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Chapter 1. Symmetry and Group Theory
I. Symmetry and Group Theory.

All of the topics covered in this course make extensive use of molecular symmetry and
group theory - topics of entire books by themselves. It is the aim of this text to present group
theory in sufficient detail so that the student can solve most day to day spectroscopic problems
and read the spectroscopy literature.

A symmetry operation is a rotation and/or reflection which leaves the molecule
unchanged. It is performed about a symmetry element: a point, a line or a plane. The square
planar PtCl,* ion is said to be a higly symmetric ion because it contains a large number of
symmetry elements. All of the symmetry operations that apply to a molecule or ion constitute its
point group. 1t is the point group to which the molecule belongs that designates its symmetry. In
the next section, it will be shown that sixteen symmetry operations can be performed on the
PtCl,” ion. These sixteen operations constitute what is known as the Dy, point group, i.e., PtCly*
has D4p symmetry. In a treatment of the spectroscopy or bonding of an inorganic compound, one
must first determine the point group to which the system belongs. A full appreciation of what D,
symmetry implies requires the visualization of the symmetry elements and operations as well as
an understanding of groups. In the following two sections, the various symmetry operations and
groups will be discussed while the point group definitions are given in section 1.4. The
remainder of the chapter is devoted to representations of the point groups and to some simple
applications of group theory to spectroscopy and bonding.

I.1 Symmetry operations and symmetry elements

There are only five #ypes of symmetry operations required for the systems covered in this
course, and the PtCl;* ion contains examples of each. In this section, each type of operation will
be discussed in terms of its effect on this ion. The effect of the operations on the chlorine p,
orbitals will also be considered in order to better illustrate the effects of the operations. Thus, in
the figures that follow, ® will represent chlorine atom 1 with the positive lobe of the p, orbital
out of the plane of the paper while @ will imply that the negative lobe of the p, orbital is out of
the plane of the paper for chlorine atom 1.

1. The Identity Operation (E) does nothing and has no symmetry element but it is a
required member of each symmetry group. Thus, operation with E will change neither the

positions of the atoms nor the phases of the p, orbitals.
Atoms p, orbitals

@ @ @
E® D-Pt-3 = O-Pt<3 D-PEO-X
Figure I-1. The effect of the identity operation on the atoms and the chlorine p; orbitals in
PtCl42-. Also the definitions of the X, Y, a and b axes relevant to other discussions are defined.

2. An n-fold rotation (C,) is a rotation of 2m/n radians about an axis. The axis with the
highest value of n is the principle axis and is designated as the z-axis. Thus the z-axis in
PtCl,” is perpendicular to the plane of the ion. This axis is actually three symmetry elements
since rotations by /2, m, and 37t/2 about this axis all result in no change in the molecule. These
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three axes are referred to as Cs, C4> = C, and C/°, respectively.1 Rotation about the z-axis will
not change the phase of the p, orbitals. The X, Y, a and b axes defined in figure I-1 are also C,
rotational axes. It will be shown later that the C, rotations in this group can be grouped into
three classes which are differentiated with the use of ' and " {C,(Z)},{C,'(X) & C)'(Y)}, {C,"(a)
& C,"(b)}. Since the C,' and C," axes are perpendicular to the z-axis, rotation about any one of
them will invert the p, orbitals as shown in figure I-2.

Atoms p, orbitals
P
C@® D-Pt-3 = @-Pt-Q @-Pt-2)
® d

\ @ @ @
Co® @—g@ - @-Pt-@ @-Pt-@

@ P @
0 ©T-Pt-F = O-Pt-Q Q- Pt-@-x

' A & ©
cy(a)@@—/zbt@ - @-Pt-Q O-Pt-@

Figure I-2. The effect of some of the C, operations on the atoms and the
chlorine p; orbitals in PtCl42-.

Thus the ion contains C4 , Cs’ , C4*= Cs, C1'(x),C2'(y), C2"(a) and C,"(b) or 7 rotational axes.

3. Reflections can be made through three different types of planes: vertical planes (ov)
contain the principle axis, horizontal planes (o) are perpendiuclar to the principle axis and
dihedral planes (0q4) contain the principle axis and bisect two C, axes. The distinction between
vertical and dihedral is often unclear. Where appropriate, planes bisecting bond angles will be

designated as dihedral while those containing bonds will be designated as vertical. See figure I-
3.

Atoms p, orbitals
@
6,2 ® O-Pt-3 = Pt-D 3Pt
|
@ @ @
@ ®
W YD - 0RO | ono

0,0 ®O-Pt-0 = D-Pt-Q O-Pt-©

1o . 3 Lo . . . .
Since the clockwise C4~ operation is equivalent to a counterclockwise Cy4 rotation, the C4 and C43 operations are
+ - . .
also referred to as the C4 and C4 operations, respectively.

2
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Figure I-3. The effect of reflection through the symmetry planes on the atoms
and the chlorine p; orbitals in PtCl42-.

In PtCly*, the planes containing the z-axis (o, and og) will not change the phase of the p,-
orbitals while reflection through the plane perpendicular to the z-axis (on) does invert them
(figure I-3). Thus, PtCly*" contains: 0y(XZ )and 0(YZ ), on(XY) and o4 (a) and o4 (b) or five
planes of symmetry. Note that the a and b planes are defined as those planes perpendicular to the
plane of the ion and containing the a and b rotational axes.

4. An improper rotation or a rotary reflection (S,) is a C, followed by a on. Since
PtCl,” is a planar ion, the Z-axis is an element for both proper and improper rotations. See

figure I-4. Note that an S, results in the same numbering as a C,4, but the phases of the p, orbitals
are changed.

5. A Center of Inversion (i) takes all (x,y,z) — (-X,-y,-z). This operation can be
performed by a C,(z) which takes (x,y,z) — (-x,-y,+z) followed by a o(xy) which inverts z, i.e., i
= C,0h = S,. Since i and S; are equivalent, S, is not usually used.

Atoms p, orbitals

0 0
S,® @-Pt-3 = @—Plt—@ O-rt-8
3

P ¢
i=s2®®g® - GH(;(D ©rt-0

Figure I-4. The effect of improper rotations on the atoms and the
chlorine p; orbitals in PtCl42-.

PtCl,* contains E, Cy4 , Cs , Ci7 = Ca, C'(x) ,C2'(¥), Ca"(a), C2"(b), i, Sa, Sa° ,0u(XZ ),
oW(YZ ), on, 04 () and o4 (b). These sixteen symmetry elements specify the symmetry of the
ion.

Show that trigonal bipyramidal MXs contains the following symmetry elements:
E,Cs, C3% Cy, Co', Gy, Oy, 0y, 0y, S3, and S3°

Successive Operations. In some of the following discussion, the result of applying more
than one operation will be important. The result of performing a Cs4 rotation followed by a
reflection through the XZ plane (0,C,) is the same as a single o4(a) operation.

© ® @
0,02 ®C;® O-Pt-3) = 6 _(z) ® @-Pt-D= @Pt-D =0,
@ @ 0

However, if the order of the operations is reversed, i.e., C40y, the result is equivalent to a o4(b).
@ 0
C,®6,@® O-Pt-@)=C,® O-Pt-Q = Q-Pt-@ = o, 0)
' €
@
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It is important to note that in this case the order of the operation is important, i.e., C40y = 0,C4.
In some instances, the order of operation is not important. Two operations commute if the result
of successive application of the two operators is the same irrespective of the order in which they
were carried out. Thus, C4 and o, do not commute, but, as shown below, C4 and o, do commute,

i.e., C40'h = S4 = O'hC4.
@ ?

@
6, ®C,® @g@: 6, ® @g@:&g@wd

)
C4®Gh® O-Pt-3 =C4® O PrPi-©-0P8O- S4
@ o ®

Show that 0(XZ)Cx(X) = oy, for the trigonal bipyramidal MXGs.

.2 Groups

A set of operations like those above form a group if they meet the following requirements:
1. The set contains the identity operation, E. RE = ER =R.

2. The product of any two operations of the group must also be a member of the
group. From above, it should be clear that C40(XZ) = o4(b) while 0(XZ)C4 = 04(a).
Verify that Co(a)oy(XZ)=S4’.

3. Multiplication is associative for all members of the group. The triple product
C2(a)o(XZ)Cs can be written either as {Ca(a)o(XZ)}Cs = S4£C4 = oy or as
Ca(a){ouXZ)C4} = Ca(a)og(a) = On

I

. The inverse of every operation is a member of the group. The inverse of an operation
is that operation which returns the system to its original form, i.e., RR' = E. A
reflection through a plane and a two-fold rotation are each their own inverse.

The sixteen symmetry operations discussed for the PtCl,> ion satisfy all of these
requirements and constitute a group. Groups of symmetry operations are called point groups.
As mentioned previously, the point group to which PtCl,* belongs is called Dyy,. The number of
members of the group is called the order of the group and given the symbol h. For the Dy,
point group, h=16.

A multiplication table presents the results of the multiplication, i.e., the successive application
of two operations. By convention, the first operation performed is given at the top of the column
and the second operation involved is at the beginning of the row. The multiplication table for the
E, C4, C; and C4’ operations of the D4y, point group is given below.

first = | E C4 G | ¢S
second |
El E C4 G | ¢S

.l G G | ¢ E
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Gl G [ ¢ | B | G
CClc’ | BE | G| G

These operations satisfy all of the requirements of a group of order 4 (h=4). Indeed, they
comprise the C4 point group. Since all of the members of the C,4 point group are also found in
the Dgy, point group (h=16), Cy is said to be a subgroup of D4,. Note that the order of a subgroup
must be an integral divisor of the order of the group.

Problem I.1. Water belongs to the C,, point group, {Cay |E, C,, 6(XZ), 6(YZ)}. Define the
molecular plane as the XZ plane and generate the multiplication table for the C,, point group.

In the following section, extensive use of the multiplication table will be made, but since
the point group is so large, its multiplication table is cumbersome (16x16). We will, therefore,
consider the ammonia molecule which has lower symmetry. NH; belongs to the Cs, point group
of order 6, {Cs,| E, C3, C5°, 0y, 0,,0,"}. The effect of each of the symmetry operations of the
Csy point group on the ammonia molecule is shown in figure 1.5

E@Gﬁ\;{;\@; cz%j;;@ji&D
c§®®%ﬂﬁ®; sl 0
0@ H®i®; o @{i@)_’ ®i®

Figure 1.5. The effect of each of the symmetry operations of the C3y point group
on the ammonia molecule as viewed down the C3 axis.

The student should verify that the multiplication table for the Cs, point group is,

first = | E Cs Cs Oy oy' oy"
second |
E E Cs C32 Oy o' oy"
C3 C3 C32 E O'V" Oy O'V'
C32 C32 E C3 O'V' O'V" Oy
oy|] oy oy' oy" E Cs Cs”
o' o oy" Oy Gy E Cs
o | o Oy oy' Cs Gy E

1.3 Similarity Transformations

The operations, X and Y are said to be conjugate if they are related by a similarity
transfomation, i.e., if Z'XZ =Y, where Z is at least one operation of the group. A class is a
complete set of operations which are conjugate to one another. The operations of a class have a
"similar" effect and are therefore treated together. To determine which operations of the group
are in the same class as C;, one must determine which operations are conjugate to Cs;. The
results of the similarity transformation of C; with every other member of the group are
determined from the multiplication table above to be,

E'C;E=Cs C37C3C3 = C3°C3C3 = C5°C5” = Cs

(C32)-1C3C32 - C3C3C32 = C32C32 = C3 GV-1C30V = GVC30V = GVGV” = C32
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1 =
(GV') C30V' = GV'C30V' = GV'GV = C32 | (GV") 1C30V" = GV”C30V" = GV”GV' = C32

Thus, C3 and C3” are conjugate and are members of the same class. In a similar manner, it
can be shown that oy, ), and 0," are also conjugate and these three operations form another
class of the Csy point group. The Cs, point group is then written as {Cs, |E, 2C3, 30,}. The
order of a class must be an integral divisor of the order of the group. Similar considerations
allow us to write the D4y, point group as {Dap \ E, 2C4, Cy, 2G5, 2Cy", 1, 2S4, O, 20y, 204} .

Problem L.2 Identify the identity operator and the inverse of each function, and determine the
classes for a group with the following multiplication table.

M N P Q R S
M P S Q M N R
N R Q S N M P
P Q R M P S N
Q M N P Q R S
R S P N R Q M
S N M R S P Q

1.4 The Point Groups
The following groups all contain the identity operation and only the minimum operations
required to define the group are given. In many cases, these minimum operations lead to other
operations. In the following, "k" is an integer = 2.

Ci: No symmetry Ck: Only a Cy rotational axis:
Cs: Only a plane of symmetry. Ci: Only an inversion center.
Cin: A Cy rotational axis and a oy, Cxv: A Cy rotational axis and a o,.

Dy: One Ci and kC, rotational axes. The kC, axes are perpendicular to the Cy and at equal
angles to one another.

Din: The Dy operations plus a o, but this combination also results in ko, 's.

Dya: The Dy operations plus kog's containing the Cy and bisecting the angles between
adjacent C,'s.

Sk: Only the improper rotation, Sx. Note k must be an even number since an odd number
would require a O.

Ta: The tetrahedral point group contains three mutally perpendicular C, axes, four C; axes
and a o4 through each pair of C;'s.

On: The octahedral point group has three mutally perpendicular C4 axes, four Cs axes and a
center of symmetry.

Determining the point group to which a molecule belongs will be the first step in a
treatment of the molecular orbitals or spectra of a compound. It is therefore important that this
be done somewhat systematically. The flow chart in figure I-6 is offered as an aid, and a few
examples should clarify the process. We will first determine the point groups for the following
Pt(II) ions,

2- 2-

Cl\ /Cl\ /Br
Pt Pt

B/cf%/ \a

T

A contains three C, axes, i.e., [C¢?] is yes with k=2. It contains a plane of symmetry so [0?] is
yes. The three C, axes are perpendicular, i.e, there is a C, axis and two perpendicular C,'s which
means that [ LC,?] is yes. There is a plane of symmetry perpendicular to the C, so [04?] is yes
and we arrive at the Dy, point group. B contains only one C, axis, no LC,'s, no oy, but it does

6
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have two o,'s and is therefore a Cy, ion. C contains a single C, axis and a horizontal plane (the
plane of the ion) and therefore has C,;, symmetry.

Flow Chart to detertine Point Group

Special Pomt Groups ? Yes ( I
(tnear, tetrahedral, octahedral, icosohedral) Coov Dooh'T' Td'Th’O' Oh' h

"No Yes
c 7| ey o2 Yes
1?
) N Yes No
ag? o, So?
Yes Ho
1C,?
Yes No
Yes Yes
a7 a7
No No
Yes

o’ g,?
‘No FNO

Figure 1-6. Flow chart for the determination of molecular point groups

Next we determine the point group to which the staggered and eclipsed forms of
octachlorodirhenate belong.

S

Staggered Eclipsed

Both forms of [Re>Clg]* contain a Cy4 axis (Re-Re bond) so the answer to [Cy?] is yes with k=4.
Both contain planes of symmetry so [07] is also yes. The four L C,'s passing through the center
of the Re-Re bond are more apparent for the eclipsed form (2 parallel to the ReCl bonds and 2
parallel to their bisectors). Although less apparent than in the eclipsed form, there are also four
1 C,'s in the staggered form. As shown below the L C,'s bisect the Cl-Re-Re-Cl dihedral angles.

Both forms also contain vertical planes, but the eclipsed form also has a horizontal plane which
is absent in the staggered form. The point groups are therefore, D4y, for the eclipsed form and Dagq
for the staggered form.

It is important to become proficient with this skill, but only practice will do it.
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Problem 1.3 Determine the point group to which each of the following belongs.
cl Cl PR¢ P
H—C=N  5nB  “oni€l  ANM  F-xe-F A
Br < "Br Y L,
Cl Cl PMp oc \'"CO
SS Se co
|IRleedll
Phosphmes
Cl Cl Cl 0 2
1. 1 B 1. .Cl 1. . 1. N Wl DY. l IO
mhig Bk Bhig e @l b
Er Cl Cl 0 PV
’1/\“ bll F Cl Cl F
I ~ JF F
HNi. I |CN Cl 3 Il... i, Sb=0
Ny g \C“\' : c1 -
il T : F c1
\/N C1 i 1 C1

1.5 Matrix Representations of Groups

There are an infinite number of ways of choosing matrices to represent the symmetry
operations. The choice of representation is determined by its basis, i.e., by the labels or
functions attached to the objects. The number of basis functions or labels is called the
dimension of the representation.

A convenient basis to use when dealing with the motions of molecules is the set of
Cartesian displacement vectors. Each atom has three degrees of motional freedom so a molecule
with N atoms will generate a basis of dimension 3N. For the water molecule, a 9-dimensional
basis results and thus each operation will be represented by a 9x9 matrix. These 9-basis vectors
are shown below along with the resulits of the C, (z) rotation.

2

| W

0 "‘"91, i,, y —0
3 \ 22 3/ \ 23
1 I Ha 1 HSII I
H=gw Hque  ,—H v —H
H3 Ha

The result of this operation is: (xi— -X;), (Yi— -¥j), and (zi— +z;) where i1 = j for the oxygen atom
coordinates since the oxygen lies on the C, axis and therefore does not change its position, but i
= j for the hydrogen atoms since they are do not lie on the C, axis and are therefore rotated into
one another, e.g., X, —> -x3. We can represent this transformation in matrix notation where each
atom will have a 3x3 matrix,

(x\ (-1 0 0\(x)

MR

which must be placed into the 9x9 matrix representation of the C, operation. The oxygen atom
is not moved by the rotation (i =j = 1), so its 3x3 matrix remains in its original position (1,1) on
the diagonal while the hydrogen atoms are exchanged by the rotation so their 3x3 matrices are
rotated off of the diagonal to the (2,3) and (3,2) positions.

The matrix representation of this C, rotation is:
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;) {F1 0 0} 0 0 O 0 0Yfx,
v [0 -1 00 0 0 0 0w
| |0 0 #;0 0 0 0 0 0]z
X2 000 0 0 0 0 -1 0 0ifx,
Cily2|=|0 0 0 0 O 00 -1 0§y3
Z, 00 0 0 0 0 0 0 +lfz,
X3 000 0 {1 0 070 0 0fx,
v.| [0 0 0 0 -1 0 0 0 Vs
T, 000 00 0 + 0 0 0fz

For reflection through the plane of the molecule (o, = YZ), only the x-coordinate is changed and
no atoms are moved so the matrix representation is

x) i1 0 00 0 0 0 0 0Yx)
¥, n +1 0 00 0 0 0 0fy,
z | [(0 0O 4+ 0 0 0 0 0 Ofz
x| [0 0 01 0 000 0 0fx,

clv.|=[0 0 0 0 + Ugoooya
| |0 0 0i0 0+ 0 0 0fz,
xg| |0 0 0 0 0 01 0 0ifx
| |0 0 0 0 0 00+ Ofy,
Z 000 0 0 o0 00 0 #iflz

Thus, 9x9 matrices like those above could serve as the representations of the operations for the
water molecule in this basis. Fortunately, only the trace of this matrix needs to be specified, i.e.,
the sum of the diagonal elements. The resulting number is called the character, and the
character of an operation R is given the symbol x(R). In this example, x(C,) = -1 and %(oy) = 3.
Two important points about the character should be apparent from the above:

1. Only those atoms which remain in the same position can contribute to the trace since
otherwise their 3x3 matrices will be rotated off of the diagonal.

2. Each operation contributes the same amount to the trace for each atom since all atoms
have the same 3x3 matrix.

For a reflection through the plane bisecting the H-O-H bond angle, %(o,') = +1 since only the O
is unshifted and a plane contributes +1 for each unshifted atom. The character for the identity

element will always be the dimension of the basis since all labels are unchanged. For water
then, x(E) = 9.

The representation (I') for water in this basis is:

E G, o,=YZ| 0,/=X

r 9 -1 3 1

The s-orbitals can also serve as a basis,
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(W ()

In this basis, each atom has 1 and not 3 labels so each operation is a 3x3 matrix as opposed to the
9x9 matrices of the previous basis. In addition, there can be no sign change for an s-orbital. The
resulting representation is,

(1 0 0 (1 0 0 (1 0 0 (1 0 0
E:LO 1 OJ; c2=Lo 0 1J; Ov:LO 1 OJ, o’V=L0 0 1J
00 1 010 00 1 010

r 3 1 3 1

If one basis (f') is a linear combination of another basis (f) or f' = Cf, then the representation in one
basis should be similar to that in the other. It can be shown that the matrix representations of
operator R in these two basis sets (D(R) and D'(R)) are related by a similarity transformation: D'(R)
= C'D(R)C and D(R) = CD'(R)C", i.e., the matrices D(R) and D'(R) are conjugate. For example,
the linear combination of s-orbitals: X =1+ II, Y =1+ Il and Z = II + III which can be expressed
in matrix form as

f'= ¢C f

X 1 1 0 +0.5 +0.5 -0.5
v|=|1 0 1| 1 |andthe inverse of Cis Ct =405 -05 +0.5
Z 0 1 1JUII -0.5 +0.5 +0.5

The matrix representation of C, (D'(Cy)) in the new basis then is given by D'(C,) = C'D(C5)C

(+0.5 +0.5 —0.5\(1 0 O\/1 1 0y (0 1 0
or  D(Cy)= L+0.5 0.5 +0.5JLO 0 1JL1 0 1J=L1 0 OJ similarly,

05 +0.5 +05)\0 1 o/lo 1 1) \o 0 1
(0 1 0 (1 0 0
D'(GV')=L1 0 oJ and D'(E) = D'(0,) = Lo 1 OJ.
00 1 00 1

Note that the representation for C, and o' have changed, but in all cases the character is invariant
with the similarity transformation. Thus, all the members of a class of operations can be treated
together since they are related by a similarity transformation and must have the same characters.
The two 3x3 bases used to this point can be viewed as consisting of a 1x1matrix (one basis vector is
not rotated into any of the others by any operation of the group - I & Z) and a 2x2 submatrx (two
basis vectors are rotated into one another by at least one operation of the group). Thus, the 3x3
representation has been reduced to a 1x1 and a 2x2. Indeed, the 2x2 matrix can be reduced into two
Ix1 matrices. In this process, a large reducible representation is decomposed into smaller
(usually 1x1 but sometimes 2x2 and 3x3) irreducible representations.

Consider the symmetry adapted linear combinations (SALC's): A=1,B=11+ Il and C=1I - III.

/O\Q/\O o e
A C

B

10



Chapter 1. Symmetry and Group Theory

In this basis, a C; rotation and a reflection through the plane perpendicular to the molecular plane
do not change A or B, and change only the sign of C while reflection through the molecular plane
leaves all three unchanged.

(1 0 0) (1 0 0)
E=0= LO 1 OJ while C; = o' = LO 1 OJ . In this basis, no basis vector is changed into
0 0 1 0 0 -1

another by a symmetry operation, i.e., this basis is symmetry adapted. ~Now, our 3x3
representation consists of three 1x1 matrices and we have converted our reducible representation I'
into three irreducible representations, I';; I and I3, ie., =T+ I + I3

E G o o'
I 1 1 1 1
I, 1 1 1 1
I3 1 -1 1 -1
r 3 1 3 1

The term "irreducible representation” is used so frequently that it is often abbreviated as "irrep".
We will also use this abbreviation throughout this book,

irrep = irreducible representation

Decomposing a reducible representation into irreps is a very important process, and a procedure
to accomplish the decomposition will be described later in this chapter.

1.6 Point Group Representations

A point group representation is a basis set in which the irreducible representations are the
basis vectors. As i, j, and k form a complete, orthonormal basis for three-dimensional space, so
too do the irreps form the a complete orthonormal basis for an m-dimensional space, where m is
the number of irreducible representations and is equal to the number of classes in the group.
These considerations are summarized by the following rules.

1. The number of basis vectors or irreps (m) equals the number of classes.

2. The sum of the squares of the dimensions of the m irreps equals the order,

The character of the identity operation equals the dimension of the representation,
%(E) = d; which is referred to as the degeneracy of the irrep. The degeneracy of most
irreducible representations is 1(non-degenerate representations are 1x1 matrices) but
can sometimes be 2 or 3. The icosahedral point group to which Cgp (Buckminster
fulerene or "Buckyball") belongs, has irreducible representations with degeneracies
of 4 and 5. No character in an irreducible representation can exceed the dimension
of the representation. Thus, in non-degenenerate representations, all characters
must be =1.

3. The member irreps are orthonormal, i.e., the sum of the squares of the characters in
any irrep is equal to the order (row normalization), while the sum of the product of
the characters over all operations in two different irreps is zero (orthogonality).

11



Chapter 1. Symmetry and Group Theory

N gR) xRy (R) =hd,

where the sum is over all of the classes of operations, g(R) is the number of
operations, R, in the class, xi(R) and ;(R) are the characters of the operation R in the
i"™ and j™ irreps, h is the order of the group and d;j is the Kroniker delta (0 when 1=
and 1 when i=j).

4.  The sum of the squares of the characters of any operation over all of the irreps times
the number of operations in the class is equal to h, i.e., columns of the representation
are also normalized.

Y eR)x; (R)=h

where m is the number of irreducible representations.
5. The sum of the products of the characters of any two different operations over all of
the irreps is zero, i.e., columns of the representation are also orthoganol.

D uR)% R =0

6. The first representation is always the totally symmetric representation in which all
characters are +1.

7. Any reducible representation in the point group can be expressed as a linear
combination of the irreducible representations - the completeness of the set.

We will now generate the C,, point group, {Cay | E, C2, 0, 0'}. The order of the group is
four and the number of classes in the group is four, i.e., h = m = 4. Each class has only one
operation, i.e., g(R)=1 in all cases. Rule 2 states that d;* " d,*> + d3* + dy* = 4 so that d; = d, = d3
=ds =1 - there are no degenerate representations in C,,. The character of the identity operation
is always the dimension of the representation, xi(E) = di. Therefore, all of the characters under
the E operation are known. From rule 6 we may write the characters of I'; as +1's only. Thus,
we may write the following,

Coy E G Oy o'
I 1 1 1 1
F2 1 a b C
F3 1 d € f

and since there are no degenerate representations, characters a through i must all be +1 or -1. In
order to maintain orthogonality of rows and columns, only one of the remaining characters in
each row and in each column may be +1 while the other two in each column and row must each
be -1, i.e., there are only three remaining +1's and no two can be in the same column or row. We
will make a, e and i the +1's and then others must be -1.

The C,, character table is then determined to be:

C2V E C2 Oy O'V'
I 1 1 1 1
I 1 1 -1 -1
I; 1 -1 1 -1
I 1 -1 -1 1

12



Chapter 1. Symmetry and Group Theory

Mulliken symbols for irreps:

« "A" means the irrep is symmetric with respect to rotation about the principle axis
[Cu(2)] = +1)

« "B" means the irrep is antisymmetric with respect to rotation about the principle
axis (x[Ca(2)] = -1)

« "E" implies a doubly degenerate representation (d =2 = %(E) =2)

« "T" implies a triply degenerate representation (d =3 = x(E) = 3)

» "G" and "H" imply degeneracies of 4 and 5, respectively.

In many instances there are more than one A, B, E , etc. irreps present in the point group
so subscripts and superscripts are used.
« g or u subscripts are used in point groups with centers of symmetry (i) to denote gerade
(symmetric) and ungerade (antisymmetric) with respect to inversion.
« "and " are used to designate symmetric and antisymmetric with respect to inversion
through a oy, plane
+ numerical subscripts are used otherwise.

In the C,, point group then, the irreps are designated as I'; = A;; I = Ap; I's =By; Iy = Ba.

In the treatment of molecular systems, one generates a reducible representation using an
appropriate basis (e.g., atomic orbitals or cartesian displacement vectors) and then decomposes
this reducible representation into its component irreps to arrive at a description of the system
which contains the information available from the molecular symmetry. There are certain
symmetry properties which are very important and do not change so long as the point group
remains the same (the metal orbitals for metals on all of the symmetry elements, the translations
and rotations, and the dipole operators). Since the symmetries of these various aspects are used
frequently, they are also included in the character table. We will now demonstrate the
determination of these symmetries for the water molecule.

Since the s-orbital on the oxygen atom lies on all of the symmetry elements and is
spherically symmetric, it is unchanged by a rotation about the C, axis or reflections through the
planes thus the representation for the s-orbital is:

C2V E C2 GV GV'
s-orb | +1 +1 +1 +1

which is the A; irrep. s-orbitals on central elements will always transform as the totally
symmetric representation but are not included in character tables.

The three p-orbitals, translation along the x- ,y- and z-axes, and the three components of
the electric dipole operator (ux, Wy, U,) all transform in the same manner. The py and py orbitals
will change sign with a C, operation and with reflection through the perpendicular plane, yz and
xz, respectively. The p, orbital is not affected by any operation.

Px P, Py

Caoy E C2(Z) Ov(xz) Ov(yz)
pr | L | 41 | 1 | +1

13
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Px +1 -1 +1 -1
Dy +1 -1 -1 +1

Thus, I', = A; + By + B,. The py orbital is said to

+ form the basis for the B, represention,

* have B, symmetry, or

+ transform as B;.
Translations along the x, y and z directions (X, y, z) transform in the same way as px, py and p..
To see this simply translate the water molecule slightly in the x-direction without moving any of
the symmetry elements. In this new position, C, and o(yz) are destroyed and the characters are
those of pyx above.

-

T

Rotation of the water molecule slightly about the z-axis moves the H's out of the plane.
In this orientation, the C, axis is still preserved, but both planes of symmetry are destroyed, i.e.,
R, transforms as A,. Rotation about the x-axis preserves the yz plane but destroys both the C,
rotation and the xz reflection while rotation about the y-axis preserved the xz-plane and destroys
the C, rotation and yz reflection.

Cay E C2(Z) Ov(xz) | Ov(yz)
R, +1 +1 -1 -1
Ry +1 -1 -1 +1
R, | +1 | -1 | +1 | -1

Thus, the rotations in the C,, point group transform as A, + B; + B,. In most character tables,
C,y has the following form:

Cy | E |G| o | o

A |1 1 1 1 z X, v,z
A, 1 1 -1 -1 R, Xy

B, 1 -1 1 -1 X, Ry XZ

B, 1 -1 -1 1 y, Ry yz

The final column gives the squares and binary products of the coordinates and represent the
transformation properties of the d-orbitals.

A set of character tables is given in the appendix A. This set is only a minimal set having
only those point groups encountered in this course. More complete sets are available in
other texts.

As a final example, the C;, point group will be generated. The operations of Cs, are E,
Cs, C5%, oy, 0y, and 0,", which can now be writen as E, 2Cs, and 30, since C; and Cs° are
conjugate as are all three o,. This group has an order of six and contains three classes (h=6,
m=3) = d,*+d’ +di>=6=d, =d, =1 and d; = 2. Since the dimensions of the irreps are the
%(E) and every group contains the totally symmetric irrep,

| G | 1E | 2G5 | 30, |

14
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I 1 1 1
I, 1 ] k
I3 2 m n

Orthogonality with T'; requires that 2g(R)x(R) = 0 for I'; [(1)(1)(1) + (2)(1)(§) + 3)(1)(k) = 0]
and for I3 [(1)(1)(2) + (2)(1)(m) + (3)(1)(n) = 0]. I, is non-degenerate (j and k must each be =1)
so the orthogonality condition implies that j = +1 and k = -1. Normalization of I'; means (1)(2)*
+2(m*) + 3(n*) =6 som=-1and n=0. Alternatively, we can use the fact that g(R)Z)((R)2 =h
down any column so 2(1* + 1+ m?) =6 orm> = 1 and 3(1* + (-1)* + n*) =6 so n> = 0.

Gy E 2C; | 30y
Ay 1 1 1
A, 1 1 -1
E 2 -1 0

The ammonia molecule (C;, point group) and the coordinate system used in the following
discussion is given below (one N-H bond in the XZ plane).

Z(Cy)

| v

The p, orbital is not changed by any of the operations of the group, i.e., it is totally
symmetric and transforms as A;. However, it should be apparent that p, and p, are neither
symmetric nor antisymmetric with respect to the C; or o, operations, but rather go into linear
combinations of one another and must therefore be considered together as components of a 2
dimensional representation. The matrices in this irreducible representation will be 2x2 and not
Ix1. The character of the identity operation will then be 2 (the trace of a 2x2 matrix with 1's on
the diagonal), i.e., x(E)=2. A rotation through an angle 2nt/n can be represented by the following
X' cos(2m /n) sin(2x/ n)\ /X
y') - (—sin(Zﬂ /n) cos(2x /n))(y
2cos(2mt/n) which for n=3 is 2cos(2w/3) = 2(-0.5) = -1, ie., x(Cs) = -1. The character for
reflection through a plane can be determined by the effect of reflection through any one of the
three planes since they are all in the same class. The easiest operation to use is the reflection

transformation: ( ) the trace of the C, rotation matrix 1is

X' I 0\/x
through the XZ plane which results in px — px and py, — -py or (y,) = ( 0 1) (y) which has a

trace of 0, %(o,)=0. The transformation properties of the px and py orbitals are represented as,

E 2C3 3O'V
(x,y) 2 -1 0

which is the E irreducible representation. The py and py orbitals are degenerate in Cs, symmetry
and are taken together to form a basis for the two-dimensional irreducible representation, E.
Treating rotations and binary products as before, we can represent the Cs, point group as

Cyw | E | 2G| 3o,
Al 1 1 1 z Xy’ 77

15
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A, 1 1 -1 R,
E 2 -1 0 xY)iRuRy) | -y’ xy)i(xz,yz)

Thus the x*-y* and xy orbitals are also degenerate as are the xz and yz orbitals.

Problem 1.4. What are the dimensions of the irreducible representations of a
group with the following classes: E, Ry, 2R», 2R3, 2R4, 2Rs, 5R,, SR,?

Problem L.5. Generate the D, point group. {D4 \ E, 2C,4, Gy, 2GC,)', 2C,"}

Problem 1.6 By convention, the z-axis is the principle symmetry axis, however, for planar
molecules, it is also common to define the z-axis as the axis perpendicular to the plane.
Determine the irreps to which the metal d-orbitals belong for cis-Cl,PtBr; (Cyy) using the
latter convention (z perpencicular to molecular plane). Define the x-axis as bisecting the
Cl-Pt-Cl bond and the y-axis as bisecting the CI-Pt-Br bonds.

1.7 Decomposing Reducible Representations

In the determination of molecular orbital or vibrational symmetries, a reducible
representation is generated from an appropriate basis set and then decomposed into its
constituent irreducible representations. The process is analagous to determining the projection of
a vector on the x,y or z axis in three space where the dot product of the vector with i, j or k
yields the result. Decomposing a reducible representation can be viewed as determining the
projection of the reducible representation along one of the irreps and the process is similar to
taking the dot product of the two. The actual method is given here without proof.

a3 sRNRXR)

a; : the number of times that the i irrep appears in the reducible representation
h : the order of the group

R : an operation of the group

g(R) : the number of operations in the class

%i(R) : the character of the R™® operation in the it irrep

%(R) : the character of the R™® operation in the reducible representation

As an example, we will decompose the reducible representation: I'teg = 7 1 1 of the Csy point
group, i.e., we will determine the number of times (a;) that each irrep is contained in I'eq . The
order of the point group is 6.

Csy 1E 2C; | 30, Csy 1E 2C; | 3oy
Ay 1 1 1 Ay 1 1 -1
I_‘red 7 1 1 rred 7 1 1

a(A1) =% {(1)(1)(7)+(2)(1)(1)+(3)(1)(1)}=% {123=2
a(Az)=% {(1)(1)(7)+(2)(1)(1)+(3)(-1)(1)}=% {6}=1

Csy 1E | 2G5 | 30y
E 2 -1 0
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[Cea | 7 | U] 1]
a(E) = < (D)D) + @YD) + @O+ = < {12}=2

The reducible representation can be decomposed as follows: I'teq = 2A; + A, + 2E. The results
can be verified by adding the characters of the irreps,

Csy E 2C; | 30y
2A 2 2 2
A, 1 1 -1
2E 4 -2 0
| 7 1 1

Problem 1.7 Decompose the following reducible representations of the Cs, point
group.

Cay E 2C4 C, 20, 204

I 11 1 -1 5 1
I 6 0 2 0 0
I3 5 1 -3 -1 -1

L4 4 -4 4 0 0

The reducible representation of the Cartesian displacement vectors for water was
determined earlier (see page 1.8 - 1.10) and is given in the following table as I'cax

Cay E C oy o'y

Ay 1 1 1 1 z
A, 1 1 -1 -1 R,
B, 1 -1 1 -1 xRy
B, 1 -1 -1 1 y,Rx
Icart 9 -1 3 1

Decomposition of T'car yields,
a(Ap) =1/4 {(DH(DHO) + (DH( DD + M DHE) + (M D)} = 1/4 {12} =3
a(A) = 1/4 {(1H)(D(O) + (H( DD + (DEDHEB) + (D(-D(D)} =1/4 {4} =1
a(By) = 1/4 {()(1)(9) + (D(-D(-1) + (DH( DH3) + (DH(-1)(D)} = 1/4 {12} =3
a(By) = 1/4 {(1)(1)(9) + (D-D(-1) + (H(-D3) +(DH(D(D)} = 1/4 { 8} =2
i.e., Fcart = 3A1 + A2 + 3B1 + 2B2

Linear combinations of the 3N displacement vectors represent the degrees of motional
freedom of the molecule. Of these 3N degrees of freedom, three are translational, three are
rotational and the remaining 3N-6 are the vibrational degrees of freedom. Thus, to get the
symmetries of the vibrations, the irreducible representations of translation and rotation need only
be subtracted from I, but the irreps of rotation and translation are available from the character
table. For the water molecule, I'yi, = Icart = Digans - ot = {3A1 + Az + 3B; + 2By} - {A; + By +
B:} - {A, + By + By} = 2A; + B;. Construction of these "symmetry coordinates" will be
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discussed in detail in the Vibrational Spectroscopy chapter, but we will draw them below and
note that S; (symmetric stretch) and S, (bending mode) both preserve the symmetry of the
molecule, i.e., are totally symmetric, while S; (antisymmetric stretch) destroys the plane
perpendicular to the molecule and the C, axis but retains the plane of the molecule, i.e., it has B,

symmetry.

Problem 1.8 Determine the symmetries of the vibrations of NHs, PtCl,* and SbFs.

1.8. Direct Products.
It is often necessary to determine the symmetry of the product of two irreps, ie., to
determine their direct product.

Direct Products: The representation of the product of two representations is given by the
product of the characters of the two representations.

Verify that under C,, symmetry A, ® B, =B,

Coy E C, Oy o,
A, 1 1 -1 -1
B, 1 -1 1 -1
A, ® B 1 -1 -1 1

As can be seen above, the characters of A, ® B, are those of the B, irrep.

Verify that A, ® B, = Bj, B,® B;= A,. Also verify that
+ the product of any non degenerate representation with itself is totally symmetric and
+ the product of any representation with the totally symmetric representation yields the
original representation.
Note that,
« AxB=B; while AxA=BxB=A
o "1"xM2"="2" while "1"x"1"="2"x"2"="1"
e gxu=u while gxg=uxu=g

A table of Direct Products for the groups pertinent to this course is given in Appendix B.

The basis of selection rules (see Chapter I1I) is that the transition between two states a
and b is electric dipole allowed if the electric dipole moment matrix element is non-zero, i.e.,

(alu|b) = fwopy,dr =0

where w = uy, + uy + u, is the electric dipole moment operator which transforms in the same
manner as the p-orbitals (x, y and z in the character table). A necessary condition for this
inequality is that the direct product of the integrand, . Qu&p,= P.B(Uy, + Uy + U, )&y, must
contain the totally symmetric representation.

18
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Is the orbital transition dy, — px electric dipole allowed in C,, symmetry? The C,,
character table indicates that the d,, orbital forms the basis for the B, irrep while the p, orbital
transforms as B; so the question is whether or not a transition between a B, orbital and a B,
orbital is electric dipole allowed? Such a transition is allowed only if the product B; ® u ® B,
contains the A, representation. In C,y, the electric dipole transforms as b; + b, + a;. The direct

(b (a,) (b,)
products are determined to be B, ® Lbz J ®B, = LaZJ ®B, = LbIJ . None of the three compon-
a b, a
ents contains the a; representation, so this transition is forbidden.

Since the irreps are orthogonal, the direct product of two different irreps will always
contain -1's and thus cannot be totally symmetric. The only way to get +1's exclusively is to
square the individual characters, i.e., the direct product of two non-dengerate irreps can be a;
only if they are the same irrep. A triple product will transform as A; only if the direct product
of two irreps is the same irrep as the third. We may therefore state the following:

A transition between two non-degenerate states will be allowed only if the direct product
of the two state symmetries is the same irrep as one of the components of the electric dipole.

The transition dy, — px will be allowed only if the direct product B;®B, transforms the same as
x,y or z. Since B;®B, = a, and x nor y nor z transform as a, the transition is not allowed. An
A,;—B; transition is allowed however since A; ® B, = B,, and y transforms as b,. In this case,
the transition is said to be "y-allowed". Show that the A, — B, transition is also "y-allowed".

Problem 1.9. Indicate whether each of the following metal localized transitions is electric dipole
allowed in PtCL. (a) dyy — P2 (b) dy, = dp (c)dx-y2 = Px.Py (d)p,—=s

.9 Symmetry Adapted Linear Combinations

We will construct molecular orbitals as linear combinations of atomic orbitals, but these
molecular orbitals must form the bases for the irreps of the molecular point group (chapter II),
and we have already shown that the vibrational modes are constructed as linear combinations of
the Cartesian basis vectors in such a way that they too form the bases for the irreducible
representations of the molecular point group. Since these linear combinations form the bases for
the irreps of the molecular point group, we call them symmetry adapted linear combinations or
SALC's. The construction of these SALC's is mandatory if all of the information available from
the molecular symmetry is to be obtained.

SALC's are formed from symmetrically complete sets. = Each member of a
symmetrically complete set can be carried into every other member by some operations of
the group. For example, compare square planar [PtCl,Br]* of C,, symmetry with tetrahedral
[CoCLBr]* of C,, symmetry. In the C,, ion, the three chlorines are not symmetrically equivalent
since there is no operation of the C,, point group which can exchange trans- and cis-chlorines
and thus they must be in different sets. In the C,, ion, all three chlorines can be exchanged by a
C, rotation and thus all belong in the same set.

Cl B[
Br+ Cl v ' Cl
g ol &
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We state without proof the method for construction of a set of SALC's i from an m-dimension
set, {¢i| j = 1,2,...m} which is symmetrically complete:

Y, =N, EXjk(R(PS_)‘pj )P,
i

where 1y is the SALC belonging to the k™ irrep

wik(R% %) is the character of the operation R which carries a reference
vector, ¢, into the vector ¢;in the kth irrep

Nk is a normalization constant

More simply put, one vector of the symmetrically equivalent set is chosen as the reference then
the coefficent on the j" member of the set in the SALC is the character of the operation of the
point group which carries the reference vector into the j member of the set. The reference
vector is carried into itself with the identity operation and therefore has a coefficient of +1.

To determine SALC's of the s-orbitals in water,
1. Determine the point group of the molecule. H,O belongs to the C,, point group.

2. Identify the symmetrically complete sets. H(1) and H(2) form one set while the
O forms the other
3. Determine the operation which converts the reference vector into each of the
E C, E
others. H(1)—H(1); H(1)—=H(2); 0O—O

4. Determine the reducible representation of the complete sets.

Cov E G Ov oy
T(H) 2 0 2 0 | A+B
o) 1 1 1 1 Al
5. Determine the character of the appropriate operation for each of the irreps
Al B1
E 1 1
Cy 1 -1

6. Construct SALC's
A Pi= Ny {H(l) + H(2)} & Yo = NQ{O} Bi: Y3 = N; {H(l) - H(2)}

7. Normalize the SALC's - the sum of the squares of the coefficients must be unity.
1 5 5 1
i NZo1=Ny=1; 2NZ 1= Ng =——
2 2 2 3 3 >

To convert H(1) into H(2) we chose the C, rotation, but the o', could also have been used. In
this example it did not matter since the characters of the C, and o', operations are the same in

2N? =1=Nj =

both A, and B,. However this will not always be the case and the above method will not lead to
a unique SALC. In these cases, the complete projection operator should be used, i.e., the effect
of every operation in the group on the reference vector must be determined and the effect then
multiplied by the character of the operation in the irreducible representation. For the H(1)
reference in A, and B, representations,

E C2 Oy ()"V
effect on H(1) | H(1) | H(2) | H(1) | H(2)
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NI 1 1 1
B,| 1 | -1 | 1 [

Thus the A; SALC would be N; {2H(1) + 2H(2)} = 0.707{H(1) + H(2)}, and the B; SALC would
be N,{2H(1) - 2H(2)} = 0.707{H(1) - H(2)} - the same results as before. This method can be
somewhat more tedious then the former method, but it will always yield unambiguous results.

The SALC's for the s-orbitals for the three H's of NH; are determined in the same manner
with the added complication of degeneracy. The reducible representation is

Csv | E |2C; |30,
Al 1 1 1
A | 1 1| 1
E 2 | 1 | o
r(ls) | 3 0 | 1

Which can be decomposed into I'(1s) = A; + E. We will use ¢, as the reference vector and the

C; rotation to convert it into ¢, and ¢; (x(C;) = -1 in the E' representation). The normalized

1
SALC of A, symmetry is then y, = ﬁ(q)‘ +¢,+ ¢3) while the two components of the doubly

degenerate pair of E' symmetry are obtained in an analgous manner by using two different
reference vectors, for example ¢, and ¢3,

«_ L _ v_ Lo
wz—Jg( ¢ +2¢, - ¢,) and . 75 (9= 0 +29)

The two components of a doubly degenerate set form the basis for a 2-dimensional
representation and must therefore be orthogonal to one another, but the two derived above are
not orthogonal. To generate two orthogonal components, linear combinations of the above are
taken, y,* £, yielding,

oL b_ Lo
v = Jg(zqz ¢, -¢,) and v, 7502 =90

Note that since only the relative phases of the orbitals are important, the minus sign in ;" is
usually dropped. A quick check of orthogonality can be done by looking at the nodal planes.

.\.OO./‘ .O. O’.

B

In A, W," and W,” the nodal planes interesect at an angle of 120° - they are not orthogonal while
in B, W,* and ¥,", the nodal planes are perpendicular, i.e., orthogonal, as are the two basis
vectors.

Using the complete projection operator for this problem (see page 1.5 for the definitions of the
planes) we would write,

E C3 C32 o, O.Vv O.Vu

effecton ¢, | ¢ $2 (U5} ¢ O3 $2
A, RN
E 2 -1 -1 0 0 0
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Remember that the effect of EVERY operation must be considered! The SALC's are then
1
Y1 =Ni{dr T o+ 3+ o1+ 2 + 3} or =$(¢1 +¢,+¢,) and

Py = Np{2¢; - ¢, - ¢3} which can be manipulated as in the previous method to give the same
degenerate SALC's.

Problem 1.10 Construct the SALC's for the s-orbitals on the chlorine atoms in
Mo(O)Cl*, a tetragonal pyramid with C,, symmetry.

The rest of the course will be dealing with these and other applications of symmetry and
group theory, but at this stage you should be able to do the following:

Determine the molecular point group.

Generate reducible representations for various systems.

Decompose a reducible representation into its irreducible representations.
Determine the direct product of several representations.

Generate SALC's from symmetrically complete sets

MBS
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Chapter II - Molecular Orbital Theory
I1.1 Quantum Theory: a brief tour

All information concerning the structure, energetics and dynamics of a molecule is
contained in the molecular wavefunction, \{, the wave property of matter. The physical
significance of the wavefunction is that y*ydt is proportional to the probability that the
particle can be found in the interval dt. Thus, the integral of y*ydt over all space,

+00

f Yy dt, is proportional to the probability that the particle exists in space. For a well

constructed wavefunction, this integral is unity and the wavefunction is said to be
normalized.

Perhaps the most encountered quantum mechanical expression is the Schrodinger
equation:
H¥,=E,¥, EqIl1

where H is the Hamiltonian or energy operator, W, is the stationary state wavefunction of the

™ state, and E, is the energy of that state. Theoretically, there are an infinite number of W,
(n=1,...,00) and as solutions to the above equation they form a complete set of basis functions
which means that any function, ¢, can be expressed as a linear combination of the members of

the set, ¢ = Ec ;. Since the normalized functions are also orthogonal, they form an

+00

orthonormal basis. The orthonormality condition is f Y p,dt =0, . where 8y, is the

—00

Kroniker delta which is equal to zero for n=m (orthogonal) and equal to 1 for m=n
(normalized).

You have encountered orthonormal basis sets before; the irreducible representations
form the basis for a point group and the vectors i, j, and k form a basis for three-space. Any
reducible representation can be written as a linear combination of the irreducible
representations and any vector, p, in three space can be written as a linear combination of the
basis vectors, p = ai + bj + ck, where a = p¢i is the amount of the basis vector,i, that is mixed
into the vector, p. The similarities of the properties of vectors and wavefunctions can be used
to advantage by representing the wavefunction, W, as a vector |n>, called the ket of n and its
complex conjugate as <n|, the bra of n. The integral over all space then becomes a dot

product f Yo dr={m|n) =0, where <m|n> is a (bra)(ket). Operation on a vector results

in a change of its length and/or its direction. For example, a Cg operation on i (rotation by 45°

. 1 . .
about the z-axis), generates a new vector, Cgi = f(l +j). The dot product of this vector with

the each of the basis vectors could be represented as
ey - (il
k|C,|i) = k—i+j>=— ki) + (k|j
) = (k|64 = 5kl (1) -

5(i+3))= T+ ()= 750+ = 7=

1

-5 (0+0)=0
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Chapter II. Molecular Orbital Theory

so the operator Cg is said to remove the orthogonality of i and j by mixing them. The
resulting vector, however is still orthogonal to k.

We can view quantum mechanical operators in the same way so Eq II.1 can now be
written,

Hn>=En> Eq11.2

The operation, H, changes only the length of the vector, n>, i.e., it yields a scalar, E,, times
the initial vector. In cases like this, the vectors represented by n> are said to be
eigenvectors of the operator H with eigenvalues E,. It is often the case that n> is not an
eigenvector of an operator, O, or On> = 3icjj>, i.e., n> is rotated into a linear combination of
the basis vectors just as i was rotated into a linear combination of i and j by the Cs rotation.

If n> is an eigenvector of H but not of O, then the observable O is not a constant of the
motion, i.e., its value is changing while the energy remains constant. In this case it is the
average value of the physical observable designated <O>, that is determined,

f IIJ oV
(0) =

_Glolny o
Twwar () = {afol Fall?

<O> = <n|On> is also called the expectation value of the observable O (momentum,
position, energy, spin, etc.) in the n™ state, but these numbers are simply the diagonal
elements of a matrix of such elements, <O>n, = <m|On> - if the n> are eigenvectors of O
than the matrix is diagonalized. Indeed, a frequently used procedure for the determination of
the eigenvalues and eigenvectors of a system is to assume a basis set which closely
approximates the actual system, generate the Hamiltonian matrix in the selected basis and
then diagonalize it. This procedure results in both the eigenvalues and the eigenvectors of the
matrix.

Problem II.1 (a) Given that |j>,
and that O |n>=Zyck | k> show that ¢; = <j| O |n>. (b) Assume <¢| > = 8; and
show that SALC, W, = 2¢, - ¢z - ¢3 is orthogonal to Wy, = ¢, - ¢3 (the other member of
the degenerate pair) but not to W, = -¢1 + 2¢» - ¢3 (one of the functions used to
generarte Wy, in section 1.9.

I1.2 Wavefunctions as bases for irreducible representations

The energy of a system will not change when identical particles (electrons or nuclei)
are interchanged, so the Hamiltonian must be invariant with respect to any of the operations of
the group, i.e., RH = +1H so H transforms as the totally symmetric representation. The
physical properties of the system are contained in 1>, so it too must be invariant, i.e., Ry* =
+11p* which means that for a non-degenerate wavefunction, Ry = +11. Thus the application
of each of the operations of the group to an eigenfunction/eigenvector will generate one of the
irreducible representations of the molecular point group.

The eigenvectors form bases for the irreducible
representations of the molecular point group.

In general, symmetry operations will rotate one member of a degenerate representation into a
linear combination of all members of the degenerate representation. It can be shown that a k-
dimensional representation is generated by a k-fold degenerate set of eigenvectors. The trace
of the k-dimensional representation then forms the basis for a degenerate representation.
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Chapter II. Molecular Orbital Theory

Determining whether two functions can be mixed by an operator is an important
application of group theory. We have already encountered one such application: selection
rules are based on whether two states can be mixed by the electric dipole operator,
<gi|p | p>= 0. Remember that in order for an integral over all space to be non-zero, the
integrand must contain the A; irreducible representation. Thus, the integral <y; | H |yj>= 0
only if the direct product of I'; x I'y x I contains the A; irreducible representation. Since I'y
is Ay, the direct product will contain A; only if IT ® Ij is A; and for non-degenerate
irreducible representations that implies that I'; = I'. Therefore,

Hj; =<y;| H| ¢;>= 0 only if ¥; and 1; form the basis for
the same irreducible representation.

I1.3 Quantum Mechanical Approach to Molecular Orbitals

Molecular orbitals are formed by taking a Linear Combination of Atomic Orbitals
(LCAO). Just as atomic orbitals are solutions to the hydrogen atom wave equation, molecular
orbitals are based of the solution to hydrogen molecule ion, H,",

Ty Arg
lﬁi“|%E’

R
AB
The Hamilitonian for this two proton, one electron system is
n? 2 n? 2 12 2 e? e2 ¢
= V3-—— VAo Vi-—
2m e 2m A 2m B ra B RAB

or E = (kinetic energy of the electron) + (kinetic energy of nucleus A) + (kinetic energy of
nucleus B) - (the Coulombic attraction of nucleus A for the electron) - (the Coulombic
attraction of nucleus B for the electron) + (the Coulombic repulsion of the two nuclei).

The problem can be simplified considerably with Born-Oppenheimer approximation.

Born Oppenheimer Approximation: Electronic motion is so much
faster than nuclear motion that the two are independent, i.e., the nuclear
and electronic kinetic energies can be separated.

The result of this approximation is to remove the nuclear kinetic energy terms and allow Rap
to be treated as a constant, i.e., the electronic energy can be calculated at given values of Rap.

The two H's are in the ground state so the 1s orbitals will be used to construct the mo's
(LCAO).
W = 2Cihi = Cada + CpPp = Cals(a) + Cls(B)

The expectation value (eq I1.3) for the energy of the system is given as:

(¥ 0 |HW o) _ C,24<¢A |H|$ 4)+2C 4Cp{o 4 |H|¢B>+C£23<¢B |H|¢ )
(W0 |[¥uo) C7+2C4Cp{p 4] 95)+Ch

< E >=

Eq 114
B CHH 44 +2C4CpH 45 + C3H 44
€2 42C,CpS g +Cl
where Haa=<¢a | H| ¢a>=<¢p | H | ¢p> = Hpg = a > 0 - the Coulomb integral;

<E >
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Chapter II. Molecular Orbital Theory

Hap = <¢a |H|¢p>=p <0 - the Resonance ;
and S = <¢a | pp> = <¢ | pa> - the overlap integral.

Caand Cp are then determined by applying the Variation principle: The expectation energy
calculated with any acceptable, approximate wavefunction can never be less than the true
ground state energy. Or, the best wavefunctions are the ones that yield the lowest energy.
The values of Co and Cp are determined to be those that minimize the energy (Eq 11.4).
Minimizing E with respect to C, and Cg, i.e., (E/aCA)CB =0 and (aE/GCB)CA = 0, yields two
equations:

(OL - E)CA + (ﬁ - SE)CB =0= (HAA - E)CA + (HAB - SE)CB
(I?) - SE)CA + (OL - E)CB =0= (HAB - SE)CA + (HAA - E)CB

Both equations can be satisfied with non-trivial solutions only if the determinant of the
coefficients of Ca and Cg is 0 which yields the Secular Equation:

Haa —E  Hpg -SE
Hag -SE  Haa -E|

which has the following eigenvalues and normalized eigenvectors:

Haa +Hap oA +0B Haa —Hag oA -9B
E,=—"2 2y = & E =—"2 25 gy - EqIl.5
* 1+S = 72 +2S 1-S - J2-28 a

Since the coulomb integral is positive and the exchange integral is negative, E+ <E..

Figure 1II.1 shows the square of the two

wavefunctions. W.* has a nodal plane perpendicular e

to the internuclear axis which means that electron .

density is excluded from this region. Y i, ¥

therefore, an antibonding orbital. W.* has no nodal

plane perpendicular to Rap and has an accumulation

of electron density between the atoms - ¥, is a ¥

bonding orbital. In addition, the internuclear axis is — R

not contained in a nodal plane which makes this type At B

of interaction a o interaction. We therefore refer to _ _ _

W, as a oorbital and ¥. as a o* orbital. Figure II. 1 Pl(;ts of the ;adlal portions
of W,", and W_

The energy of each separated atom is Haa. E: has a lower energy than Haa and is
therefore stabilized relative to the unbound atoms by the amount Haa - E+ = A, (see figure
I1.2). E.is greater than Haa and thus is destabilized. The extent of the destabilization is E. -
Haa = A.. The magnitudes of stabilization and destabilization are given as,

_SHaa -Hag

EqII.6
= 1+S d

The magnitude of Hag is dependent upon the overlap, Hag = 0 if S = 0. If the overlap is not
zero, however, A+ < A_ and a four electron bond would not form since the total stabilization,
A - A_ is negative, i.e., the destabilization resultling from the double occupancy of the
antibonding orbital is greater than the stabilization resulting from two electrons in the bonding
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mo. This means that the energy of the separated atoms will be less than that of the "bound"
atoms.

ox = Haa - Hap
) 1-5
SHAA_ HAB

A =
1-3

E,=Hy,, 0, 'L Ey=Hyy o s
A = SHur Hyp
* 148

-

Hys+H
0,E,= Ah " TIAR

1+3

Figure I11.2 Interaction of two degenerate atomic orbitals forming one
bonding mo, o, which is stabilized by A, relative to the ao's and one
antibonding mo, o*, destabilized by an amount A_.

To better picture the difference between the bonding and antibonding mo's, consider
the energy of each as a function of the internuclear separation as shown in figure 11.3. E;
reaches a minimum at R, the equilibrium bond length, and is, therefore, a bound state. E. is
unbound (no minimum) and excitation into this anti-bonding orbital would be dissociative.

| AB

Figure II .3. The energies of the bonding mo (E;) and the dissociative
antibonding mo (E_) as a function of the internuclear separation.
Similar considerations can be made for the p-orbitals. Since the bonding axis is the C
« Or z-axis, interaction of the p,'s will also result in a o-bond (figure 11.4). Interactions of the
px or py orbitals result in mo's with substantial electron density between the atoms, but, in this
case, the internuclear axis is contained in a nodal plane. The resulting mo is called a & mo
with a corresponding st* antibonding mo.

O® o0 2

e,
c* /F\ *E\;
so= -
WA

O e e

o

Figure 11.4. Interactions of s- and p-orbitals showing the formation of o and o* mo's from
interaction of s or p; ao's and the formation of & and t* mo's from interaction of px or py ao's.
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Chapter II. Molecular Orbital Theory

Interactions in which the bond axis contains two nodal planes are called d-bonds (see
Problem I1.3).

Remember from the discussion of the Hamiltonian matrix at the beginning of this
chapter that the matrix element H;; can be non-zero only when ; and ; form the basis for the
same irreducible representation. Thus, Hag = 0 only if 1, and yy, have the same symmetry. In
other words,

| Only orbitals of the same irreducible representation can mix! I

The same conclusion is reached by realizing that the value of Hj depends on the extent of
overlap. For example, an s-orbital on one atom will not mix with a px on another atom (z-axis
is bond) as regions of positive overlap are cancelled by regions of negative overlap (figure
ILS).

region of negative overlap

region of positive overlap

Figure II.5 Zero overlap resulting from the cancellation of
the positive overlap by the negative overlap.

Problem IL.2 Indicate the result (o,m, & or none) of mixing the following pairs of orbitals on
two different atoms in a diatomic molecule:

a)s+p; b) dxz + px c) d2y2 +px  d)d2+dy.
Draw the bonding and anti-bonding combinations for all interacting pairs. Remember the
bond axis is the z-axis.

1I.4 Homonuclear Diatomic Molecules

The mo's form bases for the irreducible representations of the molecular point group so
the construction of mo's from the ao's is a matter of constructing SALC's (symmetry adapted
linear combinations) from the ao's of symmetrically complete sets. Homonuclear diatomic
molecules belong to the D, point group, a partial group table is given here.

D, | E | 2Cx?® | =0, i 28,0 | »C,
3, 1 1 1 1 1 1
3, 1 1 -1 1 1 -1
I1, 2 2coso 0 2 | -2c08¢| O
3z 1 1 1 -1 -1 -1
S 1 1 -1 -1 -1 1
I1, 2 2cosd 0 -2 2cosd 0

The mo's for a diatomic molecule composed of first or second row elements will consist of
LCAO's of the s, px, py and p, orbitals on the two atoms. The p, and s reducible
representations are straightforward, but since rotation of py or py about the Co, axis leads to a

combination of pyx and py, these orbitals are degenerate and must be considered together. For a
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P, cos¢p sing) [P,
tati le g, Co| 7| =
rotation by an angle ¢, “(py) (—Sin¢ COS¢)(py

each (px,py) pair on the Cy axis, i.e., a character of 4cos¢ for a homonuclear diatomic. Only
one of the o O,'s need be considered and the easiest to see is the xz plane.

) the character of which is 2cos¢ for

Py (1 0)\(Ps .
o(xz) = which has a character of zero. The remaining characters of the
P, 0 -1)\p,

reducible representation can be determined in a similar manner.

Do | E | 2C® | oo, | i | 2S.° | oG,
s 2 2 2 0 0 0 >+
P, 2 2 2 0 0 0 >+
Px» Dy 4 4cosd 0 0 0 0 I, + 11,

So group theoretical considerations yield the same results we arrived at earlier: mixing of two

. . ] + + * 1
s- or two p,-orbitals results in two mo's of one of 0, (0) and one of o, (0*) symmetry,
while mixing px or py orbitals results in mo's of symmetry m, ( 7t) and 7, (7t*) mo's.

Problem IL.3 Mo,Cls* is reported to contain a Mo-Mo quadruple bond formed from the
interaction of the Mo d-orbitals. Assume D4, symmetry for the ion and use the metal d-
orbitals as the basis to determine the symmetries of the mo's. Draw pictures like those in
figure 11.4 to describe the quadruple bond. Label each orbital with the appropriate symmetry
and interaction type, o, t or 0. Order the mo's in increasing energy and place the appropriate
number of electrons into the orbitals. Do not include the x*-y* as they are involved in the
Mo-Cl1 o-bonds.

Ordering of mo energies

The predictions of mo theory are based on the orbital occupancy which is dictated by
the relative energy ordering of the mo's (mo energy diagram) and the number of electrons in
the system. The homonuclear diatomic molecules represent an informative yet relatively
simple example of the utility of the method.

The extent of stabilization of an mo depends on the overlap between the ao's involved
(Sij). Sigma interactions will have a greater overlap than pi interactions at longer distance due
to their directional nature, but the overlap will increase more rapidly for the pi interactions as
the internuclear distance shortens. Thus, at longer bond lengths, o-mo's are stabilized more
than -mo's. Another factor affecting the energy of an mo is mixing - two mo's can mix
resulting in one mo being stabilized while the other mo is destabilized. The 2o0g and the 3o0g
have the correct symmetry to mix with the result that the 3og will be destabilized while the
20g are stabilized. Since the origin of these mo's are the s and the pz orbitals, this mixing is
the equivalent of mixing the s and p first to form sp hybrid orbitals. A combination of
differing bond lengths and orbital mixing results in two different energy schemes for the
homonuclear diatomic molecules of the atoms of the first and second row (Figure I1.6).

! Capital Greek letters (e,g., 2, I, A) are reserved for states (to be discussed in Chapter VI) while lower case
(e.g., 0, m, 8) are used for orbitals.
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O-CO® 30%(ep) — —
e® o0 T — ——
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@ oC® 39,0 —
| 2@ 20% (25) — —
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08

0, &F, HytoN,

Figure 11.6. The two energy diagrams used to describe the bonding in the
homonuclear diatomics formed from atoms in the 1st and 2nd rows.

Since there will be many mo's with the same designation, o, 0,*, etc., we must
distinguish between them. There are two ways of doing this: designate the ao's from which
they are derived or simply number the mo's. Both schemes are shown above. However,
designating the ao's would be cumbersome when extensive mixing of many ao's occurs, so the
latter method is the one most commonly encountered.

Determining the electron configurations of molecules is completely analagous to
determining the electron configurations of atoms. The electrons go into the lowest energy
orbital available, only two electrons per orbital and electrons remain unpaired in degenerate
orbitals if possible (maximum multiplicity). In the case of diboron (B,), the energy
differences between the 1w, , 20,* and 30 orbitals is evidently less than the pairing energy
(Coulombic repulsion between two electrons in the same orbital) resulting in an electron
configuration with one electron in each of these orbitals (Figure 11.7). One of the major
successes of mo theory was the explanation of the paramagnetism of O,. Figure II.7 also

shows the O, occupancy which clearly demonstrates the presence of two unpaired elecrtons in
the 1mg*.

N o
—_——lrf—_—— _T__T_l *
— 3 L AT I 1
I e M AL 3,
~L 209 L AL 208
i 204 i i 20,
L 1o} i i 1oy
i 10g i i 1o
B, B, 0, ?

Predicted Actual

Figure 11.7. Examples of orbital occupancy. The predicted and actual cases
for By are given as well as the O3 case to demonstrate its paramagnetism.
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One of the important properties of the bond which is readily determined from the
electron configuration is the bond order which is defined as the number of PAIRS of
bonding electrons minus the number of PAIRS of antibonding electrons. Higher bond
orders imply stronger, shorter bonds with higher vibrational force constants (frequencies).

Bond Bond Length Bond Strength
Molecule Predicted Electronic Configuration Order (pm) (kJ/mol)

Hy' (1og)’ 1/2 106 260
Hy (1oy)” 1 74 431
He, (109)°(16,*)" 12 108 250
He, (lcg)2(10u*)2 0 - -
Lis [Hez](zggf 1 267 111
Be, [Hes](20,) (20, *) 0 - -

B, [Hea]20p) 20v™) (1m) Boy)’ 2 159 290

C [Hea]20p) (20,*) (1)’ 2 131 628
N2 [Hez](205)°20u*) (1m)*30y) 3 110 941
02 [Hep](20,)°20y*) (30y) (1) (17, *)? 2 121 494

Fa [Hes](20,)*(20,*) (Bop) (1) (17, *)° ! 142 150
Ne» | [Her)20p)°20u*)*(Bop) (Im) (1mg®)*Gou)’ 0 - -

| Problem I1.4 Explain the trends in the following table based on mo considerations.

Ro.o (pm) | v(cm™)
[0,"]AsFs 112 1858 | dioxygenyl
0O 121 1555 dioxygen
K[Oy] 128 1108 superoxide
Na,[0,7] 149 760 peroxide

v is the vibrational wavenumber (frequency).

IL.5 Orbital mixing in the non-degenerate
case

To this point, we have been discussing
the case of mixing two degenerate orbitals, i.e.,
the ao's involved in the LCAO have had the
same energy. Most orbital mixings, however,
occur between non-degenerate orbitals, e.g.,
mixing p, and s orbitals on atoms of the same
element or simply mixing any orbitals on
different atoms in a heteroatomic molecule.
The mixing of two ao's of the same irreducible
representation but of different energies is
shown in figure I1.8. Again, the destablization,
A, is greater than the stabilization, A;, due to
overlap of the ao's similar to the description in
Eq IL5.

The secular equation

(E? - E)(ES -E)-(H,, - ES)’ =0.
Which yields energies of

E,¥

Figure I1.8. Energy diagram for mixing non-

degenerate ao's ¢ and ¢ on different atoms.

for the non-degenerate case is
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(le_Elos)2 0 0
E1=Elo_ﬁ=El_Al & E2=E2+
EZ_EI

(H,, - E3S)

=E) +A,.
E -E; S

The molecular wavefunctions (not normalized) are W; = ¢; + ti¢ and P2 = —t2¢; + ¢z,

H,, - E®°S H,, - ESS
where, t, =12 " E19) g (2 - B5S)

(ES - E9) (ES - ED).
negative so t; and t, are both positive. t; represents the extent to which ¢, is mixed into ¢; to
form the y; mo while t, is the extent of mixing of ¢; into ¢, in the y, mo. Unlike the
degenerate case where the mo is an equal mixture of the ao's, these mo's retain more character
of the ao which is closer in energy, i.e., the t; < 1. It should be noted that both the extent of
mixing of the ao's and, as a consequence, the extent of stabilization of the mo's depends on the
difference AE = E,’ - E/°, i.e., on the energy compatibility of the orbitals.

The numerators and denominators are all

In order for mixing of orbitals to occur, (1) the orbitals must form the bases for
the same irreducible representation of the molecular point group (2) they should
be energetically compatibile and (3) they must overlap.

I1.6 Orbital Energies

Electronic energies fall into three classes: core levels are those occupied by electrons
close to the nucleus and therefore have very high binding energies (BE > 400 eV); valence
levels are occupied by the bonding electrons which are much farther from the nucleus and
have binding energies in the 10 - 40 eV range; the virtual levels are unoccupied by electrons
in the molecular ground state. The most common procedure for the measurement of orbital
energies is photoelectron spectroscopy (PES). In a PES experiment, the kinetic energy of an
electron which has been ejected from the species by a high energy photon is measured. Due
to the conservation of energy, the energy of the photon is equal to the kinetic energy of the
ejected electron plus the binding energy of the electron hv = T, + BE. The binding energy
then is determined as BE = hv - T.. Orbital energies are then inferred from Koopman's
Theorem.

Koopman's Theorem: the energy of an occupied orbital is equal to minus the ionization
energy for that orbital. The energy of a virtual (unoccupied) orbital is equal to minus the
electron affinity of that orbital.

When constructing mo energy diagrams, it is helpful to have an idea of the energy of
the interacting orbitals, i.e., the H,, values. To aid you in this respect, a table of Valence
Oribital Hj; values (calculated) is presented in Appendix D.

Most questions pertaining to relative orbital energies can be answered by simple
Coulombic (Crystal field) considerations. Atomic orbitals are increasingly stabilized by
increasing nuclear charge, i.e., as electron density is removed from a system, the orbital
energies drop and as electron density increases, the orbital energies rise.

The mo diagram for HF is shown below as an example of a heteroatom diatomic.
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Energy —
V) oF o —
0- o+
-10+ H(ls)
2p F(2p) '
-20- — — 2p
c @ o
-30
o
2 0 O
2s 2

Figure I1.9. mo diagram for HF. The HF ionization energies for the occupied orbitals were
determined from PES while the energy of the 40 orbital was calculated.

Energies and ao coefficients for HF from simple Hiickel calculations.

Orbital E (eV) H(1s) F(2s) F(2p)
o +5.78 -0.804 [0.191 ]0.558
o 2050 |-0.515 ]0.240 [-0.824
2s 4553 10.292 0.951 |0.095

The polarity of the H-F bond can be understood in mo terms since the electron density
is much larger near the F - a result of it being the more electronegative element and thus
having the lower lying orbitals which dominate the description of the filled mo's.

CO, NO and CN" are important ligands and their spectroscopy can serve as an
excellent probe into metal-ligand interaction The mo diagrams for CO and NO are shown in
figure I1.10. CO or CN- interact with the metal in two ways:

« m-acidity: the 2m orbitals are available to accept electron density
from the metal orbitals. Since the 2m orbitals are antibonding in
nature, increasing the electron density in them will lower the bond
order and thus lower the vibrational frequency of the C=X bond.

« O-basicity: the 50 orbitals can donate electron density to the metal.
It should be noted however that the 50 orbital is slightly antibonding
in character which means that removal of electron density will
increase the vibrational frequency of the C=X bond - the CO stretch
in CO" is nearly 50 cm™ higher than in CO.

Carbonyls and cyanides can therefore serve as sensitive probes of the electron density on the
metal. We will examine this behavior in detail in chapter V.
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Figure I1.10. The VOIE's of C,0 and N as well as PES ionization energies of CO and NO. It should
be noted that due to the unpaired electron in the 2; orbital of NO, the states that are derived by
ionization of NO are complicated resulting in uncertainties in the energy positions of the mo's. The

1o orbital will be at much lower energy - Hj; for the O 2s orbital is -32.3 eV..

Problem IL.5 (a) Sketch the orbitals of CO - include the 1o.

(b) In octahedral complexes, the d-orbitals of t,, symmetry are referred to as the dm-
orbitals since they have the appropriate symmetry to m-bond to the ligands while the e,
orbitals are the do's. Draw a diagram showing the effect on the CO 50 and 2 orbitals and
the intreracting Os d-orbitals when an Os-CO bond is formed. The resulting energy
difference in the d-orbitals is called the crystal field splitting, 10Dq. Label all orbitals
indicating with * those that are anti-bonding. Clearly indicate 10Dq. Suggest an alternate
explanation for o-interaction increasing the CO stretching frequency. Your mo diagram
should contain only four mo's: 50, 2x, do and ds.

(c) Cyanide is a better o-donor and a worse m-acceptor than carbonyl. Explain.

I1.7 Polyatomic Molecules

For polyatomic molecules, the symmetrically equivalent sets of valence orbitals must be
identified and then the appropriate SALC's generated. For example, water belongs to the Csy
point group, and the valence ao's are the 2H(1s) + O(2s) + O(2px) + O(2py) + O(2p,). Since
the oxygen atom is on every symmetry element, the irreducible representations of the oxygen
orbitals can be obtained directly from the character table, but two SALC's must be generated
for the 2H(1s) orbitals.

C,, character table and the reducible representation
for the 2H(1s) orbitals in water

Coy E G 0v(xz) | oy(yz)

Ay 1 1 1 1 z

A, 1 1 -1 -1

B, 1 -1 1 -1 X

B, 1 -1 -1 1 y
I['[H(1s)] 2 0 2 0

Remember that s-orbitals are totally symmetric, so the s-orbital of an atom on all symmetry
elements will transform as a;. From the character table, we deduce that py, py, and p,
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transform as by, by, and aj, respectively. Decomposing the reducible representation for I'(1s)
yields a; + b;. The following mo diagram applies to the H,O molecule.

eV
b
qodo'e
— SCF Energies and atomic coefficients for
7 H,O
_20_Oa? wo |E(eV] [[Of2s)| Ofpz] [H{al]l| Olpx)|Hibl] | Oipv]
tag | -3 [loss | 013 | 021 | O 0 0
| by | -19 || 0 0 [ 0 | o054 [ 081 0
30 20| 13 |[a% [os [03 | o | o | o
n _ hy| -2 || 0 | 0 ol o 0 1
-40- 1a,

Figure I1.11. MO diagram for the water molecule showing orbital energies and pictoral
representations of the mo's determined by a self-consistent field (SCF) calculation.
Orbital coefficients and energies are given in the table.

As can be seen from figure II.11, 1a; and 1b; are bonding orbitals while 2a; and 1b, are non-
bonding - the two "lone pairs" on the oxygen.

Problem I1.6 Construct an mo diagram for phosphine. Draw approximate mo's
and fill with the approrpriate number of electrons. Discuss the m-accepting
abilities of phosphine. Which is a better m-acid, PH3 or PF3? Explain.

Organic molecules play an important role in coordination chemistry and an under-
standing of the bonding in them is also important to the inorganic chemist. Two examples to
be considered in this course will be Zeise's salt [KPtCl3(CyHs)] and sandwhich compounds.
As a result, an understanding of the mo's of ethylene and benzene is essential.

Ethylene: C,H; has Dy, symmetry. All four hydrogens are interchangeable by symmetry
operations so the four hydrogen 1s orbitals form a symmetrically complete set. The two
carbons are also symmetrically equivalent so their valence orbitals also represent
symmetrically complete sets (2s, 2py, 2py and 2p,). Figure I1.12 defines the system used.
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Figure II.12. The coordinate system used for ethylene and the operations which
transform each reference orbital (on H; and 