
Compiling Scala for

the Java Virtual Machine

Michel Schinz

LABORATOIRE DES MÉTHODES DE PROGRAMMATION
INSTITUT D’INFORMATIQUE FONDAMENTALE
FACULTÉ INFORMATIQUE ET COMMUNICATION
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Contents

1 Introduction 7
1.1 Scope . 7
1.2 Background . 8

1.2.1 The Scala programming language 8
1.2.2 The Java virtual machine 9
1.2.3 The Scala compiler . 10

1.3 Inheritance graph notation . 13

2 Mixins 15
2.1 Introduction . 15

2.1.1 Single inheritance . 15
2.1.2 Multiple inheritance 15
2.1.3 Mixin inheritance . 16
2.1.4 Trait inheritance . 16

2.2 Mixin inheritance in Scala . 17
2.2.1 Mixin example . 18

2.3 Encoding mixins on the JVM 19
2.3.1 Typing aspect . 20
2.3.2 Code sharing aspect 20
2.3.3 Encoding used by scalac 22

2.4 Interfaces for types . 25
2.4.1 The AddInterfaces phase 25
2.4.2 Unmixable classes . 26
2.4.3 Subclasses of Java classes 27
2.4.4 Private members . 28

2.5 Inlining mixin code . 29
2.5.1 The ExpandMixins phase 29
2.5.2 Mixin type parameters 30
2.5.3 Mixin constructors . 30
2.5.4 Private members . 31
2.5.5 Overridden members 31

II CONTENTS

2.5.6 Nested classes . 31
2.6 Example translation . 32
2.7 Cost of code copying . 32

3 Run Time Types 35
3.1 Introduction . 35

3.1.1 Pattern matching . 35
3.1.2 Reflection . 36
3.1.3 Type-safe serialisation 36

3.2 Run time types in Scala . 37
3.2.1 The language of types 37
3.2.2 Run time types of values 37
3.2.3 Operations on run time types 38
3.2.4 Pattern matching . 38
3.2.5 Implementation restrictions 40

4 Representing Run Time Types 43
4.1 Introduction . 43
4.2 Mapping source types to JVM types 43

4.2.1 Full erasure . 44
4.2.2 Isomorphic mapping 44
4.2.3 Partial erasure . 44
4.2.4 Erasure of terms . 45
4.2.5 Mapping examples . 45
4.2.6 The Scala mapping . 46

4.3 Type representations . 51
4.3.1 A note about concurrency 53
4.3.2 Class types . 54
4.3.3 Java class types . 56
4.3.4 Scala class types . 56
4.3.5 Array types . 59
4.3.6 Singleton types . 62
4.3.7 Compound types . 62
4.3.8 Value types . 64
4.3.9 Special types . 65

5 Compiling Run Time Types 67
5.1 Introduction . 67
5.2 Compiling type expressions 67
5.3 Polymorphic methods and classes 68
5.4 Instantiation methods and type constructors 68

CONTENTS III

5.5 Type accessor methods . 73
5.6 Type reflection method . 74
5.7 Membership tests . 75
5.8 Type casts . 77
5.9 Default values . 78
5.10 Array creation . 78
5.11 Possible improvements . 79

6 Performance impact of run time types 81
6.1 Micro benchmark . 81
6.2 Large benchmarks . 84

6.2.1 Benchmark programs 84
6.2.2 Execution statistics . 86
6.2.3 Execution time . 88
6.2.4 Code size . 89
6.2.5 Memory consumption 89

7 Related Work 91
7.1 Mixins . 91

7.1.1 Jam . 91
7.1.2 MIXEDJAVA . 92
7.1.3 MIXGEN . 93
7.1.4 Animorphic Smalltalk 93

7.2 Run time types . 94
7.2.1 Heterogeneous translations 94
7.2.2 Homogeneous translations 96

8 Conclusion and Future Work 101

A Scala’s type language 103
A.1 Singleton types . 103
A.2 Class types . 104
A.3 Compound types . 105

List of Figures

1.1 Phases of the Scala compiler 11
1.2 Inheritance graph notation . 14

2.1 Super calls and mixins . 21
2.2 Mixins in Java implemented through code copying 23
2.3 Mixins in Java implemented through delegation 24
2.4 Counter class hierarchy before mixin expansion 26
2.5 Counter class hierarchy after AddInterfaces 27
2.6 Translation of a Scala class inheriting from a Java class 28
2.7 Counter class hierarchy after ExpandMixins 29
2.8 Translation of RUCounter class 33

4.1 Hierarchy of Java classes representing Scala types 52
4.2 Ancestors of object scala.Nil 58
4.3 Ancestor caches for scala.Seq and its parents 59

6.1 Micro benchmark program . 83

7.1 Diamond inheritance example 92

List of Tables

2.1 Top code growth in the Scala library 34
2.2 Code growth for Scala programs 34

4.1 Ancestor cache of object scala.Nil 58

6.1 Micro benchmark timings . 82
6.2 Size of benchmark programs 84
6.3 Instances of various types . 87
6.4 Calls to instance test and type cast methods 87
6.5 Ancestor cache searches . 88
6.6 Impact of run time types on execution speed 89
6.7 Code size increase due to run time types 90
6.8 Memory collected during benchmark runs 90
6.9 Time spent collecting garbage 90

Version abrégée

Scala est un nouveau langage de programmation, développé à l’EPFL,
combinant les principales caractéristiques des langages orientés-objets et
fonctionnels. Scala a été conçu pour interagir aisément aussi bien avec
Java qu’avec .NET. Pour ce faire, son compilateur peut produire des pro-
grammes s’exécutant sur la machine virtuelle de chacune de ces deux pla-
teformes.

Cette thèse se focalise sur la compilation de deux concepts importants
de Scala : l’héritage par mixins et les types à l’exécution. Les techniques
de compilation sont présentées dans le cadre de la machine virtuelle Java,
mais pourraient être adaptées sans difficulté à d’autres environnements
similaires.

L’héritage par mixins est une forme d’héritage relativement récente,
plus puissante que l’héritage simple, mais évitant la complexité de l’hé-
ritage multiple. Nous proposons deux techniques de compilation de cet
héritage : par copie de code, et par délégation. La mise en œuvre actuelle,
basée sur la copie de code, est ensuite présentée puis justifiée.

Par types à l’exécution on entend la possibilité qu’a un programme
d’examiner, lors de son exécution, le type de ses valeurs. Cette possibilité
est d’une part intéressante en soit, puisqu’elle offre de nouveaux moyens
au programmeur. D’autre part, elle est requise pour la mise en œuvre
d’autres concepts de haut niveau, comme le filtrage de motifs, la sérialisa-
tion sûre, ou la réflection. Nous proposons une technique de compilation
basée sur la représentation des types sous forme de valeurs, et montrons
comment il est possible d’utiliser les types à l’exécution de la machine vir-
tuelle sous-jacente comme base pour les types à l’exécution de Scala.

Les techniques présentées dans cette thèse ont été mises en œuvre dans
le cadre de notre compilateur Scala, nommé scalac. Cela nous a permis
d’évaluer la qualité des techniques proposées, en particulier leur impact
sur les performances des programmes. Cette évaluation s’est faite sur des
programmes réels, de taille importante.

Abstract

Scala is a new programming language developed at EPFL and incorpo-
rating the most important concepts of object-oriented and functional lan-
guages. It aims at integrating well with the Java and .NET platforms: their
respective libraries are accessible without glue code, and the compiler can
produce programs for both virtual machines.

This thesis focuses on the compilation of two important concepts of
Scala : mixin inheritance and run time types. The compilation techniques are
presented in the context of the Java virtual machine, but could be adapted
easily to other similar environments.

Mixin inheritance is a relatively recent form of inheritance, offering
new capabilities compared to single inheritance, without the complex-
ity of multiple inheritance. We propose two implementation techniques
for mixin inheritance: code copying and delegation. The implementation
used in the Scala compiler is then presented and justified.

Run time types make it possible for a program to examine the type of
its values during execution. This possibility is interesting in itself, offer-
ing new capabilities to the programmer. Furthermore, run time types are
also required to implement other high level concepts, like pattern match-
ing, type-safe serialisation and reflection. We propose an implementation
technique based on the representation of types as values, and show how
to use the run time types of the underlying virtual machine to implement
those of Scala.

The techniques presented in this thesis have been implemented in our
Scala compiler, scalac. This enabled us to evaluate these techniques, in
particular their impact on the performances of programs. This evaluation
was performed on several real, non-trivial programs.

Acknowledgements

I would first like to thank my adviser Prof. Martin Odersky for accepting
me in his group and for his support during the time I spent at LAMP.

My colleague Philippe Altherr, who shared both his office and his many
insights about programming languages, helped me immensly during all
those years. His efforts to clean up the internals of the Scala compiler
saved me countless hours of debugging, and generally made it a pleasure
to work on the project.

Vincent Cremet spent a lot of time discussing various issues with me,
and proof-read this thesis very carefully, providing many valuable com-
ments about it. His help was very much appreciated.

Many people contributed to the Scala project — and its predecessor
Funnel — and working with all of them proved very enjoyable. Besides
the persons already mentioned, I would therefore like to thank Iulian Dra-
gos, Gilles Dubochet, Burak Emir, Sebastian Maneth, Stéphane Micheloud,
Nikolay Mihaylov, Christine Röckl, Erik Stenman, Christoph Zenger and
Matthias Zenger.

The second half of the LAMP, composed of Sébastien Briais, Daniel
Bünzli, Johannes Borgström, Rachele Fuzzati, Simon Kramer, and Prof.
Uwe Nestmann provided great company at lunch, and many interesting
subjects for discussion during our coffee breaks.

I would also like to express my gratitude to the members of my jury,
Prof. Rachid Guerraoui, Prof. Paolo Ienne, Prof. Shriram Krishnamurthi
and Prof. Mirko Viroli, for taking the time to read my thesis.

Finally, the moral support of my family and Sabine was invaluable,
especially during the final months.

Chapter 1

Introduction

1.1 Scope

Scala is a new programming language developed by Martin Odersky and
his team at LAMP [19]. Scala aims at being a practical language, usable for
large-scale programs, and incorporating several advanced concepts from
recent research.

From the beginning, Scala was designed to run on the Java Virtual Ma-
chine (JVM) and on the .NET Common Language Runtime (CLR). Even
though the design of the language was often directed to ease the integra-
tion with these platforms, the compilation of Scala still presented several
challenges.

This thesis explains and evaluates the solutions we developed for the
implementation of two important concepts of Scala : mixins and run time
types. It focuses on the Java platform, because run time types are currently
available only on that platform.

All the techniques described here have been implemented in the Scala
compiler, scalac. This compiler is officially distributed since January 2004,
and used in several courses at EPFL. It has also been used to develop
a few middle-sized projects, including several compilers — the front-end
of current Scala compiler (scalac), the forthcoming new Scala compiler
(nsc), and a compiler for the Scaletta calculus [3] — as well as Web applica-
tions — an auction site [18], and the bug-tracker used for the Scala project.
These projects have given us the opportunity to evaluate our techniques
on realistic programs.

8 CHAPTER 1. INTRODUCTION

1.2 Background

This section presents the background necessary to understand the rest of
the thesis. We start with a quick overview of the Scala language itself, fol-
lowed by a description of the Java virtual machine and finally the overall
architecture of the current Scala compiler.

1.2.1 The Scala programming language

Scala attempts to blend smoothly concepts taken from object-oriented and
functional programming languages.

From the object-oriented world, it inherits the concept of classes, which
plays a central role in that all values manipulated are viewed as being in-
stances of a class. Classes can be built incrementally using two inheritance
mechanisms: single inheritance, and a form of mixin inheritance.

From functional languages, Scala borrows algebraic data-types, pat-
tern matching, closures and anonymous functions. These concepts are all
integrated coherently, in a way that fits with the object-oriented nature of
the language: algebraic data-types are a special kind of classes called case
classes, and closures are objects with a single method.

Scala is a typed programming language, featuring an advanced type
system. This type system is described in detail in the official language
specification [20], which we will not reproduce here. It is however inter-
esting to quickly review its major features, which are also presented using
examples in appendix A:

Polymorphism Classes and methods can take type parameters, and these
parameters can have both lower and upper bounds, which can refer
to the parameter itself (F-bounded polymorphism).

Type members A class can include type members as well as value mem-
bers; like value members, type members can be either abstract or
concrete. Abstract type members — also known as virtual types [31] —
are bounded by a type, and this bound can be refined by subclasses.

Compound types A value can be declared to have a compound type, con-
sisting of a set of component types, which must be class types, and
a refinement. The refinement, possibly empty, constrains the type of
members of the components, by giving them more precise types. A
compound type is close to an intersection type [25], as it expresses
the fact that a value has simultaneously all the types of the compo-
nents.

1.2. BACKGROUND 9

Singleton types A basic form of dependent types is provided by singleton
types, which refer to a value. There are always two values of a given
singleton type: null and the value to which the type refers.

Scala also tries to integrate well with current popular platforms: both
Java and .NET classes are viewed as if they were normal Scala classes, from
which one can even inherit. This automatically makes a large body of
libraries available to the programmer.

The core aspects of Scala have been formalised in the νObj calculus [21].

1.2.2 The Java virtual machine

The Java virtual machine [16] (JVM) is a stack-based machine targeted to-
wards the execution of compiled Java programs. It receives as input a
single class file, containing the definition of the main class of the program,
and executes a particular method of that class. As the execution proceeds,
the class files corresponding to the other classes needed by the program
are loaded on demand.

One of the novel aspects of the JVM is that it verifies the class files
after loading them, to make sure that their execution will not violate some
defined safety properties. The checks performed by the verifier include a
complete type checking of the program [13].

To make this type checking possible, all the instructions of the JVM
are typed: the type of the operands they expect on the stack as well as
the type of the result they push back can be inferred from the instructions
themselves or their parameters. The type language of the JVM is very
close to the one of the Java language itself prior to version 5, i.e. without
generics: a type is a class or interface name, or one of the nine primitive
types (boolean, int, etc.).

Although very Java centric, the JVM has been used extensively over the
recent years as a target platform for many compilers. A web page listing
such compilers and interpreters currently contains close to 190 entries [32].
This popularity seems to be due mostly to two factors:

1. a large body of Java libraries is available, and targeting the JVM in-
stantly gives access to them,

2. the JVM is available on all major platforms, and compiled Java pro-
grams run on all of them without needing any recompilation.

However, since the JVM is tailored to Java, compiling languages which
differ widely from Java can be challenging.

10 CHAPTER 1. INTRODUCTION

1.2.3 The Scala compiler

The Scala compiler, scalac, transforms a Scala program into either a set of
Java class files or an MSIL assembly file, depending on the chosen target.
Currently, run time types are only supported on the Java platform, and for
that reason we will ignore the .NET platform in the rest of this document.

It should however be noted that version 2.0 of the .NET common lan-
guage runtime (CLR) will provide full support for generics, including run
time types [12]. This could be used to implement run time types for Scala
on that platform, provided that a good mapping from Scala types to CLR
types can be devised. This is no easy task, though, as the type system of
Scala contains many features which do not appear in the one of .NET, e.g.
variance annotations, singleton types and compound types.

Scalac is organised as a set of successive phases, which can broadly be
split into two groups:

1. the front end phases, which perform the analysis of the input file
to make sure that it is a valid Scala program, and produce a fully
attributed abstract syntax tree (AST),

2. the back end phases, which gradually simplify the AST, to the point
where it is very similar to Java or C# code; at that point, a byte code
generation phase produces the actual class or assembly files which
constitute the final output of the compiler.

Each phase is composed of two transformation functions: a tree trans-
former, and a type transformer. The tree transformer is applied to the AST
of the program being compiled, while the type transformer is applied to
the type of all identifiers needed during compilation—be they defined in
the AST or loaded from files compiled separately.

Figure 1.1 on the facing page illustrates the organisation of the com-
piler.1 Phases in bold will be described in detail in the rest of this docu-
ment. Each phase is listed in the order in which it is applied, along with a
short description of the concept it translates. Most phases work by trans-
forming an input tree (or type) in which their concept can appear, into one
where this concept has been translated away. For example, before the Un-
Curry phase, curried functions can appear in the tree or in the types of
imported identifiers, but after it, they will all have been transformed into
uncurried, multi-argument functions.

1One minor optimisation phase, which transforms directly recursive tail calls, was left
out.

1.2. BACKGROUND 11

Back endFront end

Scanner

Parser

Analyzer

RefCheck

TypesAsValues

LambdaLift

AddAccessors

UnCurry

TransMatch

ExplicitOuter

AddConstructors

AddInterfaces

ExpandMixins

Erasure

GenJVM GenMSIL

curried methods

pattern matching

classes/functions
nested in functions

class constructor
arguments

classes nested in
classes

class
constructors

mixins

JVM byte codes MSIL byte codes

run time types

"complex" types

Figure 1.1: Phases of the Scala compiler

12 CHAPTER 1. INTRODUCTION

Some phases which are not the main subject of this thesis still play an
important role in its understanding. These phases are: TransMatch, Lamb-
daLift, ExplicitOuter, AddConstructors and Erasure. They deserve being
explained in some details, and are therefore the subject of the following
sections.

The TransMatch phase

TransMatch translates pattern-matching expressions (see [20, chapter 7])
into conditional expressions that make use of tags attached to values as
well as run time types to match values with patterns. This makes Trans-
Match the biggest user of run time types, as we will see in chapter 3. Pat-
tern matching is a central concept of Scala, and the importance of run time
types is mostly due to the fact that they are key to its implementation.

The LambdaLift phase

Scala classes and functions can be defined inside many contexts: classes,
functions, blocks, etc. Additionally, classes can be defined directly inside
of a package, and are then said to be at the top level. Top-level classes
which do not appear in the scope of an explicit package declaration are
implicitly placed inside of a special, anonymous package.

The aim of the LambdaLift phase is to lift classes and functions so that
the former appear either at the top level or directly inside other classes,
and the latter are (possibly private) methods of classes. During this lift-
ing, free variables appearing in lifted entities — classes or functions — get
added to them as parameters. When such variables are mutable, they are
turned into reference cells.

The ExplicitOuter phase

In Scala, all nested classes have full access to the members of their enclos-
ing class(es). The task of ExplicitOuter is to lift nested classes to the top
level by augmenting them with an explicit reference to their enclosing ob-
ject. This reference is then used to access all the members of enclosing
classes.

All phases coming after ExplicitOuter therefore see a program com-
posed only of top-level classes.

1.3. INHERITANCE GRAPH NOTATION 13

The AddConstructors phase

In Scala, a class does not contain an explicit method definition for its con-
structor, like it does for example in Java. Rather, the class itself can take ar-
guments, which are visible in its whole body, including any nested classes.
Furthermore, the body of a class can contain arbitrary expressions, which
are evaluated each time a new instance is created.

This implicit constructor is called the primary constructor of the class. It
is also possible to define secondary constructors as members of the class
named this, but all have to end with a call the primary constructor.

The aim of AddConstructors is to make the primary constructor ex-
plicit by turning it into a method called <init>. This method takes the
same arguments as the class. Its body is composed of all the expressions
which originally appeared in the body of the class itself, and of calls to
constructors of the super-class and mixins, if any.

After AddConstructors, the class does not have value parameters any-
more, and its body is composed exclusively of member definitions, one of
which is the constructor <init>. At this stage, and with respect to con-
structors, the class is very similar to a standard Java or C# class.

The Erasure phase

Erasure performs a partial erasure of the types appearing in a program.
The aim of this partial erasure is to transform all the Scala types appearing
in the program into JVM or CLR types. The exact transformation per-
formed in Scala will be described in chapter 4.

1.3 Inheritance graph notation

Several inheritance graphs appear in the remainder of this document. These
graphs are composed of classes and interfaces, related by standard inheri-
tance, mixin inheritance or interface implementation. The notation is pre-
sented in figure 1.2.

Interfaces do not exist in Scala, but the AddInterfaces phase creates
interfaces as part of its translation. It is therefore useful to have a notation
for them.

14 CHAPTER 1. INTRODUCTION

Class

SubClass / SubInterface

standard
inheritance

Interface

interface
implementation

Mixin

mixin
inheritance

Figure 1.2: Inheritance graph notation

Chapter 2

Mixins

2.1 Introduction

To support code reuse, all object-oriented languages support some notion
of inheritance. The simplest and most common form is single inheritance
which, while powerful and adequate in many cases, is usually perceived
as being too limited to solve all reuse problems. To overcome these lim-
itations, several new forms of inheritance have been proposed: multiple
inheritance, mixin inheritance, and recently trait inheritance.

Scala offers a kind of mixin inheritance which is slightly different from
what exists in other mixin-based languages. For that reason, before detail-
ing its implementation, we present it after reviewing the various kinds of
inheritance mentioned above.

2.1.1 Single inheritance

Single inheritance is the most common, and simplest, form of inheritance.
It enables a class to inherit all the members (methods and fields) from
another class, called its superclass, and possibly override some of them
with new definitions.

2.1.2 Multiple inheritance

Multiple inheritance is a generalisation of single inheritance by which a
class can inherit simultaneously from several parent classes. Some limita-
tions of single inheritance are thereby removed, but additional problems
are introduced.

16 CHAPTER 2. MIXINS

A well-known one is the diamond problem, where a class inherits a sin-
gle ancestor twice, from two different parents. While inheriting methods
several times is not a problem, as it cannot be observed, the repeated in-
heritance of mutable fields certainly is. Apart from wasting space in the
heir class, it raises tricky questions about which copy of a field is modified
or read when.

Multiple inheritance also has limitations which make certain kinds of
abstractions difficult to express. For example, it doesn’t provide a way to
abstract over an extension of many classes with the same set of members.
This kind of abstractions is precisely what mixins provide, as detailed be-
low.

2.1.3 Mixin inheritance

Mixins are partial class definitions, whose superclass is abstract [7]. When
applied to a class, they yield a new subclass of that class, obtained by
adding or overriding members. Basically, mixins can be seen as (meta)
functions which, when given a class, produce a new subclass of that class.

Two mixins can be composed together to form a composite mixin. Ap-
plying that composite to a class means applying its second component
to the class, resulting in a new class to which the first component of the
composite is applied to obtain the final class. In other words, mixins are
composed like functions.

Composite mixins open the door to a variant of the diamond problem:
when two composite mixins are composed, it is possible that both com-
posites have a component in common. Applying the resulting mixin to a
class results in the same set of members to be added twice.

Apart from that problem, the fact that mixins have to be composed in
a given order has been criticised by Schärli et al. [29]. They argue that an
order which is appropriate for all the methods of the mixins to compose
does not always exist. To solve that problem, they propose trait inheritance,
an unordered variant of mixin inheritance, which is examined next.

2.1.4 Trait inheritance

Traits are, like mixins, partial class definitions which can be incorporated
into classes [29]. They are slightly more restricted than mixins in that they
cannot contain mutable fields. This restriction avoids the problem of dia-
mond inheritance, since repeated inheritance of methods is not a problem,
as we have seen.

2.2. MIXIN INHERITANCE IN SCALA 17

Trait inheritance is similar to mixin inheritance, the key difference be-
ing the lack of order among traits: when a set of traits is inherited by a
class, they are all inherited simultaneously, and any member defined by
more than one trait results in an ambiguity. This ambiguity must be ex-
plicitly resolved by providing an overriding definition in the class.

The lack of order among traits also has a consequence on the meaning
of the super keyword. When it appears in a trait, it always refers to the
superclass of the class inheriting the trait. This differs from mixins, where
super refers to the previous mixin in the composition. This behaviour
extends naturally to the occurrences of super appearing in the body of the
class itself: with mixin inheritance, they refer to the mixin inherited last,
whereas with traits they always refer to the superclass.

We will see in §2.5.5 that along with trait inheritance comes a special
form of super, providing access to any method of any inherited trait. No
equivalent usually exists with mixin inheritance.

2.2 Mixin inheritance in Scala

Apart from single inheritance, Scala supports a form of mixin inheritance
which does not correspond exactly to either mixin or trait inheritance as
described above. Despite its name, it is actually closer to the latter than to
the former, as we will now see.

A class C can be declared to inherit from one superclass S and several
mixins M1, M2, . . ., Mn. This is written as follows:

class C extends S with M1 with M2 with ... with Mn { ... }

For such a definition to be valid, the type of the superclass S must be a
subtype of the type of the superclass of every mixin M1 to Mn. It is easy to
understand the motivation of this restriction: since S will be used as the
actual superclass of all the mixins, its type should guarantee that it can be.

Like for trait inheritance, the order of the various mixins does not mat-
ter in Scala, and any concrete member defined in more than one of them
must be overridden in the heir class to resolve the ambiguity.

Both single and mixin inheritance are tied with subtyping. This means
that with the above definition, the type C is a subtype of the type of classes
S and M1 to Mn.

Mixins do not exist as a separate concept in Scala. Rather, any (non-
final) class can be inherited either through standard single inheritance,
or through mixin inheritance. The way it is inherited determines which
members get inherited by its heir: with single inheritance, all members

18 CHAPTER 2. MIXINS

are inherited, while with mixin inheritance only the ones introduced or
overridden by the mixin class itself or its own mixins are. In other words,
when a class is used as a mixin, only the difference between it and its su-
perclass is considered.

To avoid the diamond problem mentioned before, it is illegal in Scala
to inherit a single mixin through more than one path, unless the mixin in
question is declared as being a trait. A trait is a special kind of abstract
class, restricted so that it can be repeatedly inherited without problem.
The restrictions on traits are:

1. The primary constructor of a trait cannot have value parameters, and
secondary constructors are disallowed altogether — this ensures that
when a trait is inherited multiple times, all copies receive the same
(empty) constructor arguments;

2. The construction of a trait cannot have side effects — this ensures
that multiple inheritance of a trait will not lead to multiple evalu-
ation of side effects, and potentially to distinguishable copies of the
same trait;

3. The parent constructors of a trait cannot have value parameters —
this ensures that all copies of a trait inherited repeatedly pass the
same arguments to their superclasses (i.e. none),

4. A trait only inherits from other traits, not standard mixins, through
mixin inheritance — this ensures that the rules just presented cannot
be circumvented by hiding mixins behind traits.

2.2.1 Mixin example

To illustrate the translation steps performed by the Scala compiler, we
use a small example. We start by defining a class representing an inte-
ger counter, with one method to obtain the current value of the counter,
and one to increment it:

class Counter {
protected var v: Int = 0;
def value: Int = v;
def increment: Unit = (v = v + 1);

}

Then, we define several subclasses of that class, each providing a differ-
ent variant of the counter. All these subclasses are supposed to be mixed
together to obtain the desired composite behaviour.

2.3. ENCODING MIXINS ON THE JVM 19

The first of these subclasses provides a method to reset the counter:

trait ResettableCounter extends Counter {
def reset: Unit = (v = 0);

}

The second one provides a method to bring the counter back to some
earlier state:

abstract class UndoableCounter extends Counter {
private var history: List[Int] = List();

override def v_=(newV: Int): Unit = {
history = (v :: history);
super.v_=(newV);

}
def undo: Unit = {
super.v_=(history.head);
history = history.tail

}
}

Notice the redefinition of v_=, which is the setter method for the field v,
implicitly introduced by the compiler when v was defined1.

We can now define a class for a resettable and undoable counter by
composing the appropriate mixins:

class RUCounter
extends Counter
with ResettableCounter
with UndoableCounter;

2.3 Encoding mixins on the JVM

The first step in implementing Scala mixin inheritance is to find a way to
encode it on the JVM, which does not offer it as such.

There are two aspects to the encoding of mixin inheritance on the JVM:
first, since the language of the JVM is typed, we must make sure that our
encoding produces well-typed JVM programs; second, we must find a

1In Scala, all fields are accessed and updated via getter and setter methods automat-
ically introduced by the compiler. The programmer can override these methods in sub-
classes, like here.

20 CHAPTER 2. MIXINS

way to share the code of the mixins among all classes which inherit from
them.

2.3.1 Typing aspect

For the typing aspect, we need to ensure that the type of a class which
inherits from superclass S and mixins M1 to Mn is a subtype of all of them.
This is a form of multiple subtyping, which suggests the use of interfaces
to express the subtyping aspect of mixin inheritance on the JVM: our en-
coding must provide one interface per mixin, and any class inheriting from
a set of mixins must implement the corresponding interfaces.

2.3.2 Code sharing aspect

To share the code of the mixins among their heir classes, we can either
copy it, or really share it at the level of the JVM using delegation. We
explore these two options below.

Sharing by copying

Like for all forms of inheritance, the code sharing aspect of mixin inheri-
tance can be implemented by simple code copying: each time a class in-
herits from a mixin, the code from the latter is copied into the former. This
approach is relatively easy to implement, and produces efficient code. Its
main disadvantage is its cost in terms of code size.

Sharing by delegation

To try to avoid the cost of code copying, it is possible to share code using
delegation [15]. The idea is that classes hold one delegate object per mixin
from which they inherit, and forward calls to mixin methods to these del-
egates.

With this approach, calls to methods of the superclass appearing in
mixins are problematic: they cannot be resolved statically, as they usually
are, because the exact method to call depends on the context in which the
mixin is used. This is illustrated by figure 2.1, which shows two mixins
M1 and M2, both redefining method m of class A. It is clear that when M1 is
inherited by B, the call super.m it contains refers to A’s version of m; but
when the same M1 is inherited by E, the call super.m refers to D’s version
of m, itself inherited from M2.

2.3. ENCODING MIXINS ON THE JVM 21

B

C

D

E

A
def m = ...

M1
def m =
 ... super.m ...

M2
def m =
 ... super.m ...

Figure 2.1: Super calls and mixins

To solve this problem, delegate objects should have a way to identify
the location of their heir class in the hierarchy. This can be obtained by as-
sociating a level to every class, which is the length of the path leading from
that class to the top of the hierarchy, following only single-inheritance
links. In our example, class A could be at level 0, classes B and D at level 1,
and classes C and E at level 2.

With this in place, it is relatively easy to provide access to any version
of an overridden method, using super-accessor methods. Every method of
every class has such a method associated to it. The super-accessor gets the
same arguments as the original method, as well as the level of the class
which should perform the super call.

For example, the super-accessor method super_m below provides ac-
cess to all versions of method m for classes A, B and C:

class A {
void m() { /* ... */ }
void super_m(int lvl) { throw new Error(); }

}
class B extends A {

void m() { /* forward to delegate for M1 */ }
void super_m(int lvl)

{ if (lvl == 1) super.m(); else super.super_m(lvl); }
}
class C extends B {

void m() { /* forward to delegate for M2 */ }

22 CHAPTER 2. MIXINS

void super_m(int lvl)
{ if (lvl == 2) super.m(); else super.super_m(lvl); }

}

Given an instance of class C, calling super_m with an argument of 1 calls m
in A, while an argument of 2 calls m in B.

These super-accessor methods can be used by mixins to perform su-
per calls. On creation every delegate object receives the level of the class
inheriting from it. To perform a super call, it invokes the super-accessor
method of its delegator, passing it that level.

In our example, mixin M1 would look as follows:

class M1Delegate {
private final int lvl;
public M1Delegate(int lvl) { this.lvl = lvl; }
void m(A self) {

/* ... */ self.super_m(lvl); /* ... */
}

}

All copies of M1Delegate used by instances of B would get a level of 1 on
creation, while the ones used by instances of E would get a level of 2. This
ensures that super calls performed by M1Delegate are routed appropri-
ately.

Example translations

To illustrate the two translation techniques for mixins just presented, we
show in figure 2.2 how class RUCounter could be written in Java using code
copying, and in figure 2.3 how it could be written using delegation.

Notice that in the second translation we have made the assumption
that mixins are not normal classes, since we have translated them differ-
ently. To shorten the code, we also provided only one implementation of a
super-accessor method, super_setV, while in reality such methods should
be provided for all methods of all classes.

2.3.3 Encoding used by scalac

To translate mixins, scalac uses a combination of multiple interface in-
heritance and code duplication: JVM interfaces are used to provide the
proper subtyping relationships, and code copying is performed to import
code from mixins into heir classes.

2.3. ENCODING MIXINS ON THE JVM 23

interface ResettableCounter { public void reset(); }
interface UndoableCounter { public void undo(); }

class Counter {
private int v = 0;

public int getV() { return v; }
public void setV(int newV) { v = newV; }

public int value() { return getV(); }
public void increment() { setV(getV() + 1); }

}

class RUCounter extends Counter
implements ResettableCounter, UndoableCounter {
public void reset() { setV(0); }

private LinkedList history = new LinkedList();

public void setV(int newV){
history.addFirst(new Integer(getV()));
super.setV(newV);

}
public void undo() {

super.setV(((Integer)history.removeFirst()).intValue());
}

}

Figure 2.2: Mixins in Java implemented through code copying

24 CHAPTER 2. MIXINS

interface ResettableCounter { public void reset(); }
class ResettableCounterDelegate {

public static void reset(Counter self) { self.setV(0); }
}
interface UndoableCounter { public void undo(); }
class UndoableCounterDelegate {

private LinkedList history = new LinkedList();
private final int level;
public UndoableCounterDelegate(int l) { level = l; }
public void setV(Counter self, int newV){

history.addFirst(new Integer(self.getV()));
self.super_setV(level, newV);

}
public void undo(Counter self) {

int last = ((Integer)history.removeFirst()).intValue();
self.super_setV(level, last);

}
}
class Counter {

private int v = 0;

public int getV() { return v; }
public void setV(int newV) { v = newV; }
public void super_setV(int level, int newV) { throw new Error(); }
public int value() { return getV(); }
public void increment() { setV(getV() + 1); }

}
class RUCounter extends Counter

implements ResettableCounter, UndoableCounter {
UndoableCounterDelegate ucDelegate =

new UndoableCounterDelegate(1);
public void reset() { ResettableCounterDelegate.reset(this); }
public void undo() { ucDelegate.undo(this); }
public void setV(int newV) { ucDelegate.setV(this, newV); }
public void super_setV(int level, int newV) {

if (level == 1) super.setV(newV);
else super.super_setV(level, newV);

}
}

Figure 2.3: Mixins in Java implemented through delegation

2.4. INTERFACES FOR TYPES 25

This translation is performed by two successive phases: AddInterfaces
introduces interfaces and then ExpandMixins copies code. These two phases
are described in detail in the rest of this chapter.

Code duplication was chosen instead of delegation for performance
reasons. Currently, any Scala class can be used either as a mixin or as a
normal class. If delegation was used to implement mixins, all the code of
methods would have to be put in delegates. Therefore, every Scala method
call would result in two JVM method calls: one to the forwarding method,
and one to the delegate method.

That said, even if Scala distinguished explicitly mixins from normal
classes, it is not evident that a delegation-based approach would be inter-
esting. The overhead of super-accessor and forwarding methods would
first have to be measured on real programs as it might be important, espe-
cially in terms of performance.

2.4 Interfaces for types

As we have seen, the concepts of types and classes are usually tied in
object-oriented languages, and Scala and Java are no exceptions. How-
ever, Java provides the notion of interface which defines a type without
defining a class at the same time.

This makes it possible to completely untie inheritance and subtyping,
by strictly adhering to the following discipline: always use interfaces to
represent types, and inheritance solely to reuse code. This implies ignor-
ing completely the types automatically created for classes, and always ex-
plicitly specifying the type(s) of a class using interfaces.

Such an approach is not really practical for a Java programmer, as it
implies a lot of redundant declarations. But for a compiler targeting the
JVM, it is very interesting as it provides a lot of freedom in building the
subtyping relation independently of the inheritance relation. This freedom
is precisely what is needed to implement mixin inheritance in scalac. The
first step of the mixin translation is therefore to make sure that the program
distinguishes types from classes.

2.4.1 The AddInterfaces phase

AddInterfaces splits all class definitions in a program into two parts: an
interface to represent the type, and a class to represent the class.

The interface is given the name of the original class, while the class gets
a $class suffix added to its name.

26 CHAPTER 2. MIXINS

The interface contains a declaration for all the methods of the class,
including private ones which are renamed first, as we will see in §2.4.4.

The subtyping hierarchy of the original program is reflected by the in-
terfaces, in that the interface for a given class is made to implement all the
interfaces of the class’ parents, mixins included. If the class originally im-
plemented a Java interface, this interface is also implemented by the class’
interface. We will see below that a small problem appears with classes
inheriting from Java classes, as no interface exists for them.

Once the subtyping hierarchy has been constructed using interfaces,
the link between classes and their type is made by simply adding the ap-
propriate interface to the parent of each class.

Finally, the program is transformed so that interfaces are used for types,
and classes for themselves. This implies replacing references to the origi-
nal class with the new interface, except in two locations: instance creation
expressions (new) and the parents of a class still refer to the class.

This process is illustrated in figures 2.4 and 2.5 on the next page, which
show the inheritance hierarchy for the RUCounter class and its parents —
Object excepted — before and after AddInterfaces2.

Counter

Resettable
Counter

Undoable
Counter

RUCounter

Figure 2.4: Counter class hierarchy before mixin expansion

2.4.2 Unmixable classes

Almost all classes in the original program receive an interface, but there
are exceptions. Since the aim of these interfaces is to enable mixin inher-
itance, only classes which can actually be used as mixins need one. The
following kinds of classes are not usable as mixins, and therefore do not
get an interface:

2In these figures, the $class prefix has been shortened to $c to save space.

2.4. INTERFACES FOR TYPES 27

Counter$c

Resettable
Counter$c

Undoable
Counter$c

RUCounter$c

Counter

RUCounter

Resettable
Counter

Undoable
Counter

Figure 2.5: Counter class hierarchy after AddInterfaces

1. classes corresponding to Scala singleton objects [20, §5.4], since they
are not exposed to the programmer, and

2. classes created by the compiler to represent closures, since they are
not visible as classes in the original program.

Strictly speaking, only classes which actually are used as mixins should get
an interface. But in the presence of separate compilation, it is not possible
to determine whether a class will be used as a mixin or not. AddInterfaces
therefore makes the conservative assumption that all classes which can be
used as mixins will be.

To obtain a better approximation of the classes in need of an interface,
an analysis of the whole program is required. Alternatively, mixins could
be explicitly distinguished from normal classes in Scala.

2.4.3 Subclasses of Java classes

The translation just presented is problematic for Scala classes which inherit
from a Java class other than Object. Figure 2.6 on the following page
illustrates the translation by AddInterfaces of such a class, called Sub and
inheriting from Java class JavaClass. After AddInterfaces, all instances
of Sub$Class are manipulated as values of type Sub, and unfortunately

28 CHAPTER 2. MIXINS

the fact that these instances also have type JavaClass has been lost in the
translation.

To work around this problem, the Scala compiler inserts a type cast
each time a value of type Sub is used as a value of type JavaClass. These
casts are safe, in the sense that they will never fail at run time. This is due
to the fact that the only values of type Sub are either instances of Sub$class
or one of its subclasses, or instances of a class C which inherits from Sub as
a mixin. In the latter case, C will have to be a subclass of JavaClass too, as
required by Scala’s notion of valid mixin inheritance.

Sub

JavaClass

(a) before AddInter-
faces

Sub$class

JavaClass

Sub

(b) after AddInterfaces

Figure 2.6: Translation of a Scala class inheriting from a Java class

2.4.4 Private members

Ideally, private members should not be part of the interface created by
AddInterfaces. But in some cases it is actually not possible to exclude
them, as the following example illustrates:

class C {
private def privateFun: Int = 123;
def f(c: C): Int = c.privateFun;

}

After AddInterfaces, the argument c passed to f will have the type of the
interface C, and it is clear that if privateFun is not part of that interface, the
underlined call is not legal.

A similar problem appears with private members which are accessed
from nested classes.

To avoid these problems, private members are exposed in the interface,
after having been renamed uniquely.

2.5. INLINING MIXIN CODE 29

2.5 Inlining mixin code

Once mixin interfaces have been created, mixin code can be copied in the
heir classes, which is the task of the ExpandMixins phase.

2.5.1 The ExpandMixins phase

The ExpandMixins phase traverses the mixins of a heir class, and copies
all their code into that class. Once this is done, mixin inheritance has been
translated away, and the mixins can be removed from the parents of the
heir class. This will not affect the subtyping relation, as it has been pre-
served using the interfaces introduced by AddInterfaces.

The process is illustrated by figure 2.7 which shows the hierarchy of
figure 2.5 after its transformation by ExpandMixins. The only difference
between this figure and the previous one is that the two mixin inheritance
arrows have disappeared.

Counter$c

Resettable
Counter$c

Undoable
Counter$c

RUCounter$c

Counter

RUCounter

Resettable
Counter

Undoable
Counter

Figure 2.7: Counter class hierarchy after ExpandMixins

Notice that since a mixin can itself inherit from other mixins, it is im-
portant to start by expanding mixin bodies before importing them in the
heir class.

30 CHAPTER 2. MIXINS

2.5.2 Mixin type parameters

When importing the code of a mixin, its type parameters, if any, must be
replaced by their actual value, given by the heir class. As an illustration,
consider the following mixin which, given a method to produce a random
element, defines a method to obtain a random list:

trait RandomList[T] {
def random: T;
def randomList(n: Int): List[T] =
if (n == 0) List() else random :: randomList(n-1);

}

When used in a heir class, the type parameter T must be replaced by its
actual value. For example, the following object makes use of that mixin to
produce random numbers or lists thereof:

object RandomDouble with RandomList[Double] {
def random: Double = Math.random();

}

After mixin expansion, all occurrences of T have been replaced by Double
in object RandomDouble:

interface RandomList[T] {
def random: T;
def randomList(n: Int): List[T];

}

object RandomDouble with RandomList[Double] {
def randomList(n: Int): List[Double] =
if (n == 0) List() else random :: randomList(n-1);

def random: Double = Math.random();
}

2.5.3 Mixin constructors

The AddConstructors phase comes just before AddInterfaces (figure 1.1),
and this means that the two phases concerned with mixin expansion see
classes with explicit constructors.

This makes constructors easy to handle during mixin expansion, as
they behave like standard methods, with two exceptions:

1. the call to the constructor of the superclass has to be removed, since

2.5. INLINING MIXIN CODE 31

it is superseded by the one of the heir class,

2. because all constructors have the same name (<init>), the ones in-
herited from mixins must be renamed uniquely to avoid collision
with the constructor of the heir class.

A future redesign of Scala will probably syntactically distinguish mixins
from normal classes, and mixins will not contain calls to the constructor
of the superclass. This would remove the need to delete these calls during
mixin expansion.

2.5.4 Private members

Private members of mixins cannot be simply copied into the heir class, as
their name might clash with the name of some other imported member.
For that reason, they are given a unique name as they are imported.

2.5.5 Overridden members

Mixin members that are overridden in the heir class can generally be omit-
ted during copying, unless they are accessed through mixin super reference
[20, §6.3]. For example, in the code sample below, the print method of
class C calls the method print of mixin M even though it overrides it:

class M { def print: Unit = Console.println("M") }

class C with M {
override def print: Unit = {
super[M].print; // prints M
Console.println("C"); // prints C

}
}

It is clear that the print method of mixin M has to be imported too, but
under a new and unique name. It also has to be made private in the pro-
cess. The mixin super reference can then be transformed to refer to that
imported member, which is now accessed through this instead of super.

2.5.6 Nested classes

As illustrated in figure 1.1, mixin expansion happens after phase Explic-
itOuter. This means that the program seen by AddInterfaces and Expand-

32 CHAPTER 2. MIXINS

Mixins does not contain nested classes anymore. As a consequence, classes
nested inside of mixins are not copied during mixin expansion.

Notice that it would actually not be possible to perform mixin expan-
sion before phase ExplicitOuter, as classes would then not be closed over
their enclosing class. This is illustrated by the following example:

class Outer {
var x: Int = 1;
class Inner {
def incX: Unit = { x = x + 1; }

}
}
object Main {
val o = new Outer;
class C with o.Inner;

}

If class Inner was simply inlined into class C without first being lifted to
the top level, variable x would become free in C.

2.6 Example translation

To illustrate the translation of mixins, figure 2.8 shows the translation of
the declaration of class RUCounter. Not surprisingly, the translated code is
very close to its Java equivalent presented in figure 2.2.

2.7 Cost of code copying

To get a rough idea of the cost of code copying, we measured the amount
of duplicated code due to mixins in the standard Scala library and in sev-
eral benchmark programs. This was done by comparing the size of the
class files with mixin expansion disabled and enabled. When mixin expan-
sion is disabled, the code produced is not valid and cannot be executed,
but we are only interested in measuring its size.

The Scala standard library gets compiled to a total of 1.53 MB of class
files. By disabling mixin expansion, this number drops by 10%, to 1.39 MB.
Table 2.1 presents the five packages of the library which experience the
most important growth because of mixin expansion. For each package,
the overall code growth is reported along with the maximal growth for
a single file. Notice that even though single files can grow in enormous

2.7. COST OF CODE COPYING 33

interface RUCounter extends Counter
with ResettableCounter with UndoableCounter;

class RUCounter$class extends Counter$class with RUCounter {
// part imported from ResettableCounter
private def mixin$ResettableCounter$class$init$: Unit = ();

def reset: Unit = v_=(0);

// part imported from UndoableCounter
private def mixin$UndoableCounter$class$init$: Unit = {
mixin$UndoableCounter$class$history$ = Nil;

};

private var mixin$UndoableCounter$class$history$: List[Int] =
_;

def UndoableCounter$history: List[Int] =
mixin$UndoableCounter$class$history$;

def UndoableCounter$history_=(x$0: List[Int]): Unit =
mixin$UndoableCounter$class$history$ = x$0;

override def v_=(newV: Int): Unit = {
UndoableCounter$history_=(v :: UndoableCounter$history);
super.v_=(newV)

};

def undo: Unit = {
super.v_=(UndoableCounter$history.head);
UndoableCounter$history_=(UndoableCounter$history.tail)

};

// part corresponding to RUCounter itself
def <init>: Unit = {
super.<init>;
mixin$ResettableCounter$class$init$;
mixin$UndoableCounter$class$init$;

}
}

Figure 2.8: Translation of RUCounter class

34 CHAPTER 2. MIXINS

proportions, the overall growth is modest for all packages.
The relatively important growth of Scala’s collection library (second

and third rows) is not a surprise, as this library makes heavy use of mixins
to reuse code. The growth of scala.xml.parsing is slightly pathological,
being due to a single, big mixin.

Code growth
Package maximum overall
scala.xml.parsing 1’020% 38%
scala.collection.immutable 288% 23%
scala.collection.mutable 335% 21%
scala.xml.dtd 170% 10%
scala.testing 80% 6%

Table 2.1: Top code growth in the Scala library

We additionally measured the growth for four real Scala programs: the
current Scala compiler (scalac), the new Scala compiler (nsc), a partial
compiler for the Scaletta calculus (scaletta), and an object file printer
for Scala (scalap). All these benchmarks are described in more detail in
section 6.2.1. As can be seen in table 2.2, the overall growth observed for
these programs is even lower than for the Scala library. Once again, even
though the growth of single files is sometimes impressive, e.g. in the nsc
case, this does not carry on to the total application size.

Code growth
Program maximum overall
scalac 11% <1%
nsc 2’160% 4%
scaletta 187% 1%
scalap 11% 1%

Table 2.2: Code growth for Scala programs

Chapter 3

Run Time Types

3.1 Introduction

Types are, by definition, static entities: they get attributed to terms by
the type-checker during compilation, and are then usually thrown away.
Some languages do keep them, however, and make them available to the
programmer at run time, as values. Such languages are said to provide
run time types.

Run time types play an important role in the implementation of sev-
eral features of modern programming languages, like pattern matching,
reflection or serialisation. Apart from these high-level features, the pro-
grammer is usually given indirect access to run time types through two
basic operations:

1. the membership test, which tests whether a value is of a given type,
and

2. the dynamic type cast, which gives a more precise type to a value
than the one inferred by the compiler, deferring the type test until
run time.

This chapter and the next three will examine the features related to run
time types available in Scala, then describe and evaluate their implementa-
tion. We start by explaining in more details the high-level concepts which
need run time types, then move on to Scala.

3.1.1 Pattern matching

Pattern matching is a construct which makes it possible to compare a value
against a set of patterns, and execute different code depending on the first

36 CHAPTER 3. RUN TIME TYPES

pattern matching the value. Typically, that code is executed in a context
where various parts of the matched value are bound to variables appear-
ing in the matching pattern.

For some languages, given a type, it is possible to know at compile
time the set of possible variants of that type. This is for example true
of all languages which provide non-extensible algebraic datatypes, like
SML. For such languages, full run time types are not needed to implement
pattern matching: simple tags are enough. We will see below that Scala
is not such a language, however, since its pattern matching construct is
powerful enough to require full run time types in general.

3.1.2 Reflection

Reflection refers to the ability of a program to manipulate (parts of) itself
at run time, by reifying the abstractions of the programming languages it
was written in.

To implement reflection, some information that is typically discarded
during compilation must be kept until run time. The exact nature of this
information depends on the capabilities offered by reflection, but might
include the name of the methods provided by an object, their visibility,
and so on. The type of values is part of this information, and therefore run
time types are required to implement reflection for a typed language.

3.1.3 Type-safe serialisation

Serialisation (also called marshaling or pickling) is the process of convert-
ing a graph of objects into a stream of bytes, to be stored on disk or trans-
ferred across a network.

If objects are serialised without also recording their type, deserialisa-
tion becomes an unsafe operation, as it is possible to deserialise a value
with a different type than the one it had during serialisation. This can
result in arbitrary behaviour of the program. This is a well-known prob-
lem of Objective Caml’s serialisation API, for example: deserialising some
datum with an incorrect type can crash the system [14].

To provide type-safe deserialisation, types must therefore be serialised
along with values, and this is of course only possible if types exist at run
time.

3.2. RUN TIME TYPES IN SCALA 37

3.2 Run time types in Scala

Scala has a very rich language of types, described in detail in its reference
(see [20, chap. 3]). Implementing run time types amounts to compiling
this language, first by providing a representation for types as values, and
then by translating type expressions to corresponding value expressions
working on these type representations. A way to access and manipulate
these type representations at run time must also exist for run time types to
be of interest.

3.2.1 The language of types

The type terms of Scala are either values, described below, or type expres-
sions which reduce to type values.

Scala offers a relatively standard set of type expressions: polymorphic
classes and methods introduce abstraction, which is eliminated by type
application. These expressions are translated to corresponding value ex-
pressions by the TypesAsValues phase, described in chapter 5.

The type values of Scala are composed of the following:

Singleton types which have the form x.type where x is a value.

Class types which have the form P#C[T1, . . . , Tn] where P is the prefix, C
is a class name and T1, . . . , Tn are the type parameters. Top-level
classes have an empty prefix, while nested classes have either a sin-
gleton type or another class type as prefix. When P is a singleton
type of the form p.type, value p is called the outer instance and the
type p.type#C[T1, . . . , Tn] is usually written as p.C[T1, . . . , Tn]. The
type parameters are empty if class C is monomorphic.

Compound types which have the form T1 with T2 . . . with Tn{R} where
T1 . . . Tn are the component types and R is a refinement.

At run time, these types are represented by instances of Java classes, which
will be described in chapter 4.

3.2.2 Run time types of values

All values in Scala are objects — that is, instances of some class — including
numbers, characters, booleans and the unit value. The run time type of a
value is defined as being the class type corresponding to the class of which
this value is an instance.

38 CHAPTER 3. RUN TIME TYPES

All Scala values being also JVM values, they have in fact two run time
types: the Scala one, and the JVM one. As we will often need to talk about
these run time types below, we introduce two operators to denote, respec-
tively, the Scala and JVM run time type of a value: typeofS and typeofJ.

3.2.3 Operations on run time types

In Scala, the two basic operations provided on run time types are the mem-
bership test and the type cast, modelled after Java. They are provided by
the following two methods, defined in the scala.Any class and therefore
available for all values:

def isInstanceOf[T]: Boolean; // membership test
def asInstanceOf[T]: T; // dynamic type cast

The meaning of these methods is the following:

• v.isInstanceOf[T] has type Boolean and evaluates to true if and
only if value v is not null and has type T at run time,

• v.asInstanceOf[T] has type T and evaluates to v if value v has type
T at run time, and fails with a ClassCastException otherwise.

The meaning of isInstanceOf can be expressed using the typeofS opera-
tor introduced before:

v.isInstanceOf[T] ⇔ typeofS(v) <:S T (3.1)

where <:S is Scala’s subtyping relation, defined in [20, §3.5.2] where it is
called conformance.

The asInstanceOf method is also used to perform conversion among
numeric types. Therefore, if v is a number and T is a numeric type, then
v.asInstanceOf[T] never throws an exception, but returns the number v
converted to a number of type T, with a possible loss of information. A
consequence of this special behaviour for numeric types is that it is possi-
ble for asInstanceOf to succeed even if isInstanceOf returns false.

3.2.4 Pattern matching

Most uses of run time types in Scala are the result of the translation of
pattern matching. There are two kinds of patterns which need run time
types: constructor patterns and typed patterns (see [20, chap. 7]). We ex-
amine them below and show how they get translated, by the TransMatch
phase, to calls to the two primitives presented above.

3.2. RUN TIME TYPES IN SCALA 39

Constructor patterns

Constructor patterns check whether a value is an instance of a given case
class, and if it is, optionally bind fresh variables to the components of the
value.

To illustrate their translation, we use the following small program. It
defines classes to represent lists, and later introduces a function length to
compute the length of such a list.

abstract class List[+T];
case class Cons[+T](hd: T, tl: List[T]) extends List[T];
case object Nil extends List[All];

object Main {
def length[T](l: List[T]): Int = l match {
case Cons(_, tl) => 1 + length(tl)
case Nil => 0

}
}

The length method uses a constructor pattern for the Cons case, and is
translated as follows:

def length[T](l: List[T]): Int = {
var $result: Int = _;
if (if (l.isInstanceOf[Cons[T]]) {

val tl: List[T] = l.asInstanceOf[Cons[T]].tl();
$result = 1 + length(tl);
true

} else if (l == Nil) {
$result = 0;
true

} else
false)

$result
else

scala.MatchError.report(l)
}

When more than two patterns appear in a match expression, the compiler
uses a tag attached to objects to dispatch to the appropriate case, instead
of a chain of conditionals like here. A membership test nevertheless has
to be performed in each of the cases, unless the class of the value being
matched is sealed [20].

40 CHAPTER 3. RUN TIME TYPES

We will see in sections 5.7 and 5.8 that it is sometimes possible to op-
timise this code, to avoid paying the full cost of the membership test and
type cast.

Typed patterns

Typed patterns test whether a value is of a given type T and, if it is, bind
the value to a fresh variable of type T.

To illustrate the translation of these patterns, consider the implementa-
tion of the method equals for a Scala class representing integer cells:

class IntCell(val x: Int) {
override def equals(thatAny: Any): Boolean = thatAny match {
case that: IntCell => x == that.x
case _ => false

}
}

The TransMatch phase translates this code into the following, which makes
use of isInstanceOf and asInstanceOf, and closely resembles what one
would write in Java :

class IntCell(val x: Int) {
override def equals(thatAny: Any): Boolean = {
if (thatAny.isInstanceOf[IntCell]) {
val that: IntCell = thatAny.asInstanceOf[IntCell];
x == that.x

} else
false

}
}

3.2.5 Implementation restrictions

Before presenting our implementation of run time types for Scala, we re-
view its limitations. They will be justified later, and possible techniques to
overcome them will be proposed for future work. These limitations are:

1. Only prefixes composed of a singleton type are supported (see §5.11).

2. Compound types with non-empty refinements are only partially sup-
ported: it is for example not possible to perform a membership test
with a refined compound type as argument (see §4.3.7).

3.2. RUN TIME TYPES IN SCALA 41

3. Array types do not support all operations: the creation of array types
with singleton or compound types is prohibited, and the member-
ship test and type cast fail in some well-defined circumstances (see
§4.3.5).

Because of these limitations, it is possible that some operations on run
time types cannot be performed correctly. However, we have designed
our implementation in such a way that these cases never go unnoticed: all
operations on run time types either fail with an exception, or produce a
correct answer.

42 CHAPTER 3. RUN TIME TYPES

Chapter 4

Representing Run Time Types

4.1 Introduction

The implementation of run time types is composed of two parts: first, a li-
brary to represent Scala types as JVM values, offering the operations neces-
sary to manipulate them at run time; and second, a set of transformations
performed at compile time to encode the types as values. This chapter will
detail the first part, and the next one will concentrate on the second part.

Before looking at the representation of Scala types as JVM objects, we
examine how Scala types are mapped to JVM types, since the latter has an
important influence on the former.

4.2 Mapping source types to JVM types

Like all compilers targeting the JVM, the Scala compiler must make sure
that it produces programs which are type-correct, in order to be accepted
by the JVM byte-code verifier. This implies that it must map source (Scala)
types to target (JVM) types.

Since the JVM provides its own run time type operations — the IN-
STANCEOF and CHECKCAST instructions [16] — it is natural to ask whether
these can be used to implement run time types for Scala, too. To answer
that question, we first look at the possible mappings of Scala types to JVM
types, then present the one used by the Scala compiler and examine how
it simplifies the implementation of run time types for Scala.

44 CHAPTER 4. REPRESENTING RUN TIME TYPES

4.2.1 Full erasure

At one extreme, it is possible to map all source types to a single target
type, which could be Object for the JVM, but any arbitrary empty inter-
face would also do. We will say that this mapping performs the full erasure
of source types, because all information contained in the types is lost. Ob-
viously, such a mapping doesn’t provide any help when implementing
run time types.

Full erasure is generally not used by real compilers for typed languages,
unless they produce untyped code.

4.2.2 Isomorphic mapping

At the other extreme, the mapping of types can be an isomorphism: each
different source type is mapped to a different target type, in such a way
that the subtyping relation is preserved. Such a mapping is interesting be-
cause run time type operations on source types can be directly translated
to the equivalent operations on target types.

An example of such a mapping is the trivial one performed by Java
compilers before generics were added to the language: source and target
types were then basically the same. A more interesting example of an
isomorphic mapping is NEXTGEN’s, which encodes type parameters into
the name of JVM types. It is explored in more detail in section 4.2.5.

4.2.3 Partial erasure

Between these two extremes lie a range of mappings which we will call
partial erasures, which preserve some parts of the source types and erase
the rest. The idea behind these mappings is to make source types as simple
as needed for them to correspond to JVM types, but not simpler.

Since part of the source types is preserved by these mappings, run time
types for the source language can generally be implemented partly using
the run time types of the JVM. But to provide precise run time types, the
erased parts of source types have to be preserved until run time, and this
is accomplished by representing them as values.

A well-known example of a partial erasure mapping is the one used
for Java 5 [11, §4.6]. In that case, the erasure consists of removing type
parameters and replacing type variables by the erasure of their bounds.
Since the erased parts of the source types are not preserved until run time,
operations on run time types are only provided for a subset of the types,

4.2. MAPPING SOURCE TYPES TO JVM TYPES 45

called reifiable types (see [11, §4.7]). These are the types for which the partial
erasure is the identity.

There are other partial erasure mappings in use, and we will shortly
examine below the one proposed by Viroli and Natali [36]. As we will see,
the Scala compiler itself uses a partial erasure to map Scala types to JVM
types.

4.2.4 Erasure of terms

It should be noted that the transformation of types during compilation
cannot be performed alone: it must be accompanied by a transformation
on terms, and the two must work hand-in-hand to ensure that all well-
typed source programs are turned into well-typed target programs. For
example, all the erasure schemes mentioned above require the code to be
augmented with type casts, which aim at restoring the typing information
lost by the erasure.

4.2.5 Mapping examples

Before describing the mapping we chose for Scala, we examine two map-
pings used by other language implementations targeting the JVM. These
implementations are:

1. the NEXTGEN compiler, which compiles an extension of Java with
generic types, and uses an isomorphic mapping,

2. the LM translator, which compiles another extension of Java with
generic types, and performs partial erasure of types, preserving the
erased parts using Java’s reflection capabilities.

The NEXTGEN mapping

NEXTGEN [8] extends Java with the ability to define parametric classes
and methods, with a syntax similar to the one of Java 5. For example, a
class to represent pairs of values is defined as follows:

class Pair<T1,T2> {
T1 fst; T2 snd;
public Pair(T1 fst, T2 snd) {
this.fst = fst; this.snd = snd;

}
}

46 CHAPTER 4. REPRESENTING RUN TIME TYPES

The main difference between NEXTGEN and Java 5 is that the former pro-
vides full support for run time types, through the mapping presented be-
low.

The NEXTGEN mapping of types is isomorphic, and all source types are
represented as JVM interfaces. Since JVM types are simple names, instan-
tiations of polymorphic types are mapped to interfaces with a mangled
name, which includes the name of all type parameters.

For example, the NEXTGEN type Pair<Object,String> is mapped to
the Java interface Pair$Object$String$1. Since it is in general not possi-
ble to know at compile time which instantiations will be performed at run
time, these interfaces cannot be generated before run time. Their creation
is therefore performed on demand, by a special class loader which is part
of the NEXTGEN run time system.

The NEXTGEN mapping presents the advantage of being very light,
and of delegating most of the hard work to the JVM. However, like all
isomorphic mappings, it makes the very strong assumption that all source
types can be represented as JVM types, which are simple names. While
completely realistic in the context of NEXTGEN, this assumption cannot
be satisfied easily for Scala, as we will see in section 4.2.6.

The LM mapping

The LM translator of Viroli and Natali [36] translates an extension of Java
with parametric classes and methods to standard Java. The language ac-
cepted by LM is very similar to Java 5, but operations on run time types
are not restricted.

LM maps types through a partial erasure similar to the one performed
by Java 5. At run time, the erased parts of the types are represented as
JVM objects, using Java’s reflection API. Operations on run time types are
performed with the help of that API.

4.2.6 The Scala mapping

Having examined some existing mappings, we now turn to the one used
by the Scala compiler. We start by presenting it without justification, and
then explain the rationale for our choices.

1In reality, the mapping is more complicated, as it includes the fully qualified name of
type parameters, but this is irrelevant for what follows.

4.2. MAPPING SOURCE TYPES TO JVM TYPES 47

Overview

The Scala compiler uses a partial erasure mapping of types, denoted | · |
and defined as follows [20, §3.6]:

• The erasure of a type variable is the erasure of its upper bound.

• The erasure of a parameterized type T[T1 . . . Tn] is |T|.

• The erasure of a singleton type x.type is the erasure of the type of x.

• The erasure of a type projection T#x is |T|#x.

• The erasure of a compound type T1 with . . . with Tn { R } is |T1|.

• The erasure of an array type Array[T] is |T|[],

• The erasure of types All, AllRef, Any and AnyRef is Object,

• The erasure of every other type is the type itself.

This function erases nested types to types containing projections. For ex-
ample, the erasure of the type corresponding to a class Inner nested inside
a class Outer is Outer#Inner. As this is not a valid JVM type, name man-
gling is used in the same way as in Java to obtain a valid type name, in
this case Outer$Inner.

The erased parts of the types are represented as Java objects, which are
described in detail in section 4.3.

Rationale

The Scala mapping was chosen because Scala’s type system is too rich to
be mapped fully to the JVM type system, à la NEXTGEN. This is due to the
following properties:

1. Scala’s type parameters can be contravariant,

2. Scala’s type parameters can be instantiated by singleton types which
depend on values,

3. the type of a nested Scala class depends on the identity of the instance
into which it is nested (this can be seen as a special case of instantia-
tion with singleton types).

48 CHAPTER 4. REPRESENTING RUN TIME TYPES

Only the first characteristic really prevents us from completely mapping
Scala types into JVM types, but the other two would pose important im-
plementation problems, detailed later.

Contravariance of type parameters prevents a mapping like the one
used by NEXTGEN because it requires extending the subtyping relation
at run time in ways which are not permitted by the JVM. For example,
consider a class with a contravariant type parameter defined as follows:

class OutputStream[-T];

Now imagine that, at run time, the following classes are loaded, in the
given order:

1. Object,

2. OutputStream[Object] (mapped to OutputStream$Object),

3. String,

4. OutputStream[String] (mapped to OutputStream$String).

Because of the contravariance of OutputStream’s type argument, and be-
cause String is a subtype of Object, OutputStream[Object] must be a
subtype of OutputStream[String]. Unfortunately, the JVM only permits
the addition of subtypes to existing types at run time, not super-types. This
is a problem here, since OutputStream[String] would need to be added
as a super-type of OutputStream[Object] at point 4, after the latter is
loaded.

The fact that Scala type parameters can be instantiated to singleton
types, which depend on values, poses another problem: a requirement
of an isomorphic mapping like NEXTGEN’s is that all types can easily be
mapped to strings, and singleton types do not satisfy this requirement.
The problem is that to map a singleton type as a string, it should be pos-
sible to map any value to a string. While not technically infeasible, this
implies at least the management of a single global table associating string
representation to objects, which would consume both time and memory.

Finally, nested classes pose a problem very similar to the one posed
by singleton types. In fact, the type of the outer instance can be seen as a
type parameter passed to the inner class. This type parameter is always
instantiated with a singleton type representing the outer instance. The
problem of how to represent this singleton type as a string reappears.

4.2. MAPPING SOURCE TYPES TO JVM TYPES 49

Properties

Having presented the Scala mapping, we now examine its properties. As
explained before, we are mainly interested in knowing whether, and how,
the run time types provided by the JVM can help with the implementation
of run time types for Scala.

First, it is interesting to note that the erasure used by the Scala compiler
does not preserve subtyping, because of the way it erases compound types.
This is easily seen with a counterexample. Here are two Scala types which
are in a subtyping relation — actually they are even equivalent:

C with D <:S D with C

However, this is not true of their erasure, as we can see:

|C with D| = C 6<:J D = |D with C|

This distinguishes the Scala erasure from other erasures which preserve
subtyping, like the one used in FGJ (see [10, Lemma A.3.5]). The type
system of FGJ is much simpler, however, and in particular doesn’t include
compound types.

Despite this, we can still use the run time types of the JVM in interest-
ing ways to implement Scala’s run time types. Indeed, we will see that the
following implication holds:

v.isInstanceOf[T] ⇒ J (v) instanceof |T| (4.1)

where J (v) represents the JVM value corresponding to the Scala value v.
This property is interesting because it makes it possible to implement

the membership test of Scala in two stages: In the first stage, the test is
performed on the erased type — a fast operation; if this test fails, the failure
of the whole test can be immediately reported. Otherwise, more elaborate
and costly tests have to be performed on the full Scala type.

We can get an intuition of why this property is true by first rewriting it
as follows, using the definitions of isInstanceOf and instanceof :

v.isInstanceOf[T] ⇒ J (v) instanceof |T|
typeofS(v) <:S T ⇒ typeofJ(J (v)) <:J |T| (4.2)

To convince ourselves that this last implication is true, we can do a case
analysis on the type T. There are seven cases to consider.

50 CHAPTER 4. REPRESENTING RUN TIME TYPES

Case 1 The first case is when T is the type of a Java class C.

typeofS(v) <:S T
⇒ typeofS(v) <:S C (value of T)
⇒ v is instance of a subclass of C (property of Scala)
⇒ J (v) is instance of a subclass of C (property of scalac)
⇒ typeofJ(J (v)) <:J C (property of the JVM)
⇒ typeofJ(J (v)) <:J |T| (erasure of Java class types)

Case 2 The second case is very similar to the first, and corresponds to T
being the type of a Java interface I.

typeofS(v) <:S T
⇒ typeofS(v) <:S I (value of T)
⇒ v implements a sub-interface of I (property of Scala)
⇒ J (v) implements a sub-interface of I (property of scalac)
⇒ typeofJ(J (v)) <:J I (property of the JVM)
⇒ typeofJ(J (v)) <:J |T| (erasure of Java interface types)

Case 3 The third case is when T is the type of a Scala class P#C[T1, . . . , Tn].

typeofS(v) <:S T
⇒ typeofS(v) <:S P#C[T1, . . . , Tn] (value of T)
⇒ v implements a sub-interface of P$C (property of scalac)
⇒ typeofJ(J (v)) <:J P$C (property of the JVM)
⇒ typeofJ(J (v)) <:J |T| (erasure of Java class types)

Case 4 The fourth case is when T is a compound type of the following
form: T1 with . . . with Tn { R }.

typeofS(v) <:S T
⇒ typeofS(v) <:S T1 with . . . with Tn { R } (value of T)
⇒ typeofS(v) <:S T1 (property of <:S)
⇒ typeofJ(J (v)) <:J |T1| (case 3 above)
⇒ typeofJ(J (v)) <:J |T| (definition of | · |)

Case 5 The fifth case is when T is a singleton type of the form x.type.
Before examining this case, we recall a property of singleton types, which
is that the type x.type is always a subtype of the type of x:

x.type <:S typeofS(x) (4.3)

4.3. TYPE REPRESENTATIONS 51

This property enables us to proceed as follows:

typeofS(v) <:S T
⇒ typeofS(v) <:S x.type (value of T)
⇒ typeofS(v) <:S typeofS(x) (property 4.3, transitivity of <:S)
⇒ typeofJ(J (v)) <:J |typeofS(x)| (case 3 above)
⇒ typeofJ(J (v)) <:J |T| (definition of | · |)

Case 6 The sixth case is when T is an array type Array[U].

typeofS(v) <:S T
⇒ typeofS(v) <:S Array[U] (value of T)
⇒ typeofS(v) = Array[U] (array subtyping)
⇒ typeofJ(J (v)) = |U|[] (property of scalac)
⇒ typeofJ(J (v)) <:J |T| (definition of | · |)

Case 7 The seventh case is when T is a type variable. Here, B(T) repre-
sents the concrete bound of T. That is, B(T) is the bound of T unless that
bound is a type variable U, in which case B(T) = B(U).

typeofS(v) <:S T
⇒ typeofS(v) <:S B(T) (bound of T)
⇒ typeofJ(J (v)) <:J |B(T)| (cases 1–6 above)
⇒ typeofJ(J (v)) <:J |T| (property of | · |)

4.3 Type representations

Knowing how the Scala compiler maps Scala types to JVM types, we can
now focus our attention on the representation of Scala types as Java ob-
jects.

All Scala types are represented as subclasses of an abstract Java class
called Type. The complete hierarchy is shown in figure 4.1 on the following
page. The Type class declares the following methods:

abstract public boolean isInstance(Object o);
abstract public boolean isSameType(Type that);
abstract public boolean isSubType(Type that);

abstract public Object defaultValue();
abstract public Object[] newArray(int size);

52 CHAPTER 4. REPRESENTING RUN TIME TYPES

Ty
pe

Cl
as
sT
yp
e

Sc
al
aC
la
ss
Ty
pe

Ja
va
Cl
as
sT
yp
e

Co
m
po
un
dT
yp
e

Si
ng
le
Ty
pe

Va
lu
eT
yp
e

Ty
pe
Bo
ol
ea
n

Ty
pe
By
te

Ty
pe
Sh
or
t

...

Sp
ec
ia
lT
yp
e

Ty
pe
An
y

Ty
pe
Al
l

Ty
pe
Al
lR
ef

Ty
pe
An
yV
al

Ja
va
Re
fA
rra
yT
yp
e

Figure 4.1: Hierarchy of Java classes representing Scala types

4.3. TYPE REPRESENTATIONS 53

The isInstance method implements the membership test, and returns
true if and only if the given object is an instance of the type to which it is
applied.

Methods isSameType and isSubType implement the equivalence (≡)
and subtyping (<:S) relations of Scala, respectively. These relations are
defined in [20, §3.5], where subtyping is called conformance.

The defaultValue method provides a default value appropriate for the
receiver type. It is used to initialise variables, as described in section 5.9.

Finally, the newArray method returns a new array with the given num-
ber of elements, whose type is the receiver. It is only defined for reference
types: all subclasses of ValueType throw an exception when this method
is applied to them. This should never happen, since the compiler handles
creation of arrays of value types directly as we will see in section 4.3.5.

The scala.Type class also provides a concrete method which imple-
ments the type cast. It is concrete because it can be expressed in terms of
the isInstance method, as follows:

public Object cast(Object o) {
if (! (o == null || isInstance(o)))

throw new ClassCastException(this.toString());
return o;

}

This code does not reveal the whole truth, however: as can be seen, if the
given object passes the membership test, it is returned with type Object.
This makes its type even more imprecise than it originally was! As we will
see in section 5.8, the Scala compiler emits a CHECKCAST instruction after
each call to cast, to make sure the code is accepted by the Java verifier.

The type cast is also used in Scala to perform conversions between nu-
meric types, as we have seen. For that reason, the cast method just pre-
sented is overridden appropriately in classes representing these types.

4.3.1 A note about concurrency

An important aspect to keep in mind when designing a Java library is that
Java is a concurrent language. For the library to be usable in all situations,
it is therefore important to make sure it is thread-safe.

The library to manipulate run time types that we are about to describe
is no exception, and care has been taken during its design to ensure thread-
safety. This has been accomplished by avoiding shared state as much as
possible, and using locks or atomic updates when necessary.

54 CHAPTER 4. REPRESENTING RUN TIME TYPES

4.3.2 Class types

Class types represent the type of instances of a Java or Scala class. All
objects existing at run time therefore have a class type attached to them.
Java class types are attached to instances of Java classes, and Scala class
types are attached to instances of Scala classes.

In their most general form, class types have the following form:

P#C[T1, . . . , Tn]

where P is a type called the prefix, C is a class name, and the sequence
T1, . . . , Tn is the instantiation. Only the class name is always present: top-
level classes have no prefix, and monomorphic classes have no instantia-
tion. Our implementation being restricted in that non-empty prefixes have
to be singleton types, we will from now on consider only class types of the
form

p.type#C[T1, . . . , Tn] (or, equivalently p.C[T1, . . . , Tn])

where p is a value called the outer instance.
Class types which have neither a prefix nor type arguments are called

trivial (class) types. Class types which are trivial and which have only trivial
ancestors are called strongly trivial (class) types.

Erasure

The erasure relation transforms class types by removing their prefix and
instantiation:

|p.C[T1, . . . , Tn]| = U#C

where U is the erasure of the type of the prefix.
Both the prefix and the instantiation have to be preserved as data struc-

tures to provide full run time types.
Notice that trivial class types are preserved by erasure.

Subtyping

All class types, including Java class types, are subtypes of AnyRef and Any.
A class type is a subtype of a compound type if it is a subtype of all the
components of the compound type. Subtyping among class types is more
involved, and deserves some attention. To explain it, we first define the
notion of ancestors of a class type.

The ancestors of a class type T, written A(T), is the set of all the types
of the base classes [20, §3.4] of T. The non-trivial ancestors of a class type T
is the subset of the ancestors of T which are not trivial.

4.3. TYPE REPRESENTATIONS 55

Example The following definitions:

trait Iterable[+T];
class Seq[+T] with Iterable[T];
class List[+T] extends Seq[T];

give rise, for example, to the following ancestors:

Type Ancestors
Seq[Object] Seq[Object], Iterable[Object], Object
List[String] List[String], Seq[String],

Iterable[String], Object

In particular, notice that even though the type List[String] is
a subtype of Seq[Object], because of the covariance of the type
argument, the latter is not part of the ancestors of the former.

An instantiation of a parametrised class type p.C[V1, . . . , Vn] is a se-
quence of types, written [T1, . . . , Tn], mapping variable Vi to type Ti where
i ∈ {1, . . . , n}.

An instantiation [T1, . . . , Tn] of a parametrised class type p.C[V1, . . . , Vn]
subsumes another instantiation [U1, . . . , Un] if and only if the following
holds:

∀i ∈ I0
C : Ti ≡ Ui ∧ ∀i ∈ I−C : Ui <:S Ti ∧ ∀i ∈ I+

C : Ti <:S Ui

where I0
C, I−C and I+

C are the set of indexes of invariant, contravariant and
covariant type parameters of C, respectively.

Subsumption is a ternary relation, as it relates two instantiations and a
class name, and is written as follows:

[T1, . . . , Tn] v
C

[U1, . . . , Un]

Given these notions, we can express subtyping among class types as
follows:

S <:S p.C[T1, . . . , Tn]
m

∃U1, . . . , Un : p.C[U1, . . . , Un] ∈ A(S) ∧ [U1, . . . , Un] v
C

[T1, . . . , Tn]

Informally, a class type S is a subtype of another class type T if S has an
ancestor with the same class and prefix as T, and if the instantiation of that
ancestor subsumes the instantiation of T.

56 CHAPTER 4. REPRESENTING RUN TIME TYPES

For a trivial class type T, which has neither a prefix nor type parame-
ters, the subtyping test S <:S T reduces to the following check:

S <:S T ⇔ T ∈ A(S)

4.3.3 Java class types

A Java class type contains nothing more than the java.lang.Class object
representing the class. It simply serves as a wrapper around Java’s reflec-
tion API.

All Java class types are trivial, as they have neither a prefix, nor type
parameters — at least until Java 1.4 which is the latest version currently
supported by Scala.

4.3.4 Scala class types

Scala class types represent the type of all instances of Scala classes, which
have the form p.C[T1, . . . , Tn]. Their representation is split in two parts:

1. the part common to all instantiations of the type constructor (p.C),

2. the part specific to the instantiation of the type ([T1, . . . , Tn]).

The common part is stored into a type constructor object, while the specific
part is stored into the Scala class type itself. These two parts are described
below.

Type constructor

The type constructor stores the information common to all instantiations
of a polymorphic class type, which includes:

1. the prefix of the type, if any,

2. the java.lang.Class object representing the class of the type,

3. the variance of the type parameters,

4. the level of its class in the hierarchy,

5. the ancestor code, describing how to obtain the non-trivial ancestors
of an instantiation of the type (see following section).

4.3. TYPE REPRESENTATIONS 57

The level of a class is defined as the length of the shortest path from that
class to class scala.AnyRef in the inheritance graph. Direct subclasses of
AnyRef have level 1, their children have level 2, and so on.

Scala class types being relatively expensive to create, the type construc-
tor also serves as a cache of all instantiations of itself. This cache is imple-
mented as a purely functional red-black tree [24], and a reference points
to its root. By updating this reference atomically, it is possible to manage
this cache efficiently, without locking and in a thread-safe manner. Atomic
update of the root can be easily achieved with the AtomicReference class
of Java 5. For compatibility, the current implementation uses locks, but
switching to a lock-free implementation is a matter of changing a single
line in the code.

The use of a cache also ensures that there exists at most one object to
represent every Scala class type. This makes it possible to efficiently com-
pare these types for equality, by comparing references.

Actual Scala class type (instantiation)

Scala class types have a pointer to their type constructor, as well as all the
information related to their instantiation, which includes:

1. the types which compose the instantiation,

2. the ancestor cache, containing the non-trivial ancestors of this type.

The types which compose the instantiation are reordered according to
the variance of the corresponding variables: the types of the invariant vari-
ables are put first, followed by the ones of the contravariant variables, and
finally the ones of the covariant ones. This means that the sets of indexes
I0, I− and I+ can be represented with a single integer, and thus that the
test of instantiation subsumption can be performed more easily.

The ancestor cache contains all the non-trivial ancestors of the type,
organised by level. Strongly trivial types, having only trivial ancestors,
have an empty ancestor cache.

As an example, consider the hierarchy of figure 4.2 on the next page,
taken from the Scala library. It gives rise to the ancestor cache presented
in table 4.1 for object Nil. Notice that this cache contains neither an entry
for Object, nor one for Nil, as both types are trivial.

The ancestor cache of a type is the union of the ancestor caches of its
parents, to which the type itself is added unless it is trivial. The ances-
tor cache is computed lazily, and to speed its computation, parts of it is

58 CHAPTER 4. REPRESENTING RUN TIME TYPES

Object

Seq[All] Iterable[All]PartialFunction[Int,All]

Function1[Int,All]

List[All]

Nil

Figure 4.2: Ancestors of object scala.Nil

Level Contents
1 Function1[Int,All], PartialFunction[Int,All],

Seq[All], Iterable[All]
2 List[All]

Table 4.1: Ancestor cache of object scala.Nil

performed at compile time and stored in the type constructor, as the an-
cestor code mentioned previously. The ancestor code describes how the
ancestor cache of the first not-strongly-trivial parent of the type needs to
be augmented to get the cache for the type itself.

To illustrate this, consider figure 4.3 on the facing page which shows
the ancestor caches for Seq and its two non-trivial parents, Iterable and
PartialFunction. The ancestor cache of Seq is obtained as follows:

1. copy the ancestor cache from parent number 0 (PartialFunction),

2. at level 1, add the type itself (Seq) as it is not trivial,

3. at level 1, add 1 entry from parent number 1 (Iterable), taken from
its ancestor cache at offset 0, at the same level.

4.3. TYPE REPRESENTATIONS 59

Steps 1 and 2 are always implicit. Step 3 is encoded as the sequence
[1, 1, 1, 0], which constitutes the ancestor code for scala.Seq.

parent 0 parent 1

1: Function1[Int,T]
 PartialFunction[Int,T]

PartialFunction[Int,T]

1: Iterable[T]

Iterable[T]

1: Function1[Int,T],
 PartialFunction[Int,T]
 Seq[T], Iterable[T]

Seq[T]

ancestor code:
[1, 1, 1, 0]

Figure 4.3: Ancestor caches for scala.Seq and its parents

The ancestor cache makes the implementation of the subtyping test for
Scala class types relatively efficient. This implementation is given by al-
gorithm 1 on the next page. It accesses the various components of Scala
class types described above: the type constructor (constr), the ancestor
cache (ancestor[·]), the type parameters (parameter[·]) and the indexes of
the last in-, contra- and covariant type parameters (max{0,−,+}).

4.3.5 Array types

Java arrays interact with run time types in non-trivial ways, mostly be-
cause they are the only parametric types recognised as such by the JVM.

In Scala, Java arrays with elements of type T are viewed as having the
type Array[T]. The type constructor Array is restricted in the same way
as in Java : it is only possible to instantiate it with a type which is either a
specific value type (Boolean, Int, etc.), or a reference type. In particular, a
type like Array[T] where T is a type variable bounded by Any is refused2.
Arrays in Scala are invariant, unlike Java arrays which are covariant.

2As this limitation can be annoying for the programmer, a class Vector is provided in
the Scala library. This class isn’t limited in the types it accepts as arguments.

60 CHAPTER 4. REPRESENTING RUN TIME TYPES

Algorithm 1 Subtyping test for Scala class types
procedure ISSUBTYPE(t1, t2) . t1 <:S t2 for t1, t2: Scala class types

if ∃t′1 : t′1 ∈ t1.ancestor[t2.level] ∧ t′1.constr = t2.constr then
for i ∈ [0, max0] do . check invariant parameters

if t′1.parameter[i] 6≡ t2.parameter[i] then
return false

end if
end for
for i ∈ [max0 + 1, max−] do . check contravariant parameters

if t2.parameter[i] 6<:S t′1.parameter[i] then
return false

end if
end for
for i ∈ [max− + 1, max+] do . check covariant parameters

if t′1.parameter[i] 6<:St2.parameter[i] then
return false

end if
end for
return true

else
return false

end if
end procedure

4.3. TYPE REPRESENTATIONS 61

Representation of array types

An array type can be viewed as a kind of class type, which has no prefix
and one type parameter. The notion of triviality can be extended to array
types, by saying that the type Array[T] is trivial if and only if T is trivial.
This ensures that the key property of trivial types, which is that they are
preserved by erasure, is also true for trivial array types. All trivial array
types are also strongly trivial, given the fact that Array[T] inherits directly
from Object.

All trivial array types are represented as Java class types, using the
technique of the Java reflection library which consists in encoding the type
as the name of a class. For example, the type Array[Array[Object]] is
represented as a Java class type with name [[Ljava.lang.Object;.

While appropriate for trivial array types, this technique does not work
for non-trivial ones. Such types are represented by instances of a class
called JavaRefArrayType which stores the type of the elements of the ar-
ray as well as its dimensions. This class also provides the membership test
appropriate for arrays, which can fail in certain cases as we will now see.

Run time type of arrays

Instances of non-trivial array types are limited in that it is not possible
to extract their Scala run time type: only the JVM run time type is avail-
able for them. It is therefore not possible to distinguish the type of two
arrays when their element types have the same erasure. This has two con-
sequences: first, we prohibit the creation of arrays of singleton or com-
pound types; second, an instance test might fail with an exception when
attempted on an array type instantiated with a non-trivial class type.

Arrays of singleton or compound types are prohibited because, as soon
as they are created, their run time type becomes indistinguishable from
the one of other arrays. For example, an array instantiated with the com-
pound type C with D would be represented as an array of C— the erasure
of C with D. There is no way to distinguish such an array from a genuine
array of C, which means that the membership test cannot provide a reli-
able answer. Worse, the fact that a reliable answer cannot be provided is
not detectable at this point. We therefore attack the problem at its root by
failing as soon as the creation of such an array is attempted.3 Notice that
this failure can happen either at compilation time, or at run time, as the
type system of Scala does not enable us to express the constraint that a

3We do provide a way to circumvent this restriction, should this be absolutely neces-
sary, by calling a function of the Scala run time system disabling the check.

62 CHAPTER 4. REPRESENTING RUN TIME TYPES

type variable can only be instantiated with something which is neither a
singleton, nor a compound type.

Arrays of non-trivial class types present a similar problem, albeit not
as severe. For example, an array of a parametric type like List[String] is
not distinguishable from an array of another instantiation of the same type
constructor, say List[Object]. This is due to the two parametric types
having the same erasure, namely List. This time, however, the problem
can be detected when the membership test is attempted, as it is easy to
find out that not enough information is available to compute the correct
answer. Therefore, our implementation permits the creation of arrays of
non-trivial class types, but might throw an exception when a membership
test is attempted. If no exception is thrown, the correct answer is obtained,
as usual.

4.3.6 Singleton types

Singleton types have the form x.type where x is a value. They are rep-
resented by the value x itself, wrapped inside an instance of the class
SingleType.

Erasure

Singleton types are erased to the erasure of the type of their value. The
identity of their value, as well as its precise type, are therefore lost. Stor-
ing only the value associated with the type is enough, as its type can be
extracted using the getScalaType method (see §5.6).

Subtyping

Subtyping for singleton types can easily be implemented using the mem-
bership test, thanks to the following equivalence:

x.type <:S T ⇔ x.isInstanceOf[T]

4.3.7 Compound types

Compound types are composed of a set of component types T1, . . . , Tn and
a refinement R.

4.3. TYPE REPRESENTATIONS 63

Erasure

Erasure of compound types loses all information about the refinement,
and about all component types but the first, which is erased:

|T1 with T2 . . . with Tn {R}| = |T1|

Both the types of all components and the refinement should be represented
at run time to provide full run time types.

However, for our implementation, we decided to keep only the types
of the components, and to represent the refinement as a simple boolean
indicating whether it is empty or not. At run time, all operations on run
time types involving compound types with a non-empty refinement fail
if the value of that refinement would have been needed to perform the
operation.

Our decision was motivated by the cost of the implementation of re-
finements, which we considered to be too high compared to the benefits.
Refinements are costly to implement because they represent constraints on
the type of the members of a class. Supporting them fully requires the abil-
ity to represent these constraints, compare them (to implement subtyping)
and test whether an object satisfies them (to implement the membership
test). To illustrate this, consider the following class definitions:

abstract class C { type T; type U; }
abstract class D { def m: C }

Given these classes, a refined type like C { type T = U } represents in-
stances of C for which type member T is equal to type member U. To per-
form a membership test like this one:

v.isInstanceOf[D { def m: C { type T = U } }];

the following actions must be carried out at run time:

1. first check whether value v is an instance of class D, which poses no
problem,

2. then, if the first condition is satisfied, extract the (Scala) return type
of method m from v— this alone requires reflection capabilities for
Scala,

3. finally, check that the return type of method m in v is actually a sub-
type of the refined type C { type T = U }— this requires the com-
parison of constraints, for example if v is an instance of a class where
the return type of m is C { type U = T }.

64 CHAPTER 4. REPRESENTING RUN TIME TYPES

Subtyping

A compound type can be a subtype of either a class type or of an other
compound type.

A compound type is a subtype of a class type if any of its components
is a subtype of the class type. This is implemented simply by iterating over
the components.

A compound type T1 is a subtype of an other compound type T2 if T1
is a subtype of all components of T2 and if the refinement of T1 subsumes
the one of T2. This is implemented by first iterating over the components
of T2, and then comparing the refinements if needed.

As we have seen, refinements are represented as simple booleans in-
dicating whether they are empty or not. It is therefore only possible to
compare two refinements if at least one is empty: an empty refinement
only subsumes another empty refinement, and a non-empty refinement
subsumes an empty refinement. If both refinements are non-empty, the
correct answer cannot be computed, and our implementation fails with an
exception.

4.3.8 Value types

Value types in Scala include types corresponding to Java’s primitive types
(e.g. scala.Int corresponds to Java’s int, and so on) as well as the type
scala.Unit which is inhabited only by the unit value.

One subclass of scala.Type exists for each of these types, and one in-
stance of each of these classes is stored in a static field of scala.Type. This
makes the equivalence and subtyping tests easy to implement for them.

As explained in Section 3.2.3, the asInstanceOf method is also used
in Scala to convert numeric values between the various numeric types.
To support this behaviour, the cast methods of all classes representing
numeric types contain code performing these coercions when appropriate.

Erasure

Value types are erased to themselves.

Subtyping

All value types are only subtypes of themselves, AnyVal and Any. The
subtyping test is implemented trivially, by conjunction of these three pos-
sibilities.

4.3. TYPE REPRESENTATIONS 65

4.3.9 Special types

Scala provides a few “special” types which are neither class types nor
value types: Any, AnyVal, All and AllRef. They are handled in a simi-
lar fashion as value types, in that one instance of each of them is stored in
a static field of scala.Type.

The type AnyRef is simply an alias for Object, hence it is always repre-
sented as the corresponding Java class type.

Erasure

All special types are erased to Object. This means that all information
about them is lost in the process.

Subtyping

The subtyping test for special types simply follows the Scala rules:

Any <:S T ⇔ T ≡ Any

AnyVal <:S T ⇔ T ≡ Any∨ T ≡ AnyVal

AllRef <:S T ⇔ T <:S AnyRef

All <:S T

66 CHAPTER 4. REPRESENTING RUN TIME TYPES

Chapter 5

Compiling Run Time Types

5.1 Introduction

Having examined the representation of Scala types as JVM objects at run
time, we consider the compilation of expressions involving types. These
expressions include of course the membership tests and the type casts, but
also all invocations of polymorphic methods and class constructors.

5.2 Compiling type expressions

The TypesAsValues phase takes a Scala program where all types are still
present, and transforms it into one where every type expression is matched
by a corresponding value expression. The types can then be (partially)
erased by the Erasure phase, without preventing the correct execution of
type-dependent operations at run time.

The matching of type expressions by value expressions is performed as
follows:

1. all polymorphic methods (including constructors) receive one addi-
tional value parameter for each of their type parameters,

2. a type instantiation method is created for every class of the program;
this method expects type arguments and produces a type represen-
tation of the class type to which it corresponds,

3. all classes receive one accessor method for each of their type mem-
bers,

68 CHAPTER 5. COMPILING RUN TIME TYPES

4. all concrete classes get one method called getScalaType which re-
turns the type of the object, as an instance of the ClassType class
described in section 4.3.2,

5. all calls to the isInstanceOf and asInstanceOf methods are trans-
formed into equivalent code which uses type representations.

These transformations are detailed below.

5.3 Polymorphic methods and classes

All polymorphic methods are transformed to get one additional value
parameter for each of their type parameters. Calls to such methods are
transformed accordingly, by passing the value representation of type ar-
guments.

Class constructors of polymorphic classes are handled like polymor-
phic methods.

Example translation

To illustrate the translation of polymorphic methods, consider this simple
definition:

def twice[T](x: T): Pair[T,T] =
new Pair[T,T](x,x);

This method is translated as follows, with value parameters added to the
method itself as well as to the constructor of the Pair class:

def twice[T](typ$T: scala.Type, x: T): Pair[T,T] =
new Pair[T, T](typT, typT, x, x);

5.4 Instantiation methods and type constructors

As explained in section 4.3.4, a type constructor object is attached to every
class which is not strongly trivial. This type constructor serves two pur-
poses: it acts as an instantiation cache, storing the types corresponding to
the various instantiations of the class; and it stores the information com-
mon to all these instantiations, like the variance of the type parameters.

The type constructor object is not manipulated directly by clients of
the class that want to obtain the type corresponding to an instantiation

5.4. INSTANTIATION METHODS AND TYPE CONSTRUCTORS69

of the class. Rather, these clients call an instantiation method, specific to
the class, passing it the actual type parameters for which an instantiation
is desired. The instantiation method checks in the cache attached to the
type constructor whether the appropriate instantiation already exists, and
returns it if this is the case. Otherwise, a new type is built, inserted into
the cache, and returned.

In the code, both the instantiation methods and the type constructor
object need to be nested at the same level as the class to which they cor-
respond. This is easy for classes which are nested into other classes: the
type constructor and instantiation method are both added as members of
the enclosing class. Top-level classes do not have an enclosing class, how-
ever, and in that case the Scala compiler attaches the type constructor and
the instantiation method as static members of these classes.

Before being passed to an instantiation method, type parameters are re-
ordered according to their variance: all invariant parameters are put first,
followed by all contravariant ones and finally all covariant ones. This is
done in order to ease the implementation of the subtyping test, as we have
seen in section 4.3.4. The reordering is stable, that is parameters with the
same variance keep their relative position to one another. This ensures that
there exists exactly one such reordering, which is necessary in the presence
of separate compilation.

To build a class type, the types of all its parents which are not strongly
trivial are needed, in order to compute the ancestor cache of the type itself.
However, computing these parent types eagerly leads to an infinite loop
in cases like the following:

class C[T];
class D[T] extends C[D[D[T]]];

Creating the type D[Int] will lead to the computation of the type of its
parent, which will in turn lead to the creation of type D[D[Int]], and so
on.

This problem was noticed by Kennedy and Syme [12], and their solu-
tion, quite naturally, is to compute the type of the parents of a class lazily.
However, introducing laziness to compute the parent types of all classes
would be very expensive on the JVM, because a suspended computation
has to be represented either by a class or using reflection, and both are ex-
pensive. Fortunately, in Scala it is possible to identify the cases for which
laziness might be necessary, and use it only in those cases.

The key observation to make is that the set of classes involved in the
computation of the parents of a class type is finite, and usually known

70 CHAPTER 5. COMPILING RUN TIME TYPES

at compilation time. For the example above, although we have seen that
the set of types needed to compute the parents of D[Int] is infinite, only
five classes are involved in this computation: C, D, Int, AnyRef and Any.
The presence of D itself in this list indicates the potential for an infinite
recursion.

Abstract type members complicate the problem as it is not possible to
know to which concrete type they will be bound at run time. This can lead
to a loop in the computation of parents, as exemplified by the following
program:

class A[T];

abstract class C {
type U;
class D[V] extends A[U];

}

class E extends C {
type U = D[E];

}

Computing the parents of class D[Int] in E, for example, will lead to the
computation of D[E] which will itself compute D[E], etc. We deal with
such cases conservatively, by considering that abstract type members can
be bound to any class in the program.

More formally, we associate to every class C the set C(C) of classes
needed to compute the type of its parents. Additionally, we associate to
every type T the set T (T) of classes needed to compute the type T itself
and its parents. These sets are defined as the smallest sets satisfying the
following equations, where F represents the set of all classes appearing in
the program:

C(C) =
n⋃

i=1

T (Pi) where P1, . . . , Pn are the parent types of C

T (T) =


T (P) ∪ {C} ∪ C(C) ∪ ⋃n

i=1 T (Ti) if T = P#C[T1, . . . , Tn]⋃n
i=1 T (Ti) if T = T1 with T2 . . . Tn

F if T is a type member
∅ otherwise

We can now define the set L of classes whose parent types need to
be computed lazily. These are the classes which are potentially required

5.4. INSTANTIATION METHODS AND TYPE CONSTRUCTORS71

themselves to compute the type of their parents:

L =
{

C
∣∣ C ∈ C(C)

}
In practice, L tends to be small: for scalac and the Scala standard library,
it contains only 17 classes out of more than 1000. Of these 17 classes,
11 pass their own type to one of their parents, i.e. they are of the form
D[T] extends C[D[T]]; the remaining 6 pass a type member to their par-
ents, and are conservatively included.

Example translation

We present two example translations: one which does not involve recur-
sion in the computation of the parent types, and one which does.

Eager computation of parents

To illustrate the translation of a class whose parents can be computed ea-
gerly, we consider a class modelling cells:

class Cell[T](x: T) {
def get: T = x;

}

It gets translated to the following code:

class Cell[T](typ$T: scala.Type, x: T) {
static val tConstructor$Cell$: TypeConstructor =
new TypeConstructor(1, // level

"Cell", // name
null, // outer instance
1, 0, 0, // number of in-, co- and

// contravariant variables
2, // depth of ancestor cache
null); // ancestor code (empty)

static def instantiate$Cell$(types: Array[Type])
: ScalaClassType = {

val inst: ScalaClassType =
tConstructor$Cell$.getInstantiation(types);

if (inst != null)
inst

else
tConstructor$Cell$

72 CHAPTER 5. COMPILING RUN TIME TYPES

.instantiate(types, ScalaClassType.EMPTY_ARRAY)
};
def get: T = x;

};

The translated version contains definitions of static members, which are
not legal in Scala source, but can be produced by intermediate phases of
the compiler, like here.

Lazy computation of parents

To present the translation of classes whose parents have to be computed
lazily, we reuse the example presented above:

class C[T];
class D[T] extends C[D[D[T]]];

Class C is translated normally, but class D requires special care: since its
parents cannot be computed eagerly, their computation is wrapped inside
a fresh subclass of LazyParents, an abstract class belonging to the Scala
run time system. This class declares only one method, called force, which
computes and returns the parents.

class D[T](typ$T: scala.Type) extends C[D[D[T]]](/* ... */) {
val tConstructorD: TypeConstructor = /* ... as above */;
static def instantiateD(types: Array[Type])

: ScalaClassType = {
val inst: ScalaClassType =
tConstructorD.getInstantiation(types);

if (inst != null)
inst

else
tConstructorD.instantiate(types,

new LazyParents$D(types))
}

}
class LazyParents$D(types: Array[Type]) extends LazyParents {
def force: Array[ScalaClassType] = {
Array(instantiateC(
Array(instantiateD(
Array(instantiateD(types))))))

}
}

5.5. TYPE ACCESSOR METHODS 73

The force method will be called the first time the parents of the class are
needed.

5.5 Type accessor methods

The value representation of type members of classes have to be accessible
from outside of the class. Therefore, the Scala compiler adds one acces-
sor method for every type member of every class. With such a translation
scheme, the concreteness of type members directly carries over to the one
of their accessor: an abstract type member gets an abstract accessor, a con-
crete one gets a concrete accessor. The same is true of visibility modifiers.

Notice that, in Scala, it is possible to make an abstract type member
concrete using an inner class definition. One must therefore be careful
that this overriding is reflected by the accessor methods. For example, the
following code is a legal Scala program:

abstract class C { type T; }
class D extends C { class T; }

The inner class definition in class D provides a concrete value for the type
member T. The same must be true for the corresponding accessor meth-
ods: the accessor for inner class T in D must provide a concrete imple-
mentation for the abstract accessor for T declared in C. The easiest way
to ensure this is to name type accessors like instantiation methods. In the
above example, this means that both the accessor method for type T in C
and instantiation method for class T in D are called instantiate$T.

Example translation

To illustrate the addition of type accessor methods, we will reuse the small
program presented above:

abstract class C { type T; }
class D extends C { class T; }

The translated version, simplified to omit the type constructor and instan-
tiation methods for classes C and D, looks as follows:

abstract class C {
def instantiate$T(types: Array[Type]): Type;
type T;

}

74 CHAPTER 5. COMPILING RUN TIME TYPES

class D extends C {
val tConstructor$T: TypeConstructor =
new TypeConstructor(/* ... */);

override def instantiate$T(types: Array[Type]): Type =
/* ... see previous section */

class T;
}

5.6 Type reflection method

Every Scala class receives an implementation for getScalaType, a method
declared in the scala.ScalaObject interface1. This method is declared as
returning an instance of ClassType, as all Scala classes have by definition
a class type. The implementation of this method is straightforward, and
consists in a single call to the instantiation method of the class.

The getScalaType method is used to implement the membership test,
but it is also available to user programs, providing basic reflection capa-
bilities for Scala. It is Scala’s equivalent to Java’s getClass method.

Example translation

As explained above, the body of the getScalaType method consists of a
single call to the instantiation method of the class to which it belongs. We
illustrate this on the following class representing pairs of values:

class Pair[T1,T2](f: T1, s: T2) {
def fst: T1 = f;
def snd: T2 = s;

}

This class is translated as follows:

class Pair[T1, T2](typ$T1: Type, typ$T2: Type, f: T1, s: T2) {
/* ... instantiation method and type constructor omitted */

override def getScalaType(): ClassType =
instantiate$Pair$(Array(typ$T1, typ$T2));

1ScalaObject is a Java interface implemented by all Scala classes, containing some
support methods as well as the getScalaType method described here.

5.7. MEMBERSHIP TESTS 75

def fst: T1 = f;
def snd: T2 = s;

};

5.7 Membership tests

There are two methods to perform membership tests in Scala: the first
one is isInstanceOf, and was already presented; the second one is called
isInstanceOf$erased, and performs its test on the erasure of the type it is
given as argument. It corresponds precisely to the INSTANCEOF instruc-
tion of the JVM. This variant of the membership test is not meant to be
used by the programmer, but it can be introduced by intermediate phases
of the compiler.

One of the aims of the TypesAsValues phase is to transform the pro-
gram it receives into one that uses exclusively the erased variant of the
membership test. It achieves this by translating the calls to isInstanceOf
into a combination of calls to its erased variant, and tests performed on
the type representations, as we will now see.

In some cases, it is sufficient to perform the test on the erased type only.
This is for example true when the type on which the membership test is
performed is statically known to be trivial, since trivial types are preserved
by erasure.

It is also possible to use static knowledge about the value on which the
membership test is performed to determine that using its erased variant is
equivalent2. To illustrate this, we can reuse the length function presented
in section 3.2.4. After pattern matching has been translated, this function
starts as follows:

def length[T](l: List[T]): Int = {
var $result: Int = _;
if (if (l.isInstanceOf[Cons[T]]) {

val tl: List[T] = l.asInstanceOf[Cons[T]].tl();
...

}

Considering the definitions of classes List and Cons, and the type of l,
one can show that if l is an instance of Cons[α] for some α, then it is also
an instance of Cons[T]. In other words, using the erased version of the
membership test would here be equivalent to using the normal one.

2This optimisation is not yet implemented in scalac

76 CHAPTER 5. COMPILING RUN TIME TYPES

This is not true of all membership tests produced by the translation of
pattern matching, though. For example, if we slightly change the example
above so that the type parameter of Cons is invariant instead of covari-
ant, the membership test cannot be performed on the erased type alone
anymore: it is then possible to have values which have type List[T] and
which are instances of Cons[α] for some α, but which are not instances
of Cons[T]. An example is the value Cons("a", Nil), which has type
List[Object] and is an instance of Cons[String], but not an instance of
Cons[Object].

Occurrences of the membership test which cannot be translated to tests
on the erased type have to be translated using the type representation. We
separate them in two categories, depending on the nature of the type T on
which the test is performed:

1. if T is statically known to be a class type, then the test is first per-
formed on the erased type, and if it succeeds, is performed on the
full type,

2. if T is something else, then the membership test is translated using a
call to the isInstance method of the type representation of T.

Example translation

To illustrate the translation of the membership test, we will use the follow-
ing program fragment, where obj is a value of type AnyRef:

obj.isInstanceOf[List[Int]]

We are here in the case where the type is statically known to be a class
type (case 1 above), and hence we can use the technique which performs
the test first on the erased type, obtaining:

{ val temp$ = obj;
temp$.isInstanceOf$erased[List[Int]]
&& instantiate$List$(Array(scala.Type.Int))

.isNonTrivialInstance(temp$) }

The isNonTrivialInstance method does the same test as isInstance, un-
der the assumption that the object is already known to be an instance of
the erased type. This avoids checking the same thing twice.

The temporary variable temp$ is introduced to avoid duplicating the
code — and the possible side-effects — of the expression whose type has
to be tested.

5.8. TYPE CASTS 77

5.8 Type casts

Like the membership test, the type cast comes in two variants: the method
asInstanceOf works on full types and is meant to be used by the program-
mer, while method asInstanceOf$erased works on erased types and is
meant to be used by various phases of the compiler.

One case where it is used is in the translation of pattern matching. We
can illustrate this again using the length function of section 3.2.4:

def length[T](l: List[T]): Int = {
var $result: Int = _;
if (if (l.isInstanceOf[Cons[T]]) {

val tl: List[T] = l.asInstanceOf[Cons[T]].tl();
...

}

Since l is immutable, the underlined call to asInstanceOf obviously can-
not fail, and can be replaced by a call to its erased variant. This is always
true, therefore TransMatch systematically uses asInstanceOf$erased for
its translation.

Calls to asInstanceOf are compiled by calling the cast method on the
type representation, passing it the receiver object. If this method returns,
then it returns the original object, with type java.lang.Object. In order
to satisfy the JVM byte-code verifier, this result still has to be cast to the
erased type, and the compiler inserts a call to asInstanceOf$erased in
that aim.

Like for the membership test, trivial types can be handled more effi-
ciently: the call to the cast method can be omitted, leaving only the call to
asInstanceOf$erased.

Example translation

Type casts are translated in a very similar fashion as membership tests, the
only difference being the erased cast inserted after the call to cast. This
is illustrated by the following example, similar to the one of the previous
section:

obj.asInstanceOf[List[Int]];

The resulting translation is:

instantiate$List$(Array(scala.Type.Int))
.cast(obj).asInstanceOf$erased[List[Int]];

78 CHAPTER 5. COMPILING RUN TIME TYPES

5.9 Default values

In Scala, a variable can be assigned a default value, which is written using
the underscore character ’_’. The exact value represented by the under-
score depends on the type of the variable: for numeric types it is 0, for the
boolean type it is false, for unit it is (), and for other types it is null.

When the type of the variable is known at compilation time, the com-
piler can easily produce the appropriate value. When the type of the vari-
able is not known, the compiler replaces the default value by a call to the
defaultValue method of the type representation.

Example translation

A class containing a variable initialised to its default value, like the follow-
ing:

class MutableCell[T] {
private var contents: T = _;
def set(x: T): Unit = (contents = x);
def get: T = contents;

}

is turned into the code below:

class MutableCell[T](typ$T: scala.Type) {
private var contents: T = typ$T.defaultValue();
def set(x: T): Unit = (contents = x);
def get: T = contents;

};

Notice that leaving the value undefined and letting the JVM initialise it
with null would not work for mutable cells instantiated with value types
(numerical types or unit). This would result in an error on attempting to
unbox that null value.

5.10 Array creation

In Scala, it is possible to create an array whose element type is not known
at compilation time, provided that this type is bounded by AnyRef. This
creates a JVM array with elements whose type is the erasure of their Scala
type.

5.11. POSSIBLE IMPROVEMENTS 79

To support this, class Type contains a method called newArray which,
given a size, creates an array of that size and of proper type.

Example translation

A method to create and fill an array can be defined as follows:

def newFilledArray[T <: AnyRef](n: Int, x: T): Array[T] = {
val a = new Array[T](n);
java.util.Arrays.fill(a, x);
a

}

It is transformed to the code below:

def newFilledArray[T <: AnyRef](typ$T: scala.Type,
n: Int,
x: T): Array[T] = {

val a = typ$T.newArray(n);
java.util.Arrays.fill(a, x);
a

}

5.11 Possible improvements

Our implementation is limited on three points: support for array types
is not complete, refinements are not fully supported and prefixes cannot
refer to class types.

The limitations of array types are inherent to the JVM, and there is
therefore little we can do to alleviate them.

Refinements, as we have seen, would at least require full support for
reflection. With that support in place, refinements could be represented as
sequences of constraints on the type of the members of an object. Provid-
ing an efficient representation for these constraints, including operations
to compare them and check that they are satisfied by an object, is still an
open problem.

The restriction on prefixes should be the easiest to remove, and we will
briefly sketch how this could be achieved.

Currently, our implementation only allows prefixes which are empty,
or which are singleton types. Scala, however, permits the use of other class

80 CHAPTER 5. COMPILING RUN TIME TYPES

types as prefixes. To illustrate this limitation, we can use the following
example:

class O[T] { class I[U] extends Pair[T,U]; }

While our implementation allows the creation of type o.I[Int] (which is
the same as o.type#I[Int]) for some instance o of O, it does not allow
the creation of type O[String]#I[Int]. This is due to the placement of
type constructors and instantiation methods in the code: those of class I
appear as members of class O, and it is not possible to access them without
an instance of that class.

To lift that restriction, instantiation methods should be made static.
This change alone is not sufficient, however, as these methods sometimes
need access to their environment. In the example above, the instantiation
method for I needs to access type T in order to compute type Pair[T,U].
For that reason, instantiation methods would need an additional parame-
ter, representing their type environment.

The caller of the instantiation method would need to create and pass
this type environment. It could be obtained either by calling a method on
the outer instance when one is available, or constructed explicitly in the
other cases.

For the example given above, this would mean that the instantiation
method for I would appear as a static method of class I. It would take
two arguments: a type representation for its own type parameter U, and
the set of types representing its environment, which in this case consists
only in type T. To build the type representation for O[String]#I[Int],
that method would be called with the type representations for Int and
String as arguments.

A few adaptation to our run time classes (e.g. TypeConstructor) would
have to be made for this solution to work, but they should not cause any
particular problem.

Chapter 6

Performance impact of run time
types

Run time types do not come for free: constructing them, passing them
around and comparing them consumes both time and memory. In order to
evaluate the cost of our implementation, we used both a micro-benchmark
and several real programs. The micro-benchmark gives a good idea of
the relative cost of the different aspects of run time types, while the real
programs show, in practice, the impact of run time types on performance.

All measures in this chapter were taken on an iMac equipped with a
1.8 GHz PowerPC G5, and 1 GB of RAM. This machine was running ver-
sion 1.4.2 of the HotSpot JVM, in client mode.

6.1 Micro benchmark

The complete listing of our micro-benchmark is given in figure 6.1. This
program times the repeated invocation of several functions, each of which
uses a specific aspect of the implementation of run time types. The follow-
ing aspects are measured (the numbers given here correspond to those in
the code and in table 6.1):

1. the benchmark overhead, measured by invoking an empty function;
this serves as a baseline to judge the other measures,

2. the cost of passing precomputed types as values,

3. the cost of creating and passing types as values,

4. the cost of performing an erased membership test,

82 CHAPTER 6. PERFORMANCE IMPACT OF RUN TIME TYPES

5. the cost of performing an unsuccessful membership test on a type
known at compilation time — involving only an membership test on
the erased type followed by a jump,

6. the cost of performing an unsuccessful membership test on a type
unknown at compilation time — involving the creation of a type rep-
resentation, a membership test on the erased type through Java re-
flection, and a jump,

7. the cost of performing a successful membership test on a type known
at compilation time — involving a membership test on the erased
type, the creation of a type representation, a lookup in the ancestor
cache and a comparison of instantiations,

8. the cost of performing a successful membership test on a type un-
known at compilation time — involving the creation of a type repre-
sentation, a membership test on the erased type through Java reflec-
tion, a lookup in the ancestor cache and a comparison of instantia-
tions.

The results are presented in table 6.1, which reports the time per it-
eration in nanoseconds. They show that both the creation of type repre-
sentations and the membership test are very expensive operations. The
relative costs of the various forms of the membership test confirm that us-
ing the erased variant as much as possible is worthwhile. Moreover, first
performing the membership test on the erased type before performing it
on the type representation also pays, as can be seen by comparing results
5 and 6.

Aspect Description Time (ns)
1 no run time types involved 14
2 precomputed type passing 19
3 type creation and passing 231
4 membership test (erased type) 31
5 unsuccessful membership test on known type 47
6 unsuccessful membership test on unknown type 417
7 successful membership test on known type 605
8 successful membership test on unknown type 651

Table 6.1: Micro benchmark timings

6.1. MICRO BENCHMARK 83

class C[T];

object MicroBenchmark {
def empty(x: Any): Unit = ();
def pass[T1](x: Any): Unit = ();

def instTestErased(x: Any): Unit =
x.isInstanceOf$erased[C[Int]];

def instTestKnown(x: Any): Unit =
x.isInstanceOf[C[Int]];

def instTest[T](x: Any): Unit =
x.isInstanceOf[T];

def time(name: String, bench: =>Unit) = {
System.gc();
val begin = System.currentTimeMillis();
var i: Int = 0;
while (i < 10000000) { bench; i = i + 1 }
val end = System.currentTimeMillis();
Console.println(name + ": " + (end - begin) + " ms")

}

def doIt[T](x: Any, y: Any): Unit = {
time("1 empty ", empty(x));
time("2 pass ", pass[T](x));
time("3 create + pass ", pass[C[Int]](x));
time("4 inst. (erased) ", instTestErased(x));
time("5 inst. known (no) ", instTestKnown(y));
time("6 inst. unkn. (no) ", instTest[C[Int]](y));
time("7 inst. known (yes)", instTestKnown(x));
time("8 inst. unkn. (yes)", instTest[C[Int]](x));

}

def main(args: Array[String]): Unit =
doIt[C[Int]](new C[Int], "a");

}

Figure 6.1: Micro benchmark program

84 CHAPTER 6. PERFORMANCE IMPACT OF RUN TIME TYPES

6.2 Large benchmarks

To get an idea of the influence of run time types on realistic programs,
we ran several of them with run time types successively enabled and dis-
abled. We gathered some statistics about the usage of run time types, and
measured their impact on code size, memory consumption and execution
time.

The results are presented below, after a short introduction explaining
the programs used.

6.2.1 Benchmark programs

We used five real programs as benchmarks: three (sometimes incomplete)
compilers, one interpreter, and a tool to examine compiled Scala programs.
All these benchmarks were written before run time types were available,
and can therefore work with or without them, which was a necessary con-
dition for our experiment.

The size of these programs is given in table 6.2. The number of lines
of code mentioned includes neither blank lines nor comments. All these
benchmarks also make use, at varying degrees, of the Scala library com-
prising about 4,500 lines of code.

Lines of code
Name Scala Java
scalac 17,800 33,000
nsc 10,400 –
scaletta 3,400 1,500
scalap 1,800 1,000
evaluator 260 –

Table 6.2: Size of benchmark programs

A quick description of these programs and the input they received dur-
ing our measurements follows.

Scala compiler

Scalac is written partly in Scala and makes therefore a very good bench-
mark, being currently one of the biggest Scala program in existence. The
part of Scalac written in Scala is composed of all the front-end phases, as
well as the first two phases of the back-end: UnCurry and TransMatch (see
figure 1.1 on page 11).

6.2. LARGE BENCHMARKS 85

For our measures, we asked scalac to compile the whole source code
from the scalap benchmark, described below.

New Scala compiler (nsc)

The Scala compiler is currently being rewritten completely in Scala. Only
the scanner, parser and type checker of the new Scala compiler were com-
plete at the time of writing, but even at this stage nsc constitutes a good
benchmark, being relatively big.

For our measures, we gave nsc 50 files from the Scala standard library
to parse and type-check.

Scaletta compiler

Scaletta is a small object-oriented calculus designed to formalise the core
features of Scala [3]. A prototype compiler has been written in Scala by
Philippe Altherr. Currently, this prototype only performs the type check-
ing of its input, which must be included directly in the source code as an
AST, as no parser has been written yet.

To measure the execution time of this prototype compiler, we gave it a
small program to type-check.

Scala object file printer

Scalap is a tool to display the contents of compiled Scala class files. It
is written almost completely in Scala, but reuses a few Java classes from
scalac.

In this benchmark, scalap is given all the classes from the Scala library,
and its output is redirected to /dev/null.

Misc evaluator

The evaluator benchmark is an evaluator for Misc programs. Misc (Mini
Scala) is a small language developed for a compilation course at EPFL. The
evaluator is a direct translation of the small-step operational semantics of
the language.

The evaluator is given the recursive (and naive) definitions of the Fi-
bonacci and factorial functions, and asked to compute these two functions
applied to 10.

86 CHAPTER 6. PERFORMANCE IMPACT OF RUN TIME TYPES

6.2.2 Execution statistics

To have an idea of how heavily the various benchmarks make use of run
time types, we collected a few statistics. We obtained them by augmenting
the code of the run time types library with assertions which never fail, but
collect data as a side effect. This enabled us to easily disable them to avoid
slowing down the programs when measuring execution speed.

Type representations

The first statistic of interest is the number of times a given kind of type
representation is created. Moreover, it is important to know how many of
these representations are different: if only a very small percentage of them
are, using memoization might be interesting.

From the results presented in table 6.3, we can conclude that, at least
for our programs, it makes sense to use memoization for Scala and Java
class types, as we currently do. It might also be interesting for singleton
and compound types, but since so few of them actually exist we decided
not to memoize them.

Notice that the table doesn’t include entries for value or special types,
as there is always a single instance of them, cached in a static field of
scala.Type. Also, if a particular benchmark does not create any instance
of a given type representation, no data appears in the table. This is why
only one row exists for Java arrays, for example: nsc is the only benchmark
to use them.

Instance tests and casts

To know how much run time types were actually used by the various
benchmarks, we counted the number of times the instance test and type
cast methods were invoked. These counts do not include tests and casts
performed on erased types, as these are directly translated to the appro-
priate JVM instructions. The results are presented in table 6.4.

These results show that type casts are a lot less frequent than member-
ship tests. This is to be expected as most type casts are introduced by the
pattern matcher, which uses the erased variant as we have seen in section
5.7.

It is also interesting to note that the non-trivial variant of the instance
test is invoked much more often than the normal one. This indicates that
very often membership tests are performed on class types for which the
class is statically known.

6.2. LARGE BENCHMARKS 87

Type Benchmark Instances Unique
Scala class scalac 79,463 180

nsc 3,754,948 27,143
scaletta 668,845 285
scalap 59,405 1,767
evaluator 321,161 52

Java class scalac 200,832 20
nsc 69,534 9
scaletta 20,410 17
scalap 79,289 2
evaluator 219,087 8

Java array nsc 28,640 1
singleton nsc 48 2

scaletta 98 5
scalap 112 1

compound scalac 437 19
nsc 98 2
scaletta 84 3

Table 6.3: Instances of various types

Benchmark isInstance isNonTrivialInstance cast
scalac 0 28,516 0
nsc 5 1,232,844 7,275
scaletta 35 318,437 152
scalap 112 20,383 0
evaluator 0 55,782 0

Table 6.4: Calls to instance test and type cast methods

88 CHAPTER 6. PERFORMANCE IMPACT OF RUN TIME TYPES

Ancestor cache searches

As described in section 4.3.4, the ancestor cache is organised as an array of
lists, each level containing the list of ancestors at that level. When search-
ing for an ancestor, a linear search is performed on the appropriate list.

To know whether the linear search was costly, we counted the number
of ancestor searched, as well as the number of iterations performed. The
results are presented in table 6.5.

As these results show, in all our benchmarks the ancestors were found
in exactly one iteration on average, which indicates that the linear search
is appropriate. Although we could construct examples where more than
one iteration per search were performed, they do not seem to show up in
practice.

Benchmark Searches Iterations/searches
scalac 28,516 1.0
nsc 1,239,208 1.0
scaletta 318,589 1.0
scalap 20,495 1.0
evaluator 55,782 1.0

Table 6.5: Ancestor cache searches

6.2.3 Execution time

To measure the impact of run time types on the execution speed of our
benchmark programs, we compiled them first with run time types en-
abled, and then disabled. We executed them three times in a row and
took the average execution time. All benchmarks were run with an initial
heap size of 30 MB, except nsc which received 200 MB.

As we have seen in the previous sections, the two main operations per-
formed on run time types are the creation of type representations and the
membership test. Most of these membership tests are due to our bench-
marks making heavy use of pattern matching — all but one manipulate
programs represented as trees. As explained in section 5.7, almost all of
these membership tests could actually be optimised and performed only
the erased types. To get an idea of the importance of this optimisation,
we also measured the slowdown obtained after modifying the translation
of pattern matching to perform only erased membership tests. The slow-
down obtained under these conditions is reported in the rightmost column
of table 6.6.

6.2. LARGE BENCHMARKS 89

The results are presented in table 6.6. The slowdown due to run time
types is important, being close to 100% for nsc. For scalac, the slowdown
is more modest, but this is due to it being written only partly in Scala.
These results show that optimising membership tests would be worth-
while.

Time (s) Slowdown
Benchmark No RTT RTT Normal Erased
scalac 9.04 10.39 15% (13%)
nsc 8.12 15.11 86% (64%)
scaletta 1.72 2.16 25% (21%)
scalap 1.32 1.89 44% (29%)
evaluator 1.17 2.04 74% (41%)

Table 6.6: Impact of run time types on execution speed

6.2.4 Code size

To measure the growth in code size induced by run time types, we com-
puted the total size of the class files composing them. For scalac, we
chose to exclude the class files produced from Java sources, to get a more
meaningful number.

The results, presented in table 6.7, indicate that the growth is relatively
modest for all benchmarks but nsc. This anomaly is mostly due to the
interaction between mixins and run time types. Nsc is made up of sev-
eral components which are linked together using mixin composition [23].
These individual mixins contain many nested classes, for which type con-
structors and instantiation methods are created. When all the components
are linked together using mixin composition, these new members are im-
ported along. The code growth due to them is therefore accounted twice:
once because they appear in the mixin, and once because they appear in
the final composition.

6.2.5 Memory consumption

To get an idea of how memory consumption of our benchmark programs
was affected by run time types, we logged the garbage collections happen-
ing while they were running. We were then able to obtain the amount of
collected memory, as well as the total time spent collecting garbage.

90 CHAPTER 6. PERFORMANCE IMPACT OF RUN TIME TYPES

Code size (bytes)
Benchmark No RTT RTT Increase
scalac 1,704,554 2,156,291 27%
nsc 2,055,342 3,070,189 49%
scaletta 677,154 932,679 38%
scalap 303,433 376,862 24%
evaluator 96,927 117,482 21%

Table 6.7: Code size increase due to run time types

The results are presented in table 6.8. While the amount of collected
memory sometimes augments in impressive proportions, the percentage
of total time spent collecting garbage stays relatively constant. This can
be seen in table 6.9, where garbage collection time is presented both in
milliseconds and as a percentage of the total running time of table 6.6.

Collected memory (KB)
Benchmark No RTT RTT Increase
scalac 47257 63502 34%
nsc 29492 135449 360%
scaletta 18522 31829 72%
scalap 4078 11529 183%
evaluator 32092 42835 33%

Table 6.8: Memory collected during benchmark runs

GC time (ms and % of total)
Benchmark No RTT RTT Increase
scalac 730 (8.1%) 778 (7.5%) 7%
nsc 147 (1.8%) 403 (2.7%) 174%
scaletta 20 (1.2%) 34 (1.6%) 66%
scalap 66 (5.0%) 83 (4.4%) 26%
evaluator 10 (0.9%) 11 (0.5%) 19%

Table 6.9: Time spent collecting garbage

Chapter 7

Related Work

7.1 Mixins

Mixins originally appeared in Flavors [17] and CLOS, as a programming
idiom. They were subsequently studied by Bracha [6], Bracha and Cook
[7] and others.

We have seen that Scala’s notion of mixin inheritance is not exactly
the same as the usual one. The main difference is that mixins in Scala —
like the traits of Schärli et al. [29, 28] — are inherited in parallel and not
in sequence. Despite this difference, it is still interesting to look at exist-
ing proposals to extend Java-like languages with mixins, as the problems
encountered are similar to the ones we faced with Scala.

7.1.1 Jam

Jam is an extension of Java 1.0 with mixins proposed by Ancona, Lagorio
and Zucca [4]. The mixins of Jam differ from those of Scala in several
respects:

1. mixins and classes are separate concepts: it is neither possible to cre-
ate an instance of a mixin, nor to use a normal class as a mixin,

2. there is no way to restrict the superclasses to which a mixin can be
applied (i.e. no equivalent to what is the superclass of a mixin in
Scala): the only way for a mixin to express its dependence on existing
members in the heir class is to declare them as inherited — which has
the same effect as declaring them abstract in Scala,

3. mixins cannot be composed to form bigger mixins,

92 CHAPTER 7. RELATED WORK

4. static members are allowed in mixins, which is not possible in Scala,
as it doesn’t have the concept of static members.

Like scalac, the Jam preprocessor implements mixins using code copy-
ing. The task of the Jam preprocessor is slightly simpler, however, as its
source language includes neither nested classes nor type parameters.

7.1.2 MIXEDJAVA

MIXEDJAVA is an extension of CLASSICJAVA with mixins proposed by Flatt,
Krishnamurthi and Felleisen [9] — CLASSICJAVA being a small subset of
Java.

MIXEDJAVA is interesting for its non-standard solutions to two recur-
ring problems of mixins: accidental override, and diamond inheritance.

To solve the problem of accidental overriding, when a conflict occurs
between a member of a mixin and one of a heir, the two versions of the
member are kept. When the member is then accessed through a reference,
the version of the member which gets selected depends on the current
view of the object associated with the reference. The view can be changed
through explicit cast operations, method calls or subsumption.

To solve the problem of diamond inheritance, the idea is to restrict the
notion of subsumption, so that if a class inherits some mixin M several
times, then its instances cannot be viewed directly as instances of M. This
is best illustrated with an example. Figure 7.1 shows a class C inheriting
from mixin M through two different paths. In MIXEDJAVA, an instance of
C cannot be viewed directly as an instance of M, because it is not clear
which version of M to choose: the one inherited through M1, or the one
inherited through M2? To resolve the ambiguity, such an instance has first
to be viewed as an instance of M1 or M2 and only then as an instance
of M. In other words, when several paths lead to a given mixin in the
inheritance hierarchy, the path to follow must be explicitly indicated using
intermediate steps.

M

M1 M2

C

Figure 7.1: Diamond inheritance example

7.1. MIXINS 93

MIXEDJAVA was not designed as a real programming language, but
rather as a calculus for a Java-like language with mixins. MIXEDJAVA itself
has not been implemented, but it was inspired by its authors’ work on the
MzScheme system, where classes are first-class values. In such a system,
mixins can be defined as normal functions operating on classes, as we have
mentioned in section 2.1.3.

7.1.3 MIXGEN

MIXGEN is an extension of NEXTGEN with support for mixins proposed
by Allen [2]. Mixins are supported simply by allowing a generic class to
inherit from one of its type arguments. This technique is similar to the one
used in C++ to implement mixins with templates [30], except that MIXGEN
type-checks the mixin definitions separately, not on every application.

There is some elegance to this solution, as it is simply a generalisation
(or, rather, a non-restricted form) of generic types, which does not require
the existence of mixins as a separate concept. However, this technique also
has several drawbacks:

1. all mixins must be generic, because they must at least have one type
parameter for their superclass; this type parameter is rather artificial,
and tends to pollute programs with unnecessary annotations,

2. the ability to inherit from a type parameter makes it possible to form
cycles in the class hierarchy, or to make it infinite; to prevent these
pathological cases, checks have to be performed during compilation,

3. mixin expansion must be performed at run time, as the set of mixin
applications is potentially infinite,

4. for the same reason, accidental overriding is not detectable until run
time — MIXGEN uses techniques similar to the views of MIXEDJAVA
to avoid the problem altogether.

To our knowledge, MIXGEN has not yet been implemented, although
implementation strategies are proposed in Allen’s thesis [2, chap. 8]. The
cost of the proposed techniques is hard to evaluate, but probably not neg-
ligible as a lot of work is performed at run time by the class loader.

7.1.4 Animorphic Smalltalk

The Animorphic Smalltalk system is a high performance implementation
of Strongtalk, a dialect of Smalltalk which includes an optional type sys-

94 CHAPTER 7. RELATED WORK

tem and mixins as the basic unit of implementation.
The implementation of mixins in Animorphic Smalltalk is described in

[5]. It uses a combination of code sharing and lazy specialisation to maxi-
mize performance: mixin methods which do not access instance variables
or super are shared among all heirs of a mixin, while the others are spe-
cialised lazily, on their first invocation. Instance variables are thus always
accessed directly, without resorting to accessor methods.

This technique combines the advantages of code copying and code
sharing, since it is as fast as implementations based on copying, but not
as expensive in terms of size. It is however usable only in cases where one
has full control over the method table.

7.2 Run time types

Several extensions of Java with generic types and full support for run time
types have been proposed recently, as well as one for .NET. The type
system of all these extensions is simpler than the one of Scala, usually
lacking features like type parameter variance, and singleton or compound
types. Their implementation has reached a variable degree of maturity,
ranging from unreleased research prototypes to working, efficient imple-
mentations.

In our description of these implementations, we adopt the nomencla-
ture of Odersky and Wadler [22], distinguishing two kinds of translations
of generics: homogeneous and heterogeneous. Homogeneous translations
use the same piece of code for all instantiations of a generic class, while
heterogeneous translations perform full specialisation of the code for ev-
ery instantiation.

7.2.1 Heterogeneous translations

Heterogeneous translations specialise generic code for every type instanti-
ation. Unless the source language is severely restricted, this specialisation
must be performed partly at run time, because the set of all instantiations
used in a program is not known at compilation time — it is potentially in-
finite. On the JVM this is generally implemented using a custom class
loader producing specialised versions of pre-compiled class templates.

This implies that heterogeneous translations are usually not fully het-
erogeneous, in that polymorphic methods, unlike classes, cannot be spe-
cialised for each instantiation: the smallest unit of specialisation on the
JVM is the class.

7.2. RUN TIME TYPES 95

Heterogeneous translations have the potential of being slightly faster
than homogeneous ones, since the code they produce is fully specialised
for the type of data being manipulated. However, this positive aspect of
specialisation might be cancelled by the decreased performance of the pro-
cessor’s instruction cache induced by the code size explosion. For that
reason, specialisation is often limited to the primitive types (numbers,
booleans, etc.).

Still, heterogeneous translations are interesting for run time types, as
they are supported almost automatically: unlike their homogeneous coun-
terpart, heterogeneous translations guarantee that to each different instan-
tiation of a generic class corresponds a different translated class. Provided
that the translation of types is an isomorphism, run time types for the
source languages can be implemented directly using those of the JVM.

This automatic support for run time types has an additional advan-
tage: all the complications related to arrays described in section 4.3.5 are
elegantly avoided. Once again, this is due to the fact that the JVM run
time type attached to the array contains enough information to recover
the corresponding source type.

Agesen et al.

Agesen, Freund and Mitchell were the first to propose an extension of Java
with parametric classes offering precise run time types [1]. Like NEXTGEN,
they encode parametric types as JVM types using name mangling, with-
out loss of information. Their extension of Java only supports parametric
classes, and not parametric methods. The problem of how to translate
them is thereby avoided.

Their implementation is based on a custom class loader providing spe-
cialised versions of parametric classes on demand. The type parameters
of their classes can only be instantiated with reference types, and not with
primitive types.

NEXTGEN

NEXTGEN, originally proposed by Cartwright and Steele [8], is based on
ideas similar to the ones of Agesen et al. but the implementation is refined
in order to reduce the cost of full specialisation. This is done by factoring
out the code which is common to all instantiations of a parametric class,
leaving as little code as possible to specialise.

More precisely, each parametric class is split into two classes: one con-
tains all the code which does not depend, at run time, on the type param-

96 CHAPTER 7. RELATED WORK

eters of the original class, and the other contains the remaining code in
snippet methods. The first class is then translated homogeneously, while
the second is translated heterogeneously — making NEXTGEN a kind of
hybrid translator. This tremendously reduces the cost of full specialisa-
tion, as it is limited to the code which really needs run time types, typically
a very small fraction of the whole.

This use of several classes to favour code sharing has one disadvan-
tage: the subtyping relation implied by the inheritance hierarchy does not
correspond to the one of the source language. To work around this prob-
lem, NEXTGEN introduces so-called wrapper interfaces, whose sole aim is
to restore the original subtyping relation.

NEXTGEN’s technique does not work for all type systems, however: as
we have seen, contravariant type parameters cannot be supported since
they require the extension of the subtyping relation in a way which is not
compatible with the JVM.

The translation of polymorphic methods is problematic in NEXTGEN
like in all heterogeneous translations. The technique described in Allen’s
thesis [2] is to pass snippet environments to polymorphic methods, which
are a representation of their type arguments.

An implementation of NEXTGEN has been written by Allen, but it still
has the following limitations:

1. polymorphic methods are not supported,

2. polymorphic interfaces are only partially supported,

3. separate compilation does not work.

The performance of the NEXTGEN implementation has been evaluated on
relatively small benchmarks only, but the results are promising since the
impact of run time types on execution time seems to be almost nonexistent.

7.2.2 Homogeneous translations

Homogeneous translations use the same piece of code for all instantiations
of generic types, by erasing the types present in the original code.

As we have seen, this erasure implies that the JVM run time type at-
tached to objects does not contain enough information to recover their
source-language type. Therefore, to support full run time types, homoge-
neous translations have to attach additional type information to all objects.
The main problems that homogeneous translations have to solve is how to
represent, build, attach and compare these types. Two of these problems

7.2. RUN TIME TYPES 97

have received considerable attention, mostly related to their effective im-
plementation: the building of types, and their comparison.

Several researchers have noted that instead of building type represen-
tation repeatedly, these could either be built once at the beginning of pro-
gram execution, or lazily. Saha and Shao [27] implemented full lifting of
type expressions to the top level, which means that all type applications
are performed once and for all, when the program is started. The speed
gains they report are disappointingly small, being close to 4% on average.

Full lifting of type application is only possible for languages where the
set of types used by a program can be known at compilation time. While
this constraint is satisfied by the SML language used by Saha and Shao —
as it doesn’t allow polymorphic recursion — it is violated by all extensions
of Java and .NET presented here. For such languages, an approach based
on lazy computation of types is appropriate, and has been used by several
researchers as we will see below.

Efficient implementation of type comparisons has been studied exten-
sively in the field of object-oriented languages, for example by Vitek et al.
[37], and more recently by Zibin and Gil [39]. These techniques are not di-
rectly applicable to Scala, for two reasons: First, they all apply to very sim-
ple type systems, which include neither parametric types, nor singleton or
compound types. Second, even though some variants of these techniques
support the incremental building of the subtyping relation, they typically
only permit addition of subtypes, not supertypes, to existing types. While
this is sufficient for Java, it is not so for Scala which supports contravariant
type parameters.

Viroli’s translator

Viroli and Natali originally proposed an extension of Java with generic
classes and methods quite similar to Java 5, but providing support for run
time types [36]. Their implementation technique tries to lower the cost of
type application by computing all the types needed by a parametric class
when it is first instantiated. These types, called friend types, are then stored
in a type descriptor object associated with the class, from which they can
easily be extracted later.

In later work, Viroli also proposed an extension of his scheme to handle
parametric methods [34]. Like for parametric classes, the idea is to asso-
ciate with parametric methods a table of all the types they need during
their execution, to avoid repeatedly building them. Dynamic dispatch-
ing makes the problem harder than for classes, though, as the caller of
a method does not know statically which version of the method will be

98 CHAPTER 7. RELATED WORK

called dynamically; it cannot, therefore, know which type environment to
pass. Viroli solves that problem by attaching so-called virtual parametric
method tables (VPMT) to class descriptors, which associate type environ-
ments to instantiations of parametric methods.

More recently, Viroli proposed a lazy variant of his technique [33]. It
differs from the previous work in that the friend types are computed lazily
instead of eagerly, like in the .NET implementation presented below.

Finally, in collaboration with Cimadamore, Viroli wrote a prototype
translator which uses the techniques he developed [35]. The compiler,
called EGO, is an extension of Sun Microsystem’s javac compiler, version
1.5. The programs produced by this translator create and pass type rep-
resentations around, but do not use them to perform membership tests or
type casts. Moreover, the issue of concurrency has been ignored.

Despite these limitations, it is interesting to compare the performance
impact of the EGO compiler with ours. The benchmark used to evaluate it
in [35] is Sun’s javac compiler, and the results seem promising: the slow-
down is slightly below 10%, while the code grows by about 15%. Incor-
porating techniques similar to the ones of EGO in scalac would therefore
seem like a logical next step for us.

Generics for .NET

The extension of .NET with generic types proposed by Kennedy and Syme
[12] differs from the ones examined until now in that, apart from the source
language, it also extends the virtual machine to support generics. This
gives much more freedom to the implementors, and should theoretically
lead to a very efficient implementation. In fact, it is hard to imagine that
one could devise a more efficient implementation based on the JVM, given
the constraints it imposes.

The implementation of Kennedy and Syme is opportunistically homo-
geneous, in that it shares code among several instantiations only when
the code happens to be the same. That is, it doesn’t force all types to
use a common representation in order to enable code sharing, but rather
takes advantage of the sharing which happens naturally. In practice, this
means that specialisation takes place for value types — integers, doubles,
etc. as well as user-defined structures, unless they happen to have the
same shape — while all reference types share one piece of code.

Types are passed to polymorphic classes and methods through type en-
vironments, which are filled lazily. These environments play the same role
as friend types in Viroli’s implementation, in that they avoid the repeated
construction of type representations. They lead to an efficient implemen-

7.2. RUN TIME TYPES 99

tation, since the measured slowdown due to run time types is between 10
and 20% on micro benchmarks [12].

Along with Yu, Kennedy and Syme have recently formalised the core
of their implementation [38].

100 CHAPTER 7. RELATED WORK

Chapter 8

Conclusion and Future Work

We have presented our solutions for the compilation of two important as-
pects of Scala: mixin inheritance and run time types. These techniques
have been implemented in the Scala compiler, and evaluated on several
programs of consequent size.

Mixin inheritance

We proposed two possible implementation techniques for mixin inheri-
tance in Scala: by code copying and by delegation.

Code copying presents the advantage of incurring almost no speed
penalty, as nothing distinguishes code inherited from mixins from the rest
of the code. Besides, it is easy to implement even in a language which does
not distinguish explicitly mixins from standard classes, like Scala. The two
drawbacks of code copying are that it provides no binary compatibility
unless performed at run time, and that it wastes some space.

Delegation can provide binary compatibility, but has other drawbacks:
first, it requires a language in which classes and mixins are separate con-
cepts to be realistically implementable; and second we conjecture that it
would result in slower and sometimes bigger programs than code copy-
ing, because of the cost of forwarding and super-accessor methods.

For these reasons, our implementation of mixin inheritance is currently
based on code copying. We evaluated the amount of code duplicated be-
cause of this in the Scala standard library, and found it to be close to 10%
on average.

102 CHAPTER 8. CONCLUSION AND FUTURE WORK

Run time types

We have presented our implementation of run time types for Scala, which
is based on the representation of Scala types as a combination of JVM run
time types and JVM objects.

While we have seen that a few other implementations of run time types
exist for Java-like languages with polymorphism [12, 2, 36], they all deal
with type systems that are considerably simpler than the one of Scala.
None of them includes type parameter variance, virtual types, singleton
types, compound types or refinements. Often, adding such features would
require a major redesign of the system, or even prove impossible. For
example, NEXTGEN’s implementation technique is fundamentally incom-
patible with contravariant type parameters.

Our implementation of run time types has also reached an advanced
degree of maturity, being able to successfully handle programs of several
thousands of lines. Except for the limitations concerning class prefixes,
refinements and arrays, the full type system of Scala is supported. Out
of these three limitations, the one concerning prefixes should be easy to
remove. The other two are more problematic: polymorphic arrays can-
not work completely without support from the JVM, while refinements
would require considerable additions to our current implementation. Fur-
ther experience with refinements is needed to clearly decide whether these
additions are really worth their cost.

The maturity of our implementation has enabled us to collect meaning-
ful data about the performance of run time types. These should be useful
in optimising our implementation. The main bottlenecks we have identi-
fied are the creation of type representations, and the membership test.

The first of these has already been identified by other researchers, who
proposed solutions to avoid the repeated construction of type representa-
tions [27, 12, 36]. Adapting their techniques to our implementation should
not be problematic, but might take some time.

The best way to address the second bottleneck is to use the member-
ship test as little as possible. In particular, the implementation of pattern
matching could be improved to use the erased version of the membership
test whenever possible, and avoid it altogether when it is safe to do so, i.e.
when matching on a sealed class.

Appendix A

Scala’s type language

This appendix quickly introduces the type language of Scala using exam-
ples. Its aim is to give the reader a feeling of the different kinds of types
existing in Scala, and how they can be used. More advanced examples
are presented in other places [23, 19], and the Scala language specification
provides all the necessary details [20].

A.1 Singleton types

Singleton types are a very basic form of dependent types [26]. The single-
ton type v.type denotes the set of values consisting of v and null.

As an example of the usefulness of singleton types, we can consider
the problem of chaining calls to methods which have side effects. Given
the following declarations:

class Counter {
var value: Int = 0;
def incr: this.type = { value = value + 1; this }

}
class DecCounter extends Counter {
def decr: this.type = { value = value - 1; this }

}

it is possible to chain calls to methods incr and decr, because their return
type makes it clear that they return the value this (or null). One can
therefore use an instance of DecCounter as follows:

val c = new DecCounter();
Console.println(c.incr.incr.incr.decr.incr.value);

104 APPENDIX A. SCALA’S TYPE LANGUAGE

If the return type of incr was changed to Counter, then this would not be
valid anymore, as the fact that all the invocations of incr above return a
DecCounter would be lost.

A.2 Class types

Class types refer to Scala or Java classes. The type of a Java class is a
simple name, but polymorphic Scala classes have type arguments, and
nested ones have a prefix.

A very simple example of a polymorphic class is one representing an
immutable cell containing a single object. This class is parametrized by
the type of its element, as follows:

class Cell[T](x: T) {
def get: T = x;

}

Given this definition, the type Cell[String] is the type of cells which
contain a string.

Apart from being polymorphic, Scala classes can also be nested. For ex-
ample, consider the following classes representing books and their pages:

class Book {
class Page { /* ... */ };
def addPage(p: this.Page): Unit = { /* ... */ };

}

The fact that class Page is nested inside of class Book means that pages
from different books have a different type. For example, if we try to create
two books and add a new page from the second one to the first one, we
get a type error:

val book1 = new Book;
val book2 = new Book;
book1.addPage(new book2.Page); // type error

This is due to the fact that new book2.Page has type book2.type#Page
(which can also be written as book2.Page), while the argument passed to
method book1.addPagemust have type book1.type#Page. The part before
the projection operator # is called the prefix of these types, and represents
the environment in which they are nested.

A.3. COMPOUND TYPES 105

A.3 Compound types

Thanks to mixin inheritance, it is possible for a class type to be simulta-
neously a subtype of several other class types. This fact can be expressed
using a compound type of the form C1 with C2 with ... Cn where C1 to
Cn are class types.

As an example, consider a drawing program. In such a program, some
objects might have a color, while others might have a position on the can-
vas. Each of these characteristics can be described by a trait, as follows1:

trait Colored {
def setColor(r: Float, g: Float, b: Float): this.type;

}
trait Positioned {
def setPosition(x: Float, y: Float): this.type;

}

We will suppose that the drawing program has a way to take a list of ob-
jects and spread them evenly on the canvas, while also gradually changing
their color. The function implementing that feature would take as argu-
ment a list of objects which have both a color and a position. This can be
expressed using the compound type Colored with Positioned, resulting
in code similar to the following:

def spread(objs: List[Colored with Positioned]) = {
for (val obj <- objs) {
obj.setColor(...).setPosition(...);

}
}

A compound type can also have a refinement, which provides more
precise types for some of the members of its components. We will not
explore refinements here, however.

1We ignore here the fact that there should also be accessors to obtain the color or
position of an object.

106 APPENDIX A. SCALA’S TYPE LANGUAGE

Bibliography

[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type
parameterization to the Java language. In ACM Symposium on Ob-
ject Oriented Programming: Systems, Languages, and Applications (OOP-
SLA), pages 49–65, Atlanta, GA, 1997.

[2] Eric E. Allen. A First-Class Approach to Genericity. PhD thesis, Rice
University Computer Science Department, April 2003.

[3] Philippe Altherr and Vincent Cremet. Inner classes and virtual types.
Technical report, EPFL, 2005. TR-2005013.

[4] D. Ancona, G. Lagorio, and E. Zucca. Jam – a smooth extension of
Java with mixins. In Proceedings ECOOP 2000 (European Conference on
Object-Oriented Programming), LNCS. Springer Verlag, 2000.

[5] Lars Bak, Gilad Bracha, Steffen Grarup, Robert Griesemer, David
Griswold, and Urs Hoelzle. Mixins in Strongtalk. In ECOOP, 2002.

[6] Gilad Bracha. The programming language Jigsaw: mixins, modularity and
multiple inheritance. PhD thesis, University of Utah, Salt Lake City,
UT, USA, 1992.

[7] Gilad Bracha and William Cook. Mixin-based inheritance. In Nor-
man Meyrowitz, editor, Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications / Proceedings of the
European Conference on Object-Oriented Programming, pages 303–311,
Ottawa, Canada, 1990. ACM Press.

[8] Robert Cartwright and Guy L. Steele, Jr. Compatible genericity
with run-time types for the Java programming language. In Craig
Chambers, editor, ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), Vancouver, British
Columbia, pages 201–215. ACM, 1998.

108 BIBLIOGRAPHY

[9] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In Conference Record of POPL’98: The 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 171–183, San Diego, California, January 19–21, 1998.

[10] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In ACM SIGPLAN
Conference on Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA), October 1999. Full version in ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 23(3),
May 2001.

[11] Bill Joy, Guy L. Steele Jr., James Gosling, and Gilad Bracha. The Java
Language Specification. Addison-Wesley, third edition, 2005. DRAFT.

[12] Andrew Kennedy and Don Syme. Design and implementation of
generics for the .NET common language runtime. In Proceedings of
the ACM SIGPLAN 2001 conference on Programming language design and
implementation (PLDI), pages 1–12, 2001.

[13] Xavier Leroy. Java bytecode verification: algorithms and formaliza-
tions. Journal of Automated Reasoning, 30(3–4):235–269, 2003.

[14] Xavier Leroy et al. The Objective Caml system release 3.08. INRIA, 2005.
Available from http://caml.inria.fr/.

[15] H. Lieberman. Using prototypical objects to implement shared be-
havior in object-oriented systems. In Norman Meyrowitz, editor, Pro-
ceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), volume 21, pages 214–223, New
York, NY, 1986. ACM Press.

[16] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison Wesley, second edition, April 1999.

[17] David A. Moon. Object-oriented programming with Flavors. In ACM
Symposium on Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA). ACM, 1986.

[18] Sébastien Noir. Conception et développement d’un service Web de
vente aux enchères en utilisant le langage Scala, 2004.

[19] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Se-
bastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel

BIBLIOGRAPHY 109

Schinz, Erik Stenman, and Matthias Zenger. An overview of the Scala
programming language. Available from http://scala.epfl.ch/.

[20] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-
man, and Matthias Zenger. The Scala language specification. Avail-
able from http://scala.epfl.ch/.

[21] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias
Zenger. A nominal theory of objects with dependent types. In Proc.
ECOOP’03, Springer LNCS, July 2003.

[22] Martin Odersky and Philip Wadler. Pizza into Java: Translating the-
ory into practice. In 24th ACM Symposium on Principles of Programming
Languages, January 1997.

[23] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. Accepted for publication at the ACM Symposium on Ob-
ject Oriented Programming: Systems, Languages, and Applications
(OOPSLA), 2005.

[24] Chris Okasaki. Purely Functional Data Structures. Cambridge Univer-
sity Press, 1998.

[25] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[26] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming
Languages. The MIT Press, 2005.

[27] Bratin Saha and Zhong Shao. Optimal type lifting. In Types in Compi-
lation, pages 156–177, 1998.

[28] Nathanael Schärli. Traits: Composing Classes from Behavioral Building
Blocks. PhD thesis, Universität Bern, 2005.

[29] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew
Black. Traits: Composable units of behavior. In Proceedings ECOOP
2003 (European Conference on Object-Oriented Programming), volume
2743 of LNCS, pages 248–274. Springer Verlag, July 2003.

[30] Yannis Smaragdakis and Don Batory. Mixin-based programming in
C++. In Generative and Component-Based Software Engineering Sympo-
sium (GCSE), pages 163–177. Springer-Verlag, LNCS 2177, 2000.

110 BIBLIOGRAPHY

[31] Kresten Krab Thorup. Genericity in Java with virtual types. In
Mehmet Akşit and Satoshi Matsuoka, editors, ECOOP’97—Object-
Oriented Programming, volume 1241 of Lecture Notes in Computer Sci-
ence, pages 444–471. Springer, 1997.

[32] Robert Tolksdorf. Programming languages for the Java virtual ma-
chine. http://www.robert-tolksdorf.de/vmlanguages.

[33] Mirko Viroli. A lazy type-passing approach for the translation of
generics in Java. Unpublished draft, previously available from http:
//www.ingce.unibo.it/~mviroli/LM/index.htm.

[34] Mirko Viroli. Parametric polymorphism in Java: an efficient imple-
mentation for parametric methods. In Selected Areas in Cryptography,
pages 610–619, 2001.

[35] Mirko Viroli. Effective and efficient compilation of run-time generics
in Java. In Viviana Bono, Michele Bugliesi, and Sophia Drossopoulou,
editors, Proceedings of the 2nd Workshop on Object-Oriented Develop-
ments (WOOD 2004), 2004.

[36] Mirko Viroli and Antonio Natali. Parametric polymorphism in Java:
an approach to translation based on reflective features. In OOPSLA
’00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 146–165. ACM
Press, 2000.

[37] Jan Vitek, Nigel Horspool, and Andreas Krall. Efficient type inclusion
tests. In ACM Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), Atlanta, GA, 1997.

[38] Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization of
generics for the .NET Common Language Runtime. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), January 2004.

[39] Yoav Zibin and Joseph Gil. Efficient subtyping tests with PQ-
encoding. In ACM Symposium on Object Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA), pages 96–107, 2001.

Curriculum Vitæ

Personal information
Name Michel Schinz
Citizenship Swiss (from Neuchâtel)
Date of birth October 1st, 1973
Place of birth Neuchâtel, Switzerland

Education
2000–2005 Ph.D., Laboratoire des Méthodes de Programmation

(LAMP), EPFL, Switzerland
1991–1996 Undergraduate studies in Computer Science, EPFL
1989–1991 Gymnasium (scientific orientation C), Gymnase Cantonal

de Neuchâtel

Professional experience

1998–1999 R&D engineer, Centre Suisse d’Électronique et de Micro-
technique (CSEM), Neuchâtel

1997–1998 Centre Pro Natura de Champ-Pittet, Yverdon, Switzerland
1996–1997 Teaching Assistant, Laboratoire des Systèmes Répartis

(LSR), EPFL

