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Abstract

Here, we develop and investigate a computational model of a network of cortical neurons on the base of biophysically well constrained and
tested two-compartmental neurons developed by Pinsky and Rinzel [Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis
in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39—60]. To study associative memory, we connect a
pool of cells by a structured connectivity matrix. The connection weights are shaped by simple Hebbian coincidence learning using a set of
spatially sparse patterns. We study the neuronal activity processes following an external stimulation of a stored memory. In two series of
simulation experiments, we explore the effect of different classes of external input, tonic and flashed stimulation. With tonic stimulation, the
addressed memory is an attractor of the network dynamics. The memory is displayed rhythmically, coded by phase-locked bursts or regular
spikes. The participating neurons have rhythmic activity in the gamma-frequency range (30—80 Hz). If the input is switched from one
memory to another, the network activity can follow this change within one or two gamma cycles. Unlike similar models in the literature, we
studied the range of high memory capacity (in the order of 0.1 bit/synapse), comparable to optimally tuned formal associative networks. We
explored the robustness of efficient retrieval varying the memory load, the excitation/inhibition parameters, and background activity. A
stimulation pulse applied to the identical simulation network can push away ongoing network activity and trigger a phase-locked association
event within one gamma period. Unlike as under tonic stimulation, the memories are not attractors. After one association process, the
network activity moves to other states. Applying in close succession pulses addressing different memories, one can switch through the space
of memory patterns. The readout speed can be increased up to the point where in every gamma cycle another pattern is displayed. With pulsed
stimulation, bursts become relevant for coding, their occurrence can be used to discriminate relevant processes from background activity.
© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Investigating the brain from a computational point of
view leads to three difficult questions that have to be
answered at the same time: (1) What information is
processed? (2) How is the information coded in the
spatio-temporal structure of neuronal activity? (3) What
computational operations are performed by cortical
networks? Simulation studies with artificial computational
neural network models have become a tool to assist experi-
mental brain research by testing hypothetical structure—
function relationships. Associative memory is perhaps the
best studied computational function of neural networks,
where many quantitative studies have been performed in
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models with various degrees of abstraction. Although
outlining possible strategies of distributed network compu-
tation in the cortex, most of these studies employ too
abstracted neuronal models to understand the fast temporal
structure of cortical activity, such as synchronicity between
single spikes, gamma oscillations and bursting, see also the
discussion of attractor network models with varying degree
of realism in Sommer and Wennekers (2000).

The questions raised can be examined by simulation
experiments employing biophysically faithful compartment-
neurons with a description of the active membrane properties
a la Hodgkin—Huxley. There are a couple of compartmental-
neuron associative memory studies in the literature. Lansner
and Fransén (1992) investigated the retrieval of learned
patterns by unsynchronized rate coding persistent over several
hundreds of milliseconds. In a later work, the same authors
viewed not the single cortical cells, but small cell groups
within columns as the rate coding subunits of the cortex (Fran-
sén & Lansner, 1998). Jensen et al. investigated a complex
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Fig. 1. Qualitative behavior of Pinsky—Rinzel neurons. Upper left figure shows a single neuron scheme consisting of a dendritic and a somatic compartment
comprising different active ion-currents and synaptic inputs. A single neuron is capable of firing repetitive complex bursts (lower left and upper right plot). In a
network of synaptically connected cells these bursts synchronize, but not the individual spikes constituting the respective bursts: the lower right plot shows
soma potentials of two cells out of a total of 100 neurons. (Scales: time is in 0.1 ms, potentials are in millivolts).

multiplexing mechanism of short- and long-term memory
using gamma and theta oscillations (Jensen & Lisman,
1996; Jensen, Idiart & Lisman, 1996). Menschik and Finkel
(1998) proposed an attractor associative memory as a model
for the CA3 region in the hippocampus. In their model,
memories are expressed by synchronized gamma activity
persisting over a theta cycle.

We combine simplified but biophysically well-tested
compartmental-neurons (Pinsky & Rinzel, 1994) with the
functional hypothesis of associative long-term memory.
Different from the referred previous studies, we constrain
the model using quantitative results from studies on more
abstract sparse associative networks. The simple and clear-
cut functional assumption allows a direct comparison of the
biologically motivated model and formal models. In the
following simulation experiments, we compare two differ-
ent situations of external stimulation, persistent and short
pulses of current injections in subsets of cells and study the
network activation processes. Observing the network activ-
ity, ongoing, or induced by stimulation, one is able to
address, in particular, the following specific questions.

e In which parameter ranges can the synaptic memory be
selectively accessed by stimulation?

e How is spike synchronization and gamma periodicity
used for coding?

e Does cell bursting play a role in information coding of
memory access?

e How does the computational performance of realistic
spiking neurons compare with abstracted neurons?

2. The simulation model
2.1. The model of Pinsky and Rinzel

The computational model used in the following simula-
tion experiments employs the two-compartment neuron
model of Pinsky and Rinzel in exactly the same form as
described in Pinsky and Rinzel (1994). Because this single
neuron model is still quite complex, we will only qualita-
tively sketch the modeling approach in the following. The
exact dynamic equations and parameter settings can be
found in Pinsky and Rinzel (1994).

The single neuron model consists of two resistively
coupled compartments describing the soma and the dendrites
of a nerve cell, respectively (see Fig. 1). The transmembrane
voltage V; of each compartment is given by a current balance
equation
CU = s + 8V, + V). M)

Here, i,j = 1 or 2, since we only have two compartments. C is
the membrane capacitance and /., the total ionic membrane
current described in more detail below. Furthermore, g is the
coupling conductance between soma and dendrite; its value
has a strong influence on the spiking behavior of the cell (see
Pinsky & Rinzel, 1994, and below).

The total ionic current for each of the compartments
consists of a sum of contributions from membrane leakage,
different active ion channels, synaptic inputs from other
neurons in a network, and inputs from external sources.
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Active currents for channel type x in compartment i are in
general given by

Ix,i = gxmxnx(vi - Vx)’ (2)

where g, denotes the maximum conductance of a particular
type for compartment i and the V, are reversal potentials for
the respective ions. The m,, n, are state variables describing
activation and inactivation by a first order kinetics (details in
Pinsky & Rinzel, 1994).

The soma compartment, similar to the Hodgkin—Huxley
model, contains only Na* and delayed rectifier K conduc-
tances. When isolated, it generates regular action potentials
at a frequency determined by the constant external driving
currents. The dendritic compartment, on the other hand,
contains only Ca®* and calcium mediated K* currents (C-
type K" current, Ixc, and after hyperpolarization, Ixapp).
Submembrane Ca”*" concentration is modeled by a first-
order calcium buffer, which controls the maximum conduc-
tance of the Ixc current. The dendritic compartment is
capable of generating slow calcium spikes.

Compared to integrate-and-fire neurons, Pinsky—Rinzel
neurons—as compartmental neurons in general—show a
much richer dynamic behavior. For instance, the choice of
the coupling between the two compartments (cf. the para-
meter g in Eq. (1)) determines different modes of neuronal
activity, single spikes, bursting, or apparently chaotic modes
combining spike- and burst-behavior (see Pinsky & Rinzel,
1994, and Fig. 1). In addition, the burst behavior is further
controlled by the level of depolarization, and the model
undergoes a refractory period after spiking. On a longer
time scale of a few hundred milliseconds a firing cell can
reveal neural adaptation, well known from electrophysiolo-
gical recordings in many cortical principal cells.

The model as described in Pinsky and Rinzel (1994) also
includes realistic synaptic transmission characteristics, i.e.
synaptic time constants, reversal potentials and other proper-
ties of AMPA and NMDA synapses. In Pinsky and Rinzel
(1994) a biophysical study was performed using a simulated
network of 100 cells, randomly connected with a synaptic
density of 20% (2000 of the 100(100 — 1) connections possi-
ble between cell pairs were randomly chosen and assigned to
the same positive value). All cells further received a constant
inhibitory soma current. If the soma of a single neuron was
stimulated by a brief excitatory current, the network
responded with synchronized population bursting in the
gamma range that persisted for 400 ms or longer, depending
on the maximal NMDA conductance. The NMDA synapses,
hence, provided a persistent excitation, but their time constant
was too large to provide the phase coupling between the
bursting cells. This was due to fast AMPA mediated currents.
Blockade of the AMPA synapses led to a desynchronization
of the bursts. Thus, the simplified Pinsky—Rinzel network
reflects a property that has already been demonstrated in
slice experiments in Traub, Wong, Miles and Michelson
(1991): the fast AMPA synapses provide a coupling mechan-
ism responsible for burst and spike synchronization.

2.2. Model extensions

We extend the model of Pinsky and Rinzel (1994) to a
functional level by storing a set of patterns by Hebbian
synaptic modification in a structured connectivity matrix.
If not stated otherwise, model parameters of our work
comprising N =100 excitatory cells are identical with
those in Pinsky and Rinzel’s original model. Nonetheless,
our model differs with respect to the external stimulation,
the structured connectivity matrix, and the kind of inhibition
present in the network. In our model excitatory connections
are potentially possible between every pair of cells. The
actual connectivity depends on the number, P, and size, k,
of the stored memory patterns. It is approximately given by
s =1 — exp[—Pp?] where p = k/N and ranges from 0.05 to
0.4 in the following experiments. We aim to study a config-
uration of cortical cells in close vicinity of each other, i.e.
within a cortical column. Neuroanatomical studies have
estimated a mean density of synaptic contacts of 0.1
between cells with distances lower than the radius of a
cortical column (Braitenberg & Schiiz, 1991). We also
study connectivities higher than 0.1, since local networks
will exist with connectivity higher than the mean and since
synaptic distribution and memories are likely to be depen-
dent. Memory patterns might not be just determined by
afferences and learned by Hebbian synaptic modification,
they may well be shaped and selected by the network struc-
ture already existing. Cortical subnetworks with high
connectivity are the most probable candidates to cooperate
in a computational function. We assume that connected cell
pairs have synapses in both directions, i.e. that the coupling
matrix between the excitatory cells is symmetric. It is not
clear to what extent this assumption is idealized. To our
knowledge, there are no experimental estimates of the
conditional probability of reciprocal connections between
a pair of single neurons, given that they have a synaptic
contact in one direction. In our model, the synaptic trans-
mission efficacy is formed in a Hebbian learning phase
preceding the retrieval trials. The learning is modeled as
simplistic as possible. We use the clipped synaptic modifi-
cation rule of the Willshaw model (Willshaw, Buneman &
Longuet-Higgins, 1969), driven by a set of on/off activity
configurations (memory patterns) presented to the network.
The configurations are random and overlapping, i.e. each
contains a fixed number, k, of active cells, and each cell
can be active in more than one memory pattern. The speci-
fication of the investigated memory tasks (pattern number,
P, and sparseness, p) was oriented on the efficient operation
range of abstracted sparse associative memories (Palm &
Sommer, 1995; Schwenker, Sommer & Palm, 1996;
Sommer & Palm, 1999; Willshaw et al., 1969). We used
memory patterns with k = 10 active neurons. On these tasks,
we could directly compare the retrieval performance with
theory and simulation results of the original and the feed-
back Willshaw model.

Since only k = 10 cells constitute a memory pattern in our



828 F.T. Sommer, T. Wennekers / Neural Networks 14 (2001) 825-834

model, the synaptic strengths, i.e. the AMPA, NMDA and
GABA, conductances, have to be scaled appropriately to
yield a meaningful network activity. Other synaptic currents
were not modeled. Peak AMPA and NMDA conductances
in Pinsky and Rinzel (1994) were gampa = 0.0045 and
Gawpa = 0.14 mS/cm?, respectively. Their work did not
consider IPSPs.

Synapses between excitatory neurons terminate on the
dendrite-like compartment and activate AMPA- and
NMDA-mediated currents as in Pinsky and Rinzel (1994).
We run a series of simulations with conductivities scaled up
by a factor from 20 to 360 as compared to the values in
Pinsky and Rinzel (1994). Thus, the 10 neurons of a
memory pattern may be envisaged as representing a cell
assembly of 200-3600 cells. The resulting AMPA conduc-
tivities are then in the range 0.09—1.62. The NMDA conduc-
tances vary proportionally.

The external input into neurons is modeled by Poisson
processes with a constant default rate of 500 spikes/s. For
technical reasons, the input spikes had an amplitude of 1 and
lasted for 0.5 ms. The input processes terminated on the
dendritic compartment and exclusively activated AMPA
currents. Default conductance was g,i{‘MPA =0.9, but Fig. 7
also employs effects when the input strength is halved or
doubled.

In contrast to Pinsky and Rinzel’s model, inhibition is not
constant in our work. We assume that it is roughly propor-
tional to the instantaneous ensemble averaged firing activity
of the principal cells. This assumption is motivated by the
fact that in a local network, disynaptic loops from principal
cells to interneurons and back should provide an amount of
inhibition that depends roughly proportionally on the total
network activity. This way, inhibition acts as a threshold
control, that moderates the activity level in the network
and keeps that activity from unphysiological states where
all cells fire at very high rates. This is a traditional but still
supported idea about the function of inhibitory interneurons
(see, e.g. Nelson & Turrigiano, 1998, for a recent discus-
sion). Further functional roles of interneurons are not
excluded. Note that we do not assume that excitation and
inhibition are ‘balanced’, say, in the sense that excitatory
and inhibitory currents into pyramidal cells are roughly
equal in stationary firing states. In fact, the simulations to
be shown in the following reveal that inhibition should be
stronger than excitation. This turns out as a condition for
high memory capacities, and is in accordance with theore-
tical works which demonstrate that such a threshold control
also improves the memory capacity in abstract associative
networks (Hirase & Recce, 1996; Palm & Sommer, 1995;
Schwenker, Sommer & Palm, 1999; Wennekers & Palm,
1997, 2000).

Technically, in the simulation model, we do not imple-
ment interneurons individually, but instead assume that
action potentials of principal cells evoke not only EPSPs
on their target cells, but—via inhibitory loops—also
IPSPs on all cells in the network. Accordingly, any spike

of a principal cell evokes equally weighted IPSCs into all
principal cells. These inhibitory synapses employ a fast
GABA-ergic conductance change with reversal potential
Vo= —75 mV and a shape resembling an alpha function
with fast rise-time and slow decay. These conductance
changes are actually derived from low-pass filtering of the
pyramidal cell spikes through a sequence of three filters
with time constants 1, 2 and 7 ms. The maximum conduc-
tivity is further varied in the range 1, 2, ..., 6 mS/cm?. (To
be compared with our choices of the AMPA conductance:
SAMPA — 009—162)

3. Simulation results

With the simulation model described in Section 2 we
performed experiments to study how the stored memories
can be recalled (retrieved) by external stimulation. In a
retrieval trial, a subset of cells with varying overlap to one
of the memory patterns was selected for stimulation. For a
defined period of time, the cells in the stimulation subset
received depolarizing dendritic input (modeled by Poisson
processes).

The stored memories x', x¥ were random configura-
tions of k = 10 active cells in the n = 100 network. To judge
the recall of an addressed memory x', we calculated its
transinformation between the network state X (the binary
spike/no spike pattern) and the memory: 1(x',%). In the
following, we display the quality 0 = Q = 1, defined as
the retrieved transinformation normalized by the informa-
tion content of a memory S = S(xi) = Ns(k/n) with s(p) the
Shannon entropy (in our case S = 36 bits):

0= t(x",)e)/s 3)

For two patterns x, y € [0, l]N, the transinformation is
defined as #(x,y) = i(x) — i(x[y) where the conditional infor-
mation is defined as

i(xly) = pys(plx = Oly = 1]) + (1 — py)s(plx = 1]y = 0])

with p[x]y] conditional probabilities and p, = |x|/(N — |x|)
the mean activity of the pattern. The memory capacity of
the network (in bit/synapse) is given by

C = P 1(x', ®)/N* = P QS/N* )

3.1. Tonic stimulation

In a first series of retrieval experiments, a subset of cells
with a defined overlap / = 5 to one memory pattern received
persistent depolarizing dendritic input. Fig. 2. displays spike
trains of two cells during stimulation of five of 10 cells of a
stored memory (N = 100, P =50, gampa = 0.45, gc; =3.7).
The upper time course is of one of the directly addressed
neurons, i.e. it receives direct afferent input; the second cell
displayed receives input from internal connections only.
Because it belongs to the addressed memory, the internal
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Fig. 2. Typical soma potentials (spikes truncated) for a retrieval trial for P = 50, k = 10, and five cells of the memory stimulated. The upper cell receives direct
external addressing input, the lower cell belongs to the rest of the addressed memory pattern. At time ¢ = 95 ms, stimulation switches to another address.

connections provide enough input to bring the membrane
potential above firing threshold.

Note that in Fig. 2 the spiking rates are in the gamma
range and that the spike activity is synchronized within a
time window of a few milliseconds. This is merely a conse-
quence of the synaptic time constants of both the excitatory
and inhibitory PSPs. The spikes are phase locked, but the
spike of the second cell is delayed due to synaptic integra-
tion on the cell membranes. Here, essentially the time
constants of excitatory PSPs on the soma matter. On the
other hand, the duration of the silent phase after the synchro-
nized population burst is merely determined by the IPSPs
evoked by the burst itself. Cell firing is suppressed as long as
the inhibition keeps the neurons below firing threshold. So,
the frequency of the collective oscillation in this simulation
is determined by the relaxation time of inhibitory PSPs,
somewhat prolonged by recurrent excitatory transmission
steps (cf. also Whittington, Traub & Jeffreys, 1995).

Half time in the sweep displayed in Fig. 2, at time 100 ms,
the external stimulation switches to another stimulus
pattern. The new stimulus addresses five neurons of a
second memory pattern where the two neurons shown in
Fig. 2 do not belong to. Notably, the cell responses follow
the stimulus withdrawal immediately, that is, there is no
afteractivation of the first memory pattern, which would
be expressed, for instance, in an ongoing spiking of the
neurons (cf. e.g. Jensen et al., 1996). Instead, only sub-
threshold membrane oscillations remain, which are caused
by cross-talk from the new activated memory pattern. Since
the memory patterns have mutual overlap, there are poten-
tiated synapses even between neurons not belonging to the
same pattern. The membrane potential increase by cross-
talk EPSPs is again followed by inhibitory phases. Thus,
the rhythmic potential fluctuations in Fig. 2 for times larger
than 100 ms consist of superimposed excitatory and inhibi-
tory PSPs. During the first 100 ms, these fluctuations are
stronger because the neurons belong to the addressed
memory pattern; in fact, there they are strong enough to
evoke spiking activity in the respective assembly of memory
neurons.

This can be seen more clearly in Fig. 3. The upper frame

of Fig. 3 shows a raster plot of the soma potentials for all
neurons in the network during a similar retrieval event as in
Fig. 2. Neurons 1-10 constitute the memory, the cells 1-5
receive direct stimulation. One can see that directly stimu-
lated cells fire first and the internally driven cells belonging
to the same pattern come up a few milliseconds delayed.
The temporal synchronization among the internally driven
cells is higher since the internal connection convergence
and divergence averages over the time dispersion within
the set of directly stimulated cells.

The retrieval quality is displayed in the lower frame of
Fig. 3. This quality plot quantifies a fact already obvious in
the raster plot: at high memory load of P =50 memories,
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Fig. 3. Retrieval trial with parameters similar to Fig. 2. Stimulation switches
at time frame ¢ = 190 ms from one memory to another. The upper frame
shows a raster plot of soma potentials of all cells. Time runs from left to
right and the abscissa counts the neurons. Soma potentials are gray-value
coded where black denotes high potentials during spikes. The lower frame
displays the retrieval quality trace over time. The quality is determined with
respect to the addressed memory consisting of the first 10 cells. Neurons 1—
5 receive external stimulation. Note that the network expresses regular
spiking in the memory pattern and some spurious action potentials. There
are time-locked gamma oscillations, though time-locking is not perfect.
The spikes jitter over several milliseconds, mainly caused by excitatory
synaptic transmission: address neurons 1-5 always fire first and trigger
the cells 6—10. Since for P =50 the memory load is high, retrieval is
impaired by cross-talk, i.e. Q < 1. The quality is measured continuously
for spikes within the previous 10 ms.
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the repeated retrieval events yield higher quality than the
first completion process just after stimulus onset (at times
around 7 = 10 and 110 ms). This is due to the slower neuro-
nal variables that become better aligned after the first popu-
lation burst. These first bursts after stimulus switch contain
considerably more than the 10 neurons of the addressed
memory patterns, which lowers the retrieval quality. During
later retrieval phases, adaptation processes in the neurons
improve the quality, but also during these periods spurious
ones appear occasionally. Thus, the pattern recall is cleaned
up with respect to spurious activity in the second and further
retrieval phases. Furthermore, one observes that the quality
often assumes a sharp maximum in the first part of indivi-
dual retrieval periods. This reflects that the correct cells
respond somewhat earlier than spurious cells and could,
therefore, be segregated in further processing stages (for
instance by coincidence detection).

3.2. Pulsed stimulation

We performed further experiments, where the stimula-
tion was not permanent, but was restricted to a brief
period of 12.5 ms. After that, the stimulus was off. To
test robustness of the retrieval against background noise,
all cells in the network received a permanent background
input in form of Poissonian processes at rates 50 ips.
Stimulated cells, in addition, received the usual input
spike trains of 500 ips.

Fig. 4 shows a retrieval event typical for these series of
experiments. Stored are P =20 patterns and five of the
neurons of the memory pattern are addressed. This is in
the range of medium memory load, where retrieval quality
is close to one. The upper and the middle frames show the
input spike trains and soma potentials of all cells as raster
plots, respectively. The lowest frame reveals the quality of
the pattern last addressed by the stimulus. Three stimulation
impulses are applied in this run, starting at times 60, 130 and
160 ms, respectively. The cells respond with gamma activ-
ity as before. Here, eight cycles are displayed. The first two
cycles correspond to ongoing network activity only induced
by the background input and recurrent network connections.
The third cycle corresponds to a perfect association
processes (Q =1). After that, the memory pattern is
completely wiped out in the next cycle. Activity in the
sixth and seventh cycles corresponds to two subsequent
perfect retrieval events triggered by two further stimuli
following close to each other. Again, the last cycle shows
that the memory pattern is wiped out immediately after the
stimulus vanishes. Thus, pulsed stimuli can suppress
ongoing network activity quickly, and fast switches between
different stimuli are possible at extremely high rates in the
gamma range. Note with the example in Fig. 4 that in this
retrieval mode the burst occurrence is correlated with retrie-
val events. Ongoing activity is mostly constituted of regular
spikes.
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Fig. 4. Raster plot of inputs (upper frame), soma potentials (middle frame)
during a retrieval trial with background input and pulsed stimulation. The y-
axes display the cell numbers, the x-axes the time, as in Fig. 3. Parameters:
P =20; [=5; N=100; k= 10; the noise-to-signal ratio is 0.1.

3.3. Variation of model parameters

The simulations in the previous sections demonstrate that
the presented biophysically elaborate model is able to
retrieve the stored memory patterns very fast and at a high
quality, although the memory load is already extremely
large. It is known from studies approaching fixed point
retrieval in more abstract associative memories that attractor
basins become smaller and smaller when the capacity limit
is reached, such that eventually a fine-tuned firing threshold
is necessary for a proper network operation.

This seems to suggest that also in our network parameters
must be fine-tuned to reach high memory loads. In the
present section, we demonstrate that the high memory capa-
city in our experiments is not a matter of critical parameter
fine-tuning. The dynamic retrieval model presented here—
in contrast to fixed point retrieval—works very well in
surprisingly large parameter regimes. This property is
mainly based on the temporal structure of the network firing
activity, which separates in time the input and correctly
retrieved spikes that come early in a gamma period from
wrong spurious spikes which on average fire late (cf. Figs. 3
and 4).

Fig. 5 displays results of a large series of experiments
where the number of stimulated cells / and the memory
load P has been varied systematically. Note that P influ-
ences the sparseness of the connectivity matrix (cf. Section
2.2) in the range 0.18 to =~ 0.5. For high P and low numbers
of address bits/neurons the capacity drops because the few
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Fig. 5. Memory capacities for different numbers of active address neurons
and increasing memory load; P =20, 30, ..., 70; /=1, 2, ..., 10; N= 100;
k = 10. The capacity is derived from the transinformation in spike patterns,
averaged over 10 retrieval periods for 10 randomly selected addresses.

input bits do not suffice to determine the addressed memory
pattern uniquely. Hence, the retrieval quality is impaired.

The longer the plateau in the capacity curve, the better is
the input fault tolerance of the recall process. Up to a load of
P =50, we find a pronounced input fault tolerance and the
corresponding memory capacity is close to 0.1 bit per
synapse. This is a striking result since for P = 50 the synap-
tic storage has almost reached the theoretical optimum
where 50% of the synapses have been potentiated. The theo-
retical optimum' could be approached even more closely in
our model with an optimized memory pattern size k which is
lower than k = 10 for a network size of N = 100 neurons.

To check whether the retrieval performance depends
critically on the setting of the EPSP amplitudes and/or the
inhibition strength (more precisely, on the excitatory and
inhibitory peak conductances), we varied these parameters
for a fixed memory load of P = 50 and a constant number of
stimulated cells of /=35. Other parameters were as stated
earlier. Fig. 6 displays quality values averaged over five
retrieval periods for five randomly selected memory
patterns. Different curves represent different levels of inhi-
bition, ggapa = 1, 2, 4, 6, and the abscissa denotes the rela-
tive level of AMPA- to GABA-conductance (NMDA) is
proportional to AMPA, see Section 2.2). The quality
measure is directly proportional to memory capacities by
means of Eq. (4).

Note that the abscissa in Fig. 6 is a relative scale. Thus, if
we increase the inhibition, we have to increase excitation
simultaneously to reach a good retrieval quality. This,
however, does not mean that excitation and inhibition are
‘balanced’. In fact, in the simulations in Fig. 6 the inhibitory
conductances were always at least three times larger than
the excitatory ones.

! For finite size networks, the theoretical optimum is below the asymp-
totic limit of 0.69 bit per synapse. For instance, with a size of 512 cells the
optimum is 0.4 bit per synapse (see Palm & Sommer, 1995).
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Fig. 6. Average retrieval quality for varied excitatory and inhibitory
coupling strengths, and N=100; k=10; P=150; /=5. The abscissa
displays the fraction of excitatory to inhibitory peak conductivity. The
ordinate denotes the retrieval quality averaged over five retrieval periods

for five randomly selected patterns. Different curves correspond with differ-
ently strong inhibition.

Moreover, the figure displays much of the whole range of
conductances where we were able to reach a significant
retrieval quality at all. This range is restricted essentially
by two constraints which become relevant at low and high
values for the relative coupling strengths, respectively. For
instance, if the ratio between excitation and inhibition is
much smaller than one, i.e. if the inhibition is very much
stronger than excitation, then the network progressively
loses the capability to complete the input patterns at all.
This is because the few addressed neurons already charge
the inhibition so much that the non-addressed cells can
hardly reach threshold, driven only by the weak recurrent
signals. Those fire only in some gamma periods, if the exci-
tation is strong enough. Then, the quality can be rather good,
as in the plot for / =1, and the excitation equal to 0.9, but
retrieval events are rare (roughly each fourth gamma period
for the parameters shown). On the other hand, if the excita-
tory coupling strength is low, the addressed cells fire almost
asynchronously. This also leads to only a few retrieval
events, but in addition to a considerable amount of incom-
plete retrievals and wrong ones. Therefore, the quality in
Fig. 6 is bad if both excitation and inhibition are small.

If the coupling strengths increase, the capacity
obviously displays quite a large region where it is rela-
tively high. However, for weak inhibition the curves
increase, whereas they fall for strong inhibition. The
increase for weak inhibition is a consequence of the fact
that larger synaptic strengths support more pronounced
gamma oscillations. So, for weak inhibition, e.g. /=1,
and weak excitation the activity is almost asynchronous
and retrieval is only seldom and bad; but if excitation
increases, the network starts to oscillate, which leads to
a better aligned timing of the cells, just as displayed in
Fig. 3. First, the externally addressed cells fire, then the
missing ones of the addressed pattern, and finally some
spurious ones. As long as the coupling strengths are not
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Fig. 7. Average retrieval quality if the input strength and background firing
are varied; N = 100; k = 10; P = 50; [ = 5. The input firing rate is fixed at
500 ips. The abscissa denotes the fraction of the background rate and the
input rate. The quality is averaged over 10 retrieval periods for 10 randomly
selected patterns. Different curves are for different input strengths (default:
1; halved: 0.5; doubled: 2).

too strong, this dynamic retrieval mechanism increases
the memory capacity as long as excitation grows.

Nonetheless, if the coupling strengths increase further,
that is, if the excitation-to-inhibition ratio is larger than
0.25 then a different source for retrieval errors becomes
dominant. In this case, the dynamics gets faster and faster
such that even suboptimally driven neurons reach their
firing threshold so quickly that the somewhat slower inhi-
bition is no longer able to suppress or at least delay the
firing of these wrong neurons. Therefore, the oscillation
can no longer separate the correct and spurious spikes in
time. Thus, the retrieval events are “poisoned” by many
spurious ones, which reduce the average retrieval quality.
This effect is most clearly seen in the decreasing curve for
I=6 in Fig. 6.

All in all, Fig. 6 demonstrates that good retrieval qualities
can be obtained in large parameter domains for the coupling
strengths. Fig. 7 shows, that the network is also quite robust
against input noise. Whereas Figs. 5 and 6 are obtained
without background noise, in Fig. 7 retrieval qualities are
displayed when all neurons receive a certain amount of
background activity, as can be seen in Fig. 4. This back-
ground noise is modeled as Poissonian input with a fixed
firing rate into all cells. The abscissa in Fig. 7 measures the
‘noise-to-signal ratio’, i.e. the fraction of the background
rate (500 ips) and the input firing rate. Individual curves
in the figure denote different levels of absolute input
strength. The default value, as stated in Section 2.2, is
gipa = 0.9. The three curves are for the default value, as
well as halved and doubled input strengths. Changes in input
strength influence both the background as well as the input
fibers. The number of stored patterns is P =50 and the
number of addressed neurons / = 5.

As can be read from the figure, the quality is insensitive to
changes in input strengths in the simulated range as long as
there is no background activity, Q = 0.75 for zero back-

ground firing. As one would expect, background noise dete-
riorates the retrieval quality. However, the decrease in
quality is only about 10—15% for a signal-to-noise ratio
lower than 0.1 and an input strength of 0.5-1.5. Thus,
there is some robustness against input noise at high memory
load. In the high quality retrieval regime at medium load
(P = 20), a noise-to-signal ratio of 0.1 hardly impairs the
retrieval results (for an example, see again Fig. 4).

Strikingly, one observes in Fig. 7 that stronger (doubled)
input strength lowers the memory capacity. The reason for
this is that the firing rate of the background neurons depends
supralinearly on the input noise (threshold effect, i.e. sigmoid
rate function). Strong background noise, therefore, leads to
considerably higher spontaneous firing rates of unaddressed
neurons, against which the firing rates of the externally
addressed neurons become progressively negligible.

Similarly, though not shown in the figure, a very weak
input strength also leads to only small quality values. This is
because in that case the network activity decouples from the
input and becomes more and more determined by network
intrinsic processes such as spontaneous firings of cells and
the recurrent distribution of spikes to other cells.

4. Results and conclusions

This paper examines the computational role of the spatial
and temporal fine structure of neuronal activity, in particu-
lar, spiking, bursting, synchronization and oscillations in
circuits of strongly connected cortical cells. Our modeling
approach assumes associative memory function and uses
model constraints from studies on abstract associative
memory.

4.1. The modeling approach

We propose a computational model for a group of cortical
cells employing the quite faithful biophysical description of
neurons and synapses by Pinsky and Rinzel and a rather
simplified version of Hebbian associative synaptic learning.
The model design and parameter settings are based on a
combination of results obtained by different biophysical
and associative network studies. The latter examine a
computational function likely in cortical networks at a
high degree of biophysical abstraction. They introduce
and assess the criterion of performance efficiency of a
computational model. In our model, we assume that the
hypothetical computational function uses the underlying
biophysical mechanisms efficiently. This pins down a
number of additional modeling features: sparse memory
patterns and, since the sparse memory performance does
not strongly depend on the details of synaptic learning,
the strong simplification of the learning process. The effi-
ciency assumption lacks direct empirical justification, but
one can argue that it is implicitly inherent in the functional
hypothesis providing its universality even under perturba-
tions neglected in the model. Furthermore, evolution theory
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argues for an optimization of biological functions during
ontogenesis. No a priori assumptions are required in our
model about the nature of temporal coding. In the simula-
tion experiments, we just observe the network activity
during and after external stimulation and compare it with
the spatial patterns that have been previously stored by
Hebbian synaptic potentiation.

4.2. Interpretation of the simulation results

In our model, the network activity travels in avalanches
through associative excitatory connections from highly
excited (say afferently driven) cells to less excited ones.
This excitation is mediated through the structured excitatory
connections. In cells with strong postsynaptic input, the
AMPA-mediates PSPs cause the spiking via selective asso-
ciative connections. This way, starting from afferently
driven cells, activity can propagate in several mono-, di-
,and tri-synaptic associative steps. Due to synaptic transmis-
sion times, one, therefore, finds synchronization only within
a few milliseconds between spike events in different cells. In
addition, the larger the set of spiking cells in the network,
the stronger inhibition builds up until it finally suppresses
further spiking. Nonetheless, if afferent excitation persists,
or also due to the slow NMDA synaptic transmission over
excitatory connections, after decay of the inhibition, another
population burst appears. We observe this rhythmic network
activity to lie in the gamma frequency range (20—80 Hz).

We examined how memories stored in the connectivity
structure of the network can be recalled by external stimula-
tion. Among the variety of possible spatio-temporal stimu-
lation patterns, we chose two for closer inspection by
simulation experiments.

First, we studied memory retrieval provided by tonic
stimulation. As had been shown in similar network simula-
tion studies, for instance in Menschik and Finkel (1998), a
pattern of synchronized spike events represents properties of
the addressed memory. All cells in the externally addressed
memory, whether or not directly stimulated, participate in
phase-locked gamma activity. At high memory load, the
association in the first gamma cycle after stimulus onset
already provides a reasonable estimation of a memory
pattern, but contains some erroneous responses of non-
addressed cells. The second synchronized spike event, i.e.
the second gamma cycle after stimulus onset, provides the
memory with increased quality. The improvement is due to
the alignment of the slow neuronal variables (neuronal
adaptation) that requires time of more than one gamma
cycle. The quality in the cycles after the second stays almost
constant and the time lag between primary and secondary
driven cells stays constant in all cycles. If the stimulus is
changed to another spatial pattern, the network switches
within one gamma cycle to the new pattern.

Second, we examined memory retrieval evoked by a short
stimulus pulse (12.5 ms). The main difference to persistent
stimulation is that memories are not attractors of the

network dynamics. The network responds to the stimulus
with only a single association event occurring in the gamma
period directly following the stimulus onset. In the load
domain providing almost error free retrieval with persistent
stimulation, pulsed stimulation yields almost the same
performance. As can be observed in Fig. 4, pulsed retrieval
is also robust with respect to ongoing network activity and
background input activity. The retrieval is still error free at a
load P =20, a memory load where the capacity curve for
noise free retrieval with persistent stimulus in Fig. 4 already
slightly decreases due to a (small) finite retrieval error rate.
Fig. 4 also demonstrates that subsequent stimulation pulses
addressing different memories can achieve readout rates up
to the gamma frequency. The maximum readout speed of
the network is limited by the gamma rhythm of the network.
We observed that with pulsed stimulation the expression of
bursts and regular spikes became correlated with the
retrieval process. In Fig. 4 most bursts occur during pattern
retrieval.

The robustness of the demonstrated associative memory
function in the simulation network was explored by retrieval
quality measurements under the variation of different para-
meters. High information capacity is expressed in a wide
range of excitation/inhibition ratios (Fig. 6). At high
memory load the quality decreases, with graceful degrada-
tion, not abruptly (Fig. 7), at medium load there is almost no
impairment up to noise-to-signal ratios of 0.1 (Fig. 4).

The presented experiments explore a parameter range
where the internal wiring provides basically a feedforward
completion of partially addressed memory patterns. Without
persistent bias, the memories are not attractors. Thus, recur-
rent activity flow that can improve the retrieval quality itera-
tively, as suggested in Amit (1995) for local networks in area
IT, plays no major role in our experiments. However, they
appear in a pair of Pinsky—Rinzel neuron pools that are bidir-
ectionally coupled with much weaker connectivity strength
(Sommer & Wennekers, 2000, 2001). There, recurrent rever-
berations enhance the associative memory operation.

4.3. Conclusions

As a general result, our experiments demonstrate that
biologically realistic networks provide in a wide parameter
range robust associative storage of sparse patterns at a capa-
city close to the one of technical networks. In the light of our
model, gamma oscillations can indicate sequences of fast
individual retrieval processes. However, gamma oscilla-
tions are also found in the background activity, and with
flashed stimulation retrieved memories are not coded by a
rhythmic activity. This suggests to consider the elicitation of
a single synchronized population burst (within one gamma
cycle) as an elementary association or retrieval process.
Gamma oscillations, then, appear as sequences of fast indi-
vidual retrieval processes carried by associative excitatory
connections, rhythmically interrupted by inhibitory inter-
neurons, as has already been proposed based on simulation
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experiments in simpler models. This interpretation of
gamma activity as has already been proposed earlier
(Wennekers, Sommer & Palm, 1995). It stands in contrast
to the assumption of coding by periodically firing neurons
that simply adjust their phases in time such that different
objects become segregated into different phases of the
collective oscillations (cf. the discussion in Wennekers &
Palm, 1997). Our findings favor functional interpretations
that avoid the strong assumptions of phase-coding and
strictly rhythmic firing of single neurons.

Our experiments with flashed stimuli revealed that under
such stimulation conditions bursts become relevant for
information coding. By fast switching between flashed
stimuli, a sequence of retrieval processes can be evoked.
The maximum readout speed is only limited by the
gamma frequency of the network. At maximum readout
speed, every gamma cycle can display a different memory.
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