
Experience With Safe Manual Memory-Management in Cyclone

Michael Hicks Greg Morrisett Dan Grossman Trevor Jim
University of Maryland Harvard University University of Washington AT&T Labs Research

Abstract

The goal of the Cyclone project is to investigate type
safety for low-level languages such as C. Our hard-
est challenge has been providing programmers con-
trol over memory management while retaining type
safety. This paper reports on our experience try-
ing to integrate and effectively use two previously
proposed, type-safe memory management mecha-
nisms: statically-scoped regions and unique point-
ers. We found that these typing mechanisms can be
combined to build alternative memory-management
abstractions, such as reference counted objects and
arenas with dynamic lifetimes, and thus provide a
flexible basis. Our experience—porting C code and
building new applications for resource-constrained
systems—confirms that experts can use these fea-
tures to improve memory footprint and sometimes
to improve throughput when used instead of, or in
combination with, a conservative garbage collector.

1 Introduction

Low-level languages such as C provide a degree of
control over space, time, and predictability that high-
level languages such as Java do not. But the lack of
type-safety for C has led to many failures and secu-
rity problems. The goal of our research is try to bring
the “Mohammad of type safety” to the “mountain of
existing C code.”

To that end, we have been developing Cyclone, a
type-safe dialect of C [21]. Cyclone uses a combi-
nation of programmer-supplied annotations, an ad-
vanced type system, a flow analysis, and run-time
checks to ensure that programs are type safe. When
we started the project, we relied solely on heap allo-
cation and the Boehm-Demers-Weiser (BDW) con-
servative garbage collector (GC) to recycle memory

safely. BDW provides convenient interoperability
with legacy libraries and makes it easy to support
polymorphism without needing run-time type tags.

While the BDW collector provides convenience, it
does not always provide the performance or control
needed by low-level systems applications. In previ-
ous work, we described an integration of BDW with
type-safe stack allocation and LIFO arena allocation.
A region-based, type-and-effect system based upon
the work of Tofte and Talpin [29] ensured safety
while providing enough polymorphism for reusable
code to operate over data allocated anywhere.

In practice, we found that supporting stack allo-
cation was crucial for good performance, and our
system was able to infer most region annotations for
porting legacy C code that used stack allocation [13].
We found that LIFO arenas were useful when callers
know object lifetimes but only callees can determine
object sizes. Unfortunately, LIFO arenas suffer from
several well-known limitations that we encountered
repeatedly. In particular, they are not suited to com-
putations such as server and event loops.

Since then, we have explored the integration
of unique pointersinto our memory management
framework. Our unique pointers are closely re-
lated to typing mechanisms suggested by other re-
searchers, including linear types [30], ownership
types [8], alias types [27], and capability types [31].
The critical idea with all of these proposals is to
make it easy to track locally the state of an object
by forbidding uncontrolled aliasing. In Cyclone, a
value with a unique-pointer type is guaranteed to be
the only (usable) reference to an object. Such ob-
jects can be deallocated by the programmer at any
time, and a modular flow analysis is used to ensure
that the dangling pointer cannot be dereferenced in
the rest of the computation.

Unique pointers are not a novel idea, but we found

1

many challenges to implementing them in a full-
scale safe language, as they interact poorly with other
features such as exceptions, garbage collection, type
abstraction, the address-of operator, undefined eval-
uation order, etc. To our knowledge, no one has at-
tempted to address all of these features in a full-scale
language implementation.

On the other hand, we found great synergies in the
combination of uniqueness and regions. In particu-
lar, we were able to use the LIFO region machinery
to support a form of “borrowed” pointers [7], which
goes a long way in relaxing the burdens of unique-
ness. We were also able to use unique pointers as ca-
pabilities for building further memory-management
abstractions. In particular, we used unique pointers
to control access to a form of dynamically-scoped
arenas [16], and for building reference-counted ob-
jects and arenas.

In this paper, we briefly describe our support for
unique pointers and the extensions they enable; our
technical report describes this support in greater de-
tail [19]. We then discuss our experience using
these facilities to build or port a few target appli-
cations, including a multimedia overlay network, a
small web server, a Scheme interpreter, an ftp server,
and an image-manipulation program. Most of the ap-
plications were chosen because they are structured
as (infinite) loops with loop-carried state and are
thus not well-suited for LIFO arenas. Furthermore,
we feel that these applications are representative for
resource-limited platforms, such as cell-phones or
embedded systems, where space is at a premium. In
most of these applications, we were able to reduce
if not eliminate the need for garbage collection. We
also saw dramatic improvements in working-set size,
and for at least one application an improvement in
throughput.

Thus, the contributions of this paper are two-fold:

1. We show that the addition of unique pointers to
a region-based language provides a flexible ba-
sis for building type-safe, manual memory man-
agement, which can complement or replace GC.

2. We confirm that the resource requirements
of some important applications can be sig-
nificantly improved through type-safe, manual
memory management.

2 Regions in Cyclone

All of the memory management facilities in Cyclone
revolve aroundregions. A region is a logical con-
tainer for objects that obey some memory manage-
ment discipline. For instance, a stack frame is a re-
gion that holds the values of the variables declared
in a lexical block, and the frame is deallocated when
control-flow exits the block. As another example, the
garbage-collected heap is another region, whose ob-
jects are individually deallocated by the collector.

Each region in a program is given a compile-time
name, either explicitly by the programmer or implic-
itly by the compiler. For example, the heap region’s
name is‘H and the region name for a functionfoo’s
stack frame is‘foo. If ‘r is the name of a region,
and an objecto with typeT is allocated in‘r, then
the type of a pointer too is writtenT*‘r.

To ensure that programs never dereference a
pointer into a deallocated region, the compiler tracks
a conservative approximation of (a) the regions into
which a pointer can point, and (b) the set of regions
that are still live at each program point. This is imple-
mented using a type-and-effects system in the style
of Tofte and Talpin [29].

Cyclone supportsregion polymorphism, which
lets functions and data structures abstract over the
regions of their arguments and fields. By default,
Cyclone assumes that pointer arguments to functions
live in distinct regions, and that all of these regions
are live on input. A unification-based algorithm is
used to infer instantiations for region-polymorphic
functions and the regions for local variables. This
drastically cuts the number of region annotations
needed for programs. Cyclone also supports region
subtyping based on region lifetimes, which combines
with region polymorphism to make for an extremely
flexible system. In practice, we have found few (bug-
free) examples where stack-allocation could not be
easily ported from C to Cyclone.

2.1 LIFO Arenas

The basic region system we have described easily
supports a form ofarenasthat have stack-like last-
in-first-out (LIFO) lifetimes, but also support dy-
namic allocation. A LIFO arena is introduced with
a lexically-scoped declaration:

2

{ region<‘r> h; ... }

Here,h is a regionhandlethat can be used to allocate
in the newly introduced region‘r. Calling the primi-
tive rmalloc(h,...) allocates space within region
‘r. When the declaring lexical scope concludes, the
handle and the contents of the arena are deallocated.

We have found that arenas work well for situations
where the caller does not know how much space to
pre-allocate on its stack frame. Even so, we found
that the LIFO restriction on arena lifetimes was of-
ten too limiting. That is, we often wished that we
could deallocate the arena before the end of its scope.
This was particularly problematic for loops: If one
pushes the arena declaration inside the loop then a
fresh arena is created and destroyed for each itera-
tion. Thus, no data can be carried from one itera-
tion to the next, unless they are copied to an arena
declared outside the loop. But then all of the data
placed in an outer arena would persist until the en-
tire loop terminates. For loops that do not termi-
nate, such as a server request loop or event loop, this
is a disaster as the LIFO restriction can lead to un-
bounded storage requirements.

3 Unique Pointers

Very often the limitations of stack allocation and
LIFO arenas can simply and conveniently be over-
come by using GC. However, GC may not always
be compatible with the performance needs of an ap-
plication. In particular, applications such as em-
bedded systems and network servers sometimes re-
quire bounds on space consumption, pause times, or
throughput that may be hard to achieve with GC.
Therefore, we decided to extend Cyclone with a
suite of mechanisms that would permit manual ob-
ject deallocation without imposing a LIFO restric-
tion. We emphasize that our goal is not necessarily
to eliminate GC, but rather to provide programmers
with better control over tuning the space and time re-
quirements of their programs.

In general, ensuring that manual deallocation is
safe requires very precise information regarding
which pointers may alias other pointers. Though
there are impressive analyses that compute such
aliasing information, they usually require whole-
program analysis to achieve any level of accuracy.

An alternative solution that has been proposed
many times is to restrict or avoid aliasing altogether,
so that reasoning about type-states can be done lo-
cally. One extreme is to require that pointers which
are deallocated beunique(i.e., have no aliases.) In
what follows, we briefly describe how we have incor-
porated unique pointers into Cyclone, enabling sup-
port for per-object deallocation, reference-counting,
and arenas with dynamic lifetimes.

To distinguish unique pointers from heap-, stack-,
or arena-allocated pointers, we use a special region
name‘U. A pointer value with typeT*‘U is created
by callingmalloc and can be deallocated viafree
at any time.

We use an intraprocedural, flow-sensitive, path-
insensitive analysis to track when a unique pointer
becomesconsumed, in which case the analysis re-
jects a subsequent attempt to use the pointer. We
chose an intraprocedural analysis to ensure modu-
lar checking and a path-insensitive analysis to ensure
scalability. To keep the analysis simple, a copy of
a unique pointer (e.g., in an assignment or function
call) is treated as consuming the pointer. This en-
sures that there is at most one usable alias of a unique
pointer at any program point. Here is an example:

int *‘U q = p; // consumes p
*q = 5; // q not consumed
free(q); // consumes q
*p = *q; // illegal--p & q consumed

The first assignment aliases and consumesp, while
the call tofree consumesq. Therefore, attempts
to dereferencep or q are illegal. Dereferencing a
unique pointer does not consume it since it does not
copy the pointer, as the first dereference ofq shows.

At join points in the control-flow graph, our anal-
ysis conservatively considers a value consumed if
there is an incoming path on which it is consumed.
For instance, ifp is not consumed and we write:

if (rand()) free(p);

then the analysis treatsp as consumed after the state-
ment. In this situation, we issue a warning thatp
might leak, since the type-states do not match. Fortu-
nately, we can link in the garbage collector to ensure
the object is reclaimed. We considered making this
an error as in Vault [9], but found that exception han-
dlers and shared unique pointers (described below)

3

generated too many false alarms. Thus, we settle for
a warning and can rely upon the GC as a safety net.

We allow unique pointers to be placed in non-
unique objects (e.g., a global variable or heap-
allocated object) that might have multiple aliases.
To ensure that unique pointers remain unique, we
must somehow limit access through these paths. In
most systems, reading a unique pointer is treated as
a destructiveoperation that overwrites the original
copy with NULL, so as to preserve the uniqueness
invariant. In Cyclone, we have pointer types that
do not admitNULL as a value, so destructive reads
are not always an option. Therefore, we provide an
explicit swapoperation (“:=:”) that allows one to
swap one unique object for another (includingNULL
where permitted.) Though notationally less conve-
nient than a destructive read, we found that program-
ming with swaps made us think harder about where
NULL-checks were needed, and helped eliminate po-
tential run-time exceptions.

Finally, we remark that placing unique pointers in
non-unique objects can lead to subtle “leaks”. For
instance, there is no guarantee that when a unique
pointer is passed tofree that the object to which it
points does not contain live, unique pointers. Simi-
larly, when we write a unique pointer into a shared
object (e.g., a global) there is no guarantee that we
are not overwriting another live unique pointer.

3.1 Borrowing Unique Pointers

Unique pointers make it easy to support explicit deal-
location, but they often force awkward coding idioms
just to maintain uniqueness. For example, we must
forbid using pointer arithmetic on unique pointers,
since doing so could allow the user to callfree with
a pointer into the middle, rather than the front, of an
object, confusing the allocator. As another example,
we often want to pass a copy of a pointer to a func-
tion that does not consume the pointer, and leave the
original copy as unconsumed.

Most systems based on uniqueness or ownership
have some way of creating “borrowed” pointers to
code around these problems. A borrowed pointer is a
second-class copy of a unique pointer that cannot be
deallocated and cannot “escape”. This ensures that if
we deallocate the original pointer, we can invalidate
all of the borrowed copies. In Cyclone, a pointer is

borrowed using an explicitalias declaration, sim-
ilar to Walker and Watkins’let-region [33], and
the LIFO region machinery prevents the borrowed
pointer from escaping.

As an example, consider the following code:

void inc(int*‘r p) { *p += 1; }
void foo(int*‘U x) {

{ let alias<‘r> int*‘r a = x;
int*‘r b = a;
inc(a);
inc(b);

}
free(x);

}

Thefoo function takes a unique pointerx as an argu-
ment. The declaration “let alias<‘r> ...” in-
troduces a fresh region name,‘r, and an aliasa for
x that appears to be a pointer into region‘r. Within
the scope of thealias declaration, we may freely
copya and pass it to functions, just as if it were al-
located on the stack. However, throughout the scope
of thealias, the variablex is considered to be con-
sumed. This prevents the unique pointer from being
deallocated. At the end of the block, any copies ofx
will be treated as unusable, since the region has gone
out of scope. Thus, no usable aliases can survive the
exit from the block, and we can safely restore the
type-state ofx to be an unconsumed, unique pointer.
In short, regions provide a convenient way to tem-
porarily name unique pointers and track aliasing for
a limited scope.

We provide a limited form ofalias-inference
around function calls to simplify programming and
cut down on annotations. For example, we could
rewritefoo to be:

void foo(int*‘U x) {
inc(x);
inc(x);
free(x);

}

In general, whenever a region-polymorphic function
(like inc) is called with a unique pointer as an ar-
gument, the compiler will attempt to wrap analias
declaration around the call. This fails to type-check
only when the function’s return type mentions the

4

freshly introduced region name used to identify the
unique pointer. In the example above, the compiler
successfully wraps each call toinc with a suitable
alias declaration forx. In general, the interaction
of unique pointers with subtyping and region poly-
morphism requires some care, but due to space con-
straints, we refer the reader to our technical report
for details [19].

3.2 Reference Counting

Even with support for borrowing, unique pointers
can be used to build only tree-like data structures
with no internal sharing or cycles. While GC or
LIFO arenas may be reasonable options for such
data structures, another alternative often employed in
systems applications is reference-counting. For ex-
ample, reference-counting is used in COM and the
Linux kernel, and is common in C++ and Objective
C programs.

We found that we could elegantly support safe
reference-counting by building on the discipline of
unique pointers. This has two great advantages.
First, we introduce almost no new language features,
rather only some simple run-time support. Second,
the hard work that went into ensuring that unique
pointers coexisted with conventional regions is au-
tomatically inherited for reference-counted objects.

We define a newreference-counted region‘RC,
whose objects, when allocated, are prepended with a
hidden reference-count field. As with unique point-
ers, the flow analysis prevents the user from mak-
ing implicit aliases. Instead,‘RC pointers must be
copiedexplicitly by using thealias_refptr func-
tion, which increments the reference count and re-
turns a new alias, without consuming the original
pointer. In essence, both of the‘RC values serve as
explicit capabilities for the same object.

A reference-counted pointer is destroyed by the
drop_refptr function. This consumes the given
pointer and decrements the object’s reference count;
if the count becomes zero, the memory is freed.

Thus, treating‘RC pointers as if they were unique
forces programmers to manipulate reference counts
explicitly. While this is less convenient than auto-
matic reference counting, it requires almost no com-
piler support. Furthermore, the constraints on unique
pointers ensure that an object is never prematurely

deallocated, and the flow analysis warns when a
pointer is potentially “lost.” In addition, we can use
the alias construct to borrow a reference-counted
pointer to achieve a form of explicit, deferred refer-
ence counting. Thus, the programmer has complete
control over where reference counts are manipulated.

3.3 Dynamic Arenas

Coming full circle, we found we could use unique
pointers to provide a more flexible form of arenas
that avoids the LIFO lifetime restriction. The basic
idea is to use a unique pointer as a capability or “key”
for the arena. Accessing the arena requires posses-
sion of the key, as does deallocating the arena. Since
the key is represented as a unique pointer and is con-
sumed when the arena is destroyed, the arena can no
longer be accessed.

Rather than requiring the key be presented on each
allocation or pointer-dereference into the arena, we
provide a lexically-scopedopen construct that tem-
porarily consumes the key and allows the arena to be
freely accessed within the scope of theopen. The
key is then given back upon exit from the scope.

Clearly, open andalias are related. Both pro-
vide a way to temporarily “pin” something and give
it a name for a particular scope. In the case ofalias,
a single object is being pinned, whereas in the case
of open, an arena is being pinned. Pinning prevents
the object(s) from being deallocated throughout the
scope, and the region name is used to prevent point-
ers to the object(s) from escaping the scope. Thus,
while we have found lexically-scoped, LIFO arenas
of limited use, lexically-scoped region names have
proven invaluable for making unique pointers and
dynamic arenas work well in practice.

Finally, we have generalized arenas further by sup-
porting reference-counted arenas, where‘RC point-
ers are used as keys instead of unique pointers. Thus,
the addition of unique pointers to our region frame-
work gives us a number of memory management op-
tions. In the following section, we describe our ex-
perience trying to use these facilities in various ap-
plications.

5

Program Description Non-comment Lines of Code Manual
C Cyc Cyc (+manual) mechs

Boa web server 5217 ± 284 (5%) ± 91 (1%) U(D)
BetaFTPD ftp server 1146 ± 191 (16%) ± 225 (21%) UR
Epic image compression utility 2123 ± 217 (10%) ± 114 (5%) UL
Kiss-FFT fast Fourier transform routine 453 ± 73 (16%) ± 20 (4%) U
MediaNet streaming data overlay network 8715 ± 320 (4%) URLD
CycWeb web server 667 U
CycScheme scheme interpreter 2523 ULD

U = unique pointers R = ref-counted pointers
L = LIFO regions D = dynamic arenas

Table 1: Benchmark Programs

4 Applications

Table 1 describes the benchmark programs with
which we experimented. For programs we ported
from C (Boa, BetaFTPD, Epic, and Kiss-FFT) it
shows the non-comment lines of code of the original
program, and then the changes due to porting to Cy-
clone to use the GC, and then the additional changes
needed to use manual mechanisms. The other pro-
grams (MediaNet, CycWeb, and CycScheme) were
written directly in Cyclone. The final column indi-
cates which manual mechanisms we used. For all
programs other than MediaNet, we eliminated the
need for GC entirely. We describe the program and
the coding process below. Performance experiments
for these programs are presented in the next Section.

4.1 Porting Experience

The process of porting from C to Cyclone is made
easiest by placing all dynamically-allocated data in
the heap region and letting BDW take care of recy-
cling the data. Most of the changes involve differ-
ences between C and Cyclone that are not memory-
management related, such as introducing fat pointer
annotations. To take advantage of the new manual
facilities, we roughly performed two actions. First,
we distinguished between those data whose lifetimes
are scoped from those whose are not. Second, for
those data structures with a non-scoped lifetime, we
identified their aliasing behavior to determine which
mechanism to use.

Objects with Scoped Lifetime When data struc-
tures have scoped lifetimes, we can either allocate
them in a LIFO arena, or we can allocate them in the
unique region, and use thealias construct to allow
temporary aliasing until they can be freed. For ex-
ample, in both Epic and Kiss-FFT, we merely had to
change a declaration from something like

T* q_pyr = malloc(...);

to instead be

T*‘U q_pyr = malloc(...);

All alias statements were inferred automatically
when calling subroutines that wished to alias the ar-
ray. For Epic, we also used a LIFO arena to store a
Huffman compression tree that was used during the
first phase of the compression. This required chang-
ing the prototypes of the creator functions to pass in
the appropriate arena handle, in addition to adding
various region annotations.

Objects with Dynamic Lifetime If we wish to
manually manage a data structure using unique
pointers, it cannot require aliases. For example, Boa
stores the state of each request in arequest struc-
ture, illustrated in Figure 1. Because these form
a doubly-linked list, we cannot use unique point-
ers. Even if we were to remove thenext andprev
fields and storerequest objects in a separate (non-
unique) list, we could not uniquely allocate requests
because they contain internal aliases. For example,
the header field identifies the HTTP header in an
internal buffer.

6

next
prev
header
pathname
...

buf

Figure 1: Request data structure in Boa

In the case of Boa,request objects are managed
by a custom allocator. Throughout its lifetime, a re-
quest is moved between a blocked queue and a ready
queue, and when complete, the request is moved onto
a free list to be reused. Therefore, we can continue
to use this allocator and simply heap-allocate the re-
quests since they will never be freed by the system
allocator. Some internal elements of the request,
such as the pathname (shown with open-headed ar-
rows in the figure) were not aliased internally, so
they could be uniquely allocated and freed when the
request was complete. We also experimented with
a version that used dynamic arenas for requests in-
stead of the custom allocator, but found that this ad-
versely affected throughput. We remark that this al-
ternative only required changes to the topmost re-
quest management routines; the internal request pro-
cessing routines could remain the same.

BetaFTPD also used doubly-linked lists, one for
transfers in progress, and one for open sessions. Fur-
thermore, there were cross-links between session and
transfer objects. Thus, reference-counted pointers
seemed a natural fit. As can be seen from Table 1,
this required 21% of the code to be changed, sig-
nificantly more than the other ports. The reason
is that all reference-counts are managed manually,
so we had to insert many calls toalias_refptr
anddrop_refptr along with the addition of annota-
tions. While largely straightforward, we were forced
to spend some time tracking down memory leaks that
arose from failing to decrement a count. The warn-
ings issued by the compiler were of little help, since
there were too many false positives. However, we re-
mark that the original program had a space leak along
a failure path that we were able to find and eliminate.

4.2 Cyclone Applications

In addition to porting C programs, we have written
three Cyclone programs from scratch that use our
manual mechanisms. Here we describe which mech-
anisms we used and why.

4.2.1 CycWeb

CycWeb is a simple, space-conscious web server that
supports concurrent connections using non-blocking
I/O and an event library in the style of libasync [23]
and libevent [26]. The event library lets users reg-
ister callbacksfor I/O events. A callback consists
of a function pointer and an explicit environment
that is passed to the function when it is called. The
event library uses polymorphism to allow callbacks
and their environments to be allocated in arbitrary
regions. This generality is not overly burdensome:
of 260 lines of code, we employ our swap opera-
tor only 10 times across 10 functions, and never use
thealias primitive explicitly. The entire web server
uses swap 16 times and an explicitalias 5 times.

For the rest of the application, we also chose to
use unique pointers. When a client requests a file,
the server allocates a small buffer for reading the file
and sending it to the client in chunks (default size
is 1 KB). Callbacks are manually freed by the event
loop when the callback is invoked (they must be re-
registered if an entire transaction is not completed);
each callback is responsible for freeing its own en-
vironment, if necessary. As we see in the next sec-
tion, this design allows the server to be reasonably
fast while consuming very little space.

4.2.2 MediaNet

MediaNet [20] is an overlay network whose servers
forward packets according to a reconfigurable DAG
of operations, where each operation works on the
data as it passes through. For better performance, we
eschew copying packets between operations unless
correctness requires it. However, the dynamic nature
of configurations means that both packet lifetimes
and whether packets are shared cannot be known
statically.

We store the DAG of operations inside a dynamic
arena, creating a new arena with each configura-
tion. We use a data structure called astreambuff

7

A buffer with data

1234

0 4 00 0

A B C

Figure 2:Pointer graph for three streambuffs

for each packet, similar to a Linuxskbuff, which
consists of a unique pointer to an array of reference-
counted buffers, each paired with an offset. When-
ever a packet must be shared, a new streambuff is cre-
ated, whose array points to the same databuffers as
the original (after increasing their reference counts).
This approach allows for quickly appending and
prepending data to a packet, and requires copying
packet buffers only when they are both shared and
mutated. Finally, we found it convenient to allocate
some objects in the heap, such as objects represent-
ing connections. This means that we must use the
GC to manage these objects.

An example using streambuffs is shown in Fig-
ure 2. Here, three individual streambuffsA, B, and
C share some underlying data; unique pointers have
open arrowheads, while reference-counted ones are
filled in. This situation could have arisen by (1) re-
ceiving a packet and storing its contents inA; (2)
creating a new bufferB that prepends a sequence
number1234 to the data ofA; and (3) stripping off
the sequence number for later processing (assuming
the sequence number’s length is4 bytes). Thus,C
andA are equivalent. When we free a streambuff,
we decrement the reference counts on its databuffs,
so they will be freed as soon as possible.

An earlier version of MediaNet stored all packet
and configuration data in the garbage-collected heap,
and used essentially the same structures for packet
data. One important difference was that databuffs
contained an explicitrefcnt field managed by the
application to implement copy-on-write semantics.
Unfortunately, this approach yielded a number of
hard-to-find bugs due to reference count mismanage-
ment. Our language support for reference-counting
eliminated the possibility of these bugs, and further
let us free the data immediately after its last use. As
shown in Table 1, moving to explicit unique point-
ers and dynamic regions was not difficult; only 4%

of the code had to be changed. The majority of
these changes were in a couple of utility files. Out
of nearly 9000 non-comment lines, we added 76 an-
notations, used swap 46 times, andalias 66 times,
of which 71% were automatically inferred.

4.2.3 CycScheme

Using a combination of our dynamic arenas and
unique pointers, Fluet and Wang [11] have imple-
mented a Scheme interpreter and runtime system
in Cyclone. The runtime system includes a copy-
ing garbage collector in the style of Wang and Ap-
pel [34], written entirely in type-safe Cyclone. All
data from the interpreted program are allocated in
an arena, and when the collector is invoked, the live
data are copied from one arena to another, and the
old arena is then deallocated. Since both arenas must
be live during collection but their lifetimes are not
nested, LIFO arenas would not be sufficient.

Further details on CycScheme’s performance and
implementation can be found in Fluet and Wang’s pa-
per. We simply observe that our system of memory
management was flexible enough for this interesting
application. In particular, this shows that at least in
principle, it is possible for Cyclone programs to code
up their own copying garbage collectors tailored for a
particular application. However, we remark that the
approach is limited to straightforward copying col-
lection and does not accommodate other techniques,
including generational techniques or mark/sweep.

5 Performance Experiments

To understand the benefit of our proposed mecha-
nisms, we compared the performance of the GC-only
versions of our sample applications to the ones us-
ing manual mechanisms. Our measurements exhibit
two trends. First, we found that elapsed time is simi-
lar for the GC and manual versions of the programs.
Indeed all of our benchmark programs, other than
MediaNet, have execution time performance virtu-
ally the same for the GC and non-GC cases. Sec-
ond, we found that we could significantly reduce
memory utilization by making use of manual mech-
anisms. Moreover, in the case of MediaNet, we also
improved its throughput: judicious use of manual

8

1000 2000 3000 4000

document size (bytes)

3800

4000

4200

4400
th

ro
ug

hp
ut

 (
re

q/
s)

Boa C
Boa Cyc
Boa Cyc (unique)
CycWeb

Figure 3: Throughput for CycWeb and Boa

mechanisms significantly reduced the reliance on GC
(but did not eliminate it entirely), improving perfor-
mance.

In this section we carefully discuss the perfor-
mance of the Boa, CycWeb, and MediaNet servers.
We found these to be the most interesting programs
from a resource management point of view; measure-
ments for the remaining programs can be found in
the Appendix. We ran our performance experiments
on a cluster of dual-processor 1.6 GHz AMD Athlon
MP 2000 workstations each with 1 GB of RAM and
running Linux kernel version 2.4.20-20.9smp. The
cluster is connected via a Myrinet switch.

We used Cyclone version 0.8, which can be
downloaded fromhttp://www.cs.cornell.edu/
projects/cyclone/. By default, Cyclone uses
the Boehm-Demers-Weiser (BDW) conservative
garbage collector [5], version6.2α4, for garbage col-
lection and manual deallocation. BDW uses a mark-
sweep algorithm, and is incremental and genera-
tional. We used the default initial heap size and heap-
growth parameters for these experiments. When pro-
grams do not need GC, they can be compiled with the
Lea general-purpose allocator [22]. Cyclone com-
piles to C, which then usesgcc version3.2.2, with
optimization level-O2, to create executables.

5.1 Boa and CycWeb

We measured web server throughput using theSIEGE

web benchmarking tool1 to blast Boa with repeated
requests from6 concurrent users for a single file
of varying size for 10 seconds. (We chose6 users
because we observed it maximized server perfor-
mance.) The throughput results are shown in Fig-
ure 3—note the non-zero y-axis. This shows three
versions of Boa—C, Cyclone using GC, Cyclone
without GC (labeled “unique”)—and the single ver-
sion of CycWeb. We plot the median of 15 trials,
and the error bars show the quartiles. For Boa, the
performance difference between the C and Cyclone
versions is between 2 and 3%, and the differences
between the various Cyclone versions are negligible
(often within the range of error or close to it). Thus,
for the performance metric of throughput, removing
the GC has little payoff. CycWeb is optimized for
memory footprint instead of speed, but comes within
10–15% of Boa in C.

Avoiding GC has greater benefit when consider-
ing memory footprint. Figure 4 depicts three traces
of Boa’s memory usage while it serves 4 KB pages to
6 concurrent users. The first trace uses GC, while the
second two make use of unique pointers. The second
(unique+GC) uses BDW as its allocator (thus pre-
venting inadvertent memory leaks), while the third
uses the Lea allocator.2 The x-axis is elapsed time,
while the y-axis plots memory consumed. The graph
shows memory used by the heap region and by the
unique region, as well as the total space reserved by
the allocator (i.e., acquired from the operating sys-
tem).

The working set size of all versions is similar, and
is dominated by the heap region since the majority
of memory is consumed by the heap-allocated re-
quest structures. The GC version’s footprint fluctu-
ates as request elements are allocated and collected
(each GC, of which there are a total of 33 in this case,
is depicted as a vertical line). To ensure reasonable
performance, the collector reserves a fair amount of
headroom from the OS: 635 KB in this case. By
contrast, the unique versions have far less reserved
space, with the Lea allocator having little more than

1http://joedog.org/siege/
2The throughput of both versions is essentially the same, so

only one line is shown in Figure 3.

9

Boa Cyc (GC) Boa Cyc (unique+GC) Boa Cyc (unique) CycWeb

Figure 4: Memory footprint of Cyc Boa versions

that required by the application. We have done mem-
ory traces with other heap sizes and levels of concur-
rent access and found the trends to be similar. Very
little data is allocated in the unique region (it is not
really visible in the graph)—only about 50 bytes per
request. In the GC case, this same data is allocated in
the heap, and accumulates until eventually collected.

Turning to CycWeb, which uses only the Lea al-
locator and no garbage collector, we see that we
have succeeded in minimizing memory footprint: the
working set size is less than 6.5 KB. This is propor-
tional to the number of concurrent requests—we pro-
cess at most6 requests at a time, and allocate a 1 KB
buffer to each request.

5.2 MediaNet

All of the versions of Boa perform very little allo-
cation per transaction, thanks to the use of a cus-
tom allocator. The benefit of the allocator depends in
part on the fact thatrequest objects are uniformly-
sized: allocations merely need to remove the first el-
ement from the list. The same approach would work
less well in an application like MediaNet, whose
packets vary widely in size (from a tens of bytes to
tens of kilobytes). Avoiding excessive internal frag-
mentation would require managing multiple pools, at
which point a general-purpose allocator seems more
sensible, which is what we used. However, we found
that this choice can lead to significant overhead when
using GC.

In a simple experiment, we used the TTCP mi-
crobenchmark [25] to measure MediaNet’s packet-
forwarding throughput and memory use for vary-

100 1000 10000

packet size (bytes)

0

200

400

600

th
ro

ug
hp

ut
 (

M
b/

s)

GC+free
GC only

Figure 5: MediaNet throughput

ing packet sizes. We measured two configura-
tions. GC+free is MediaNet built using unique and
reference-counted pointers for its packet objects (as
described above), whileGC onlystores all packet ob-
jects in the garbage-collected heap.

Figure 5 plots the throughput, in megabits per sec-
ond, as a function of packet size (note the logarithmic
scale). Each point is the median of 21 trials in which
5000 packets are transferred; the error bars plot the
quartiles. The two configurations perform roughly
the same for the smallest packet sizes, butGC only
quickly falls behind as packets reach256 bytes. Both
curves level off at 4 KB packets, with theGC+free
case achieving 23% better throughput. The odd lev-
eling of the slope in theGC onlycurve at 2 KB pack-
ets results in a 70% difference.3 This experiment
illustrates the benefit of being able to free a packet
immediately. While more sophisticated garbage col-

3We suspect this dip is due to kernel scheduling issues [24].

10

MediaNet (GC only) MediaNet (GC+free) MediaNet (GC+free) close up

Figure 6: MediaNet memory utilization

lectors could well close the gap, the use of manual
mechanisms can only be of help. Moreover, even ad-
vanced GC’s will do less well when packet lifetimes
vary due to user processing in the server; our use of
reference-counting allows packets to be shared and
freed immediately when no longer of interest.

Figure 6 illustrates the memory usage of Medi-
aNet when forwarding 50,000 4 KB packets. This
graph has the same format as the graph in Figure 4;
it shows the heap, unique, and reference-counted re-
gions, and the dynamic region in which the configu-
ration is stored (labeled “other”). TheGC onlycon-
figuration stores all data in the heap region, which
exhibits a sawtooth pattern with each peak roughly
coinciding with a garbage collection (there were 553
total on this run). TheGC+free configuration uses
and reserves far less memory (131 KB as opposed to
840 KB for reserved memory, and 15.5 KB as op-
posed to 438 KB of peak used memory). There are
about 10 KB of initial heap-allocated data that re-
main throughout the run, and the reference-counted
and unique data never consume more than a single
packet’s worth of space, since each packet is freed
before the next packet is read in. This can be seen
in the close-up at the right of the figure. The top-
most band is the heap region (the reserved space is
not shown), while the feathery band below it is the
reference-counted region. Below that is the dynamic
region and finally the unique region.

These performance trends are consistent with other
studies comparing GC and manual memory manage-
ment [35, 18]. What we have shown is that some
simple and safe manual mechanisms cancomple-

mentGC in attacking problems of memory manage-
ment. They give programmers more control over the
performance of their programs, without undue pro-
gramming burden, and without need to compromise
safety.

6 Related Work

The ML Kit [28] implements Standard ML with
(LIFO) regions. Type inference is used to auto-
matically allocate data into regions. Various exten-
sions have relaxed some LIFO restrictions [2, 14],
but unique pointers have not been considered.

The RC language and compiler [12] provide lan-
guage support for reference-counted regions in C.
However, RC does not prevent dangling pointers to
data outside of regions and does not provide the type-
safety guarantees of Cyclone.

Work on linear types [30], alias types [27, 32], lin-
ear regions [33, 17], and uniqueness types [1] pro-
vide important foundations for safe manual memory
management on which we have built. Much of this
foundational work has been done in the context of
core functional languages and does not address the
range of issues we have.

Perhaps the most relevant work is from the Vault
project [9, 10] which also uses regions and linear-
ity. Unique pointers allow Vault to track sophis-
ticated type states, including whether memory has
been deallocated. To relax the uniqueness invariant,
they use noveladoptionandfocusoperators. Adop-
tion lets programs violate uniqueness by choosing
a unique object to own a no-longer-unique object.

11

Deallocating the unique object deallocates both ob-
jects. Compared to Cyclone’s support for unique
pointers in non-unique context, adoption prevents
more space leaks, but requires hidden data fields so
the run-time system can deallocate data structures
implicitly. Focus (which is similar to Foster and
Aiken’s restrict [3]) allows adopted objects to be
temporarily unique. Compared toswap, focus does
not incur run-time overhead, but the type system to
prevent access through an unknown alias requires
more user annotations (or a global alias analysis.)

Unique pointers and related alias restrictions have
received considerable attention as extensions to
object-oriented languages. Clarke and Wrigstad [8]
provide an excellent review of related work and pro-
pose a notion of “external uniqueness” that integrates
unique pointers and ownership types. Prior to this
work, none of the analogues to Cyclone’salias al-
lowed aliased pointers to be stored anywhere except
in method parameters and local variables, severely
restricting code reuse. Clarke and Wrigstad use a
“fresh owner” to restrict the escape of aliased point-
ers, much as Cyclone uses a fresh region name with
alias. Ownership types differ from our region sys-
tem most notably by restricting which objects can re-
fer to other objects instead of using a static notion of
accessible regions at a program point.

Little work on uniqueness in OO languages has
targeted manual memory management. A recent ex-
ception is Boyapati et al.’s work [6], which uses re-
gions to avoid some run-time errors in Real-Time
Java programs. As is common, this work uses “de-
structive reads” (an atomic swap withNULL) and re-
lies on an optimizer to eliminate unnecessary writes
of NULL on unique paths. Cyclone resorts to swaps
only for unique data in nonunique containers, catch-
ing more errors at compile time. Few other projects
have used swap instead of destructive reads [4, 15].
Alias burying [7] eschews destructive reads and pro-
poses using static analysis to prevent using aliases
after a unique pointer is consumed, but the details of
integrating an analysis into a language definition are
not considered.

7 Conclusions

Cyclone now supports a rich set of safe memory-
management idioms beyond garbage collection:

• Stack/regions:works well for lexically-scoped
lifetimes.

• Dynamic arenas:works well for aggregated,
dynamically allocated data.

• Uniqueness:works well for individual objects
as long as multiple references aren’t needed
within data structures.

• Reference counting:works well for individual
objects that must be shared, but requires explicit
reference count management.

Programmers can use the best idioms for their ap-
plication. In our experience, all idioms have proven
useful for improving some aspect of performance.

This array of idioms is covered by the careful com-
bination of only two linguistic features: lexically
scoped regions and unique pointers. Unique pointers
give us the power to reason in a flow-sensitive fash-
ion about the state of objects or arenas and to ensure
that safety protocols, such as reference counting, are
enforced. Regions work well for stack allocation and
give us a way to overcome the burdens of uniqueness
for a limited scope.

Nonetheless, there are many open issues that re-
quire further research. For instance, a strict, linear
interpretation of unique pointers instead of our re-
laxed affine approach would have helped to avoid the
leaks that we encountered and perhaps avoid the need
for GC all together. However, we found that the strict
interpretation generated too many false type-errors in
the presence of exceptions and global data.

Another area where further work is needed is in
tools to assist the porting process. We generally
found that developing new code in Cyclone was eas-
ier because we could start with the invariants for a
particular memory management strategy in mind. In
contrast, porting legacy code required manually ex-
tracting these invariants from the code. Our hope is
that we can adapt tools from the alias and shape anal-
ysis community to assist programmers in porting ap-
plications.

12

References

[1] Peter Achten and Rinus Plasmeijer. The ins and outs
of Clean I/O. Journal of Functional Programming,
5(1), 1995.

[2] Alex Aiken, Manuel F̈ahndrich, and Raph Levien.
Better static memory management: Improving
region-based analysis of higher-order languages. In
PLDI, 1995.

[3] Alex Aiken, Jeffrey S. Foster, John Kodumal, and
Tachio Terauchi. Checking and inferring local non-
aliasing. InPLDI, 2003.

[4] Henry Baker. Lively linear LISP—look ma, no
garbage.ACM SIGPLAN Notices, 27(8), 1992.

[5] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment.Soft-
ware – Practice and Experience, 18(9), 1988.

[6] Chandrasekhar Boyapati, Alexandru Sălcianu,
William Beebee, and Martin Rinard. Ownership
types for safe region-based memory management in
real-time Java. InPLDI, 2003.

[7] John Boyland. Alias burying: Unique variables
without destructive reads.Software – Practice and
Experience, 31(6), 2001.

[8] Dave Clarke and Tobias Wrigstad. External unique-
ness is unique enough. InECOOP, 2003.

[9] Robert DeLine and Manuel F̈ahndrich. Enforcing
high-level protocols in low-level software. InPLDI,
2001.

[10] Manuel F̈ahndrich and Robert DeLine. Adoption
and focus: Practical linear types for imperative pro-
gramming. InPLDI, 2002.

[11] Matthew Fluet and Daniel Wang. Implementation
and performance evaluation of a safe runtime
system in Cyclone. InInformal Proceedings
of the SPACE 2004 Workshop, 2004. Available
at http://www.diku.dk/topps/space2004/
space_final/fluet-wang.pdf.

[12] David Gay and Alex Aiken. Language support for
regions. InPLDI, 2001.

[13] Dan Grossman, Greg Morrisett, Trevor Jim, Michael
Hicks, Yanling Wang, and James Cheney. Region-
based memory management in Cyclone. InPLDI,
2002.

[14] Niels Hallenberg, Martin Elsman, and Mads Tofte.
Combining region inference and garbage collection.
In PLDI, 2002.

[15] Douglas Harms and Bruce Weide. Copying and
swapping: Influences on the design of reusable soft-
ware components.IEEE Transactions on Software
Engineering, 17(5), 1991.

[16] Chris Hawblitzel. Adding Operating System Struc-
ture to Language-Based Protection. PhD thesis,
June 2000.

[17] Fritz Henglein, Henning Makholm, and Henning
Niss. A direct approach to control-flow sensitive
region-based memory management. InPPDP, 2001.

[18] Matthew Hertz and Emery Berger. Automatic vs.
explicit memory management: Settling the perfor-
mance debate. Technical Report CS TR-04-17, Uni-
versity of Massachussetts Department of Computer
Science, 2004.

[19] Michael Hicks, Greg Morrisett, Dan Grossman, and
Trevor Jim. Safe and flexible memory management
in Cyclone. Technical Report CS-TR-4514, Univer-
sity of Maryland Department of Computer Science,
July 2003.

[20] Michael Hicks, Adithya Nagajaran, and Robbert van
Renesse. MediaNet: User-defined adaptive schedul-
ing for streaming data. InIEEE OPENARCH, 2003.

[21] Trevor Jim, Greg Morrisett, Dan Grossman, Michael
Hicks, James Cheney, and Yanling Wang. Cyclone:
A safe dialect of C. InProceedings of the USENIX
Annual Technical Conference, 2002.

[22] Doug Lea. A memory allocator.http://gee.cs.
oswego.edu/dl/html/malloc.html.

[23] David Mazìeres. A toolkit for user-level file sys-
tems. In USENIX Annual Technical Conference,
2001.

[24] Jonathan T. Moore, Michael Hicks, and Scott Net-
tles. Practical programmable packets. InINFO-
COM, 2001.

[25] Mike Muuss. The story of TTCP.http://ftp.
arl.mil/~mike/ttcp.html.

[26] Niels Provos. libevent — an event notifica-
tion library. http://www.monkey.org/~provos/
libevent/.

[27] Fred Smith, David Walker, and Greg Morrisett.
Alias types. InESOP, 2000.

[28] Mads Tofte, Lars Birkedal, Martin Elsman, Niels
Hallenberg, Tommy Højfeld Olesen, and Peter Ses-
toft. Programming with regions in the ML Kit
(for version 4). Technical report, IT University of
Copenhagen, 2001.

13

[29] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management.Information and Computa-
tion, 132(2), 1997.

[30] Philip Wadler. Linear types can change the world!
In Programming Concepts and Methods, 1990. IFIP
TC 2 Working Conference.

[31] David Walker, Karl Crary, and Greg Morrisett.
Typed memory management in a calculus of capa-
bilities. TOPLAS, 24(4), 2000.

[32] David Walker and Greg Morrisett. Alias types for
recursive data structures. InWorkshop on Types in
Compilation, 2000.

[33] David Walker and Kevin Watkins. On regions and
linear types. InICFP, 2001.

[34] Daniel Wang and Andrew Appel. Type-preserving
garbage collectors. InPOPL, 2001.

[35] Benjamin G. Zorn. The measured cost of conser-
vative garbage collection.Software - Practice and
Experience, 23(7):733–756, 1993.

A Additional Performance
Measurements

In this section we present performance measure-
ments for the benchmarks not considered in Sec-
tion 5. In general, these benchmarks exhibit the fol-
lowing trends (as mentioned in the body of the pa-
per):

• Using manual memory management mecha-
nisms does not improve the execution time of
the program relative to GC.

• Using manual memory management does allow
the memory footprint of the program to be re-
duced.

We measured the performance of each program
as follows. For Epic, we used it to compress and
decompress a large image file. For Kiss-FFT, we
performed1024 size10000 FFT’s, using the bench-
mark program provided with the distribution. For
BetaFTPD, we usedWGET4, a utility for retrieving
files from HTTP and FTP servers, to retrieve a 20
KB file via anonymous FTP 1000 times, piping it to
/dev/null.

4http://www.gnu.org/directory/wget.html

A.1 Elapsed Time Measurements

The results of measuring the elapsed time of each
benchmark are shown in Table 2. Here we measure
the C and Cyclone versions, with the top three rows
considering Cyclone using GC, and the bottom three
using manual mechanisms (no GC needed). We also
report the performance of Cyclone with and without
array bounds checks enabled. Each number reports
elapsed time in seconds, and is the median of 21 tri-
als, with± referring to the scaled semi-interquartile
range (SIQR). The SIQR measures variance, similar
to standard deviation, by calculating the distance be-
tween the quartiles and scaling it to the median.

For the computationally-intensive Epic and Kiss-
FFT programs, we see that Cyclone can be substan-
tially slower than C due to array bounds checks.
While Cyclone does some array-bounds check elimi-
nation, this is an area of current work in the compiler.
With these particular benchmarks, the problem is the
use of pointer arithmetic. Our compiler could elimi-
nate many more checks if we were to restructure the
program to use array indexes instead.

For BetaFTPD there is no appreciable difference
between the C and Cyclone versions. To acquire a
file via anonymous FTP requires roughly six con-
figuration commands, at which time the client in-
structs the server to connect back to it on a speci-
fied port to send the data. As a result, retrieving a
file using anonymous FTP is very much I/O-bound,
and quite time-consuming, so there is little concern
about the CPU-time or pause-time overhead incurred
by garbage collection (or reference-counting, for that
matter). On the other hand, BetaFTPD is clearly not
well optimized, as each FTP takes22 ms.

Of most concern to the topic of this paper, we can
see that using manual memory management (in this
case, unique and reference-counted pointers) did not
provide a performance advantage relative to Cyclone
using GC when considering elapsed time.

A.2 Memory Footprint Measurements

Statistics for memory footprint are shown in Table 3.
For each benchmark we report the peak memory us-
age for the data memory and reserved memory, in
kilobytes. The first group of numbers are for the GC
case, while the last group are for the manual case,

14

Test C time(s) Cyclone time (GC)
checked(s) factor unchecked(s) factor

Epic 1.06± 0.00 1.60± 0.00 1.51× 1.05± 0.01 0.99×
Kiss-FFT 1.33± 0.00 3.21± 0.01 2.41× 1.30± 0.01 0.98×
BetaFTPD 2.17± 0.02 2.25± 0.02 1.04× 2.22± 0.01 1.02×

Cyclone time (+manual)
Epic 1.06± 0.00 1.61± 0.01 1.52× 1.06± 0.00 1.00×
Kiss-FFT 1.33± 0.00 3.22± 0.01 2.42× 1.31± 0.00 0.98×
BetaFTPD 2.17± 0.02 2.24± 0.01 1.03× 2.23± 0.02 1.03×

Table 2: Benchmark performance

and we consider the reserved memory for the case
when using the BDW collector as the allocator or the
Lea allocator. None of the manual versions of these
programs require garbage collection.

For Epic there is a memory utilization advantage
to the manual case because we are able to free some
data early, i.e., during the compression process. On
the other hand, the FFT program is set up to only
free its memory upon conclusion, so there is no real
effect on data footprint, and thus the only benefit is to
reduce the about of reserved space by linking in the
Lea allocator. The trend for BetaFTPD is similar to
that of Boa, shown earlier. In particular, when using
garbage collection both the data footprint and the re-
served memory required are much higher than for the
manual mechanisms. We do not show the memory-
consumption graphs here, but they are essentially the
same as Boa (and MediaNet): a sawtooth pattern for
the GC case (for a total of 11 GCs during the run),
and a smooth trend for the manual case.

Test KB Footprint KB Footprint
(GC) (+manual)

data resv data resv resv
(BDW) (Lea)

Epic 17475 23400 13107 15585 13128
Kiss-fft 400 725 400 725 402
BetaFTPD 183 356 3.3 65 8

Table 3: Benchmark Memory Footprint

15

