the candidate fingerprint shown
in Figure 3. Using the output of our static analysis tool,
we were able to determine that the code patterns (1)-(4)
appear together in each successful invocation of the ext2
function ext2 delete entry and that the code patterns (5)
and (6) appear together in each successful invocation of
the functionext2 find entry. Each of the three API func-
tions,ext2 rename, ext2 rmdir andext2 unlink, that con-
tain this candidate fingerprint call both these functions.
Both ext2 rmdir andext2 unlink call these functions on
thesameresource instance, namely the directory being re-
moved (or unlinked). However, asFigure 4shows, while
ext2 rename calls both these functions on the instances
old dir andold dentry,1 it calls ext2 find entry only on
the instancesnew dir andnew dentry when a certain predi-
catenew inode is satisfied.

1 int ext2 rename (inode *old dir, dentry *old dentry,
2 inode *new dir, dentry *new dentry) {
3 /* declarations ofold page,new page,old de and new de */
4 new inode = new dentry->d inode;...
5 old de = ext2 find entry(old dir,old dentry,&old page);
6 if (new inode) { ...
7 new de = ext2 find entry(new dir,new dentry,&new page);
8 } else { ...
9 /* no call to ext find entry */

10 };...
11 ext2 delete entry(old de,old page); ...
12 }

Figure 4. Example showing the need for pre-
cision constraints.

Becauseext2 rename performs the resource manipula-
tions corresponding to code patterns (5) and (6) on ad-
ditional resource instances as compared to the code pat-
terns (1)-(4), code patterns (1)-(4) and (5)-(6) likely rep-
resent different security-sensitive operations. Imposing the
constraint that code patterns on different resource instances
must be part of separate fingerprints, the candidate finger-
print shown inFigure 3 is split into two fingerprints, as
shown inFigure 5. Additional examples of the use of pre-
cision constraints appear inSection 4. Note that such con-
straints can potentially be avoided with sophisticated pro-
gram analyses, that we plan to explore in future work. How-
ever, in our case studies we found that more than 50% of the
candidate fingerprints did not require refinement. Thus our
current approach provides a good tradeoff between preci-
sion of results and simplicity of the code analysis algorithm.

Domain-specific constraints encode rules that are formu-
lated by a domain-expert. In particular, whether the re-
source manipulation embodied by a fingerprint is security-

1The variableold de, which ext2 delete entry is invoked with on
line 11 is derived fromold dir andold dentry.

sensitive depends on the set of policies that must be en-
forced on clients. For example, it may only be necessary
to protect the integrity of directories, and not their confi-
dentiality. In this case, fingerprints that embody a write
operation on directories are security-sensitive, while finger-
prints that embody a read operation are not. Fingerprints
expose possible operations on resources, and let an admin-
istrator decide whether an operation is security-sensitive or
not. For example, an analyst may decide that Fingerprint (2)
in Figure 5, which corresponds to a directory lookup, is not
interesting for a specific set of policies to be enforced.

Fingerprint (1)
(1) Readaddress space->host
(2) Readext2 dir entry 2->rec len
(3) Write 0 To ext2 dir entry 2->inode
(4) Readinode->i mtime
Fingerprint (2)
(5) Readinode->u->ext2 inode info->i dir start lookup
(6) Write⊥ To inode->u->ext2 inode info->i dir start lookup

Figure 5. Fingerprints obtained after refine-
ment with precision constraints.
After refinement, the domain expert assigns semantics

to each fingerprint, associating it with a security-sensitive
operation. For example, Fingerprint (1) inFigure 5embod-
ies the directory removal operation, while Fingerprint (2)
embodies the lookup operation. The LSM project [30] has
identified a comprehensive set of security-sensitive opera-
tions for Linux by considering a wide range of policies to be
enforced, including security-sensitive operations on the file
system. It turns out that Fingerprint (1) embodies the LSM
operationDir Remove Name, while Fingerprint (2) embod-
ies the LSM operationDir Search. Thus, at the end of the
second step, we have a set of fingerprints, each of which is
associated with a security-sensitive operation.

2.4. Step C: From fingerprints to hooks

The final step is to place reference monitor hooks and
implement the appropriate policy lookups for each hook
(i.e., the advice at each join point). We discuss this step in
brief here and refer the reader to prior work [15] for details.

Each fingerprint is a set of code patterns that can be
matched against the server’s source code. Each code frag-
ment that matches a fingerprint is deemed as performing
the security-sensitive operation associated with that finger-
print. In prior work [15], we had presented an approach
to place hooks at the granularity of function calls,i.e., for
each fingerprint that matched the set of code patterns in a
function, we would place a reference monitor hook to guard
calls to this function with the appropriate security-sensitive
operation. For example, using the fingerprints from our run-
ning example, we would place a hook guarding the call to
ext2 find entry on line (5) ofFigure 4to check that the
LSM operationDir Search is authorized as follows:



if (check policy(current process, old dir, Dir Search))
{ ext2 find entry(old dir, old dentry, &old page); }

else { Notify current process of failed authorization check}

A similar hook will also be placed for the call on line (7).
The call toext2 delete entry on line (11) will be protected
with a hook that checks that the client is authorized to per-
form the LSM operationDir Remove Name on the directory
being removed. Several optimizations are possible to this
hook placement technique,e.g.,placing hooks so as to min-
imize the number of reference monitor queries executed at
runtime. We leave such optimizations for future work.

Note that fingerprints are useful even when hook place-
ments have been decided in advance. For example, if a team
of software engineers decides to place just one hook guard-
ing calls toext2 rename (as was done in LSM), then finger-
prints determine the security-sensitive operations that must
be authorized by that hook. In this case, the hook must
authorizeDir Remove Name on the old directory (instance
old dir) andDir Search on both the old (old dir) and new
directories (new dir). Indeed, these security-sensitive op-
erations are authorized in the implementation of the hook
in the LSM implementation of security-enhanced Linux
(SELinux) [22].2

3. Extracting candidate fingerprints from code
This section discusses Step A in detail. We discuss the

use of static analysis to identify resource manipulations po-
tentially performed by each API function, and concept anal-
ysis to find candidate fingerprints.

3.1. Static analysis

Algorithm 1 describes the static code analysis that we
have implemented (in CIL [23]). Lines 1-5 employ a sim-
ple flow-insensitive analysis to extract for each function a
set of code patterns describing how the function manipu-
lates tracked data structures. While this step sacrifices pre-
cision, it simplifies the rest of the analysis by making the
output amenable to concept analysis. As described earlier,
we recover some of the precision lost in this step by ap-
plying precision constraints. While we intend to explore in
future work how a flow-sensitive program analysis can in-
teract with concept analysis, we have found that our cur-
rent implementation offers a reasonable tradeoff between
simplicity of analysis and precision of the results obtained.
Lines6-9 computeCodePats(apii), the set of resource ma-
nipulations performed byapii , for each API functionapii of
the server by finding functions in the call-graph reachable
from apii . We resolve calls through function pointers using
a simple pointer analysis: each function pointer can resolve
to any function whose address is taken and whose type sig-
nature matches that of the function pointer. This analysis
is conservative in the absence of type-casts, but may miss
potential targets in the presence of type-casts.

2SELinux authorizes more security-sensitive operations, corresponding
to fingerprints that match code fragments that were omitted fromFigure 4.

Recall thatCodePats(apii) is the set of resource manip-
ulations that a client can perform by invoking API function
apii . However, we would like to identify idiomatic resource
manipulations. Each such idiom is a set of code patterns
FP={pat1,. . .,patm} satisfying the following property: if one
of the code patternspati∈FP appears in any valid execu-
tion trace of the server, thenall the patterns inFP appear
in that trace. Each such idiom is called afingerprint and
denotes a potential security-sensitive operation performed
on the resource. Note that the above property implies
that each fingerprintFP is such thatFP⊆CodePats(apii)
or FP∩CodePats(apii)=∅, for each API functionapii . As
described below, we use concept analysis to identify a set
of candidate fingerprints. Each candidate fingerprint may
possibly contain multiple fingerprints, and must be refined
to yield the actual fingerprints.

Algorithm : E C-P(Server, API, RSC)
Input : (i) Server: source code of server, (ii) API={api1,. . .,apin}:

set of API functions of Server, and (iii) RSC: data types of
sensitive resources.

Output : CodePats(api1),. . .,CodePats(apin), for
api1,. . .,apin ∈ API.

foreach (functionf in Server)do1
Summary(f) := ∅;2
foreach (statements∈ f that affects a data structure of type∈ RSC)do3

CP := Breakdown ofs into code patterns (seeFigure 2);4
Summary(f) := Summary(f) ∪ CP;5

foreach (apii ∈ API) do6
CodePats(apii ) := ∅;7
foreach (functionf reachable fromapii ) do8

CodePats(apii ) := CodePats(apii ) ∪ Summary(f);9

return CodePats(api1),. . .,CodePats(apin)10

Algorithm 1 : Static analysis algorithm to extract
resource manipulations.

3.2. Background on concept analysis

Concept analysis is a well-known hierarchical cluster-
ing technique that has found use in software engineer-
ing [3, 8, 9, 21, 24, 25, 26, 27, 28]. We give a brief overview
of concept analysis and describe how we adapt it to find can-
didate fingerprints.

The inputs to concept analysis are (i) a set ofinstances I,
(ii) a set offeatures F, and (iii) a binary relationR : I → F
that associates instances with features. It produces acon-
cept latticeas output. Intuitively, each node in the concept
lattice pairs a set of instancesX with a set of featuresY, such
thatY is the largest set of features in common toall of the
instancesin X. Formally, each node is a pair〈X, Y〉, where
X ∈ I andY ∈ F, such thatα(X)=Y andγ(Y)=X, where
α(X) = { f ∈ F|∀x ∈ X (x, f ) ∈ R}, andγ(Y) = {i ∈ I |∀y ∈ Y
(i,y) ∈ R}. A node〈X, Y〉 appears as an ancestor of a node
〈P, Q〉 in the concept lattice ifP ⊂ X. In fact, this ordering
also impliesY ⊂ Q. This is because a smaller set of in-
stances will share a larger set of features in common. Thus,
the root node shows the set of features common to all in-
stances inI , while the leaf node shows the set of instances
that share all features inF.



(a) The relation CodePats
CodePats pat1 pat2 pat3 pat4
api1 ✓ ✓

api2 ✓ ✓ ✓

api3 ✓ ✓ ✓

api4 ✓

(b) Concept lattice (c) Nodes in the concept lattice

B

D

E

G

F

C

A

*
*

*

*
A : 〈{api1,api2,api3,api4}, ∅〉
B : 〈{api1,api2,api3}, {pat1}〉
C : 〈{api3,api4}, {pat4}〉
D : 〈{api2,api3}, {pat1,pat3}〉
E : 〈{api1,api2}, {pat1,pat2}〉
F : 〈{api3}, {pat1,pat3,pat4}〉
G : 〈∅, {pat1,pat2,pat3,pat4}〉

Figure 6. Concept analysis example.

Figure 6shows an example of a concept lattice, as ap-
plied to our problem. Each API functionapi1, api2, api3

andapi4 is considered an instance, and each code pattern
pat1, pat2, pat3, pat4 is considered a feature. They are re-
lated byCodePats, which is obtained from static analysis,
depicted inFigure 6(a) as a table. Each node〈X, Y〉 is
such thatall the code patterns inY appears in eachCode-
Pats(apii) for apii∈X. This lattice shows, for example, that
(i) there are no code patterns in common to all API func-
tions (nodeA in the lattice), (ii) Bothpat1 andpat3 appear
in both CodePats(api2) andCodePats(api3), and these are
the only such API functions (nodeD), and that (iii) No API
functions have all code patterns (nodeG).

3.3. Using concept analysis

We compute candidate fingerprints using Algorithm2. It
first invokes concept analysis (line1) on the set of API func-
tions and the set of code patterns to obtain a concept lattice
as shown inFigure 6. It then finds candidate fingerprints,
in lines2-7, by finding nodes in the lattice where new code
patterns are introduced. Each such node is marked, and the
set of new code patterns introduced in that node is consid-
ered as a candidate fingerprint.

For the example inFigure 6, the nodesB, C, D, andE
are marked because these nodes introduce the code patterns
pat1, pat4, pat3 andpat2—i.e., any node containing one of
these patternsmusthave the corresponding node as an an-
cestor. Each of these code patterns is classified as a candi-
date fingerprint.

Intuitively, Algorithm 2 works because each fingerprint
FP satisfiesFP⊆CodePats(apii) or FP∩CodePats(apii)=∅,
for each API functionapii . Concept analysis ensures that
the node of the concept lattice in which a new code pattern
pati∈FP is introduced will introduceall of the code pat-
terns inFP. Line 7 identifies and marks nodes where a new
code patternpat is introduced into the lattice. Because of
the property above, all the code patterns that appear in the

same fingerprint aspat appear in that node. Note however,
that code patterns from other fingerprints may also be intro-
duced in the same node. Thus, Algorithm2 only computes
candidate fingerprints: each candidate fingerprint may con-
tain multiple fingerprints that must be obtained via refine-
ment (in Step B).

Algorithm : F C F(CodePats,API)
Input : (i) CodePats: The relation obtained from Algorithm1, and

(ii) API= {api1,. . .,apin}, set of API functions of the server.
Output : CFP1,. . .,CFPk, a set of candidate fingerprints.
Run concept analysis with the set of instancesI=API, the set of features1
F=∪i∈[1..n]CodePats(apii ), and the relationR=CodePats;
count:= 1;2
foreach (node〈X, Y〉 in the concept lattice)do3

Let {〈X j , Yj 〉} be the set of parents of〈X, Y〉 in the concept lattice;4
Diff := Y - ∪ jYj ;5
if (Diff , ∅) then6

CFPcount := Diff; count:= count+ 1; Mark the node〈X, Y〉;7

return CFP1,. . .,CFPcount /* Note: k is the value ofcountin this line.*/8

Algorithm 2 : Finding candidate fingerprints.

It can be shown that the number of candidate finger-
prints identified by Algorithm2 has an upper bound of
| ∪i∈[1..n] CodePats(apii)|. Note that while the concept lat-
tice can be exponentially large in the number of API func-
tions (because asymptotically, it is a lattice on the power set
of API functions), this upper bound places a restriction on
the number of nodes that will be marked in line7 of Algo-
rithm 2. This is key, because these nodes introduce candi-
date fingerprints, and as discussed inSection 2, they must
be manually examined for refinement in Step B.

Several algorithms have been proposed in the literature
to compute concept lattices. We chose to implement the in-
cremental algorithm by Godinet al.[16] because it has been
shown to work well in practice [3]. While this algorithm
is asymptotically exponential—its complexity isO(22p|I |),
wherep is an upper bound on the number of features of any
instance inI—the algorithm scaled well in our case studies.

4. Refining fingerprints with constraints
As described inSection 2.2, candidate fingerprints ob-

tained from concept analysis are imprecise for two rea-
sons. First, because of flow-insensitivity, a pair of code
patternspat1 andpat2 that are not part of the same finger-
print may appear in the same candidate fingerprint. Second,
the resource manipulations in a candidate fingerprint may
be associated with multiple, possibly unrelated resource in-
stances. Thus, candidate fingerprints must be refined us-
ing precision constraints. Domain-specific constraints can
additionally be applied to refine constraints with domain-
specific requirements.

This section presents a unified framework to express
constraints and refine candidate fingerprints (Step B of our
approach). Both precision constraints and domain-specific
constraints can be expressed in this framework.

As Figure 7 shows, each constraint is either aSepa-
rate(X, Y), anIgnore(X) or aCombine(X, Y), whereX and
Y are sets of code patterns.Separate(X, Y) refines candi-



date fingerprints by separating code pattern setsX and Y
into separate fingerprints.Ignore(X) refines candidate fin-
gerprints by discarding the code pattern setX from candi-
date fingerprints.Combine(X, Y), for which we have only
felt occasional need, combines code pattern setsX andY
in two candidate fingerprints into a single fingerprint, thus
coarsening the results of concept analysis. For example,
the constraintSeparate({1,2,3,4}, {5,6}) refines the candi-
date fingerprint inFigure 3to yield the fingerprints inFig-
ure 5. We now discuss precision and domain-specific con-
straints in this framework.

Constraint := Separate(PatSet, PatSet)| Ignore(PatSet)
| Combine(PatSet, PatSet)

PatSet := Set of code patterns (as defined inFigure 2)

Figure 7. Grammar for constraints.

Precision constraints areSeparate(X, Y) constraints and
as discussed inSection 2, they serve two goals. The first
goal is to refine candidate fingerprints based upon resource
instances manipulated.Separate({1,2,3,4}, {5,6}), the use
of which was illustrated earlier, serves this goal. For-
mally, each set of code patterns can be associated with
one or more resource instances that it manipulates. We
use a constraintSeparate(X, Y)to separate code pattern
setsX andY that manipulate different sets of resource in-
stances. For example, consider the code patterns (1)-(4) in
Figure 3, that appear in the functionext2 delete entry,
and the code patterns (5) and (6), that appear in the func-
tion ext2 find entry. Because of the way these functions
are invoked inext2 rename (seeFigure 4), code patterns (5)
and (6) are associated with the resource instancesold dir,
old dentry, new dir andnew dentry, while code patterns
(1)-(4) are associated with resource instancesold dir and
old dentry. Because the code patterns (5) and (6) are ap-
plied to additional resource instances, they are separated out
using the constraint above. We currently manually identify
resource instances associated with a set of code patterns.
However, this can potentially be automated using a program
analysis that is sensitive to resource instances manipulated.

The second goal of precision constraints is to iden-
tify and remove imprecision introduced because of flow-
insensitive program analysis. In particular, a pair of code
patternspat1 andpat2 may appear together in a candidate
fingerprint, but may not appear together in all executions of
the server. In such cases, aSeparate(pat1,pat2) constraint
separates these code patterns into different fingerprints. For
example, one of the candidate fingerprints that we obtained
in the analysis of ext2 is shown below; it appeared inCode-
Pats(ext2 ioctl).

(1) Write⊥ To inode->i flags
(2) Write⊥ To inode->i generation

However,ext2 ioctl either performs the resource ma-
nipulation corresponding to code pattern (1) or (2), but not
both, in each execution, based upon the value of a flag that it

is invoked with. Thus, a constraintSeparate({1},{2}) is used
to refine the candidate fingerprint above.

Note that precision constraints are not necessary if
more precise program analysis is employed. Algorithm1
currently lacks flow-sensitivity and data-flow information
that can potentially avoid the imprecisions reported above.
However, in each of our case studies we needed precision
constraints for fewer than 50% of the candidate fingerprints
mined—9/18 for ext2, 24/115 for X server, and 4/38 for
PennMUSH. Thus, we believe that our current approach
strikes a good balance between simplicity and precision of
candidate fingerprints.

Domain-specific constraints encode domain knowledge
to further refine fingerprints. A domain specific constraint
that we have found useful isIgnore(Pat), using which we
can eliminate certain code patterns that we deem irrelevant
for security from the set of fingerprints. For example, in
the X server, which is an event-based server, each request
from an X client is converted into a one or more events that
are processed by the server. It may only be necessary to
enforce an authorization policy governing the set of events
that an X client can request on a resource. In such cases, all
code patterns except those related to event-processing can
be filtered out from fingerprints usingIgnoreconstraints.

The use ofCombineconstraints is relatively infrequent,
and may be used if the fingerprints mined by concept anal-
ysis are at too fine a granularity. For example, in Pen-
nMUSH, we found that 30 of the 38 candidate finger-
prints contained only one code pattern. An administra-
tor may wish to write authorization policies at a higher
level of granularity—where the fingerprint of each security-
sensitive operation contains multiple code patterns.Com-
bineconstraints can be used to group together code patterns
to get such fingerprints.

5. Case studies
We conducted case studies on three complex systems,

each of which has been in development for several years.
We used (i) the ext2 file system from Linux kernel distri-
bution 2.4.21, (ii) a subset of the X server (X11R6.8), and
(iii) PennMUSH, an online game server (v1.8.1p9).

We evaluated our approach using four criteria. First, we
measured the number and size of candidate fingerprints ex-
tracted from source code. Because an analyst must exam-
ine these candidate fingerprints to identify security-sensitive
operations, these metrics indicate the amount of manual ef-
fort needed to supplement our approach. Note that without
our approach, the analyst must examine theentirecode base
to find security-sensitive operations. Second, we measured
the number of candidate fingerprints that had to be refined
with constraints. This metric shows the effect of imprecise
static analysis and the effort needed to refine candidate fin-
gerprints. Third, we evaluated the quality of fingerprints
by manually interpreting the operation embodied by each
fingerprint. Last, for ext2 and the X server, we correlated



Analysis Concept lattice Num. of Avg. size of Refinement
Benchmark LOC time (secs) # Nodes # Edges cand. fings. cand. fings. needed for

ext2 4,476 2.1 21 32 18 3.67 9 (50%)
X server/dix 30,096 58.1 329 978 115 3.76 24 (20.87%)
PennMUSH 94,014 318.9 127 301 38 1.42 4 (10.53%)

Figure 8. Results for each of our case studies. Concept lattices are also available online [ 1].

the fingerprints extracted by our approach with security-
sensitive operations that were identified independently for
these servers [20, 30].

Figure 8presents statistics on the time taken by the anal-
ysis and the size of concept lattices produced. It also shows
the number and size of candidate fingerprints and the num-
ber of candidate fingerprints that needed refinement. As
these results show, our analysis is effective at distilling sev-
eral thousand lines of code into concept lattices of manage-
able size (see [1]). There were under 115 candidate finger-
prints of average size under 4 across all our benchmarks,
fewer than 50% of which had to be refined. Identifying
security-sensitive operations reduces to refining and inter-
preting these candidate fingerprints, instead of having to an-
alyze several thousand lines of code, thus drastically cutting
the manual effort required. In our case studies, this required
a few hours, with modest domain knowledge. AsFigure 8
also shows, our analysis is efficient in practice, completing
in just over 310 seconds even for PennMUSH, our largest
benchmark (on a 1GHz AMD Athlon processor with 1GB
RAM). Sections5.1-5.3 present each case study in detail,
including our experience interpreting fingerprints and cor-
relating these fingerprints against independently identified
security-sensitive operations.

5.1. The ext2 file system

As discussed inSection 2, we focused on how directories
are manipulated by the ext2 file system. Concept analysis
produced 18 candidate fingerprints containing an average of
3.67 code patterns, of which we had to refine 9 with preci-
sion constraints. We then determined the resource manipu-
lation embodied by each fingerprint and tried to associate it
with a security-sensitive operation.Section 2presented two
such examples. Two more examples are discussed below.

(a) The fingerprint{Write 0 To inode->i blocks, Write 1
To inode->u->ext2 inode info->i new inode, Write 4096
To inode->i blksize} appears inCodePats(ext2 create),
CodePats(ext2 mkdir), CodePats(ext2 mknod) and Code-
Pats(ext2 symlink). The code patterns in this fingerprint
were all extracted from the function calledext2 new inode
and embody creation and initialization of a newinode.

(b) The fingerprint{Write 0 To inode->i size} appears in
CodePats(ext2 rmdir). This code pattern embodies a key
step in directory removal.

The LSM project has identified a set of 11 operations
on directories. These operations are used to write SELinux

policies governing how processes can manipulate directo-
ries. We were able to identify at least one fingerprint for
each of these LSM operations from the fingerprints that
we mined. For example, the fingerprints presented inSec-
tion 2 were for the LSM operationsDir Remove Name and
Dir Search, while the examples above correspond to the
File Create3 andDir Rmdir operations, respectively.

5.2. The X11 server

The X server is a popular window-management server.
X clients can connect to the X server, which manages re-
sources such as windows and fonts on behalf of these X
clients. The X server has historically lacked mechanisms to
isolate X clients from each other, and has been the subject
of several attacks. Such attacks can be prevented with an
authorization policy enforcement, that determines the set of
security-sensitive operations that an X client can perform on
a resource. Indeed, there have been several efforts to secure
the X server [7, 10, 20].

We focused on a subset of the X server, its main dispatch
loop (calleddix) that contains code to accept client requests
and translate them to lower layers of the server. We focused
on this subset because it contains the bulk of code that pro-
cesses client windows, represented by theWindow data struc-
ture, the resource on which we wanted to identify security-
sensitive operations. In addition toWindow, we also included
the xEvent data structure, because the X server uses it ex-
tensively to process client requests. The API that we used
contains 274 functions that the X server exposes to clients.

Concept analysis produced 115 candidate fingerprints
with 3.76 code patterns, on average, of which 24 had to be
refined with precision constraints. The interpretation of two
of these fingerprints is discussed below.

(a) The fingerprint{Write20 ToxEvent->u->type, Write⊥
To xEvent->u->mapRequest->window}, contained inCode-
Pats of 5 API functions, embodies an X client request to
map aWindow on the screen, and potentially represents a
security-sensitive operation.

(b) The fingerprint{Write 0 To Window->mapped, Write 18
ToxEvent->u->type, contained inCodePatsof 7 API func-
tions embodies unmapping a visible X client window from
the screen, also a potential security-sensitive operation.

There have been efforts to secure the X server in the con-
text of the X11/SELinux project [20], which identified 22

3Note that some LSM directory operations have theFile prefix.



operations on theWindow resource. As with ext2, we were
able to identify at least one fingerprint for each of these
security-sensitive operations from those that we mined. For
instance, the fingerprints presented above correspond to the
Map andUnmap operations on aWindow, respectively.

We had previously identified fingerprints for 11 security-
sensitive operations on theWindow resource [15]. However,
as discussed inSection 1, that work used dynamic analy-
sis, and could only identify fingerprints along paths exer-
cised by manually-chosen test inputs to the server. Further,
that work could automate fingerprint-finding only up to the
granularity of function calls; these were then manually re-
fined to the granularity of code patterns. Concept analysis
not only identified the fingerprints from prior work at the
granularity of code patterns, but did so automatically.

5.3. The PennMUSH server

PennMUSH is an open-source online game server.
Clients connecting to a PennMUSH server assume the
role of a virtual character, as in other popular massively-
multiplayer online roleplaying games. For this work, it suf-
fices to think of PennMUSH as a collaborative database
of objects that clients can modify. Objects are shared re-
sources, and an authorization policy must govern the set
of security-sensitive operations that a client can perform on
each object.

Clients interact with PennMUSH by entering commands
to a text server, which activates one or more of 603 internal
functions, that we used as the API of PennMUSH. Most of
these API functions modify a database of objects. Thus, we
tracked how the PennMUSH API manipulates resources of
typeobject. Concept analysis produced 38 candidate fin-
gerprints. Most of them had only one or two code patterns,
so we only had to refine 4 of these candidate fingerprints
using precision constraints. Two of these fingerprints are
discussed below.

(a) The fingerprintWrite ⊥ To object->name potentially
modifies an object name, and was contained inCodePats
of 16 API functions, representing creation, destruction and
modification of objects. Unauthorized clients must be dis-
allowed from changing the name of anobject, indicating
that this is a fingerprint of a security-sensitive operation.

(b) The fingerprint {Write 8 To object->type, Write
0 To object->modification time, Write 1118743 To
object->warnings} appears inCodePats(cmd pcreate) and
CodePats(fun pcreate), both of which are API functions
associated with creation of a “character” object.
Here, the number1118743 represents a flag that signifies
that a character should be warned about problems with the
objects that they own, and the number8 written to the field
type indicates that the newly created object is a character.
These code patterns represent necessary steps in character
creation in PennMUSH, and thus indicate that this is finger-
print of a security-sensitive operation.

In PennMUSH, theobject data structure has just 18
fields, while the API contains 603 functions. Each security-
sensitive operation is performed at the granularity of ac-
cesses to just one or two of the fields ofobject. This ex-
plains the smaller number and size of candidate fingerprints
extracted by concept analysis (as compared to X server).

6. Limitations
An important limitation of our approach is that it cannot

guarantee that all fingerprints have been mined. Our ap-
proach can thus havefalse negatives, i.e., it can fail to iden-
tify a security-sensitive operation, as a result of which insuf-
ficient authorization checks will be placed in the retrofitted
server. This is because the static analyzer can potentially
miss resource manipulations. For example, if a Cstruct
representing a shared resource is read from/written to using
pointer arithmetic, the analysis described inSection 3.1will
miss this resource access, thus leading to a missed (or erro-
neous) fingerprint. Further research is necessary to develop
a provably complete approach to fingerprint-finding.

A second limitation of our approach is that it currently
constrains fingerprints to be conjunctions of code patterns;
temporal relationships between code patterns cannot be
mined by our approach. As a result, interpretation of some
of the fingerprints identified by the approach was tedious
and time-consuming. To overcome this limitation, we plan
to explore a more expressive fingerprint language (e.g.,au-
tomata over an alphabet of code patterns) and algorithms to
extract such fingerprints.

7. Related work
This paper overcomes two important shortcomings that

we had identified in prior work [15]. The need for ana
priori description of security-sensitive operations hindered
the application of the techniques developed there to a wide
variety of servers. Further, a dynamic trace-based approach
to fingerprint-finding meant that only code paths exercised
by test inputs to the legacy server would be analyzed, thus
leaving large portions of the legacy server unanalyzed.

As discussed inSection 1, our approach follows the
aspect-oriented paradigm. Several other tools, such as
PoET/PSLang [11], Naccio [12], Polymer [6] and our own
prior work on Tahoe [14] also follow an aspect-oriented
approach to enforce authorization policies on legacy code.
In all these tools, a security analyst provides a description
of locations to be protected (join points) as well as the
policy check at each location (advice). These tools then
weave calls to a reference monitor at each of these locations.
However, when legacy servers manage their own resources,
identifying locations where policy checks must be weaved
becomes a challenge. The techniques developed in this pa-
per can benefit the above tools by reducing the manual effort
involved in identifying locations for reference monitoring,
as well as the advice to be integrated at these locations.



Concept analysis has previously been used in software
engineering, including aspect mining (Ceccatoet al.present
a survey of such techniques [8]) and software modulariza-
tion. For example, concept analysis has been used on iden-
tifier names to find methods and classes that implement
similar functionality [27]. Dynamic analysis in conjunc-
tion with concept analysis has been used to find methods
that implement a particular feature [9, 26]. The idea here
is to run an instrumented version of the program under dif-
ferent use-cases and label the traces with these use cases.
Each trace contains information about the methods exe-
cuted. Traces are then clustered using concept analysis to
find crosscutting concerns, and thus identify aspects. Con-
cept analysis has also found use to identify modular struc-
ture in legacy programs [21, 24, 25, 28]. The modular struc-
ture so identified can be used to refactor legacy software
(e.g., convert non-object-oriented programs into object-
oriented ones [24]). Another recent use of concept analy-
sis is in the context of debugging mined specifications [3].
Automatically mined temporal specifications may often be
buggy, and the problem here is for an analyst to classify
each mined specification as correct or buggy. Similar traces
can be clustered using concept analysis, so the analyst can
decide en-masse whether an entire cluster is buggy.

8. Summary
We presented an approach to reduce the manual effort

involved in mining security-sensitive operations in legacy
servers. Our approach uses concept analysis to mine fin-
gerprints, which are code-level descriptions of security-
sensitive behavior. Our experiments with three complex
real-world servers show that our approach is efficient and
effective at finding security-sensitive operations.
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