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Abstract safely. BDW provides convenient interoperability
with legacy libraries and makes it easy to support
The goal of the Cyclone project is to investigate tyggolymorphism without needing run-time type tags.
safety for low-level languages such as C. Our hard-yyhjle the BDW collector provides convenience, it
est challenge has been providing programmers C@fgres not always provide the performance or control
trol over memory management while retaining tyRgeeded by low-level systems applications. In previ-
safety. This paper reports on our experience tyys work, we described an integration of BDW with
ing to integrate and effectively use two previouskype_safe stack allocation and LIFO arena allocation.
proposed, type-safe memory management mecigregion-based, type-and-effect system based upon
nisms: statically-scoped regions and unique poiRfe work of Tofte and Talpin [29] ensured safety
ers. We found that these typing mechanisms can\bfiie providing enough polymorphism for reusable

combined to build alternative memory-managemegide to operate over data allocated anywhere.
abstractions, such as reference counted objects angl practice, we found that supporting stack allo-

arenas with dynamic lifetimes, and thus prowde%tion was crucial for good performance, and our

flexible basis. Our experience—porting C code ag%stem was able to infer most region annotations for

building new a_pphcatlons for resource-constrain rting legacy C code that used stack allocation [13].
systems—confirms that experts can use these f

> found that LIFO arenas were useful when callers

tures to improve memory footprint and sometlm%ow object lifetimes but only callees can determine

to improve throughput when used instead of, or gbject sizes. Unfortunately, LIFO arenas suffer from

combination with, a conservative garbage COIIeCto%everal well-known limitations that we encountered
repeatedly. In particular, they are not suited to com-
1 Introduction putations such as server and event loops.

Since then, we have explored the integration

Low-level languages such as C provide a degree@funique pointersinto our memory management
control over space, time, and predictability that higflamework.  Our unique pointers are closely re-
level languages such as Java do not. But the lack@®d to typing mechanisms suggested by other re-
type-safety for C has led to many failures and secggarchers, including linear types [30], ownership
rity problems. The goal of our research is try to brinypes [8], alias types [27], and capability types [31].
the “Mohammad of type safety” to the “mountain of he critical idea with all of these proposals is to
existing C code.” make it easy to track locally the state of an object
To that end’ we have been developing Cyc|0ne’bﬁ forblddlng uncontrolled aliaSing. In CyCIOI’le, a
type-safe dialect of C [21]. Cyclone uses a combialue with a unique-pointer type is guaranteed to be
nation of programmer-supplied annotations, an dfie only (usable) reference to an object. Such ob-
vanced type system, a flow analysis, and run-tinf€ts can be deallocated by the programmer at any
checks to ensure that programs are type safe. WH&#e, and a modular flow analysis is used to ensure
we started the project, we relied solely on heap allfat the dangling pointer cannot be dereferenced in
cation and the Boehm-Demers-Weiser (BDW) co#1e rest of the computation.
servative garbage collector (GC) to recycle memoryUnique pointers are not a novel idea, but we found



many challenges to implementing them in a ful2 Regions in Cyclone

scale safe language, as they interact poorly with other

features such as exceptions, garbage collection, tfeof the memory management facilities in Cyclone
abstraction, the address-of operator, undefined ev&Molve aroundegions A region is a logical con-
uation order, etc. To our knowledge, no one has &iner for objects that obey some memory manage-
tempted to address all of these features in a full-scakent discipline. For instance, a stack frame is a re-
language implementation. gion that holds the values of the variables declared

On the other hand, we found great synergies in tifea lexical block, and the frame is deallocated when
combination of uniqueness and regions. In particgontrol-flow exits the block. As another example, the
lar, we were able to use the LIFO region machinegi@rbage-collected heap is another region, whose ob-
to support a form of “borrowed” pointers [7], whichiects are individually deallocated by the collector.
goes a long way in relaxing the burdens of unique- Each region in a program is given a compile-time
ness. We were also able to use unique pointers asfme, either explicitly by the programmer or implic-
pabilities for building further memory-managemertly by the compiler. For example, the heap region’s
abstractions. In particular, we used unique pointgt@me is‘H and the region name for a functidgeo’s
to control access to a form of dynamically-scopetlack frame is"foo. If ‘r is the name of a region,
arenas [16], and for building reference-counted odnd an object with type T is allocated in‘r, then
jects and arenas. the type of a pointer to is writtenT* ‘r.

In this paper, we briefly describe our support for To ensure that programs never dereference a
unique pointers and the extensions they enable; g@inter into a deallocated region, the compiler tracks
technical report describes this support in greater deconservative approximation of (a) the regions into
tail [19]. We then discuss our experience usirghich a pointer can point, and (b) the set of regions
these facilities to build or port a few target applithat are still live at each program point. This is imple-
cations, including a multimedia overlay network, Bnented using a type-and-effects system in the style
small web server, a Scheme interpreter, an ftp serv@rTofte and Talpin [29].
and an image-manipulation program. Most of the ap-Cyclone supportsregion polymorphism which
plications were chosen because they are structul@@ functions and data structures abstract over the
as (infinite) loops with loop-carried state and aregions of their arguments and fields. By default,
thus not well-suited for LIFO arenas. Furthermorg&yclone assumes that pointer arguments to functions
we feel that these applications are representative lige in distinct regions, and that all of these regions
resource-limited platforms, such as cell-phones a&ie live on input. A unification-based algorithm is
embedded systems, where space is at a premiumusgd to infer instantiations for region-polymorphic
most of these applications, we were able to reduiggctions and the regions for local variables. This
if not eliminate the need for garbage collection. Wérastically cuts the number of region annotations
also saw dramatic improvements in working-set sizegeded for programs. Cyclone also supports region
and for at least one application an improvement $tbtyping based on region lifetimes, which combines
throughput. with region polymorphism to make for an extremely

Thus, the contributions of this paper are two-foldlexible system. In practice, we have found few (bug-

free) examples where stack-allocation could not be

1. We show that the addition of unique pointers ®asily ported from C to Cyclone.

a region-based language provides a flexible ba-
sis for buildingtype—safe, manual memory mans 1 | |EO Arenas
agement, which can complement or replace GC.
The basic region system we have described easily
2. We confirm that the resource requiremendgipports a form ofirenasthat have stack-like last-
of some important applications can be sign-first-out (LIFO) lifetimes, but also support dy-
nificantly improved through type-safe, manuglamic allocation. A LIFO arena is introduced with
memory management. a lexically-scoped declaration:



{ region<‘r> h; ... } An alternative solution that has been proposed
) i many times is to restrict or avoid aliasing altogether,
Here,h ISa rgglorhandletha_t can be gsed to all_oc_at%o that reasoning about type-states can be done lo-
n the newly mtroduced”reglohr. Calling thef primi- cally. One extreme is to require that pointers which
t‘|ve \l;\llnslloﬁ(hé : 'I')_ a ?cgtesl space wit '? Leg'orbre deallocated benique(i.e., have no aliases.) In
T en the declaring lexical scope concludes, tig, follows, we briefly describe how we have incor-
handle and the contents of the arena are deallocal &‘ated unique pointers into Cyclone, enabling sup-

We have found that arenas work well for situations, ; ¢, per-object deallocation, reference-counting,
where the caller does not know how much space I . anas with dynamic lifetimes

pre-allocate on its stack frame. Even so, we found.l.O distinguish unique pointers from heap-, stack-,

that the LIFO restriction on arena lifetimes was OBr arena-allocated pointers, we use a special region

ten too limiting. That is, we often wished that W ame U, A pointer value with typer ‘U is created
could deallocate the arena before the end of its SCOB;?'caIIingmalloc and can be deallocated vixee

This was patrticularly problematic for loops: If one; any time
pushes the arena declaration inside the loop then @ \;se an intraprocedural, flow-sensitive, path-

fresh arena is created and destroyed for each "Q&ensitive analysis to track when a unique pointer

t!on. Thus, no data can be carried from one 'tersécomea:onsumedin which case the analysis re-
tion to the next, unless they are copied to an ar

4 ej'é%ts a subsequent attempt to use the pointer. We
declareq outside the loop. But then_all of _the dg, Pose an intraprocedural analysis to ensure modu-
placed N an c_>uter arena would persist unti the A checking and a path-insensitive analysis to ensure
tire loop terminates. For loops that do not term scalability. To keep the analysis simple, a copy of
_nate, .SUCh as a server request _Ioc_>p or event loop, Iﬁnique pointer (e.g., in an assignment or function
is a disaster as the LIFO restriction can lead to U@é”) is treated as consuming the pointer. This en-

bounded storage requirements. sures that there is at most one usable alias of a unique
pointer at any program point. Here is an example:

3 Unique Pointers

int *‘U q = p; // consumes p

*q = 5; // q not consumed
free(q); // consumes q

= xq; // illegal--p & q consumed

Very often the limitations of stack allocation and
LIFO arenas can simply and conveniently be over-_
come by using GC. However, GC may not always P
be compatible with the performance needs of an afhe first assignment aliases and consumeshile
plication. In particular, applications such as entkhe call tofree consumesy. Therefore, attempts
bedded systems and network servers sometimestoedereference or q are illegal. Dereferencing a
guire bounds on space consumption, pause timesynigue pointer does not consume it since it does not
throughput that may be hard to achieve with G€opy the pointer, as the first dereference; shows.
Therefore, we decided to extend Cyclone with a At join points in the control-flow graph, our anal-
suite of mechanisms that would permit manual olgsis conservatively considers a value consumed if
ject deallocation without imposing a LIFO restricthere is an incoming path on which it is consumed.
tion. We emphasize that our goal is not necessarfiypr instance, ip is not consumed and we write:
to eliminate GC, but rather to provide programmers
with better control over tuning the space and time re-
guirements of their programs. then the analysis treagsas consumed after the state-
In general, ensuring that manual deallocation mgent. In this situation, we issue a warning that
safe requires very precise information regardingight leak, since the type-states do not match. Fortu-
which pointers may alias other pointers. Thougtately, we can link in the garbage collector to ensure
there are impressive analyses that compute stiol object is reclaimed. We considered making this
aliasing information, they usually require wholean error as in Vault [9], but found that exception han-
program analysis to achieve any level of accuracy.dlers and shared unique pointers (described below)

if (rand()) free(p);
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generated too many false alarms. Thus, we settle fmrrowed using an explicilias declaration, sim-

a warning and can rely upon the GC as a safety nelar to Walker and Watkinslet-region [33], and
We allow unique pointers to be placed in northe LIFO region machinery prevents the borrowed

unigue objects (e.g., a global variable or heapeinter from escaping.

allocated object) that might have multiple aliases. As an example, consider the following code:

To ensure that unigque pointers remain unique, we

must somehow limit access through these paths. Iyoid inc(int*‘r p) { *p += 1; }

most systems, reading a unique pointer is treated agoid foo(int*‘U x) {

a destructiveoperation that overwrites the original ~ { let alias<‘r> intx‘r a = x;

copy with NULL, so as to preserve the uniqueness  int*‘r b = a;

invariant. In Cyclone, we have pointer types that inc(a);
do not admitNULL as a value, so destructive reads inc(b);
are not always an option. Therefore, we provide an ¥

explicit swapoperation (“=:") that allows one to free(x);

swap one unigue object for another (includifig.L }

where permitted.) Though notationally less CONVEL ¢ o function takes a unique pointems an argu-
nient than a destructive read, we found that program-em The declarationlet alias<‘r> " i
ming with swaps made us think harder about where , . L
L troduces a fresh region name;, and an aliaza for
NULL-checks were needed, and helped eliminate po; . . . L
. . . x that appears to be a pointer into regian Within
tential run-time exceptions.

. . . . the scope of thelias declaration, we may freely
Finally, we remark that placing unique pointers in . : . e

. . . . __copya and pass it to functions, just as if it were al-
non-unique objects can lead to subtle “leaks”. F

. . fUcated on the stack. However, throughout the scope
instance, there is no guarantee that when a uni

: ; . . Lf‘?healias, the variablex is considered to be con-
pointer is passed toree that the object to which it . . . .

) o : . ._sumed. This prevents the unique pointer from being
points does not contain live, unique pointers. Simi:- .

. . . . ddeallocated. At the end of the block, any copies of

larly, when we write a unique pointer into a shared. . .

) . will be treated as unusable, since the region has gone
object (e.g., a global) there is no guarantee that we, . .

S . | . out of scope. Thus, no usable aliases can survive the

are not overwriting another live unique pointer.

exit from the block, and we can safely restore the
_ _ _ type-state ok to be an unconsumed, unique pointer.
3.1 Borrowing Unique Pointers In short, regions provide a convenient way to tem-

Unigque pointers make it easy to support explicit deeﬁp.rar”y name unique pointers and track aliasing for
a limited scope.

location, but they often force awkward coding idioms : - .
. o . We provide a limited form ofalias-inference
just to maintain uniqueness. For example, we must . N :
. . . . . : : around function calls to simplify programming and
forbid using pointer arithmetic on unique pointers, :
. . . cut down on annotations. For example, we could
since doing so could allow the user to cailkee with rewrite £0o 10 be:
a pointer into the middle, rather than the front, of an 0 '

object, confusing the allocator. As another example, ;i34 foo(int*‘U x) {

we often want to pass a copy of a pointer to a func- ;- (4.
tion that does not consume the pointer, and leave the ;. (4.
original copy as unconsumed. free(x);

Most systems based on uniqueness or ownershig
have some way of creating “borrowed” pointers to
code around these problems. A borrowed pointer isrageneral, whenever a region-polymorphic function
second-class copy of a unigue pointer that cannot(fike inc) is called with a unique pointer as an ar-
deallocated and cannot “escape”. This ensures thajuinent, the compiler will attempt to wrap amias
we deallocate the original pointer, we can invalidatieclaration around the call. This fails to type-check
all of the borrowed copies. In Cyclone, a pointer isnly when the function’s return type mentions the
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freshly introduced region name used to identify thaeallocated, and the flow analysis warns when a
unique pointer. In the example above, the compilpointer is potentially “lost.” In addition, we can use
successfully wraps each call imc with a suitable the alias construct to borrow a reference-counted
alias declaration forz. In general, the interactionpointer to achieve a form of explicit, deferred refer-
of unique pointers with subtyping and region polyence counting. Thus, the programmer has complete
morphism requires some care, but due to space coontrol over where reference counts are manipulated.
straints, we refer the reader to our technical report

for details [19].

3.2 Reference Counting 3.3 Dynamic Arenas

Even with support for borrowing, unique pointers

can be used to build only tree-like data structuréoming full circle, we found we could use unique
with no internal sharing or cycles. While GC opointers to provide a more flexible form of arenas
LIFO arenas may be reasonable options for sulttat avoids the LIFO lifetime restriction. The basic
data structures, another alternative often employeddea is to use a unique pointer as a capability or “key”
systems applications is reference-counting. For dgf the arena. Accessing the arena requires posses-
ample, reference-counting is used in COM and t&n of the key, as does deallocating the arena. Since
Linux kernel, and is common in C++ and Objectivthe key is represented as a unique pointer and is con-
C programs. sumed when the arena is destroyed, the arena can no

We found that we could elegantly support safenger be accessed.

ref_erence-<_:ounting by building on the discipline of ratherthan requiring the key be presented on each
unique pointers. This has two great advantagefiocation or pointer-dereference into the arena, we
First, we introduce glmost no new language featur%%vide a lexically-scopedpen construct that tem-
rather only some simple run-time support. Secorghrarily consumes the key and allows the arena to be
the hard work that went into ensuring that UNIQYgeely accessed within the scope of thgen. The

pointers coexisted with conventional regions is alay is then given back upon exit from the scope.
tomatically inherited for reference-counted objects.

We define a neweference-counted regionrc, ~ Cléarly, open andalias are related. Both pro-
whose objects, when allocated, are prepended witi'de & way to temporarily “pin” something and give
hidden reference-count field. As with unique poinft@ name for a particular scope. In the caseXfas,

ers, the flow analysis prevents the user from makSingle object is being pinned, whereas in the case
ing implicit aliases. InsteadiRC pointers must be Of open, an arena is being pinned. Pinning prevents

copiedexplicitly by using thealias_refptr func- the object(s) from peing dea!located throughout the
tion, which increments the reference count and r&€OP€, and the region name is used to prevent point-
turns a new alias, without consuming the origin&fS 1 the object(s) from escaping the scope. Thus,
pointer. In essence, both of thac values serve asWh|Ie we have found lexically-scoped, LIFO arenas
explicit capabilities for the same object of limited use, lexically-scoped region names have

A reference-counted pointer is destroyed by thpgoven invaluable for mak_ing unigue pointers and
drop_refptr function. This consumes the giverfynamic arenas work wellin practice.
pointer and decrements the object’s reference countFinally, we have generalized arenas further by sup-
if the count becomes zero, the memory is freed. porting reference-counted arenas, whéke point-

Thus, treating RC pointers as if they were uniqueers are used as keys instead of unique pointers. Thus,
forces programmers to manipulate reference couttie addition of unique pointers to our region frame-
explicitly. While this is less convenient than autowork gives us a number of memory management op-
matic reference counting, it requires almost no coriens. In the following section, we describe our ex-
piler support. Furthermore, the constraints on unigperience trying to use these facilities in various ap-
pointers ensure that an object is never prematurehcations.
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Program Description Non-comment Lines of Code Manual
C Cyc Cyc (+manual) mechs
Boa web server 5217 +284(5%) =+ 91 (1%) u(D)
BetaFTPD | ftp server 1146 + 191 (16%) =+ 225(21%) | UR
Epic image compression utility 2123 4217 (10%) =+ 114 (5%) UL
Kiss-FFT fast Fourier transform routine | 453  + 73 (16%) 4 20 (4%) U
MediaNet | streaming data overlay network 8715 + 320 (4%) URLD
CycWeb web server 667 U
CycScheme scheme interpreter 2523 ULD

U = unique pointers R =ref-counted pointers
L = LIFO regions D = dynamic arenas

Table 1: Benchmark Programs

4  Applications Objects with Scoped Lifetime When data struc-
tures have scoped lifetimes, we can either allocate

Table 1 describes the benchmark programs wFﬁ’}e_m inaL'IFO arena, or we can allocate them in the
which we experimented. For programs we port&tfiidue region, and use the ias construct to allow
from C (Boa, BetaFTPD, Epic, and Kiss-FFT) ﬁemporgry allasmg until they can be freed. For ex-
shows the non-comment lines of code of the origin@MPIe, in both Epic and Kiss-FFT, we merely had to
program, and then the changes due to porting to y}ange a declaration from something like

clone to use the GC, and then the additional changes, q_pyr = malloc(...);

needed to use manual mechanisms. The other pro-

grams (MediaNet, CycWeb, and CycScheme) weteinstead be

written directly in Cyclone. The final column indi-

cates which manual mechanisms we used. For alf*‘U q-pyr = malloc(...);

programs other _than MedlaNet', we eliminated t}lﬁ alias statements were inferred automatically
heed for GC entirely. We describe the program alfhen calling subroutines that wished to alias the ar-

the coding process below. Performance expenmepat}? For Epic, we also used a LIFO arena to store a

for these programs are presented in the next Sectlfgluffman compression tree that was used during the
first phase of the compression. This required chang-
ing the prototypes of the creator functions to pass in

4.1 Porting Experience the appropriate arena handle, in addition to adding
various region annotations.

The process of porting from C to Cyclone is made

easiest by placing all dynamically-allocated data Dbjects with Dynamic Lifetime If we wish to

the heap region and letting BDW take care of recypanually manage a data structure using unique
cling the data. Most of the changes involve diffepointers, it cannot require aliases. For example, Boa
ences between C and Cyclone that are not memasieres the state of each request ineguest struc-
management related, such as introducing fat pointere, illustrated in Figure 1. Because these form
annotations. To take advantage of the new manaatioubly-linked list, we cannot use unique point-
facilities, we roughly performed two actions. Firsgrs. Even if we were to remove thext andprev

we distinguished between those data whose lifetinfesdds and storeequest objects in a separate (non-
are scoped from those whose are not. Second, dmique) list, we could not uniquely allocate requests
those data structures with a non-scoped lifetime, Wwecause they contain internal aliases. For example,
identified their aliasing behavior to determine whictine header field identifies the HTTP header in an
mechanism to use. internal buffer.



= next > 4.2 Cyclone Applications
1 prev -t
B;Fﬁfm? In addition to porting C programs, we have written
Na three Cyclone programs from scratch that use our
b o manual mechanisms. Here we describe which mech-
anisms we used and why.
~
4.2.1 CycWeb

Figure 1: Request data structure in Boa CycWeb is a simple, space-conscious web server that
supports concurrent connections using non-blocking
I/0 and an event library in the style of libasync [23]
and libevent [26]. The event library lets users reg-
In the case of Boagequest objects are managedster callbacksfor 1/O events. A callback consists
by a custom allocator. Throughout its lifetime, a r@f a function pointer and an explicit environment
quest is moved between a blocked queue and a retitht is passed to the function when it is called. The
queue, and when complete, the request is moved ogent library uses polymorphism to allow callbacks
a free list to be reused. Therefore, we can continagd their environments to be allocated in arbitrary
to use this allocator and simply heap-allocate the regions. This generality is not overly burdensome:
quests since they will never be freed by the syste#h 260 lines of code, we employ our swap opera-
allocator. Some internal elements of the requetqr only 10 times across 10 functions, and never use
such as the pathname (shown with open-headedthgalias primitive explicitly. The entire web server
rows in the figure) were not aliased internally, sases swap 16 times and an expligitias 5 times.
they could be uniquely allocated and freed when theFor the rest of the application, we also chose to
request was complete. We also experimented withe unique pointers. When a client requests a file,
a version that used dynamic arenas for requests timne server allocates a small buffer for reading the file
stead of the custom allocator, but found that this a@ird sending it to the client in chunks (default size
versely affected throughput. We remark that this a$ 1 KB). Callbacks are manually freed by the event
ternative only required changes to the topmost feop when the callback is invoked (they must be re-
quest management routines; the internal request pregistered if an entire transaction is not completed);
cessing routines could remain the same. each callback is responsible for freeing its own en-
_ _ vironment, if necessary. As we see in the next sec-
BetaFTPD also used doubly-linked lists, one fqfyn this design allows the server to be reasonably

transfers in progress, and one for open sessions. k&t while consuming very little space.
thermore, there were cross-links between session and

transfer objects. Thus, reference-counted point%rr§ > MediaNet

seemed a natural fit. As can be seen from Table 1,”

this required 21% of the code to be changed, siglediaNet [20] is an overlay network whose servers
nificantly more than the other ports. The reasdarward packets according to a reconfigurable DAG
is that all reference-counts are managed manuatlf,operations where each operation works on the
so we had to insert many calls tdias_refptr data as it passes through. For better performance, we
anddrop_refptr along with the addition of annota-eschew copying packets between operations unless
tions. While largely straightforward, we were forcedorrectness requires it. However, the dynamic nature
to spend some time tracking down memory leaks thaft configurations means that both packet lifetimes
arose from failing to decrement a count. The warand whether packets are shared cannot be known
ings issued by the compiler were of little help, sincgtatically.

there were too many false positives. However, we re-We store the DAG of operations inside a dynamic
mark that the original program had a space leak aloagena, creating a new arena with each configura-
a failure path that we were able to find and eliminatéon. We use a data structure calledsteambuff
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‘\F\ of the code had to be changed. The majority of

these changes were in a couple of utility files. Out
o i e N i e e of nearly 9000 non-comment lines, we added 76 an-
/ / 7/ notations, used swap 46 times, aid as 66 times,
A B C . . .
of which 71% were automatically inferred.

Figure 2:Pointer graph for three streambuffs
4.2.3 CycScheme

- . . in mbination of our dynamic aren n
for each packet, similar to a Linuxkbuff, which US. g aco bination of our dynamic are as a d
) . . unique pointers, Fluet and Wang [11] have imple-
consists of a unique pointer to an array of reference- . )
: ) mented a Scheme interpreter and runtime system
counted buffers, each paired with an offset. When- . )
. In_Cyclone. The runtime system includes a copy-
ever a packet must be shared, a new streambuffis cre- .
INg garbage collector in the style of Wang and Ap-

ated, whose array points to the same databuffers . . . i
- 4 i . el [34], written entirely in type-safe Cyclone. All
the original (after increasing their reference count sta from the interpreted program are allocated in
This approach allows for quickly appending an _ .
P q y appe 9 anty arena, and when the collector is invoked, the live
prepending data to a packet, and requires copylg a are copied from one arena to another, and the
packet buffers only when they are both shared an . . '
mutated. Finallv. we found it convenient to aIIoca%d arena is then deallocated. Since both arenas must
. Y . e live during collection but their lifetimes are not
some objects in the heap, such as objects repres%réts—ted LIFO arenas would not be sufficient
ing connections. This means that we must use th ' . :
Gg: to manage these objects eFurther details on CycScheme’s performance and
i ' ) .. implementation can be found in Fluet and Wang’s pa-
An example using streambuffs is shown in Figse, \ve simply observe that our system of memory
ure 2. Here, three |nd|y|dual st'rea.mbuﬂs B and management was flexible enough for this interesting
C share some underlying data; unique pointers Nays.ji-avion. In particular, this shows that at least in
open arrowheads, while reference-counted ones g inje it is possible for Cyclone programs to code
filled in. This situation could have arisen by (1) r&jj their own copying garbage collectors tailored for a
ceiving a packet and storing its contentsAn (2) - o ricylar application. However, we remark that the
creating a new buffe3 that prepends a sequencgngach is limited to straightforward copying col-

number1234 to the data of4; and (3) stripping off o tion and does not accommodate other techniques,

the sequence number for later processing (assUmiig, qing generational techniques or mark/sweep.
the sequence number’s lengthdidytes). Thus(C

and A are equivalent. When we free a streambulff,
we decrement the reference counts on its databufis, Performance Experiments
so they will be freed as soon as possible.

An earlier version of MediaNet stored all packelo understand the benefit of our proposed mecha-
and configuration data in the garbage-collected heaggms, we compared the performance of the GC-only
and used essentially the same structures for packatsions of our sample applications to the ones us-
data. One important difference was that databuffgy manual mechanisms. Our measurements exhibit
contained an explicitefcnt field managed by thetwo trends. First, we found that elapsed time is simi-
application to implement copy-on-write semantictar for the GC and manual versions of the programs.
Unfortunately, this approach yielded a number tideed all of our benchmark programs, other than
hard-to-find bugs due to reference count mismanadgdediaNet, have execution time performance virtu-
ment. Our language support for reference-countialy the same for the GC and non-GC cases. Sec-
eliminated the possibility of these bugs, and furthend, we found that we could significantly reduce
let us free the data immediately after its last use. Agemory utilization by making use of manual mech-
shown in Table 1, moving to explicit unique pointanisms. Moreover, in the case of MediaNet, we also
ers and dynamic regions was not difficult; only 4%nproved its throughput: judicious use of manual
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5.1 Boa and CycWeb
44007 We measured web server throughput usingstiees E
Q) web benchmarking toblto blast Boa with repeated
E 4200 — requests from6 concurrent users for a single file
5 of varying size for 10 seconds. (We choseisers
% 2 because we observed it maximized server perfor-
§ 4000 — \‘\-\\x mance.) The throughput results are shown in Fig-
S | —e—BoaC ~~._ ure 3—note the non-zero y-axis. This shows three
- O--BoaCyc IR versions of Boa—C, Cyclone using GC, Cyclone
B0 - Boav(\iyek(; (unique) T'~.g  without GC (labeled “unique”)—and the single ver-
T S Ll o ARRaaS BARRREERS | sion of CycWeb. We plot the median of 15 trials,
1000 2000 3000 4000 and the error bars show the quartiles. For Boa, the
document size (bvtes) performance difference between the C and Cyclone

versions is between 2 and 3%, and the differences
between the various Cyclone versions are negligible
(often within the range of error or close to it). Thus,
for the performance metric of throughput, removing
the GC has little payoff. CycWeb is optimized for
memory footprint instead of speed, but comes within

mechanisms significantly reduced the reliance on 38-15% of Boa in C.

(but did not eliminate it entirely), improving perfor- Avoiding GC has greater benefit when consider-
mance. ing memory footprint. Figure 4 depicts three traces

of Boa’s memory usage while it serves 4 KB pages to
In this section we carefully discuss the perfoficoncurrentusers. The first trace uses GC, while the

mance of the Boa, CycWeb, and MediaNet servepgcond two make use of unique pointers. The second
We found these to be the most interesting prografglique+GC) uses BDW as its allocator (thus pre-
from a resource management point of view; measud@nting inadvertent memory leaks), while the third
ments for the remaining programs can be found #$€S the Lea allocatér.The x-axis is elapsed time,
the Appendix. We ran our performance experimeridile the y-axis plots memory consumed. The graph
on a cluster of dual-processor 1.6 GHz AMD Athlofihows memory used by the heap region and by the
MP 2000 workstations each with 1 GB of RAM andhique region, as well as the total space reserved by
running Linux kernel version 2.4.20-20.9smp. TH&€ allocator (i.e., acquired from the operating sys-
cluster is connected via a Myrinet switch. tem).
The working set size of all versions is similar, and

We used Cyclone version 0.8, which can K& dominated by the heap region since the majority
downloaded fromhttp://www.cs.cornell.edu/ of memory is consumed by th_e heap—allqcated re-
projects/cyclone/. By default, Cyclone usesduest structures. The GC version's footprint fluctu-

the Boehm-Demers-Weiser (BDW) conservatiRAles as request elements are allocated and collected
garbage collector [5], versigh2a4, for garbage col- _(each _GC, of which there gre atotal of 33 in this case,
lection and manual deallocation. BDW uses a marR-depicted as a vertical line). To ensure reasonable
sweep algorithm, and is incremental and gene%grformance, the collector reserves a fair amount of
tional. We used the default initial heap size and hed}adroom from the OS: 635 KB in this case. By
growth parameters for these experiments. When p\:@_ntrast, the unigue versions have far less reserved
grams do not need GC, they can be compiled with tRRACE; with the Lea allocator having little more than

Lea general-purpose allocator [22]. Cyclone com- lyttp://joedog. org/siege/

piles to C, which then usegcc version3.2.2, with 2The throughput of both versions is essentially the same, so
optimization level-02, to create executables. only one line is shown in Figure 3.

Figure 3: Throughput for CycWeb and Boa
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Figure 4. Memory footprint of Cyc Boa versions

that required by the application. We have done mem- 6007
ory traces with other heap sizes and levels of concur-@

rent access and found the trends to be similar. Verys 4
little data is allocated in the unique region (it is not g
really visible in the graph)—only about 50 bytes per 2
request. In the GC case, this same data is allocated irg 200
the heap, and accumulates until eventually collected. £

Turning to CycWeb, which uses only the Lea al-

locator and no garbage collector, we see that we 0 100 1000 10000
have succeeded in minimizing memory footprint: the
working set size is less than 6.5 KB. This is propor-
tional to the number of concurrent requests—we pro-
cess at modi requests at a time, and allocate a 1 KB
buffer to each request.

—e— GC+free
—O-- GConly

packet size (bvtes)

Figure 5: MediaNet throughput

ing packet sizes. We measured two configura-

52 MediaNet tions. GC+freeis MediaNet built using unique and

_ _ reference-counted pointers for its packet objects (as
All of the versions of Boa perform very little a”O-described abo\/e), whiléeC 0n|yst0|’es all packet ob-
cation per transaction, thanks to the use of a cyscts in the garbage-collected heap.
tom allocator. The benefit of the allocator depends infjgyre 5 plots the throughput, in megabits per sec-
part on the fact thatequest objects are uniformly- ong, as a function of packet size (note the logarithmic
sized: allocations merely need to remove the first gkale). Each point is the median of 21 trials in which
ement from the list. The same approach would wogoo packets are transferred; the error bars plot the
less well in an application like MediaNet, whosguartiles. The two configurations perform roughly
packets vary widely in size (from a tens of bytes e same for the smallest packet sizes, ®Gt only
tens of kilobytes). Avoiding excessive internal fragyyickly falls behind as packets rea2ss bytes. Both
me.ntation would require managing multiple pools, glyrves level off at 4 KB packets, with tH@C+free
which point a general-purpose allocator seems M@#gse achieving 23% better throughput. The odd lev-
that this choice can lead to significant overhead Whggy results in a 70% differenée.This experiment
using GC. illustrates the benefit of being able to free a packet

In a simple experiment, we used the TTCP Mimmediately. While more sophisticated garbage col-
crobenchmark [25] to measure MediaNet’s packet-

forwarding throughput and memory use for vary- *we suspect this dip is due to kernel scheduling issues [24].
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Figure 6: MediaNet memory utilization

lectors could well close the gap, the use of manuakntGC in attacking problems of memory manage-
mechanisms can only be of help. Moreover, even adent. They give programmers more control over the
vanced GC'’s will do less well when packet lifetimeperformance of their programs, without undue pro-
vary due to user processing in the server; our usegphmming burden, and without need to compromise
reference-counting allows packets to be shared aadety.

freed immediately when no longer of interest.

Figure 6 illustrates the memory usage of Medjx
aNet when forwarding 50,000 4 KB packets. Thi
graph has the same format as the graph in Figure 4; ) . )
it shows the heap, unique, and reference-countedw-e ML K'_t [28] mpler_nents Stapdard ML with
gions, and the dynamic region in which the configlgl—‘lF_o) regions. Type_lnferen_ce IS use_d to auto-
ration is stored (labeled “other”). TH&C onlycon- matlcally allocate data into regions. ya_rlous exten-
figuration stores all data in the heap region, whicions have re_Iaxed some LIFO restrlct_lons [2, 14],
exhibits a sawtooth pattern with each peak rougkﬁ;'?’t unigue pointers have not bgen conS|dergd.
coinciding with a garbage collection (there were 553 1he RC language and compiler [12] provide lan-
total on this run). TheGC+free configuration uses 9Uage support for reference-counted regions in C.

and reserves far less memory (131 KB as opposed {gvever, RC does not prevent dangling pointers to

840 KB for reserved memory, and 15.5 KB as OFgl_ata outside of regions and does not provide the type-
gfety guarantees of Cyclone.

posed to 438 KB of peak used memory). There at _ _ _
about 10 KB of initial heap-allocated data that re- Work onlineartypes [30], alias types [27, 32], lin-
main throughout the run, and the reference-counte@ regions [33, 17], and uniqueness types [1] pro-
and unique data never consume more than a singé® important foundations for safe manual memory
packet's worth of space, since each packet is fréd@nagement on which we have built. Much of this
before the next packet is read in. This can be sd@4ndational work has been done in the context of
in the close-up at the right of the figure. The tof=°"® func_;tlonal languages and does not address the
most band is the heap region (the reserved spac&ge of issues we have.

not shown), while the feathery band below it is the Perhaps the most relevant work is from the Vault
reference-counted region. Below that is the dynanfiEoject [9, 10] which also uses regions and linear-

region and finally the unique region. ity. Unique pointers allow Vault to track sophis-
ticated type states, including whether memory has

These performance trends are consistent with otlheen deallocated. To relax the uniqueness invariant,
studies comparing GC and manual memory managigey use novehdoptionandfocusoperators. Adop-
ment [35, 18]. What we have shown is that sont®n lets programs violate uniqueness by choosing
simple and safe manual mechanisms cample- a unique object to own a no-longer-unique object.

Related Work
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Deallocating the unique object deallocates both ob- Conclusions

jects. Compared to Cyclone’s support for unique

pointers in non-unique context, adoption preverf@clone now supports a rich set of safe memory-
more space leaks, but requires hidden data fields@a@nagement idioms beyond garbage collection:
the run-time system can deallocate data structures _ _

implicitl. Focus (which is similar to Foster and ® Stack/regionsworks well for lexically-scoped
Aiken’s restrict [3]) allows adopted objects to be  lifetimes.

temporarily uniqgue. Compared twap focus does

not incur run-time overhead, but the type system to®
prevent access through an unknown alias requires
more user annotations (or a global alias analysis.)

Dynamic arenas:works well for aggregated,
dynamically allocated data.

e Uniqueness:works well for individual objects
as long as multiple references aren't needed
within data structures.

Unigue pointers and related alias restrictions have
received considerable attention as extensions to
object-oriented languages. Clarke and Wrigstad [8]
provide an excellent review of related work and pro-

pose anot_ion of “external uniqgeness” that_integratis?ogrammers can use the best idioms for their ap-
unique pointers and ownership types. Prior to t%ﬁcation. In our experience, all idioms have proven

;/vorka ncl)_ne Oc]; thg e:nalcz[gut:es t:’ C%CIOnahHaS al- useful for improving some aspect of performance.
owed allased pointers to be stored anywhere exceIOII'his array of idioms is covered by the careful com-

in method parameters and local variables, Sever%hﬁation of only two linguistic features: lexically

restricting code reuse. Clarke and Wrigstad usesé‘oped regions and unique pointers. Unique pointers

“fresh owner” to restrict the escape of aliased poi\r:gi;

ers. much as Cvelone Uses a fresh redion name j[}qe us the power to reason in a flow-sensitive fash-
' y 9 Ion about the state of objects or arenas and to ensure

alias. Ownership types differ from our region SYSthat safety protocols, such as reference counting, are

tem most notably by restricting which objects can re;

. 4 . . . ?forced. Regions work well for stack allocation and
fer to other objects instead of using a static notion 8|ve us a way to overcome the burdens of uniqueness
accessible regions at a program point.

for a limited scope.

Nonetheless, there are many open issues that re-
quire further research. For instance, a strict, linear

Little work on unigueness in OO languages hasterpretation of unique pointers instead of our re-
targeted manual memory management. A recent &xxed affine approach would have helped to avoid the
ception is Boyapati et al.'s work [6], which uses rdeaks that we encountered and perhaps avoid the need
gions to avoid some run-time errors in Real-Timer GC all together. However, we found that the strict
Java programs. As is common, this work uses “digterpretation generated too many false type-errors in
structive reads” (an atomic swap witlvLL) and re- the presence of exceptions and global data.
lies on an optimizer to eliminate unnecessary writesAnother area where further work is needed is in
of NULL on unique paths. Cyclone resorts to swapsols to assist the porting process. We generally
only for unique data in nonunique containers, catcfound that developing new code in Cyclone was eas-
ing more errors at compile time. Few other projectsr because we could start with the invariants for a
have used swap instead of destructive reads [4, J&grticular memory management strategy in mind. In
Alias burying [7] eschews destructive reads and proentrast, porting legacy code required manually ex-
poses using static analysis to prevent using aliasexting these invariants from the code. Our hope is
after a unique pointer is consumed, but the detailstbat we can adapt tools from the alias and shape anal-
integrating an analysis into a language definition aysis community to assist programmers in porting ap-
not considered. plications.

Reference countingworks well for individual
objects that must be shared, but requires explicit
reference count management.
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ments for the benchmarks not considered in Sgguration commands, at which time the client in-
tion 5. In general, these benchmarks exhibit the fQ§rcts the server to connect back to it on a speci-
lowing trends (as mentioned in the body of the pgag port to send the data. As a result, retrieving a
per): file using anonymous FTP is very much 1/0O-bound,
. and quite time-consuming, so there is little concern
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nisms does not improve the execution time (gapout the CPU-tlm.e or pause-time overhgad incurred
the program relative to GC. y garbage collection (or reference—cour_ltlng, for that
matter). On the other hand, BetaFTPD is clearly not
¢ Using manual memory management does alloell optimized, as each FTP takez ms.
the memory footprint of the program to be re- Of most concern to the topic of this paper, we can
duced. see that using manual memory management (in this
case, unique and reference-counted pointers) did not
We measured the performance of each progrjipvide a performance advantage relative to Cyclone

as follows. For Epic, we used it to compress anging GC when considering elapsed time.
decompress a large image file. For Kiss-FFT, we

performed1024 size 10000 FFT’s, using the bench- .
mark program provided with the distribution. Fof\-2 Memory Footprint Measurements
BetaFTPD, we usewsET", a utility for retrieving Statistics for memory footprint are shown in Table 3.

files from HTTP and FTP servers, to retrieve a %Qor each benchmark we report the peak memory us-

KB file via anonymous FTP 1000 times, piping it t%ge for the data memory and reserved memory, in
/dev/null. kilobytes. The first group of numbers are for the GC
*http://www.gnu.org/directory/wget.html case, while the last group are for the manual case,
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Test C time(s) Cyclone time (GC)

checked(s) facton unchecked(s) facto
Epic 1.06+£0.00 | 1.60+£0.00 1.5k | 1.05+0.01 0.9%
Kiss-FFT | 1.33+0.00| 3.21+0.01 24X | 1.30£0.01 0.9&
BetaFTPD| 2.17+ 0.02 | 2.25+0.02 1.04& | 2.22+0.01 1.0%
Cyclone time (+manual)
Epic 1.06+0.00| 1.61+£0.01 1.5% | 1.064+0.00 1.00«
Kiss-FFT | 1.33+£0.00| 3.22+0.01 2.4% | 1.31+£0.00 0.9&
BetaFTPD| 2.174+0.02 | 2.24+0.01 1.0%« | 2.23+0.02 1.0%

Table 2: Benchmark performance

and we consider the reserved memory for the case
when using the BDW collector as the allocator or the
Lea allocator. None of the manual versions of these
programs require garbage collection.

For Epic there is a memory utilization advantage
to the manual case because we are able to free some
data early, i.e., during the compression process. On
the other hand, the FFT program is set up to only
free its memory upon conclusion, so there is no real
effect on data footprint, and thus the only benefit is to
reduce the about of reserved space by linking in the
Lea allocator. The trend for BetaFTPD is similar to
that of Boa, shown earlier. In particular, when using
garbage collection both the data footprint and the re-
served memory required are much higher than for the
manual mechanisms. We do not show the memory-
consumption graphs here, but they are essentially the
same as Boa (and MediaNet): a sawtooth pattern for
the GC case (for a total of 11 GCs during the run),
and a smooth trend for the manual case.

Test KB Footprint KB Footprint
(GC) (+manual)
data resv| data resv resy
(BDW)  (Lea)
Epic 17475 23400 13107 15585 13128
Kiss-fft 400 725| 400 725 402
BetaFTPD| 183 356 3.3 65 8

Table 3: Benchmark Memory Footprint
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