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I. Symmetry and Group Theory. 
 
 All of the topics covered in this course make extensive use of molecular symmetry and 
group theory - topics of entire books by themselves.  It is the aim of this text to present group 
theory in sufficient detail so that the student can solve most day to day spectroscopic problems 
and read the spectroscopy literature. 

A symmetry operation is a rotation and/or reflection which leaves the molecule 
unchanged.  It is performed about a symmetry element: a point, a line or a plane.  The square 
planar PtCl4

2- ion is said to be a higly symmetric ion because it contains a large number of 
symmetry elements.  All of the symmetry operations that apply to a molecule or ion constitute its 
point group.  It is the point group to which the molecule belongs that designates its symmetry.  In 
the next section, it will be shown that sixteen symmetry operations can be performed on the 
PtCl4

2- ion.  These sixteen operations constitute what is known as the D4h point group, i.e., PtCl4
2- 

has D4h symmetry.  In a treatment of the spectroscopy or bonding of an inorganic compound, one 
must first determine the point group to which the system belongs.  A full appreciation of what D4h 
symmetry implies requires the visualization of the symmetry elements and operations as well as 
an understanding of groups.  In the following two sections, the various symmetry operations and 
groups will be discussed while the point group definitions are given in section I.4.  The 
remainder of the chapter is devoted to representations of the point groups and to some simple 
applications of group theory to spectroscopy and bonding. 

 
I.1  Symmetry operations and symmetry elements 

 

There are only five types of symmetry operations required for the systems covered in this 
course, and the PtCl4

2- ion contains examples of each.  In this section, each type of operation will 
be discussed in terms of its effect on this ion.  The effect of the operations on the chlorine pz 
orbitals will also be considered in order to better illustrate the effects of the operations.  Thus, in 
the figures that follow,  will represent chlorine atom 1 with the positive lobe of the pz orbital 
out of the plane of the paper while  will imply that the negative lobe of the pz orbital is out of 
the plane of the paper for chlorine atom 1. 

 
1. The Identity Operation (E) does nothing and has no symmetry element but it is a 

required member of each symmetry group.  Thus, operation with E will change neither the 
positions of the atoms nor the phases of the pz orbitals. 

 
Figure I-1.  The effect of the identity operation on the atoms and the chlorine pz orbitals in 
PtCl4

2-.  Also the definitions of the X, Y, a and b axes relevant to other discussions are defined. 
 

2. An n-fold rotation (Cn) is a rotation of 2π/n radians about an axis.  The axis with the 
highest value of n is the principle axis and is designated as the z-axis.  Thus the z-axis in 
PtCl4

2- is perpendicular to the plane of the ion.  This axis is actually three symmetry elements 
since rotations by π/2, π, and 3π/2 about this axis all result in no change in the molecule.  These 
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three axes are referred to as C4, C4
2 = C2 and C4

3, respectively.1  Rotation about the z-axis will 
not change the phase of the pz orbitals. The X, Y, a and b axes defined in figure I-1 are also C2 
rotational axes.  It will be shown later that the C2 rotations in this group can be grouped into 
three classes which are differentiated with the use of ' and " {C2(Z)},{C2'(X) & C2'(Y)}, {C2"(a) 
& C2"(b)}.  Since the C2' and C2" axes are perpendicular to  the z-axis, rotation about any one of 
them will invert the pz orbitals as shown in figure I-2. 

    
Figure I-2.  The effect of some of the Cn operations on the atoms and the 
chlorine pz orbitals in PtCl4

2-. 
 
Thus the ion contains C4 , C4

3 , C4
2 = C2,  C2'(x) ,C2'(y), C2"(a) and C2"(b) or 7 rotational axes. 

 
3. Reflections can be made through three different types of planes: vertical planes (σv) 

contain the principle axis, horizontal planes (σh) are perpendiuclar to the principle axis and 
dihedral planes (σd) contain the principle axis and bisect two C2 axes. The distinction between 
vertical and dihedral is often unclear.  Where appropriate, planes bisecting bond angles will be 
designated as dihedral while those containing bonds will be designated as vertical.  See figure I-
3. 

 

    

                                                
1 Since the clockwise  C4

3 operation is equivalent to a counterclockwise C4 rotation, the C4 and C4
3 operations are 

also referred to as the C4
+ and C4

- operations, respectively. 
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Figure I-3.  The effect of reflection through the symmetry planes on the atoms 
and the chlorine pz orbitals in PtCl4

2-. 
In PtCl4

2-, the planes containing the z-axis (σv and σd) will not change the phase of the pz-
orbitals while reflection through the plane perpendicular to the z-axis (σh) does invert them 
(figure I-3).  Thus, PtCl4

2- contains: σv(XZ )and σv(YZ ), σh(XY) and σd (a) and σd (b) or five 
planes of symmetry.  Note that the a and b planes are defined as those planes perpendicular to the 
plane of the ion and containing the a and b rotational axes. 

 
4. An improper rotation or a rotary reflection (Sn) is a Cn followed by a σh.  Since 

PtCl4
2- is a planar ion, the Z-axis is an element for both proper and improper rotations.  See 

figure I-4.  Note that an S4 results in the same numbering as a C4, but the phases of the pz orbitals 
are changed. 

 
5.  A Center of Inversion (i) takes all (x,y,z) → (-x,-y,-z).  This operation can be 

performed by a C2(z) which takes (x,y,z) → (-x,-y,+z) followed by a σ(xy) which inverts z, i.e., i 
= C2σh = S2.  Since i and S2 are equivalent, S2 is not usually used. 

    
Figure I-4.  The effect of improper rotations on the atoms and the 
chlorine pz orbitals in PtCl4

2-. 

 
PtCl4

2- contains E, C4 , C4
3 , C4

2 = C2,  C2'(x) ,C2'(y), C2"(a), C2"(b), i, S4, S4
3 ,σv(XZ ), 

σv(YZ ), σh,  σd (a) and σd (b).  These sixteen symmetry elements specify the symmetry of the 
ion. 

 
Show that trigonal bipyramidal MX5 contains the following symmetry elements: 

E,C3, C3
2, C2, C2', C2", σv, σv', σv", S3, and S3

2 

 
Successive Operations.  In some of the following discussion, the result of applying more 

than one operation will be important.  The result of performing a C4 rotation followed by a 
reflection through the XZ plane (σvC4) is the same as a single σd(a) operation. 

 
However, if the order of the operations is reversed, i.e., C4σv, the result is equivalent to a σd(b). 
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It is important to note that in this case the order of the operation is important, i.e., C4σv ≠ σvC4.  
In some instances, the order of operation is not important.  Two operations commute if the result 
of successive application of the two operators is the same irrespective of the order in which they 
were carried out.  Thus, C4 and σv do not commute, but, as shown below, C4 and σh do commute, 
i.e., C4σh = S4 = σhC4.  

   
 

Show that σv(XZ)C2(X) = σh for the trigonal bipyramidal MX5. 
 

I.2  Groups 
 

A set of operations like those above form a group if they meet the following requirements: 
 
1. The set contains the identity operation, E.  RE = ER = R. 
 
2.  The product of any two operations of the group must also be a member of the 

group.  From above, it should be clear that C4σv(XZ) = σd(b) while σv(XZ)C4 = σd(a).  
Verify that C2(a)σv(XZ)= S4

3. 
 
3.  Multiplication is associative for all members of the group.  The triple product 

C2(a)σv(XZ)C4 can be written either as {C2(a)σv(XZ)}C4 = S4
3C4 = σh or as 

C2(a){σv(XZ)C4} = C2(a)σd(a) = σh 
 
4. The inverse of every operation is a member of the group.  The inverse of an operation 

is that operation which returns the system to its original form, i.e., RR-1 = E.  A 
reflection through a plane and a two-fold rotation are each their own inverse.  

 
The sixteen symmetry operations discussed for the PtCl4

2- ion satisfy all of these 
requirements and constitute a group.  Groups of symmetry operations are called point groups.  
As mentioned previously, the point group to which PtCl4

2- belongs is called D4h.  The number of 
members of the group is called the order of the group and given the symbol h.  For the D4h 
point group, h=16. 

  
A multiplication table presents the results of the multiplication, i.e., the successive application 
of two operations.  By convention, the first operation performed is given at the top of the column 
and the second operation involved is at the beginning of the row.  The multiplication table for the 
E, C4, C2 and C4

3 operations of the D4h point group is given below. 
 

first → 
second ↓ 

E C4 C2 C4
3 

E E C4 C2 C4
3 

C4 C4 C2 C4
3 E 
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C2 C2 C4
3 E C4 

C4
3 C4

3 E C4 C2 
These operations satisfy all of the requirements of a group of order 4 (h=4).  Indeed, they 

comprise the C4 point group.  Since all of the members of the C4 point group are also found in 
the D4h point group (h=16), C4 is said to be a subgroup of D4h.  Note that the order of a subgroup 
must be an integral divisor of the order of the group.  

 

Problem I.1.  Water belongs to the C2v point group, {C2vE, C2, σ(XZ), σ(YZ)}.  Define the 
molecular plane as the XZ plane and generate the multiplication table for the C2v point group. 

 

In the following section, extensive use of the multiplication table will be made, but since 
the point group is so large, its multiplication table is cumbersome (16x16).  We will, therefore, 
consider the ammonia molecule which has lower symmetry.  NH3 belongs to the C3v point group 
of order 6, {C3v| E, C3, C3

2, σv, σv',σv"}.  The effect of each of the symmetry operations of the 
C3v point group on the ammonia molecule is shown in figure I.5 

   
Figure I.5.  The effect of each of the symmetry operations of the C3v point group 
on the ammonia molecule as viewed down the C3 axis. 
 

The student should verify that the multiplication table for the C3v point group is, 
first → 

second ↓ 
E C3 C3

2 σv σv' σv" 

E E C3 C3
2 σv σv' σv" 

C3 C3 C3
2 E σv" σv σv' 

C3
2 C3

2 E C3 σv' σv" σv 

σv σv σv' σv" E C3 C3
2

 
σv' σv' σv" σv C3

2
 E C3 

σv" σv" σv σv' C3 C3
2

 E 
 
 

I.3  Similarity Transformations 
 

The operations, X and Y are said to be conjugate if they are related by a similarity 
transfomation, i.e., if Z-1XZ = Y, where Z is at least one operation of the group.  A class is a 
complete set of operations which are conjugate to one another.  The operations of a class have a 
"similar" effect and are therefore treated together.  To determine which operations of the group 
are in the same class as C3, one must determine which operations are conjugate to C3.  The 
results of the similarity transformation of C3 with every other member of the group are 
determined from the multiplication table above to be, 

E-1C3 E = C3 C3
-1C3C3 = C3

2C3C3 = C3
2C3

2 = C3 
(C3

2)-1C3C3
2 = C3C3C3

2 = C3
2C3

2 = C3 σv
-1C3σv = σvC3σv = σvσv" = C3

2  
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(σv')-1C3σv' = σv'C3σv' = σv'σv = C3
2  (σv")-1C3σv" = σv"C3σv" = σv"σv' = C3

2  
 

Thus, C3 and C3
2 are conjugate and are members of the same class.  In a similar manner, it 

can be shown that  σv, σv', and σv" are also conjugate and these three operations form another 
class of the C3v point group.  The C3v point group is then written as {C3vE, 2C3, 3σv}.  The 
order of a class must be an integral divisor of the order of the group.  Similar considerations 
allow us to write the D4h point group as {D4hE, 2C4, C2, 2C2', 2C2", i, 2S4, σh, 2σv, 2σd}. 

 
Problem I.2  Identify the identity operator and the inverse of each function, and determine the 
classes for a group with  the following multiplication table. 

 M N P Q R S 
M P S Q M N R 
N R Q S N M P 
P Q R M P S N 
Q M N P Q R S 
R S P N R Q M 
S N M R S P Q 

 
I.4  The Point Groups 

The following groups all contain the identity operation and only the minimum operations 
required to define the group are given.  In many cases, these minimum operations lead to other 
operations.  In the following, "k" is an integer ≥ 2. 

C1: No symmetry    Ck: Only a Ck rotational axis:  
Cs: Only a plane of symmetry.  Ci: Only an inversion center. 
Ckh: A Ck rotational axis and a σh.  Ckv: A Ck rotational axis and a σv. 
Dk: One Ck and kC2 rotational axes.  The kC2 axes are perpendicular to the Ck and at equal 

angles to one another. 
Dkh: The Dk operations plus a σh but this combination also results in kσv's. 
Dkd: The Dk operations plus kσd's containing the Ck and bisecting the angles between 

adjacent C2's. 
Sk: Only the improper rotation, Sk.  Note k must be an even number since an odd number 

would require a σh. 
Td: The tetrahedral point group contains three mutally perpendicular C2 axes, four C3 axes 

and a σd through each pair of C3's. 
Oh: The octahedral point group has three mutally perpendicular C4 axes, four C3 axes and a 

center of symmetry. 
 

 Determining the point group to which a molecule belongs will be the first step in a 
treatment of the molecular orbitals or spectra of a compound.  It is therefore important that this 
be done somewhat systematically.  The flow chart in figure I-6 is offered as an aid, and a few 
examples should clarify the process.  We will first determine the point groups for the following 
Pt(II) ions, 

  
A contains three C2 axes, i.e., [Ck?] is yes with k=2.  It contains a plane of symmetry so [σ?] is 
yes.  The three C2 axes are perpendicular, i.e, there is a C2 axis and two perpendicular C2's which 
means that [⊥C2?] is yes. There is a plane of symmetry perpendicular to the C2 so [σh?] is yes 
and we arrive at the D2h point group.  B contains only one C2 axis, no ⊥C2's, no σh, but it does 
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have two σv's and is therefore a C2v ion.  C contains a single C2 axis and a horizontal plane (the 
plane of the ion) and therefore has C2h symmetry. 
 

   
Figure 1-6.  Flow chart for the determination of molecular point groups 

 

Next we determine the point group to which the staggered and eclipsed forms of 
octachlorodirhenate belong. 

    Staggered Eclipsed  
 
Both forms of [Re2Cl8]2- contain a C4 axis (Re-Re bond) so the answer to [Ck?] is yes with k=4.  
Both contain planes of symmetry so [σ?] is also yes.  The four ⊥ C2's passing through the center 
of the Re-Re bond are more apparent for the eclipsed form (2 parallel to the ReCl bonds and 2 
parallel to their bisectors).  Although less apparent than in the eclipsed form, there are also four 
⊥ C2's in the staggered form.  As shown below the ⊥ C2's bisect the Cl-Re-Re-Cl dihedral angles. 

     
Both forms also contain vertical planes, but the eclipsed form also has a horizontal plane which 
is absent in the staggered form.  The point groups are therefore, D4h for the eclipsed form and D4d 
for the staggered form. 
 It is important to become proficient with this skill, but only practice will do it. 
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Problem I.3  Determine the point group to which each of the following belongs. 

 
 

I.5  Matrix Representations of Groups 
 

 There are an infinite number of ways of choosing matrices to represent the symmetry 
operations.  The choice of representation is determined by its basis, i.e., by the labels or 
functions attached to the objects.  The number of basis functions or labels is called the 
dimension of the representation. 
 A convenient basis to use when dealing with the motions of molecules is the set of 
Cartesian displacement vectors.  Each atom has three degrees of motional freedom so a molecule 
with N atoms will generate a basis of dimension 3N.  For the water molecule, a 9-dimensional 
basis results and thus each operation will be represented by a 9x9 matrix.  These 9-basis vectors 
are shown below along with the results of the C2 (z) rotation. 

  
 

The result of this operation is: (xi→ -xj), (yi→ -yj), and (zi→ +zj) where i = j for the oxygen atom 
coordinates since the oxygen lies on the C2 axis and therefore does not change its position, but i 
≠ j for the hydrogen atoms since they are do not lie on the C2 axis and are therefore rotated into 
one another, e.g., x2 → -x3.   We can represent this transformation in matrix notation where each 
atom will have a 3x3 matrix,  

xi

yi

zi

! 

" 

# 
# 

$ 

% 

& 
& 

=

'1 0 0

0 '1 0

0 0 +1

! 

" 

# 
# 

$ 

% 

& 
& 

xj

yj

zj

! 

" 

# 
# # 

$ 

% 

& 
& & 

 

which must be placed into the 9x9 matrix representation of the C2  operation.  The oxygen atom 
is not moved by the rotation (i = j = 1), so its 3x3 matrix remains in its original position (1,1) on 
the diagonal while the hydrogen atoms are exchanged by the rotation so their 3x3 matrices are 
rotated off of the diagonal to the (2,3) and (3,2) positions.   
The matrix representation of this C2 rotation is: 
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For reflection through the plane of the molecule (σv = YZ), only the x-coordinate is changed and 
no atoms are moved so the matrix representation is  

 
Thus, 9x9 matrices like those above could serve as the representations of the operations for the 
water molecule in this basis.  Fortunately, only the trace of this matrix needs to be specified, i.e., 
the sum of the diagonal elements.  The resulting number is called the character, and the 
character of an operation R is given the symbol χ(R). In this example, χ(C2) = -1 and χ(σv) = 3.  
Two important points about the character should be apparent from the above: 
 

1. Only those atoms which remain in the same position can contribute to the trace since 
otherwise their 3x3 matrices will be rotated off of the diagonal. 

 
2. Each operation contributes the same amount to the trace for each atom since all atoms 

have the same 3x3 matrix. 
 
For a reflection through the plane bisecting the H-O-H bond angle, χ(σv') = +1 since only the O 
is unshifted and a plane contributes +1 for each unshifted atom.  The character for the identity 
element will always be the dimension of the basis since all labels are unchanged.  For water 
then, χ(E) = 9. 
 
The representation (Γ) for water in this basis is: 
 

 E C2 σv = YZ σv' = X
Z 

 Γ 9 -1 3 1 
 
The s-orbitals can also serve as a basis, 
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In this basis, each atom has 1 and not 3 labels so each operation is a 3x3 matrix as opposed to the 
9x9 matrices of the previous basis.  In addition, there can be no sign change for an s-orbital.  The 
resulting representation is, 

        E =

1 0 0

0 1 0

0 0 1

! 

" 

# 
# 

$ 

% 

& 
& 

;      C
2

=

1 0 0

0 0 1

0 1 0

! 

" 

# 
# 

$ 

% 

& 
& 

;      '
v

=

1 0 0

0 1 0

0 0 1

! 

" 

# 
# 

$ 

% 

& 
& 
;         '

v

'
=

1 0 0

0 0 1

0 1 0

! 

" 

# 
# 

$ 

% 

& 
& 

 

Γ 3 1 3 1 
 
If one basis (f ') is a linear combination of another basis (f) or f ' = Cf, then the representation in one 
basis should be similar to that in the other.  It can be shown that the matrix representations of 
operator R in these two basis sets (D(R) and D'(R)) are related by a similarity transformation: D'(R) 
= C-1D(R)C  and D(R) = CD'(R)C-1, i.e., the matrices D(R) and D'(R) are conjugate.  For example, 
the linear combination of s-orbitals: X = I + II, Y = I + III and Z = II + III which can be expressed 
in matrix form as 

    
The matrix representation of C2 (D'(C2)) in the new basis then is given by D'(C2) = C-1D(C2)C 
 

or  D'(C2) = 
+0.5 +0.5 !0.5

+0.5 !0.5 +0.5

!0.5 +0.5 +0.5

" 

# 

$ 
$ 

% 

& 

' 
' 

1 0 0

0 0 1

0 1 0

" 

# 

$ 
$ 

% 

& 

' 
' 

1 1 0

1 0 1

0 1 1

" 

# 

$ 
$ 

% 

& 

' 
' 

=

0 1 0

1 0 0

0 0 1

" 

# 

$ 
$ 

% 

& 

' 
' 

 similarly,  

 

 D'(σv') = 
0 1 0

1 0 0

0 0 1

! 

" 

# 
# 

$ 

% 

& 
& 

 and D'(E) = D'(σv) =
1 0 0

0 1 0

0 0 1

! 

" 

# 
# 

$ 

% 

& 
& 

.   

Note that the representation for C2 and σ' have changed, but in all cases the character is invariant 
with the similarity transformation.  Thus, all the members of a class of operations can be treated 
together since they are related by a similarity transformation and must have the same characters.  
The two 3x3 bases used to this point can be viewed as consisting of a 1x1matrix (one basis vector is 
not rotated into any of the others by any operation of the group - I & Z) and a 2x2 submatrx (two 
basis vectors are rotated into one another by at least one operation of the group). Thus, the 3x3 
representation has been reduced to a 1x1 and a 2x2.  Indeed, the 2x2 matrix can be reduced into two 
1x1 matrices.  In this process, a large reducible representation is decomposed into smaller 
(usually 1x1 but sometimes 2x2 and 3x3) irreducible representations.   
Consider the symmetry adapted linear combinations (SALC's):  A = I, B = II + III and C = II - III.  
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In this basis, a C2 rotation and a reflection through the plane perpendicular to the molecular plane 
do not change A or B, and change only the sign of C while reflection through the molecular plane 
leaves all three unchanged. 

E = σ = 
1 0 0

0 1 0

0 0 1

! 

" 

# 
# 

$ 

% 

& 
& 

while C2 = σ' = 
1 0 0

0 1 0

0 0 !1

" 

# 

$ 
$ 

% 

& 

' 
' 

.  In this basis, no basis vector is changed into 

another by a symmetry operation, i.e., this basis is symmetry adapted.  Now, our 3x3 
representation consists of three 1x1 matrices and we have converted our reducible representation Γ 
into three irreducible representations, Γ1; Γ2 and Γ3. i.e., Γ= Γ1 + Γ2 + Γ3 

 E C2 σ σ' 
Γ1 1 1 1 1 
Γ2 1 1 1 1 
Γ3 1 -1 1 -1 
Γ 3 1 3 1 

 
The term "irreducible representation" is used so frequently that it is often abbreviated as "irrep".  
We will also use this abbreviation throughout this book,  
 

irrep ≡  irreducible representation 
 
Decomposing a reducible representation into irreps is a very important process, and a procedure 
to accomplish the decomposition will be described later in this chapter. 
 

I.6  Point Group Representations 
 

 A point group representation is a basis set in which the irreducible representations are the 
basis vectors.  As i, j, and k form a complete, orthonormal basis for three-dimensional space, so 
too do the irreps form the a complete orthonormal basis for an m-dimensional space, where m is 
the number of irreducible representations and is equal to the number of classes in the group.  
These considerations are summarized by the following rules. 

1. The number of basis vectors or irreps (m) equals the number of classes. 
2. The sum of the squares of the dimensions of the m irreps equals the order, 

   d h
i

2

i

m

=

! =
1

 

The character of the identity operation equals the dimension of the representation, 
χ(E) = di which is referred to as the degeneracy of the irrep.  The degeneracy of most 
irreducible representations is 1(non-degenerate representations are 1x1 matrices) but 
can sometimes be 2 or 3.  The icosahedral point group to which C60  (Buckminster 
fulerene or "Buckyball") belongs, has irreducible representations with degeneracies 
of 4 and 5.  No character in an irreducible representation can exceed the dimension 
of  the representation.  Thus, in non-degenenerate representations, all characters 
must be ±1. 

3. The member irreps are orthonormal, i.e., the sum of the squares of the characters in 
any irrep is equal to the order (row normalization), while the sum of the product of 
the characters over all operations in two different irreps is zero (orthogonality).  
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  g(R)! i (R)
R

" ! j(R) = h# ij  

where the sum is over all of the classes of operations, g(R) is the number of 
operations, R, in the class, χi(R) and χj(R) are the characters of the operation R in the 
ith and jth irreps, h is the order of the group and δij is the Kroniker delta (0 when i≠j 
and 1 when i=j). 

4. The sum of the squares of the characters of any operation over all of the irreps times 
the number of operations in the class is equal to h, i.e., columns of the representation 
are also normalized. 

   g(R)! i
2

i=1

m

" (R) = h  

where m is the number of irreducible representations. 
5. The sum of the products of the characters of any two different operations over all of 

the irreps is zero, i.e., columns of the representation are also orthoganol. 

   ! i (R' )!i
i=1

m

" (R) = 0  

6. The first representation is always the totally symmetric representation in which all 
characters are +1. 

7. Any reducible representation in the point group can be expressed as a linear 
combination of the irreducible representations - the completeness of the set. 

 
 We will now generate the C2v point group, {C2vE, C2, σ, σ'}.  The order of the group is 
four and the number of classes in the group is four, i.e., h = m = 4.  Each class has only one 
operation, i.e., g(R)=1 in all cases.  Rule 2 states that d1

2 + d2
2 + d3

2 + d4
2 = 4 so that d1 = d2 = d3 

= d4 = 1 - there are no degenerate representations in C2v.  The character of the identity operation 
is always the dimension of the representation, χi(E) = di .  Therefore, all of the characters under 
the E operation are known.  From rule 6 we may write the characters of  Γ1 as +1's only.  Thus, 
we may write the following, 

C2v E C2 σv σv' 
Γ1 1 1 1 1 
Γ2 1 a b c 
Γ3 1 d e f 
Γ4 1 g h i 

 

and since there are no degenerate representations, characters a through i must all be +1 or -1.  In 
order to maintain orthogonality of rows and columns, only one of the remaining characters in 
each row and in each column may be +1 while the other two in each column and row must each 
be -1, i.e., there are only three remaining +1's and no two can be in the same column or row.  We 
will make a, e and i the +1's and then others must be -1.  
  
The C2v character table is then determined to be: 

C2v E C2 σv σv' 
Γ1 1 1 1 1 
Γ2 1 1 -1 -1 
Γ3 1 -1 1 -1 
Γ4 1 -1 -1 1 
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Mulliken symbols for irreps: 

• "A" means the irrep is symmetric with respect to rotation about the principle axis 
(χ[Cn(z)] = +1) 

• "B" means the irrep is antisymmetric with respect to rotation about the principle 
axis (χ[Cn(z)] = -1) 

• "E" implies a doubly degenerate representation (d = 2 ⇒ χ(E) = 2) 
• "T" implies a triply degenerate representation (d = 3 ⇒ χ(E) = 3) 
• "G" and "H" imply degeneracies of  4 and 5, respectively. 

 
 In many instances there are more than one A, B, E , etc. irreps present in the point group 
so subscripts and superscripts are used. 

• g or u subscripts are used in point groups with centers of symmetry (i) to denote gerade 
(symmetric) and ungerade (antisymmetric) with respect to inversion. 

• ' and " are used to designate symmetric and antisymmetric with respect to inversion 
through a σh plane 

• numerical subscripts are used otherwise. 
In the C2v point group then, the irreps are designated as Γ1 = A1; Γ2 = A2; Γ3 = B1; Γ4 = B2. 
  
 In the treatment of molecular systems, one generates a reducible representation using an 
appropriate basis (e.g., atomic orbitals or cartesian displacement vectors) and then decomposes 
this reducible representation into its component irreps to arrive at a description of the system 
which contains the information available from the molecular symmetry.  There are certain 
symmetry properties which are very important and do not change so long as the point group 
remains the same (the metal orbitals  for metals on all of the symmetry elements,  the translations 
and rotations, and the dipole operators).  Since the symmetries of these various aspects are used 
frequently, they are also included in the character table.  We will now demonstrate the 
determination of these symmetries for the water molecule. 
 Since the s-orbital on the oxygen atom lies on all of the symmetry elements and is 
spherically symmetric, it is unchanged by a rotation about the C2 axis or reflections through the 
planes thus the representation for the s-orbital is: 
 

C2v E C2 σv σv' 
s-orb +1 +1 +1 +1 

 
which is the A1 irrep.  s-orbitals on central elements will always transform as the totally 
symmetric representation but are not included in character tables. 
 The three p-orbitals, translation along the x- ,y- and z-axes, and the three components of 
the electric dipole operator (µx, µy, µz) all transform in the same manner.  The px and py orbitals 
will change sign with a C2 operation and with reflection through the perpendicular plane, yz and 
xz, respectively.  The pz orbital is not affected by any operation. 

    px pz py   
 

C2v E C2(z) σv(xz) σv(yz) 
pz +1 +1 +1 +1 
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px +1 -1 +1 -1 
py +1 -1 -1 +1 

 

Thus, Γp = A1 + B1 + B2.  The px orbital is said to  
• form the basis for the B1 represention, 
• have B1 symmetry, or  
• transform as B1. 

Translations along the x, y and z directions (x, y, z) transform in the same way as px, py and pz.  
To see this simply translate the water molecule slightly in the x-direction without moving any of 
the symmetry elements.  In this new position, C2 and σ(yz) are destroyed and the characters are 
those of px above.  

 
 Rotation of the water molecule slightly about the z-axis moves the H's out of the plane.  
In this orientation, the C2 axis is still preserved, but both planes of symmetry are destroyed, i.e., 
Rz transforms as A2.  Rotation about the x-axis preserves the yz plane but destroys both the C2 
rotation and the xz reflection while rotation about the y-axis preserved the xz-plane and destroys 
the C2 rotation and yz reflection. 

C2v E C2(z) σv(xz) σv(yz) 
Rz +1 +1 -1 -1 
Rx +1 -1 -1 +1 
Ry +1 -1 +1 -1 

Thus, the rotations in the C2v point group transform as A2 + B1 + B2.  In most character tables, 
C2v  has the following form: 

C2v E C2 σv σv'   
Α1 1 1 1 1 z x2, y2, z2 
Α2 1 1 -1 -1 Rz xy 
Β1 1 -1 1 -1 x, Ry xz 
Β2 1 -1 -1 1 y, Rx yz 

 
The final column gives the squares and binary products of the coordinates and represent the 
transformation properties of the d-orbitals.   
A set of character tables is given in the appendix A.  This set is only a minimal set having 
only those point groups encountered in this course.  More complete sets are available in 
other texts. 
 
 As a final example, the C3v point group will be generated.  The operations of C3v are E, 
C3, C3

2, σv, σv', and σv", which can now be writen as E, 2C3, and 3σv since C3 and C3
2 are 

conjugate as are all three σv.  This group has an order of six and contains three classes (h=6, 
m=3) ⇒ d1

2 + d2
2 + d3

2 = 6 ⇒ d1 = d2 = 1 and d3 = 2.  Since the dimensions of the irreps are the 
χ(E) and every group contains the totally symmetric irrep,  

C3v 1E 2C3 3σv 
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Γ1 1 1 1 
Γ2 1 j k 
Γ3 2 m n 

 
Orthogonality with Γ1 requires that Σg(R)χ(R) = 0 for Γ2 [(1)(1)(1) + (2)(1)(j) + (3)(1)(k) = 0] 
and for Γ3 [(1)(1)(2) + (2)(1)(m) + (3)(1)(n) = 0].  Γ2 is non-degenerate (j and k must each be ±1) 
so the orthogonality condition implies that j = +1 and k = -1.  Normalization of Γ3 means (1)(2)2 
+ 2(m2) + 3(n2) = 6  so m = -1 and n =0.  Alternatively, we can use the fact that g(R)Σχ(R)2 = h 
down any column so 2(12 + 12 + m2) = 6 or m2 = 1 and 3(12 + (-1)2 + n2) = 6 so n2 = 0. 
 

C3v E 2C3 3σv 
Α1 1 1 1 
Α2 1 1 -1 
Ε 2 -1 0 

 
 The ammonia molecule (C3v point group) and the coordinate system used in the following 
discussion is given below (one N-H bond in the XZ plane). 

 
 The pz orbital is not changed by any of the operations of the group, i.e., it is totally 
symmetric and transforms as A1.  However, it should be apparent that px and py are neither 
symmetric nor antisymmetric with respect to the C3 or σv operations, but rather go into linear 
combinations of one another and must therefore be considered together as components of a 2 
dimensional representation.   The matrices in this irreducible representation will be 2x2 and not 
1x1.  The character of the identity operation will then be 2 (the trace of a 2x2 matrix with 1's on 
the diagonal), i.e., χ(E)=2.  A rotation through an angle 2π/n can be represented by the following 

transformation:  
x'

y'

! 

" 
# 

$ 

% 
& =

cos(2' / n) sin(2' / n)

-sin(2' / n) cos(2' / n)

! 

" 
# 

$ 

% 
& 
x

y

! 

" 
# 
$ 

% 
&  the trace of the Cn rotation matrix  is 

2cos(2π/n) which for n=3 is 2cos(2π/3) = 2(-0.5) = -1, i.e., χ(C3) = -1.  The character for 
reflection through a plane can be determined by the effect of reflection through any one of the 
three planes since they are all in the same class.  The easiest operation to use is the reflection 

through the XZ plane which results in px → px and py → -py or 
x'

y'

! 

" 
# 

$ 

% 
& =

1 0

0 '1

! 

" 
# 

$ 

% 
& 
x

y

! 

" 
# 
$ 

% 
&   which has a 

trace of 0, χ(σv)=0.  The transformation properties of the px and py orbitals are represented as, 
 

 E 2C3 3σv 
(x,y) 2 -1 0 

 
which is the E irreducible representation.  The px and py orbitals are degenerate in C3v symmetry 
and are taken together to form a basis for the two-dimensional irreducible representation, E.  
Treating rotations and binary products as before, we can represent the C3v point group as 
 

C3v E 2C3 3σv   
Α1 1 1 1 z x2+y2; z2 
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Α2 1 1 -1 Rz  
Ε 2 -1 0 (x,y);(Rx,Ry) (x2-y2,xy);(xz,yz) 

 
Thus the x2-y2 and xy orbitals are also degenerate as are the xz and yz orbitals. 
 

Problem I.4.  What are the dimensions of the irreducible representations of a 
group with the following classes: E, R1, 2R2, 2R3, 2R4, 2R5, 5R6, 5R7? 

 

Problem I.5. Generate the D4 point group.  {D4E, 2C4, C2, 2C2', 2C2"} 
 

Problem I.6   By convention, the z-axis is the principle symmetry axis, however, for planar 
molecules, it is also common to define the z-axis as the axis perpendicular to the plane.  
Determine the irreps to which the metal d-orbitals belong for cis-Cl2PtBr2 (C2v) using the 
latter convention (z perpencicular to molecular plane).  Define the x-axis as bisecting the 
Cl-Pt-Cl bond and the y-axis as bisecting the Cl-Pt-Br bonds. 

 
I.7 Decomposing Reducible Representations 

 

 In the determination of molecular orbital or vibrational symmetries, a reducible 
representation is generated from an appropriate basis set and then decomposed into its 
constituent irreducible representations.  The process is analagous to determining the projection of 
a vector on the x,y or z axis in three space where the dot product of the vector with i, j or k 
yields the result.  Decomposing a reducible representation can be viewed as determining the 
projection of the reducible representation along one of the irreps and the process is similar to 
taking the dot product of the two.  The actual method is given here without proof.  

ai = 1
h R

! g(R)χi(R)χ(R) 

ai : the number of times that the ith irrep appears in the reducible representation 
h : the order of the group 
R : an operation of the group 
g(R) : the number of operations in the class 
χi(R) : the character of the Rth operation in the ith irrep 
χ(R) : the character of the Rth operation in the reducible representation 

  
As an example, we will decompose the reducible representation: Γred = 7  1  1 of the C3v point 
group, i.e., we will determine the number of times (ai) that each irrep is contained in Γred .  The 
order of the point group is 6. 

C3v 1E 2C3 3σv  C3v 1E 2C3 3σv 
Α1 1 1 1  Α2 1 1 -1 
Γred  7 1 1  Γred  7 1 1 

a(A1) = 1
6

{(1)(1)(7)+(2)(1)(1)+(3)(1)(1)}= 1
6

{12}=2 

      a(A2)= 1
6

{(1)(1)(7)+(2)(1)(1)+(3)(-1)(1)}= 1
6

{6}=1 

 
C3v 1E 2C3 3σv 
Ε 2 -1 0 
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Γred  7 1 1 

 a(E) = 1
6

{(1)(2)(7) + (2)(-1)(1) + (3)(0)(+1)} = 1
6

{12}=2 

 
The reducible representation can be decomposed as follows: Γred = 2A1 + A2 + 2E.  The results 
can be verified by adding the characters of the irreps, 

C3v E 2C3 3σv 
2Α1 2 2 2 
Α2 1 1 -1 
2Ε 4 -2 0 
Γred  7 1 1 

 
Problem I.7  Decompose the following reducible representations of the C4v point 
group. 
 

C4v E 2C4 C2 2σv 2σd 
Γ1 11 1 -1 5 1 
Γ2 6 0 2 0 0 
Γ3 5 1 -3 -1 -1 
Γ4 4 -4 4 0 0 

 
 The reducible representation of the Cartesian displacement vectors for water was 
determined earlier (see page I.8 - I.10) and is given in the following table as Γcart 
 

C2v E C2 σv σ'v  
A1 1 1 1 1 z 
A2 1 1 -1 -1 Rz 
B1 1 -1 1 -1 x, Ry 
B2 1 -1 -1 1 y,Rx 
Γcart 9 -1 3 1  

 
Decomposition of Γcart yields, 

a(A1) = 1/4 {(1)(1)(9) + (1)( 1)(-1) + (1)( 1)(3) + (1)( 1)(1)} = 1/4 {12} = 3 
a(A2) = 1/4 {(1)(1)(9) + (1)( 1)(-1) + (1)(-1)(3) + (1)(-1)(1)} = 1/4 { 4} = 1 
a(B1) = 1/4 {(1)(1)(9) + (1)(-1)(-1) + (1)( 1)(3) + (1)(-1)(1)} = 1/4 {12} = 3 
a(B2) = 1/4 {(1)(1)(9) + (1)(-1)(-1) + (1)(-1)(3) + (1)( 1)(1)} = 1/4 { 8} = 2 

i.e., Γcart = 3A1 + A2 + 3B1 + 2B2 
 
 Linear combinations of  the 3N displacement vectors represent the degrees of motional 
freedom of the molecule.  Of these 3N degrees of freedom, three are translational, three are 
rotational and the remaining 3N-6 are the vibrational degrees of freedom.  Thus, to get the 
symmetries of the vibrations, the irreducible representations of translation and rotation need only 
be subtracted from Γcart, but the irreps of rotation and translation are available from the character 
table.  For the water molecule,  Γvib = Γcart - Γtrans - Γrot = {3A1 + A2 + 3B1 + 2B2} - {A1 + B1 + 
B2} - {A2 + B1 + B2} = 2A1 + B1.  Construction of these "symmetry coordinates" will be 
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discussed in detail in the Vibrational Spectroscopy chapter, but we will draw them below and 
note that S1 (symmetric stretch) and S2 (bending mode) both preserve the symmetry of the 
molecule, i.e., are totally symmetric, while S3 (antisymmetric stretch) destroys the plane 
perpendicular to the molecule and the C2 axis  but retains the plane of the molecule, i.e., it has B1 
symmetry. 

 
Problem I.8  Determine the symmetries of the vibrations of NH3, PtCl4

2- and SbF5. 
 

I.8.  Direct Products. 
 It is often necessary to determine the symmetry of the product of two irreps, i.e., to 
determine their direct product. 
 
Direct Products: The representation of the product of two representations is given by the 

product of the characters of the two representations. 
 

Verify that under C2v symmetry A2 ⊗ B1 = B2 

 

C2v E C2 σv σv' 
A2 1 1 -1 -1 
B1 1 -1 1 -1 

A2 ⊗ B1 1 -1 -1 1 
 
As can be seen above, the characters of  A2 ⊗ B1 are those of the B2 irrep.  
 

Verify that A2 ⊗ B2 = B1, B2 ⊗ B1= A2.  Also verify that  
• the product of any non degenerate representation with itself is totally symmetric and  
• the product of any representation with the totally symmetric representation yields the 

original representation.  
Note that, 

• A x B = B; while   A x A = B x B = A 
• "1" x "2" = "2" while   "1" x "1" = "2" x "2" = "1" 
• g x u = u  while  g x g = u x u =g. 

 
A table of Direct Products for the groups pertinent to this course is given in Appendix B. 
 
 The basis of selection rules (see Chapter III) is that the transition between two states a 
and b is electric dipole allowed if the electric dipole moment matrix element is non-zero, i.e., 

a µ b = !
a

*

"

# µ!
b
d$ % 0    

where µ =  µx, + µy + µz  is the electric dipole moment operator which transforms in the same 
manner as the p-orbitals (x, y and z in the character table).  A necessary condition for this 
inequality is that the direct product of the integrand, ψa⊗µ⊗ψb=  ψa⊗(µx, + µy + µz )⊗ψb,  must 
contain the totally symmetric representation.   
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 Is the orbital transition dyz → px electric dipole allowed in C2v symmetry?  The C2v 
character table indicates that the dyz orbital forms the basis for the B2 irrep while the px orbital 
transforms as B1 so the question is whether or not a transition between a B2 orbital and a B1 
orbital is electric dipole allowed?  Such a transition is allowed only if the product B1 ⊗ µ ⊗ B2  
contains the A1 representation.  In C2v, the electric dipole transforms as b1 +  b2 + a1.  The direct 

products are determined to be B
1
!

b
1

b
2

a
1

" 

# 

$ 
$ 

% 

& 

' 
' 
! B

2
=

a
1

a
2

b
1

" 

# 

$ 
$ 

% 

& 

' 
' 
! B

2
=

b
2

b
1

a
2

" 

# 

$ 
$ 

% 

& 

' 
' 

.  None of the three compon-

ents contains the a1 representation, so this transition is forbidden.  
 Since the irreps are orthogonal, the direct product of two different irreps will always 
contain -1's and thus cannot be totally symmetric.  The only way to get +1's exclusively is to 
square the individual characters, i.e., the direct product of two non-dengerate irreps can be a1 
only if they are the same irrep.  A triple product will transform as A1 only if  the direct product 
of two irreps is the same irrep as the third.   We may therefore state the following: 
 
 A transition between two non-degenerate states will be allowed only if the direct product 
of the two state symmetries is the same irrep as one of the components of the electric dipole.   
 
The transition  dyz → px will be allowed only if the direct product B1⊗B2 transforms the same as 
x,y or z.  Since  B1⊗B2  = a2 and x nor y nor z transform as a2 the transition is not allowed.  An 
A1→B2 transition is allowed however since A1 ⊗ B2 = B2, and y transforms as b2.  In this case, 
the transition is said to be "y-allowed".  Show that the A2 → B1 transition is also "y-allowed". 
 
Problem I.9.  Indicate whether each of the following metal localized transitions is electric dipole 
allowed in PtCl4

2-. (a) dxy → pz (b) dyz → dz2   (c)dx2-y2 → px,py (d) pz → s 
 

I.9  Symmetry Adapted Linear Combinations 
 

 We will construct molecular orbitals as linear combinations of atomic orbitals, but these 
molecular orbitals must form the bases for the irreps of the molecular point group (chapter II), 
and we have already shown that the vibrational modes are constructed as linear combinations of  
the Cartesian basis vectors in such a way that they too form the bases for the irreducible 
representations of the molecular point group.  Since these linear combinations form the bases for 
the irreps of the molecular point group, we call them symmetry adapted linear combinations or 
SALC's.  The construction of these SALC's is mandatory if all of the information available from 
the molecular symmetry is to be obtained. 
 SALC's are formed from symmetrically complete sets.  Each member of a 
symmetrically complete set can be carried into every other member by some operations of 
the group.    For example, compare square planar [PtCl3Br]2- of C2v symmetry with tetrahedral 
[CoCl3Br]2- of C3v symmetry.  In the C2v ion, the three chlorines are not symmetrically equivalent 
since there is no operation of the C2v point group which can exchange trans- and cis-chlorines 
and thus they must be in different sets.  In the C3v ion, all three chlorines can be exchanged by a 
C3 rotation and thus all belong in the same set.   

    

Cl

Cl

Cl

Br Cl
Cl

Br

Cl
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We state without proof the method for construction of a set of SALC's ψk from an m-dimension 
set, {φi| j = 1,2,...m} which is symmetrically complete: 
 

! k = Nk " jk (R
#s$#j )# j

j=1

m

%  

 

where ψk is the SALC belonging to the kth irrep 
χjk(Rφ

s
→φ

j) is the character of the operation R which carries a reference 
vector, φs into the vector φj in the kth irrep 

Nk is a normalization constant 
 

More simply put, one vector of the symmetrically equivalent set is chosen as the reference then 
the coefficent on the jth member of the set in the SALC is the character of the operation of the 
point group which carries the reference vector into the jth member of the set.  The reference 
vector is carried into itself with the identity operation and therefore has a coefficient of +1.   
 

To determine SALC's of the s-orbitals in water, 
 

1.  Determine the point group of the molecule.  H2O belongs to the C2v point group. 
 

2.  Identify the symmetrically complete sets.  H(1) and H(2) form one set while the 
O forms the other 

 

3.  Determine the operation which converts the reference vector into each of the 

others.  H(1) H(1); H(1) H(2); O O
E C E2

! ! !  

4. Determine the reducible representation of the complete sets. 
C2v E C2 σv σ'v  
Γ(H) 2 0 2 0 A1+B1 
Γ(O) 1 1 1 1 A1 

 

5.  Determine the character of the appropriate operation for each of the irreps 
 A1 B1 
E 1 1 
C2 1 -1 

 

6. Construct SALC's 
 A1: ψ1= N1{H(1) + H(2)} & ψ2 = N2{O} B1: ψ3 = N3{H(1) - H(2)} 

 

7. Normalize the SALC's - the sum of the squares of the coefficients must be unity. 

2N 1 N
1

2
; N 1 N 1; 2N 1 N

1

2
1
2

1 2
2

2 3
2

3= ! = = ! = = ! =  

To convert H(1) into H(2) we chose the C2 rotation, but the σ'v could also have been used.  In 
this example it did not matter since the characters of  the C2 and σ'v operations are the same in 
both A1 and B1.  However this will not always be the case and the above method will not lead to 
a unique SALC.  In these cases, the complete projection operator should be used, i.e., the effect 
of every operation in the group on the reference vector must be determined and the effect then 
multiplied by the character of the operation in the irreducible representation.  For the H(1) 
reference in A1 and B1 representations,  

 E C2 σv σ'v 
effect on H(1) H(1) H(2) H(1) H(2) 
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A1 1 1 1 1 
B1 1 -1 1 -1 

 

Thus the A1 SALC would be N1{2H(1) + 2H(2)} = 0.707{H(1) + H(2)}, and the B1 SALC would 
be N2{2H(1) - 2H(2)} = 0.707{H(1) - H(2)} - the same results as before.  This method can be 
somewhat more tedious then the former method, but it will always yield unambiguous results. 
 The SALC's for the s-orbitals for the three H's of NH3 are determined in the same manner 
with the added complication of degeneracy.  The reducible representation is 
 

C3v E 2C3 3σv 
Α1 1 1 1 
Α2 1 1 -1 
Ε 2 -1 0 
Γ(1s) 3 0 1 

 

Which can be decomposed into Γ(1s) = A1 + E.  We will use φ1 as the reference vector and the 
C3 rotation to convert it into φ2 and φ3 (χ(C3) = -1 in the E' representation).  The normalized 

SALC of A1 symmetry is then !
1
=
1

3
"
1
+ "

2
+ "

3
( )  while the two components of the doubly 

degenerate pair of E' symmetry are obtained in an analgous manner by using two different 
reference vectors, for example φ2 and φ3, 

! 2

a'
=
1

6
"#1 + 2#2 " #3( ) and ! 2

b'
=
1

6
("#1 " #2 + 2#3 )  

The two components of a doubly degenerate set form the basis for a 2-dimensional 
representation and must therefore be orthogonal to one another, but the two derived above are 
not orthogonal.  To generate two orthogonal components, linear combinations of the above are 
taken, ψ2

a' ± ψ2
b' yielding, 

! 2

a
= "

1

6
2#1 "#2 "#3( ) and ! 2

b
=
1

2
(#2 "#3)  

Note that since only the relative phases of the orbitals are important, the minus sign in ψ2
a is 

usually dropped.   A quick check of orthogonality can be done by looking at the nodal planes. 

 
In A, Ψ2

a' and Ψ2
b' the nodal planes interesect at an angle of 120o - they are not orthogonal while 

in B, Ψ2
a and Ψ2

b, the nodal planes are perpendicular, i.e., orthogonal, as are the two basis 
vectors. 
 
Using the complete projection operator for this problem (see page I.5 for the definitions of the 
planes) we would write, 
 

 E C3 C3
2 σv σv' σv" 

effect on  φ1 φ1 φ2 φ3 φ1 φ3 φ2 
A1 1 1 1 1 1 1 
E 2 -1 -1 0 0 0 
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Remember that the effect of EVERY operation must be considered!  The SALC's are then  
ψ1 = N1{φ1 + φ2 + φ3 + φ1 + φ2 + φ3} or !

1
=
1

3
"
1
+ "

2
+ "

3
( )  and 

ψ2 = N2{2φ1 - φ2 - φ3} which can be manipulated as in the previous method to give the same 
degenerate SALC's. 
 

Problem I.10  Construct the SALC's for the s-orbitals on the chlorine atoms in 
Mo(O)Cl4

2-,  a tetragonal pyramid with C4v symmetry. 
 
 The rest of the course will be dealing with these and other applications of symmetry and 
group theory, but at this stage you should be able to do the following: 
 

1.  Determine the molecular point group. 
2.  Generate reducible representations for various systems. 
3.  Decompose a reducible representation into its irreducible representations. 
4.  Determine the direct product of several representations. 
5.  Generate SALC's from symmetrically complete sets 
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Chapter II - Molecular Orbital Theory 
 

II.1 Quantum Theory: a brief tour 
 

 All information concerning the structure, energetics and dynamics of a molecule is 
contained in the molecular wavefunction, ψ, the wave property of matter.  The physical 
significance of the wavefunction is that ψ*ψdτ  is proportional to the probability that the 
particle can be found in the interval dτ.  Thus, the integral of ψ*ψdτ over all space, 

!
n

*

!
n
d"

#$

+$

% , is proportional to the probability that the particle exists in space.  For a well  

constructed wavefunction, this integral is unity and the wavefunction is said to be 
normalized. 
 

 Perhaps the most encountered quantum mechanical expression is the Schrödinger 
equation: 

HΨn = EnΨn     Eq II.1 
 

where H is the Hamiltonian or energy operator, Ψn is the stationary state wavefunction of the 
nth state, and En is the energy of that state.  Theoretically, there are an infinite number of Ψn 
(n=1,...,∞) and as solutions to the above equation they form a complete set of basis functions 
which means that any function, φ, can be expressed as a linear combination of the members of 

the set, ! = c j" j

j=1

#

$ .  Since the normalized functions are also orthogonal, they form an 

orthonormal basis.  The orthonormality condition is !
m

*

!
n
d" = #

mn

$%

+%

& . where δmn is the 

Kroniker delta which is equal to zero for n≠m (orthogonal) and equal to 1 for m=n 
(normalized). 
 
 You have encountered orthonormal basis sets before; the irreducible representations 
form the basis for a point group and the vectors i, j, and k form a basis for three-space.  Any 
reducible representation can be written as a linear combination of the irreducible 
representations and any vector, p, in three space can be written as a linear combination of the 
basis vectors, p = ai + bj + ck, where a = p•i is the amount of the basis vector,i,  that is mixed 
into the vector, p.  The similarities of the properties of vectors and wavefunctions can be used 
to advantage by representing the wavefunction, Ψn, as a vector |n>, called the ket of n and its 
complex conjugate as <n|, the bra of n.  The integral over all space then becomes a dot 

product !
m

*
!
n
d" = m

#$

+$

% n = &
mn

 where <m|n> is a (bra)(ket).  Operation on a vector results 

in a change of its length and/or its direction.  For example, a C8 operation on i (rotation by 45o 
about the z-axis), generates a new vector, C8i = 

  

1

2
i + j( ) . The dot product of this vector with 

the each of the basis vectors could be represented as  
 

  

j C8 i = j
1

2
i + j( ) =

1

2
j i + j j( ) =

1

2
(0 +1) =

1

2

k C8 i = k
1

2
i + j( ) =

1

2
k i + k j( ) =

1

2
0 + 0( ) = 0
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so the operator C8 is said to remove the orthogonality of i and j by mixing them.  The 
resulting vector, however is still orthogonal to k.   
 

 We can view quantum mechanical operators in the same way so Eq II.1 can now be 
written,  
 

Hn> = Enn>     Εq II.2 
  

The operation, H, changes only the length of the vector, n>, i.e., it yields a scalar, En, times 
the initial vector.  In cases like this, the vectors represented by n>  are said to be 
eigenvectors of the operator H with eigenvalues En.  It is often the case that n> is not an 
eigenvector of an operator, O, or On> = Σjcjj>, i.e., n> is rotated into a linear combination of 
the basis vectors just as i was rotated into a linear combination of i and j by the C8 rotation.   
 If n> is an eigenvector of H but not of O, then the observable O is not a constant of the 
motion, i.e., its value is changing while the energy remains constant.  In this case it is the 
average value of the physical observable, designated <O>, that is determined, 

O =
!
n

*
O!

n
d"

#$

+$

%
!

n

*

!
n
d"

#$

+$

%
=

nO n

n n
= n O n    Eq II.3 

<O> = <n|On> is also called the expectation value of the observable O (momentum, 
position, energy, spin, etc.) in the nth state, but these numbers are simply the diagonal 
elements of a matrix of such elements, <O>mn = <m|On> - if the n> are eigenvectors of O 
than the matrix is diagonalized.  Indeed, a frequently used procedure for the determination of 
the eigenvalues and eigenvectors of a system is to assume a basis set which closely 
approximates the actual system, generate the Hamiltonian matrix in the selected basis and 
then diagonalize it.  This procedure results in both the eigenvalues and the eigenvectors of the 
matrix.   
 

Problem II.1   (a) Given that j>,k>, and n> are all members of the same basis set 
and that  On>=Σkckk> show that cj = <jOn>.  (b)  Assume <φiφj> = δij and 
show that SALC, Ψa = 2φ1 - φ2 - φ3 is orthogonal to Ψb = φ2 - φ3 (the other member of 
the degenerate pair) but not to Ψc = -φ1 + 2φ2 - φ3 (one of the functions used to 
generarte Ψb in section I.9.   

 

II.2 Wavefunctions as bases for irreducible representations 
 

 The energy of a system will not change when identical particles (electrons or nuclei) 
are interchanged, so the Hamiltonian must be invariant with respect to any of the operations of 
the group, i.e., RH = +1H so H transforms as the totally symmetric representation.  The 
physical properties of the system are contained in ψ2, so it too must be invariant, i.e., Rψ2 = 
+1ψ2 which means that for a non-degenerate wavefunction, Rψ = ±1ψ.  Thus the application 
of each of the operations of the group to an eigenfunction/eigenvector will generate one of the 
irreducible representations of the molecular point group. 
 

The eigenvectors form bases for the irreducible 
representations of the molecular point group. 

 

In general, symmetry operations will rotate one member of a degenerate representation into a 
linear combination of all members of the degenerate representation.  It can be shown that a k-
dimensional representation is generated by a k-fold degenerate set of eigenvectors.  The trace 
of the k-dimensional representation then forms the basis for a degenerate representation. 
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 Determining whether two functions can be mixed by an operator is an important 
application of group theory.  We have already encountered one such application: selection 
rules are based on whether two states can be mixed by the electric dipole operator, 
<ψiµψj>≠ 0.  Remember that in order for an integral over all space to be non-zero, the 
integrand must contain the A1 irreducible representation.  Thus, the integral <ψiHψj>≠ 0 
only if the direct product of Γi x ΓH x Γj contains the A1 irreducible representation.  Since ΓH 
is A1, the direct product will contain A1 only if Γi ⊗ Γj is A1 and for non-degenerate 
irreducible representations that implies that Γi = Γj.  Therefore, 
 

Hij =<ψ iHψ j>≠  0 only if ψ i and ψ j form the basis for 
the same irreducible representation. 

 
II.3  Quantum Mechanical Approach to Molecular Orbitals 

 

 Molecular orbitals are formed by taking a Linear Combination of Atomic Orbitals 
(LCAO).  Just as atomic orbitals are solutions to the hydrogen atom wave equation, molecular 
orbitals are based of the solution to hydrogen molecule ion, H2

+,  

 
The Hamilitonian for this two proton, one electron system is  

H
2m 2m 2m

e

r

e

r

e

R

2

e

e
2

2

A
A

2
2

B
B

2
2

A

2

B

2

AB

=-
h h h

! " ! " ! " " +  

or E = (kinetic energy of the electron) + (kinetic energy of nucleus A) + (kinetic energy of 
nucleus B) - (the Coulombic attraction of nucleus A for the electron) - (the Coulombic 
attraction of nucleus B for the electron) + (the Coulombic repulsion of the two nuclei).  

 
The problem can be simplified considerably with Born-Oppenheimer approximation. 
 

Born Oppenheimer Approximation:  Electronic motion is so much 
faster than nuclear motion that the two are independent, i.e., the nuclear 
and electronic kinetic energies can be separated. 

 

The result of this approximation is to remove the nuclear kinetic energy terms and allow RAB 
to be treated as a constant, i.e., the electronic energy can be calculated at given values of RAB. 
 

The two H's are in the ground state so the 1s orbitals will be used to construct the mo's 
(LCAO). 

Ψmo = ΣCiφi = CAφA + CBφB  = CA1s(A) + CB1s(B) 

 
The expectation value (eq II.3) for the energy of the system is given as: 
 

< >= =
+ +

+ +

< >=
+ +

+ +

E
H C H C C H C H

C C C C

E
C H C C H C H

C C C S C

MO MO
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A A A A B A B B B B

A A B A B B

A AA A B AB B AA

A A B AB B
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2

2

2

2

" " " " " "

" "

 Eq II.4 

where HAA=<φAHφA>=<φBHφB> = HBB = α  > 0 - the Coulomb integral; 
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HAB = <φAHφB> = β  < 0  - the Resonance ; 
and S = <φAφB> = <φBφA> - the overlap integral. 

  
CAand CB are then determined by applying the Variation principle:  The expectation energy 
calculated with any acceptable, approximate wavefunction can never be less than the true 
ground state energy.  Or, the best wavefunctions are the ones that yield the lowest energy.  
The values of CA and CB are determined to be those that minimize the energy (Eq II.4).  
Minimizing E with respect to CA and CB, i.e., (E/∂CA)CB

 = 0 and  (∂E/∂CB)CA
 = 0, yields two 

equations: 
 

(α - E)CA + (β - SE)CB = 0 = (HAA - E)CA + (HAB - SE)CB 
(β - SE)CA + (α - E)CB = 0 = (HAB - SE)CA + (HAA - E)CB 

 

Both equations can be satisfied with non-trivial solutions only if the determinant of the 
coefficients of CA and CB is 0 which yields the Secular Equation:  
 

H E H SE

H SE H E

AA AB

AB AA

! !

! !
= 0 . 

 

which has the following eigenvalues and normalized eigenvectors: 
 

E
H H

1+ S S
         &          E

H H

1- S S
+

AA AB A B
-

AA AB A B
=

+
! =

+

+
=

"
! =

"

"
+ "# #

$ $ $ $

2 2 2 2

  Eq II.5 
 

Since the coulomb integral is positive and the exchange integral is negative, E+ < E-.   
 

 
Figure II.1 shows the square of the two 
wavefunctions.  Ψ-

2 has a nodal plane perpendicular 
to the internuclear axis which means that electron 
density is excluded from this region.   Ψ- is, 
therefore, an antibonding orbital.  Ψ+

2 has no nodal 
plane perpendicular to RAB and has an accumulation 
of electron density between the atoms -  Ψ+ is a 
bonding orbital.  In addition, the internuclear axis is 
not contained in a nodal plane which makes this type 
of interaction a σ interaction.   We therefore refer to 
Ψ+ as a σ orbital and Ψ- as a σ* orbital. 
     
 
 The energy of each separated atom is HAA.  E+ has a lower energy than HAA and is 
therefore stabilized relative to the unbound atoms by the amount HAA - E+ = Δ+ (see figure 
II.2).  E- is greater than HAA and thus is destabilized.  The extent of the destabilization is E- - 
HAA = Δ-.  The magnitudes of stabilization and destabilization are given as, 
 

! ± =
"

±

SH H

S

AA AB

1
    Eq II.6 

 

The magnitude of HAB is dependent upon the overlap, HAB = 0 if S = 0.  If the overlap is not 
zero, however, Δ+ < Δ- and a four electron bond would not form since the total stabilization, 
Δ+ - Δ- is negative, i.e., the destabilization resultling from the double occupancy of the 
antibonding orbital is greater than the stabilization resulting from two electrons in the bonding 

  
Figure II. 1  Plots of the radial portions  

of Ψ+
2, and Ψ-

2  
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mo.  This means that the energy of the separated atoms will be less than that of the "bound" 
atoms. 

 
Figure II.2  Interaction of two degenerate atomic orbitals forming one 
bonding mo, σ, which is stabilized by Δ+ relative to the ao's and one 
antibonding mo, σ*, destabilized by an amount Δ-. 

 

 To better picture the difference between the bonding and antibonding mo's, consider 
the energy of each as a function of the internuclear separation as shown in figure II.3.  E+  
reaches a minimum at Re, the equilibrium bond length, and is, therefore, a bound state.  E- is 
unbound (no minimum) and excitation into this anti-bonding orbital would be dissociative. 

 
Figure II .3.  The energies of  the bonding mo (E+) and the dissociative 
antibonding mo (E-) as a function of the internuclear separation. 

 

 Similar considerations can be made for the p-orbitals.  Since the bonding axis is the C
∞ or z-axis, interaction of the pz's will also result in a σ-bond (figure II.4).  Interactions of the 
px or py orbitals result in mo's with substantial electron density between the atoms, but, in this 
case, the internuclear axis is contained in a nodal plane.  The resulting mo is called a π mo 
with a corresponding π* antibonding mo.   

 
Figure II.4.  Interactions of s- and p-orbitals showing the formation of σ and σ* mo's from 
interaction of s or pz ao's and the formation of π and π* mo's from interaction of  px or py ao's. 
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Interactions in which the bond axis contains two nodal planes are called δ-bonds (see 
Problem II.3). 
 

 Remember from the discussion of the Hamiltonian matrix at the beginning of this 
chapter that the matrix element Hij can be non-zero only when ψi and ψj form the basis for the 
same irreducible representation.  Thus, HAB ≠ 0 only if ψa and ψb have the same symmetry.  In 
other words, 
 

Only orbitals of the same irreducible representation can mix! 
 

The same conclusion is reached by realizing that the value of Hij depends on the extent of 
overlap.  For example, an s-orbital on one atom will not mix with a px on another atom (z-axis 
is bond) as regions of positive overlap are cancelled by regions of negative overlap (figure 
II.5). 
 

region of negative overlap

region of positive overlap  
 

Figure II.5  Zero overlap resulting from the cancellation of 
the positive overlap by the negative overlap. 

 
Problem II.2  Indicate the result (σ,π, δ or none) of mixing the following pairs of orbitals on 
two different atoms in a diatomic molecule: 

 a) s + pz b) dxz + px c) dx2-y2 + px d) dz2 + dxz.  
Draw the bonding and anti-bonding combinations for all interacting pairs.  Remember the 
bond axis is the z-axis. 
 

II.4  Homonuclear Diatomic Molecules 
 

 The mo's form bases for the irreducible representations of the molecular point group so 
the construction of mo's from the ao's is a matter of constructing SALC's (symmetry adapted 
linear combinations) from the ao's of symmetrically complete sets.  Homonuclear diatomic 
molecules belong to the D∞h point group, a partial group table is given here. 
 
 

D∞h E 2C∞φ ∞σv i 2S∞
φ ∞C2 

Σg
+ 1 1 1 1 1 1 

Σg
- 1 1 -1 1 1 -1 

Πg 2 2cosφ 0 2 -2cosφ 0 
Σu

+ 1 1 1 -1 -1 -1 
Σu

- 1 1 -1 -1 -1 1 
Πu 2 2cosφ 0 -2 2cosφ 0 

 

The mo's for a diatomic molecule composed of first or second row elements will consist of 
LCAO's of the s, px, py and pz orbitals on the two atoms.  The pz and s reducible 
representations are straightforward, but since rotation of px or py about the C∞ axis leads to a 
combination of px and py, these orbitals are degenerate and must be considered together. For a 
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rotation by an angle φ,  C!

"
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# 
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' 
(  the character of which is 2cosφ for 

each (px,py) pair on the C∞ axis, i.e., a character of 4cosφ for a homonuclear diatomic.  Only 
one of the ∞ σv's need be considered and the easiest to see is the xz plane. 
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'  which has a character of zero.  The remaining characters of the 

reducible representation can be determined in a similar manner. 
 

D∞h E 2C∞φ ∞σv i 2S∞
φ ∞C2  

s 2 2 2 0 0 0 Σg
+ + Σu

+ 
pz 2 2 2 0 0 0 Σg

+ + Σu
+ 

px, py 4 4cosφ 0 0 0 0 Πg + Πu 
 

So group theoretical considerations yield the same results we arrived at earlier: mixing of two 
s- or two pz-orbitals results in two mo's of one of σg

+ (σ) and one of σu
+ (σ*) symmetry1, 

while mixing px or py orbitals results in mo's of symmetry πu ( π) and πg (π*) mo's. 
 

Problem II.3  Mo2Cl8
4- is reported to contain a Mo-Mo quadruple bond formed from the 

interaction of the Mo d-orbitals.  Assume D4h symmetry for the ion and use the metal d-
orbitals as the basis to determine the symmetries of the mo's. Draw pictures like those in 
figure II.4 to describe the quadruple bond.  Label each orbital with the appropriate symmetry 
and interaction type, σ, π or δ.  Order the mo's in increasing energy and place the appropriate 
number of electrons into the orbitals.  Do not include the x2-y2 as they are involved in the 
Mo-Cl σ-bonds. 
Ordering of mo energies 
 The predictions of mo theory are based on the orbital occupancy which is dictated by 
the relative energy ordering of the mo's (mo energy diagram) and the number of electrons in 
the system.  The homonuclear diatomic molecules represent an informative yet relatively 
simple example of the utility of the method. 
 The extent of stabilization of an mo depends on the overlap between the ao's involved 
(Sij).  Sigma interactions will have a greater overlap than pi interactions at longer distance due 
to their directional nature, but the overlap will increase more rapidly for the pi interactions as 
the internuclear distance shortens.  Thus, at longer bond lengths, σ-mo's are stabilized more 
than π-mo's.  Another factor affecting the energy of an mo is mixing - two mo's can mix 
resulting in one mo being stabilized while the other mo is destabilized.  The 2σg and the 3σg 
have the correct symmetry to mix with the result that the 3σg will be destabilized while the 
2σg are stabilized.  Since the origin of these mo's are the s and the pz orbitals, this mixing is 
the equivalent of mixing the s and p first to form sp hybrid orbitals.  A combination of 
differing bond lengths and orbital mixing results in two different energy schemes for the 
homonuclear diatomic molecules of the atoms of the first and second row (Figure II.6). 

                                                
1 Capital Greek letters (e,g., Σ, Π, Δ) are reserved for states (to be discussed in Chapter VI) while lower case 
(e.g., σ, π, δ) are used for orbitals.   
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O2 & F2    H2 to N2 

 
Figure II.6.  The two energy diagrams used to describe the bonding in the 
homonuclear diatomics formed from atoms in the 1st and 2nd rows. 

 

 Since there will be many mo's with the same designation, σg, σu*, etc., we must 
distinguish between them.  There are two ways of doing this: designate the ao's from which 
they are derived or simply number the mo's.  Both schemes are shown above.  However, 
designating the ao's would be cumbersome when extensive mixing of many ao's occurs, so the 
latter method is the one most commonly encountered. 
 Determining the electron configurations of molecules is completely analagous to 
determining the electron configurations of atoms.  The electrons go into the lowest energy 
orbital available, only two electrons per orbital and electrons remain unpaired in degenerate 
orbitals if possible (maximum multiplicity).  In the case of diboron (B2),  the energy 
differences between the 1πu , 2σu* and 3σ orbitals is evidently less than the pairing energy 
(Coulombic repulsion between two electrons in the same orbital) resulting in an electron 
configuration with one electron in each of these orbitals (Figure II.7).  One of the major 
successes of mo theory was the explanation of the paramagnetism of O2.  Figure II.7 also 
shows the O2 occupancy which clearly demonstrates the presence of two unpaired elecrtons in 
the 1πg*.  

 
Figure II.7.  Examples of orbital occupancy.  The predicted and actual cases 
for B2 are given as well as the O2 case to demonstrate its paramagnetism. 
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 One of the important properties of the bond which is readily determined from the 
electron configuration is the bond order which is defined as the number of PAIRS of 
bonding electrons minus the number of PAIRS of antibonding electrons.  Higher bond 
orders imply stronger, shorter bonds with higher vibrational force constants (frequencies).   
 

 
Molecule 

 
Predicted Electronic Configuration 

Bond  
Order 

Bond Length 
(pm) 

Bond Strength 
(kJ/mol) 

H2
+ (1σg)1 1/2 106 260 

H2 (1σg)2 1 74 431 

He2
+ (1σg)2(1σu*)1 1/2 108 250 

He2 (1σg)2(1σu*)2 0 - - 

Li2 [He2](2σg)2 1 267 111 

Be2 [He2](2σg)2(2σu*)2 0 - - 

B2 [He2](2σg)2(2σu*)1(1πu)2(3σg)1 2 159 290 

C2 [He2](2σg)2(2σu*)2(1πu)4 2 131 628 

N2 [He2](2σg)2(2σu*)2(1πu)4(3σg)2 3 110 941 

O2 [He2](2σg)2(2σu*)2(3σg)2(1πu)4(1πg*)2 2 121 494 

F2 [He2](2σg)2(2σu*)2(3σg)2(1πu)4(1πg*)4 1 142 150 

Ne2 [He2](2σg)2(2σu*)2(3σg)2(1πu)4(1πg*)4(3σu)2 0 - - 
 

Problem II.4  Explain the trends in the following table based on mo considerations. 
 RO-O (pm) ! (cm-1)  

[O2
+]AsF6 112 1858 dioxygenyl 
O2 121 1555 dioxygen 

K[O2
-] 128 1108 superoxide 

Na2[O2
2-] 149 760 peroxide 

 !  is the vibrational wavenumber (frequency). 
 

 
II.5  Orbital mixing in the non-degenerate 

case 
 

 To this point, we have been discussing 
the case of mixing two degenerate orbitals, i.e., 
the ao's involved in the LCAO have had the 
same energy.  Most orbital mixings, however, 
occur between non-degenerate orbitals, e.g., 
mixing pz and s orbitals on atoms of the same 
element or simply mixing any orbitals on 
different atoms in a heteroatomic molecule.  
The mixing of two ao's of the same irreducible 
representation but of different energies is 
shown in figure II.8.  Again, the destablization, 
Δ2 is greater than the stabilization, Δ1, due to 
overlap of the ao's similar to the description in 
Eq II.5. 

The secular equation for the non-degenerate case is 
E
1

o
! E( ) E2

o
! E( ) ! H

12
! ES( )

2

= 0 . 
Which yields energies of  

 
Figure II.8.  Energy diagram for mixing non-
degenerate ao's φ1 and φ2 on different atoms. 
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The molecular wavefunctions (not normalized) are ψ1 = φ1 + t1φ2 and ψ2 = −t2φ1 + φ2 , 
 

where, t  =
(H  -  E S)

(E  -  E )
 and  t  =  

(H  -  E S)

(E  -  E ).
1

12 1
o

1
o

2
o 2

12 2
o

1
o

2
0

.  The numerators and denominators are all 

negative so t1 and t2 are both positive.  t1 represents the extent to which φ2 is mixed into φ1 to 
form the ψ1 mo while t2 is the extent of mixing of φ1 into φ2 in the ψ2 mo.  Unlike the 
degenerate case where the mo is an equal mixture of the ao's, these mo's retain more character 
of the ao which is closer in energy, i.e., the ti < 1.  It should be noted that both the extent of 
mixing of the ao's and, as a consequence, the extent of stabilization of the mo's depends on the 
difference ΔE = E2

o - E1
o, i.e., on the energy compatibility of the orbitals.   

 

In order for mixing of orbitals to occur, (1) the orbitals must form the bases for 
the same irreducible representation of the molecular point group (2) they should 

be energetically compatibile and (3) they must overlap. 
 

II.6  Orbital Energies 
 

 Electronic energies fall into three classes: core levels are those occupied by electrons 
close to the nucleus and therefore have very high binding energies (BE > 400 eV); valence 
levels are occupied by the bonding electrons which are much farther from the nucleus and 
have binding energies in the 10 - 40 eV range; the virtual levels are unoccupied by electrons 
in the molecular ground state.  The most common procedure for the measurement of orbital 
energies is photoelectron spectroscopy (PES).  In a PES experiment, the kinetic energy of an 
electron which has been ejected from the species by a high energy photon is measured.  Due 
to the conservation of energy, the energy of the photon is equal to the kinetic energy of the 
ejected electron plus the binding energy of the electron hν = Te + BE.  The binding energy 
then is determined as BE = hν - Te.  Orbital energies are then inferred from Koopman's 
Theorem. 
 

Koopman's Theorem: the energy of an occupied orbital is equal to minus the ionization 
energy for that orbital.  The energy of a virtual (unoccupied) orbital is equal to minus the 
electron affinity of that orbital. 

 

 When constructing mo energy diagrams, it is helpful to have an idea of the energy of 
the interacting orbitals, i.e., the Haa values.  To aid you in this respect, a table of Valence 
Oribital Hii values (calculated) is presented in Appendix D.   
 

 Most questions pertaining to relative orbital energies can be answered by simple 
Coulombic (Crystal field) considerations.  Atomic orbitals are increasingly stabilized by 
increasing nuclear charge, i.e., as electron density is removed from a system, the orbital 
energies drop and as electron density increases, the orbital energies rise.  
 

The mo diagram for HF is shown below as an example of a heteroatom diatomic. 
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Figure II.9.  mo diagram for HF.  The HF ionization energies for the occupied orbitals were 
determined from PES while the energy of the 4σ orbital was calculated.   

 

Energies and ao coefficients for HF from simple Hückel calculations. 
Orbital E (eV) H(1s) F(2s) F(2p) 
σ* +5.78 -0.804 0.191 0.558 
σ -20.50 -0.515 0.240 -0.824 
2s -45.53 0.292 0.951 0.095 

 

 The polarity of the H-F bond can be understood in mo terms since the electron density 
is much larger near the F - a result of it being the more electronegative element and thus 
having the lower lying orbitals which dominate the description of the filled mo's. 
 

 CO, NO and CN- are important ligands and their spectroscopy can serve as an 
excellent probe into metal-ligand interaction  The mo diagrams for CO and NO are shown in 
figure II.10.  CO or CN- interact with the metal in two ways: 
 

• π-acidity: the 2π orbitals are available to accept electron density 
from the metal orbitals.  Since the 2π orbitals are antibonding in 
nature, increasing the electron density in them will lower the bond 
order and thus lower the vibrational frequency of the C≡X bond. 

 

• σ-basicity: the 5σ orbitals can donate electron density to the metal.  
It should be noted however that the 5σ orbital is slightly antibonding 
in character which means that removal of electron density will 
increase the vibrational frequency of the C≡X bond -  the CO stretch 
in CO+ is nearly 50 cm-1 higher than in CO. 

 

Carbonyls and cyanides can therefore serve as sensitive probes of the electron density on the 
metal.  We will examine this behavior in detail in chapter V. 
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Figure II.10.  The VOIE's of C,O and N as well as PES ionization energies of CO and NO.  It should 
be noted that due to the unpaired electron in the 2π orbital of NO, the states that are derived by 
ionization of NO are complicated resulting in uncertainties in the energy positions of the mo's.  The 
1σ orbital will be at much lower energy - Hii for the O 2s orbital is -32.3 eV.. 

 

Problem II.5   (a) Sketch the orbitals of CO - include the 1σ.    
(b) In octahedral complexes, the d-orbitals of t2g symmetry are referred to as the dπ-
orbitals since they have the appropriate symmetry to π-bond to the ligands while the eg 
orbitals are the dσ's.  Draw a diagram showing the effect on the CO 5σ and 2π orbitals and 
the intreracting Os d-orbitals when an Os-CO bond is formed.  The resulting energy 
difference in the d-orbitals is called the crystal field splitting, 10Dq. Label all orbitals 
indicating with * those that are anti-bonding.  Clearly indicate 10Dq.  Suggest an alternate 
explanation for σ-interaction increasing the CO stretching frequency.  Your mo diagram 
should contain only four mo's: 5σ, 2π, dσ and dπ. 
(c) Cyanide is a better σ-donor and a worse π-acceptor than carbonyl.  Explain. 

 
II.7  Polyatomic Molecules 

 

For polyatomic molecules, the symmetrically equivalent sets of valence orbitals must be 
identified and then the appropriate SALC's generated.  For example, water belongs to the C2v 
point group, and the valence ao's are the 2H(1s) + O(2s) + O(2px) + O(2py) + O(2pz).  Since 
the oxygen atom is on every symmetry element, the irreducible representations of the oxygen 
orbitals can be obtained directly from the character table, but  two SALC's must be generated 
for the 2H(1s) orbitals. 

 
 
 
   C2v  character table and the reducible representation 
     for the 2H(1s) orbitals in water 

C2v E C2 σv(xz) σv(yz)  
A1 1 1 1 1 z 
A2 1 1 -1 -1  
B1 1 -1 1 -1 x 
B2 1 -1 -1 1 y 

Γ[H(1s)] 2 0 2 0  
 

Remember that s-orbitals are totally symmetric, so the s-orbital of an atom on all symmetry 
elements will transform as a1.  From the character table, we deduce that px, py, and pz 
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transform as b1, b2, and a1, respectively.  Decomposing the reducible representation for Γ(1s) 
yields a1 + b1.  The following mo diagram applies to the H2O molecule. 

 
Figure II.11.  MO diagram for the water molecule showing orbital energies and pictoral 
representations of the mo's determined by a self-consistent field (SCF) calculation.  
Orbital coefficients and energies are given in the table. 

 

As can be seen from figure II.11, 1a1 and 1b1 are bonding orbitals while 2a1 and 1b2 are non-
bonding - the two "lone pairs" on the oxygen. 
 

Problem II.6  Construct an mo diagram for phosphine.  Draw approximate mo's 
and fill with the approrpriate number of electrons.  Discuss the π-accepting 
abilities of phosphine.  Which is a better π-acid, PH3 or PF3?  Explain. 

 

 Organic molecules play an important role in coordination chemistry and an under-
standing of the bonding in them is also important to the inorganic chemist.  Two examples to 
be considered in this course will be Zeise's salt [KPtCl3(C2H4)] and sandwhich compounds.  
As a result, an understanding of the mo's of ethylene and benzene is essential. 
 

Ethylene:  C2H4 has D2h symmetry.  All four hydrogens are interchangeable by symmetry 
operations so the four hydrogen 1s orbitals form a symmetrically complete set.  The two 
carbons are also symmetrically equivalent so their valence orbitals also represent 
symmetrically complete sets (2s, 2px, 2py and 2pz).  Figure II.12 defines the system used.  
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Figure II.12.  The coordinate system used for ethylene and the operations which 
transform each reference orbital (on H1 and CA) into each member orbital of the 
set.  Note that Z = C2(z). 

 
The reducible representations of the symmetrically equivalent sets formed for the valence ao's 
in ethylene can then be determined and decomposed into the corresponding irreps. 
 

D2h E Z Y X i XY XZ YZ Irreps 
H(1s) 4 0 0 0 0 4 0 0 ag+b1g+b2u+b3u 
C(2s) 2 0 0 2 0 2 2 0 ag + b3u 
C(2pz) 2 0 0 -2 0 -2 2 0 b2g + b1u 
C(2px) 2 0 0 2 0 2 2 0 ag + b3u 
C(2py) 2 0 0 -2 0 2 -2 0 b1g + b2u 

 

Since the members of all sets can be exchanged completely with only the rotational 
operations, only the C2 characters in the irreducible representations generated above need to 
be considered. 
 

D2h E Y Z X 
ag +1 +1 +1 +1 
b1g +1 -1 +1 -1 
b2g  +1 +1 -1 -1 
b1u +1 -1 +1 -1 
b2u +1 +1 -1 -1 
b3u +1 -1 -1 +1 

 

The normalized SALC's can now be constructed. 

!(b 1g)=0.5[1s(1)-1s(2)+1s(3)-1s(4)]

!(b 2u)=0.5[1s(1)+1s(2)-1s(3)-1s(4)]

!(b 3u)=0.5[1s(1)-1s(2)-1s(3)+1s(4)]

!(a g)=0.7[2px(A) +2px(B)]

!(b 3u)=0.7[2px(A) -2px(B)] !(b 3u)=0.7[2s(A) -2s(B)]

!(a g)=0.5[1s(1)+1s(2)+1s(3)+1s(4)] !(a g)=0.7[2s(A) +2s(B)]

!(b 1u)=0.7[2pz(A) +2pz(B)] !(b 2g)=0.7[2pz(A) -2pz(B)]

!(b 1g)=0.7[2py(A) -2py(B)]

!(b 2u)=0.7[2py(A) +2py(B)]

 
Figure II.13.  The normalized SALC's for the ethylene molecule.   

 
Calculations yield the following energies and mo's. 
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Figure II.14. An mo diagram for ethylene.  Occupied orbital energies are PES 
measurements while the LUMO energy is estimated from the energy of the π→π* 
transition in the uv.  Contours are from Jorgensen; W.L., Salem, L., The Organic 
Chemist's Book of Orbitals, Academic Press, 1973. 
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Problem II.7  Construct mo's and an mo diagram for formaldehyde by combining a 
CO fragment (problem II.5 & figure II.10) with the HH fragment.  Hint: one of 
the π-bonds of CO becomes a non-bonding orbital in H2CO.  Do not try to be precise 
(you can't know the coefficients without calculation) just roughly sketch the mo's up 
through the LUMO [CO π*].   Be sure to label each orbital with its symmetry. 

 

 Most of the spectroscopy and bonding involving benzene is centered around its π-
system, and to a good approximation, the π- and σ-systems can be separated.  Our treatment 
will therefore deal only with the π-orbitals.  C6H6 has D6h symmetry.  The atom numbering 
system and the symmetry element definitions used are given below: 

 
The following reducible representation, Γπ, is obtained for the six pz orbitals. 
 

D6h E 2C6 2C3 C2 3C2' 3C2" i 2S3 2S6 σh 3σv 3σd Irreps 
Γπ 6 0 0 0 -2 0 0 0 0 -6 2 0 a2u+b2g+ 

e1g+e2u 
 

The operation required to carry the reference p-orbital, , into each of the other p-orbitals as 
well as the character of that operation in each of irreducible representations is given below. 
 

Atom Operation a2u b2g e1g e2u 
1 E +1 +1 +2 +2 
2 C6 +1 -1 +1 -1 
3 C3 +1 +1 -1 -1 
4 C2 +1 -1 -2 +2 
5 C3 +1 +1 -1 -1 
6 C6 +1 -1 +1 -1 

 

The SALC's can now be constructed.  In order of decreasing energy (number of nodal planes): 
 
!(b2g) =

1

6
px (1) " px (2) + px(3) " px(4) + px(5) " px(6){ }

!a (e1u ) =
1

12
2px (1) " px(2) " px(3) + 2 px(4) " px(5) " px(6){ }

!b (e1u ) =
1

2
px(2) " px (3) + px (5) " px(6){ }

!a (e1g ) =
1

12
2px (1) + px(2) " px(3) " 2 px(4) " px(5) + px(6){ }

!b (e1g ) =
1

2
px(2) + px (3) " px (5) " px (6){ }

!(a2u ) =
1

6
px(1) + px (2) + px (3) + px (4) + px (5) + px (6){ }

 

 
Problem II.8  Construct mo's (as pictures and 
functions) and an mo diagram for the π-systems of the cyclopentadienyl anion (C5H5

-) and 
pyrazine.  Include the lone pairs of the pyrazine.  Review section I-9 on how to construct the 

a2u

e1g

e2u

b2g

 
Figure II.15.  Pictorial representaion of the π mo's 
of benzene 
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SALC's for the degenerate pairs of the cyclopentadienyl anion, use atoms 3 & 4 as references 
and verify that one of the components of one of the degenerate SALC's is:  

Ψ = 0.60φ2 + 0.37φ3 -0.37φ4 - 0.60φ5 
II.8 Hückel MO Theory 

Hückel Molecular Orbital (HMO) Theory is quite useful for calculation of molecular 
properties of conjugated organic molecules.  

HMO is used to describe π-type bonding only.  Therefore, only collinear, conjugated p-
orbitals are used for the basis.  Obviously, σ bonding is not considered.  The overlap integral 
between two contiguous p-orbitals is set to zero.  This approximation dramatically simplifies 
the math without destroying the utility of the calculations.   

The method for determining HMO results using symmetry is described in the procedure 
below: 
1. Determine the molecular point group.  This might require drawing the molecule in a 

symmetric conformation. 
2. Determine the normalized symmetry-adapted linear combinations (SALCs) for each 

symmetrically-complete set of atomic orbitals using the projection operator method.  If 
there is only one symmetrically complete set, then the SALCs are the molecular orbitals 
(MOs). 

3. Use the SALCs to determine the elements of the Hückel secular determinant: 
det|Hij – EπSij| = 0 

 where Eπ is the energy, H is the coulomb integral for i=j and the resonance integral for 
i≠j, and S is the overlap integral and equals δij (Kroneker delta; Si=j=1, Si≠j=0).  By using 
SALCs, integrals ∫ψI|Hπ|ψjdτ where ψi and ψj belong to different irreducible representations 
are zero.  Thus, the determinant is either diagonalized (one symmetrically complete set) or 
block diagonalized (more than one symmetrically complete set).  
4. Simplify the mathematical symbolism by letting Hii = α, Hij = β.  Divide each element by 

β and let x = (α-E)/β.  Solve each block for x.  If the determinant is diagonal, each 
diagonal element is an eigenvalue.  If the SALCs are the MOs, then you are finished. 

5. For each eigenvalue, solve for the eigenvectors (coefficients). These are the contributions 
of each SALC to the MO.  This is achieved using the following secular equations: 

Σ|Hij – ESij|Cij = 0 
Σ(Cij)2 = 1 

 
II.8a. An Example: Butadiene. 

STEP 1: CONSTRUCT SALCs from 2p orbitals 
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SALC(1) = 

0.707(φ1- φ4); (a2) 
SALC(2) = 

0.707(φ2- φ3); (a2) 
SALC(3) = 

0.707(φ1+ φ4); 
(b2) 

SALC(4) = 
0.707(φ2+ φ3); 

(b2) 
 

STEP 2: CONSTRUCT SYMMETRIZED HUCKEL SECULAR DETERMINANT 
Note that “unsymmetrized” Huckel determinant is 4x4 — time consuming to solve, and a 

forth-order polynomial results. The determinant is dramatically simplified using symmetry. 
First, determine the elements Hij using the SALCs. 

H11 = 0.5∫(φ1−φ4)H(φ1−φ4) = 0.5(α-0-0+α) = α 
H12 = 0.5∫(φ1−φ4)H(φ2−φ3) = 0.5(β-0-0+β) = β 
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H13 = H31 = H23 = H32 = H14 = H41 = H24 = H42 = 0; SALCs are orthogonal (they 
transform as different irreps) 
H21 = H12 = 0.5∫(φ1−φ4)H(φ2−φ3) = 0.5(β-0-0+β) = β 
H22 = 0.5∫(φ2−φ3)H(φ2−φ3) = 0.5(α-β-β +α) = α−β 
H33 = 0.5∫(φ1+φ4)H(φ1+φ4) = 0.5(α+0+0 +α) = α 
H34 = 0.5∫(φ1+φ4)H(φ2+φ3) = 0.5(β+0+0+β) = β 
H43 = 0.5∫(φ1+φ4)H(φ2+φ3) = 0.5(β+0+0+β) = β 
H44 = 0.5∫(φ2+φ3)H(φ2+φ3) = 0.5(α+β+β +α) = α+β 

 
The symmetrized determinant is: 
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Divide by β and let x = (α−E)/β: 

x 1 0 0

1 x ! 1 0 0

0 0 x 1

0 0 1 x + 1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

= 0  

The original 4x4 determinant is now block diagonalized into a 2x2 (a2) and 2x2 (b2). 
 

STEP 3: DETERMINE THE ORBITAL ENERGIES 
The eigenvalues come from the two 2x2 sub-determinants.  For the a2 block: 

x 1

1 x ! 1

" 
# $ 

% 
& ' 

= x x ! 1( ) !1 = x
2

! x ! 1 = 0  

The solutions are x = (1 ± 2.24)/2 = 1.62, -0.62. 
Thus,  

E+(a2) = α-1.62β 
E-(a2) = α+0.62β 

From the b2 sub-determinant: 
x 1

1 x + 1

! 
" # 

$ 
% & 

= x
2

+ x '1 = 0  

The solutions are x = (-1±2.24)/2 = -1.62, +0.62. 
Thus,  

E-(b2)  = α+1.62β 
E+(b2)  = α-0.62β 

 

STEP 4: DETERMINE THE EIGENVECTORS 
The eigenvectors represent the contribution of a SALC to the MO.  Note that only SALCs 

of the same irrep can contribute to the same MO. 
For the a2 block and x = 1.62: 

1.62 1

1 1.62 ! 1

" 
# $ 

% 
& ' 
c
11

c
21

" 

# $ 
% 

& ' 
=

1.62 1

1 0.62

" 
# $ 

% 
& ' 
c
11

c
21

" 

# $ 
% 

& ' 
= 0  
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1.62c11 + c21 = 0    and   c11 + 0.62c21 = 0 

1.62c11 = -c21       c11 = -0.62c21 
and 

c11
2 + c21

2 = 1 
So, 

(-0.62c21)2 + c21
2 = 1 

1.384c21
2 = 1 

c21= 0.85 and c11 = -0.53 
 

The MO is –0.53[(0.707(φ1- φ4))] + 0.85[(0.707(φ2- φ3))] = -0.37(φ1- φ4) + 0.60(φ2- φ3) =  
ψ+(a2) = -0.37φ1 + 0.60φ2 -0.60φ3 

+ 0.37φ4 
with 

E+(a2) = α-1.62β 

1

2 3

4  
 

For the a2 block, and x = -0.62: 
!0.62 1

1 !0.62 ! 1

" 
# $ 

% 
& ' 
c
12

c
22

" 

# $ 
% 

& ' 
=

!0.62 1

1 !1.62

" 
# $ 

% 
& ' 
c
12

c
22

" 

# $ 
% 

& ' 
= 0  

 
-0.62c12 + c22 = 0    and    c12 - 1.62c22 = 0 

0.62c12 = c22        c12 = 1.62c22 
and 

c12
2 + c22

2 = 1 
So, 

(1.62c22)2 + c22
2 = 1 

3.62c22
2 = 1 

c22= 0.53 and c12 = 0.85 
 

The MO is 0.85[0.707(0.707(φ1- φ4))] + 0.53[(0.707(φ2- φ3))] = 0.6(φ1- φ4) + 0.37(φ2- φ3) 
=  

ψ-(a2) = 0.60φ1 + 0.37φ2 -0.37φ3 
- 0.60φ4 

with 
E-(a2) = α+0.62β 

1

2 3

4  
 

For the b2 block, and x = -1.62: 
!1.62 1

1 !1.62 + 1

" 

# $ 
% 

& ' 
c
33

c
43

" 

# $ 
% 

& ' 
=

!1.62 1

1 !0.62

" 

# $ 
% 

& ' 
c
33

c
43

" 

# $ 
% 

& ' 
= 0  
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-1.62c33 + c43 = 0    and    c33 - 0.62c43 = 0 
1.62c33 = c43        c33 = 0.62c43 

and 
c33

2 + c43
2 = 1 

So, 
(0.62c43)2 + c43

2 = 1 
1.38c43

2 = 1 
c43= 0.85 and c33 = 0.53 

 
The MO is 0.53[0.707(0.707(φ1+ φ4))] + 0.85[(0.707(φ2+ φ3))] = 0.37(φ1+ φ4) + 

0.60(φ2+ φ3) =  
ψ-(b2) = 0.37φ1 + 0.60φ2 +0.60φ3 

+ 0.37φ4 
with 

E-(b2) = α+1.62β 

1

2 3

4  
 

For the b2 block, and x = 0.62: 
0.62 1

1 0.62 + 1

! 
" # 

$ 
% & 
c
34

c
44

! 

" # 
$ 

% & 
=

0.62 1

1 1.62

! 
" # 

$ 
% & 

c
34

c
44

! 

" # 
$ 

% & 
= 0  

 
0.62c34 + c44 = 0    and    c34 + 1.62c44 = 0 

0.62c34 = -c44        c34 = -1.62c44 
and 

c34
2 + c44

2 = 1 
So, 

(-1.62c44)2 + c44
2 = 1 

3.62c44
2 = 1 

c44= 0.53 and c34 = -0.85 
 

The MO is -0.85[0.707(0.707(φ1+ φ4))] + 0.53[(0.707(φ2+ φ3))] = -0.60(φ1+ φ4) + 
0.37(φ2+ φ3) =  

ψ+(b2) = -0.60φ1 + 0.37φ2 
+0.37φ3 - 0.60φ4 

with 
E+(a2) = α+0.62β 

1

2 3

4  
 

SUMMARY 
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E = ! + 1.62"

E = ! + 0.62"

E = ! # 0.62"

E = ! # 1.62"

1b2

1a2

2b2

2a2

$1

$2

$3

$4

0.37 0.37

0.37 0.37

0.60 0.60

-0.60 -0.60

0.37 -0.37

0.60 -0.60

0.37-0.37

0.60 -0.60

 
 

II.8b. Bond Orders, Electron and Charge Densities, and π Energies 
The eigenvalues and eigenvectors can be used to calculate important molecular properties. 
The π bond-order (ρij) is simply the product of coefficients of two contiguous atoms 
summed over all occupied orbitals. 

!ij= nkcikcjk
occ,k

"  

where n is the number of electrons in the occupied MO k, and 
cik and cjk are the coefficients on atoms i and j in MO k. 

For butadiene the π bond-order for C1-C2 (and C3-C4) is: 
!12 = !34 = 2(0.37 • 0.60) + 2(0.60 • 0.37) = 0.888  

…or 88.8% of the π bonding in ethylene (ρ = 1) 
 
For the C2-C3 bond in butadiene: 

!23 = 2(0.60 • 0.60) + 2(0.37 • "0.37) = 0.446  
 
The total amount of π bonding is 2(0.888) + (0.446) = 2.222.  This value is greater than the 

π bonding in two ethylenes (total π bond order = 2x1= 2) and is a manifestation of 
stabilization by delocalization.   

 
Electron densities (qi) and charge densities (Qi) can also be calculated using the 

coefficients.  The electron density for an atom is simply the number of electrons in an MO 
times the square of the coefficient summed over all occupied MOs. 

 
qi= nkcik

2

occ,k

!  

For butadiene: 
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q1 = q4 = 2(0.37
2
) + 2(0 .60

2
) ! 1

q2 = q3 = 2(0.60
2
) + 2(0.37

2
) ! 1

 

This is consistent with the Lewis dot structure. 
The charge densities represent the difference between the electron density for a singly-

occupied p-orbital, and the electron density calculated by the Hückel method. 
Qi = 1 - qi 

For butadiene, all Q = 0.  For anions, cations, and odd-membered rings, q ≠ 0 and Q ≠ 0. 
 
The π energy is simply the sum of the one-electron energies: 

E! = nkEk

occ,k

"  

For butadiene: 
Eπ = 2(α+1.62β) + 2(α+0.62β) = 4α+4.48β 

 
Without proof, the π energy for two ethylenes is = 4α+4β.  The difference between Eπ for 

butadiene and Eπ for two ethylenes (0.48β) is the butadiene delocalization energy.  
Delocalization energies can be used to explain Huckel’s rule for aromaticity (monocyclic 
4n+2 π-systems are aromatic, and 4n are antiaromatic).  For example: 

butadiene cyclobutadiene

E! = 4"+4.48# E! = 4"+4#  
 
Cyclobutadiene and butadiene have the same number of atoms and the same number of π-

electrons.  However, butadiene has resonance stabilization, and cyclobutadiene does not.  In 
fact, delocalization is lost by “cyclizing” butadiene.  This is one way of defining aromaticity, 
antiaromaticity, and nonaromaticity: aromatic structures are more stable than their open-chain 
analogs, antiaromatic structures are less stable than their open-chain analogs, and nonaromatic 
structures are approximately as stable as their open-chain analogs. 

For benzene, 1β of stabilization results from “cyclizing” hexatriene. 

hexatriene benzene

E! = 6"+6.99# E! = 6"+8#  
 

For cyclooctatetraene, only a small stabilization results, and cyclooctatetraene is 
considered nonaromatic.  Furthermore, any stabilization by delocalization is removed by the 
molecule’s nonplanar conformation (it is tub shaped). 

octatetraene

E! = 8"+9.52#

cyclooctatetraene

E! = 8"+9.66#  
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Problem II.9 Construct HMOs for cyclopropenium cation.  Calculate electron and charge 
densities, π bond-orders, and the delocalization energy. 

 
II.9  Crystal Field Theory 

 

 The precursor to molecular orbital theory of inorganic complexes was the crystal field 
theory (CFT).  Due to the relative ease of its use and to its qualitative success, CFT remains in 
common use.  All of the predictions of CFT are also made by molecular orbital theory in a 
more general way, but many times the two different theories use different terminology in 
coming to the same conclusion.  It is important to understand both so we begin our study of 
inorganic complexes with a review of crystal field theory and then in the following section the 
molecular orbital approach will be considered. 
 

 CFT assumes that all interactions are purely Coulombic (electrostatic).  In the absence 
of the field presented by the ligands, the metal d-orbitals are degenerate.  In the presence of a 
spherically symmetric field created by electron rich ligands, the energy of the d-orbitals rises, 
but the orbitals remain degenerate.  As the symmetry of the field is lowered by the typical four 
to six ligands, the degeneracy of the d-orbitals is lifted as they "feel" differing amounts of the 
ligand field.  In the case of an ML6 complex, with the ligands lying on the x-, y- and z-axes, 
the eg orbitals (z2 and x2-y2) will be repelled to a higher energy as the charge is concentrated 
along the bonding axes while the t2g orbitals (xy, xz, yz) are stabilized since they are now 
directed to locations between the ligands.  The extent to which the d-orbitals are split (the 
energy difference between the eg and the t2g) is the crystal field or ligand field splitting energy 
and is denoted by 10Dq.  The magnitude of 10Dq is dependent on the nature of both the ligand 
and the metal.  This splitting is such that the barycenter (center of energy) of the orbitals is 
unchanged so the three t2g orbitals are stabilized by -4Dq while the two eg orbitals are 
destabilized by +6Dq (3(-4) + 2(+6) = 0). 

 
Figure II.16.  The splitting of the d-orbitals in an octahedral field.. 
 

The crystal field stabilization energy (CFSE) is then -4Dq for every electron in a t2g orbital, 
+6Dq for every electron in an eg orbital and +P (electron pairing energy = 12 to 25 kK or 140 
to 300 kJ/mol) for every set of paired of electrons.  The system will adopt the apropriate 
configuration to obtain the maximum stabilization - minimum energy.  Clearly, the first three 
d-electrons in an octahedral field will enter into the t2g orbitals, but there are two possible 
configurations for the four electron system: high spin, (t2g)3eg

1 or low spin (t2g)4 which have 
CFSE's of -6Dq and -16Dq + P.  If 10Dq > P - the strong field case - then the low spin 
configuration will result.  Similar arguments can be made for d5, d6 and d7 - in all cases, if 
10Dq > P, the system is low spin.  d8, d9 and d10 are not subject to different configurations.  A 
tetrahedral ligand field can be treated in the same manner except for two important facts:  the 
e orbitals are lower than the t2 orbitals so d3 can be high spin or low spin while d7 has only one 
possible configuration - (e)4(t2)3; and the metal orbitals are not directed toward the ligand 
orbitals as well in Td as they are in Oh symmetry so that, for the same metal ion, 10Dq(Td) ≈ 
(4/9)10Dq(Oh).  The values of 10Dq in kK for several compounds of Co, Rh and Ir are give in 
the following table. 
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Species M=Co M=Rh M=Ir 
MCl6

3- - 20.3 25.0 
M(H2O)6

3+ 18.2 27.0 - 
M(NH3)6

3+ 22.9 34.1 41.0 
M(en)3

3+ 23.2 34.6 41.4 
M(CN)6

3- 33.5 45.5 - 
10 Dq in kK  fromTable in Huheey, J.E., "Inorganic Chemistry: 
Principles of Structure and Reactivity", Harper & Row, NY, 
1983, p384. 

 
Factors dictating 10Dq 

 

• Oxidation state of the metal.  As the metal increases in oxidation state, it will 
increase the interaction with the ligands and increase 10Dq.   

 

• Number and geometry of the ligands.  The more ligands, the stronger the field at 
the metal.  Also, as indicated above, the overlap differences between an 
octahedral and a tetrahedral field are substantial. 

 

• Nature of the ligand.  The relative field strengths of  various ligands is given by 
the spectrochemical series which is presented near the end of this chapter. 

 

• Nature of the metal.  10Dq increases about 40% in going from the 1st row to the 
2nd row and another 25% on going to the third row.  Second and third row 
transition metal complexes are always low spin (strong field). 

 

• Metal ligand distance.  10Dq is inversely proportional to the fifth power of the 
metal-ligand bond length.  Thus small ions which can get close to the metal and 
result in a much stronger field. 

 

 Consider figure II.17 which shows a tetragonal distortion of an octahedral complex in 
which the M-L bond length is increased along the z-axis (axial elongation) and then decreased 
along the x- and y-axes (equatorial compression).  The resulting species has D4h symmetry 
and the d-orbitals transform as a1g (z2) + b1g(x2-y2) + b2g(xy) + eg (xz,yz).  The ordering of the 
d-orbital energies in this situation will depend on how compressed the equatorial bond lengths 
become and on the nature of the ligand.  Removal of electron density from the z-axis will 
stabilize the z2 dramatically, but the effect on (xz,yz) will depend on the nature of the ligand.  
If the ligand is a σ-donor only, there will be little electron density in the xz or yz plane other 
than along the z-axis and (xz,yz) will not be affected.  In mo parlance we would say that there 
are no low lying ligand orbitals of the appropriate symmetry to interact with xy or yz.  If, on 
the other hand, the axial ligand is π-donor, axial elongation will result in some stabilization of 
(xz,yz).  Equatorial compression will destabilize the x2-y2 dramatically but have little effect 
on the other orbitals if the ligand has no π-interaction.  If the ligand is a π-donor, then the xy 
will be destabilized as will (xz,yz), i.e., there are low lying ligand orbitals with the correct 
symmetry to interact.  The order of the d-orbitals will then depend on the length of the M-L 
bond and on how strong a π-donor the ligand is.  In some cases, the z2 will be the lowest 
energy d-orbital while in most cases it is the (xz,yz) pair which is lowest in energy.  The 
relative order of the xy and the z2 will depend on similar considerations. 
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Figure II.17.  The change in energy of the d-orbitals as the ligands in the octahedral 
complex ML6 are removed along the z-axis and compressed in the xy plane. 

 

Problem II.9a  Draw a diagram like figure II.17 for the case where the 
ligand is a σ-donor and a π-acceptor. 

Problem II.9b   Arrange the d-orbitals of a D3h (trigonal bipyramid) ion in 
order of increasing energy.  

 

 
Electron Counting 

 

 It is imperitive that the correct number of electrons be placed in the mo energy level 
diagram and that they are placed into the correct orbitals.  One misconception about the 
identity of the orbitals used in transition metal complexes is that the ns-orbitals are of lower 
energy than are the (n-1)d orbitals as is the case in the free atom.  In the presence of a ligand 
field, however, the (n-1)d orbitals are lower in energy and fill before the ns orbitals.  Consider 
iron as an example, the electron configuration of an iron atom is 4s23d6, yet the VOIE's given 
in Appendix D indicate that the energies of the orbitals in iron compounds is 4s orbital: -
7.1eV and 3d orbital: -8.7 eV, i.e.,  the 3d orbitals are 1.6 eV lower than the 4s! This 
difference gets greater in going across the period as the d-electrons are stabilized by the 
increasing nuclear charge while the s-electrons, screened by the d-electrons, are unaffected - 
the 3d are 3 eV lower than the 4s in copper.  Thus, in all mo diagrams for transition metals 
the order of energy is (n-1)d < ns < np. 
 The electron configuration of the metal is also of importance and is determined by 
assigning oxidation states to all of the the ligands and then assigning one to the metal with the 
realization that all of the valence electrons for a transition metal are d-electrons.  Consider 
(Me3P)4WS2.  Me3P is a neutral molecule and does not affect the oxidation state of the 
tungsten.  The two sulfurs are each -2 and the molecule is neutral so tungsten must be in the 
+4 oxidation state - a d2 configuration.  In [Co(CN)3CO]2-, the cobalt is Co(I) which makes it 
d8. The Co contributes 8 valence electrons, each CN- contributes (4+5+1) = 10 electrons and 
the carbonyl contributes (4+6) = 10 electrons for a total of 48 valence electrons.  This should 
be distinguished from the sum of the bonding and non-bonding electrons on the metal which 
is typically 18.  The eighteen electron rule is based on the fact that the most stable situation is 
one in which all of the the bonding (or at worst non-bonding) metal orbitals - the dπ - are 
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filled but none of the dσ* are occupied.  Thus the octahedral environment of a metal will 
consist of six dπ electrons plus six pairs of σ-bonding electrons from the ligands for a total of 
18-electrons.  As an example, consider [PtCl6]2-: Pt(IV) is d6 and each chloride donates two 
electrons so the metal environment consists of 6 + 6(2) = 18 electrons.  [Co(CN)3CO]2-, on the 
other hand, is a 16-electron system. 
 

II.10  Molecular Orbitals in Inorganic Complexes 
 

II.10a.  Sigma Bonding in Octahedral ML6 
 

 Sigma bonding will usually occur via lone pair donation from the filled σ-SALC's of the 
ligands into empty metal orbitals.  The ligand SALC's of appropriate symmetry to form these σ-
bonds with the metal in an octahedral complex must therefore be determined. 

 
Figure II.18.  (A) Numbering system and symmetry elements of octahedral 
ML6.  (B) View  down the C3 & S6 axes. 

 
The reducible representation of the ligand orbitals appropriate for σ-bonding is, 
 

Oh E 8C3 6C2 6C4 3C2' i 6S4 8S6 3σh 6σd 
Γσ 6 0 0 2 2 0 0 0 4 2 

 

The reducible representation can be decomposed to yield the irreducible representations of the 
ligand SALC's: a1g + eg + t1u.  The symmetries of the metal orbitals are obtained from the 
character table to be: a1g (s) + t1u (px, py, pz) + eg (z2, x2-y2) + t2g (xz, yz,xy) 

 The a1g ligand SALC is the easy one: a1g =
1

6
!1 +! 2 +! 3 +! 4 +! 5 +! 6( )  and it has 

the correct symmetry to interact with the metal s-orbital.  Figure II.19 is a representation of 
the bonding and antibonding combination.  Since the ligand orbitals are expected to be much 
lower than the metal s-orbital, the bonding combination will be dominated by the ligand while 
the antibonding combination will be predominantly metal in character (see page 32). 

  
Figure II.19.  Bonding and antibonding combination of a1g ligand 
SALC and metal s-orbital. 

 

The eg and t1u combinations would have to be constructed by using the complete projection 
operator (see section I.9) due to the ambiguity of appropriate operations to convert each of the 
ao's into one another, but in a group of order 48 this would be very tedious.  Instead, one can  
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simply look at the metal orbitals and construct the appropriate SALC's by inspection.  To 
construct the two eg SALC's we need to consider the nature of the z2 and x2-y2 orbitals.  
Remember that the amplitude of the z2 torus in the xy plane is one-half that along the z-axis.  
Then the following two eg bonding combinations can be constructed. 
eg (a) =

1

12
!"1 !" 2 !" 3 !" 4 + 2"5 + 2"6( ) & eg b( ) =

1

2
!" 2 ! "4 + "5 + "6( )  

 

eg(a)+z
2 eg(b)+(x

2
-y
2
)  

 
 
 The three t1u SALC's must combine with the metal p-orbitals.  Since there are only two 
lobes on each of the p's, then only two ligand ao's will be involved in each. 

t1u(x) =
1

2
! 2 "! 4( ); t1u(y) =

1

2
! 5 "! 6( ) ; t1u(z) =

1

2
!1 "! 3( )  

The x and y components are shown below. 

    t1u(x)+px
t1u(y)+py 

   Figure II.21.  The x and y components of the t1u mo's.  
 

 The energies of the σ-SALC's  are expected to be quite 
low since they are derived from s and p-orbitals of relatively 
electronegative elements so their interaction will destabilize the 
metal orbitals with which they interact: a1g(s),  t1u (x,y,z), and eg 
(z2 and x2-y2).  Since the eg orbitals have the correct symmetry 
to interact with σ SALC's, they are referred to as the dσ 
orbitals,  but since they are destabilized in the process, the eg 
orbitals are also referred to as the dσ* orbitals.  The t1g orbitals 
are non-bonding with respect to σ-interactions.  The 
approximate energy level diagram for σ-bonding in octahedral 
complexes is shown in figure II.22.  Molecular orbital theory 
predicts the same picture as does crystal field theory.  In crystal 
field theory, the eg orbitals are forced to higher energy as the 
result of  Coulombic repulsions with the ligand σ-orbitals while 
molecular orbital theory indicates that the higher energy eg orbitals are of the correct 
symmetry to interact with the ligand σ-SALC's and are, therefore, destabilized. 
 

    

II.10b.  Sigma bonding in tetrahedral ML4 

 

Figure II-22.  Approximate mo 
diagrarm for σ mixing in 
octahedral field. 
 

Figure II.20.  MO's formed from the eg ligand 
SALC's and the dz2 and dx2-y2 metal orbitals.  Again, 
the bonding combination is expected to be 
predominantly ligand in nature. 
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Figure II-23.  Numbering, coordinate system and symmetry elements for Td ML4. 

 

Reducible representation for the ligand sigma SALC's in tetrahedral ML4. 
 

Td E 8C3 3C2 6S4 6σd  
Γσ 4 1 0 0 2 a1 + t2 

 The σ SALC of a1 symmetry is ψ1 = 1/2[σ1 + σ2 + σ3 + σ4] and the only metal orbital 
of that symmetry is the s-orbital.  In the tetrahedral case, it is the t2 orbitals that have the 
correct symmetry to interact with the low lying ligand sigma SALC's so they are destabilized 
relative to the e orbitals which are non-bonding.  Again, the easiest way to construct the σ-
SALC's is by matching their symmetries with that of the metal orbitals with which they 
interact, p or d.  For illustrative purposes let us assume interaction with the p-orbitals and 
construct σ-SALC's which match the p-orbitals is both phase and amplitude. 
 

t2(a) = 1/2[σ1 - σ2 + σ3 - σ4] ; t2(b) = 1/2[σ1 + σ2 - σ3 - σ4] ;   t2(c) = 1/2[σ1 - σ2 - σ3 + σ4]  
  + pz    + py    + px 

 
 Figure II-24.  Combinations of metal p-orbitals with the t2 ligand σ-SALC's. 

 
Figure II-25.  Approximate mo diagram for σ mixing in Td symmetry.  
Note the reversal of the d-orbitals relative to the octahedral case. 
 

 
II.10c.  π bonding in octahedral ML6 
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 π-bonding can also play an important role in the description of metal complexes.  
Indeed, the π-bonding effects in carbonyls, nitrosyls, cyanides, and some aromatics will be 
crucial to our understanding their spectra.  We first define the set of vectors which will 
represent the ligand π-SALC's - the px and py orbitals on the ligands. 

  
Figure II-26. The basis vectors for determining the reducible 
representation for the π-bonding in octahedral ML6. 

 
Since x ⇔ y for rotations about the bonds, the x and y vectors are degenerate and must 
therefore be treated as one set.  The reducible representation for these vectors is: 
 

Oh E 8C3 6C2 6C4 3C2' i 6S4 8S6 3σh 6σd 
Γπ 12 0 0 0 -4 0 0 0 0 0 

 
which can be decomposed to yield Γπ = t1g + t2g + t1u + t2u.  From the character tables, the 
metal orbitals are seen to transform as a1g(s) + t1u(x,y,z) + eg(z2, x2-y2) + t2g(xy, xz, yz). Thus, 
the t1g and t2u π-SALC's are non-bonding with the metal, but the dxy, dxz, and dyz  have the 
correct symmetry as do the p-orbitals on the metal (see figure II.28). 
 

x

x

y

y

 
Figure II-28.  Representation of one of the t2g ligand SALC's with the 
dxy and metal pk with one of the t1u SALC's.  Simply changing the 
axes labels will yield the other members of  these two triply 
degenerate representations. 

 

 The effect these interactions have on the metal orbitals is dictated by the nature of the 
ligand orbitals, i.e., p, π or π*.  If the ligand orbitals are filled (p or π) then they will lie lower 
than the unoccupied metal orbitals.  In this case, the bonding mo's will be dominated by the 
ligand orbitals and the metal orbitals will be destabilized (mo description) or as electron 
density moves toward the metal from the ligand the metal orbitals are destabilized by the 
increased charge (CFT description).  The extent to which the metal can accept electron density 
will depend upon the occupancy of the metal orbitals (the oxidation state of the metal).  In 
many instances, the metal t2g's are occupied and interact with higher lying π* orbitals and are, 
therefore, stabilized and result in a bonding mo which is dominated by the metal.  In CFT 
terms, electron density moves from the metal to the ligands stabilizing the t2g's - the metal 
behaves as an electron donor or base.  Beacause they have the symmetry appropriate to π-
bond, the t2g's are often referred to as the dπ's. 
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Figure  II-28.  Interaction of d-orbitals with strong field and weak field 
ligands in an octahedral field.  A strong field is favored by high lying σ 
SALC's destabilizing the eg and low lying π* stabilizing the t2g. 

 

 The better the ligand σ-SALC's interact with the metal, the greater is the ligand field 
splitting as the eg are pushed farther from the t2g.  Ligands which produce a large 10Dq are 
referred to as strong field ligands.  If a ligand transfers electron density to the metal, the t2g are 
also destabilized and thus 10Dq is reduced and the ligand is considered to have a reduced 
ligand field.  However, ligands which accept electron density through low lying π* SALC's 
enhance their field strength due to the stabilization of the t2g's (see problem II.5).  The 
spectrochemical series relates the relative field strengths of the ligands: 

 

Spectrochemical Series 
 

Br- < S2- < NCS- < Cl- < NO3- < F- < OH- <  C2O4
2- < H2O < SCN- < CH3CN < NH3 

< bpy < phen < NO2
- < CN- < CO 

 
Problem II.10  Explain the following: 
 

 1.  The field strengths of the halides are in the order Br- < Cl- < F-.  
 

 2.  Bipyridine has a greater field strength than ammonia. 
 

II.10d.  π-bonding in tetrahedral ML4 
 

 The π-interactions in a tetrahedral molecule are difficult to draw so only a qualitative 
discussion will be given.  The coordinate system is similar to the octahedral case in that the 
ligand z-axis is always the metal-ligand bond while the x & y axes are perpendicular to that 
bond.  It is the px and py orbitals of the ligand that take part in π-bonding.  Since one metal- 
ligand bond lies on each of the C3 axes and the atoms lie on none of the other axes, only the C3 
and E characters are non-zero.  The trace of the C3 matrix in this 2-dimensional representation 
will be 2(cos 2π/3) = -1 and the dimension of the basis is 8. 
 

Td E 8C3 3C2 6S4 6σd  
Γπ 8 -1 0 0 0 e + t1 + t2 

 

The t1 SALC is non-bonding, but the e and t2 SALC's have correct symmetry to interact.  If the 
ligand is a relatively electronegative atom (Cl or O) then the following mo diagram might be 
expected.   
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Figure II-29.  Approximate mo bonding scheme for tetrahedral ML4 where 
ligands have both σ and π interactions.  In this figure it is assumed that the π 
interactions are through low lying p-orbitals rather than with high lying π* 
orbitals so there is no stabilization of the dπ's (t2) 

 

The same comments concerning field strengths of the ligands that were made in the ML6 case 
apply in the ML4 case. 
 

Problem II.11   Draw approximate mo's (σ and π) for SbBr5.  For the σ bonds, use Br p-
orbitals that “point” toward Sb.  Make separate diagrams for σ and π bonding. 

 
II.10e Ferrocene:  

 
Figure II-30.  Numbering and coordinate systems used in 
the treatment of ferrocene. 
 

 Ferrocene, [(ξ5-C5H5)2Fe], has D5d symmetry, although the eclipsed D5h structure is 
very similar in energy.  The bonding is between the π-system of the C5H5

- rings and the metal 
orbitals.  The ten p-orbitals on the rings form a symmetrically equivalent set since they can be 
interchanged by at least one of the operations of the group.  However, a more intuitive way to 
think about the bonding is to consider the bonding to the cyclopentadienly SALC's which will 
combine in in-phase and out-of-phase combinations to form the ligand SALC's.  The SALC's 
of the individual rings was determined in problem II.8 and are shown below.  Since the two 
rings are 4Å apart, the in-phase and out-of-phase combinations are expected to have nearly the 
same energies. 
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Figure II-31.  Cyclopentadienyl SALC's.  Shading indicates phase of p-orbitials 
and size represents the magnitude of the coefficient.  Refer to problem II-8. 

 

 The reducible representation of the ten p orbitals in D5d is 
 

D5d E C5 C5
2 C2 i S10 S10

3 σd 
Γπ 10 0 0 0 0 0 0 2 

 

which can be decomposed to give Γπ =  a1g + a2u + e1g + e1u + e2g + e2u.  The a1g and a2u mo's 
come from the in-phase and out-of-phase combinations of the a2" SALC's, Ψ(a2")± Ψ'(a2"). 
The e1g and e1u mo's are derived from Ψ'e1" ± Ψ'e1" and the e2g and e2u orbitals are constructed 
from Ψe2" ± Ψ'e2" linear combination.  The in-phase (+) combinations are gerade while the 
out-of-phase (-) combinations are ungerade.  The metal orbitals transform as a1g (z2, s) + a2u 
(z) + e1u (x, y) + e1g (yz, xz) + e2g(x2-y2, xy).   With a careful examination of figure II-31 the 
appropriate combination of metal orbital and ligand SALC can be deduced:  a1g + dz2; a2u + pz; 
(e1u(a) + py & e1u(b) + px) ; (e1g(a) + dyz & e1g(b) + dxz); (e2g(a) +dx2-y2 & e2g(b) +dxy) while 
the e2u ligand SALC will be non-bonding. 

a1g + dz2 a2u + pz e1u(a) + py e1u(b) + px

e2g(a) + dx2-y2 e2g(b) + dxy e1g(a) + dyz e1g(b) + dxz  
Figure  II-32.  Combinations of the cyclopentadienyl SALC's with the appropriate iron orbitals.  
Only the relative phases not the relative mixing coefficients of the orbitals are indicated. 
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The relative mo energies of ferrocene,   
 

 
 

Figure II-33.  MO diagram of ferrocene. 
 

Since the e2g orbitals on the iron (x2-y2, xy) have the same symmetry as higher lying π* 
orbitals on the cyclopentadienyl ion they are stabilized while the e1g iron orbitals (xz, yz), 
interact with a lower lying π-orbital and are therefore destabilized. 
 

II.10f.  Electron Deficient Bonds 
 

 We will now consider electron deficient bonds, more specifically we will derive the 
mo's for  a three-center, two-electron bond in (CO)5W-H-W(CO)5.  The three centers are the 
two tungsten atoms and the bridging hydride in a linear arrangement along the z-axis.  The W-
H-W moiety has D∞h symmetry and the basis vectors will be the H 1s orbitals and the z2 
orbital on each tungsten.  
 

D∞h E 2C∞
φ ∞σv i 2S∞

φ ∞C2  
H(1s) 1 1 1 1 1 1 σg

+ 
W 2 2 2 0 0 0 σg

+ + σu
+ 

σg
+ 1 1 1 1 1 1  

σu
+ 1 1 1 -1 -1 -1  

 

Thus the antisymmetric combination of W's (σu
+) is non-bonding.  The resulting mo-diagram is 

given on the next page. 
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+

 
Figure II-34.  MO diagram for the stable two-
electron, three-center bond in (CO)5W-H-W(CO)5. 

 
The z2  is empty and there are only two electrons from the hydride. Thus there are only two 
electrons for this system but they enter a bonding orbital and a three-center, two-electron bond 
is formed. 
 

Problem II.12   Use only the px and pz orbitals on B and the 1s orbitals on H to 
construct an mo diagram for the bridge in diborane.  Be sure to include the electrons. 

     
Figure II-35.  The axis system to use for diborane (B2H6) in problem II.12.  

 
Problem II.13  Steric crowding of the trimethyl phosphines forces the phosphines out of 
the XY plane ("ruffling") and results in D2d symmetry for [(Me3P)4WE2] (E = O, S, Se, 
Te)- two trans phosphines up and the other two down as shown in the figure below.  
Construct the mo's (pictures) for the E=W=E moiety.  What is the oxidation state and 
number of d-electrons on the tungsten?  Use Appendix D, what you know of the crystal 
field splitting of tungsten (third row transition metal) and the relative field strengths of 
the chalcogens (see problem II.10) to determine the relative energies of the orbitals 
(ligand and metal) in the series.  What is the nature of the HOMO and LUMO?  What 
happens to the HOMO-LUMO separation in going from O to Te? 

     
 Figure II-36.  The "ruffled" structure of [(Me3P)4WE2] (E = O, S, Se, Te). 
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Problem II.14  A combination of electrochemistry and spectroscopy indicate that the 
LUMO of the 2,2'-bipyridine ligand (bpy) in (bpy)MCl2 (M=Pt and Pd) is at substantially 
lower energy than in (bpy)2MCl2 (M=Ru and Os).  Suggest a mechanism for the 
stabilization of the bpy π* orbital in the square planar molecules relative to the octahedral 
molecules. 

Cl

ClN

N

M

 
 

II.10g.  Linear Chains 
 

 The most extensively studied inorganic one-dimensional compounds are those based 
on tetracyanoplatinate anions.2,3,4  In these materials, the square-planar ions are stacked face-
to-face to form linear chains of the platinum atoms which are well insulated from one another 
by the cyanide ligands, counterions and solvation.  Bonding results from the interaction of the 
metal dz2 orbitals.  The interaction will consist of both bonding and anti-bonding components, 

 
Figure II-37.  Bonding and antibonding mo's 
formed from the face-to-face interaction of the dz2 
orbitals of Pt(CN)4

2-  
 

This process can be continued by adding another Pt(CN)4
2- unit to form a trimer.  Now the 

three dz2 orbitals interactresulting in three mo's of a trimer.  The lowest energy orbital will be 
lower than that of the dimer since there are two stabilizing interactions instead of only one.  
Similarly, the highest energy mo of the trimer, having an additional nodal plane, will be at a 
higher energy than the antibonding orbital of the dimer.  Figure II-39 extends this argument to 
the tetramer.  The result of these interactions is a linear chain of platinum atoms. 
 

                                                
2. Miller, J.S.; Epstein, A.J., Prog. Inorg. Chem, 1976, 20,1. 
3. Krogmann, K., Angew. Chem. Int. Ed., 1969, 8,35. 
4. Tanner, D.B. in Extended Linear Chain Compounds, Miller J.S., Ed., Plenum: New York, 1982; Vol 2. 
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.

Pt Pt-Pt Pt-Pt-Pt-PtPt-Pt-Pt  
Figure II-38.  The relative phases of the z2 orbitals as the number of 

Pt(CN)4
2- units increases from 1 to 4. 

 

 As the chain lengthens, the most bonding orbital continues to stabilize while the most 
antibonding orbital continues to destabilize, but the individual levels still get closer together, 
i.e., both the energy width and the density of states of the mo's increase with increasing chain 
length.  In the limit of an infinite chain, the energy separation between adjacent levels is zero 
and the resulting structure is referred to as a band.  Similar considerations can be made for the 
pz orbitals which will also form a band.  Perhaps the property most used to characterize the 

linear chains is the Pt-Pt distance which falls in the range of 3.1 to 3.7 A
o

 for complexes of 
this type5.    In the d8 case, the z2 orbitals are filled and so too is the resulting band.  Since 
both the bonding and anti-bonding orbitals of the z2 band are filled, no bond would be 
expected to form and the interaction should be quite weak.  This conclusion is consistent with 
the fact that the ofbserved Pt-Pt distances are barely less than sum of the van der Waals radii 

for Pt (3.4 - 3.6 A
o

).   The interaction between the members of the chain can be enhanced by a 
partial oxidation which results in the removal of electron density from the higher energy (anti-
bonding) mo's at the top of the band.  The result of a partial oxidation is twofold: first the Pt-

Pt distances drop down to the range of 2.80 to 2.95 A
o 6; and second the band gap goes to zero 

since the occupied band is no longer full.   Thus, K2[Pt(CN)4]·3H20 forms a linear chain with 

a Pt-Pt separation of 3.48 A

o

 and is an insulator7 while the partially oxidized 
tetracyanoplatinate, K2[Pt(CN)4]Br0.3 .3H20 is a highly conducting linear chain with a Pt-Pt 

separation of 2.89 A
o

. 

                                                
5. Williams, J.M.; Schultz, A.J.; Underhill, A.E.; Carneiro, K.;  in Extended Linear Chain Compounds, Miller 

J.S., Ed., Plenum: New York, 1982; Vol 1, Table 1, p. 76. 
   
6.  Williams, J.M.; Schultz, A.J.; Underhill, A.E.; Carneiro, K.;  in Extended Linear Chain Compounds, Miller 

J.S., Ed., Plenum: New York, 1982; Vol 1, Table 5, p. 90-91. 
 
7. Williams, J.M.; Schultz, A.J.,  in Molecular Metals, Hatfield, W.E., ed., Plenum Press., N.Y.,  1979. 
 



Chapter II.  Molecular Orbital Theory 
 

 62 

   
Figure II-39.  The relative energies of the z2 and z orbitals in platinum and the bands 
formed in the case of two chains of different length.  The heavy black arrows represent 
the band gap and demonstrate how the electronic absorption shifts to lower energy as the 
chain length increases. 

 

 The relationship between color and the Pt-Pt distance has been recognized for some 
time.8  Since the Pt-Pt interaction can perturb the absorption spectrum substantially (figure II-
39), characterization of the linear chain can also be accomplished by electronic spectroscopy.9  
The electronic spectrum of a solution of Pt(CN)4

2- indicates no absorption below 35.8 kK 
(1kK = 1000 cm-1) while a very strong, polarized absorption is observed at much lower 
energies for the chain compounds.  Furthermore, the energy of the band decreases as the Pt-Pt 
distance decreases.  Another indicator of the Pt-Pt separation is the emission maximum (band 

gap) which, for tetracyanoplatinates, is at 20 kK for Pt-Pt separations of about 3.3 A
o

 but at 16 

kK for a 3.1 A
o

 separation. 
 Another type of interaction giving rise to stacked species is π-stacking.  TTF-TCNQ, 
the first "organic metal",10 exists in segregated stacks of TTF donors and TCNQ acceptors 
involved in a partial electron transfer.  The conductivity in this system is dominated by the 
TCNQ stacks11 in which overlap of the π-systems is optimized by a face to face orientation of 
the TCNQ molecules and results in one-dimensional bands along the stack axis.  Thus, unlike 
the partially oxidized tetracyanoplatinates, conduction in this system is via a partially reduced 
"π-way".  The (bpy)2Pt(CN)2 molecule is an example in which both modes of  stacking are 
combined.  The solid state structure of (bpy)2Pt(CN)2 was reported to consist of linear 

chains12 with a 3.33 A
o

.  The deep red color of the solid (solutions were colorless) was 
attributed to a dσ → pσ transition as shown in II-39.  In electrochemical experiments,13 
however, evidence for chain growth on the electrode surface was apparent only after a partial 
reduction of the complex.  This reduction involved an orbital which has some metal character 

                                                
8. Yamada, S., Bull. Chem. Soc., Japan, 1951, 24, 125. 
9. Martin, D.S., in Extended Interactions between Metal Ions,  Interrante, L.V., Ed.; A.C.S. Symposium Series 5; 

American Chemical Society; Washington, D.C., 1974. 
10 Ferrais, J.; Cowan, D.O.; Walatka, V.; Perlstein, J.H., J. Am. Chem. Soc., 1973, 95, 948. 
11 (a) Tomkiewicz, Y.; Taranko, A.; Phys. Rev. Lett., 1976, 36, 751.  (b) Berlinsky, A.J.; Carolan, J.F.; Weiler, 

L., Solid State Commun., 1974, 15, 795. (c) Soda, G.; Jerome, D.; Weger, M.; Alizon, J.; Gallice, J.; Robert, 
H.; Fabre, J.M.; Giral, L., J. Physique, 1977, 38, 931. 

12 Che, C-M.; He, L-Y.; Poon, C-K.; Mak, T.C., Inorg. Chem., 1989, 28, 3081. 
13 Cooper, J.B.; Rhodes, S.M.; Wertz, D.W., J. Phys. Chem., 1991, 95, 4800. 
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but is primarily bipyridine π* (see problem II.14).  Resonance Raman scattering (see section 
VI.6) indicated that the geometry change in the transition between the ground and excited 
state of the visible absorption was in the bipyridine.  Based on these and other results, it was 
concluded that the interaction resulting in a linear chain at the electrode was due primarily  to 
interactions between the bipyridines through their π-systems, and that the color of the sample 
was due to a "π→π*" transition found in the uv of the monomer.  Unlike the partially 
oxidized PtCN4

2- discussed above, this is an example of chain growth initiated by a partial 
reduction similar to the TTF-TCNQ system. 
 

Problem II.15   Discuss the π-stacking in the system shown below.  Use the representations 
of the π and π* orbitals given below and assume that the stacking is of four monomers.  Draw 
the mo's corresponding to each of the eight energy levels shown on the diagram below.  Use 
arrows and a diagram similar to the one in figure II.39 to indicate the red shift of the π→π∗ 
transition with formation of the stacked tetramer.  Describe the effects of a partial oxidation 
and reduction on the stack. 

 
 
Problem II.16.  Consider  the bonding in [OMoCl4]2-. 

 
Assume that Cl interacts only in a σ fashion and that the MoCl4 moiety is planar. 
 
a. What are the irreducible representations of the Cl SALC's, the oxygen p-orbitals and the 

metal valence orbitals.  How many d-electrons does the Mo contribute? 
b. Construct (drawings & labels) the σ-SALC's for the Cl4 fragment.  Use Cl p-orbitals that 

“point” toward Mo. 
c. Use only the p-orbitals on O, i.e., assume the 2s orbital is buried and draw approximate 

mo's (through the LUMO).  Assume that each mo contains contributions from no more 
than two sources, i.e., one metal orbital and/or either an O p-orbital or a Cl4 SALC.  Each 
metal orbital should be used only in that one SALC where it has optimum overlap.  Give 
the symmetry label (1a1, 2a1, 1e, etc.), and interaction type, e.g., σ(Mo-O), for each. 

c. Arrange the mo's in order of increasing energy - an energy level diagram.   Clearly label 
each level with the same symmetry label as the mo.  Add the electrons and clearly identify 
the HOMO and LUMO. 

d. Show the relative energies of the d-orbitals (those that are predominately d in character) in 
the case where MoCl4 is planar.  Be certain to label each orbital.  Next to this diagram 
show the relative energies of  MoCl4 if the Mo lies above the Cl4 plane. 

e. What is the Metal-oxo bond order?  What would be the bond order for a d6 metal? 
f. Is the HOMO→LUMO transition dipole allowed?  If so what is its polarization?  What 

geometry changes might be expected during the transition? 
g. Explain the effect of each of the following on the Mo-O bond length? 
  i. one-electron reduction.  ii. a one-electron oxidation. 
  iii. changing Cl- to NH3.  iv. changing Cl- to CO. 
 Which of these changes would have the greatest effect?  Explain. 
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Chapter III.  General Spectroscopic Considerations 
 

III.1  Electromagnetic Radiation 
 

 Spectroscopy is the study of the interaction of electromagnetic radiation with matter.  
Electromagnetic radiation is an oscillating electric and magnetic field travelling through space 
at 2.998x108 m/s and as such is viewed as a wave which can be characterized by its wavelength 
(λ), its speed (c), and its frequency (ν - cycles/second or ω - radians/sec).  The frequency and 
wavelength are related through the speed by νλ  = c so that an electromagnetic  wave with 
wavelength 600 nm would have a frequency of 2.998x108/600x10-9 = 5.00x1014 s-1 = 0.50 fs-1.  
 In this course we will be interested in the electric field, ε= εocos[(2π/λ)x +  φ] = 
εocos[ωt +  φ].  Figure III.1 shows two representations of two different wavelengths of light, 
one of 600 nm with    Eo = 5 and one of 300 nm with õo = 8.  Figure III.1(a) is a snapshot of the 
disturbance in space over a distance of 2000 nm and clearly demonstrates the two wavelengths - 
one wavelength is twice the other.  Figure III.1(b) shows the time dependence of the field at one 
point in space and demonstrates the frequency - there are twice as many of the shorter 
wavelength waves/unit time.  However, the same statement pertaining to the frequency of 
waves can be made about the number of waves/unit length in the figure III.1(a) -  there are 
(1/600) waves/nm and (1/300) waves/nm so there are twice as many wavelengths/nm of the 
higher frequency (longer wavelength) radiation.  The number of waves/unit length is called the 

wavenumber (!
_

=1/λ), a very important unit in spectroscopy with units of cm-1.  In electronic 
spectra, energies are in the tens of thousands of cm-1 so the kiloKaiser (1kK = 1000 cm-1) is 
often used.  We will use the kK extensively in the electronic spectroscopy portion of this 
course, but, since it is not an SI unit, many journals will not accept it. 
 

(a)       (b) 

  
Figure III.1.  The magnitude of the electric field vs position (a) and time (b) for two different 
electromagnetic waves:   
 
 (a) ε = 5.0cos(2π/600)x  and ε = 8.0cos(2π/300)x   
 (b) ε = 5.0cos[2π(5.00x1014)t]  and ε = 8.0cos[2π(1.00x1015)t]  
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The regions of the electromagnetic spectrum are given below:  

  
 
 This course deals with vibrational and electronic spectroscopy.  Vibrational spectra are 
observed in the infrared and the far-infrared while most electronic spectra are investigated in the 
visible and ultraviolet (uv) regions with a lesser contribution from the near ir.  Historically, 
wavelength was the preferred unit of measure of light due to the fact that grating instruments 
are based on the Bragg equation: nλ = 2dsinθ.   Thus most instruments present the spectra as 
linear in wavelength.  However, as Planck (black-body radiation) and Einstein (photoelectric 
effect) showed, light also has properties of particles, called photons, which have discreet 
energies given by E = hν  - energy is linear in frequency not wavelength.  Although giving 
the wavelength of a photon of light as 680 nm does indeed indicate that the photon is in the 

visible region, the use of ν (c/λ) or !
_

 (1/λ) is much preferred because of their linear relationship 
to energy - especially if one is referring to bandwidths, shifts or separations.  For example, 
consider the spectrum shown in  Figure III-2, which shows four peaks a, b, c, and d plotted 
versus wavenumber and wavelength.  Two characteristics of these spectra should be noted: 

1. !
_

a - !
_

b = !
_

c - !
_

d = 3000 cm-1 while λb - λa = 111.1 nm and λd - λc = 15.9 nm, i.e., the 
separations between peaks can be distorted. 

2. The bandwidth of all four peaks is 1200 cm-1.  However, the wavelength view severely 
distorts the spectra making the long wavelength peak appear to be much broader. 

 
Figure III-2.  Wavenumber versus wavelength display of spectra.  The spectrum indicates two 
pairs of peaks with identical bandwidths and peak separations when displayed vs. wavenumbers. 
The peak separations and bandwidths of  the two pairs of peaks appear very distorted when 
plotted on the wavelength scale. 

 
Comparisons of the shifts, bandwidths or separations 

between peaks in wavelength should be avoided.   
 

III.2 Experimental  
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 There are as many optical designs as there are manufacturers, but there are basically 
three different types: scanning, array and FT.  We give here a very brief description of each. 
 
Scanning Double Beam Spectrometer.  This type of spectrometer is used in the CARY-14 
UV/Vis, and several of the older infrared spectrometers in the Department.  A schematic 
representation is shown in figure III.3.  The grating instrument consists of a source 
compartment "S", a sample compartment, a monochrometer and a detector.  The radiation from 
the source is divided into two beams (reference, Io and sample, I) which both impinge on a 
chopper, "C".  The chopper is essentially a rotating semi-circular mirror - when the mirror is in 
the beam, the sample radiation is reflected into the monochrometer through the entrance slit, 
"S1", but when the mirror is out of the beam, the reference beam passes into the slit.  Thus, after 
the chopper, both beams have the same path, but the radiation is alternating sample/reference 
(I/Io) with the frequency of the chopper.  The beam is reflected off a mirror onto the grating, 
"G" which disperses the radiation according to Bragg's Law: nλ = 2dsinθ (n is the order of the 
grating, d is the groove spacing on the grating and θ is the angle of incidence).  The radiation is 
reflected off of two more mirrors then through an exit slit, "S2", a filter to get rid of radiation of 
the wrong order, i.e., wrong value of n in the Bragg Equation, and onto the detector.  The entire 
spectrum is dispersed onto the plane of the exit slit and is passed across this slit by changing the 
angle of the grating.  At any given moment in the scan, the detector will sample only a small 
portion of the spectrum, λ±Δλ, where Δλ is the resolution which is dictated experimentally by 
the slit width.  Since each wavelength must be sampled individually, long acquisition times are 
common. 
 

 
Figure III.3.  Schematic representation of a scanning spectrometer. 

 
Diode Array spectrometer:  Routine UV/Vis spectra are typically obtained with this type of 
instrument since the long acquisition time of the the scanning spectrometer is not required.  
Figure III.4 is a schematic representation of HP 8452A optical system.  Since this is a single 
beam instrument, separate sample and reference spectra must be obtained.  Radiation from the 
source is gathered into a lens "L1" and onto a shutter "Sh".  When the shutter opens, the light is 
passed through the sample, a second lens, "L2" and the slit, "S1".  The beam is  dispersed as in 
the grating instrument by the grating, "G".  Instead of scanning the spectrum across a "point" 
detector as above, the entire spectral range is sampled simultaneously by an array of detectors - 
diodes.  Resolution then is a function of the dispersive power of the grating and the size of the 
diodes.  The HP 8452A uses 328 individual photodiodes and circuits etched onto a semicon-
ductor chip 2mm x 18 mm in size.    In this instrument, each diode samples a bandwidth of 
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about 2 nm for a spectral range of about 650 nm (190 to 820 nm in practice).  Good quality 
spectra can be obtained with well under a minute of exposure time with these instruments. 

 
Figure III.4.  Schematic representation of a diode array spectrometer. 

 
FTIR:  Rapid data acquisition in the infrared region is obtained by FTIR (Fourier Transform 
InfraRed).  Figure III.5 shows a schematic representation of the optical system of a typical FTIR.  
The beam size leaving the source is dictated by an iris, "I".  Small beam sizes yield more reliable 
spectra, but they also reduce the energy.  The beam passes through a beam splitter, "BS" which 
reflects half of the beam to a fixed mirror, "FM", and transmits half of the beam to a moving 
mirror, "MM".  Both beams are reflected back to the beam splitter where they are combined.  
The beams interfere with one another when they are recombined and are then partially 
transmitted and reflected once again.  If the distance to FM is df and the distance to MM is dm 
then the two beams will have travelled 2df and 2dm.  The beams will interfere constructively only 
when 2df-2dm is an integral number of wavelengths.  The variation in the intensity of the 
beams passing to the detector as a function of this path difference yields the spectral information 
in the Fourier transform spectrometer.  Since the mirror is moving with a constant speed, the 
variation can be treated with respect to time rather than distance.  Thus, the spectrum is obtained 
in the time domain and Fourier transformed into the frequency domain.  As in the array 
instruments, it is the entire spectrum which is sampled and spectra are typically collected in a 
few minutes.  Almost all infrared instruments are now FTIR's. 
 

 
Figure III.5.  Schematic representation of an FTIR. 

 
III.3 Time Dependent States 

 

 The Schrödinger equation is usually written as Hψj=Ejψj, but this applies to stationary 
states, i.e., states whose energy is not changing.  When the system's energy does change with 
time,  the time dependent Schrödinger equation must be used: 
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where aj*aj represents the probability that the system has an energy εj and ψj is the time 
evolution of the jth stationary state.  We assume that initially, the system is in the ground state, 
i.e., a0 =1 and aj=0 for j > 0.  We now perturb the system with an H'. 
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Premultiplying by ψl* and integrating, i.e., taking the dot product of each term with 
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% l  and using the orthonormality of the wavefunctions, <jl> = δjl, we arrive at the 

following. 
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At t=0, aj=0 for j > 0 and a0=1.  Thus at t=0 (assuming εo = 0), 
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We are interested in the interaction of the electric field of the electromagnetic radiation with 
the dipole of the molecule so the perturbation is H' = ε•µ or,  
 

H' = !x • µx + ! y • µ y + !z • µz , ! x = !x
0 (e2"i#t + e$2"i#t)

so, l H' 0 = (e2"i#t + e$2"i#t )(!x
0 l µ x 0 + ! y

0 l µ y 0 + ! z
0 l µ z 0 )

 

 
The integral <lµj> = <µ>jl is called the transition moment for the j→l transition.  Upon 
integrating the expression for dal/dt above, we arrive at the value of al, 
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The importance of the lth state in the description of the system is al*al, which can be simplified 
to, 
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This expression represents the effect of the interaction of a given frequency, ν.  Integrating 
over all frequencies (εo assumed constant over the range of importance) we obtain, 
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*
l

0l=
µ !
2 0 2

2

( )

h

 

 
The energy density is the energy per unit volume of the radiation: ρ = 1/2(εo)2∈o where ∈o is 
the dielectric constant of  free space.  Substituting it for εo and differentiating, we arrive at the 
rate of change of the importance of the lth state in the description of the system, 
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where B0l is Einstein's coefficient of induced absorption. 
 
 It can be seen that several factors dictate the importance of the lth state in the description 
of the system: 

1. ρ, the energy density of the radiation 
2. The magnitude of the transition moment which is a measure of how much the 

interaction mixes the 0th and lth states.  It is this term which will lead to the selection 
rules.  

3. The effect of a photon of a given frequency, depends on how close to resonance the 
photon energy is.  The resonance condition is  hν = ε0 - εl or hν = εl - ε0 depending 
on whether ε0 > εl (emission) or ε0 < εl (absoroption).  As the photon approaches 
resonance, one of the denominators will approach zero (there is actually a damping 
term in the denominator to assure it never equals zero) and al will get large if the 
transition moment is large. 

 
III.4  Experimental Quantities 

 The intensity, I, of an electromagnetic wave is the energy per unit time crossing a unit 
square surface and is therefore the energy density times the speed of the wave, c. 
 

I = ρc [(j-m-3) x (m-s-1 )= j-m-2-s-1] = 1/2(εo)2∈oc. 
 
The change in intensity of  the radiation as it passes through a thickness, dl, of a sample with 
molar concentration, C, is given by Beer's law to be 

-dI = α(ν)ICdl 
where α(ν) , the molar absorption coefficient, is frequency dependent and has units of M-1-
cm-1.  Integrating over the entire pathlength of the cell, we arrive at the integrated form of 
Beer's law, 

A = log(Io/I) = ∈(ν)Cl 
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where ∈(ν)  = α(ν)/2.303 is the molar extinction coefficient and Io/I is the ratio of incoming to 
transmitted intensities or reference to sample intensities.  The integrated absorption, A is 

A = !(" )d" or

0

#

$ A
_

= !(")d"
0

#

$ =
A

c
 

and A ∝ <µ>0l
2. 

 Occasionally, the strength of a band is given in terms of its oscillator strength, f, which 
is a dimensionless quantity which relates the strength of a transition to that of a single electron 
in a 3D-harmonic potential well. 

f  = Ãobs/Ãtheor = 4.33x10-9Ãobs 
 
Selection Rules:  The strength of a transition from state l to state m is proportional to  <µ>lm

2 

thus it is allowed (A≠0) only if <lµm> ≠0.  As was mentioned in Chapter I, this matrix 
element can be non-vanishing only if the direct product of <l⊗µ⊗m> contains the totally 
symmetric representation.  The dipole moment consists of three terms, µx, µy, and µz, so the 
operator transforms as x, y and z - the same as the p-orbitals.  The direct product of two non-
degenerate irreducible representations will contain the totally symmetric representation if and 
only if the two irreps are of the same symmetry.  Thus <lµm> ≠0 if <l⊗m> transforms as 
x, y, or z.  If it is the x-component that makes the transition allowed, then it is the x-component 
of the radiation which will mix the two states, and the transition is said to be x-polarized and 
only that component of light polarized in the x-direction can be absorbed. 

 
III.5  Band Shapes 

 
 Two common idealized band shapes are the Lorentzian and Gaussian, 
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where ∈max is the extinction coefficient at the peak maximum and Γ is the half-width at half-
maximum (HWHM) or 1/2 Δ! 1/2 (1/2 the FWHM).  These terms are described in the following 
figure which compares the two band shapes with the same set of  parameters. 
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Figure III.6.  Gaussian and Lorentzian line shapes with the same parameters. 
 

Far and away the most often used term to describe the strength of a band is the molar extinction 
coefficient (∈=A/lC) which has units of  M-1 cm-1.  Giving absorbance units really indicates 
nothing of the strength of the band unless the concentration and pathlength are also given.  
Figure III-2 was generated by using the following set of parameters and a Gaussian line shape: 
 

! (cm-1) ε Γ(cm-1) 
15,000 10,000 1200 
18,000 11,000 1200 
42,000 10,000 1200 
45,000 11,000 1200 

 
The type of line shape that characterizes a spectroscopic transition depends in part on 

the mechanisms that contribute to “relaxation” following the transition (see Chapter 6).  For 
example, relaxation mechanisms in magnetic resonance are often modeled using a Lorentzian 
line shape (e.g. for T2 in NMR), while electronic absorption bands are modeled using a 
Gaussian line shape (best when the sample is a statistical distribution, like a fluid solution).  
Often, because of the large number of different relaxation mechanisms, a combination of the 
two line shapes is used. 
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Chapter IV.  Vibrational Spectroscopy 
Part I. Theory 

 
 When bonds break or molecular geometries change, vibrational degrees of freedom 
are involved.  Since the vibrations are governed by the restoring forces in the bonds, 
vibrational spectra can serve as sensitive probes of bonding or changing electron density.  The 
problem presented by vibrational spectroscopy, however, is that there is so much information 
that it can be overwhelming to the point that no information can be extracted.  This wealth of 
information results from the fact that a molecule composed of N atoms will have 3N-6 
vibrational degrees of freedom - there are just too many spectral peaks.  In addition, the 
atomic displacements during any one vibration are usually complicated so that during a 
"metal-chlorine stretch", other bonds will be changing as well.  However, information on the 
nature of the actual motions of the atoms is important if we hope to unravel the information 
on geometry or bonding changes that is available in a vibrational spectrum.  In this chapter we 
present enough theory on the nature of vibrations to give the student an appreciation of the 
complexities and a vocabulary sufficient to read the literature on the subject. 
 

IV.1 The Harmonic Oscillator - a classical view 
 The separation of two masses attached to a spring at rest is re, the equilibrium 
separation.  If that separation is changed to r and the spring obeys Hooke's Law, a restoring 
force back toward the equilibrium separation, F = -k(r-re), is developed where k is the spring 
force constant. 

 
It is more convenient to discuss the motion in terms of the internal coordinate, Q,  

Q = (r-re).     Eq iv-1 
The restoring force can then be written as 

F = -kQ.     Eq. iv-2 
Force is the gradient of the potential, 

F = -dV/dQ = -kQ or dV = kQdQ ⇒ ∫dV = k∫QdQ or 
 

V = 1/2kQ2     Eq. iv-3 
 
Eq iv-3 defines the potential energy of the spring as a parabola.  The force constant then is the 
curvature of the potential energy, 

k = d2V/dQ2      Eq. iv-4 
 
Figure IV-1 shows the potential energy as a function of Q for two springs with force constants 
differing by a factor of 2.  The heavy line has the steeper curvature and represents the case of 
the larger force constant.  These curves indicate that, at the same energy, the amplitude of 
vibration is greater for the spring with the smaller force constant. 
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Figure IV-1 The potential energy of two different springs A & B where kA = 2kB.  The 
steeper curve has twice the curvature of the more shallow  curve.  The amplitude of 
vibrations of the low  force constant spring is much greater than that of the high force 
constant spring at the same energy. 

 

 Both masses will experience the same restoring force, but according to Newton's 
second law, the force experienced by an object is the product of its mass and its acceleration, 
F=ma.  The smaller mass will have a greater acceleration and thus will be moving faster 
during most of the motion.  When dealing with systems involving the motion of particles 
relative to one another, the reduced mass, µ, of the system is used rather than the individual 
masses of the particles.  For a two particle system, 

1/µ = 1/m + 1/M or µ = mM/(m+M).   Eq. iv-5 
The value of the reduced mass is indicative of the relative motions of the two particles.  If 
M>>m, then m + M ≈ M and µ ≈ mM/M = m, which indicates that only the small mass is 
moving.   
 The solution to the equations of motion for this system is an expression for Q as a 
function of time, 

Q = Acos(ωt + φ)    Eq. iv-6 
which can be thought of in terms of a vector of length A rotating in the xy plane with an 
angular frequency of ω and a phase of φ, (at t=0 the vector makes an angle of φ with the x-
axis).  Q is then the projection of A on the x-axis.  The definition of the angular frequency of 
vibration is given in figure IV-2.  At t=0, Q=Acosφ which simply means that if φ  ≠0, then the 
separation between particles was not at the maximum.  After t seconds, the angle will change 
to φ+ωt with Q changing to Acos(ωt+φ).  Thus the system undergoes simple harmonic 
oscillation reaching maxima and minima at +A and -A. 

      
Figure IV-2  The variation of Q with time. 
 

It is easier to visualize the frequency of oscillation in cycles per second (ν) than in radians per 
second.  Since one cycle is 2π radians, ν = ω/2π.  The frequency of vibration is related to the 
force constant, 

!
" µ

= #1

2

k
s
1      Eq. iv-7 
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The most convenient unit for spectroscopic studies is the wavenumber, cm-1.  The frequency 
of vibration in wavenumbers, ! , is ν/c* where c* is the speed of light in cm/s. 

!
" µ

= #1

2 c*

k
cm

1      Eq.iv-8 

For molecular vibrations, µ is the molecular mass in kg and k is in N/m.  If the reduced mass 
is in amu rather than kg, eq iv-8 can be rewritten as 

!
µ

µ= 130 3. ;
k

 cm    in amu
-1     Eq.iv-9 

where 130.3 = (NAx103)1/2/(2πc*).  Finally equation iv.9 can be solved for the force constant 
to give, 

 k =
!

130.3

" 

# 
$ 

% 

& 
' 

2

µ   N/m     Eq.iv-10 

 N2 has a high bond order (BO=3) and is therefore be expected to have a high force 
constant while Na2  has a very weak bond and consequently a low force constant is predicted.  
For the N≡N stretch, 

! = 2331cm
"1

; and µ =
1

2
(14.0) = 7.00 amu so k = 7.00

2331

130.3

# 
$ 

% 
& 

2

= 2240 N / m  

while, for the Na-Na stretch, 

! =157.8cm
"1

 and µ =
1

2
(23.0) =11.5 amu so k =11.5

157.8

130.3

# 
$ 

% 
& 

2

= 16.9 N / m  

Considering these two examples as representative of the extremes, we can conclude that 
molecular stretching force constants are expected in the range of 1- 2500 N/m. 
 

Problem IV.1  The 79Br-79Br stretch is observed at 325.4 cm-1.  What is the Br-Br force 
constant?  Where would the 79Br-81Br and 81Br-81Br stretches be observed? 

 
IV.2 Quantum Mechanical Description of the Harmonic Oscillator 

 

 Solving the Schrödinger equation (HΨv = EvΨv) for the Harmonic oscillator yields 
quantized expressions for the energy, 

Ev = (v+1/2)hν joules = (v+1/2) !  cm-1,   v= 0,1,2,3,...  Eq.iv.11 
where ν and !  are the classical frequencies as defined above.  Note that there is a zero point 
energy of 1/2!  so that the ground vibrational level for N2 is at 1/2(2331) = 1166 cm-1 above 
the minimum in the potential.  The v=7 level is at (7+1/2)(2331) = 17483 cm-1 =  2.167 eV.   
 

Problem IV.2  The equilibrium bond length in Br2 is 228.4 pm.  What would be the 
maximum 79Br-79Br distance in the v=7 vibrational state?  Would it be the same in the other 
isotopes?  Refer to Problem IV.1. 
 

The squares of the harmonic oscillator wavefunctions are shown in figure IV-3.There are four 
important features of these wavefunctions that imply non-classical behavior: 

• There are v nodal planes in the vth level.  This implies that in the v=1 level, the 
nuclei never achieve the equilibrium separation since there is a nodal plane at 
Q=0. 

• Ψ2 exceeds the classical limits.  The nuclei have a finite probability of being 
closer together or farther apart than their energy warrants. 

• In the ground vibrational state, the most probable postion for the nuclei is the 
equilibrium position - Ψ2 has a maximum at Q=0 in the v=0 level.  Classically, 
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the nuclei are moving the fastest when at the equilibrium position and slow to a 
stop at the extrema so that the most probable postion for the classical particles 
would be at the extrema. 

• The most probable position approaches the classical limit at high values of v.  
This is already apparent in the v=2,3 and 7 levels where the maximum amplitude 
in ψ2 is reached near the extreme value of Q.  This will be an important 
consideration in our discussion of Franck-Condon factors in electronic 
spectroscopy. 

 
Figure IV.3.  Potential function for N2 showing the v=0, 1, 2, 3,  and 7 
energy levels and ψ2 for each level.  All wavefunctions are normalized. 
 

IV.3 Selection rules for the harmonic oscillator 
 

 As discussed in chapter III, the selection rules are based on the transition moment 
which, for the harmonic oscillator transition v→v' would be <v'|µ|v>.  The dipole moment is 
expanded as a Taylor series in terms of Q.   
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The first term vanishes for n ≠ n' since the eigenfunctions form an orthonormal basis, and 
<v'|Q|v> in the second term gives rise to the important selection rule for the harmonic 
oscillator, and is usually given as Δv = ±1.  The origin of this selection rule lies in the form of 
the vibrational eigenfunctions which are Hermite polynomials. In addition to the Δv = ±1 

selction rule, 
!µ

!Q

" 

# 
$ 

% 

& 
' 
Q= 0

 indicates that the bond dipole must change during the vibration.  Quite 

often, the higher-order terms are non-zero and are called overtones.  The resonance condition 
for the harmonic oscillator is ΔE = Ev+1 - Ev = (v + 3/2)!  - (v + 1/2)!   =  !  so that all of the 
Δv = 1 transitions would occur at the same energy, the classical frequency, and the overtones 
would occur at 2!  for the first overtone and at 3!  for the second overtone.   

The N≡N stretch in N2 is not IR active (no dipole change) but it is observed in the 
Raman (see section IV.10) at 2331 cm-1. What is the vibrational period of the N≡N stretch?  
Since the observed energy is the classical frequency, ν = c* = (2331)(2.998x1010) = 
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6.988x1013 s-1.  The reciprocal of the oscillation frequency is the vibrational period, τ  = 1/ν  
= 1.431x10-14 s = 14.31 fs.   The N≡N bond undergoes one complete vibration every 14.31 fs. 
Problem IV.3  How many vibrations does a Li-Li molecule undergo during 1 ps? (!  = 351.4 
cm-1)  
 

IV.4 The anharmonic oscillator 
 

 The harmonic oscillator expression, V=1/2kQ2, is only an approximation for the 
dependence of the potential energy on internuclear separation.  The actual picture is better 
described by that shown in figure II-3 which shows the energy of the σ orbital of H2

+ as a 
function of  the H-H  distance.  The force constant is actually a function of the internuclear 
separation getting smaller as the distance gets larger due to reduced overlap while getting 
larger at short separations due to internuclear repulsion. The result is that, in order to realize 
all of the energy of vibration into potential energy at the extrema, the bond will lengthen past 
the harmonic maximum but will not compress to the harmonic minimum.  A common 
approximation to this behavior is the Morse potential, 

V = De(1-e-aQ)2    Eq iv-13 
where De is the spectroscopic bond dissociation energy and a is a parameter which depends 
on the system.   It should be noted that the spectroscopic dissociation energy is not the same 
as the bond energy, the thermodynamic dissociation energy, Do.  Thermodynamics measures 
the difference in energy between the bound and dissociated atoms, but the bound atoms are at 
the zero point energy, Eo, not at the minimum of the well, i.e., Do = De - Eo. 
 The anharmonic potential does not have a constant curvature so the force constant is 
defined as the curvature of the well at its minimum.  Figure IV-4 compares a Morse 
potential and a harmonic potential with the same curvature at the minima (force constants) 
and differentiates between the spectroscopic dissociation energy (De) and the thermodynamic 
dissociaton energy (Do).  The energy levels for an anharmonic potential are obtained by a 
perturbation treatment and are given as, 

Ev = (v+1/2)! e - (v+1/2)2! e χe   Eq iv-14 
where ! e is the frequency of the harmonic oscillator with the same force constant and ! e χ e is 
the anharmonicity constant.  The force constant can be calculated using ! e in equation iv-
10.  Values for De and a in equation iv-13 can be derived to be 

 De =  !

"

e

e4
 Eq. iv-15    and   a

k

2De

=   Eq. iv-16  

From Eq iv-14, it can be seen that the energy levels get closer together as v increases, 
reaching a near continuum at the dissociation energy.  It is for this reason that overtones are 
usually observed at wavenumbers lower than the calculated value of n! e.  
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Figure IV-4  A Morse potential (solid) and a harmonic 
potential with the same force constant.   

 
 It is often stated that a high force constant is indicative of a strong bond.  Certainly a 
large curvature of the well at the minimum would be expected to lead to a strong bond, but the 

anharmonicity is also a factor ( D
e

e

e

k

c
e

= =
!

"

µ

# "4 8

/

*
) .  A nearly harmonic oscillator with a low 

force constant has a large dissociation energy simply because χe is extremely small.  Thus De 
increases with the force constant (as measured by ! ) but decreases with increasing 
anharmonicity.  As mentioned earlier, the bond energy, Do = De - Eo, but Eo = ½ ! e - ¼ ! eχe.  
The bond energy then becomes, 

D0 =  !

"

e

e4
- 1/2 ! e + 1/4 ! eχe   Eq iv-17 

 Electronic spectra (absorption and emission) and resonance Raman scattering often 
contain long series of  vibrational peaks (figure IV-5).  These transitions, which are all of the 
type 0→ v,  are labelled ! (v) and each has an energy equal to Ev-E0 which can be determined 
by application of  eq iv-14 to be 

! (v) = Ev - Eo = v! e - v(v+1)! e χe.   Eq. iv-18 
A plot of ! (v)/v vs. (v+1) should be linear with an intercept of ϖe and a slope of -! e χe.   The 
bond energy can then be estimated by eq iv-17. 

Problem IV.4  Figure IV-5 shows the resonance Raman spectrum of Cs4Mo2Cl8.  The 
long progression of lines has been assigned to the fundamental and overtones of the Mo-
Mo stretch.  From the frequencies of these lines, deduce the Mo-Mo force constant (N/m) 
and bond energy (kJ/mol). Observed bands: 340, 680, 1018, 1356, 1691, 2025, 2358, 
2688, 3020, 3350, and 3675 cm-1.  Include a plot of the observed (points) and calculated 
(line) wavenumbers.  The Mo-Mo bond in the compound is a quadruple bond (see 
Problem II.2).  This problem is ideal for a spreadsheet. 

    
Figure IV-5.  Visible absorption spectrum (left) and resonance Raman spectrum (right) of Cs4Mo2Cl8.  
Modified from that given by Clark, R.J.H.; Franks, M.L., J. Am. Chem. Soc., 1975, 97, 2691 

 
IV.5 The Wilson FG-Matrix formulation of Molecular Vibrations 

 

 There are 3N degrees of freedom for a molecule with N atoms.  For a non-linear 
molecule, six are external degrees (translations and rotations) leaving 3N-6 internal degrees 
(vibrations).  For linear molecules, one of the degrees of rotational freedom is lost since there 
can be no rotational energy for a rotation about the bond axis.  Consider the difference 
between CO2 and SO2. 
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Figure IV-6.  (A) Out of plane bending mode of linear molecule is an internal 
degree of freedom - a genuine vibration.  (B) Out-of-plane motion of a non-
linear molecule is an external degree of freedom - rotation about dotted line. 

 

In the following, a non-linear molecule is assumed. 
 

 There are many ways to treat the vibrational motions of a molecule.  The main 
difference between them is the choice of basis sets.  One possibility is to use the set of 3N 
cartesian displacement vectors, {xi | i = 1, 2, 3, ..., 3N} where x1, x2 and x3 correspond to the 
x, y and z Cartesian vectors on atom 1.  The potential energy expressed in this basis is  

V =
1

2
bijxix j

j

!
i

!  , where the elements of the matrix, bij  represent the restoring force 

experienced along xi when xj is changed - the Cartesian force constants.  This choice of basis 
suffers since there is no chemical intuition involved and the force contstants derived have no 
clear physical meaning - the restoring force of atom 1 in the x direction when atom 5 is 
displaced in the y direction is  b1,14 but it tells us nothing about the bonding.  
 
 The most commonly used method is the Wilson FG-matrix method which uses four 
different types of internal coordinates (figure IV-7): 

• bond stretchings (ν) 
• in-plane angle bendings (δ) 
• out-of-plane angle bendings (π) 
• torsions (τ) 
 
 

 
Figure IV-7.  The four types of internal coordinates. ν ≡ bond 
stretch; δ ≡ in-plane angle bend; π ≡ out-of-plane angle bend 
and τ ≡ torsion about a bond.  The motions of the atoms 
preserve the center of mass. 

 
Each internal coordinate is a linear combination of atomic displacements, but each atomic 
displacement is a linear combination of Cartesian diplacements.  The ith internal coordinate 
can thus be defined as Ri = Σcijxj.  More conveniently, all of the internal coordinates (≥3N-6) 
can be represented as a vector, R, then all of the Ri's can be defined with one matrix 
expression,  

R = CX      Eq iv-19 
where C is a matrix with 3N columns and a number of rows equal to the number of 
internal coordinates.   

The potential energy then becomes  
V = 1/2RtFR      Eq iv-20 

where F is the force field, i.e., it is the matrix of force constants for the internal coordinates 
and the interactions between them, and Rt is the transpose of R.  The kinetic energy is  
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T = 1/2R
• tGR

•

     Eq iv-21 
where the G-matrix,  

G = CM-1Ct     Eq iv-22  
is the reduced mass matrix for the internal coordinates and M-1 is a diagonalized matrix with 
elements 1/mi  (m1 = m2 = m3 and m4 = m5 = m6, etc.).  The equations of motion then become  

 (FG - λE)Q = 0    Eq iv-23 
(E is the identity matrix) and the secular equation for vibrations is  

|FG - λE| = 0      Eq iv-24 
where the λ's are the vibrational eigenvalues,  

!  = 130.3 !      Eq iv-25   
Essentially, we "diagonalize" the FG matrix - it's not quite that simple since the FG matrix is 
often not a square matrix- and the results are the eigenvalues (λ) and the eigenvectors 
(“normal coordinates,” Q).   
 
 The problem then is to associate a normal coordinate with every vibrational frequency, 
i.e., to assign the spectrum.  Presumably all of the ! 's and therefore λ's can be determined 
experimentally.  The G-matrix depends only on the atomic masses, molecular structure and 
choice of internal coordinates - it is, therefore, known.  A force field calculation then involves 
iterating the force constants (F-matrix) until solving eq iv-24 yields a set of λ's which nearly 
reproduce the experimental set.  Typically, the researcher will have many more force 
constants, fij's, than frequencies, ! k's, so solutions are usually not unique.  Fortunately, 
however, force fields are relatively transferable - the force constant for a Pt-Cl stretch will 
have similar values in all compounds.  In addition, it is assumed that isotopic substitution will 
not affect the force field thus the Pt-35Cl and Pt-37Cl stretches will have different ! 's due to 
changes in mass not in  force constants so it is possible to increase the size of the data set 
without increasing the number of  force constants to be fitted.  The problem for large 
molecules, however is formidable and the results should be treated with care. 
 

IV.6  Symmetry Coordinates 
 The results of these calculations are the eigenvectors or the normal coordinates - the 
relative motion of the atoms during a vibration given as linear combinations of the internal 
coordinates used to generate the F- and G-matrices.  The closer our choice of basis vectors is 
to the actual normal coordinates, the fewer and smaller will be the off-diagonal elements.  
Each normal coordinate forms the basis for one of the irreps of the molecular point group so 
one improvement in the basis set would be to use one that formed the basis for the irreps of 
the molecular point group.  Such a set of internal coordinates is called the symmetry 
coordinates, S, which can be written as a linear combination of the internal coordinates, 

S = UR     Eq iv-26 
Symmetry coordinates represent a much better description of the motion.  Consider two 
members of this set, Si and Sj which belong to different irreps.  Since they form the basis of 
different irreps, the direct product Si⊗Sj must change sign for at least one operation of the 
group, but the potential energy, 

V = 1/2ΣΣfijSiSj    Eq iv-27 
must remain invariant under all operations.  Therefore fij = 0 if Si and Sj belong to different 
irreps - the F-matrix is block diagonalized when symmetry coordinates are used.  The F- 
and G-matrices are still set up in terms of internal coordinates but are then symmetrized 
(block diagonalized) by a similarity transformation, 

Gsym = UGUt  and  Fsym = UFUt   Eq iv-28 
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Each block of the resulting FsymGsym matrix is then treated as a separate problem. 
 The convention for numbering the normal modes is from the highest frequency to 
lowest within an irrep and the irreps are given from top to bottom in the character table with 
degenerate modes last.  Thus for a C2v molecule, ! 1 will always be the highest frequency 
mode of a1 symmetry while ! 3N-6 will the lowest frequency mode of b2 symmetry (if there are 
b2 modes).   

 
To generate symmetry coordinates 

1. Determine the reducible representation of the 3N Cartesian displacement 
vectors and decompose it into irreps. 

2. Subtract out the external degrees of freedom (x, y, z, Rx, Ry, and Rz). 
3. Decide on a set of internal coordinates and determine the reducible 

representations of the symmetrically equivalent sets and decompose each. 
4. Construct the symmetry coordinates of each irrep as linear combinations of 

the appropriate internal coordinates as determined in number 3. 
 

The water molecule belongs to the C2v point group. 
 

 
Figure IV-8.  The 3N Cartesian vectors for water. 

Remember that in order to determine the reducible representation for these vectors, we first 
determine the number of atoms (N) that lie on each symmetry element since the vectors on 
other atoms cannot contribute to the trace.  To determine the character of an operation in the 
reducible representation, the number of unshifted atoms for the operation is multiplied by the 
contribution of the operation, i.e., by the trace of the 3x3 matrix corresponding to the 
operation.   

 
Operation 

Contribution per 
unshifted atom 

E +3 
i -3 
σ +1 
Cn +1 + 2cos(2π/n) 
Sn -1 + 2cos(2π/n) 

 
For water then, 

C2v E C2 σv σv' 
N 3 1 3 1 

Contribution 3 -1 1 1 
Γtot 9 -1 3 1 

 

Upon decomposition, Γtot = 3a1 + a2 + 3b1 + 2b2.  From the character table, Γtrans = a1 + b1 + b2 
and Γrot = a2 + b1 +b2 therefore, Γvib = 2a1 + b1.  A set of internal coordinates must now be 
chosen.  All bonds can change length, so there is one Δr for each bond.  For water that leaves 
only one coordinate which must be the angle bending. 
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Figure IV-9.  The internal coordinates of water 

 

There are two symmetrically equivalent sets of internal coordinates for water: the Δr's and Δα.  
 

C2v E C2 σv σv' 
Δα 1 1 1 1 
Δr 2 0 2 0 

  

Since the internal coordinates are individual vectors rather than sets of three vectors, there is 
no need to multiply by the contributions as we did above.  Γ(Δα) = a1 and Γ(Δr) = a1 +b1.  
Thus, Δα is a symmetry coordinate, but we must determine the appropriate SALC's for the Δr.  
Since Δr1 can be taken into Δr2 by a C2 operation, we need only consider the character of C2 in 
the a1 and b1 irreps. 

 E C2 
a1 1 1 
b1 1 -1 

 
The appropriate SALC's are then Δr1 + Δr2 
(a1) and Δr1 - Δr2 (b1).  Ideally, the numbering 
of the symmetry coordinates will be in accord 
with convention.  Stretches are typically 
higher than bendings so the a1 stretch is S1 the 
other a1 mode is S2 The other stretch then 
becomes S3.  

 
 
 
 
 

The symmetry coordinate definitions in the 
form S = UR,  
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The force field for the internal coordinates is written as, 
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where the r and r2 terms are used to maintain the same units for all force constants since angle 
bendings are unitless and have force constants in J not J/m2 (V = 1/2ΣΣfijSiSj). 
 

IV.7 The X-Pt-Pt-X linear modes of  [Pt2(pop)4X2]4- - an example 
 

 The oxidized form of Platinum pop, [Pt2(pop)4X2]4-, pop = [µ-P2O5H2]
2- is shown 

below. 

 
Figure IV-10.  The symmetry coordinates of the water 
molecule. νs = symmetric stretch, νa = asymmetric 
stretch, δ = in-plane bending or deformation.  
Movement of the O atom is such as to preserve the 
center of mass. 
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Figure IV-11.  Structure of [Pt2(pop)4X2]4-, P ≡  O=P-(OH).   

 
Its very unusual and reactive excited state has resulted in a considerable amount of research, 
and an important aspect of the research has been the nature of the Pt-Pt interaction in the 
ground and excited states.  The following Raman data and assignments have been reported.1 

  
Figure IV-12.  (A)  The resonance Raman spectra of [Pt2(pop)4]2.  (B) 
resonance Raman of [Pt2(pop)4X2]4-  (X= Cl-, Br- and I-) 
 

X = None Cl Br I 
ν(Pt-Pt) 116 158 134 110 
νs(Pt-X) - 304 224 194 
νa(Pt-X) - 285 201 178 

 
It is tempting to look at the Raman spectra and infer that since ν(Pt-Pt) increases in going 
from I to Br to Cl the Pt-Pt interaction must also be increasing presumably with increasing 
electronegativites of  the terminal halide, but is "ν(Pt-Pt)"  truely a Pt-Pt stretch?  A simple 
normal coordinate analysis will answer that question.  The molecule has D4h symmetry.  To 
simplify the force field calculations, it is assumed that the stretching vibrations of the linear 
X-Pt-Pt-X moiety can be isolated from the rest of  the modes.   
 These calculations are simple yet very informative.2  The stretches all lie along the z-
axis so this is a 1-D problem.  The Cartesian vectors and internal coordinate therefore are, 

  
Figure IV-13.  Cartesian displacments and internal coordinates for 
stretching modes of linear portion of [Pt2(pop)4X2]4-. 

 

                                                
1 Stein, P.; Dickson, M.K.; Roundhill, D.M., J. Am. Chem. Soc., 1983, 105, 3489 
2 Note that there is an error in the calculations presented by Roundhill et al which has been corrected in what 
follows. 
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First, the internal coordinates must be defined , i.e., C in R=CX must be determined. 
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Notice that with these definitions, each Δr is an elongation of the bond.  Since the motion is 
only one dimensional, each mass enters the M-1 matrix only once, so 
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The G-matrix is now determined from Eq iv-22, G = CM-1Ct - it is known if the structure of 
the molecule is knowm,  

G =
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The complete force field would require four force constants: a Pt-Pt stretching, f(Pt-Pt), a Pt-
Cl stretching, f(Pt-Cl), an interaction between the Pt-Pt and Pt-Cl stretches, I(Pt-Pt, Pt-Cl) and 
an interaction between the two Pt-Cl stretches, I(Pt-Cl,Pt-Cl').  There are, however, only three 
observed frequencies so a unique force field is not determined.  Roundhill, et al chose to set 
the Pt-Cl, Pt-Cl' interaction force constant to zero and then calculate the remaining three force 
constants.  The results of their calculations are: f(Pt-Pt) = 170 N/m, f(Pt-Cl) = 165 N/m, and 
I(Pt-Pt, Pt-Cl) = 16 N/m.  For reasons discussed later, this force field calculates the same 
frequencies for the symmetric and antisymmetric Pt-Cl stretches so the following force 
constants will be used in our discussion:  f(Pt-Cl) = 150 N/m and f(Pt-Pt) = 170 N/m, I(Pt-
Pt,Pt-Cl) = 8 N/m, I(Pt-Cl,Pt-Cl') = 7 N/m.  
 The F-matrix can then be written as, 

          !r
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Since we are using four force constants to fit only three frequencies, we expect an excellent fit 
of the data, but the solutions are not unique.  Arguments about the transferrability of this force 
field to the Br and I complexes do add some credence to its validity, however. 
 Construction of the symmetry coordinates can be done without a character table since 
the three coordinates are obiviously two linear combinations of the symmetrically equivalent 
Pt-Cl stretches, Δr1 ± Δr2, and the Pt-Pt stretch, Δr3.  The Pt-Pt bond transforms as a1g in D4h 
while the two Pt-Cl bonds are a1g + a2u.  The normalized symmetry coordinates (S = UR) can  

be written as, 
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where S1 = νs(Pt-Cl); S2 = ν(Pt-Pt); S3 = νa(Pt-Cl). 
The symmetrized G-matrix is Gsym = UGUt (Eq iv-28),   

Gsym =
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while the symmetrized F-matrix becomes,  

Fsym =

157 11.3 0

11.3 170 0

0 0 143
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Note that both matrices are block diagonalized into a 2x2 a1g block and a 1x1 a2u block.  This 
means that S1 and S2 can "couple" to form the normal coordinates and indeed they do since 
the interaction term is not zero.  The implication then is that there is no "pure" Pt-Pt stretch.  
The asymmetric Pt-Cl mode, however, is a normal coordinate and represents the actual 
motion of the atoms since it is "not connected" to another symmetry coordinate. 
 The result of the similarity transformation is that for the Pt-Cl stretches, Fsym = f(Pt-Cl) 
+ I(Pt-Cl,Pt-Cl) and Fasym = f(Pt-Cl) - I(Pt-Cl,Pt-Cl) or 150+7 and 150-7.  The only reason 
there are two different Pt-Cl stretches is that they interact, I(Pt-Cl,Pt-Cl) ≠ 0.  In the force 
field used by Roundhill et. al, this interaction was assumed to be zero and both modes were 
calculated to be at 304 cm-1.  The interaction term can be positive or negative so the 
symmetric stretch can be either higher or lower in energy than the asymmetric stretch, but if 
the interaction term is zero, only one stretch will be observed.  As the two bonds get farther 
away from one another, this interaction will get smaller and the two stretches get closer 
together.   Thus,  group theory predicts only the maximum number of observed peaks, 
the actual number may well be less, especially for large molecules where two 
symmetrically equivalent coordinates are far from one another. 
 

The eigenvalues can be determined from Eq iv-24.  For the a2u mode, λ3 = F33G33 =  
143x0.033 = 4.7 so ! 3 = 130.3(4.7)½ = 280 cm-1 and the normal coordinate Q3 = S3 = 
0.707(Δr1-Δr2) = 0.707(-x1 + x2 -x3 + x4). 
 

 Determining the other eigenvalues and eigenvectors is a little more complicated, but 
still relatively simple - we need only solve the 2x2 determinant |FG-λE|=0.  For the a1g block 
we can write 

5.15 ! " !1.02

!0.856 1.66 ! "
= 0  

 
which is expanded to (5.15-λ)(1.66-λ) - (-1.02)(-0.856) = 0.  The resulting quadratic has two 
roots: λ1 = 5.38  (! 1 = 302 cm-1) and λ2 = 1.43  (! 2 = 156 cm-1).  The force field has 
reproduced the observed frequencies to within ±3 cm-1 - the best fit.  Now to deduce the 
assignment, i.e, the normal modes. 
 The Qi are the relative motions and are defined as Qi = ΣaijRj.  The elements of the 
matrix Q are the aij.  Only the relative values of aij can be determined not the absolute 
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distances moved.  Q is determined from the equations of motion as given by Eq iv-23, (FG - 
λE)Q = 0.  For Q1, λ = 5.38. 
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which yields two equations: -0.23a11 - 1.02a12 =0 and -0.856a11 - 3.72a12 = 0.  Either equation 
yields the same ratio of coeficients: a11 = -(3.72/0.856) a12 = -4.4 a12.  Thus, the first normal 
coordinate involves 4.4 times more motion along S1 than S2 and as one bond elongates, the 
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Q1 = 0.97 S1 - 0.22S2 and Q2 = 0.27S1 + 0.96S2.  However, S1 = 0.707[Δr1 + Δr2] = 0.707[(-
x1+x2) + (-x3+x4)] and S2 = Δr3 = -x2+x3.  Thus, 
 
       Q1  = 0.97(-0.7x1 + 0.7x2 - 0.7x3 + 0.7x4) - 0.22( -x2 + x3)  
  = -0.68x1 + 0.46x2 - 0.46x3 + 0.68x4  
and 
      Q2   = 0.27(-0.7x1 + 0.7x2 - 0.7x3 + 0.7x4) + 0.96( -x2 + x3)  
  = -0.19x1 - 0.78x2 + 0.78x3 + 0.19x4 
The above represent the relative Cartesian displacements during Q1 and Q2.  These 
displacements are depicted pictorially in figure IV-14. 

 
 
Examination of figure IV-14 shows that the Pt-Pt bond length changes in both ν1 and ν2 while 
the Pt-Cl bond lengths change in all three modes.  This means that the mass of the halide 
plays a role in the frequency of the vibration and one must compare force constants to 
determine if the Pt-Pt bond is changing in this series.  

Pt-Pt stretching force constants for the series [Pt(pop)4X2]4- 
X = None Cl Br I 

f(Pt-Pt) 30 170 170 170 
f(Pt-X) - 150 140 100 

 

Thus, the Pt-Pt stretching force constant does not change in the series so the entire shift 
from 153 cm-1 in the chloride down to 110 cm-1 in the iodide can be attributed to mass 
effects resulting from the mixing of the Pt-Pt and Pt-X stretches. 
 
 

IV.8.  The Potential Energy Distribution 
 The eigenvectors do not always give the best picture of what is happening due to 
the different masses of the atoms and the fact that bendings have different units than do 

Figure IV-14.  The normal modes and 
normal frequencies of vibrations of  
[Pt(pop)4Cl2]4- 
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stretches.  As a result, the contribution of the internal coordinates to the normal 
coordinates is given by the Potential Energy Distribution (PED).  The potential energy 
of the nth normal mode can be written as, V(Qn) = 1/2Qn

2Σfiiain
2, where the fij terms have 

been dropped because off-diagonal (interaction) force constants are usually very small 
compared to the diagonal constants.  The Σfiiain

2  is usually normalized to 100 so that 
each term represents a percentage of  the potential energy.  For Q1 of the chloride, 
150(0.97)2 + 170x(0.22)2 = 150 + 8.5 = 160 which yields 150/160= 0.94 for S1 and 
8.5/160 = 0.053 for S2. 

PED for Cl-Pt-Pt-Cl 
 Q1 Q2 Q3 

S1 94 7 0 
S2 5 93 0 
S3 0 0 100 

Thus the peak at 304 cm-1 is 94% symmetric Pt-Cl stretch, the peak at 158 cm-1 is 93% 
Pt-Pt stretch and the peak at 285 cm-1 is purely an asymmetric Pt-Cl stretch.  
 
Problem IV.5  In the detailed treatment of symmetrical metal carbonyls,3 the force constants 
for the C≡O bond were found to be about 1700 N/m while those of the M-C bond were found 
to be about 200 N/m.  Interaction force constants were found to be about 70 N/m.  Assume a 
mass of 60 amu for the metal.  Since none of the internal coordinates are symmetrically 
equivalent, there is no need to construct symmetry coordinates. 
(a) Use the FG-matrix method to do the normal coordinate calculations. 
  • Define the two internal coordinates as linear combinations of the three cartesian 

 displacements, R = CX, C should be a 2x3matrix.  
  • Determine the M-matrix, 3x3 and the 2x2 G-matrix, G = CM-1Ct 
  • Write down the 2x2 F-matrix and determine the FxG product 
  • Expand theFG - λEdeterminant and get the two roots (λ1 & λ2) 
  • Use λ1 in (FG - λE)Q = 0 to determine Q1.  Use λ2 to get Q2 

  • Represent Q1 and Q2 with arrows showing the motions of the atoms in the 
normal 

            modes  
  • Use the squares of the numbers in Q along with the appropriate fii's to generate 

the 
            PED. 
(b) What would the vibrational wavenumbers be if 18O had been used?  A G-matrix effect.  
(c) Many times, researchers will assume that the two modes are those of two isolated diatomic 
 molecules.  Use your calculated frequencies to determine the isolated force constants.  
Is  this a good approximation?  Explain. 
 
Problem IV.6  The spectrum of NNO can be fitted with the following force constants: N=N 
stretch = 1788 N/m; N=O stretch = 1139 N/m; interaction term = 136 N/m.  Explain why the 
interaction term in NNO is so much larger than it is in M-C≡O.  Why is the Pt-Cl, Pt-Cl' 
interaction in [Pt2(pop)4X2]4- expected to be the smallest of the three? 
 

IV.9  Overtones and combinations:   
                                                
3 Jones,L.H..; McDowell,R.S.; Goldblatt, M., Inorg. Chem., 1969, 8, 2349. 
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 In order to completely specify a vibrational level in the linear Cl-Pt-Pt-Cl system, one 
must supply three quantum numbers, v1, v2 and v3, the number of vibrational quanta in the 
symmetric Pt-Cl stretching, the Pt-Pt stretching and the asymmetric Pt-Cl stretching.  The 
energy level diagram shown in figure IV-15 was constructed for the Cl-Pt-Pt-Cl system by 
using the observed wavenumbers of the three fundamentals (! 1 = 304, ! 2 = 158, and ! 3 = 285 
cm-1) which were assumed to be harmonic. 
 Fundamental transitions are those originating in the ground state and involving only 
one quantum of vibrational energy.  There are only three fundamentals in Cl-Pt-Pt-Cl.  There 
are two types of transitions involving more than one vibrational quanta: overtones in which 
all quanta are in the same vibration and combinations where at least two different vibrations 
are excited. Any transition originating from an excited level is referred to as a difference 
band or "hot-band" because of the temperature dependence of its intensity.  Figure IV-15 
shows some of the possible levels as well as their energies which are merely the sum of the 
vibrational quanta involved.  It should be noted that overtones and combinations often lie at 
energies less than calculated from the sum of quanta due to anharmonicity, but it is very 
unusual to make an assignment of one of these transitions to an energy higher than predicted. 
 The symmetry of a vibrational level is the direct product of the symmetries of all of 
the contributing modes - vibrational ground states are always totally symmetric.  Since the 
direct product of any non-degenerate irrep with itself is totally symmetric, overtones 
involving an even number of quanta will be totally symmetric.  Levels involving an odd 
number of quanta of a vibration will have the symmetry of the mode.  The symmetries of 
overtone levels of degenerate vibrations are not so easily ascertained and will not be discussed 
here.  However, an excellent discussion is available.4 
 Vibrations of the same energy which are very close in energy can mix in a manner 
analagous to mo's, i.e., the two resulting levels are "repelled" in energy and gain the character 
of both modes.  This can result in substantial "intensity borrowing" so that if a weak overtone 
is close in energy to a very strong, totally symmetric mode, the result can be two relatively 
strong peaks which are not as close in energy.  This phenomenon is called Fermi resonance.  
The classical example of Fermi resonance is CO2 where two moderately strong Raman bands 
are observed at 1388 and 1286 cm-1, one of which is due to the overtone of the ir-active out-
of-plane bending mode (πu) at  667 cm-1 while the other is the symmetric stretch (σg

+).  
Presumably, the two peaks would be observed as one very weak band at 2x667= 1334 cm-1   
and one very strong band close to that energy in the absence of Fermi resonance.  After 
mixing, however, the overtone gains some of the character of the stretch and thus gains 
intensity while the stretch gains overtone character and loses intensity.  Assignment of one 
peak to the overtone and the other to the stretch is unwarranted.  In the Cl-Pt-Pt-Cl example, a 
prime situation for Fermi resonance would be between 2! 2 (≤ 316) and ! 1 (304) as they are 
both totally symmetric and lie within 12 cm-1 of one another.  There is no way, however, to 
predict if the two levels will mix. 
 

                                                
4 Wilson, E.B.; Decius, J.C.; Cross, P.C., Molecular Vibrations: The Theory of Infrared and Raman Vibrational 
Spectra, McGraw-Hill, 1955, pp 151-155. 
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Figure IV-15.  An energy level depicting the fundamental and some of the overtone 
and combination levels for linear Cl-Pt-Pt-Cl.  The quantum numbers for each level 
are in the order:   v1   v2   v3. 

 
 You should now have a working vocabulary and at least a small appreciation for the 
mechanics of normal vibrations and the FG-matrix method.  We want to turn to the generation 
of  symmetry coordinates for larger molecules and then to the assignment of these symmetry 
coordinates to the observed spectra.  However, before we can do that we must first consider 
Raman scattering which plays an important role in vibrational assignments. 

IV.10 Raman scattering 
 As a photon with a wavenumber ! o traverses a molecule, it manifests itself in the 
induced oscillation of the electrons in the molecule.  Ordinarily, the photon's energy is 
unchanged by the process and the scattering event is elastic.  This type of scattering is called 
Rayleigh scattering.  However, occasionally, the oscillation of the electrons can induce 
vibrations in the molecule and thus the scattered photon's wavenumber !  will be decreased by 
the energy of the vibration, i.e., ! o - !   = Δ!  = ! vib   This latter type of scattering is called 
Raman scattering and is inelastic (photon's energy is not conserved).  In Raman scattering, an 
incoming photon can also encounter a vibrationally excited molecule which can add the 
vibrational energy to the photon.  The two different types of Raman scattering are called 
Stokes (!  < ! o) and anti-Stokes (!  > ! o) - see figure IV-16.   Due to the Boltzmann 
distribution of molecules among vibrational levels, the anti-Stokes events get very rare as the 
vibrational energy increases.  Raman spectra are usually reported versus Δ!  rather than !  
since it is the vibrational energies that are important. 
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Figure IV-16.  The Raman spectrum of a compound with vibrational modes at 300 and 
800 cm-1 observed with a 19,500 cm-1 exciting line at 300K.  The very strong line at ! o is 
due to Rayleigh scattering.  The anti-Stokes component of the Raman scattering is weaker 
than the Stokes component by exp(-Evib/kT). 

 
 In normal Raman, the scattering is not from a stationary state but from a virtual state 
(figure IV-17).  Virtual states can be considered as stationary states that have been spread out 
by the uncertainty principle, ΔE Δt ≈ h where ΔE is the amount by which the photon's energy 
fails to be in resonance with the closest lying excited state and Δt is the time the system can 
spend in this state.  Thus Δt ≈ (! c*)-1  so if the exciting line, ! 0 is in the visible at 20 kK and 
the lowest excited state is 30 kK then  ΔE = 1x104 cm-1 and Δt ≈ (1x104x3x1010)-1 ≈ 3 fs or 
about a vibrational period - normal Raman scattering is a very fast process.  
 

    
Figure IV-17.  The two types of normal Raman scattering. 

  

 What fraction of the molecules will undergo scattering will depend upon how  the 
electrons are affected by the field, i.e., on the molecule's polarizability (α).  One can view the 
process as the photon initiating an oscillating dipole (µ) in the molecule as the electrons 
oscillate with the electric field; it is then the oscillating dipole that radiates the scattered 
photon (much like a radio transmitter).  The strength of this induced dipole is proportional to 
the electric field of the photon.   The proportionality constant is the molecular polarizability.  
Since the dipole and the electric field are actually vectors, the polarizability is a tensor.  

µ = αε     eq iv-29 
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 where αxz is a measure of how easily the z-component of the 

electric field (z-polarization) induces a dipole in the x-direction - this would imply that the 
vibration interacts in such a way as to rotate the polarization.  Indeed, one of the important 
pieces of information available from Raman scattering is the polarization change that the 
incoming photon undergoes.   
 The exciting lines in the modern Raman experiment are from lasers and the output 
from most lasers is polarized because of the use of Brewster angle windows.  The 
polarization, however, can be rotated with a quarter wave plate so any orientation of  
polarization is possible so long as the polarization is perpendicular to the direction of 
propagation of the light.  A polarizer after the sample will allow light only of a given 
polarization to pass.  The experimental setup is shown in figure IV-18. 

 
Figure IV-18.Typical Raman experimental 
setup for 90o scattering. 

 

 The intensity of scattered radiation which is polarized perpendicular to that of the 
incoming radiation is defined as I⊥ and that of the radiation parallel to the incoming radiation 
as I|| then the depolarization ratio, ρ is defined as, 

ρ =  I⊥/I||      eq iv-30 
 
In the case where the polarizability tensor is diagonal - the vibration does not rotate the 
electric vector - all of the intensity will remain parallel to the incoming radiation and ρ = 0.  
This is referred to as isotropic scattering.  However, if any of the off-diagonal elements are 
non-zero, then there can be intensity in the perpendicular component and ρ > 0.  In solutions 
or pure liquids (solids are excluded from the following discussion) which involve rotationally 
averaged, randomly oriented species, there are three irreducible tensors which remain 
invariant.  They are 

• the isotropy, Go = αxx
2 + αyy

2 + αzz
2 = 3α 2

avg
, which transforms as the totally 

symmetric representation; 
• the symmetric anisotropy, Gs, which transforms like the d-orbitals; and 
• the anti-symmetric anisotropy, Ga, which transforms like the rotations. 

 
Τhe intensities of the two components can then be expressed as  I||  ∝ 10 Go + 4Gs and I⊥ ∝ 
3Gs + 5Ga.  The total intensity of the scattered radiation is given as Itot  = I||  + I⊥ ∝ 10Go + 7Gs 
+ 5Ga .  The depolarization ratio is then 

ρ = +

+

3G 5G

10G 4G

s a

o s
    Eq. iv-31a 

for normal Raman Ga = 0.  So, 
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ρ =
+

3G

10G 4G

s

o s
    Eq. iv-31b 

For purely isotropic scattering, Gs = 0 so ρ = 0.  For purely symmetric scattering, Go = 0 so ρ 
= 3/4.  Since Go transforms as the totally symmetric representation, only totally symmetric 
modes can have Go ≠ 0 and thus only totally symmetric modes can have ρ < 3/4.  Therefore, 
an important fact that will help in the assignment of normal modes is that for non-totally 
symmetric modes, ρ  = 3/4 but for totally symmetric modes, 0  ≤  ρ  ≤  3/4.  The actual value 
of ρ of a symmetric mode will depend on the relative contributions of Go and Gs to the 
scattering tensor for that mode. It should be noted that if ρ < 0.75 the peak is polarized and 
the vibration is totally symmetric, but if ρ = 0.75 one cannot conclude that the vibration 
is not totally symmetric since totally symmetric modes can be active due to Gs > 0 - this is 
especially true in molecules of low symmetry.  In resonance Raman (see section VI.8), it is 
possible for activity to result from Ga, in which case, there is no parallel intensity so ρ → ∞.  
This is referred to as anomalous polarization. 
 Depolarization ratios of samples in solution can be measured in several different ways, 
but we will describe only the easiest here.  The Raman spectrum of a solution, is recorded 
twice, once with the polarizer oriented so as to pass light polarized parallel to the incoming 
beam to measure I||  and then once with it rotated 90o to measure I⊥. 

    
Figure IV-19.  Measurement of depolarization ratio.  Light leaves laser (L) polarized in the xy plane and 
is scattered from sample (S).  If  Gs ≠ 0, the scattered radiation will have both xy and  yz compnents.  In 
experiment A, the polarizer (P) is adjusted to allow transmission of the xy component (|| polarization) 
and the spectrum is recorded.  In experiment B, the polarizer is turned to transmit the yz component (⊥ 
polarization) and a second spectrum is recorded.  The depolarization ratio of a peak is the ratio of the 
second intensity to the first (ρ = I⊥ /I|| ).   

 
Figure IV-20.  Raman spectra recorded in parallel and perpendicular polarizations.  The peak at 800 
cm-1 has a depolarization value of ρ = I⊥ /I||  = 30/100 = 0.3 since ρ < 0.75 this peak is said to be 
polarized and must therefore be a totally symmetric mode.  The peak at 300 cm-1 has a depolarization 
value of ρ = (28-5)/(37-5) = 23/32 = 0.72 which is sufficiently close to 0.75 that one would have to 
say that it is probably depolarized which means that it might be a non-totally symmetric mode. 

 

IV.11 Raman Selection Rules    
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 In normal Raman, activity is due to non-zero values for Go and/or Gs.  Go is always 
totally symmetric so totally symmetric vibrations are always Raman active.  Gs transforms 
like the d-orbitals so modes which have the same symmetry as one of the d-orbitals will also 
be Raman active.  Furthermore, since only non-zero values of Go can result in ρ < 3/4, only 
totally symmetric modes are polarized.  As one example, consider the C2v point group, 
 

C2v     
A1 z x2, y2, z2 Go + Gs 0≤ρ ≤0.75 
A2 Rz xy Gs + Ga ρ = 0.75 
B1 x, Ry xz Gs + Ga ρ = 0.75 
B2 y, Rx yz Gs + Ga ρ = 0.75 

 

From the above, we can conclude that all vibrations are Raman active since the d-orbitals span 
all four irreps, but any a2 modes would be IR silent.   There are three contributions to the A1 
irrep in the third column; one of which must correspond to Go the other two, therefore, 
correspond to Gs so in C2v symmetry 0≤ρ ≤0.75 for a totally symmetric mode and values of 
zero should be rare. Since the other irreps all include a rotation and the d-orbital, they also 
contain Ga and Gs. 
 For the  higher symmetry Td point group, 
 

Td     
A1  x2+y2+z2 Go ρ = 0 
A2   - Not Active 
E  (2z2-x2-y2, x2-y2) Gs ρ = 3/4 
T1 (Rx, Ry, Rz)  Ga RRS only 
T2 (x, y, z) (xy, xz,yz) Gs ρ = 3/4 

 

From the Td table we can conclude that only t2 modes are IR active while a1 + e + t2 modes are 
Raman active.  Since only one term is listed for A1 in the "d-orbital column", it must arise 
from Go therefore there are no contributions to a1 Raman active modes from Gs and they are 
purely isotropic and thus ρ = 0 for totally symmetric modes.  The e and t2 modes are active 
due to Gs terms and will have ρ = 0.75.  The t1 irrep contains the rotations and therefore Ga so 
t1 modes are not active in normal Raman but can be active in resonance Raman (RRS) 
experiments where they are expected to show anamalous polarization. 
 

IV.12  Infrared and Raman Intensities 
 Infrared absorption is due to the interaction of the electric field of the light with the 
dipole of the molecule and the intensity of an IR band depends upon (µ/� Q), the change in 
dipole during the vibration.  Raman activity, however, is due to the interaction of the electric 
field with the electrons and depends upon the polarizability of the electron cloud.  Expansion 
of the polarizability in terms of the normal coordinates yields the result that the intensity of a 
Raman band depends upon (α/Q), the change in polarizabilty during the vibration.  Thus, two 
general rules of intensities are: 

• Infrared bands are generally strong for asymmetric modes involving electronegative 
atoms.  This combination results in a large (∂µ/∂Q). 
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e.g., ν� � �  (R2C=CR2)   e.g., ν� � O (R2C=O) 

• Raman bands are generally strong for symmetric modes involving large atoms 
resulting in a large change in the size of the molecule.  This combination results in a 
large (α/Q). 
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e.g., νa (O=C=O)   e.g., νs (O=C=O) 

These rules are "rough rules of thumb" but can often be helpful in vibrational assignments when 
there is little else to use as guidance. 

 

IV.13 A complete vibrational assignment, SbCl5 
 A vibrational assignment consists of associating a symmetry coordinate to each of the 
observed peaks in the IR and Raman spectra.  Group theory and selection rules are invaluable 
tools in this process.  As an example, the vibrational spectrum of SbCl5, given below, will be 
assigned. 
 

cm-1 IR Raman Polarized 
395 x x  
371 x   
356  x x 
307  x x 
172 x x  
165  x  
154 x   
72 x x  

  

 First a set of internal coordinates for the D3h molecule must be defined. 

  
Figure IV-21.  The symmetry elements and internal coordinates for SbCl5. 
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 The D3h character table is given below along with the number of unshifted atoms (N) 
and the contribution per unshifted atom for each character.  Γtot then is the product of these 
two and represents the reducible representation for all degrees of freedom for the molecule.  
Note that under E the character is 18 - the dimension of the representation.  Figure IV-21 also 
gives the internal coordinate descriptions.  Note there are 14 (5 stretches + 9 bendings) while 
3N-6 =  12.  Each of the bonds must stretch, so 5 stretches is correct, but that leaves only 
seven bends.  The additional two bends are called redundancies and will be removed when 
we construct the symmetry coordinates.  
 

D3h E 2C3 3C2 σh 2S3 3σv   
A1' 1 1 1 1 1 1  x2 + y2, z2 
A2' 1 1 -1 1 1 -1 Rz  
E' 2 -1 0 2 -1 0 (x,y) (x2-y2, xy) 

A1" 1 1 1 -1 -1 -1   
A2" 1 1 -1 -1 -1 1 z  
E" 2 -1 0 -2 1 0 (Rx, Ry) (xz, yz) 
N 6 3 2 4 1 4   

cont 3 0 -1 1 -2 1   
Γtot 18 0 -2 4 -2 4   

 

Γtot can be decomposed to give, 
 Γtot = 2a1' + a2' + 4e' + 3a2" + 2e". 
The character table indicates that the external degrees of freedom transform as  
 Γext =           a2' + e' +     a2"  +  e"  
Subtracting the external degrees from the total gives the internal degrees 
 Γvib = 2a1'    +     3e'   + 2a2"  +  e" 
 

The following can be deduced from the character table: 
2a1' modes are Raman-only active and polarized.  They can thus be assigned to the 

two polarized Raman only bands as ! 1 = 356  cm-1 and ! 2 = 307 cm-1. 
2a2" modes are IR-only active.  There are only two peaks that are observed only in 

the IR so ! 3 = 371 cm-1 and ! 4 =154  cm-1. 

3e' modes are IR and Raman active which is consistent with three observed IR and 
Raman active modes at ! 5 = 395 cm-1, ! 6 = 172 cm-1 and ! 7 = 72 cm-1. 

e" vibration is Raman-only active but not polarized consistent with! 8 = 165 cm-1. 
       

The symmetry coordinates are now constructed.  The symmetrically equivalent sets of internal 
coordinates transform in the following way, 
 

D3h E 2C3 3C2 σh 2S3 3σv  
R 2 2 0 0 0 2 a1' + a2" 
r 3 0 1 3 0 1 a1' + e' 
α 3 0 1 3 0 1 a1' + e' 
β 6 0 0 0 0 2 a1' + a2" + e' + e" 

 

The sum of the irreducible representations of the internal coordinates is the same as Γvib except 
that there are 4a1' coordinates but only 2a1' modes.  The two redundancies are both a1' and they 
must come one from α and one from β.  Since all of the characters of the a1' irrep are positive, 
these two redundancies would correspond to all of the α's and all of the β's increasing which 
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is impossible.  Thus the redundancies are easily eliminated and the 3N-6 symmetry 
coordinates can now be constructed in the same order as the ! i, from high !  to low !  in each 
irrep. 
 

Determination of the vibrational SALC's.  The operation used to transform the reference 
vector into one of the members of the symmetrically equivalent set in the generation of the 
SALC's should perform this operation uniquely.  For example, C2 is a poor choice for Δβ1⇒
Δβ2' as there are three C2 operations and they all have different effects on Δβ1.   However, C2 
is an acceptable operation to convert ΔR1 into ΔR2 since all three of the C2 rotations have the 
same effect.  The following choice of operations are unique in this respect. 
 

ΔR1⇒ ΔR1 
E 

ΔR2 
C2 

 Δr1⇒ Δr1 
E 

Δr2 
C3 

Δr3 
C3 

 Δα1⇒ Δα1 
E 

Δα2 
C3 

Δα3 
C3 

a1' +1 +1  a1' +1 +1 +1      
a2" +1 -1  e' +2 -1 -1  e' +2 -1 -1 

 

Δβ1⇒ Δβ1 
E 

Δβ2 
C3 

Δβ3 
C3 

Δβ1' 
σh 

Δβ2' 
S3 

Δβ3' 
S3 

a2" +1 +1 +1 -1 -1 -1 
e' +2 -1 -1 +2 -1 -1 
e" +2 -1 -1 -2 +1 +1 

 

The numbers in the above tables are the coefficients (not normalized) of the internal 
coordinates in each of the symmetry coordinates. 
 

The 2a1' modes, ΔR and Δr, are the axial and equatorial stretches.  X-ray data indicate that the 
axial bond is longer than the equatorial so we will assume that the equatorial modes are at 
higher energy.   

 
Figure IV-22.  The a1' modes of SbCl5 

 

One of the a2" modes is the antisymmetric axial stretch, ΔR, while the other is a Δβ, an out-of-
plane motion of the equatorial Cl's, i.e., π(SbCl3).  Since stretching force constants are almost 
always higher than bending force constants, the higher energy mode is assigned to the stretch.  
This assignment is also consistent with the assignments of the a1' stretches to above 300 cm-1. 

 
Figure IV-23.  The a2" modes of SbCl5. 
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The three e' modes consist of a stretch, Δr, and two bends, Δα and Δβ. Consistent with the 
assignments of the previous stretches, ! 5 is assigned to the stretch.  There is no clear way to 
distinguish between the two bending modes.  However, normal coordinate analysis has 
confirmed that the Δβ mode is the lower of the two.  There is only one coordinate of e" 
symmetry so ! 8 is clearly due to S8, a bending mode. 

 
 

 
 

 
 

The vibrational assignment in complete, but before leaving this example, there are two aspects 
of the motion which are worthy of further discussion. 
 

 Degenerate vibrations are two dimensional, i.e., they are not restricted to the one 
dimensional coordinates S7a and S7b but rather to the plane defined by the two basis vectors.  
The actual motion is better described as a circular motion in the plane described by S7a and S7b 
so ! 7 and ! 8 are better described as in-phase and out-of-phase rotations of the equatorial Cl's 
as shown in Figure IV-26.5   

 
Figure IV-26.  Representation of  the two degenerate vibrations S7 and S8  

 
All of the symmetry coordinates of a given irrep can "couple" and the normal modes are linear 
combinations of them.  Thus, the actual motions of Q1 and Q2 could be in-phase and out-of-

                                                
5The bending mode of CO2 describes a similar motion so that the molecule never goes through the linear form. 

Figure IV-24.  Two of the e' 
modes of SbCl5.  The third 
component is shown in figure 
IV-25. 

Figure IV-25.  The two bendings of the 
equatorial Sb-Cl bonds. 
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phase combinations of the symmetric equatorial and symmetric axial stretches.  S8, on the 
other hand, is a normal coordinate since there is only one e" mode - no other coordinate of e" 
symmetry can be constructed!  Normal coordinate calculations indicate that  Q7 = 0.01S5 + 
0.08S6 + 1.0 S7.  Which means that during this vibration, two equatorial bond lengths increase 
as does the bond angle between them while at the same time the angle between the axial 
bonds is decreasing.  Refer to figure IV-27. 

 
Figure IV-27.  A representation of the normal coordinate Q7 derived 
from a linear combination of the three e' symmetry coordinates. 

 

IV.14.  Pseudorotation in a trigonal bipyramid 
 Q7 is a very low frequency mode (! 7 = 72 cm-1) so it is expected to have a large 
amplitude of vibration (see figure VI-1).  The following discussion relates to figure IV-28.  
We will begin with the molecule in the equilibrium trigonal bipyramid at "A".  As it moves 
along the Q7 normal coordinate, the 2-3 bond angle opens up from 120o, the 4-5 angle starts to 
reduce from 180o, and the 2 and 3 bonds lengthen, approaching the 4 and 5 bond lengths.  As 
this happens, the potential energy of the molecule is increasing.  At point "B", the molecule 
has C4v symmetry, i.e.,  the 2, 3, 4 and 5 bonds are the same length and the bond angles have 
reached those of a square pyramid,  and it has reached a maximum in energy.  As the 
molecule passes through the square pyramid, it again approaches D3h symmetry and the 
energy drops until at "C" a new equilibrium trigonal bipyramid is achieved.  In going from 
"A" to "C", however, atoms 4 and 5 have gone from axial to equatorial while atom 2 and 3 
have done the reverse - the molecule has undergone an axial-equatorial interconversion.  This 
process then continues as shown and beyond.  If one considers only the D3h molecules in the 
figure and removes the labels, it appears that the molecule is simply rotating in space.  This 
motion, therefore, is called pseudorotation, and the energy difference between the trigonal-
bipyramid and the square pyramid is called the barrier to pseudorotation which has been 
determined to be 8.9 kcal/mol or about 3x103 cm-1 in SbCl5.6 

   
Figure IV-28.  Pseudorotation of the trigonal bipyramid SbCl5 

 

                                                
6 Holmes, Dieter and Golen, Inorg. Chem., 1969, 8, 2612. 
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Problem IV.7  Three bands are observed in the infrared spectrum of PtBr4
2- (105, 112 and 

227 cm-1) and in the Raman (106, 194, 208 cm-1).  Only the 208cm-1 Raman line is 
polarized in solution spectra, and single crystal IR indicates that the modes at 227 and 112 
cm-1 have the same polarization.  Draw a set of symmetry coordinates describing each 
as ν, δ or π.  Give only one component of the degenerate modes.  Be certain to include the 
Pt motion.  Assign each of the observed bands to the correct symmetry coordinate.  The 
symmetry coordinates should be numbered consistent with convention. 

 
IV.15 Multi-minima potential functions 

 The potential function which is approximated in figure IV-28 is obviously not 
harmonic, but neither is it Morse like.  It is a multi-minimum potential function - functions 
like this are very important to the understanding of the molecular structure of many 
compounds.  There are two types of multiminima potentials.  Periodic minima continue in a 
cyclic manner (psuedorotation potential shown in figure IV-27) and potentials which have 
only a few minima (almost always two) before rising rapidly.  We will discuss one example of 
each; hindered internal rotation and inversion. 
 The classic example of hindered rotation is that of a methyl group which is often said 
to be a "free rotation", but how free the rotation is depends primarily on the method used to 
measure it.  The normal coordinate in ethane is the C-C torsion which we will measure by the 
angle φ defined as the angle between C-H bonds on the different methyl groups. 

 
The potential energy reaches maxima whenever two bonds are eclipsed and will reach minima 
at the staggered conformation.  The potential energy for this motion is identical in shape to 
that shown in figure IV-28 where  φ = π/3 at "A", φ = 2π/3 at "B", φ = π at "C", etc.  The 
barrier to internal rotation in ethane is 11.7 kJ/mol = 2.8 kcal/mol =  1.0x103 cm-1. 
 The other case we want to consider is that of inversion.  Inversion covers such things 
as a bent molecule inverting through the linear form, a pyramid going through planar and then 
back to a pyramid directed in the opposite direction, and an axial-equatorial conversion in a 
ring compound.  In all of these cases, the molecule goes through a maximum energy 
conformation (e.g., linear or planar) to reach a new minimum.  The energy difference between 
the minimum and maximum is the barrier to inversion.  The spectra of the vibrations which 

carry out these inversions are often rich7  and informative.  To 
understand why this is true, lets start out with a harmonic 
oscillator potential and place a barrier at the Q=0 position.  
The effect of the barrier is to increase the energy of all of the 
vibrational levels.  The amount that these levels are increased 
by the barrier depends on the height and width of the barrier 
and the energy of the level (those at the bottom will be 
affected the most and those with energies well above the 
barrier not be affected at all).  The amount of this energy 
change that is "felt" by a given level will also depend on the 
probability that the molecule can be found at Q=0.  Figure IV-
3, which shows the square of the vibrational wavefunctions, 
                                                

7 Since they are usually at low energies, there is appreciable population of vibrationally excited states and a 
number of "hot-bands" will be observed. 

  
Figure IV-29.  The double 
minimum potential function 
governing the inversion of NH3. 
Vo is the barrier to inversion.  
Qe is the equilibrium distance 
between the plane of the three 
hydrogens and the nitrogen. 
Lines a & b represent the ir-
allowed transitions and lined c 
& d represent the Raman active 
transitions. 
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indicates that for odd values of v, there is a node at Q=0.  Thus, the even levels are affected  
by the barrier more than are the odd levels.  The eigenvalue spectrum for this system can get 
very irregular as v=0 approaches v=1 and v=2 approaches v=3 etc.  If the barrier is "infinitely" 
high, these pairs of levels become degenerate and are labelled with the same value of v.  To 
differentiate between them, a "+" or a "-" corresponding to the "+" and "-" linear combinations 
of two separated wells is used.  As an example consider the inversion of ammonia, where the 
nitrogen "passes through" the plane of the three hydrogen atoms (figure IV-29).  

 
The selection rules are + ↔ - for the IR and + ↔ +  or - ↔ - for the Raman.  The inversion 
fundamental is split in both the IR and the Raman.  The IR frequencies are 931.6 and 968.1 cm-1 
while the Raman peaks are at 934.0 and 964.3 cm-1.  The origin of the splitting is apparent in 
figure IV-29 as the IR bands correspond to a and b, respectively while the Raman bands are d 
and c, respectively. 
 

 The barrier to inversion is 2076 cm-1 (5.8 kcal/mol) in NH3.  The frequency of the 0+ 
→ 0- transition is called the tunnelling or inversion frequency and represents the frequency 
with which the two forms can interconvert without going over the barrier, i.e., by tunnelling 
through the barrier - strictly a quantum mechanical consequence, but one that plays an 
important role in chemistry.  For NH3, the  0+ → 0- transition is observed in the microwave at 
0.793 cm-1 = 2.38x1010 s-1.  The period of inversion, τ = 1/ν = 42 ps.  Thus ammonia 
interconverts between the two forms on the average of once every 42 ps.  It does this without 
going through the planar form!  This frequency is very sensitive to the height of the barrier.  
For AsH3, the barrier to inversion is 11,200 cm-1 and the period of inversion is 1.4 years. 

 
IV.16 The use of IR and Raman spectra to deduce isomeric forms. 

 A combination of Γvib and the D3h character table, allows us to deduce the following 
spectroscopic characteristics of SbCl5. 
 

Raman 
only 

IR 
only 

 
coincident 

Raman 
polarized 

3 2 3 2 
 

If, on the other hand, SbCl5 had been square pyramidal, C4v, we would find that  
 

Raman 
only 

IR 
only 

 
coincident 

Raman 
polarized 

3 0 6 3 
 

Can we conclude that SbCl5 is indeed trigonal bipyramidal based on the IR and Raman data 
presented earlier.  When answering this question, one must be careful not to overinterpret 
negative results.  For example, can we rule out C4v since we observed only two polarized 
peaks where C4v calls for 3?  No!   Remember that a totally symmetric peak may have ρ = 3/4.  
Group theoretical considerations simply indicate the number of modes that are possible not 
the intensities or the splittings.  If two Sb-Cl bonds do not couple (not the case here) than we 
would see only one Sb-Cl stretch instead of the two predicted.  If a KBr pellet is used, solid 
state effects might cause bands to split resulting in the observation of more bands than 
predicted.  It is possible that the polarizibility or dipole change is just so small for a vibration 
that even though group theoretical considerations predict a non-zero dipole or polarizability 
matrix element, the mode may be so weak that it is not observed in either the IR or the 
Raman.  So extreme care must be used for structural determinations with IR and Raman alone.  
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Care must also be taken that overtones and combinations are not counted as fundamentals. 
Positive evidence, however, like observing too many Raman polarized bands (no overtones) 
or too many coincident bands, etc. is strong support for lower symmetry forms.  Thus, we can 
not definitely rule out the square pyramid based on these results, but we could certainly say 
the  results were consistent with and strongly supported a D3h geometry.  If, on the other hand, 
we obtained the C4v results, we could definitely rule out the D3h structure.  So, be careful! 
 

 As our next example, we will attempt to distinguish between the fac- and mer-isomers 
of ML3(CO)3 based on the CO vibrations.  CO's are excellent ligands for vibrational studies 
since their frequencies of around 2000 cm-1 are removed from other fundamentals.  If 
L=pyridine, there will be a rich IR spectrum of the pyridine ligand (just one not three since 
they do not couple - I(py-py) =0) and these peaks can obscure other important pieces of 
information and make interpretation difficult.  Thus, the CO stretches are a common probe of 
the structure of carbonyl complexes.    

    
The meridial isomer has C2v symmetry while the facial isomer is C3v.  The Γvib for the C≡O 
stretches is the same as Γbond 
C2v E C2 xz yz  C3v E 2C3 3σv 
ΓCO 3 1 1 3  ΓCO 3 0 1 

 Γvib = 2a1 + b2      Γvib = a1 + e 
 all IR and Raman active   both IR and Raman active 
 2 Raman polarized  solutions 1 Raman polarized 
 
If three bands are observed in the IR and/or Raman in the 2000 cm-1 region, then the sample is 
probably the mer-form.  However beware of: 

• overtones and combinations 
• very weak or missing modes that are predicted to be active 
• solid state effects could split the e modes (see last section this chapter) 

Consider the three isomers of SbX2Y3. 

  
D3h E C3 C2 σh S3 σv  C2v E C2 yz xz  Cs E σ 
N 6 3 2 4 1 4  N 6 2 4 4  N 6 4 
Γ 18 0 -2 4 -2 4  Γ 18 -2 4 4  Γ 18 4 

Γvib = 2a1' + 3e' + 2a2" +e"    Γvib = 5a1 + a2+ 3b1 + 3b2      Γvib = 8a' + 4a" 
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 coinciden
t 

IR-only Raman-
only 

polarized 

D3h 3 2 3 2 
C2v 11 0 1 5 
Cs 12 0 0 8 

 
Because the differences between the D3h isomer and the other two are so great, it should be 
easy to identify or rule-out the D3h.  The Cs character table has only two irreps so there will be 
a large contribution to the Raman activity of totally symmetric modes from the symmetric 
anisotropy resulting in depolarization ratios of near 0.75.  In this case, differentiation between 
C2v and Cs would be very difficult unless more than five bands have ρ<0.75.  Thus we could 
be firm in our assignment to Cs, but there is no clear way to confidently state a case for C2v.  If 
the C2v results are obtained, you can only state they are consistent with C2v but do not rule out 
Cs. 
 In this section, you should have learned that care is necessary in the deduction of 
structure from IR and Raman data and all one can usually say is that the spectra are consistent 
with a structure. 
 
Problem IV.8  For each of the following, determine molecular symmetry, the number of IR & 
Raman active modes and the number Raman polarized lines to be expected:  cis- and trans-
Cl2PtBr2, (N)Os(O)3

- (pyramidal). 
 
Problem IV.9  For each of the following give the symmetry or isomer of the molecule based 
on the information contained in the IR and Raman spectra. Be certain to indicate the degree of 
confidence with which you make the assignment.  
a. Two A-X stretches are observed in each the IR and Raman spectra of AX3.  
b. One M-X stretch is observed at nearly the same frequency in both the IR and Raman for the   

trigonal bipyramidal MX2Y3. 
c. Two C≡O stretches of M(CO)3L3 are observed in both the IR and the Raman (one      

polarized).   
 

IV.17  The Vibrational Spectra of Solids. 
 

 Since such a large fraction of inorganic substances are solids it is important to have an 
understanding of how the spectra of solids differ from those of solutions.  The most 
encountered effect of the intermolecular forces in the solid state is a lowering of symmetry 
which can lead to splitting of degenerate vibrations or giving activity to previously silent 
modes in the IR and Raman.  Those degrees of freedom which we characterized as external 
degrees become lattice modes - the translation or rotation of one molecule in the solid 
becomes a vibration where the entire molecule oscillates in the crystal site.  These modes are 
usually very low in energy depending on the mass of molecule, but combination bands of the 
fundamentals and these lattice modes can be observed adding complexity to the spectra. 
 The Bravais cell is the smallest unit in which no atom can be translated into an 
identical atom.  It is used by the spectroscopist to determine the irreps for the lattice 
vibrations.  It may be the same as the crystalographic unit cell, but it is only a fraction (1/R) of 
the crystalographic unit cell for some crystal structures.   See the table of R values of space 
groups on the following page. 
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 The number of molecules in the Bravais cell  = the number of molecules in the 
crystalographic unit cell /R, i.e., ZB = Z/R.  Each Bravais cell contains a number of sites, each 
with its own site symmetry which is a subgroup of both the space group and the molecular 
point group. 
 When dealing with solids then, one needs to be concerned with three groups: the 
molecular point group, the space group (crystallographic symmetry) and the site groups.  The 
space group is determined by X-ray while the site group is determined from tables of possible 
site symmetries and numbers of equivalent sites: 

1. Halford, R.S., J. Chem. Phys., 1946, 14, 8. 
2. Fateley, W.G., et al., Infrared and Raman Selection Rules for Molecular and Lattice 

Vibrations: the Correlation Method, Wiley (1972). 
and the two conditions: 

• Site group must be a subgroup of the space group and the molecular point group. 
• The number of equivalent sites must be equal to the number of ions or molecules of a 

given type that occupy those sites. 
 
Table of R values of space groups. 

Crystal 
Structure 

R 

A 2 
B 2 
C 2 
F 4 
I 2 
P 1 
R 3 or 1* 

  * 1 unless the number of molecules in the unit cell is divisible by 3 
 
Cu2O  belongs to the Pn3m (Oh

4) space group and has two molecules/unit cell.  The  Pn3m 
space group in the second of the two tables referenced above contains the following entry: 
 Space Group    Site Symmetries 
223  Pn3m, Oh

4  Td(2); 2D3d(4); D2d(6); C3v(8); D2(12); C2v(12); 3C2(24); Cs(24) 
 
The entry 2D3d(4) means there are two different kinds of sites with D3d site symmetry and there 
are four equivalent atoms or ions accomodated on these sites. 
 
For P structures, the table above indicates that R=1 so ZB = 2/1 = 2.  Thus, in the Bravais cell, 
there are two Cu2O molecules so there are four copper atoms and two oxygen atoms.  The 
copper atoms must lie on one of the D3d sites while two oxygen atoms must lie on Td sites. 
 
According to Halford, the molecular vibrations in the crystal are determined from the site group.  
The site group analysis on the two forms of CaCO3 follows: 
 
 Calcite (marble, chalk, limestone - cold weather) 
 Aragonite (coral, sea shells, pearls - warm weather) 
           _ 
Calcite x-ray data: Space group = R3c = D3d

6 &  Z=2.   
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 From the table of R values, R = 1 (Z/3 is not an integer) so ZB = 2/1 = 2.  There are two 
Ca2+ and two CO3

2- sites.  From site symmetry tables in reference 2 we obtain the following 
sites:  D3(2); C3i(2); C3(4); Ci(6); C2(6); Ci(12).  The only site available to accomodate two ions 
are the D3 and the C3i.  However the C3i sites can be ruled out since they contain inversions while 
the molecular point group (D3h) does not, i.e., C3i is not a subgroup of D3h.  Therefore, the 
carbonate ions lie on D3 sites in calcite. 

 

Aragonite x-ray data:  Space group = Pnma = D2h
16 & Z = 4. 

 Again, R=1 so ZB = 4 and there are 4 carbonates in the Bravais cell.  The available sites 
from the reference 2 are 2Ci(4) and Cs(4), Ci is not a subgroup of D3h so the carbonates lie on the 
Cs sites.   

The normal modes of the carbonate ion are: 

   

D3h a1' (R) a2" (IR) e' (IR & R) e'(IR & R) 

D3 a1(R) a2 (IR) e (IR & R) e (IR & R) 

Cs a' (IR & R) a" (IR & R) a' + a" (IR & R) a' + a" (IR & R) 

 

Thus lowering the symmetry down to D3 has no effect on the spectra of the carbonate ion, 
and the spectrum of the calcite powder would have the same appearance as a solution of 
carbonate.  The interactions in the aragonite powder, however, have extensive effects on the 
spectra as ν1 is observed in the IR and ν2 is also observed in the R while ν3 and ν4 are each 
split.  Based on the IR and Raman spectra without the considerations of site symmetry, one 
would conclude that the carbon oxygen bonds of the carbonate ion in aragonite were not 
equivalent.  Therefore, care must be taken in the interpretation of the spectra of solid 
samples! When dealing with oriented single crystals, one must use the factor group to deduce 
the lattice modes.  Although this procedure is not difficult, it is somewhat tedious and will 
not be discussed here (refer to Fateley et. al reference above for the most straightforward 
treatment).  However, there is a great deal of information contained in single crystal spectra - 
both IR and Raman.  From polarization studies in the IR, one can determine which modes are 
x-allowed, y-allowed and z-allowed, i.e., the symmetries of the vibrations can be determined.  
Similarly, by varying the crystal orientation, the polarization of the laser, and the polarization 
of the light entering the monochrometer, one can determine which of the polarizability tensor 
elements responsible for the Raman activity of each mode.  The experiments can be very 
difficult to do correctly, but they contain a wealth of information. 
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Chapter V.  Vibrational Spectroscopy Part II.  Examples 
 
 In this chapter, the vibrational frequencies of a number of metal-ligand modes are 
presented, and the effects of mass, oxidation state, and mode of bonding  on them is 
discussed.  The utility of vibrational frequencies in the elucidation of metal-ligand bonding 
chararacteristics are examined. 
 

V.1  The effect of mass 
 

 Vibrational wavenumbers are frequently used in the elucidation of the relative strength 
of interaction between the metal and a ligand, but care must be used not to neglect the effects 
of mass - remember how ν(Pt-Pt) in shifted with X in X-Pt-Pt-X.  Consider the following data 
recorded in the solid state for two linear halides: 
 

ion νs (Cl-M-Cl) π (Cl-M-Cl) νa (Cl-M-Cl) References 
CuCl2

- 300 109 405 1 

AuCl2
- 329 120,112(a) 350 2 

(a) The degeneracy lifted by solid state effects.  See section IV.14. 
 

In going from Cu(I) to Au(I), the symmetric stretch increases by 29 cm-1, the bending 
changes only slightly and the asymmetric stretch decreases by 55 cm-1 .  Which shift in 
frequency is indicative of the relative bonding strengths?   Let's look more carefully at the 
three modes, 

    
It should be apparent that both the bending and the asymmetric stretch involve motion of the 
metal and since the mass of gold is three times the mass of copper, a large amount of the 
frequency decrease in the asymmetric stretch can be attributed to a mass effect.  As a result, 
the relative frequencies are not functions of the force constants alone.  In the symmetric 
stretch, however, only the chlorines move so the reduced mass of the vibration (µ = m(Cl) = 
35.5 amu) is the same in both ions.  We can state, therefore, that the Cl-M-Cl symmetric 
stretching force constant in the gold complex is higher than in the copper complex.  Since 
there is no metal movement we can write, νAu/νCu = [kAu/kCu]

½ ⇒ [kAu/kCu] = {329/300}2 = 1.2 
or the AuCl force constant is 20% higher than the CuCl force constant .  In general, the 
totally symmetric modes of symmetric compounds will not involve the mass of the metal 
atom, but care must be taken when the compound is not symmetrical or a non-totally 
symmetric mode is being used. 
 

Problem V.1  Given the symmetric stretching frequencies of the following 
tetrahedral complexes, indicate order of increasing force constants.  PbCl4 (331 
cm-1); HgCl4

2- (267 cm-1) and SnBr4(222 cm-1). 
 

V.2  The effect of the oxidation state of the metal 
 

 Crystal field theory predicts that as the metal becomes more positive, it attracts the 
electron rich ligand more tightly and thus the frequency of the M-L stretch increases.  
Molecular orbital theory comes to the same conclusion because either the electron that is 
removed is an antibonding (dσ*) and/or the d-orbitals become more energetically compatible 
with the σ-SALC's on the ligands as their energies drop due to the removal of electron 
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density. Either way, as the oxidation state of the metal goes up, so does the M-L 
stretching frequency.  Consider the following table of data (cm-1) for some tetrahedral 
species. 

   
 ν1(a1) 

νs(MX) 
ν2(e) 

δd(XMX) 
ν3(t2) 
νd(MX) 

ν4(t2) 
δd(XMX) 

 
Reference 

[FeCl4]- 330 114 378 136 1 
[FeCl4]2- 266 82 286 119 " 

[FeBr4]- 200 - 290 95 " 

[FeBr4]2- 162 - 219 84 " 

[VO4]3- 826 336 804 - 2 
[VO4]4- 818 319 780 368 3 

[MnO4]- 834 346 902 386 4 
[MnO4]2- 812 325 820 332 5 

[MnO4]3- 789 308 778 332 5 
 

V.3  Amines 
 

 The wavenumbers of the amine modes in free ammonia and several metal complexes 
are given below. 

        
 νs(NH3) δs(NH3) ν(M-

N) 
νa(NH3) δd(NH3) ρr(NH3) Referenc

e 
NH3(s) 3223 1060  3378 1646  6 

[Ru(NH3)6]Cl2 3210 1220 409 3315 1612 763 7 
[Ru(NH3)6]Cl3 3077 1368 463 3077 1618 788 8 
[Co(NH3)6]Cl2 3250 1163 325 3330 1602 654 9 
[Co(NH3)6]Cl3 3160 1329 498 3240 1619 831 10 
[Co(ND3)6]Cl3 2300 1020 462 2440 1165 667 11 
[Pt(NH3)4]Cl2 3156 1325 510 3236 1563 842 14 
[Pt(NH3)6]Cl4 3050 1370 530 3150 1565 950 12 

Note:  In octahedral amines, there are six M-N stretches (a1g+eg+t1u). Only the IR active t1u is given.  ρr(NH3) = 
NH3 rocking 
 

As electron density is drawn into the M-N bond, it depletes the electron density in the N-H 
bond and weakens it.  As the M-N bond strengthens due to a higher oxidation number on the 
metal, the N-H stretch drops even more.  Thus the lower is the N-H stretch, the higher will be 
the M-N stretch.  In addition, some of the decreases in the above table are due to hydrogen 
bonding to the chloride counterion. 

Problem V.2  Based on the data in the previous table, which bonds more 
strongly to NH3, RuII or CoII.  Use at least two frequencies in your discussion. 
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V.4  Nitro and Nitrito Complexes 
 

 Nitro complexes which are nitrogen bound to the metal and nitrito complexes which 
are bound through an oxygen can be distinguished by the frequencies of the NO2 stretches.  
The antisymmetric NO2 stretch in free NO2

- ion occurs at 1250 while the symmetric stretch is 
found at 1355 cm-1.  The antisymmetric mode is only slightly higher in the nitrito complexes, 
but since the range in which this mode is expected badly overlaps in the two complexes, it is 
not very informative.  The symmetric NO2 stretch, however, is ~200 cm-1 lower in the nitrito.  
Nitro complexes can also chelate (both oxygens are bound to the metal) in which case both 
modes shift to lower energy. 
 

    
Figure V.1. Nitro vs. nitrito linkages and expected NO stetching frequencies. 
 

Problem V.3  Four peaks in the spectrum of K4[Ni(NO2)2(ONO)2] have been assigned to 
NO stretching frequencies: 1387, 1347, 1325, 1206 cm-1.  Assign each mode.  

 
V.5  Carbonyl Complexes 

 

 The bonding of carbonyls to metals consists of two parts: 
  

• Sigma bond:  The filled 5σ orbital on the CO interacts with the metal dσ orbitals 
stabilizing the 5σ.  As mentioned in section II.5, the 5σ orbital is somewhat 
antibonding in character and the removal of electron density from this orbital will 
increase the C≡O stretching frequency slightly. 

 

• Pi bond:  The empty C≡O π* mixes with the metal dπ orbitals stabilizing them 
(back π-bonding).  The mixing moves electron density from the dπ's into the C≡O 
π* thus reducing the C≡O order and stretching frequency. 

 

 Free CO absorbs at 2155 cm-1 while  ν(C≡O ) is found between 1800 and 2100 cm-1 in 
most metal carbonyls.  The complexed frequency is usually less than that of free CO 
indicating that the CO is a good π-acid.  In some instances, however, ν(C≡O) is at a higher 
frequency so it can also behave as a σ-donor.  What then does a C≡O stretch close to 2100 
cm-1 mean -   a weak interaction  or one in which the σ- and π-effects are balancing one 
another?  The answer lies in the M-C stretching frequency since ν(M-C) will increase with 
either interaction.  Thus the strength of the interaction is determined from ν(M-C) while the 
relative extent of σ vs. π contributions is found from ν(C≡O).   
 In hexacarbonyls of Oh symmetry, both the CO stretches and the M-C modes 
transform as a1g + eg + tiu.   
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Figure V.2.  The M-C stretching modes in hexacarbonyls.  Only one component of 
each degenerate set is shown.  The arrows can also can be viewed as the phases of 
the C≡O stretches so for the C≡O stretch of eg symmetry, two C≡O bonds are 
elongating as the other four are compressing. 

 
As can be seen in the following table, ν(C≡O) increases in the order V < Cr < Mn for all three 
modes (from 9 to 13% depending on the mode) indicating that either the σ-interaction is 
increasing and/or that the π-interaction is decreasing.  The M-C modes, however, change only 
very slightly in the a1g and eg modes, but drop in the t1u mode.  Since the t1u mode involves 
motion of the metal (figure V.2), its frequency will also reflect mass differences and thus it  
cannot be used directly.  Our conclusion then is that the total strength of the total interaction is  
 

  ! (C≡O)   ! (M-C)   

 a1g eg t1u a1g eg  t1u Refs. 

[V(CO)6]- 2020 1894 1858 374 393 460 13 
Cr(CO)6 2119 2027 2000 379 391 440 14 
[Mn(CO)6]+ 2192 2125 2095 384 390 412  15 

 

about the same since ν(M-C) is essentially unchanged in the series, but the π-interaction is 
decreasing by about the same amount that the σ-interaction is increasing in going from V to 
Mn since ν(C≡O) is increasing in this series.  These changes can be rationalized in terms of 
the change in oxidation states in the series {V(-1), Cr(0) and Mn(+1)}.  The higher the 
oxidation state on the metal, the better it will attract σ electrons and the less likely it is to 
donate π electrons.  In the Mn(+1) complex, the frequency actually exceeds that of free 
carbon monoxide and is certainly indicative of very little π-interaction. 
 

Problem V.4  The CO stretching wavenumbers for L3Mo(CO)3 are: 
        L     ! (cm-1) 
     PCl3  1989, 2041 
     pyridine 1746, 1888 
 

(a)  What are the relative π-accepting abilities of CO, pyridine and phophorous trichloride in 
L3Mo(CO)3? 

 

(b) Would the CO stretches in Mo(CO)6 be expected above 2000 cm-1, in the 1800 to 2000 
cm-1 range or below 1900 cm-1? 

 

(c) Which would have a higher CO stretching frequency Ni(CO)4 or [Fe(CO)4]2-? 
V.6  Cyano complexes 

 

 The bonding in cyano complexes is analagous to that in carbonyls.  The C≡N and M-C 
stretches again serve as indicators of relative σ- / π-bonding and total interaction, 
respectively.  The C≡N stretch in free cyanide is at 2080 cm-1.  In general, C≡N is a better σ-



Chapter V.  Vibrational Spectroscopy Part II..  Examples 
 

 117 

donor and poorer π-acceptor than CO, thus, unlike the carbonyls, the cyano complexes 
usually involve shifts in ν(C≡N) to higher energy upon complexation with the result that the 
C≡N stretching frequency is generally in the range of 2000 to 2200 cm-1. Both carbonyls and 
cyanides are excellent compounds to study vibrationally because their frequencies are isolated 
from the spectrum of the rest of the rest of the compound.  This isolation also implies that 
they do not couple with other modes (coupling of modes depends on the modes being 
relatively close in energy) so we can, to a good approximation, calculate the C≡N force 
constant from k = (! /130.3)2µ =  (! /130.3)2(6.46).  For example, 
 

 Ni(CN)4
2- Pd(CN)4

2- Pt(CN)4
2- KCN  

ν(C≡N) 2128 2143 2150 2080 cm-1 
k  1723 1747 1759 1646 N/m 

 

In the above series, all frequencies are higher than free cyanide and therefore represent a 
predominatly σ-effect with the effect being the greatest in platinum.  Thus, in terms of σ-
acceptor abilities, Pt(II) > Pd(II) > Ni(II), the same order as their electronegativities, i.e., the 
more electronegative the metal, the higher will be the C≡N stretching frequency. 
 

Problem V.5  Given the following force constants, arrange FeIII, FeII, RuII and 
OsII in order of increasing strengths as a σ-acceptors and as π-donors. 

 K3Fe(CN)6 K4Fe(CN)6 K4Ru(CN)6 K4Os(CN)6  
k(C≡N) 1700 1510 1530 1490 N/m 
k(M-C) 170 240 280 330 N/m 

 

Problem V.6  Account for the following trend. 
. Ag(CN)4

3- Ag(CN)3
2- Ag(CN)2

- 
ν(C≡N) 2092 2105 2135 

 

Problem V.7  The M-N stretching frequencies of high spin Mn(bpy)3
2+ (224 & 191 cm-1) 

are over 150 cm-1 lower than those of  low spin Fe(bpy)3
2+ (386 & 376 cm-1).  Explain. 

 

Problem V.8  Consider the bimetallic complex shown below. 
     a. What are the oxidation states on the tungstens at the A and B ends respectively?   
     b.  Based on these oxidation states, which tungsten is predicted to be more electron rich?   
     c.  ! (CN) in free 1,4-diisocyanobenzene is observed at 2128 cm-1.  ! (CN) is observed at 
          2141 cm-1 on the A side and at 2092 cm-1 on the B side16 of the bimetallic complex.   
          What conclusions can be drawn about the relative amount of electron density on the  
          metals from the CN stretching frequencies? 
     d.  Justify this experimental conclusion with the relative amounts of electron densities  
           predicted from the oxidation states.  

 
V.7.  Nitrosyl complexes 

 

 NO has an unpaired electron in the 2pπ* orbital and the N≡O stretch is at 1876 cm-1.  
Removal of the antibonding electron makes the much more stable nitrosonium ion (NO+) with 
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an N≡O stretch near 2200 cm-1.  As in the two previous cases, it is both a σ-donor and a π-
acceptor toward metals.  As shown in figure V.3, these complexes can be either linear or bent, 
 
 

    
Figure V.3.  NO+ vs. NO- bonding and expected NO frequencies. 

 

In the linear form, the NO is a 10 electron ligand (M-N bonding electrons go to the N) which 
makes it NO+ with a higher N≡O stretching frequency expected.  In the bent form, it is a 12 
electron ligand and thus NO- since the additional electrons will be in π* orbitals, the NO bond 
order drops to two with a corresponding drop in the N=O stretching frequency.  As a rough 
rule of thumb, if the NO stretch is above 1620 cm-1 it is the linear form and if it is below 
1610 cm-1 it is bent. 
 
 

Problem V.9   PbF2 forms adducts with both NO and CO.  In the case of 
the CO adduct, ν(PbF2) decreases by 11 cm-1 while ν(CO) increases by 38 
cm-1.  For the NO complex, ν(PbF2) drops by 9 and while ν(NO) 
increases by 16 cm-1.  Discuss what these results imply about relative σ-
donor and π-acceptor abilities of NO vs. CO. 

 

Problem V.10   Predict the relative ease of reduction in a series of 
nitrosyls in which the N≡O stretching frequency is increasing.  Use 
an energy level diagram in an explanation.  

 

 
V.8  Monolefin Complexes 

 
 As the last example of the use of vibrational spectroscopy in the elucidation of σ- vs π-
bonding we will look at the olefin complexes of platinum and palladium.  In these complexes, 
the plane of the olefin is parallel to the XZ plane with the C=C bond perperdicular to the PtCl3 
plane.  Zeise's anion, [Cl3Pt(C2H4)]

-, the simplest of these complexes, is shown below.  It 
should be noted that there are two different coordinate systems that can be used in cases like 
this: according to symmetry considerations, the principle axis of rotation should be the z-axis, 
but inorganic chemists prefer the z-axis to be perpendicular to the PtCl3 plane.  In order to 
avoid discussing x2 and y2-z2 orbitals, we will follow the latter convention (figure V.4). 
 

     
Figure V.4. Coordinate system used for Zeise' anion 

 

 As shown in figure V.5, the olefin can act as both a σ-donor (A) by donating electron 
density from its π-bonding orbital into the empty x2-y2 or dsp2 orbital on the metal  or as a π-
acceptor (B), by accepting electron density from the filled metal yz into its empty π* orbital.  
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Both of these actions will lower the C=C bond order and therefore the C=C stretching 
frequency. 

C

C

xz!"#x
2
-y
2
$"  

Figure V.5.  Sigma and pi portions of the metal-olefin bond.  
Arrow  indicates direction of electron density movement. 

 

One assignment17 of Zeise's salt put Δ! (C=C) at about -100 cm-1 upon complexation (from 
1623 in free ethylene down to 1526 cm-1 in the salt).  A major problem with the ethylene study 
is that the C=C stretch is strongly coupled to the CH2 deformation and it is difficult to 
decouple the two effects.  Also a shift of about 6.3% certainly indicates interaction, but it does 
little to elucidate the nature of the bonding (σ vs. π).  Several years later, the vibrational 
spectra of the cyclopentene complexes of platinum and palladium18 were reported.  In this 
study, the σ- and π-interactions were distinguished based on other modes that proved to be 
sensitive to electron density in the π-component of the bond (figure V.6).  These modes 
consisted of the out-of-plane motions of the olefinic C-H's and the motions of the olefin 
relative to the metal.   
  

 
Figure V.6.  Modes of the olefin expected to be sensitive to π electron density. 

 

Palladium does not form a monomeric analog to Zeise's salt but does form a chlorine bridged 
dimer.  So that comparisons of the two metals can be made, the data for the dimer is given for 
both Pt and Pd. The ir spectra of [M(C5H8)X2]2 (M=Pt, Pd; X=Cl,Br) are shown in figure V.7. 
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Figure V-7.  The ir spectra of cyclopentene and several cyclopentene complexes of Pt(II) and Pd(II). 

 

The frequencies pertinent to the nature of the bond. 
mode C5H8 [Pt(C5H8 )Cl2]2 [Pd(C5H8 )Cl2]2 
ν(C=C) 1619 1421 1413 
ρr(CH) 858 872 838 
ρt(CH) 698 737 728 
νa(M-C)  462  
νs(M-C)  392 429 

 

The shift in the C=C stretch is almost doubled from what it was in the ethylene complex due 
to a combination of a very strong interaction with the metal and to less coupling with the CH 
deformation which hardly shifts upon complexation.  The shift is somewhat greater for the 
palladium complex.  Indeed, most of the cycolpentene peaks which shift to lower energy shift 
farther in palladium while those peaks which shift to higher energy shift farther in platinum.  
The peaks shifting to lower energy are indicative of loss of the double bond character in the 
cyclopentene, while those modes shifting to higher energy involve moving olefinic hydrogens 
into the region of π density between the metal and olefin.  For the CH rocking, the shift is +14 
for Pt and -20 cm-1 for Pd.  The implication then is that there is more π-density in the Pt 
analog which serves as a barrier to the motion of the H into this region thus increasing the 
frequency.  The most telling information, however, is in the low energy region.  The mode 
labelled νa in figure V.6 would indeed be an asymmetric stretch in the case of extensive π-
interaction and would therefore be expected in the region of the other Pt-C stretch, νs.  If, on 
the other hand, there is little or no π density, then this mode would be a very low energy twist.  
The fact that two modes are observed in the Pt-C stretching region while only one is observed 
in the Pd-C stretching region certainly argues in favor of much more π-interaction in the Pt 
complex.  It was therefore concluded that in Pt and Pd the total interaction was comparable 
since Δ! (C=C) is the same, but the π interaction in Pt was far greater than in Pd.  Thus, Ptπ > 
Pdπ but Pdσ > Ptσ. 

V.9  Metal Ligand Multiple Bonds 
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 The oxo and nitrido ligands are both closed shell and very electronegative.  Thus 
multiple bond formation requires empty d-orbitals which are low in energy, i.e., metals in 
high oxidation states.  Thus, the vast majority of these complexes are with d0, d1 and d2 
metals.  The bond is between a highly positive metal and a very negative ion so that the metal-
oxo and metal-nitrido stretch will involve large changes in dipole moment and result in strong 
IR absorption.  Characterization of the complexes therefore is often done with infrared.  In 
addition, their motions are not usually coupled to the motions of the other atoms and may be 
treated as diatomic vibrators to good approximation.  As a result, isotopic substitution of 18O 
and 15N have predictable effects on the stretching frequencies which aids in their assignment.  
The following ranges are found to be generally reliable 

• M=O stretches19 lie in the range of 900 to 1100 cm-1 

• M-O-M stretches21 are found between 800 and 900 cm-1 

• M≡N stretches20 lie between 1020 and 1150 cm-1 
 

Some examples are given in the following tables. 
M=O stetching frequencies (cm-1) in monoxo metal complexes 

Complex ν(16O)  ν(18O) Reference  
Cr(O)Cl(tpp) 1026 982 21 
Mn(O)(tpp) 1060 1000 22 
Fe(O)(tpp) 852 818 23 
[Ru(O)(bpy)2(py)](ClO4)2 792 752 24 
 

M≡N stretching frequencies (cm-1) in some metal nitrido complexes 
Complex ν(14N)  ν(15N) Reference  

Cr(N)(tpp) 1017 991 25 
Mn(N)(tpp) 1036 1008 26 
K[Os(N)O3] 1026 995 27 

Ph4As[Os(N)Cl4] 1123 1087 28 
Cs2[Os(N)Cl5] 1073 1040 29 
Cs2[Os(N)Br5] 1073 1040 " 

tpp = the tetraphenyl porphyrin dianion 
 

The reduced mass of the Mn=16O stretch is 12.4 amu while that of the Mn=18O stretch is 13.6 
amu thus in the diatomic limit,  ν(Mn=16O)/ν(Mn=18O) = [13.6/12.4]½ = 1.05 in good 
agreement with the 1.06 observed in Mn(O)tpp.  For the Ru=O stretch, the reduced masses are 
13.8 and 15.3 so that ν(Ru=16O)/ν(Ru=18O) = 1.05 which is also the observed value. So the 
use of isotopic substitution can be a vaulable tool in the assignment of these modes, but care 
must be taken with imido complexes (M=N-R) where the M=N stretch often couples with the 
N-R stretch and with some of the skeletal modes of R . 
 Addition of a second oxo to the complex reduces the frequency of ν(M=O) as both 
oxygens compete for the dπ electrons.  This effect is much greater when the oxygens are 
trans.  Thus, ν(M=O) lies in the range of 768-895 cm-1 for the trans dioxo complexes and in 
the range of 862-1025 cm-1 for the other dioxo complexes.  In the trans-complexes, the 
O=M=O unit is linear with a center of inversion so the symmetric stretch will be independent 
of the metal mass and will be observed only in the Raman while the asymmetric stretch will 
be dependent on the mass of the metal and will be observed only in the ir.   

 
V.10  Metal-Metal bonds 



Chapter V.  Vibrational Spectroscopy Part II..  Examples 
 

 122 

 Due to the large masses and relatively weak interactions involved in M-M bonding, 
the ν(M-M) is generally quite low (100-250 cm-1).  Due to the symmetric nature of the bond 
the metal-metal stretching vibrations are usually quite weak in the ir but very strong in the 
Raman.   

Compound ! (M-M) Reference 

Mn2(CO)10 160 30 
Tc2(CO)10 148 " 

Re2(CO)10  122 " 

(CO)5Re-Mn(CO)5 157 " 

[Mo2Cl8]4- 345 31 
[Re2Cl8]2- 272 32 

Many of the interesting features of metal-metal multiple bonds involve electronic and 
resonance Raman results so further discussion of these species will be postponed until later. 
 

Problem V.11  What are the Re-Re force constants in Re2(CO)10 and [Re2Cl8]
2-?  Assume that the 

Re-Re stretching vibration is isolated from the other modes (probably not a very good assumption 
for [Re2Cl8]

2-).  Discuss the bonding in the two complexes based on these results.  Be thorough! 
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Chapter VI. Electronic Spectroscopy 
Part I.  Theory 

 

 The wavefunctions pertinent to the study of electronic spectroscopy depend on the 
occupied electronic orbitals, the nuclear coordinates and the electron spin.  To a zero order 
approximation, these three contributions are separable, Ψ = ψmoψvibψspin = |n>|v>|s>.  ψmo = 
Πφmo where φmo is the wavefunction for a single electron molecular orbital, i.e., the overall 
orbital wavefunction is the product of the occupied one electron wavefunctions.  There are 
many instances where such zero order approximations fail to account for the observed spectral 
properties of the system and spin-orbit coupling and/or vibronic coupling are invoked as 
perturbations to the zero-order approximation.   
 Electronic transitions involve changes in molecular orbitals but, due to possible 
changes in the spin and/or vibrational levels, they are not simply orbital transitions.  
Spectroscopically, we measure ΔE, the energy difference between two states and the state of a 
molecule is not given by its orbital occupancy alone - the vibrational and spin states are also 
required to define the states involved in a typical electronic transition.1  The φa → φb orbital 
transition can be viewed as the removal of an electron from φa followed by the addition of an 
electron to φb which, according to Koopman's theorem would be approximated as the 
ionization energy of φa minus the electron affinity of φb , i.e., the orbital energy difference.  
However, this fails to take into account the fact that after the electron is removed, all orbitals 
will be stabilized and the orbital energy of φb will change.  
 

Spectroscopic transitions involve changes in states not simply orbitals. 
 

VI.1  Electron spin  
 The electron has a half-integral spin and as such is a Fermion which means that its 
wavefunction must be antisymmetric with respect to exchange of identical particles, but this 
wavefunction is a product of orbital and spin functions.  In addition, since the particles are 
identical, the wavefunction cannot distinguish between them.  Consider two electrons (1 & 2) 
in two mo's (a & b).  The wavefunction φa(1)φb(2) would be unacceptable because it is neither 
symmetric nor anti-symmetric with respect to exchange of identical particles,  φa(1)φb(2) ≠ ± 
φa(2)φb(1).  Stated another way, the two electrons can be distinguished since electron 1 is the 
electron in orbital φa.  Thus, symmetrized and anti-symmetrized wavefunctions are 
constructed: 
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The operation which exchanges two electrons i and j is called the permutation operator Pij.  
Operating on the above two wavefunctions with P12 yields, 
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or ψs is symmetric and ψa is antisymmetric with respect to exchange.  But this is only half of 
the wavefunction, we still need to consider the electron spin.  There are four possibilities for 
two electrons in two spin orbitals: α(1)α(2), β(1)β(2), α(1)β(2) and β(1)α(2).  The first two 
                                                
1 Depending on the type of spectroscopy involved, other states (nuclear spin, rotational,etc.) might be required in 
the state designation. 
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are symmetric with respect to exchange, but the latter two are neither symmetric nor 
antisymmetric - they allow for distinction between the two electrons and are not acceptable 
spin functions.  Linear combinations must again be taken for the latter two.  The four 
acceptable spin functions and their symmetries with respect of exchange of identical particles 
are: 

!(1)! (2); "(1)"(2 );
1

2
!(1)"(2) + " (1)! (2)( ) # symmetric

1

2
! (1)" (2) # "(1)! (2)( ) # antisymmetric

 

 

The electronic wavefunction must be antisymmetric, so the symmetric orbital wavefunction, 
ψs, must be combined with the antisymmetric spin function and since there is only one 
antisymmetric spin function, this combination is the "singlet" state.  The antisymmetric orbital 
wavefunction, ψa, must be combined with the symmetric spin function.  There are three 
symmetric spin functions, and the resulting three combinations are the  components of the 
"triplet" state.  Note that the product of the two functions (orbital x spin) is often referred to as 
an electronic state.  One orbital transition can be responsible for several state transitions. 
 In general, the electron spin is determined as S = Σms where ms = ±1/2 (α or β), but, 
since Σms = 1/2-1/2 =0 for all paired electrons, we need sum only over unpaired spins.  The 
multiplicity (degeneracy) of a spin state is 2S+1 so five unpaired electrons gives rise to a 
multiplicity of 2(5/2)+1= 6, a sextet.  For two unpaired electrons one has S=1 and 2S+1=3, 
the triplet discussed above.  If all electrons are paired, S=0, a singlet.2 
 

VI.2 States 
 

VI.2a State Energies 
 

 Since the Hamiltonian is not a function of spin coordinates, the energies of the triplet 
and singlet states of the φa

1 φb
1 configuration depend only on the space portions of the 

wavefunctions: ψ = φa(1)φb(2) ± φb(1)φa(2) ["+"  for singlet and "-" for triplet] and are 
E1 =  E(φa) + E(φb) + J + K and E3 = E(φa) + E(φb) + J - K 

where E(φa) is the orbital energy of φa, J is the Coulomb integral and K is the exchange 
integral. Both J and K are positive.  The only difference between these two expressions is the 
±K which results due to "±" in the wavefunctions.  Thus, the separation between the singlet 
and triplet states is E1 - E3 = 2K, i.e., the singlet is 2K higher in energy than the triplet.  
Both J and K are matrix elements of the repulsion operator, e2/r,  where r is the electron-
electron distance and e is the charge on the electron. 
 Coulomb integral: J = <φa(1)φb(2)| e2/r |φa(1)φb(2)> shows electrons 1 & 2 as being in 
"charge clouds" described by φa*φa and φb*φb and represents the Coulombic repulsion of the 
two electrons.  
 Exchange integral: K =  <φa(1)φb(1)| e2/r |φa(2)φb(2)> shows each electron in both 
orbitals.  There is no classical analog to the exchange integral, but it can be viewed as a 
quantum mechanical correction to the repulsion term which will depend on the overlap 
between φa and φb.  Electrons in a triplet state avoid one another at small electron-electron 
distances, i.e., lim

r
a

!
=

0

2
0"  - this is referred to as a "Fermi hole".  ! s

2 , on the other hand, 

reaches a maximum at r2 = 0 - a "Fermi heap".  Thus, the electrons in a singlet spend 

                                                
2 Since 2S is the number of unpaired electrons, the easiest way to get the multiplicity is the number of unpaired 

elecrons + 1 
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appreciable time in close proximity while the electrons in the triplet avoid close proximity.  
As a result, the time averaged Coulombic repulsions are higher than J by an amount K in the 
singlet and reduced from J by an amount K in the triplet.  The fact that the triplet lies lower 
than the singlet is summarized by Hund's first rule: the ground state is that state derived 
from the lowest energy orbital occupancy with the highest spin multiplicity.  Hund’s second 
rule states that any ambiguities that arise from application of the first rule are resolved by 
choosing the highest orbital angular momentum (L) state as the ground state.  Finally, Hund’s 
third rule states that if two states have the same S and L values, the state with the smallest 
total angular momentum (L+S) is lowest energy for subshells that are less than half-filled, and 
the state with the largest total angular momentum (L+S) is lowest energy for subshells that are 
more than half-filled. 
 

 In addition to the electron exchange interaction, there can also be a spin-spin (dipolar) 
interaction which can lift the 2S+1 degeneracy of a spin state.  A charged particle with spin 
generates a magnetic field (the basis of ESR and NMR) in a direction which depends on the 
"sense of the spin" so that the magnetic fields generated by paired electrons (S=0) cancel.  
The magnetic fields of unpaired electrons, however, can interact so that the spin of one 
electron is affected by the spin of the other.  The corrections to the electronic energy are given 
in terms of the zero field splitting, D, and another parameter, E, defined in figure VI-0.  
These corrections are given as: 

Ex = D/3 - E   ;   Ey = D/3 + E    ;     Ez = -2D/3. 
The resulting energy level pattern will depend on the molecular symmetry as shown in figure 
VI-0.  These are small  corrections (D is typically less than 10 cm-1) and are not observed in 
the electronic spectrum, but emission of transition metal complexes is often from a high spin 
state and the effects of these multiple states is sometimes observed. 

 
Figure VI-0.  The energies of the singlet and tiplet states relative to that of the 
configuration.  The zero-field splitting, D, resulting from interaction of the two 
spins in the triplet is also defined. 

 

If different configurations give rise to states of the same symmetry the configurations can 
mix.  This mixing is referred to as configuration interaction (CI).  As with any mixing, the 
extent of configuration interaction will depend on the energy compatibility of the two states.  
This mechanism is sometimes used to give the ground state some properties of low lying 
excited states and is also invoked to explain the spectra of porphyrins (section VII.5). 
 

VI.2b  State Designations 
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 An approximate orbital energy diagram for benzene is given in figure VI-1.  Since 
benzene has six π electrons, the electron configuration for the ground state orbital occupancy 
is (a2u)2(e1g)4.  In addition, Figure VI-1 also shows the four orbital transitions for this π-
system.  In this section, the states that are derived from each of these five orbital 
configurations will be determined.  Remember that capital letters are used for state 
designations. 

 
Figure VI-1.  Orbital occupancies for the ground state and ππ* excited states of benzene. 

 

The state symmetry is simply the product of all of the one-electron orbital symmetries, 
thus a filled orbital is totally symmetric (Γi⊗Γi = A1). Orbital configurations fall into four 
cases. 
 

Case I.  All orbitals are filled. 
Since all orbitals are filled, there are no unpaired electrons so S=0 and the state is a 
singlet.  The electron density in a completely filled orbital carries the full symmetry 
of the molecule, i.e., it is totally symmetric.  Thus, the ground state of benzene is 1A1g 
- singlet A1g. 

 

Case II.  A singly occupied orbital with all others filled. 
All filled orbitals are totally symmetric so the state symmetry will be that of the singly 
occupied orbital.  Since there is only one unpaired electron, S=1/2 so the multiplicity is 2, 
a doublet.  For example, if benzene were ionized to the (a2u)1(e1g)4 configuration, the 
resulting state would be 2A2u. 

 

Case III.  Two singly occupied orbitals excluding two orbitals which are degenerate. 
The state symmetry is the direct product of the two orbital symmetries.  Two electrons 
implies both singlet and triplet states are possible.  The orbital transition a2u → b2g, results 
in an orbital occupancy of  (a2u)1(e1g)4(b2g)1 which gives rise to a state with  the symmetry 
of the direct product of a2u ⊗ b2g = b1u since the (e1g)4 must be a1g.  Thus, two possible 
states can be derived from this orbital transition, 3B1u and 1B1u (triplet lower in energy).   
The exclusion of two orbitals which are degenerate precludes only that case where the two 
electrons are in the same degenerate orbital (due to Pauli exclusion considerations - 
Case IV) but does not include two electrons in different degenerate orbitals.  Since the 
direct product e1g ⊗ e2u = b1u + b2u + eu, six states are derived from the e1g → e2u transition 
(1B1u +3B1u+ 1B2u+ 3B2u+ 1Eu+ 3Eu) with a total degeneracy of 16 = (1+3+1+3+2+6).  This 
is consistent with the fact that there are 16 ways of representing this situation. 

 
e1g e2u  e1g e2u 

 a b a b  a b a b 
1 ∅ ↑ ↓ ↑ ↓  9 ↓ ∅ ↓ ↑ ↓  
2 ∅ ↑ ↓ ↑  ↓ 10 ↓ ∅ ↓ ↑  ↓ 
3 ∅ ↑ ↓ ↑ ↑  11 ↓ ∅ ↓ ↑ ↑  
4 ∅ ↑ ↓ ↑  ↑ 12 ↓ ∅ ↓ ↑  ↑ 
5 ↓ ↑ ∅ ↑ ↓  13 ↓ ↑ ↓ ∅ ↓  
6 ↓ ↑ ∅ ↑  ↓ 14 ↓ ↑ ↓ ∅  ↓ 
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7 ↓ ↑ ∅ ↑ ↑  15 ↓ ↑ ↓ ∅ ↑  
8 ↓ ↑ ∅ ↑  ↑ 16 ↓ ↑ ↓ ∅  ↑ 

 
Note that holes (∅ or h+) can be treated like electrons so (e1g)3 which has a single hole is the 
same as (e1g)1. The above problem can be viewed as a one electron, one hole problem. 

 
The above cases cover all of the possibilities for benzene and a state diagram can now be 
constructed.  The lowest energy orbital transition is the e1g → e2u, HOMO → LUMO, which 
gives rise to six states: three singlets and three triplets.  The three lowest lying singlet states 
are therefore the B2u, B1u and E1u, but we have no way to predict their order.  However, 
spectroscopic assignments suggest the order given is that of increasing energy.  The order of 
the states derived from the a2u → e2u and e1g → b2g is also unknown, but the highest energy 
state will derive from the a2u → b2g orbital transition.  It should also be noted that the order of 
the triplet states does not have to be the same as that of the corresponding singlet states.  
Every singlet state (except the ground state) has a corresponding triplet state and transitions 
between singlets and triplets are "spin forbidden" so in order to simplify the diagram, the 
singlet and triplet states are usually placed in different columns.  With these considerations in 
mind, the state diagram for benzene can be approximated (figure VI-2): 

 
Figure VI-2.  Approximate state diagram for benzene.  The energies and ordering of 
the three lowest lying excited singlets are from uv spectra.  Relative ordering of all 
other states is uncertain except that the highest energy state is certainly the 1B1u. 
 

All transitions originate from the 1A1g ground state irrespective of the orbital transition.  
The lowest energy, spin-allowed transition is the 1A1g → 1B2u. 

 
There is one more case.  One that is not encountered in benzene. 

 

Case IV.  Several electrons in a degenerate set of orbitals. 
Let us differentiate between (e1g)1(e1g)1 and (e1g)2 configurations.  The table for direct 
products under D6h indicates that e1 ⊗ e1 = A1 + [A2] + E2 ( g x g = g; the meaning of the 
square bracket will be explained shortly).  If the two electrons are in different sets of e1g 
orbitals then the derived states (Case III) are 1A1g + 1A2g + 1E2g + 3A1g + 3A2g + 3E2g which 
yields the expected degeneracy of 16.  If the electrons are in the same set of e1g orbitals, 
(e1g)2, the Pauli exclusion principle rules out many of these 16 possibilities. In this case 
there are only six possibilities. 

 

  e1g(a) e1g(b) 
1 ↑↓  
2  ↑↓ 
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3 ↑ ↑ 
4 ↓ ↓ 
5 ↑ ↓ 
6 ↓ ↑ 

To obey the Pauli Exclusion principle, the symmetric orbital must combine with the 
antisymmetric spin (singlet) and the antisymmetric orbital with the symmetric spin 
(triplet).  We offer here without proof the characters of the symmetric (χ+) and 
antisymmetric (χ-) reducible representations for the two electron system: 

 
   Eq VI.1 - Two electrons in a degenerate set of orbitals 

χ+ = χ(singlet) = 1/2{[χ(R)]2 + χ(R2)} 
χ- = χ(triplet) = 1/2{[χ(R)]2 - χ(R2)} 

 
As an example, consider the (e)2 configuration in C3v. 

 
C3v E 2C3 3σv 
χ(R)  2 -1 0 

[χ(R)]2 4 1 0 

R2 E C3 E 

χ(R2) 2 -1 2 
χ(singlet) 3 0 1 
χ(triplet) 1 1 -1 

 
The irreducible representations for the singlet states are A1 + E while the irreducible 
representation for the triplet is A2.  In the direct product table (Appendix B) under C3v, e 
⊗e = A1 + [A2] + E.  Thus the two electron case is given in the direct product table and the 
antisymmetric representation is given in square brackets.  The (e)2 configuration in 
C3v symmetry then results in the following states: 1A1 + 3A2 + 1E with the expected 
degeneracy of six.  Similarly, the (e1g)2 configuration in D6h symmetry results in  1A1g + 
3A2g + 1Eg 

 
 For three electrons in a three-fold degenerate orbital, either a doublet or a quartet 
results, the reducible representations of which can be obtained as follows. 

 
Eq VI-2. Three electrons in a degenerate set of orbitals 

χ(doublet) = 1/3{[χ(R)]3 - χ(R3)} 
χ(quartet) = 1/6{[χ(R)]3 - 3χ(R)χ(R2) + 2χ(R3)} 

 
These cases will handle any situation you will likely encounter.  For more complicated 
systems, simply treat the combinations individually and then combine them.  The most 
complicated system likely to be encountered is the high spin d5 metal ion in octahedral 
symmetry, (t2g)3(eg)2.  First, the states derived from (t2g)3 are determined then the states 
arising from (eg)2 are determined.  Finally, the resulting states are combined. 

(t2g)3 

Oh E 8C3 6C2 6C4 3C2' i 6S4 8S6 3σh 6σd 
R2 E C3 E C2' E E C2' C3 E E 

R3 E E C2 C4 C2' i S4 i σh σd 
χ(R) 3 0 1 -1 -1 3 -1 0 -1 1 



Chapter VI.  Electronic Spectroscopy I. Theory 
 

 130 

χ(R2) 3 0 3 -1 3 3 -1 0 3 3 

χ(R3) 3 3 1 -1 -1 3 -1 3 -1 1 

χ(R)3 27 0 1 -1 -1 27 -1 0 -1 1 
χ(doublet) 8 -1 0 0 0 8 0 -1 0 0 
χ(quartet) 1 1 -1 -1 1 1 -1 1 1 -1 

Decomposing the reducible representations yields: Γ(doublet) = Eg + T1g + T2g and 
Γ(quartet) = A2g.  Thus, the states derived from the (t2g)3 configuration are: 4A2g+ 2Eg+ 
2T1g+ 2T2g.  The (eg)2 configuration can be determined from the direct product tables 
which show that for O, e⊗e = A1 + [A2] + E so the (eg)2 configuration  results in 
3A2g+1A1g+1Eg states.  The states of these two orbital occupancies are then combined, but 
first a word on combining spins.  When spins are combined, the ms values are added.   The 
resulting spins are m1 + m2≥ S ≥ m1 - m2 in increments of 1.  For example, the 
possible spins resulting from the combination of a quartet (S=3/2) and a triplet (S'=1) are 
those for which  1 + 3/2 ≥ S  ≥ 1 - 3/2 or  S = 5/2, 3/2, 1/2, i.e., a doublet (1/2), a 
quartet (3/2) and a sextet (5/2).  Multiplication tables are then used to determine the state 
symmetries.   

 

The results are: 
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A total of 21 states are derived from a (t2g)3(eg)2 configuration!  The ground state can be 
determined by the application of Hund's first rule to be the 6A1g. 

 

Problem VI.1. What is the ground state of bromotris(2-dimethlyaminoethyl)-
aminecobalt dication?  The 2-dimethylaminoethyl)amine ligand is neutral.  
Assume the metal is low spin and in a C3v environment. 

    
   

Problem VI.2  What are the ground states of a high spin and a low spin d7 
metal ion in an octahedral field? 

 
Problem VI.3  (a) Deduce all of the states that can be derived from all high 
spin d3 configurations in a tetrahedral field (e2t1, e1t2 & t3).  (b) Arrange the 
three states in a diagram in order of increasing energy with the ground state at 
the bottom.   
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VI.3  Selection Rules 
 

 The transition moment for a transition from the ground state (gs) to an excited state 
(es) is given as <µ> = <gs|µ|es>.  To zero order, the state wavefunctions are products of 
orbital, spin, and vibrational wavefunctions.  The excited state will be represented as |nSv> 
and the ground state as |n'S'v'>.  The dipole operator is a function of both the electronic and 
nuclear coordinates (µ = µe + µN) but is independent of spin coordinates, 
 

 <µ> = <S'|S><n'v'|(µe+µN)|nv> = <S'|S>{<n'v'|µe|nv> + <n'v'|µN|nv>}.  
  

The final result then is 
 

<µ> = <S'|S>{<v'|v><n'|µe|n> + <n'|n><v'|µN|v>}   Eq VI.3 
 

The term, <n'|n><v'|µN|v>, is for purely vibrational transitions: n' = n so <n'|n> =1 and <v'|µN|
v> leads to Δv = ±1.  For electronic transitions, the initial vibrational state will usually be 
v'=0.  The intensity of the transition is proportional to <µ>2, so the following expression for 
the intensity of an electronic transition involving the S'→S, n'→n and v'→v transitions is 
obtained,  
 

I ∝ <µ>2 = <S'|S>2<0|v>2<n'|µe|n>2     Eq VI.4 
 

• <S'|S> dictates the spin selection rule.  Since <S'|S> = δS'S, spin allowed transitions 
must be between states with the same spin, i.e., ΔS=0.  This is a fairly rigid selection 
rule and violations of it, i.e., the observance of "spin forbidden" bands, occur due to 
spin-orbit coupling (section VI.7) which results in S no longer being a good quantum 
number (section VI.7). 

• <n'|µe|n> gives rise to the orbital or symmetry selection rules.  A transition between 
two orbitals is orbitally allowed if Γ(n') ⊗ Γ(n) transforms the same as one of the 
components of the dipole operator, i.e., like x, y or z.  If the direct product Γ(n') ⊗ Γ(n)  
transforms as x, the electronic transition is said to be “x-polarized.”  Likewise if  Γ(n') ⊗ 
Γ(n) transforms as y, the electronic transition is said to be “y-polarized,” and if it 
transforms as z it is said to be “z-polarized.” 

• <0|v> is the overlap of the vibrational wavefunctions in the ground (v'=0) and excited 
electronic states.  The <v'|v>2 terms are referred to as the Franck-Condon factors and 
can modulate the intensity of the electronic transition. 

• The intensity of a transition also depends on the overlap of the ground and excited 
state wavefunctions.  Transitions between two orthogonal orbitals will have no 
intensity even if their direct product transforms as x, y, or z. 

 
 If, during the electronic transition, a quantum of an asymmetric vibration is also 
absorbed, the symmetry of the molecule will change and the group theoretical selection rules 
may be relaxed and a forbidden transition may become "vibronically allowed".  Thus the 
electronic state has been coupled to the vibration through weak vibronic coupling.  For these 
vibronic systems, electronic and vibrational components of Ψ are not separable.  Thus, 
 

   <µ> = <S'|S><n',v'|µe|n,v>     Eq VI-5 
 

and it is the symmetry of the vibronic states given by the direct product of  the orbital and 
vibrational irreducible representations that dictate the selection rules.  
 In centrosymmetric molecules, the d-orbitals are always gerade while the dipole 
operator is always ungerade and thus d-d transitions are orbitally forbidden <g|u|g> = 0.  g 
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→ g transitions are also said to be Laporte forbidden.  These transitions, however, can be 
vibronically allowed through ungerade vibrations since in the v=1 vibrational level of an 
ungerade vibration, the molecule loses its center of symmetry and thus the selection rule is 
relaxed.  In cases like this, the v' = 0 →  v = 0 band (0-0 band) may not be observed and the 
peak maximum will be at an energy equal to the 0-0 plus one quantum of excited state 
vibrational energy.  These peaks are referred to as "false origins".  For example, consider 
ML6, an octahedral d6 compound with low spin,  for which Γvib = a1g  + eg + t2g + 2t1u  + t2u.  
The ground state is 1A1g (all orbitals are filled) and the lowest lying excited states are dd states 
arising from the t2g → eg orbital transition or t2g⊗eg = T1g + T2g states.  The spin allowed 
transitions are 1A1g → 1T1g and 1A1g → 1T2g.  Both of these transitions are orbitally forbidden, 
but can be vibronically allowed. The dipole operator in Oh spans the t1u irreducible 
representation so the   modes which will make each transition vibronically allowed are the 
ones for which <T1g ⊗ Γvib |t1u |A1g> ≠ 0 or  <T2g ⊗ Γvib |t1u |A1g> ≠ 0, i.e., T1g ⊗ Γvib ⊗ t1u or 
T2g ⊗ Γvib ⊗ t1u must contain the A1g irrep.  The symmetries of the vibrations then must be Γvib 
= T1g ⊗ t1u  = a1u + eu + t1u + t2u and Γvib = T2g ⊗ t1u = a2u + eu + t1u + t2u.  The only vibrations 
with the appropriate symmetry are the 2t1u and t2u modes so all three ungerade modes are 
vibronically active.   
 

Problem VI.4.  Which vibrations of the square planar PtCl4
2- ion are vibronically active in the 

lowest energy d-d band?  Use the results of problem IV.7 for a description of the modes.  
Considering the vibronic coupling, draw and discuss the appearance of this absorption band.  
 
It is possible to have vibronic bands on allowed transitions as well, for example, the A1g → 
T2u transition.  In this case, Γvib = T2u ⊗ t1u = a2g + eg + t1g + t2g so either the eg or t2g modes 
have the correct symmetry. 
 
 Some selection rules are more rigid than others and the following table gives an 
indication of the strictness of the spin and orbital selection rules: 
 

Spin Orbital log ε Comments 
Forbidden Allowed -5 to 0 spin-orbit coupling 
Allowed Forbidden 0 to 3 vibronically allowed 
Allowed Allowed 3 to 5 fully allowed 

 
VI.4  Electronic Transitions 

  

 Figure VI-3 represents the types of electronic transitions 
typically encountered in inorganic spectroscopy.  Transitions 
A-D originate in ligand orbitals but terminate in metal orbitals 
and thus involve a transfer of charge from the ligand to the 
metal.  They are charge transfer (CT) transitions and due to the 
direction of the charge transfer are specifically called ligand to 
metal charge transfer (LMCT).  Transition E and F are also CT 
transitions but they are metal to ligand charge transfer (MLCT). 
CT bands are quite intense with molar absorbtivities of around 
104.  Transition G is metal centered and is referred to as dd, 
ligand field or crystal field. These metal centered bands are 
forbidden in octahedral complexes as they are gerade → gerade 
and remain quite weak in lower symmetry molecules, ε ~ 1 to 

Figure VI-3.  Transitions 
typically encountered in 
inorganic spectroscopy. 
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100. H is a ligand centered (LC) transition, specifically a π→π* transition. These bands are 
very intense with molar absorbtivities of 105. Typically, LC bands other than π→π* or an 
ocasional n→π* are very high in energy. 
 
 Electronic transitions are governed by the Franck-Condon principle, 

Electron motion is so much faster than nuclear motion that electronic transitions can 
involve no change in either the positions or the momenta of the nuclei.  
 

Transitions are usually represented on a diagram similar to that shown in figure VI-4 which 
shows the ground and excited state potential energies along one of the normal coordinates, Q.  
Since the nuclear displacements do not change during an electronic transition, the transitions 
are said to be "vertical".  Essentially all of the molecules are originally in the vibrational 
ground state so the electronic transitions originate from v'=0 in which case the momentum is 
low.  Also, it is most probable that the transition originates from the ground state equilibrium 
geometry (Q=0), and if the excited state equilibrium geometry is different, then a vertical 
transition to the v=0 level may be impossible, i.e., the 0-0 transition may be very weak or 
missing.  The larger the value of v, however, the greater will be the momentum at the middle 
of the well.  Therefore, the strongest transitions other than 0-0 bands will occur when the 
transitions are to the extrema of the internuclear separations where the vibrational momentum 
is at a minimum. 

 
Figure VI-4.  Vertical transition from ground state is to 
the v=10 level of the excited state.  In a case this severe, 
the 0-0 band would be missing. 

 
 The same conclusion can be reached quantum mechanically by considering the 
Franck-Condon (FC) factors, <0|v>2 in eq VI-4. These terms will be non-zero only if the upper 
surface is either distorted (different force constant) or displaced (different equilibrium 
geometry).  If the upper surface is neither displaced nor distorted then the orthogonality of the 
vibrational wavefunctions is maintained and all FC terms are zero except for the 0-0 term 
which is unity.  Remember that the maximum amplitude of the wavefunctions is at the 
extrema for large values of v but at the equilibrium position for v=0 (see figure IV.4), thus the 
maximum value of <0|v>2 is expected at the v arrived at by making the vertical transition from 
the center of the lower surface to the edge of the upper surface - the same result one obtains 
when considering conservation of momentum. 
 As an example, consider the 1Σ+ → 1Π transition in CO which is schematically 
represented in figure VI-5.  The spectrum consists of a long progression starting at 64,703 
cm-1 (0-0 band) and going to higher energy consistent with the absorption of more 
vibrational quanta as the transitions are of the form 0 → v so the energy of each line would 
be E0-0 + v'!  (assuming the vibration is harmonic).  However, the spacings are consistent 
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with an anharmonic oscillator in which ! e = 1516 cm-1 and ! eχe = 17.25 cm-1.  Long 
progressions in a vibration are indicative that the position of the potential minimum for the 
normal coordinate is changed in the excited state, i.e., the equilibrium C-O bond length is 
different in the excited state than in the ground state.  The fact that the vibrational frequency 
is much lower in the excited state indicates that the bond has elongated in the excited state. 

     
Figure VI-5.  Schematic representation of the vibronic progression 
of the C≡O stretch on the 1Σ+ → 1Π transition of carbon 
monoxide.  The 0-0 band is at 64,793 cm-1. 

 
Analysis of the ground state and excited state vibrational progressions leads to the following 
parameters for CO in the two electronic states (bond lengths come from analysis of rotational 
spectra): 

 1Σ+ 1Π  

! e 2169 1516 cm-1 

! eχe 13.28 17.25 cm-1 
De 1060 398 kJ/mol 
ke 1900 928 N/m 
re 1.13 1.24 Å 

From these parameters the potential energy diagrams for the two states can be constructed 
(figure VI-6).  Note that the upper surface is both displaced and distorted which leads to large 
FC factors.  Also, the vertical transition from the middle of the lower surface intersects the 
upper surface at the v' = 2 level, in keeping with the 0→2 transition being the strongest. 
 

 
 

 

VI.5  Vibronic Coupling 

Figure VI-6.  The Morse potential governing the C≡O 
stretch of carbon monoxide in the ground and lowest 
lying singlet excited state - the result of a π→π* 
(HOMO → LUMO) orbital transition.  Vertical axis is 
Energy in kK.  One-state vibronic coupling has shifted 
the upper surface to lower energy and to a longer C≡O 
bond length. 
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 The potential energy of each electronic state for a polyatomic molecule is a 
complicated 3N-5 dimensional surface which is ordinarily represented by a two dimensional 
drawing of potential energy along the normal coordinate of interest, i.e., a slice of the potential 
surface.  Upon electronic excitation, the molecule will still have the geometry of the ground 
state (FC principle) and if the excited state geometry is different from that of the ground state, 
the molecule will feel a restoring force pulling it toward the excited state equilibrium 
geometry.  Force is -∂V/∂Q or, in quantum mechanical terms, it is <-∂V/∂Q> = <-∂H/∂Q> 
since (H = T+V).  The restoring force is then kΔQm = <e|∂H/∂Qm|e>Q=0 and is represented as 
the slope of a tangent on the excited surface at the ground state equilibrium value of Qm, the 
mth normal mode.  This is referred to as a "one-state" vibronic coupling as it involves only the 
"e" state.  The result is a shift of the minimum along Qm by an amount ΔQm  and a lowering of 
the minimum of the excited state by ½kΔQm

2, i.e., vibronic coupling stabilizes the excited 
state by deforming the molecule.  See figure VI.5. The symmetry properties of ∂H/∂Qm are the 
same as Qm  and |e>⊗|e>, for non-degenerate excited states, is totally symmetric so <e|∂H/∂Qm

|e> ≠ 0 only if Qm is a totally symmetric mode.  In other words,  
 

Vibronic progressions will be observed only for totally symmetric modes since 
excited state potentials can be displaced only along totally symmetric normal modes. 

 
 

Problem VI.5.  MO's and spectra of MX2 are given. 
a.  Draw the symmetry coordinates and assign the vibrational spectra given below.  Note the 

Raman spectra were recorded in both parallel and perpendicular polarizations. 

 
b.  To what irreps do the SHOMO, HOMO and LUMO belong? 

 
c.  The electronic spectrum consists of two absorption regions - a weak system in the 25 to 
29 kK range and a much stronger system in the 41 to 44 kK range.  Assign the two systems 
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to state transitions and explain why the higher energy system is about 1000 times stronger. 
What is the 0-0 energy for each system? 

 
d.  Assign all of the features in the 4K electronic spectra shown above and discuss 
differences in the excited state geometries.  Use all of the data to formulate your conjecture.  
Begin by determining whether each electronic transition is electric dipole allowed or 
forbidden.  Remember, forbidden transitions are typically vibronically allowed and will 
exhibit false origins (page 115). 

 
 

VI.6   Jahn-Teller Distortions 
  

 It will be recalled from section II.8 that the energy levels of a metal ion in an Oh field 
will change as the ion undergoes a tetragonal distortion.  Shown in figure VI.6 are the effects 
of a tetragonal compression (A) and an tetragonal elongation (B).  In both cases the bonds 
along the x- and y-axes change in the opposite direction from those along the z-axis. 
 

If the energy center is preserved, the magnitude of the energy change in the eg is half that of 
the b2g while the b1g and a1g changes are of the same magnitude.  The splitting (δ1, δ2) is 
typically in the 200 to 2000 cm-1  range, i.e., less than pairing energy.  As a result a (t2g)1 =  
2T2g configuration will undergo a tetragonal compression to a 2B2g with a (2/3)δ2 stabilization 
while a (t2g)2 = 3T1g is expected to tetragonally elongate to a 3A2g also with a (2/3)δ2 
stabilization.  A (t2g)3 = 4A2g will result in equal occupancy of all three orbitals and result in 
no stabilization and thus there is no distortion.  For over half-occupancy, the energy of the 
holes should be maximized thus (t2g)4 = 3T1g tetragonally compresses while (t2g)5 = 2T2g 
elongates along z.  A (t2g)6 will not distort.  Similar energy considerations applied to the eg 
filling predict that distortion should occur for  (eg)1 = 2Eg and (eg)3 = 2Eg, but not for the (eg)2 
= 3A2g or (eg)4 = 1A1g.  In the latter case, however,  no prediction regarding whether the 
distortion is an elongation or a compression can be made, but typically it is the tetragonal 
elongation which is observed.   From the above considerations, it is clear that all of the 
degenerate states (degenerate orbital occupancy of one unpaired electron) and none of the 
non-degenerate states are expected to distort.  This tendancy of degenerate electronic states 
to distort was summarized by Jahn and Teller in what has become known as the Jahn-Teller 
Theorem. 
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Figure VI-7.  The effect of lowwering the symmetry of an octahedral field by a tetragonal 
distortion.  (A) results from an axial compression and an equatorial elongation while (B) 
shows the effects of an axial elongation and an equatorial compression.  10Dq >> δ1 > δ2. 

 
 
 

Jahn-Teller Theorem:  Non-linear molecules remove electronic degeneracies by undergoing 
a nuclear rearangement to lower symmetry. 

 
Since the distortion is a nuclear rearrangement, it is carried out via the normal coordinates (Q) 
so Jahn-Teller distortion is another example of  vibronic coupling.  One state coupling in non-
degenerate states must be along totally symmetric coordinates so there is no symmetry 
breaking - totally symmetric modes retain the symmetry of the molecule (as in vibronic 
progressions, page 118).  However, if  the state is orbitally degenerate, it is the symmetric part 
of |e>⊗|e> that is vibronically active, and vibronic coupling can lead to a lowering of 
symmetry, i.e., lead to a symmetry breaking.  For example, in Oh symmetry, eg⊗eg = a1g + 
[a2g] + eg so a2g modes are not vibronically active in Eg states, but eg vibrations are active (a1g 
modes are active but cannot lead to a symmetry change).  Figure VI-8 shows both the eg and 
t2g vibrations of an octahedral ML6 species.  It is one of the phases of this eg mode which 
results in the tetragonal distortion (the phase which is shown results in the tetragonal 
elongation).  Note that excited states can also undergo Jahn-Teller (JT) distortions. 
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Figure VI-8.  One component of each of the degenerate vibrations which are 
vibronically active in a t2g electronic state.  The eg mode is also active in eg states. 

 

 Octahedral Ti(H2O)6
3+ is predicted to have a 2T2g ground state, but  the JT theorem 

predicts an instability in this state which leads to a lowering of the symmetry.  T2g⊗T2g = a1g 
+ eg + [t1g] + t2g.  Thus, the Jahn-Teller active modes are eg + t2g (a1g cannot lower the 
symmetry and t1g is the antisymmetric part of the direct product).  Again, it is the eg mode 
which is almost always responsible for the distortion so the ion undergoes a tetragonal 
distortion to D4h symmetry which results in a 2B2g ground state as it is the equatorial bonds 
that elongate.3   
 Jahn-Teller distortions of T states in Oh complexes are encountered far less frequently 
than for E states.  This is because the t2g's are non-bonding so bond length changes will not 
affect them dramatically while the eg's are antibonding and thus very sensitive to bond 
lengths, i.e., δ1 > δ2.   The distortion is so pronounced in Cu(II) complexes (d9, 2Eg ground 
state) that very few regular octahedral copper(II) complexes are known.   
 The Jahn-Teller distortion can be either static or dynamic.  Dynamic Jahn-Teller is 
a weak coupling case (degenerate orbitals are non-bonding) in which the ion oscillates in a 
potential with three minima and appears, on the average, to be a regular octahedron.  In static 
Jahn-Teller distortion, the coupling is strong enough to warp the potential surface and result in 
a permanent change in the bond lengths (degenerate orbitals are antibonding).  In this latter 
case, an ion with unique axial and equatorial bonds results with lower symmetry - an example 
of symmetry breaking. 
 

Two-state Vibronic Coupling - pseudo Jahn-Teller Effect 
 The Jahn-Teller effect can be viewed as an example of the coupling of two degenerate 
states, but coupling can occur even if the states are not degenerate.  This coupling of two non-
degenerate states is sometimes referred to as  the pseudo Jahn-Teller effect.  The two-state 
vibronic coupling operator is then given as <e|∂H/∂Qm|f>Q=0 where |e> and |f> are two 
electronic states coupled by the normal coordinate Q.  The symmetry of the coupling vibration 
must be the same as the direct product of |e>⊗|f> which is typically non-totally symmetric.  
As the vibronic coupling gets stronger, the upper surface narrows while the lower surface 
broadens (see figure VI-9).   For non-totally symmetric modes, <e|∂H/∂Qm|e>Q=0.= 0 so the 
slope of both surfaces remains 0 at Q=0.   However, in the strong coupling limit,  Q=0 
becomes a maximum in the lower surface which means that the equilibrium geometry is no 
longer at Q=0 and thus the molecular symmetry is different in this excited state, i.e., there is 
symmetry breaking in this state. 

 
Figure VI-9.  Effect of a two-state,  |e> and |f>, coupling through a non-totally 
symmetric mode, Q.  The lightest line is the no coupling limit, the heaviest line is a 
strong coupling case and the intermediate line represents a weak coupling case. 

 

 An easily understood example of a two state coupling is the ethylene cation.  The two 
lowest electronic states of the ethylene cation arise from removal of an electron from the two 

                                                
3 Most known examples involve a tetragonal elongation. 
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highest lying mo's of ethylene (see figure II-14).  The resulting states, 2B1u and 2B1g are close 
in energy and are vibronically mixed.  The symmetry of the coupling mode must be B1u⊗B1g 
= au - the C=C torsion.  The coupling of these two states by the torsion results in a ground 
state which is twisted resulting in an ion with D2d symmetry.  The application of the vibronic 
coupling model can often lead to the prediction of excited state geometries. 
 

VI.7  Spin Orbit Coupling 
 

 The spin-orbit operator, λL•S (L is the orbital angular momentum operator and S is 
the spin angular momentum operator) transforms as the rotations (Rx,Ry,Rz) of the molecular 
point group.  SOC exists in first- or second order if the direct product of a state term 
symbol(s) transform as the rotations: a⊗a' ⇒ Rx, Ry, or Rz.  The interaction is also 
proportional to the SOC constant, λ = ±ζ/2S, which in turn is proportional to atomic number 
and nuclear charge as shown in the table below. 
 

Atomic spin-orbit coupling constants ζ  (cm-1).  Values in parentheses are experimentally determined. 
⇓Metal  Oxidation State⇒ M(0) M(I) M(II) M(III) M(IV) M(V) M(VI) 

Ti 70 90 120 155    
V (95) 135 170 210 250   
Cr (135) (190) 230 275 325 380  
Mn (190) 255 (300) 355 415 475 540 
Fe 255 345 400 (460) 515 555 665 
Co 390 455 515 (580) (650) 715 790 
Ni  605 630 (715) (790) (865) 950 
Cu   830 (875) (960) (1030) (1130) 
Zr 270 340 425 500    
Nb (365) 490 555 670 750   
Mo (450) (630) (695) 820 950 1030  
Tc (550) 740 (850) (990) (1150) (1260) 1450 
Ru 745 900 1000 (1180) (1350) (1500) (1700) 
Rh 940 1060 1220 (1360) (1570) (1730) (1950) 
Pd  1420 1460 (1640) (1830) (2000) (2230) 
Ag   1840 (1930) (2100) (2300) (2500) 

The spin-orbit coupling constant within a given Russell-Saunders multipley is λ = ±ζ/2S.  “+” is for 1≤ n ≤4 
and “-“ for n > 4.   

 
Orbitals involved in the spin-orbit coupling must have angular momentum to exchange with 
the spin, but only those degenerate orbitals which can be carried into one another by rotation 
about an axis contain angular momentum.  For example, an electron in degenerate xz and yz 
orbitals has angular momentum since rotation about the z-axis exchanges the two orbitals, but 
an electron in degenerate z2 and x2-y2  has no angular momentum since a rotation will not 
exchange these orbitals.   As a result, all E and T states will have angular momentum except 
for the E states of Oh and Td.  There must also be spin angular momentum so S>0, i.e., singlet 
states cannot be split by SO coupling.  The spin components of a non-dengenerate triplet will 
not be split by SO coupling since there is no orbital angular momentum, and the degenerate 
components of an 1E state cannot be split by SO coupling because there is no spin angular 
momentum.   

One effect of SOC is to relax the ∆S=0 selection rule by mixing states of different spin 
multiplicity.  In a simple, classical picture, an electron's acceleration near a large nuclear 
charge generates a magnetic field which is sufficient to interact with the spin magnetic 
moment and result in a "spin flip".  However, since the angular momentum must be 
conserved, the momentum change associated with the change in spin is compensated for by a 
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change in orbital angular momentum.  Thus, the orbital angular momentum and the spin 
angular momentum are coupled and neither is constant - only the resultant angular 
momentum, J = L + S, is conserved. In the case of strong spin-orbit coupling then, L and S 
are no longer good quantum numbers and the spin selection rule weakens.  In a two electron 
case, the resulting states are no longer purely singlet and triplet in character as the spin-orbit 
coupling mixes singlet character into the triplet and vice versa.   The more singlet character 
the triplet attains the stronger the "triplet" transition becomes as intensity is "borrowed" from 
the "singlet". 

SOC can split a degenerate state into “J states” (J = |L+S|…|L-S|) when a⊗a ⇒ 
Rx,Ry,Rz and is comparable in magnitude to JT splitting (200 - 2,000 cm-1).  The energy 
splitting between the J  states are in units of  λ.  Both JT and SOC splitting require a 
degenerate state so how does one determine which is operable (or if both are operable)?  
Generally JT distortions are greater in E states while SOC often dominates T states.  This is 
explained by the fact that E states have electrons in dσ* orbitals, and these orbital energies are 
affected more by bond length changes that the weaker interacting dπ electrons of T states.  
Also, remember a⊗a ⇒ Rx,Ry,Rz for SOC to operate.  For Eg states at Oh symmetry, eg⊗eg ⇒ 
a1g + a2g + eg.  Since the R’s transform as t1g, SOC cannot remove the degeneracy and JT does 
the trick via the eg mode(s).  For T states at Oh symmetry, t⊗t ⇒ a1 + e + t1 + t2.  Since the 
R’s transform as t1g, SOC can remove the degeneracy. In addition, the JT can contribute to the 
splitting via the eg and t2g modes.  Thus, both types of splittings may be involved but to 
different degrees. 

Finally, SOC plays an important role in magnetism and electron paramagnetic resonance 
by affecting the magnetic moment, altering the g-factor from the spin-only value, and creating 
large zero-field splittings.  In fact, it is SOC that is responsible for large axial zero field 
splittings (5-50 cm-1).  To understand the effect of SOC on zero-field splittings, consider the 
three spin sublevels (T±1 and T0) of a spin triplet ground-state.  In second-order SOC can mix 
these sublevels with those of an excited state, but mixes the T±1 differently that it mixes the 
T0.  The result is an energy gap between the T±1 and T0 sublevels of the ground state.  This 
energy gap is called zero-field splitting.  The magnitude (and sign) is proportional to the SOC 
matrix elements, proportional to λ, and inversely proportional to the energy gap between 
ground and excited states. 
 

Problem VI.6   In problem II.13 you constructed an energy level diagram for [[(Me3P)4WE2] 
(E=S, Se, Te) of D2d symmetry.  The spectra of the dd bands is given in A below.   

• Assign them to orbital and state transitions of the D2d molecule.  In your discussion, you 
should argue that only one dd band is expected in this region. 

• The two bands in each spectrum have been assigned to a JT splitting.  What are the 
symmetries of the JT active modes?   What is the probable nature of the distortion and the 
symmetry of the distorted molecule.  Draw an orbital energy level diagram showing the 
orbitals involved in the transition in the D2d molecule and the distorted molecule.  

• Suggest why trans-O2Re(py)4
+ shows no such splitting. 

Problem VI.7.   The uv spectra of these compounds is given in B below.  You may assume 
that all bands arise from transitions within the E=W=E moiety and into the LUMO. 
• Assign the labelled peaks in a table.  Include the state, orbital, and type (MLCT, dd, etc.) 

designation for each.  Is there a relationship between the series comprised of the strongest 
peaks in the spectra and the series of bands at 18.2, 22.3 and 24.6 kK?  Account for the 
apparent trend in intensities of the latter series. 

• Evaluate the relative field strengths of S, Se and Te based on the spectra given below and 
the the dd spectra presented in the previous problem.  Explain the observed trend. 
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• No band is observed in the spectra of the O=Re=O unit which corresponds to the strongest 
band in these spectra.  Why?   

• Could the two bands shown in the dd region (Problem VI.6) be ascribed to a spin-orbit 
splitting?  Argue for or against this assignment. 

  

 
VI.8  Resonance Raman Scattering 

 

 There are several excellent reviews on resonance Raman and an excellent example 
featuring inorganic chemistry.4  We will present here only a very qualitative overview.  The 
experimental difference between normal Raman scattering (section IV.10) and resonance 
Raman scattering (RRS) is that in the former the exciting line is far removed from any 
electronic absorption while, in the latter, excitation is in resonance with an electronic 
transition.  As a result, the RRS process is coupled to the electronic process with an 
enhancement of the Raman signal which can be orders of magnitude depending on the 
extinction coefficient of the electronic band and how close to resonance the excitation is.  
Thus, pure solids are studied in normal Raman while RRS from µM solutions have been 
reported. 
 Typically, the scattering tensor is written as α  = A + B, where A is the Franck-
Condon (one-state) scattering term and B is the Herzberg-Teller (two-state) scattering term.5   

 

A-term scattering:  The A-term is the dominant term in the scattering process and in 
many instances is the only enhancement mechanism observed.  Since the photon is in 
resonance with an excited state, the molecule begins to move toward the excited state 
geometry during the scattering process and the modes it uses to achieve the excited state 
geometry are the ones that gain enhancement via the A-term. Since the only modes that 
can be displaced are the totally symmetric modes, they are the only ones that can be 
enhanced by the A-term.  The more displaced the upper surface is along a coordinate, i.e., 
the larger are the Franck-Condon factors for the vibration, the more enhanced the mode is 
and the more likely will be the observation of overtones.  If the enhancement is plotted as 
a function of excitation energy, an excitation profile is obtained. This excitation profile 
will typically trace the absorption band.  Finally, the extent of enhancement varies with 
the square of transition moment of the electronic absorption so that enhancement factors 
observed for RRS in resonance with strong absorption are greater than those observed 
from weak bands. 

 
B-term scattering:  Enhancement of non-totally symmetric modes results from the B-
term.  If two electronic states lie close in energy to the Raman excitation energy, an 
enhancement of those modes with the symmetry to couple the two states can be observed.  
B-term contributions are usually masked by the much stronger A-term.  However, some 

                                                
4Clark, R.J.H.; Stewart, B., Struc. and Bonding, 1979, 36, 1-80. 
5There are higher terms, but they are seldom observed. 
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cases have been observed.  Perhaps, the most studied example is that of porphyrins, 
discussed in detail in section VII-5, where two Eu states are strongly coupled and 
absoption into them gives rise to a Q- and a Soret band.  The A-term will result in a1g 
modes of the D4h molecule being enhanced while the B-term will enhance modes of the 
correct symmetry to couple the two Eu states (Eu ⊗ Eu = a1g + a2g + b1g + b2g).  Resonance 
Raman when probing the Soret band is typically due to the A-term as only a1g modes are 
observed.  Probing the Q-band results in the modes expected for the B-term contributions. 
 

 The visible absorption spectrum of TiI4 and the resonance Raman spectra observed 
with three exciting lines probing the lowest energy band are given in Figure VI-10.  The 
Raman spectra are normalized to the cyclohexane peak at 806 cm-1 which is maintained at the 
same intensity for all spectra.  The resonance Raman spectrum at 647 nm is pre-resonance and 
the strongest peak in the spectrum is the cyclohexane reference peak while ν1, the symmetric 
Ti-I stretching mode is relatively weak.  As the exciting line is moved into resonance 
conditions at 568 nm, the Ti-I stretch is now comparable in intensity to the solvent mode and 
its first overtone is becoming pronounced.  On resonance at 514 nm, ν1 dominates the 
spectrum being about 5-times stronger than the solvent band.  In addition, a progression in ν1 
out to 4ν1 is readily observed.  From these results, it can be concluded that the Ti-I bond 
length is substantially changed in the excited state which is populated at 514 nm. 

 

 
Figure VI-10.  (A) The visible portion of the electronic spectrum of TiI4.  (B) Resonance 
Raman spectra of TiI4 in cyclohexane reported at three exciting lines, 647, 568 and 514 
nm.  The spectra are normalized so that the cyclohexane reference peak at 806 cm-1 retains 
the same intensity in each spectrum. 

 
Thus, resonance Raman can be viewed as high resolution vibronic spectroscopy.  As such it is 
useful in determining the nature of excited states and in assigning electronic spectra.  One of 
the topics to be discussed in detail at the end of the course is the localized nature of the metal 
to ligand charge transfer (MLCT) excited states of Ru(bpy)3

2+.  As implied in the name, 
charge is transferred from the metal to the bipyridine in this transition, and the question being 
considered was whether that charge was localized on a single bipyridine or delocalized in a π-
MO spread over the entire molecule.  The electrochemistry of these species is quite rich and 
stable reduction products are easily obtained.  In our work in this field, we examined the 
spectroscopy of these reduced species to determine the effect of reduction.  Upon reduction, 
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π−π* transitions in the bipyridine are found in the visible and it is difficult to determine the 
position of the MLCT bands.  In the case of  Fe(bpy)3

2+, however, these peaks are well 
resolved.6  Figure VI-11A shows the visible spectrum of Fe(bpy)3

2+ and its one-electron 
reduction product, Fe(bpy)3

1+.  After a quick comparison of the general features of the visible 
spectrum, it would be tempting to assign the features at 19.0 and 20.2  kK in the reduced 
species to the MLCT and a vibronic side band in keeping with the assignment of the parent.  
The band at 16.5 kK would then be the π → π* transition.  This assignment would then 
indicate only a small shift in the MLCT with reduction.  The resonance Raman spectra (RRS) 
of these complexes is shown in figure VI-11B.  The RRS observed for the parent when 
probing into the maximum of the MLCT band is dominated by bipyridine vibrations 
indicating that the bipyridines are distorted in the excited state of the transition.  This is to be 
expected since the transition is putting electron density into a bpy-π∗ orbital.  The RRS of the 
singly reduced species observed at 19.0 kK is different as most of the frequencies and relative 
intensities are different.  When the low energy band at 16.6 kK is probed, however, an RRS 
essentially identical to that observed for the parent is observed.  The conclusion, then is that 
the MLCT band red-shifts by about 2.4 kK upon reduction down to 16.6 kK.  The band at 19.0 
kK in the reduced species is then a π → π* transition localized in the reduced bipyridine.  The 
Raman frequencies observed when exciting at 19.0 kK are then due to a reduced bipyridine 
which results in a shift.  Thus, the assignment of these electronic bands was greatly facilitated 
by the use of RRS.  In addition, the observation of RRS from unreduced and reduced 
bipyridines in the same sample supports the contention that the redox orbital is indeed 
localized on an indidual bipyridine ligand and not spread out over all three ligands.  We will 
revisit this problem in more detaila in the next chapter. 

 
Figure VI-11.  (A) The visible spectrum of Fe(bpy)3

2+ and its one electron reduction product Fe(bpy)3
+.  

(B)  The resonance Raman spectrum of Fe(bpy)3
2+ using 19.4 kK excitation and of  Fe(bpy)3

+ using 
16.6 and 19.0 kK excitation.  The arrows in (A) are the excitation energies used in (B). 

 

Problem VI.8   Account for the 2400 cm-1 shift in the MLCT 
upon reduction of one of the bipyridines. 

 

 
Figure VI-12.  The absorption spectrum and the RRS of  Mo2Cl8

4-  
 

                                                
6 Angel, S.M.; DeArmond, M.K.; Donohoe, R.J.; Wertz, D.W., J. Phys. Chem., 1985, 89, 282). 
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As another example of RRS consider the spectra of Mo2Cl8
4- given in problem IV.4 and 

shown above.  Here, the RRS was recorded using excitation at 19.4 kK, i.e., into the band 
shown at the left.  Since a long progression in the Mo-Mo stretch was observed in both the 
electronic absorption spectrum  and in the resonance Raman, it was concluded that the 
excited state geometry had a substantially different Mo-Mo bond length.  Since the stretching 
frequency is much less in the excited state (peak separations in the absorption spectrum) than 
in the ground state (RRS) it was concluded that the Mo-Mo bond lengthened upon excitation. 
The absorption band was therefore assigned as the δ → δ* transition which results in a 
lowereing of the Mo-Mo bond order. 

 

VI.9  Relaxation Pathways 
 There are a variety of relaxation mechanisms by which can lose the energy gained in 
an electronic absorption.  They are represented in figure VI-13, a Jablonski diagram. 

• Vibrational relaxation (R): molecules in vibrationally excited states relax to the 
vibrational ground state by collisions with the solvent.  This is the most rapid 
process (10-11 - 10-9s) and therefore the first process to occur.  All of the subsequent 
relaxation processes will occur from the ground vibrational level of the electronic 
manifold.  This is a non-radiative process which results in heat. 

• Internal conversion (IC):  The excess electronic energy of one manifold is 
converted into excess vibrational energy of a lower lying manifold of the same spin. 

• Intersystem crossing (ISC):  The same process as internal conversion except the 
two electronic states are of different spin. 

• Emission can be a spin allowed Fluorescence (F), a spin forbidden 
Phosphorescence (P) or a Luminescence for strongly spin orbit coupled systems. 

• Photochemistry: the excess electronic energy is oftentimes in very anti-bonding 
mo's which can lead to extensive bond weakening which can, in turn, lead to 
reactions. 

 

 In the following discussion, it is assumed that all electrons in the ground state are 
paired so the ground state is a singlet (S0) while the excited states are either singlet (S1 being 
the lowest excited singlet) or triplet (T1 being the lowest lying triplet).  Since highly excited 
electronic states are very short lived, the molecule typically does not spend sufficient time in 
these states to undergo a spin forbidden ISC or emission.  As a result, vibrational relaxations 
and internal conversions occur very quickly to bring the sytem to the S1 manifold by heating 
up the sample.  This is sometimes referred to as Kasha's Rule: it is from the v=0 level of S1 
that fluorescence, intersystem crossing to T1, or photochemistry will occur.  In the following, 
we neglect photochemistry and consider only absorption into S1. 
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Figure VI-13. Jablonski Diagram showning some of the relaxation 
pathways after an absorption A into the lowest lying singlet, S1. 

 

The relaxation pathways available from the v=0 level of S1: 
1. F: spin allowed fluorescence - the excess energy is given off as a photon 
2. IC + R2: internal conversion to So followed by vibrational relaxation - energy is 

dissapated as heat. 
3. ISCT1 + R3 + (P or ISCSo + R4): Intersystem crossing to T1 followed by vibrational 

relaxation followed by (either a spin forbidden phosphorescence or an intersystem 
crossing to So and subsequent vibrational relaxation). 

 

 The entire process is unimolecular, A*→A, so it obeys first order kinetics, i.e., 
[A*]t=[A*]0e-kt where the rate constant, k is the sum of the rate constants for all of the competing 
pathways (all of which are first order).  The lifetime is defined as τ = 1/k so [A*]τ=[A*]0e-1 or 
[A*]τ/[A*]0 = 1/e = 0.37, i.e., the lifetime is the time required for the concentration of the excited 
state species to fall to 37% of its original value.  

     
Figure VI-14.  Exponential decay of A* with lifetimes of 0.2, 0.5, and 1.0 time units. 

 
 Thus the excited state decays exponentially.  The importance of any pathway will 
depend on the rate constant for the process, the faster a process occurs, the more important the 
process is in the description of the relaxation.  Because fluorescence is spin allowed, it is 
much faster (10-4s> τ >10-8s) than the spin forbidden phosphorescence (102s> τ >10-4s).  Since 
spin orbit coupling makes the term "spin forbidden" somewhat ambiguous, radiative decay 
with lifetimes in the regions of overlap between the two is called luminescence. 
 The rate of internal conversion or intersystem crossing will depend on the energy 
match of the two vibrational levels and the overlap of the vibrational wavefunctions.  If the 
v=0 level of the S1 manifold is close in energy to the v'=7 level of the S0 manifold, one might 
expect the two extremes shown in figure VI-15.  In figure VI-15A, the S1 manifold is not 
displaced and thus there is very little positive overlap of the vibrational wavefunction in the S0 
state.  In this case, internal conversion would be slow and the relaxation pathway would 
probably be dominated by fluorescence if the S1 → S0 transition is orbitally allowed.  In B, 
good overlap results and very rapid internal conversion would be expected so most of the 
relaxation would be non-radiative vibrational relaxation. 
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Figure VI-15.  Overlap (dotted area) resulting between the v=0 level of the S1 
manifold with the v'=7 level of the S0 manifold for two different amounts of 
displacements of S1.  Heavilly shaded areas represent regions where vibrational 
wavefunctions are negative. 

 
VI.10   Bandshapes 

 The idealized spectrum presented for CO in figure VI-5 is seldom realized by the 
inorganic researcher.  Usually bands are very broad (FWHM of 500 - 2000 cm-1 are common) 
and have shoulders rather than pronounced peaks.  There are many factors contributing to the 
breadth of electronic transitions some of which are listed here. 
• Vibrational Coupling.  Vibrational progressions will necessarily broaden an electronic 

transition and in fluid solution, each of the vibrational peaks has associated with it a set of  
rotational lines so that each peak in the progression will itself be broadened.  In a 
vibronically allowed transition there may be many false origins, each of which may have a 
progression in totally symmetric modes.  In solid state spectra, lattice modes and 
combinations of lattice modes with the progressions will also broaden the peak. 

• Lifting of Degeneracies.  Spin-orbit coupling and Jahn-Teller distortions can both lift the 
degeneracy of a transition but the effect may not be great enough to resolve the resulting 
states so that the transition(s) simply appears to be broad.  The same result can be 
observed if a complex is prepared in which the symmetry of the molecule is low, but the 
ligand substitution is such that the deviation from higher symmetry is small.  If the 
deviation is small enough, degenerate modes will again be split but not split enough to be 
resolved. 

• Variations in Crystal Field Strength.  Dq is proportional to the (RM-L)5 so Dq will vary 
during the metal-ligand vibrations and thus broaden dd bands. 

• Inhomogeneous Broadening.  The molecules are not all in the same environment.  This 
usually contributes 10 to 15 cm-1 to every line in the band. 

• Homogeneous Broadening.  In addition to 0-0 band, hot-bands of the type 1-1, 2-2 etc. are 
also possible.  For a harmonic oscillator all of these bands have the same energy, but 
anharmonicities will make them differ.  Since these bands originate from excited 
vibrational levels, they will only be important for low frequency vibrations and should not 
be a factor at low temperatures. 

 
 In order to resolve the components of vibronic progressions it is usually necessary to 
reduce the bandwidths of the vibronic peaks.  Thus, highly resolved spectra are usually shown 
at substantially lowered temperatures, 80K and 5K being typical.  The purpose of the low 
temperature is to reduce the molecular rotations that result in rotational broadening of each of 
the vibrational lines and to eliminate the homogeneous broadening, but  frozen samples are 
usually opaque and full of cracks precluding acquisition of good absorption spectra.  There are 
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a number of solvent systems, however, that do not freeze but glass instead.  A good glass will 
look like the solution, i.e. be transparent, but still substantially reduce molecular motion.  
Typically a good glassing solvent is one that has low symmetry and does not hydrogen bond 
extensively.  The glassing solvent can be either a pure substance, e.g., ethanol or a mixture, 
e.g., a 4:1 ethanol:methanol mixture.  Almost all spectra showing vibronic progressions of 
sharp peaks are reported at low temperatures (<80K) in glassy solutions.  
 

VI.11  Emission vs. Absorption 
 

 Emission occurs from the v=0 level of the lowest lying excited electronic state of a 
given spin into the ground state manifold (Kasha's rule).  Since the final vibrational level can 
be any level of the ground electronic manifold (depending on the Franck-Condon factors), the 
progression frequencies are those of the ground state unlike the absorption process which 
yields progressions in excited state frequencies.  Indeed, the absorption peak and the 
corresponding emission peak often appear as mirror images.  Based on the considerations 
made so far, one would expect the 0-0 bands for the emission and absorption to be at the same 
place with the absorption band having structure on the high energy side and the emission 
having low energy structure.  Usually, however, the 0-0 bands of the emission and the 
absorption do not coincide - the difference between them being the Stokes shift.  There are 
several reasons for a Stokes shift: 
• Often times the emission is a phosporescence and much of the Stokes shift is due 

primarily to the singlet-triplet energy separation.  See figure VI-16A. 
• In the case of a very displaced oscillator, the 0-0 bands are not observed in which case 

several quanta of vibrational energy can contribute to the Stokes shift.  See figure VI-16B. 
• Due to the vertical nature of the absorption, the molecule ends up in the excited state with 

ground state geometry and solvation.  A non-radiative relaxation to the excited state 
equilibrium geometry and solvation is then required.  Emission occurs to the ground state, 
but the result is a molecule in the ground state with excited state geometry and solvation.  
See figure VI-16C. 

  
Figure VI-16.  Contributions to the Stokes shift. (A) Absorption is into spin allowed 
manifold while emission is from lower lying spin forbidden manifold.  (B) Excited 
state is so displaced that 0-0 band is not seen for emission or absorption.  (C) 
Absorption is into excited state but with ground state geometry and solvation while 
emission is into ground state but with excited state geometry and solvation. 
 

 The non-radiative energy changes in figure VI-16C are the reorganization energies 
which can be inner-sphere (molecular geometry) or outer-sphere (solvent reorientation).  The 
outer-sphere reorganization energy is large when the dipoles of the ground and excited states 
are different and the solvent is polar.  Thus, transitions which involve large dipole changes are 
expected to show a solvent dependence (solvatochromism).  There are essentially three types 
of electronic transitions in inorganic compounds: metal localized (LF); ligand localized (e.g., 
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ππ*); and charge transfer transitions, i.e, transitions which involve movement of electron 
density from one region of the molecule to another,. Only the charge transfer (CT) transitions 
result in appreciable changes in dipole and thus show a marked dependence on the solvent - 
usually on the solvent dipole.  As an example, consider a ligand to metal charge transfer on a 
hypothetical diatomic MBr where an electron is transferred from a Br p-orbital which has 
some π-bonding character to an empty t2g orbital on the metal which has some π* character 
(refer to figure VI-17).  Initially, the dipole on MBr is pointing to the electronegative bromine 
atom and the solvent dipoles are aligned so as to minimize the energy of the system.  Upon 
charge transfer excitation, the M-Br bond elongates as the electron is promoted from a 
bonding to an antibonding orbital, i.e., the molecule undergoes an innersphere 
reorganization.  In addition, the metal becomes electron rich while the bromine becomes 
electron deficient changing the direction of the dipole so the solvent molecules must rotate to 
realign the dipoles, i.e., the system undergoes an outersphere reorganization.  Solvent 
effects are most notable for species which are polar to begin with and whose CT's result in a 
change in direction of the dipole.  Non-polar species often show no solovent dependence in 
their CT bands.  

    
Figure VI-17.  Inner- and outer-sphere reorganizations following an LMCT excitation. 

 

Problem VI.9  Predict the direction of shift of MLCT emissions in going 
from the fluid to the glassy state (see section VI.9).  Explain your answer. 

 

VI.12  Ligand Field Spectra 
 

 The student should review section II.9 on the molecular orbital theory of transition 
metal complexes especially the factors influencing 10Dq and ligand field strengths.  Ligand 
field (LF), crystal field (CF) and dd bands are three names for the same type of transitions - 
those between the d-orbitals on the metals which are formally forbidden in centrosymmetric 
molecules (Laporte forbidden) but are often observed as very weak bands (vibronically 
allowed).  The energies of these transitions are clearly dependent on the crystal field splitting, 
but the observed peaks are between states not orbitals so the value of 10Dq for systems with 
more than one d electron is not simply the energy of an observed transition.  In this section, 
the method for deducing the value of 10Dq from the observed spectra is presented.  This will 
be done by  examining the spectra of several M(H2O)6

m+ ions.  As mentioned earlier, hole 
configurations and electron configurations can be treated in the same manner so in the 
following discussions we will do examples d1 and d9 together and then d2 and d8 together.  The 
d3 case is presented as a homework assignment. 
 

d1 - Ti(H2O)6
3+ & d9 - Cu(H2O)6

+ 

 The electron in the d1 case is in a t2g while the hole in the d9 case is in an eg 
orbital.  In both cases, only one transition is expected either the  2T2g → 2Eg or the 2Eg →  
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2T2g.  Both cases however are subject to Jahn-Teller distortion in both the ground and 
excited states. The determination of 10Dq which would be expected to be the energy of 
the transition in either case is therefore somewhat complicated. 
 Ti(H2O)6

3+  has a weak band at 20.1 kK (ε = 5.7) which was readilly assigned to this 
2T2g → 2Eg dd band.  However, there is also a shoulder at 17.4 kK which was assigned to a 
Jahn-Teller distortion.  As mentioned in section VI-5, Ti(H2O)6

3+ undergoes Jahn-Teller 
distortion in the ground state (2T2g → 2B2g + 2Eg), a tetragonal distortion involving either an 
equatorial elongation or an axial compression as it is this type of distortion that results in a 
2B2g ground state.  However, two bands separated by 2.7 kK cannot be attributed to a ground 
state distortion as this would imply substantial population of an energy level at ~10kT.  Thus, 
there must also be a Jahn-Teller distortion of the excited state: 2Eg ⇒ 2A1g (z2) + 2B2g (x2-y2) 
through the eg vibration (see figure VI-8).  The two observed bands then are assigned as 2B2g 
→ 2B1g (17.4 kK) and 2B2g → 2A1g (20.1 kK).  The value of 10Dq is not clear in this case but a 
rough estimate is ascertained from the average of the two transitions to be 10Dq ≈ 18.7 kK. 
 The distortion is so pronounced in (NH4)2Cu(H2O)6(SO4)2 that four dd bands have 
been assigned7 to the orbital transitions: z2 → x2-y2 (6.4kK); xz & yz → x2-y2 (11.5 & 
12.4 kK); xy → x2-y2 (10.7 kK). 
 Crystal field transitions involving metals with more than one d-electron are more 
difficult to assign since many states can arise from one orbital transition (see section VI.2).  
In order to determine 10Dq, the dd bands must be assigned, but the dd band energies depend 
on the value of 10Dq.  Thus, the variation of the state energies with field strength must first 
be understood.  A diagram displaying this variation for all of the states is referred to as a  
correlation diagram.  We will consider the easiest example, that of the d2 ion. 
 At the weak field extreme, the metal d-orbitals can be treated like the free ion.  The 
terms arising from the d2 ion are given by values of L, the total angular momentum, from l1 + 
l2 = 2+2 = 4 down to |l1 - l2| = 2 -2 = 0 in increments of one.  So for d2, L = 4, 3, 2, 1, 0 for G, 
F, D, P and S terms.  The multiplicity of each of the terms is determined by the Pauli 
exclusion principle.  Thus  the triplets cannot be derived from states in which  ml1 =  ml2 so 
the 2+2 = 4 (G), 1+1 = 2 (D) and the 0+0 = 0 (S) are the singlets while the 2+1 = 3 (F) and the 
1+0 = 1 (P) are the triplets.  The states derived from a d2 configuration are therefore 1G, 3F, 
1D, 3P and 1S.  The energy ordering of the terms is determined by calculation to be 3F < 1D < 
3P < 1G < 1S.  The terms arising from a dn configuration of the free ion (Kh symmetry) split in 
the presence of an octahedral field in the following manner: 
 

Term Components in Oh Field 
S A1g 
P T1g 
D Eg + T2g 
F A2g + T1g + T2g 
G A1g + Eg + T1g + T2g 
H Eg + T1g + T1g + T2g 
I A1g + A2g + Eg + T1g + T2g + T2g 

 

We now have the weak field side of our correlation diagram.  For the strong field side, we 
simply determine the states derived from (t2g)2 < (t2g)1(eg)1 < (eg)2 configurations as we did in 
secton VI.2.  A rough correlation diagram for this d2 case is given in figure VI-18.   
                                                
7 Hitchman, M.A.; Waite,T.D., Inorg. Chem., 1976, 15, 2150. 
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 Examination of figure VI-18 allows us to conclude that, in the d2 case, the two lowest 
energy, spin allowed transitions in a weak field would be the 3T1g→

3T2g and 3T1g→
3A2g while 

in a strong field they would be 3T1g→
3T2g and 3T1g→

3T1g and at some intermediate field 
strength the 3T1g→

3A2g and 3T1g→
3T1g are at similar energies and could give rise to one broad 

band. 
 

   
Figure VI-18.  A rough correlation diagram for a d2 ion showing 
how the state energies vary with the crystal field splitting, 10Dq.  
Energies are not to scale. 

 

 The assignment of crystal field bands is most easily accomplished with the use of  
Tanabe-Sugano diagrams.8  Tanabe-Sugano diagrams are calculated correlation diagrams in 
which the ground state is always the abscissa at zero energy and where energies are given in 
terms of the dimensionless quantities E/B and 10Dq/B (B is a Racah parameter used to take 
into account interelectronic repulsions and will depend upon both the metal and the ligand and 
as such will be an unknown in the experiment). The Tanabe-Sugano diagrams used in this text 
are modified from those given by Offenhartz.9  The state energies are functions of the ratio of 
the Racah parameters, C/B, which varies over the range of 3.5 to 4.5.  The diagrams presented 
here are for a C/B ratio of 3.70 which differs from that presented in either Cotton or Huheey 
so care must be made in comparing these sets of diagrams and the parameters obtained from 
them with other diagrams and other derived parameters.  
 

The procedure for assignment of dd bands: 
 

1. Measure the energies of the observed dd bands. 
2. Convert the energies to unitless quantities by taking ratios.  These ratios can 

be either the ratios of the band energies to the lowest band energy or the ratios 
of differences between adjacent bands to the lowest energy band. 

3. Use the diagram to find the best value of 10Dq/B to best fit the data. 
4. Determine the value of E/B for the lowest energy transition at the value of 

10Dq/B determined in #3.  Since E is the observed band energy, B can be 

                                                
8  Tanabe, Y.; Sugano, S., J. Phys. Soc. Japan, 1954, 753, 766. and  J. Phys. Soc. Japan, 1965, 20, 1155. 
9  Offenhartz, P. O'D, Atomic and Molecular Orbital Theory, McGraw Hill, NY, 1970. 
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determined from the value of E/B.  Once B is known, 10Dq can be determined 
from 10Dq/B. 

 
d2 and d8 - V(H2O)6

3+ and Ni(H2O)6
2+ 

 

  VIII is d2 while NiII is d8 and the orbital occupancies for the possible states 
are given in figure VI-19. 

  
Figure VI-19.  Orbital occupancies possible with d2 (V3+) and d8 (Ni2+) systems.  
The same states are derived in each case, but the order is reversed. 

 
Hence, the following transitions are predicted: 
 

 d2 d8 
I 3T1g → 3T2g 3A2g → 3T2g 
II 3T1g → 3T1g 3A2g → 3T1g 
III 3T1g → 3A2g 3A2g → 3T1g 

 
It should be noted that transition III involves a two electron transition and will be very weak if it 
is observed at all.  It should also be noted that the order of the transitions II and III in the 
vanadium complex will depend upon the relative values of B and 10Dq.  Simplified Tanabe-
Sugano diagrams showing only the states involved in these transitions are shown in figure VI-
20. 
 
The observed dd bands are at the following energies in kK(ε): 
 

V(H2O)6
3+(10)  Ni(H2O)6

2+(11) 
17.8 (3.5) 8.5 (2) 
25.7 (6.6) 13.8 (2) 

? 25.3(5) 
 

 For the vanadium example, the energy differences between adjacent energy levels 
would be 17.8 and 25.7-17.8 = 7.9 kK and the ratios of the differences would be 17.8/7.9 = 2.3 
: 1.  We then refer to Tanabe-Sugano diagram for d2 in figure VI-20 and move across the 
10Dq/B line measuring vertical distances until the ratio between the two lowest triplets is 
2.3:1.  This occurs at 10Dq/B ≈ 30 where E/B for the lowest lying triplet is 28 but the lowest 
lying triplet occurs at 17.8 kK thus 17.8/B=28 so that B = 17.8/28 or 0.64 kK (640 cm-1).  
10Dq = 30B = 30(0.64) = 19 kK.  Using these derived parameters and the diagram, we can 
calculate the second transition energy:  E/B = 41 for the 3T1g state so the energy of the 
transition is 41(0.64) =  26 kK.  The 3A2g state is not shown on the abbreviated diagram in 

                                                
10 Horner, S.M.; Tyree, S.Y.; Venexky, D.L., Inorg. Chem., 1962, 1, 844. 
11 Bose,A.; Chatterjee, R., Proc. Phys. Soc., 1963, 83, 23. 
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figure VI-20, but on more extensive diagrams its value at 10Dq/B = 30 is about 58 so E ≈ 
(0.64)(58) = 37 kK. 

  
Figure VI-20.  Simplified Tanabe-Sugano diagrams for the d2 and d8 systems 
showning only the allowed triplet states.  The arrows represent the transitions 
observed for the V(H2O)6

3+ and Ni(H2O)6
2+ ions. 

 

dd bands and asignments for V(H2O)6
3+ 

based on 10Dq=19 kK and B = 640 cm-1 

 
observed (kK) Calculated (kK) Assignments 

17.8 (3.5) 17.8 3T1g → 3T2g 
25.7 (6.6) 26 3T1g → 3T1g 

? 37 3T1g → 3A2g 
 

 In the nickel case, the successive differences are 8.5, 5.3 and 11.5 kK which give ratios 
of 1 : 0.62 : 1.4 which yield 10Dq/B ≈ 9 at that point E/B is also 9 thus B = 8.5/9 = 0.94 kK.  
10Dq = 9B = 8.5 kK.  These values and the Tanabe-Sugano diagram can be used to calculate 
the next two transitions to be at 13 and 26 kK also in good agreement with the observed 
values.  The results of this treatment are the assingments, and values for B and 10Dq: 
 

dd bands and asignments for Ni(H2O)6
2+ based 

on 10Dq=8.5 kK and B = 640 cm-1 
Observed (kK) Calculated (kK) Assignment 

8.5 (2) 8.5 3A2g → 3T2g 
13.8 (2) 13 3A2g → 3T1g 
25.3(5) 26 3A2g → 3T1g 

 

 The effect of the ligand on the crystal field splitting can be seen by a comparison of 
the spectra of V(H2O)6

3+ with that of V(CN)6
3- which has dd bands at 22.2 (ε=27) and 28.6 

(ε=50) kK.12  The parameters derived from this data are 10Dq = 23.9 kK and B = 550 cm-1.  
The much stronger field presented by the cyanide ligand increases the energy of the 
transitions some 3 to 4 kK and increases 10Dq by 7 kK.  Remember that, in this case, not only 
are the eg destabilized by σ-donation into them, but the metal t2g's are stabilized as a result of 
back bonding into the C≡N π*. 
                                                
12 Holloway, C.E.; Mabbs, F.E.; Smail, W.R., J. Chem. Soc. (A), 1969, 2330. 
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Problem VI.10  Refer to the Tanabe-Sugano diagram for d3 in Oh field and assign 
the bands in the electronic spectrum of Cr(H2O)6

3+ [kK(ε): 14.0(2), 17.4(13), 
24.6(15), 37.8(4)].  What is the value of 10Dq?  Suggest reasons why the 14.0 kK 
bandsis so weak and broad. 

 

 
Tanabe-Sugano type diagram for a d3 system on an Oh field. 

 
VI.13  Charge Transfer Spectra 

 

 Since CT bands arise from transitions in which there is a transfer of electron density 
from a donor to an acceptor, a favorable overlap between the orbitals is required. The 
transition can be viewed as a redox process where the donor is oxidized and the acceptor is 
reduced, AD → A-D+.  In complexes which have MLCT bands in the visible, it is common to 
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observe both the metal oxidation and the ligand reduction in the cyclic voltammogram.  The 
two processes are then, 
    AD → AD+ + e- Eox - potential of donor 
    AD + e- → A-D  Ered - potential of acceptor 
and the difference between them is essentially the CT process 
    AD → A-D+  Eox - Ered 
In the cyclic voltammogram of [RuII(bpy)3]2+ the oxidation of RuII to RuIII is observed at 
+1.29V while the reduction of bpy to bpy- occurs at -1.33V.  Thus, Eox -Ered = 2.62V while the 
MLCT band is observed at 22.0 kK or 2.73 V.  The reason that the MLCT energy will always 
exceed Eox -Ered  is that the optical energy difference does not include reorganization while the 
much slower electrochemical process does (see section VI.11).  The energy difference 
between the two is then the innersphere and outer- sphere reorganization energies in the 
excited state.  If, however, one compares Eox - Ered with the emission energy the redox energy 
would be greater by the reorganization energy of the ground state - if the emission is from the 
same state that the absorption is into. 
 It should be clear from the above discussion and figure VI-21 that the more easily the 
metal (D) is oxidized (less positive Eox) and the more easily the ligand (A) is reduced (more 
positive Ered), the lower will be the energy of the MLCT.  To decrease the energy of LMCT's 
the opposite is required: a metal (Acceptor in LMCT) which is difficult to oxidize will be 
easier to reduce so the Acceptor orbital will be lower.   Indeed, one way to distinguish LMCT 
from MLCT is the direction of the shift in the band as the oxidation state of the metal changes.  
Increases in the oxidation state stabilizes the metal orbitals and thus MLCT bands will 
increase in energy (blue shift) while LMCT bands will decrease in energy (red shift). 
 

      
Figure VI-21.  Oribital enerergies of donor and acceptor orbitals relative to a 
reference potential is the case where the acceptor reduction is at negative 
potential and the oxidation potential of the donor is at positive potential. 

 
 Charge transfer transitions usually result in a change in the direction and/or magnitude 
of the dipole and consequently in a substantial outersphere reorganization energy in polar 
solvents (section VI.11).  Indeed, the more polar the solvent the greater the reorganization 
energy will be.  As a result, CT bands are generally characterized by solvatochromism, solvent 
dependence of the absorption maxima.  The more polar the solvent, the higher in energy is the 
CT band.  Solvent dependence of a band is strong support for charge transfer character in the 
band, but lack of solvent dependence does not necessarily rule it out.  In order to have a large 
solvatochromic effect, the charge transfer should result in a change in the direction of the 
dipole.  Therefore, molecules with no permanent dipole in the ground state will usually not 
show a solvent dependence in their CT bands. 
 

Problem VI.11  Discuss the effects on the CT spectrum of an octahedral 
d6 ion as the metal is oxidized.  Include MLCT and LMCT energies. 
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Problem VI.12  Assign the CT bands MLCT or LMCT in the spectra of 
CoX4

2- shown below.  Indicate the transitions on an energy diagram .  
Account for the trend in energy and complexity as X goes from Cl to I. 
Refer to Appendix D. 

     
 
Problem VI.13  The near ir and visible spectra of the cations, bromotris-
(methylmercapto-o-phenyl)phosphinenickel(II) [NiII(TSP)Br]+ and bromotris-
(dimethylarsino-o-phenyl)arsinenickel(II)  [NiII(QAS)Br]+ are given below. 

  
Assign the two bands (~15 and ~21 kK) as to the type of transition (dd, MLCT, 
LMCT or LC), the orbitals involved (e.g., xz → π*) and the states involved.  
 
 
 
 
 
 

Problem VI.14  The electronic spectra of [Re2Cl8]2- measured on a single crystal at 5K in z-
polarization (solid) and in xy polarization (dotted) and the ir and Raman spectra of the 
[Re2Cl8]2- and [Re2Br8]2- ions are given on the next page. 
a. Draw the mo diagram for the Re-Re bond (use D4h symmetry and see problem II.3).  

Construct a table in which the orbital types, orbital symmetries, state symmetries, and 
polarization of all possible transitions (not just allowed) within the Re-Re framework and 
originating from the HOMO or SHOMO.  
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b. Assign the features designated I, II and III in the electronic absorption spectrum.  Note 
that band II undergoes a substantial red-shift in [Re2Br8]2- while I and III shift only 
slightly. 

c. Draw symmetry coordinates for all stretches of the ion and give the symmetry of each.  
Suggest assignments for those which are observed.  

d. Completely assign all of the vibronic peaks in band I.  Identify the ground state and 
excited state frequencies of the Re-Re stretch.  Clearly indicate your reasoning for each 
assignment. 

e. Discuss the differences between the excited state and ground state geometries that can be 
deduced from the spectra.  Is this picture consistent with the electronic assignments? 

f. Is the Re-Re stretch strongly coupled to Re-Cl stretch?  Remember that Pt-Pt stretch in Cl-
Pt-Pt-Cl moiety was strongly coupled to Pt-Cl (section IV-6).  Explain. 

 
 

 
 

 The observed wavelengths for the vibronic progressions observed on band I are given 
below. 

Band # λ (nm) Band # λ (nm) Band # λ (nm) Band # λ (nm) 
0 705.06 4 682.41 7 665.06 11 644.12 
1 699.41 5 676.24 8 660.00 12 639.00 
2 694.13 6 671.00 9 654.35 13 634.29 
3 687.65   10 649.29   
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The Raman spectrum of (n-Bu4N)2[Re2Br8] in CH3CN indicated that the lines at 277 and 184 
were polarized.  There is a spurious laser line at the peak marked "x".  However, comparison 
of the intensities of this peak in the bromide and cloride indicates that there is also a 
fundamental at this frequency in the choride. 
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Chapter VII.  Electronic Spectroscopy 
  

Part II.  Examples 
 

 
VII.1  Metal-ligand multiple bonding in trans-Dioxorhenium(V) Complexes 

 

 The structure (D4h) and relative d-orbital energies of trans-O2Re(py)4
+ are shown in 

figure VII-1.  Re(V) is d2 with a ground state that is (b2g)2 = 1A1g.  The lowest lying excited 
state, a dd state, is (b2g)1(eg)1 = 1Eg or 3Eg.  The lowest lying, spin allowed transition then will 
be 1A1g → 1Eg which is formally forbidden (Laporte) so that the 0-0 band is expected to be 
very weak or missing entirely.  The transition can be allowed by an odd number of vibrational 
quanta of some ungerade modes through weak vibronic coupling.1  The electric dipole spans 
a2u + eu so the vibrations which can serve as false origins are those belonging to the irreducible 
representations of symmetry eg ⊗ a2u = eu or eg ⊗ eu = a1u + a2u + b1u + b2u, i.e., any ungerade 
mode can serve as a false origin. 

 

 
Figure VII-1.  Structure and d-orbital energy scheme for  trans-O2Re(py)4

+  
 

 The spectra of trans-O2Re(py)4
+ have been studied extensively by Gray et al.2 and 

Hupp et. al.3, and the spectra they report have been modified for presentation here.  The room 
temperature,  electronic absorption spectrum (Figure VII-2A) of a solution of trans-
O2Re(py)4

+, consists of two features: a relatively strong band at 331 nm (30.2 kK, ε =19,400 
M-1 cm-1) and a much weaker band at 445 nm (22.5 kK, ε = 1200 M-1 cm-1).  The latter peak is 
also observed in the spectra of O2Re(CN)4 and O2Re(en)2 (figure VII-3) but with substantially 
reduced intensity (ε < 50 M-1 cm-1) while the former band is not observed at all.  The room 
temperature emission (figure VII-2E) consists of a broad featureless band centered near 640 
nm (15.6 kK).   

                                                
1 The student should see section IV.3 pp 114-115 for a review of weak vibrational coupling. 
2 (a) Winkler, J.R.; Gray, H.B., Inorg. Chem., 1985, 24, 346. (b) Thorp, H.H.; Challa, C.V.; Turro, N.J.; Gray, 

H.B., J. Am. Chem. Soc., 1989, 111, 4364. 
3  Johnson, C.J.; Mottley, C.; Hupp, J.T.; Danzer, G.D., Inorg. Chem., 1992, 31, 5143. 
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Figure VII-2.  Room temperature electronic absorption spectrum (A) of an 
aqueous solution  and the room temperature emission (E) from a CH3CN 
solution of trans-O2Re(py)4

+. 
 

 The effect of  reduced temperature on the band width can be appreciated by comparing 
these broad, structureless bands to the highly structured single-crystal spectra obtained at 30K.  
Both bands in the pyridine spectrum are too intense for measurement in the single crystal.  
However, a band near 445 nm is apparent as a highly structured band in the 30K, single-crystal 
spectrum of the ethlyenediamine complex (figure VII-3).  In addition, there is a very weak 
feature centered near 550 nm in this spectrum that is too weak to be observed in the above 
spectra.  It is the analog to this latter, much weaker band on which we will focus in our 
discussion of the vibronic nature of the excited state of the pyridine complex. 
 

 
Figure VII-3.  The single-crystal electronic absorption spectrum 
of [ReO2(en)2]Cl at 30K. 

 

 The low temperature absorption and emission spectra of single-crystal of trans-
O2Re(py)4BPh4 (figure VII-4) and the vibronic peak maxima (tables VII.1 and VII.2) are 
given on the following page. 
 

 The band with a maximum near 500 nm is composed of a 780 cm-1 vibrational 
progression (I, II, III, IV & V) each of which is subdivided into vibronic maxima with 
spacings of 160-180 cm-1 (e.g., [1, 2, 3]; [4, 5, 6]; and [7, 8, 9]).  The latter separations are 
not assigned to a single progression at  ~170 cm-1 for two reasons: their relative intensities 
(peaks 1, 2, and 3)change with polarization (solid vs. dashed lines) and are not consistent 
with a harmonic Franck-Condon progression.  Before a further examination of figure VII-
4, the student should realize that the absorbtion which displays the long progressions 
discussed and is centered near 500 nm is into a different state than that from which 
the emission spectrum originates.  There are actually three absorption peaks in this 
region: A, B and C.  As will be shown, emission is from the state arrived at by the "A" 
absorption. 

Spectral Features of a single-crystal of ReO2(py)4BPh4 
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Figure VII-4.  Absorption and emission spectra from a single crystal.  Solid line 
absorption: parallel orientation of electric field and crystal needle axis.  Dashed line 
absorption: perpendicular orientation of electric field and crystal needle axis. 

     Table VII.1.  30K absorption spectrum 
    Vibronic peak maxima  Vibronic peak separations  

Peak 
Number  

λ(nm) 
±2 nm 

ν (cm-1) 
±10 cm-1 

  
Peak Numbers  

 

Δν (cm-1) 
B 597.1 16748  2 - 1 174 
A 590.1 16946  3 - 2 182 
1 573.9 17425  5 - 4 178 
2 568.2 17599  6 - 5 167 
3 562.4 17781   8 - 7 178 
4 549.2 18208  9 - 8 167 
5 543.9 18386    
6 539.0 18553    
7 526.7 18986  4 - 1 783 
8 521.8 19164  7 - 4 778 
9 517.3 19331  10 - 7 781 
10 505.9 19767  11-10 775 
11 486.8 20542    

Table VII.2.  5K emission spectrum 
Vibronic Peak Maxima  Vibronic Peak Separations 

Peak 
Number 

λ(nm) 
±2 nm 

ν (cm-1) 
±10 cm-1 

  
Peak Numbers 

 
Δν (cm-1) 

B'  16628    
0' 599.6 16678  1' - 2' 192 
1' 609.4 16410  2' - 3' 187 
2' 616.6 16218  4' - 5' 185 
3' 623.8 16031  5' - 6' 189 
4' 645.0 15503  7' - 8' 189 
5' 652.8 15318  8' - 9' 192 
6' 661.0 15129    
7' 684.6 14606  1' - 4' 907 
8' 693.6 14417  4' - 7' 897 
9' 703.0 14225  7' - 10' 937 
10' 731.6 13669    

 
 The 5K emission spectrum, however, is assigned to two vibrational progressions: one 
of 900 cm-1 (I', II', III') and another of 190 cm-1 (1', 2', 3').  The peak at 0' (16678 cm-1) is 
approximately midway between peaks A and 1' (~270 cm-1 from each) and is therefore 
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assigned as the electronic origin for the emitting state, i.e., the 0-0 band for A (no Stokes 
shift).  Peaks A and 1' then correspond to the vibronic origins for the absorption and emission, 
i.e., there is an ungerade mode near 270 cm-1 which weakly couples to this excited state 
making these formally forbidden transitions vibronically allowed.  Since emission will be 
from the lowest lying excited state, peak A is the absorption into the vu = 1 level of the lowest 
lying excited state.  Each peak in the emission spectrum requires three vibrational quantum 
numbers for its description: one for the ungerade mode (vu) and one for each of the 
progression forming a1g modes, 190 (v1) and 900 (v2) cm-1.  Remember that vibrational 
relaxation to the ground vibrational level of the electronic excited state is the first process to 
occur upon absorption so that all emission peaks come from the level in which all three 
vibrational quanta are zero, (0,0,0).  The transition labelled 1' then corresponds to a transition 
from the lowest lying dd state in which all three vibrational quanta are zero to the ground 
electronic state where vu=1,v1=0, v2=0, i.e., (0,0,0) → (1,0,0) similarly 2' is (0,0,0) → (1,1,0) 
and 6' is (0,0,0) → (1,2,1).  Thus, peak 6' is 1 quantum of the ungerade mode (270 cm-1) plus 
two quanta of the 190 cm-1 mode and one quantum of the 900 cm-1 mode or 270 + 380 + 900 = 
1550 cm-1 lower than the electronic origin, i.e., ν6' = 16678 - 1550 = 15128 cm-1. 
 
  With the above analysis in mind, let's go back to the stronger band centered near 500 
nm.  Remember that Winkler and Gray assign peaks 1, 2, and 3 to different vibronic origins 
not to a progression.  They put the electronic origin for this band near 17200 cm-1 (~581 nm, 
C in figure VII-4) or about 500 cm-1 above 0' - the reason for this asignment is unclear.  With 
this origin, however, the vibrational frequencies of the bands labelled 1, 2 and 3 can be 
approximated as (νvib = νobs - ν0): 225 (1), 399(2) and 581(3).  In this interpretation then, these 
three ungerade modes each serve as vibronic origins while the 780 cm-1 mode is an a1g 
progression forming mode which forms progressions on all three origins.  Thus four 
vibrational quantum numbers are needed to describe this system, v1, v2, v3, vs - the three 
ungerade modes and the symmetric mode.  All absorption is from the ground vibrational level 
of the ground electronic state - (0,0,0,0).  The final levels for several of the peaks shown in 
figure VII-4 are: peak 1: (1,0,0,0); peak 2: (0,1,0,0); peak 4: (1,0,0,1) and peak 9: (0,0,1,2).  
This description is very different from the one used to describe the emission even though the 
emission and absorption profiles appear to be the same at a casual glance. 
 
 The midpoint between peaks B and B' is at 16,688 cm-1 or approximately 10 cm-1 
higher than 0'.  If the frequency of the promoting mode is assumed to be the same in the 
ground and excited state, its frequency would be (16748-16628)/2 = 60 cm-1. Note that the 
emitting and therefore lowest energy state is A but that absorption into B appears at a lower 
energy because only the false origins are observed and the promoting mode frequency for B is 
much less than the one for A!  Since B' appears only at elevated temperatures, it must be due 
to an emission from a thermally accessible state.  The origin of this higher state would be near 
16,688 cm-1 or 10cm-1 above the lower emitting state.  At 30K, kT ~ 21 cm-1 and the relative 
populations of the two states would be exp{-10/21} = 0.6 so that the population of the higher 
excited state comprises ~40% of the total (0.6/1.6) while at 4.5K, kT ~ 3 cm-1 and the relative 
poplulations become 0.03.  It is not surprising that emission from a state with less than 3% of 
the population would not be observed.  
 The band systems A, B, C and the stronger sytem centered near 445 nm in the solution 
spectrum all arise from the lowest lying b2g → eg orbital transition which is expected to yield 
only two state transitions, 1A1g → 1Eg and 1A1g → 3Eg.  The 3Eg state, however, is six-fold 
degenerate, but this degeneracy can be lifted by the spin-orbit coupling expected from a third 
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row transition metal.  Winkler and Gray1a do a simple first-order spin-orbit coupling 
calculation and show that the six spin-orbit states derived from the 3Eg are (B1g, B2g), Eg and 
(A1g, A2g) where pairs in parentheses remain degenerate at this level of approximation.  Since 
the Eg level derived from the 3Eg can gain singlet character by mixing with the 1Eg, transitions 
into it should be the strongest "spin forbidden" transition (Band system C).  The state level 
diagram is given in figure VII-5. 

 

 
Figure VII-5.  State level diagram for ReO2(py)4

+.  

 

 What can be deduced about the nature of this dd excited state?  Geometry changes 
occur along totally symmetric modes and result in progressions of these modes in the 
absorption and emission spectra.  Two progressions are observed in the emission: 190 and 900 
cm-1 (ground state frequencies) but only one was assigned in the absorption: 780 cm-1 (excited 
state frequency).  Substitution of 18O results in a drop in the 780 and 900 cm-1 progression 
down to 740 and 850 cm-1, respectively, consistent with the expected mass effect for the 
symmetric O=Re=O stretch.  Since a progression in this mode is observed (up to v~4), the 
Re=O bond lengths are different in the ground and excited states.  Since the mode is about 
120 cm-1 lower in the excited state, we conclude that the bond lengthens.  Indeed, a Franck-
Condon analysis of the emission profile indicates that the Re=O bond lengthens by 70 pm in 
the excited state.  Based on a study of metal pyridine complexes4 the 190 cm-1 mode was 
assigned to the symmetric Re-N stretch.  Thus, all of the Re-N bonds are either lengthened or 
shortened in this transition.  The analysis of the spectra indicated that the ~170 cm-1 spacing in 
the absorption spectrum was not this mode, so we have no excited state frequency to compare 
with the 190 cm-1 and thus can not determine the direction of the change.  However, the b2g 
(xy) orbital is a Re-py π-bonding orbital (pyridines are in xz and yz planes) while the eg 
(xz,yz) is a Re-O π*-antibonding orbital.  Removal of electron density from the b2g orbital 
should therefore weaken the Re-N bond while placing electron density into the eg orbital will 
weaken the Re-O bond.  Consistent with the conclusions based on the spectroscopy then, the 
A1g → Eg transition is expected to increase both the Re-O and Re-N bond lengths with a 
corresponding decrease in the stretching force constants (frequencies). 

                                                
4 Clark, R.J.H.; Williams, C.S., Inorg. Chem., 1965, 4, 350. 
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 The intensity of the band at 331 nm (30.2 kK, ε=19,400 M-1cm-1) argues for 
assignnment to a charge transfer band.  Indeed, it has been assigned by different groups to 
either an MLCT into the pyridine or an LMCT from the oxygen.  Its absence in the en and CN 
complexes certainly argues for the MLCT assignment.  The question of the assignment, 
however, has been firmly established by resonance Raman scattering (RRS).2  Figure VII-6 
shows the RRS from O2Re(py)4

+ obtained "from a dilute sample contained in a spinning5 
NMR tube" with excitations of 356.4 and 406.7 nm.  Hupp et al. actually measured the Raman 
spectra with eight different exciting lines between 647.1 and 356.4 nm but show only three in 
the paper.6  The enhancement observed in the spectrum recorded at 356.4 is due to resonance 
with the charge transfer band while that recorded at 406.7 will involve pre-resonance 
enhancements from both the CT and dd bands.  The strongest band in the 406.7 nm spectrum 
is at 907 cm-1 - the O=Re=O symmetric stretch that was the progression forming mode in the 
dd absorption band.  The other modes designated by the dashed lines are pyridine modes.  A 
plot of the extent of enhancement (intensity of a Raman line relative to some peak which is 
not enhanced - usually a solvent peak) versus the excitation energy or wavelength is referred 
to as an excitation profile.  Figure VII-7 shows the excitation profiles for the observed bands.  
The profile for the 907 cm-1 mode has its peak in the excitation profile at 441.7 nm, i.e., in the 
dd band, while the pyridine modes all appear to be heading for a maximum in the 331 nm 
band.  The fact that the pyridine modes are strongly enhanced at the high energy excitation 
and appear to be reaching a maximum in the 331 nm band while the Re=O mode is very weak 
at 356 nm excitation and getting less enhanced as 331 nm is approached is clear evidence for 
the assignment of the 331 nm band to the Re→ py MLCT and precludes it being the O→Re 
LMCT. 

 
Figure VII-6.  The RRS of  O2Re(py)4

+ observed        Figure VII-7.  Excitation profiles for the modes 
                 at the designated excitations.                                         observed in the RRS of O2Re(py)4

+  
                 Peaks marked "*" are due to solvent. 

 
VII.2  Metal-Metal Bonding in Pt2(µ-P2O5H2)4

4- 

 The structure of "platinum pop", Pt2(µ-P2O5H2)4
4-, which will be abbreviated as Pt2 in 

this section is represented by figure VII-9.  The pyrophosphito ligands each bridge the two 

                                                
5 Spinning the sample is common in RRS experiments to minimize photo-decomposition since one is irradiating 
the sample with a laser and into an electronic absorption. 
6 In addition to the two specta shown in figure VII-6, they report one recorded with 514.5 nm excitaion, but this 
line is off resonance and only solvent modes are obaserved. 
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metals through Pt-P bonds resulting in an anion which has a Pt-Pt separation of 292.5 pm, 
well under the sum of the van der Waals radii.7   

 
Figure VII-9.  A schematic representation of the structure of Pt2(µ-
P2O5H2)4

4- .  The P-O-P group is simply a representation for the 
pyrophosphito ligand.  Each of the ligands is attached to two of the other 
ligands via hydrogen bonding. 

 

 The electronic absorption and emission spectra8 
are shown in figure VII-10.  The absorption spectrum 
consists of a strong band (ε = 3.5x104) at 367 nm (27.2 
kK) and a much weaker band (ε = 1.1x102) at 452 nm 
(22.1 kK).  Excitation at 367 nm results in a 
fluorescence (τ < 2ns) at 407 nm (24.6 kK) and a 
phosphorescence (τ = 9.8 ms) at 517 nm (19.3 kK). 
 

 The long lived phosphorescence is indicative of 
platinum involvement (heavy metal spin-orbit 
coupling), and the close proximity of the two platinum 
atoms and the presence of a Pt-Pt stretch at 116 cm-1 in 
the Raman spectrum9 argue convincingly for a Pt-Pt bond.  Interaction is along the z-axis and 
will involve predominantly the dz2 and pz orbitals because of their directional nature.  
However, the dxz and dyz might be expected to interact to a lesser extent.  In the following 
discussion, the dihedral planes bisect the P-Pt-P bond and contain the C2" axes while the 
vertical planes contain the P-Pt-P bonds and the C2' axes.  The dσ and pσ orbitals are each a1g 
while the dσ* and pσ* orbitals are a2u. 
 

 E 2C4 C2 2C2' 2C2" i 2S4 σh 2σv 2σd  
dσ & pσ 1 1 1 1 1 1 1 1 1 1 a1g 

dσ* & pσ* 1 1 1 -1 -1 -1 -1 -1 1 1 a2u 
Figure VII-11 gives a qualitative picture of the orbital energy diagram for this system. 

                                                
7 The van der Waals radius of platinum is 170-180 pm. 
8 Che, C.-M.; Butler, L.G., Gray, H.B., J. Am. Chem. Soc., 1981, 103, 7796. 
9 Stein, P.; Dicksonb, M.K.; Roundhill, D.M. J. Am. Chem. Soc., 1983, 105, 3489.  See also sect IV.7 this text. 

 Figure VII-10.  Absorption (solid line) 
and emission (dotted line) of Pt2 at 
25oC. 
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Figure VII-11.  Orbital energy level diagram for the 
face-to-face interaction of two platinum atoms.  

 

Since each platinum is d8, both the 1a1g and the 1a2u orbitals are filled so a zero bond order is 
predicted and thus no Pt-Pt bond should result.  However, interaction between orbitals of the 
same symmetry will stabilize the 1a1g and the 1a2u and destabilize the 2a1g and 2a2u with the 
1a2u orbital becoming essentially nonbonding. In this case, a weak Pt-Pt bond can result.  All 
orbitals are filled so the ground state is 1A1g and the lowest orbital transition is the dσ∗→pσ 
which gives rise to 1A2u and 3A2u excited states.  The 1A1g→

1A2u transition is fully allowed and 
is expected to be strong while the 1A1g→

3A2u transition is spin forbidden.  However, due to 
the large size of the platinum, spin-orbit coupling is expected to be strong, so the spin 
forbidden transition could well be observed.  If this bonding scheme is correct then the strong 
band at 367 nm would be assigned as the 1A1g→

1A2u while the much weaker band  at 452 nm 
would be due to the 1A1g→

3A2u.  Both bands result from the dσ∗→pσ orbital transition.  The 
two emissions are then assigned analagously:  the fluorsescence at 407 nm is the spin allowed 
1A2u→

1A1g while the phosphorescence at 517 nm is the "spin forbidden" 3A2u→
1A1g.   

 To elucidate the properties of the long lived excited state, Che, Butler and Gray also 
examined the transient difference spectrum of Pt2 shown in figure VII-12.  In this experiment, 
a pulse of 355 nm (28.2 kK) radiation from a Nd:YAG laser was used to excite the 1A2u state 
of Pt2.  The 1A2u state is very short lived undergoes emission or intersystem crossing to the 
3A2u state.  The spectrometer then detects alternating signals from the ground state and the 
excited triplet state.  In figure VII-12, peaks with positive optical density (OD) are due to the 
excited state while the peak with a negative OD between 330 and 340 nm is due to the ground 
state absorption.  The intense peak at 325 nm was assigned to dσ → dσ* of the 3A2u state. 
 

     
Figure VII-12.  Transient difference spectrum 

of Pt2 upon 355 nm excitation. 
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 Another powerful method used to probe the nature of long-lived excited states is time 
resolved resonance Raman (TR3).  In a TR3 experiment, the molecule is excited into a long 
lived excited state with an excitation laser and then the Raman spectrum is determined with a 
probe laser.  Many times, the same laser can do both.  In the TR3 experiments on Pt2, a 7ns 
pulse of 355 nm radiation from a Nd:YAG laser was used for both the excitation and the 
probing.  Pulsed lasers have very high photon fluxes since all of the radiation is dumped out 
of the laser in bursts rather than only small portions coming out continuously as is the case for 

cw (continuous wave) lasers.  At 355 nm, Pt2 has an 
extinction coefficient of about 20 x 103 M-1 cm-1, in 
addition Pt2* (excited Pt2) has a very strong band at 
325 nm and will, therefore, also have a substantial 
extinction coefficient at this wavelength.  
Unfortunately, the actual absorption of the Pt2* at 
this wavelength cannot be determined from figure 
VII-12 due to the bleaching by the ground state.  
Excitation of Pt2 at 355 will result in absorption into 
the singlet state which can then fluoresce (τ<2ns) or 
undergo intersystem crossing to the triplet.  Since the 
triplet is long lived (τ = 9.8 µs), and the photon flux 
is high, another photon may be Raman scattered by 
Pt2* during the 7ns pulse and this Raman scattering 
is expected to show some resonance enhancement 
due to the dσ→dσ* transition at 325nm.  Some of 
the Pt2 will resonance Raman scatter rather than 
absorb the photon so the resulting Raman spectrum 
will consist of a mixture of the ground state and 
excited state scattering.  The top trace of figure VII-
13 shows the TR3 results obtained on Pt2.10 
 
As can be seen, both ground state (S0) and excited 

state (T1) peaks are observed in the TR3 while only ground state modes are observed when a 
cw laser is used.  The Pt-Pt stretch (ν1) is observed in both as would be expected since the 
orbital transitions involved in the resonance enhancement coupling are dσ→dσ* and 
dσ*→pσ both of which should change the Pt-Pt separation.  ν(Pt-Pt) shifts from 118 cm-1 in 
the ground state to 156 cm-1 in the excited state.  
 

Problem VII.1  The work of Roundhill et al8 on the Raman spectra of Pt2 and Pt2X2 
(X=Cl, Br, I) reported that the Pt-Pt force constant in Pt2 is 0.3 N/m while in Pt2X2 it 
increased substantially to 1.2 N/m and was independent of X.  Account for the large 
increase in the Pt-Pt force constant with the addition of the halides.  Also account for the 
increase in v(Pt-Pt) in the excited state (156 cm-1) relative to the ground state (118 cm-1). 

 
VII.3 Mixed Valence Species 

 

 In 1896, Werner11 noted that substances which contained platinum in two oxidation 
states were considerably darker in color than those containing the metal in but one oxidation 

                                                
10 Che, C-M.; Butler, L.G.; Gray, H.B.; Crooks,R.M.; Woodruff, W.H., J. Am. Chem. Soc., 1983, 105, 5492. 
11  Werner, A., Z. Anorg. Chem., 1896, 12, 53. 

  
Figure VII-13.  TR3 scattering (top) of Pt2 
recorded with 7ns pulses of 355nm 
excitaiton, and ground state (bottom) 
recorded with the 356 nm cw line from a 
Kr+ laser. 
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state.  It was not until 1950, however, that the color in these complexes was attributed to 
metal-metal interactions.12  In the following year, it was suggested that the color was due to a 
metal to metal charge transfer (MMCT).13  In 1967, Robin and Day14 classified mixed valence 
complexes into three groups depending on the extent of electron delocalization: 

Robin-Day Classification 
Class Degree of Delocalization Spectral Properties 

I none, charge is localized on 
individual metal centers 

spectra of independent centers 

II interemediate  spectra of two centers plus MMCT 
III completely delocalized independent centers & MMCT are replaced 

by delocalized system 
 
Later that year, Hush15 proposed a semiclassical theory relating the energy, molar absorptivity 
and full width at half height to the extent of electronic coupling in mixed valence systems.  
The discussion of mixed valence systems that follows is an amalgam of Robin and Day, Hush 
and the more recent vibronic model present by Piepho, Krausz and Shatz16 referred to as the 
PKS model which adds the complete absorption profile of the MMCT17 by determining the 
energies and intensities of the complete vibronic manifold.  We will apply the resulting model 
to the Creutz-Taube (CT) ion18, [(NH3)5Ru-pyrazine-Ru(NH3)5]5+.  The question relevant to 
the CT ion is whether it is best described as a localized Class I RuII/RuIII system in which the 
two centers are completely independent; a delocalized Class III system in which the two 
centers are in identical oxidation states (+5/2 = 2.5); or somewhere in between (Class II) 
where the two centers have different oxidation states but do "communicate" with one another. 
 The MMCT process can be written as [2,3] → [3,2] which implies that there is a [3,2] 
state above the ground state.  In the CT complex, the two states will have the same symmetry 
and thus can interact so the wavefunction for the ground state can be written as a mixture of 
the two states, i.e., Ψo = (1-α2)[2,3] + α2[3,2] where the mixing coefficient, α, will depend on 
the energy separation between the two states and the extent to which they are mixed, <[2,3]|V|
[3,2]>, where V is the interaction term that couples the two.  V=0 and α=0 for Class I 
compounds. α2 = (1-α2) = 0.5 for a delocalized, Class III compound.  For Class II, then, 0 < 
α2 < 0.5.  Thus, α2 is often referred to as the degree of delocalization. 
 

 To understand this electron transfer process, one must look at the potential energy 
surfaces on the two centers.  In the PKS model, two factors dictate the magnitude of α:  
 

1. Vibronic coupling: a two-state vibronic coupling (see pages 120-121) which tends 
to localize the electron on one center and the hole on the other by introducing a 
barrier to electron transfer.  The PKS model indicates that the normal coordinate to 
use is the antisymmetric combination of a symmetric monomer mode.  In the CT 
complex, the Ru-N stretch is one choice as the Ru-N bonds are expected to be 
shorter on the RuIII side.  In a stongly coupled system, electron and nuclear motion 
cannot be separated.  Remember the effects of vibronic coupling are to lower the 

                                                
12 Sedgwick, N.V., The Chemical Elements and Their Compounds, vol. II, Oxford Univ. Press, 1950, p. 1611. 
13 Wey., W.A., J. Phys. Chem., 1951, 55, 507. 
14 Robin, M.B.; Day P., Adv. Inorg. Chem. Radiochem., 1967, 10, 247. 
15 Hush, N.S., Prog. Inorg. Chem., 1967, 8, 301. 
16Piepho, S.B.; Krausz, E.R.; Shatz, P.N., J. Am. Chem. Soc., 1978, 100, 2996. 
17 Optical transitions of this type are not confined to metals so MMCT is not always an appropriate term.  

Instead, the terms intervalence transition (IT) and intervalence charge transfer (IVCT) are often used. 
18 Creutz, C.; Taube, H., J. Am. Chem. Soc., 1969, 91, 3988; ibid, 1973, 95, 1086. 
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energy of the minimum and to displace that minimum along the coordinate.  The 
elements ±lQ in the secular determinant represent the vibronic contribution. 
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2. Exciton coupling: the <[2,3]|V|[3,2]> term described above which tends to 
delocalize the system.  The effect of this term is to move the two surfaces apart in 
energy, i.e., stabilizing the ground state while destabilizing the excited state and to 
introduce an avoided crossing, i.e., the two surface no longer intersect. The matrix 
elements V in the secular determinant represent the exciton or electronic coupling.  
Class III behavior results when V ≥ l2/k. 

 
 

 Refer to figure VII-14 in the following discussion.  In the absence of any coupling, the 
two surfaces of the monomers are identical and have a minimum at Q=0 and E = D.  The 
addition of vibronic coupling stabilizes the minima of the two surfaces and moves them apart 
(dotted lines) as the two monomer units adopt different Ru-N bond lengths.  In the absence of 
any electronic coupling (V=0) there is a crossing at D (the previous minimum).  These two 
surfaces would correspond to a Class I system.  When electronic coupling is added to this 
system there is a stabilization of the lower surface by an amount V and a destabilization by V 
of the excited state surface (solid lines).  Since the two surfaces are now coupled, there is an 
avoided crossing with a separation of 2V.  The resulting surface would represent a Class II 
system with a thermal barrier to electron transfer (Eth), i.e., the exciton19 is vibronically 
trapped. 
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Figure VII-14. (Top) Potential energy diagrams for a mixed valence species with constant lQ 
and increasing V in going from left to right.  (Bottom) metal-ligand bond lengths as the 

                                                
19 An exciton is an (electron + hole) pair.  If the exciton is trapped then the hole is on one metal while the 

electron is on the other. 
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molecule proceeds along Q from the [3,2] to the [2,3] species.  A, B, and C refer to points in 
the top left diagram.  The dashed lines in the top left energy diagram would be for a Class I 
case. 
 

 The electron transfer process ([3,2]→[2,3]) can occur in either of two ways, optically 
or thermally.  In the thermal electron transfer, the ion starts out at A with the geometry of 
[3,2] as shown in the figure to the right (shorter Ru-N bonds on RuIII side).  As the ion 
undergoes the Q normal mode, the shorter bonds begin to elongate while the longer bonds 
start to shorten; the (vibronic) energy of the ion increases and reaches a maximum at point B 
where the two halves of the ion are identical and there is no favorable side for the electron.  
At this point, the motion may proceed in either direction with equal probability.  If the mode 
continues to the right, the electron is transferred and the new minimum at C is obtained, i.e., 
the [2,3].  Alternatively, the transfer can occur optically with the absorption of a photon, hν = 
Eop.  The Hush model views this transition as one between the two surfaces, i.e., after the [3,2] 
species absorbs the energy it becomes the [2,3] species but still has the [3,2] geometry.  
Vibrational relaxation then results in the [2,3] minimum.  In the PKS formulation, the upper 
surface is a delocalized surface with a minimum at Q=0, [2.5,2.5].  Relaxation from this 
excited state can be to either minimum in the ground state. 
 The Hush equations apply to the nature of the optical absorption, Eop = MMCT or 
IVCT.  They assume Gaussian band shapes and strong valence trapping, i.e., their utility 
decrease as the class II/class III border is approached. 
   

Hush Equations for Intervalence bands. 
                                                   Eq.  VII -1

 at 300K       Eq.  VII - 2

                            Eq.  VII - 32
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Δν½  = the full width at half-max in cm-1 
νmax = the wavenumber of the peak maximum 
εmax  = the molar extinction coefficient 

R      = the distance between the metal centers in A
o

. 
 

 Figure VII-15 shows the spectra obtained for the series [(NH3)5Ru-pyrazine-
Ru(NH3)5]n+, n=4, 5 and 6, i.e, for [2,2], [2,3] and [3,3] ions.  Relevant to our discussion is the 
near-ir where a band is observed for the [2,3] species (λmax = 1570 nm, εmax = 6300 M-1-cm-1) 
but nothing is present in this region for either of the other two species. 
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Figure VII-15.  Spectra of [(NH3)5Ru-pyrazine-Ru(NH3)5]n+ taken from reference 12a. 

 
The near-ir band was attributed to the [2,3] → [3,2]* transition, i.e., to the electron transfer 
process in which the resulting [3,2]* is in the environment of the [2,3].  νmax = 1x104/1570 =  
6.4 kK which would imply that the barrier to thermal electron transfer would be about 1.6 kK 
(Eop/4).  The FWHM is reported to be 1250 cm-1, but according to Equation VII-2, the FWHM 
at 300K should be (2312νmax)1/2 = (2312)(6400)1/2 = 3850 cm-1 - the observed bandwidth is 
about three times narrower than that predicted by Hush theory.  The PKS model uses 
parameters to fit the entire profile of the MMCT and from these parameters, a valence 
trapping barrier of only 57 cm-1 is deduced so that the lowest vibronic level is about 30 cm-1 
above the barrier, i.e., the degree of delocalization is quite high (nearly class III) and the Hush 
model is not expected to apply.  The band also shows very little solvent dependence which is 
also indicative of a delocalized ground state, i.e., the transition is not charge transfer in nature.  
Observed bandwidths much sharper than that predicted by the Hush model are typically 
indicative of large degrees of delocalization. 
 

Problem VII.2   Assign the peaks in the UV/VIS portion of figure VII-15.  
Explain why the band maximum near 550 nm has different intensity and 
energy in the n=4 and n=5 spectra (Note that the weak absorption at 565 nm 
in n=6 is attributed to residual n=5).  

 
n 

λmax 
nm 

εmaxx10-4 

M-1-cm-1 
4 547 3.0 
5 565 2.1 
6 353 0.58 

 
 The above should be contrasted to the results obtained for the near-ir band for the 4,4'-
bipyridine bridged system20: νmax = 9.71 kK, εmax = 880 M-1-cm-1, Δν1/2 = 5.3 kK.  The 
calculated results then become: 5,3002/9,710 =  2900 cm-1 (Hush theory regime); Eth = 9.71/4 

=  2.43 kK and α2 = 0.00175 (R was assumed to be 10.8 A
o

).  The metals do not communicate 
across the bipyridine ligand while they are essentially delocalized across the pyrazine. 
 

Problem VII.3  The following near-ir band, observed for [(bpy)2Cl-
Ru(pyz)RuCl(bpy)2]3+ but not for the 2+ or 4+ ions, has been assigned to the IT band.21   

                                                
20 Sutton, J.E.; Sutton, P.M.; Taube, H., Inorg. Chem., 1979, 18, 1017. 
21 Callahan, R.W.; Keene, F.R.; Meyer, T.J.; Salmon, D.J., J. Am. Chem. Soc., 1977, 99, 1064. 



Chapter VII.  Electronic Spectroscopy Part II.  Examples 
 

 175 

Discuss the extent of  metal-metal communication in this ion.  Be complete in your 

discussion.  Assume a metal-metal separation of 6.9 A
o

. 

   
 The separation between the metal oxidation potentials is often used in the discussion 
of metal-metal communication. 

[2,2] → [2,3] + e- ΔG1 = FE1
22 

 

[2,3] → [3,3] + e-      ΔG2 = FE2 
 

The comproportionation constant, Kcomp, is the equilibrium constant for the reaction 
 

[2,2] + [3,3] → 2[2,3]  
 

which can be express by the difference between the oxidation reactions so (eq1-eq2) 
 

ΔGcomp = ΔG1 - ΔG2 = -F(E2-E1) = -FΔEox 
 

Kcomp = exp{-ΔG/RT} = exp{FΔEox/RT}  
 

so, Kcomp = [2,3]

[2,2][3,3]

2

 = exp{FΔEox/RT} 
 

or log Kcomp = 16.9ΔEox     Eq. VII-4 
 

In the absence of any communication, the statistical value of Kcomp = 22/(1*1) = 4 so at 25o C, 
ΔEox = 36 mV (Eq. VII-4, log4/16.9).   As the metal-metal interactions increase, so too do 
Kcomp and ΔEox.

23  The cyanogen bridged system has been characterized as delocalized since 
Kcomp ~ 1013 (ΔEox ~ 0.8V). 
 

Problem VII.4  The cyclic voltammogram for  [(bpy)2ClRu(pyz)RuCl(bpy)2]3+ showing 
the 3+/4+ and 4+/5+ couples is shown below (Roman numerals are the oxidation states of the 
Ru's at that potential).  The E1/2 values for the two waves are reported to be 0.89 and 1.01 V.  
Estimate the comproportionation constant for the ion.  How does this result compare with the 
conclusions drawn from the near ir band in the previous problem? 

                                                
22 ΔG = +nFE since oxidation half-reactions are used.  n is the number of moles of electrons transferred, F is the 

Faraday which is 9.65x104 C/mol, and E is the potential in volts (1V = 1J/C). 
23 In simple terms, if the two metals do not communicate, then they should both be oxidized at the same 

potential (36mV separation).  If one metal does "sense" the other metal, however, the oxidation of one will 
affect the oxidation potential of the other. 
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Problem VII.5  The mixed valent state, 2 [2,3], is always stabilized relative to the 
isovalent state, [2,2] + [3,3].  Discuss how electrostatic factors and back bonding 
affect the stability of the mixed valent state relative to the isovalent one.  

 
VII.4 Spatially Isolated Orbitals in Ru(bpy)3

2+ 
 

 Figure VII-16A shows Ru(bpy)3
2+ looking down the C3 axis.  The ion has D3 symmetry 

with symmetrically equivalent bipyridine ligands.  Thus the mo's would be expected to consist 
of SALC's constructed from linear combinations of all three bipyridines.  The π and π* 
orbitals of bipyridine transform as either b2 or a2 in the C2v point group depending upon 
whether they are antisymmetric or symmetric with respect to the C2 rotation.  Combining three 
b2 bpy orbitals results in a2 and e  SALC's of the D3 point group while combination of the 
three a2 bpy orbitals results in SALC's of a1 and e symmetry.  As shown in figure VII-16B, the 
LUMO of bipyridine is b2 in C2v symmetry (plane rather than C2 axis between the bpys) so the 
MO's derived from it in D3 symmetry are A2 + E.  The dπ-orbitals transform as a1 + e while 
the dσ's are E.  A qualitative mo diagram24 is presented in figure VII-16C. 

 
Figure VII-16. (A) Ru(bpy)3

2+ viewed along the C3 (z) axis.  The Nitrogens with solid 
Ru-N bonds are out of the plane while the dotted bonds are behind the xy-plane.  (B) 
Qualitative depiction of the LUMO of bipyridine.  (C) Qualitative MO diagram of the 
Ru d-orbitals and low lying bipyridine π* orbitals involved in the MLCT and 
electrochemistry. 

 
 Ru(bpy)3

2+ is deeply colored owing to a relatively strong (ε ~ 104) MLCT band 
centered near 22kK.  Upon excitation into this 1MLCT state, the ion undergoes rapid (< 1ps) 

                                                
24 Ohsawa, Y.; Whangbo, M.-H.; Hanck, K.W.; DeArmond, M.K., Inorg. Chem., 1984, 23, 3426. 
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intersystem crossing to a long-lived, emissive 3MLCT excited state (τ ~ 800 ns in water at 
300K, νemis ~ 17 kK).  The excited state is expected to be a strong oxidant and a strong 
reductant due to its charge transfer nature (see section VI.12).  As a result of these properties, 
researchers have tried to develop systems based on Ru(bpy)3

2+ that would serve as 
photocatalysts for the splitting of water - making it one of the most studied species in 
chemistry.  Much of the debate in the literature centered around the nature of the excited state, 
i.e., is the transferred charge delocalized in an mo spread over the symmetrically equivalent 
bipyridines as predicted from group theory 
 

(RuII(bpy)3
2+ + hν → [RuIII(bpy-1/3)3]2+*   

 

or is it localized on one bipyridine with perhaps a rapid hopping between the bipyridines? 
 

 RuII(bpy)3
2+ + hν → [RuIII(bpy-)(bpy)2]2+*.   

 

 Is the hole important in this description?  If not, we are really asking about the nature 
of π* orbital into which the charge is transferred.  This π* orbital is the LUMO and therefore 
the redox orbital, i.e., the orbital which accepts electrons during the electrochemical reduction.  
The research into the nature of this orbital took two different directions: the excited state 
spectroscopy and the spectroelectrochemistry (spectroscopy of  electrochemically generated 
species.  We will take up the latter first.   
 

 The cyclic volatmmogram (CV) of RuII(bpy)3
2+ shows six reversible one-electron 

processes25 (figure VII-17A) occurring in two groups of three with the separation between  
members of a set being ~200mV while the two sets are separated by ~600 mV.  This CV is 
certainly consistent with one-electron reductions of each of the bipyridines (first set of three 
waves) followed by the addition of a second electron into each bipyridine.  In this picture, the 
600 mV (~5000 cm-1) separation would correspond to the pairing energy as second electron is 
added to the redox orbital.  Further support for three spatially isolated bipyridine orbitals 
rather than mo's spread over all three bipyridines is found the the electronic spectra of the 
series26 [Ru(bpy)3](2-n)+ where n = 0, 1, 2, 3.  Additional π→π* transitions originating from the 
redox orbital complicate the visible region so the effect of reductions on the MLCT is not 
clear,27  but 
 

 

                                                
25 Ohsawa, Y.; DeArmond, M.K.; Hanck, K.W.; Morris, D.E., J. Am. Chem. Soc., 1983, 105, 6522. 
26 Heath, G.A.; Yellowlees, L.J.; Braterman, P.S., J. Chem. Soc. Chem. Comm., 1981, 287. 
27 A one-electron reduction of Fe(bpy)3

2+ results in a red shift of the MLCT by about 2500 cm-1.  See figure VI.8 
and the discussion in section VI.6. 
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Figure VII-17.  Spectroelectrochemistry of Ru(bpy)3
(2-n)+.  (A) The cyclic voltammogram22 showing six 

reversible one-elecron processes.  (B) The electronic spectra23 of the parent and three reduction products.  
(C)  Resonance Raman spectra25 of the parent and three reduction products recorded at the indicated 
exciting lines. 

 
the uv band centered near 34 kK  is very informative.  In the parent ion (n=0), this band 
has an extinction coefficient of about 64,000 M-1-cm-1 upon reduction the intensity of this 
band drops by about 1/3 for each electron reaching 0 when n=3.  Simultaneously, a new 
band near 28 kK grows in with its extinction coefficient  increasing by about 12,000 M-1-
cm-1 with the addition of each electron.  These spectra are completely incompatible with 
mo's spread over all of the bipyridines, but are precisely what would be expected for 
spatially isolated orbitals as shown in figure VII-18.   
 

 
Figure VII-18.  Orbital energy diagram for spatially isolated orbitals for  
Ru(bpy)3

(2-n)+ and showing the disappearance of the 34 kK band with 
concurrent growth of the the 28 kK band with additional redox electrons. 
 

 In this model each bipyridine π→π* transition into the redox orbital (34kK) has a 
molar extinction coefficient of about 20,000 M-1-cm-1 while the transition originating 
from the redox orbital (28kK) has ε ~ 12,000 M-1-cm-1.  For the n=2 case then, there are 
two reduced bipyridines so ε(28kK) ~ 24,000 M-1-cm-1 and only one unreduced bipyridine 
so ε(34kK)~ 40,000 M-1-cm-1.  Another argument supporting this model is found in the 
resonance Raman spectra (RRS) for the reduction series (figure VII-17C).  In the model 
predicted by group theory, the addition of  electrons to an antibonding orbital should 
reduce the frequencies of most of the vibrations in a continuous manner, i.e., the spectrum 
should shift slightly each time an electron is added.  What is observed28, however, is that 
the n=1 and n=2 spectra are composites of the n=0 and n=3 spectra, i.e., the frequencies 
are those of either a reduced or an unreduced bipyridine and not those of -1/3 and -2/3  
species.  Finally EPR results29 indicate the presence of an S=1/2 signal for all three 
reduction products (no coupling of electron spins) with a temperature dependent 
linewidth for the n=1 and n=2 species.  The temperature dependence of the n=1 and n=2 
species was attributed to a hopping of the redox electron between bipyridines, while in 
the n=3 case, all three bipyridines are reduced so the hopping ceases. A plot of  
ln(linewidth) vs. 1/T is linear and the slope was related to the barrier to electron hopping, 
Eth ~ 1000 cm-1.  This electron transfer process is similar to that described in the previous 
section for mixed valence species (bpy/bpy- are two bpy's in different oxidation states, 
i.e., mixed valent) and so an optical electron transfer (bpy/bpy- + hν → bpy-/bpy) is 
predicted.  Indeed, a very weak band near 4,500 cm-1 was later attributed to this 

                                                
28 Angel, S.M.; DeArmond, M.K.; Donohoe, R.J.; Hanck, K.W.; Wertz, D.W., J. Am. Chem. Soc., 1984, 106, 
3688. 
29 Motten, A.G.; Hanck, K.; DeArmond, M.K., Chem. Phys. Letts., 1981, 79, 541. 
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transition.30  It is interesting to note that, consistent with Hush theory, the optical electron 
transfer is observed at about four times the thermal barrier found in EPR, i.e., Eop ~ 4Eth. 
 

 Figure VII-19A shows the electronic absorbption spectum31 of the emitting state 
of Ru(bpy)3

2+ while figure VII-19B is the RRS.32  The RRS of the excited state (TR3) was 
done in q manner similar to that described in section VII-2 for Pt2: the third harmonic 
(355 nm) of a Nd:YAG laser (1-5 mJ/pulse, 10 Hz pulse rate and a 7ns pulsewidth) was 
used as both the pump and probe beam.  The 364 nm line of an Ar+ laser was used for the 
cw (continuous wave) experiment.  Woodruff et al. conclude that the "realistic 
formulation of the 3MLCT state is [RuIII(bpy)2(bpy-

•)]2+". The two most important reasons 
for this conclusion are: (i) the large frequency shifts in bpy modes in the MLCT state and 
(ii) the TR3 spectrum observed exhibits peaks due to both neutral and radical-like 
bipyridine.  

 
Figure VII-19.  Excited state spectroscopy of  Ru(bpy)3

(2-n)+. (A) Excited state electronic spectrum.24  (B) 
Resonance Raman spectra25 recorded with CW irradiation which represents the ground state and with pulsed 
irradiation which consists predominantly (>90%) of the excited state.  Dashed lines are to unshifted bpy peaks 
while solid lines are to the corresponding bpy* peaks.  The dotted peak at 984 cm-1 is the symmetric S-O 
stretching in 0.50M SO4

2-.   
 

The evidence for spatially isolated orbitals in Ru(bpy)3
2+ is quite strong and the concept is 

now generally accepted.   Thus, as was the case in vibrational treatments, group theory 
only predicts what can couple, not what will couple. 

 
VII.5  Metalloporphyrins 

 
VII.5a Electronic Spectroscopy of Metalloporphyrins 

 Porphyrin (or porphine) spectra are ubiquitous in bioinorganic spectroscopy and 
are excellent examples of "configuration interaction" and two state coupling in resonance 
Raman scattering.  The spectroscopy of porphyrins is rich and thorougly studied and has 
been extensively reviewed so in this section we will refer to only enough examples to 
familiarize you with the terms that are frequently encountered.  Most of what follows is 
from Gouterman.33   
 The basic  porphyrin ring (P) has D4h symmetry (figure VII.20).  The 18-electron, 
16-membered ring at the center of the structure is responsible for the unique optical 
spectra of porphyrins which are perturbed by substitution at the pyrrole positions (R1-R8), 
the methine positions (meso, m) and/or upon chelation to a metal.  Commonly studied 
                                                
30 Heath, G.; Yellowlees, L.; Braterman, P., Chem. Phys. Letts., 1982, 89, 297. 
31 Braterman, P.; Harriman, A.; Heath, G.A.; Yellowlees, L.J., J.Chem. Soc. Dalton Trans., 1983, 1801. 
32 Bradley, P.G.; Kress, N.; Hornberger, B.A.; Dallinger, R.F.; Woodruff, W.H., J. Am. Chem. Soc., 1981, 103, 
7441. 
33 Gouterman, M. in The Porphyrins,  Dolphin, D.,  Ed., Academic Press, New York, 1978; Vol III, pp 1-165.  
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porphyrins include octaethylporphyrin (OEP, substitution of ethyl groups at R1 - R8 ) and 
tetraphenylporphyrin (TPP, substition of phenyls at the meso positions).  Porphyrin as 
shown is a dianion.  The neutral species contains two protons coordinated to the pyrrole 
nitrogens and is referred to as the free-base porphyrin, H2P. 
 The color of porphyrins is attributed to π→π* transitions in the highly conjugated 
system.  Metalloporphyrins often have two absorption bands in the visible (500 - 600 nm,  
ε~104 M-1-cm-1) and a more intense band in the violet (380 - 420 nm, ε~105 M-1-cm-1).  These 
bands have been referred to by biochemists in order of increasing energy as the α, β, and 
Soret bands.  The α and β bands are very weak for fully allowed π→π* transitions and are 
considered to be only Quasi-allowed and are therefore also referred to as Q-bands.  Typically, 
they separated by about 1250 cm-1 and are assigned as the electronic origin (Q0) and a 
vibrational satellite (Q1) of the lowest lying ππ* singlet.  The Soret is also referred to as the 
"B-band". 
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FigureVII.20.  Structure of Porphyrin 

 
 Calculations indicate that the two top-filled orbitals, the 3a2u(π) and the 1a1u(π), are 
almost degenerate and their relative energies depend on substitution while the two lowest-
empty orbitals, the 4eg(π*), are exactly degenerate.  These orbitals are represented 
qualitatively in figure VII.21. 
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Figure VII.21.  The two highest filled (eg) and two lowest unfilled (a1u & a2u) molecular orbitals of a 

metalloporphyrin.  These four form the basis of the "four orbital model". 
 
The two lowest lying orbital transitions  are the 3a2u → 4eg and the 1a1u → 4eg which were 
assigned to the Q and Soret bands, respectively, in porphine.34  However, calculations also 
predict that the two transitions should have nearly equal intensity.  Thus, a simple molecular 
orbital model was inadequate to explain the results, but a model which includes configuration 
interaction does account for most of the spectral properties.35   
 The resulting excited state configurations are (a1ueg) and (a2ueg), both of which yield Eu 
states.  Because these excited states (configurations) are close in energy and are of the same 
symmetry, they can mix, i.e., undergo configuration interaction - state not orbital mixing.  
The result of this interaction is that the Soret band is fully allowed while the Q-band is very 
weak.  The resulting energy level diagram is shown in figure VII.22. 

(a1u
2a2u

2eg
0): 1A1g

(a1u
2a2u

1eg
1): 1Eg

(a1u
1a2u

2eg
1): 1Eg

Q-state [Eg(a)-Eg(b)]

B-state [Eg(a)+Eg(b)]

Ground state

h!(Soret)h!(Q)

 
Figure VII.22.  Energy level scheme showing the Q and B (Soret) states derived  
from a configuration interaction of the a1ueg and a2ueg configurations. 

  
Metalloporphyrins are classified as regular or irregular.   

• Regular metals have closed shells and little effect on the porphyrin spectrum, 
i.e., the spectral properties are determined by the π electrons of the porphyrin 
as discussed above.   

                                                
34 Longuet-Higgins, H.; Rector, C.; Platt, J., J. Chem. Phys., 1950, 18, 1174. 
35 (a) Gouterman, M., J. Mol. Spectrosc., 1961, 6, 138.  (b) Gouterman, M.; Wagniere, G.; Snyder, L., J. Mol. 

Spectrosc., 1963, 11, 108. 
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• Irregular  metals contain unfilled shells which interact with the porphyrin π-
system and thus perturb the spectrum substantially resulting either hypso or 
hyper absorption.   

• Hypsoabsorption spectra appear to be very similar to those of regular 
porphyrins but are blue shifted. 

• Hyperabsorption spectra show additional, strong bands (ε>1000 M-1-
cm-1) with λ > 320 nm (!  < 31 kK).   

The hypsochromic effect can be attributed to backbonding from the metal to the porphyrin as  
mixing the dπ and π* will destabilize the π* and blue-shift the porphyrin bands.  The 
additional band in the hyperporphyrins is a charge transfer which is either a  p- or  a d-type.  
p-types are found in lower oxidation state main group metals and the CT band are attributed to 
an MLCT a2u(npz, metal) → eg(π*, ring).  d-type spectra are observed with transition metals 
with unfilled dπ orbitals and the transition is assigned to an LMCT, a1u(π) or a2u(π) → eg(dπ, 
metal).  Thus Fe(II)porphyrins with weak field ligands (high spin and occupied dπ's) are 
hypsoporphyrins  while those with strong field ligands (low spin, unoccupied dπ's) are 
hyperporphyrins.   In D4h symmetry, the π(a2u) → z2(a1g) transition (1A1g→

1A2u) is also 
allowed so an additional LMCT can be observed for those metals in which the dz2 orbital is 
fairly low.   Figure VII.23 shows the types of transitions expected for irregular 
metalloporphyrins.  Note that the π→π* transition is shown to be at higher energy for the d-
type than for the p-type since the d-orbital energies are expected to be much lower in the p-
type and thus less energetically compatible.  

 
Figure VII.23.  Transitions expected for p-type (left) and d-type (right) hyperporphyrins. 

 
 Figure VII.24 shows some sample spectra.  H2(OEP) is the free-base octaethyl-
porphyrin.  The two protons lower the symmetry to D2h which lifts the degeneracy of the Q 
states.  Note that both Qx and Qy have the vibronic side bands which are common to Q-bands, 
but the relative intensities of the two envelopes are quite different.  The very strong band near 
380 nm (B) is the Soret band.  The two very weak peaks labelled M and N are typical of 
metalloporphyrins and are also attributed to π→π*.  The spectrum of vanadyl OEP is very 
similar to that of the free-base except that the degeneracy of the Q-states is not lifted.  It is 
therefore, a regular porphyrin. 
 The spectrum of Pb(II)(OEP) is that of a p-type hyperporphyrin.  The CT state 
[a2u(6pz) → eg(π*)] is close in energy and has the same symmetry as the Soret state and, 
depending on the energy of the 6pz, can mix with the Soret state by configuration interaction.  
Thus the energies and relative intensities of bands A and B are quite variable.  C is then 
assigned as the Q-band. 
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Figure VII.24.  The spectra of the indicated porphyrins.  Note the discontinuities in the spectra with the low 
energy peak being much weaker.  The ratio of peak intensities in the spectrum Pb(OEP) is A:B:C =10:20:1. 
 
 (φ-O)ReV(O)(OEP) is an example of a d-type hyperporphyrin.  Band IV is the Q-band 
with its vibronic shoulder.  Band III is assigned to a [a1u(π), a2u(π)] → eg(dπ) CT.  Band  II is 
the Soret.  Once again, there is a CT state close in energy and with the same symmetry as the 
Soret so that a configuration interaction between the states might be expected.  Consistent 
with this mixing, the relative intensities of bands II and III are variable. 
 

Problem VII.5.  Band I in the spectrum of (φ-O)ReV(O)(OEP)  is not observed 
in the corresponding spectra of MoV or WV.   Suggest an assignment. 

 
VII.5b Vibrational Spectroscopy of Metalloporphyrins 

 The vibrational spectra of porphyrins are extremely complicated as even the simplest 
porphyrin, porphin, has 3x37 - 6 = 105 normal modes. At D4h symmetry, there are 102 
vibrational degrees of freedom predicted for the free base porphine. The irreps for the in-plane 
modes can be determined in the usual way: 
 

D4h E 2C2 C2 2C2' 2C2'' i S4 σh 2σv 2σd  

Γxy 72 0 0 0 0 0 0 72 0 0 9a1g, 8a2g, 9b1g, 9b2g, 17eu 
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a a
1g( ) =

1

16
1•1 •72( ) + 1•1•72( )[ ] = 9a1g

a a
2g( ) =

1

16
1•1•72( ) + 1•1•72( )[ ] = 9a2g

a b
1g( ) =

1

16
1•1• 72( ) + 1•1• 72( )[ ] = 9b1g

a b
2 g( ) =

1

16
1 •1• 72( ) + 1 •1• 72( )[ ] = 9b2g

a eg( ) =
1

16
1• 2 •72( ) + 1• !2 • 72( )[ ] = 0eg

a a
1u( ) =

1

16
1•1• 72( ) + 1• !1• 72( )[ ] = 0a1u

a a
2u( ) =

1

16
1•1 •72( ) + 1• !1• 72( )[ ] = 0a2u

a b
1u( ) =

1

16
1•1• 72( ) + 1• !1•72( )[ ] = 0b1u

a eu( ) =
1

16
1•2 • 72( ) + 1•2 • 72( )[ ] =18eu

 

Since the rotation and translations transform as a2g and eu respectively, then the in-plane 
vibrations transform as: 9a1g, 8a2g, 9b1g, 9b2g, 17eu.  The a1g, b1g, and b2g modes are Raman-
only active, while the a2g is resonance-Raman active, and the eu mode is IR active.   
 
 
 
The irreps for the out-of-plane modes are likewise determined: 

D4h E 2C2 C2 2C2' 2C2'' i S4 σh 2σv 2σd  

Γz 36 0 0 -4 -2 0 0 -36 4 2 8eg,3a1u, 5a2u, 4b1u , 5b2u 
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a a
1g( ) =

1

16
1•1 •36( ) + 2 •1• !4( ) + 2 •1• !2( ) + 1•1 •!36( ) + 2 •1• 4( ) + 2 •1• 2( )[ ] = 0a1g

a a
2g( ) =

1

16
1•1•36( ) + 2 •!1• !4( ) + 2 • !1• !2( ) + 1•1• !36( ) + 2 • !1 •4( ) + 2 • !1• 2( )[ ] = 0a2g

a b
1g( ) =

1

16
1•1• 36( ) + 2 •1• !4( ) + 2 •!1• !2( ) + 1•1• !36( ) + 2 •1• 4( ) + 2 • !1• 2( )[ ] = 0b1g

a b
2 g( ) =

1

16
1 •1• 36( ) + 2 • !1 •!4( ) + 2 •1• !2( ) + 1•1• !36( ) + 2 • !1• 4( ) + 2 •1• 2( )[ ] = 0b2g

a eg( ) =
1

16
1• 2 •36( ) + 2 •0 • !4( ) + 2 • 0 • !2( ) + 1• !2• !36( ) + 2 • 0 • 4( ) + 2 • 0 •2( )[ ] = 9eg

a a
1u( ) =

1

16
1•1• 36( ) + 2 •1• !4( ) + 2 •1•!2( ) + 1•!1• !36( ) + 2 • !1• 4( ) + 2 • !1• 2( )[ ] = 3a1u

a a
2u( ) =

1

16
1•1 •36( ) + 2 • !1• !4( ) + 2 • !1• !2( ) + 1• !1• !36( ) + 2 •1• 4( ) + 2 •1• 2( )[ ] = 6a2u

a b
1u( ) =

1

16
1•1•36( ) + 2 •1 •!4( ) + 2 • !1• !2( ) + 1• !1• !36( ) + 2 • !1•4( ) + 2 •1•2( )[ ] = 4b1u

a b
2u( ) =

1

16
1•1•36( ) + 2 • !1• !4( ) + 2 •1• !2( ) + 1• !1• !36( ) + 2 •1• 4( ) + 2 • !1•2( )[ ] = 5b2u

a eu( ) =
1

16
1•2 • 36( ) + 2 • 0 • !4( ) + 2 • 0 •!2( ) + 1•2 • !36( ) + 2 • 0 • 4( ) + 2 • 0 •2( )[ ] = 0eu

 
Since the rotations and translation transform as eg and a2u respectively, then the out-of-plane 
vibrations transform as: 8eg,3a1u, 5a2u, 4b1u , 5b2u.  The eg modes are Raman active, while the 
a2u modes are IR active.  The a1u,, b1u, and b2u modes are inactive.  To summarize: 
 

22 IR-only modes (17eu + 5a2u)  
35 Raman modes (9a1g + 9b1g + 9b2g + 8eg) 
8 resonance Raman-only modes (8a2g)   
12 inactive modes (3a1u, 4b1u , 5b2u)  

 
Despite their complexity and due to their importance, porphyrins have been extensively 
studied in both the IR and in the Raman and excellent reviews are available.36  Due to the 
strong absorption in the visible, metalloporphyrins are ideal for resonance Raman studies with 
strong contributions from both the A- and B-terms.37  The A-term derives from one-state 
coupling and results in enhancement of the a1g modes which are active due to either/both the 
isotropy, Go, and the symmetric anisotropy, Gs, with 0 < ρ ≤ 3/4, since: 

! =
3G

s

10G
o
+ 4G

s
 

 

The B-term derives from two-state coupling of the Q- and Soret states each of which is of Eu 
symmetry.  Thus, the vibrations active in the B-term are Eu ⊗ Eu = a1g + a2g + b1g + b2g.  The 
a1g modes are active due to either/both the isotropy, Go, and the symmetric anisotropy, Gs, as 

                                                
36 Kitagawa, T.; Ozaki, Y., Struct. Bonding, 1987, 64,71.  Nakamoto, K., Infrared and Raman Spectra of 

Inorganic and Coordination Compounds, 4th Ed., John Wiley and Sons, NY, 1986. 
37 See sections IV.10 and VI.8 for reviews of normal and resonance Raman, respectively. 
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such they are polarized with 0 < ρ ≤ 3/4.  The b1g and b2g modes are active due to 
contributions from the symmetric anisotropy only (G0=0) and will be depolarized: 
 

! =
3G

s

10G
o
+ 4G

s
=
3G

s

4G
s
=
3

4
 

 

  The a2g modes result from the anitsymmetric anisotropy, Ga, only and will, therefore, be 
observed to be active only under resonance conditions and with anomalous polarization, i.e., 

! =
5G

a

lim
G
0" 0

10G
o
=#  

 

 The electronic absorption and resonance Raman spectra observed while probing the 
Soret and the vibrational satellite of the Q band are shown in figure VII.25.  A few comments 
about these spectra will exemplify several points of  resonance Raman.  Typically, probing the 
Soret band (406 nm) results in enhancement of modes via the A-term, i.e., totally symmetric 
modes and in this region of the spectrum four a1g modes are expected.38  The three polarized, 
very strong peaks at 1603, 1519 and 1383 cm-1 are readily assigned as a1g.  The fourth 
fundamental must be one of the remaining polarized peaks  1025, 1260 or 1139 cm-1.  After 
careful study, it was concluded that the 1260 and 1139 cm-1 bands could be assigned to 
overtones or combinations so the 1025 cm-1 band must be due to the remaining a1g mode.   
The bands at 1655 and 1220 cm-1 are depolarized and thus not of a1g symmetry.  The spectrum 
observed with 514 nm excitation has anomalously polarized peaks at 1603, 1397, 1308 and 
1121 cm-1 which must be a2g.  Note that there are two separate peaks near 1600 cm-1- 1603 
(a1g) and 1602 (a2g).  Kitagawa, Abe, et.al 39,40 examined the spectra of the meso-deuterated 
and the 15N-substituted derivatives of NiOEP and assigned some 90 overtones and 
combintation bands to aid in the assignment of the fundamentals.  Their normal coordinates 
are the generally accepted set.   
 
 

 

                                                
38 There are 9a1g modes, but one is a ν(C-H) which expected near 3000cm-1 and four are bending modes which 

are typically below 1000 cm-1 
39 Kitagawa, T.; Abe, M., Ogoshi, H., J. Chem. Phys., 1978, 69, 4516.  
40 Abe, M.; Kitagawa, T., Kyogoku, Y., J. Chem. Phys., 1978, 69,4526. 
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Figure VII.25.  (A)The visible region of the electronic spectrum of NiOEP in CH2Cl2.  (B) Resonance Raman 
spectra of NiOEP in CH2Cl2 recorded with 514 nm (bottom) and 406 nm (top) excitation.  Both parallel (solid) 
and perpendicular (dotted) polarizations are shown. 

 

 There has been such a great amount of work done on the vibrational spectra of 
porphyrins that several empirical trends have emerged in regard to the structural implications 
of the vibrational frequencies of some of the bands.  These bands are referred to as marker 
bands and serve as indicators for the coordination number, spin- and oxidation-states of the 
metal, and the core size.41  The normal modes36 corresponding to these marker bands are 
given in figure VII.26 and their sensitivities and potential energy distributions are summarized 
in Table VII.3.  All of the modes are stretches with the exception of ν7 which has substantial 
deformation character and is essentially a breathing of the 16-membered porphyrin ring.  As 
such, it is strong for planar systems and weak for non-planar or domed systems.  As the spin 
state of the iron is increased, the porphyrin tends to expand or be domed42 which will weaken 
the Cα-Cm bond and those modes which contain substantial contribution from the stretch of  
this bond (ν3, ν4 and ν10) will be sensitive to the spin state with a high spin state associated 
with lower frequencies. 

                                                
41 The core size is defined as the distance from the center of the porphyrin to the pyrrole nitrogens. 
42 A domed porphyrin is one that is non-planar as a result of the pyrroles tilting toward a metal which is out of 

the  porphyrin plane. 
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Table VII.3.  Structural Sensitivity of the marker bands of OEP 

mode cm-1 PED (%) Sensitivity 
ν3 1509 ν(CαCm)  41;  ν(CαCβ)  35 spin, oxidation 
ν4 1383 ν(CαN)  53;  ν(CαCm)  21 oxidation, metal 
ν7 674 δ(CβCαN) 20; ν(CαCβ) 19 porphyrin ring 

doming 
ν10 1655 ν(CαCm)  49;  ν(CαCβ) 17 spin, oxidation 
ν11 1576 ν(CβCβ)  57;  ν(CβEt)  16 substituent 
ν19 1603 ν'(CαCm)  67;  ν'(CαCβ)  18 spin 

!3(A1g) 

  1519

!4(A1g) 

 1383

 

!7(A1g)

  674

!10(B1g) 

 1655

 

!11(B1g)

 1576

!19(A2g)

  1603

 
 

Figure VII.26.  Normal modes of vibration of structure sensitive bands of NiOEP from reference 40. 
 

 

Figure VII.27 shows how the marker band frequencies vary with the core size of Ni(OEP) and 
a series of derivatives of Fe(OEP).  The variations are 576, 495, 414, 288 and 322 cm-1/A.43  
for ν19, ν10, ν3, ν11 and ν2, respectively.  The deviations of Fe(OEP(Im)2  from the line have 
been attriubuted to increased π-back donation.  

                                                
43 Osaki, Y.; Iriyama, K.; Ogoshi, H.; Ochiai, T.; Kitagawa, T., J. Phys. Chem., 1986, 90, 6105. 
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Figure VII.27.  Correlations of the marker bands with the porphyrin core-size from reference 38.  A = 
Ni(OEP); B = [Fe(OEP)(Im)2]Br; C = Fe(OEP(Im)2; D = Fe(OEP)Br; E = [Fe(OEP)(Me2SO)]ClO4; Im = 
imidazole.  (6c, Hs, +3) = 6-coordinate, high spin Fe(III). 
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Appendix A.  Character Tables for selected point groups. 
 

Cs E σh    Ci E i   
A' 1 1 x,y,Rz x2,y2,z2,xy  Ag 1 1 Rx,Ry,Rz x2,y2,z2,xy,xz,yz 
A" 1 -1 z,Rx,Ry yz,xz  Au 1 -1 x,y,z  

 
C2 E C2   
A 1 1 z,Rz x2+y2,z2 
B 1 -1 x,y,Rx,Ry yz,xz 

 
D2 E C2(z) C2(y) C2(x)    D3 E 2C3 3C2   
A 1 1 1 1  x2,y2,z2, xy  A1 1 1 1  x2+y2, z2 
B1 1 1 -1 -1 z,Rz xy  A2 1 1 -1 z,Rz  
B2 1 -1 1 -1 y, Ry xz  E 2 -1 0 (x,y);(Rx,Ry) (xz,yz); 
B3 1 -1 -1 1 x,Rx yz       (x2-y2,xy) 

 
C2v E C2 σv(xz) σv(yz)   
A1 1 1 1 1 z x2,y2,z2 
A2 1 1 -1 -1 Rz xy 
B1 1 -1 1 -1 x,Ry xz 
B2 1 -1 -1 1 y,Rx yz 

 
C3v E 2C3 3σv   
A1 1 1 1 z x2+y2, z2 
A2 1 1 -1 Rz  
E 2 -1 0 (x,y), (Rx,Ry) (x2-y2,xy), (xz,yz) 

 
C4v E 2C4 C2 2σv 2σd   
A1 1 1 1 1 1 z x2+y2, z2 
A2 1 1 1 -1 -1 Rz  
B1 1 -1 1 1 -1  x2-y2 
B2 1 -1 1 -1 1  xy 
E 2 0 -2 0 0 (x,y) (Rx,Ry) (xz,yz) 

 
C2h E C2 i σh   
Ag 1 1 1 1 Rz x2,y2, z2, xy 
Bg 1 -1 1 -1 Rx, Ry xz, yz 
Au 1 1 -1 -1 z  
Bu 1 -1 -1 1 x, y  

 
D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)   
Ag 1 1 1 1 1 1 1 1  x2, y2,z2 
B1g 1 1 -1 -1 1 1 -1 -1 Rz xy 
B2g 1 -1 1 -1 1 -1 1 -1 Ry xz 
B3g 1 -1 -1 1 1 -1 -1 1 Rx yz 
Au 1 1 1 1 -1 -1 -1 -1   
B1u 1 1 -1 -1 -1 -1 1 1 z  
B2u 1 -1 1 -1 -1 1 -1 1 y  
B3u 1 -1 -1 1 -1 1 1 -1 x  
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D3h E 2C3 3C2 σh 2S3 3σv   
A1' 1 1 1 1 1 1  x2+y2, z2 
A2' 1 1 -1 1 1 -1 Rz  
E' 2 -1 0 2 -1 0 (x,y) (x2-y2, xy) 

A1" 1 1 1 -1 -1 -1   
A2" 1 1 -1 -1 -1 1 z  
E" 2 -1 0 -2 1 0 (Rx,Ry) (xz,yz) 

 
D4h E 2C4 C2 2C2' 2C2" i 2S4 σh 2σv 2σd   
A1g 1 1 1 1 1 1 1 1 1 1  x2+y2, z2 
A2g 1 1 1 -1 -1 1 1 1 -1 -1 Rz  
B1g 1 -1 1 1 -1 1 -1 1 1 -1  x2-y2 
B2g 1 -1 1 -1 1 1 -1 1 -1 1  xy 
Eg 2 0 -2 0 0 2 0 -2 0 0 (Rx, Ry) (xz, yz) 
A1u 1 1 1 1 1 -1 -1 -1 -1 -1   
A2u 1 1 1 -1 -1 -1 -1 -1 1 1 z  
B1u 1 -1 1 1 -1 -1 1 -1 -1 1   
B2u 1 -1 1 -1 1 -1 1 -1 1 -1   
Eu 2 0 -2 0 0 -2 0 2 0 0 (x,y)  

 
D5h E 2C5 2C52 5C2 σh 2S5 2S53 5σv   
A1' 1 1 1 1 1 1 1 1  x2+y2, z2 
A2' 1 1 1 -1 1 1 1 -1 Rz  
E1' 2 2cos72o 2cos144o 0 2 2cos72o 2cos144o 0 (x,y)  
E2' 2 2cos144o 2cos72o 0 2 2cos144o 2cos72o 0  (x2-y2, xy) 
A1" 1 1 1 1 -1 -1 -1 -1   
A2" 1 1 1 -1 -1 -1 -1 1 z  
E1" 2 2cos72o 2cos144o 0 -2 -2cos72o -2cos144o 0 (Rx, Ry) (xz, yz) 
E2" 2 2cos144o 2cos72o 0 -2 -2cos144o -2cos72o 0   

 
D6h E 2C6 2C3 C2 3C2' 3C2" i 2S3 2S6 σh 3σd 3σv   
A1g 1 1 1 1 1 1 1 1 1 1 1 1  x2+y2, z2 
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz  
B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1  x2-y2 
B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1  xy 
E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx,Ry) (xz,yz) 
E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0   
A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1   
A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z  
B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1   
B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1   
E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x,y)  
E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0   

 
D2d E 2S4 C2 2C2' 2σd   
A1 1 1 1 1 1  x2+y2, z2 
A2 1 1 1 -1 -1 Rz  
B1 1 -1 1 1 -1  x2-y2 
B2 1 -1 1 -1 1 z xy 
E 2 0 -2 0 0 (x,y); (Rx,Ry) (xz,yz) 

 
D3d E 2C3 3C2 i 2S6 3σd   
A1g 1 1 1 1 1 1  x2+y2, z2 
A2g 1 1 -1 1 1 -1 Rz  
Eg 2 -1 0 2 -1 0 (Rx,Ry) (x2-y2,xy);(xz,yz) 
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A1u 1 1 1 -1 -1 -1   
A2u 1 1 -1 -1 -1 1 z  
Eu 2 -1 0 -2 1 0 (x,y)  

 
S4 E S4 C2 S43   
A 1 1 1 1 Rz x2+y2, z2 
B 1 -1 1 -1 z x2-y2, xy 
E 1 ±i -1 -(±i) (x,y); (Rx,Ry) (xz,yz) 

 
Td E 8C3 3C2 6S4 6σd   
A1 1 1 1 1 1  x2+y2+z2 
A2 1 1 1 -1 -1   
E 2 -1 2 0 0  (2z2-x2-y2, x2-y2) 
T1 3 0 -1 1 -1 (Rx, Ry,Rz)  
T2 3 0 -1 -1 1 (x,y,z) (xz,yz.xy) 

 
 

Oh 
 

E 
 

8C3 
 

6C2 
 

6C4 
3C2 

(=C42) 
 
i 

 
6S4 

 
8S6 

 
3σh 

 
6σd 

  

A1g 1 1 1 1 1 1 1 1 1 1  x2+y2+z2 
A2g 1 1 -1 -1 1 1 -1 1 1 -1   
Eg 2 -1 0 0 2 2 0 -1 2 0  (2z2-x2-y2,x2-y2) 
T1g 3 0 -1 1 -1 3 1 0 -1 -1 (Rx,Ry,Rz)  
T2g 3 0 1 -1 -1 3 -1 0 -1 1  (xz,yz,xy) 
A1u 1 1 1 1 1 -1 -1 -1 -1 -1   
A2u 1 1 -1 -1 1 -1 1 -1 -1 1   
Eu 2 -1 0 0 2 -2 0 1 -2 0   
T1u 3 0 -1 1 -1 -3 -1 0 1 1 (x,y,z)  
T2u 3 0 1 -1 -1 -3 1 0 1 -1   

 
 
 
 

Appenidix B.  Constants & Useful Energy Conversions 
 
Planck's Constant,  h = 6.626x10-34 J-s 
Boltzman's Constant, k = 1.381x10-23 J/K = 0.6950 cm-1/K 
speed of light,   c= 2.998x108 m/s 
 

1 eV = 1.60219 x10-19 J = 96.485 kJ/mol = 22.58 kcal/mol = 8065.5 cm-1 

1 cm-1 = 11.96 J/mol = 2.859 cal/mol = 0.1240 meV 
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Appendix C.  Some Direct Products 
Note that is some instances, g and u must be added (gxg=uxu=g; gxu=u), some subscripts must be omited and 
' and " must be added (' x ' = " x" = '; ' x " = ") 
 

D2, D2h A B1 B2 B3  C2v A1 A2 B1 B2 
A A B1 B2 B3  A1 A1 A2 B1 B2 

B1  A B3 B2  A2  A1 B2 B1 
B2   A B1  B1   A1 A2 
B3    A  B2    A1 

 
C3v, D3,  
D3d, D3h 

 
A1 

 
A2 

 
E 

 C4, C4h, 
 S4 

 
A 

 
B 

 
E 

A1 A1 A2 E  A A B E 
A2  A1 E  B  A E 

E   A1+[A2]+E  E   [A]+A+E 
 

C4v, D4, 
D2d, D4h 

A1 A2 B1 B2 E 

A1 A1 A2 B1 B2 E 
A2  A1 B2 B1 E 
B1   A1 A2 E 
B2    A1 E 
E     A1+[A2]+B1+B2 

C5v, ,           
D5, 
D5h,5d 

 
A1 

 
A2 

 
E1 

 
E2 

 C6, 
C6h 

 
A 

 
B 

 
E1 

 
E2 

A1 A1 A2 E1 E2  A A B E1 E2 
A2  A1 E1 E2  B  A E2 E1 
E1   A1+[A2]+E2 E1+E2  E1   [A]+A+E2 2B+E1 
E2    A1+[A2]+E1  E2    [A]+A+E2 

 
C6v, D6, D6h A1 A2 B1 B2 E1 E2 

A1 A1 A2 B1 B2 E1 E2 
A2  A1 B2 B1 E1 E2 
B1   A1 A2 E2 E1 
B2    A1 E2 E1 
E1     A1+[A2]+E2 B1+B2+E1 
E2      A1+[A2]+E2 

 
Oh, Td A1 A2 E T1 T2 

A1 A1 A2 E T1 T2 
A2  A1 E T2 T1 

E   A1+[A2]+E T1+T2 T1+T2 
T1    A1+E+[T1]+T2 A2+E+T1+T2 
T2     A1+E+[T1]+T2 
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Appendix D.  Standard Valence Orbital Hii values (eV). 
 

Atom ns np (n-1)d n 
H -13.6   1 
B -15.2 -8.5   
C -21.4 -11.4   
N -26.0 -13.4  2 
O -32.3 -14.8   
F -40.0 -18.1   
Si -17.3 -9.2   
P -18.7 -14.0  3 
S -20.0 -13.3   
Cl -26.3 -14.2   
Sc -8.9 -2.8 -8.5  
Ti -9.0 -5.4 -10.8  
V -8.8 -5.5 -11.0  
Cr -8.7 -5.2 -11.2  
Mn -9.8 -5.9 -11.7  
Fe -9.1 -5.3 -12.6  
Co -9.2 -5.3 -13.2  
Ni -9.2 -5.2 -13.5 4 
Cu -11.4 -6.1 -14.0  
Zn -12.4 -6.5   
Ga -14.6 -6.8   
Ge -16.0 -9.0   
As -16.2 -12.2   
Se -20.5 -13.2   
Br -22.7 -13.1   
Mo -8.3 -5.2 -10.5  
Ru -10.4 -6.9 -14.9  
Rh -3.09 -4.6 -12.5 5 
Pd -7.3 -3.8 -12.0  
Sb -18.8 -11.7   
I -18.0 -12.7   

Te -20.8 -13.2   
W -8.3 -5.2 -10.4  
Re -9.36 -6.0 -12.7 6 
Os -8.5 3.5 -11.0  
Pt -9.1 -5.5 -12.6  
Au -10.9 -5.6 -15.1  

 


	00_Table of Contents
	ch-i
	ch-ii
	ch-iii
	ch-iv
	ch-v
	ch-vi
	ch-vii
	Index
	ZZ_APPENDIX

