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Abstract. We propose a mining framework that supports the identifi-
cation of useful patterns based on incremental data clustering. Given the
popularity of Web news services, we focus our attention on news streams
mining. News articles are retrieved from Web news services, and pro-
cessed by data mining tools to produce useful higher-level knowledge,
which is stored in a content description database. Instead of interact-
ing with a Web news service directly, by exploiting the knowledge in
the database, an information delivery agent can present an answer in
response to a user request. A key challenging issue within news reposi-
tory management is the high rate of document insertion. To address this
problem, we present a sophisticated incremental hierarchical document
clustering algorithm using a neighborhood search. The novelty of the pro-
posed algorithm is the ability to identify meaningful patterns (e.g., news
events, and news topics) while reducing the amount of computations
by maintaining cluster structure incrementally. In addition, to overcome
the lack of topical relations in conceptual ontologies, we propose a topic
ontology learning framework that utilizes the obtained document hier-
archy. Experimental results demonstrate that the proposed clustering
algorithm produces high-quality clusters, and a topic ontology provides
interpretations of news topics at different levels of abstraction.

1 Introduction

With the rapid growth of the World Wide Web, Internet users are now experienc-
ing overwhelming quantities of online information. Since manually analyzing the
data becomes nearly impossible, the analysis would be performed by automatic
data mining techniques to fulfill users’ information needs quickly.

On most Web pages, vast amounts of useful knowledge are embedded into
text. Given such large sizes of text datasets, mining tools, which organize the text
datasets into structured knowledge, would enhance efficient document access.
This facilitates information search and at the same time, provides an efficient
framework for document repository management as the number of documents
becomes extremely huge.

Given that the Web has become a vehicle for the distribution of information,
many news organizations are providing newswire services through the Internet.



Given this popularity of the Web news services, we have focused our attention
on mining patterns from news streams.1

The simplest document access method within Web news services is keyword-
based retrieval. Although this method seems effective, there exist at least three
drawbacks. First, if a user chooses irrelevant keywords (due to broad and vague
information needs or unfamiliarity with the domain of interest), retrieval ac-
curacy will be degraded. Second, since keyword-based retrieval relies on the
syntactic properties of information (e.g., keyword counting),2 semantic gap can-
not be overcome. Third, only expected information can be retrieved since the
specified keywords are generated from users’ knowledge space. Thus, if users are
unaware of the airplane crash that occurred yesterday, then they cannot issue a
query about that accident even though they might be interested.

The first two drawbacks stated above have been addressed by query expan-
sion based on domain-independent ontologies [47]. However, it is well known
that this approach leads to a degradation of precision. That is, given that the
terms introduced by term expansion may have more than one meaning, us-
ing additional terms can improve recall, but decrease precision. Exploiting a
manually developed ontology with a controlled vocabulary is helpful in this sit-
uation [27, 28, 29]. However, although ontology-authoring tools have been de-
veloped in the past decades, manually constructing ontologies whenever new
domains are encountered is an error-prone and time-consuming process. There-
fore, integration of knowledge acquisition with data mining, which is referred to
as ontology learning, becomes a must [32].

In this paper, we propose a mining framework that supports the identifi-
cation of meaningful patterns (e.g., topical relations, topics, and events that
are instances of topics) from news stream data. To build a novel framework
for an intelligent news database management and navigation scheme, we utilize
techniques in information retrieval, data mining, machine learning, and natural
language processing.

To facilitate information navigation and search on a news database, we first
identify three key problems.

1. Vague information needs. Sometimes, defining keywords for a search is not
an easy task, especially when a user has vague information needs. Thus, a
reasonable starting point would be provided to assist the user.

2. Lack of topical relations in concept-based ontologies. In order to achieve rich
semantic information retrieval, an ontology-based approach would be pro-
vided. However, as discussed in Agirre et al. [2], one of the main problems
with concept-based ontologies is that topically related concepts and terms

1 In this paper, we are concerned with (news) articles, which are also referred to as
documents.

2 Like Latent Semantic Indexing (LSI) [8], the vector space model based on keyword
counting can be augmented with semantics by combining other methods (e.g., Singu-
lar Value Decomposition). However, keyword-based retrieval in this paper is referred
to as the method relying on only simple keyword counting.
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are not explicitly linked.3 That is, there is no relation between court-attorney,
kidnap-police, etc. Thus, concept-based ontologies have a limitation in sup-
porting a topical search. For example, consider the Sports domain ontol-
ogy that we have developed in our previous work [27, 28, 29]. In this on-
tology, “Kobe Bryant”, who is an NBA basketball player, is related with
terms/concepts in Sports domain. However, for the purpose of query expan-
sion, “Kobe Bryant” needs to be connected with a “court trial” concept if
a user keeps “Kobe Bryant court trial” in mind. Therefore, it is essential to
provide explicit links between topically related concepts/terms.

3. High rate of document insertion. As several hundred news articles are pub-
lished everyday at a single Web news site, triggering the whole mining process
whenever a document is inserted to the database is computationally imprac-
tical. To cope with such a dynamic environment, efficient incremental data
mining tools need to be developed.

The first of the three problems can be approached using clustering. A collec-
tion of documents is easy to skim if similar articles are grouped together. If the
news articles are hierarchically classified according to their topics, then a query
can be formulated while a user navigates a cluster hierarchy. Moreover, cluster-
ing can be used to identify and deal with near-duplicate articles. That is, when
news feeds repeat stories with minor changes from hour to hour, presenting only
the most recent articles is probably sufficient.

To remedy the second problem, we present a topic ontology, which is defined
as a collection of concepts and relations. In a topic ontology, concept is defined as
a set of terms that characterize a topic. We define two generic kinds of relations,
generalization and specialization. The former can be used when a query is gen-
eralized to increase recall or broaden the search. On the other hand, the latter is
useful when refining the query. For example, when a user is interested in some-
one’s court trial but cannot remember the name of a person, then specialization
can be used to narrow down the search.

To address the third problem, we propose a sophisticated incremental hierar-
chical document clustering algorithm using a neighborhood search. The novelty
of the proposed algorithm is the ability to identify news event clusters as well
as news topic clusters while reduce the amount of computation by maintaining
cluster structure incrementally. Learning topic ontologies can be performed on
the obtained document hierarchy.

Figure 1 illustrates the main parts of the proposed framework. In the infor-
mation gathering stage, a Web crawler retrieves a set of news documents from
a news Web site (e.g., CNN). Developing an intelligent Web crawler is another
research area, and it is not our main focus. Hence, we implement a simple Web
spider, which downloads news articles from a news Web site on a daily basis.
The retrieved documents are processed by data mining tools to produce useful
3 Although there exist different types of term association relationships in WordNet [36]

such as “Bush versus President of US” as synonym, or “G.W. Bush versus R. Reagan”
as coordinate terms, these types of relationships are limited to addressing topical
relationships.
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Fig. 1. Overview of a proposed framework

higher-level knowledge (e.g., a document hierarchy, a topic ontology, etc), which
is stored in a content description database. Instead of interacting with a Web
news service directly, by exploiting knowledge in the database, an information
delivery agent can present an answer in response to a user request.

Main contributions of our work are twofold. First, despite the huge body of
research efforts on document clustering [33, 30, 22, 31, 52], little work has been
conducted in the context of incremental hierarchical news document clustering.
To address the problem of frequent document insertions into a database, we
have developed an incremental hierarchical clustering algorithm using a neigh-
borhood search. Since the algorithm produces a document cluster hierarchy, it
can identify event level clusters as well as topic level clusters. Second, to address
the lack of topical relations in concept-based ontologies, we propose a topic on-
tology learning framework, which can interpret news topics at multiple levels of
abstraction.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 discusses the information preprocessing step. In Section 4,
we explain the information analysis component, which is a key focus of this pa-
per. Section 5 presents experimental results. Finally, we conclude the paper and
provide our future plans in Section 6.

2 Related Work

The most relevant research areas to our work are Topic Detection and Tracking
(TDT) and document clustering. Section 2.1 presents a brief overview on TDT
work. In Section 2.2, a survey on previous document clustering work is provided.
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Finally, Section 2.3 introduces previous work on intelligent news services, which
utilize document clustering and TDT.

2.1 Topic Detection and Tracking

Over the past six years, the information retrieval community has developed a
new research area, called Topic Detection and Tracking (TDT) [4, 5, 10, 48, 49].
The main goal of TDT is to detect the occurrence of a novel event in a stream of
news stories, and to track the known event. In particular, there are three major
components in TDT.

1. Story segmentation. It segments a news stream (e.g., including transcribed
speech) into topically cohesive stories. Since online Web news (in HTML
format) is supplied in segmented form, this task only applies to audio or TV
news.

2. First Story Detection (FSD). It identifies whether a new document belongs
to an existing topic or a new topic.

3. Topic tracking. It tracks events of interest based on sample news stories. It
associates incoming news stories with the related stories, which were already
discussed before. It can be also asked to monitor the news stream for further
stories on the same topic.

In Allan et al. [4], the notion of event is first defined. Event is defined as “some
unique thing that happens at some point in time”. Hence, an event is different
from a topic. For example, “airplane crash” is a topic while “Chinese airplane
crash in Korea in April 2002” is an event. Thus, there exists M-1 mapping
between event and topic (i.e., multiple events can be on a same topic). Note
that it is important to identify events as well as topics. Although the user may
not be interested in a flood topic, in general, she may be interested in documents
about a flood event in her home town. Thus, a news recommendation system
must be able to distinguish different events within a same topic.

Yang et al. introduced an important property of news events, referred to as
temporal locality [48]. That is, news articles discussing the same event tend to be
temporally proximate. In addition, most of the events (e.g., flood, earthquake,
wildfire, kidnapping) have short duration (e.g., 1 week - 1 month). They exploited
these heuristics when computing similarity between two news articles.

The most popular method in TDT is to use a simple incremental cluster-
ing algorithm, which is shown in Figure 2. Our work starts by addressing the
limitations of this algorithm.

2.2 Document Clustering

In this section, we classify the widely used document clustering algorithms into
two categories (partition-based clustering and hierarchical clustering), and pro-
vide a concise overview for each of them.
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1. Initially, only one news article is available, and it forms a singleton
cluster.

2. For an incoming document (d∗), we compute the similarity between d∗
and pre-generated clusters. The similarity is computed by the
distance between d∗ and the representative of the cluster.

3. Selects the cluster (Ci) that has the maximum proximity with d∗.

4. If the similarity between d∗ and Ci exceeds the pre-defined threshold,
then all documents in Ci are considered as related stories to d∗
(topic tracking), and d∗ is assigned to Ci.
Otherwise, d∗ is considered as a novel story (first story detection), and
a new cluster for d∗ is created.

5. Repeat 2-4 whenever a new document appears in a stream.

Fig. 2. The incremental document clustering algorithm in TDT

Partition-based Clustering Partition-based clustering decomposes a collec-
tion of documents, which is optimal with respect to some pre-defined function.
Typical methods in this category include center-based clustering, Gaussian Mix-
ture Model, etc.

Center-based algorithms identify the clusters by partitioning the entire dataset
into a pre-determined number of clusters (e.g., K-means clustering), or an au-
tomatically derived number of clusters (e.g., X-means clustering) [9, 23, 13, 16,
30, 37, 39].

The most popular and the best understood clustering algorithm is K-means
clustering [13]. The K-means algorithm is a simple but powerful iterative clus-
tering method to partition a dataset into K disjoint clusters, where K must
be determined beforehand. The idea of the algorithm is to assign points to the
cluster such that the sum of the mean square distance of points to the center of
the assigned cluster is minimized.

While the K-means clustering approach works in a metric space, medoid-
based method works with a similarity space [23, 37]. It uses the medoids (repre-
sentative sample objects) instead of the means (e.g., the centers of clusters) such
that the sum of the distances of points to their closest medoid is minimized.

Although the center-based clustering algorithms have been widely used in
document clustering, there exist at least five serious drawbacks. First, in many
center-based clustering algorithms, the number of clusters (K) needs to be deter-
mined beforehand. Second, the algorithm is sensitive to an initial seed selection.
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Depending on the initial points, it is susceptible to a local optimum. Third,
it can model only a spherical (K-means) or ellipsoidal (K-medoid) shape of
clusters. Thus, the non-convex shape of clusters cannot be modeled in center-
based clustering. Forth, it is sensitive to outliers since a small amount of outliers
can substantially influence the mean value. Finally, due to the nature of iter-
ative scheme in producing clustering results, it is not relevant for incremental
datasets.

Hierarchical Agglomerative Clustering Hierarchical (agglomerative) clus-
tering (HAC) finds the clusters by initially assigning each document to its own
cluster and then repeatedly merging pairs of clusters until a certain stopping
condition is met [13, 18, 26, 19, 52]. Consequently, its result is in the form of
a tree, which is referred to as a dendrogram. A dendrogram is represented as a
tree with numeric levels associated to its branches.

The main advantage of HAC lies in its ability to provide a view of data at
multiple levels of abstraction. However, since HAC builds a dendrogram, a user
must determine where to cut the dendrogram to produce actual clusters. This
step is usually done by human visual inspection, which is a time-consuming and
subjective process. Moreover, the computational complexity of HAC is more ex-
pensive than that of partition-based clustering. In partition-based clustering, the
computational complexity is O(nKI) where n is the number of documents, K is
the number of clusters, and I is the number of iterations, respectively. In contrast,
HAC takes O(n3) if pairwise similarities between clusters are changed when two
clusters are merged. However, the complexity can be reduced to O(n2logn) if we
utilize a priority queue [52].

2.3 Intelligent News Services Systems

The one of the most successful intelligent news services is NewsBlaster [34].
The basic idea of NewsBlaster is to group the articles on the same story using
clustering, and present one story using multi-document summarization. Thus,
the main goal of NewsBlaster is similar to ours in that both aim to propose
intelligent news analysis/delivery tools. However, the underlying methodology is
different. For example, with respect to clustering, NewsBlaster is based on the
clustering algorithm in Hatzivassiloglou et al. [22]. Main contributions of their
work is to augment document representation using linguistic features. However,
rather than developing their own clustering algorithm, they used conventional
HAC, which has the drawbacks as discussed in Section 2.2.

Recent attempts present other intelligent news services like NewsInEssence [41,
42], or QCS (Query, Cluster, Summarize) [14]. Both services utilize a similar ap-
proach to NewsBlaster in that they separate the retrieved documents into topic
clusters, and create a single summary for each topic cluster. However, their main
focus does not lie in developing a novel clustering algorithm. For example, QCS
utilizes generalized spherical K-means clustering whose limitations have been
addressed in Section 2.2.
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Therefore, it is worthwhile to develop a sophisticated document clustering al-
gorithm that can overcome the drawbacks of previous document clustering work.
In particular, the developed algorithm must address the special requirements in
news clustering such as high rate of document insertion, or ability to identify
event level clusters as well as topic level clusters.

3 Information Preprocessing

The information preprocessing step extracts meaningful information from un-
structured text data and transforms it into structured knowledge. As shown in
Figure 1, this step is composed of the following standard IR tools.

– HTML preprocessing. Since downloaded news articles are in HTML format,
we remove irrelevant HTML tags for each article and extract meaningful
information.

– Tokenization. Its main task is to identify the boundaries of the terms.
– Stemming. There can be different forms for the same terms (e.g., students

and student, go and went). These different forms of the same term need
to be converted to their roots. Toward this end, instead of solely relying on
Porter stemmer [40], in order to deal with irregular plural/tense, we combine
Porter stemmer with the lexical database [35].

– Stopwords removal. Stopwords are the terms that occur frequently in the
text but do not carry useful information. For example, have, did, and get
are not meaningful. Removing such stopwords provide us with a dimension-
ality reduction effect. We employ the stopword list that was used in Smart
project [44].

After preprocessing, a document is represented as a vector in an n-dimensional
vector space [44]. The simple way to do this is to employ the Bag-Of-Word
(BOW) approach. That is, all content-bearing terms in the document are kept
and any structure of text or the term sequence is ignored. Thus, each term is
treated as a feature and each document is represented as a vector of certain
weighted term frequencies in this feature space.

There are several ways to determine the weight of a term in a document.
However, most methods are based on the following two heuristics.

– Important terms occur more frequently within a document than unimportant
terms do.

– The more times a term occurs throughout all documents, the weaker its
discriminating power becomes.

The term frequency (TF) is based on the first heuristic. In addition, TF can
be normalized to reflect different document lengths. Let freqij be the number of
ti’s occurrence in a document j, and lj be the length of the document j. Then,
term frequency (tfij) of ti in the document j is defined as follows:

tfij =
freqij

lj
(1)
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kidnap abduct child boy police search missing investigate suspect return home

d1 1 0 1 0 1 1 0 1 0 0 0
d2 1 1 1 1 1 0 1 1 1 0 0
d3 0 1 0 1 0 0 1 0 0 1 1

Table 1. A sample illustrative example for document×term matrix. For simplicity,
each document vector is represented as boolean values instead of TF-IDF values

The document frequency (DF) of the term (the percentage of the documents
that contain this term) is based on the second heuristic. A combination of TF
and DF introduces TF-IDF ranking scheme, which is defined as follows:

wij = tfij × log
n

ni
(2)

where wij is the weight of ti in a document j, n is the total number of documents
in the collection, and ni is the number of documents where ti occurs at least
once.

The above ranking scheme is referred to as static TF-IDF since it is based
on static document collection. However, since documents are inserted incremen-
tally, IDF values are initialized using a sufficient amount of documents (i.e.,
the document frequency is generated from training corpus). After then, IDF is
incrementally updated as subsequent documents are processed. In particular, we
employ an incremental update of IDF value proposed by Yang et al. [48].

Finally, to measure closeness between two documents, we use the Cosine met-
ric, which measures the similarity of two vectors according to the angle between
them [44]. Thus, vectors pointing to similar directions are considered as repre-
senting similar concepts. The cosine of the angles between two m-dimensional
vectors (x and y) is defined by

Similarity(x, y) = Cosine(x, y) =
∑m

i=1 xi · yi

||x||2 · ||y||2 (3)

4 Information Analysis

This section presents the information analysis component of Figure 1. Section 4.1
illustrates a motivating example for the proposed incremental clustering algo-
rithm. In Section 4.2, a non-hierarchical incremental document clustering algo-
rithm using a neighborhood search is presented. Section 4.3 explains how to
extend the algorithm into a hierarchical version. Finally, Section 4.4 shows how
to build a topic ontology based on the obtained document hierarchy.
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Notation Meaning

n The total number of documents in a database

d∗ A new document

di An i-th document

ε Threshold for determining the neighborhood

Nε(di) ε-neighborhood for di

Ddi The set of documents that contain any term of di

Cdi The set of clusters that contain any neighbor of di

|A| The size of a set A where A can be a neighborhood or cluster

dfij Document frequency of a term ti within a set Aj

wij TF-IDF value for a term ti for a document dj

Sj Signature vector for a set Aj

sj
i i−th component of Sj

Table 2. Notations for incremental non-hierarchical document clustering

4.1 A Motivating Example

To illustrate a simple example, consider the following three documents (whose
document×term matrix is shown in Table 1).

1. d1: A child is kidnapped so police starts searching.
2. d2: Police found the suspect of child kidnapping.
3. d3: An abducted boy safely returned home.

In the above three documents, although d1 and d2 are similar, and d2 and d3 are
similar, d1 and d3 are completely dissimilar since they share no terms. Conse-
quently, transitivity relation does not hold. Why does this happen? We provide
explanations to this question in terms of three different perspectives.

1. Fuzzy similarity relation. As discussed in the fuzzy theory [50], the similarity
relation does not satisfy transitivity. To make it satisfy transitivity, a fuzzy
transitivity closure approach was introduced. However, this approach is not
scalable with the number of data points.

2. Inherent characteristic of news. As discussed in Allan et al. [4], event is
considered as an evolving object through some time interval (i.e., content
of news articles on the same story are changed throughout time). Hence,
although the documents belong to a same event, the terms the documents
use would be different if they discuss different aspects of the event.

3. Language semantics. The diverse term usage for a same meaning (e.g., kidnap
and abduct) needs to be considered. Using only a syntactic property (e.g.,
keyword counting) aggravates the problem.

The transitivity is related with document insertion order in incremental clus-
tering. Consider the TDT incremental clustering algorithm in Figure 2. If the
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order of document insertion is “d1d2d3”, then one cluster ({{d1, d2, d3}}) is ob-
tained. However, if the order is “d1d3d2”, then two clusters ({{d1, d2}, {d3}})
are obtained. Although the order of document insertion is fixed (because the
document is inserted whenever it is published), it is undesirable if the clustering
result significantly depends on the insertion order. Regardless of the input order,
the successful algorithm should produce a single cluster, {{d1, d2, d3}}.

4.2 A Proposed Incremental Non-hierarchical Document Clustering
Algorithm using a Neighborhood Search

Before we present detailed discussions on the proposed clustering algorithm,
definitions for basic terminology are provided first. In addition, Table 2 shows
the notations, which will be used throughout this paper.

Definition 1 similar. If Similarity(di, dj) ≥ ε, then a document di is referred
to as similar to a document dj .

Definition 2 Nε(di). ε-neighborhood for di is {x : Similarity(x, di) ≥ ε}.

That is, ε-neighborhood for a document di is defined as a set of documents,
which are similar to di. In this paper, ε-neighborhood and neighborhood are used
interchangeably.

Definition 3 neighbor. A document dj is defined as a neighbor of di if and
only if dj ∈ Nε(di).

The proposed clustering algorithm is based on the observation that a property
of an object would be influenced by the attributes of its neighbors. Examples of
such attributes are the properties of the neighbors, or the percentage of neighbors
that fulfill a certain constraint. The above idea can be translated into clustering
perspective as follows: a cluster label of an object depends on the cluster labels
of its neighbors.

Recent data mining research has proposed density-based clustering such as
Shared Nearest Neighbors (SNN) clustering [15, 24]. In SNN, the similarity be-
tween two objects is defined as the number of k-nearest neighbors they share.
Thus, the basic motivation of SNN clustering is similar to ours, however, as we
will explain in Section 4.3, the detailed approach is completely different.

Figure 3 shows the proposed incremental clustering algorithm. Initially, we
assume that only one document is available. Thus, this document itself forms a
singleton cluster. Adding a new document to existing cluster structure proceeds
in three phases: neighborhood search, identification of an appropriate cluster for
a new document, and re-clustering based on local information. In what follows,
these three steps are explained in detail.
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Step 1. Initialization:
Document d0 forms a singleton cluster C0.

Step 2. Neighborhood search:
Given a new incoming document d∗, obtain Nε(d∗) by performing
a neighborhood search.

Step 3. Identification of a cluster that can host a new document:
Compute the similarity between d∗ and a cluster Ci ∈ Cd∗ .

Based on the value obtained from above,
if there exists a cluster (Cj) that can host d∗, then

add d∗ to the cluster and update the DCFj .
Otherwise,

create a new cluster for d∗ and
create a corresponding DCF vector for this new cluster.

Step 4. Re-clustering:
Let Cj be the cluster that hosts d∗.
If Cj is not a singleton cluster, then trigger merge operation.

Step 5.
Repeat Step 2-4 whenever a new document appears in a stream.

Fig. 3. The incremental non-hierarchical document clustering algorithm

Neighborhood search Achieving an efficient neighborhood search is impor-
tant in the proposed clustering algorithm. Since we deal with documents in this
research, we can rely on an inverted index for the purpose of the neighborhood
search.4 In an inverted index [44], the index associates a set of documents with
terms. That is, for each term ti, we build a document list that contains all doc-
uments containing ti. Given that a document di is composed of t1, ... ,tk, to
identify similar documents to di, instead of checking whole document dataset,
it is sufficient to examine the documents that contain any ti. Thus, given a
document di, identifying the neighborhood can be accomplished in O(|Ddi |).

4 Note that the neighborhood search can be supported with Multi-Dimensional In-
dex (MDI) structure [6, 20, 7] coupling with dimensionality reduction (e.g., wavelet
transforms [11] or Fourier transforms [3]) if the proposed algorithm is extended into
other data types such as time-series.

12



Identification of an appropriate cluster To assign an incoming document
(d∗) to the existing cluster, the cluster, which can host d∗, needs to be identified
using the neighborhood of d∗. If there exists such a cluster, then d∗ is assigned
to the cluster. Otherwise, d∗ is identified as an outlier and forms a singleton
cluster.

Toward this end, the set of candidate clusters (Cd∗) is identified by selecting
the cluster that contains any document belonging to Nε(d∗). Subsequently, the
cluster, which can host a new document, is identified by using one of the following
three methods.

1. Considering the size of an overlapped region. Select the cluster that has the
largest number of its members in Nε(d∗). This approach only considers the
number of documents in the overlapped region, and ignores the proximity
between neighbors and d∗.

2. Exploiting weighted voting. The similarities between each neighbor of d∗ and
the candidate clusters are measured. Then, the similarity values are aggre-
gated using weighted voting. That is, the weight is determined by the simi-
larity between the proximity of a neighbor to the new document. Thus, each
neighbor can vote for its class with a weight proportional to its proximity to
the new document.
Let Wj be a weight for representing the proximity of nj to the new document
(e.g., Cosine similarity between nj and the new document). Then, the most
relevant cluster (C∗) is selected based on the following formula:

C∗ = argmaxCk∈Cd∗

∑
nj∈Nε(d∗)

Wj · Similarity(nj, Sk) (4)

Equation (4) mitigates the problem of the previous method by considering
the weight Wj . Moreover, it still favors the cluster with a large size of over-
lapped region to Nε(d∗) by summing up the weighted similarity.

3. Exploiting a signature vector. While the weighted voting approach is effec-
tive, it is computationally inefficient since the similarities between all neigh-
bors and all candidate clusters need to be computed. Instead, we employ
a simple but effective approach, which measures the similarity between the
signature vector of the neighborhood and that of the candidate clusters.

The signature vector should be composed of terms that reflect the main
characteristics of the documents within a set. For example, the center of a cluster
would be a signature vector for the cluster. For each term ti in the set Aj (e.g.,
cluster/neighborhood), we compute the weight for the signature vector using the
following formula:

sj
i =

dfij

|Aj | ·

∑
dk∈Aj

wik

|Aj | (5)

In Equation (5), the first factor measures the normalized document frequency
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Fig. 4. Illustration of a re-clustering phase

within a set, and the second factor measures the sum of the weight for the term
over the whole documents within a set.

Next, the notion of Document Cluster Feature (DCF) vector5 is presented as
follows:

Definition 4 DCF. Document Cluster Feature (DCF) vector for a cluster Ci is
defined as a triple DCFi = (Ni, DFi, Wi) where Ni is the number of documents
in Ci, DFi is a document frequency vector for Ci, and Wi is a weight sum vector
for Ci, respectively.

Theorem 5 Additivity of DCF. Let DCFi = (Ni, DFi, Wi) and DCFj =
(Nj, DFj, Wj) be the document cluster feature vectors for Ci and Cj, respec-
tively. Then, DCF for a new cluster (by merging Ci and Cj) is defined by
(Ni + Nj, DFi + DFj , Wi + Wj).

Proof. It is straightforward by simple linear algebra.

To compute the similarity between a document and a cluster, we only need
signature vectors of the cluster and the document. However, the signature vector
does not need to be recomputed as a new document is inserted to the cluster. This
property is based on the additivity of DCF. Since Si (a signature vector for Ci)
can be directly reconstructed from DCFi, instead of recomputing Si whenever
a new document is inserted into Ci, the DCFi only needs to be updated using
the additivity of DCF.
5 The basic notion of DCF is motivated by Cluster Feature (CF) in BIRCH cluster-

ing [51].
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Notation Meaning

STCi A collection of specific terms for Ci

T Virtual time

df i(T ) Document frequency of a term ti in whole documents at time T

df ij
IN (T ) Document frequency of a term ti within Cj at time T

K Number of clusters at level 1 at time T

df ij
OUT (T ) A quantitative value representing how much ti occurs outside

the cluster Cj at time T

Selij(T ) Selectivity of a term ti for the cluster Cj at time T

Cj
i A i-th cluster at level j

Table 3. Notations for incremental hierarchical document clustering

In sum, if there exists a cluster (Ci) that can host a new document, then the
new document is assigned to Ci and the DCFi is updated. Otherwise, a new
cluster for d∗ and a DCF vector for this cluster are created.

Re-clustering If d∗ is assigned to Ci, then a merge operation needs to be
triggered. This is based on a locality assumption [43]. Instead of re-clustering
the whole dataset, we only need to focus on the clusters that are affected by the
new document. That is, a new document is placed in the cluster, and a sequence
of cluster re-structuring processes is performed only in regions that have been
affected by the new document. Figure 4 illustrates this idea. As shown, clusters
that contain any document belonging to the neighborhood of a new document
need to be considered.

4.3 How to Extend the Non-hierarchical Clustering Algorithm into
a Hierarchical Version?

When the algorithm in Figure 3 is applied to a news article dataset, different
event clusters6 can be obtained. Since our goal is to generate a cluster hierarchy,
all event clusters on the same topic need to be combined together. For example,
to reflect a court trial topic, all court trial event clusters at level 1 should be
merged in a single cluster at level 2. However, in many cases, this becomes a
difficult task due to the extremely high term-frequency of named entities within
a document. Named entities are people/organization, time/date and location,
which play a key role in defining “who”, “when”, and “where” of a news event.

6 These event clusters are defined at level 1. Note that level 0 corresponds to the
lowest level in a cluster tree (i.e., each document itself forms a singleton cluster at
level 0). Thus, clusters at level 1 are expected to contain similar documents on a
certain event (i.e., event clusters) while clusters at level 2 are expected to contain
similar documents on a certain topic (i.e., topic clusters).
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Thus, although two different event clusters belong to the same topic, similarity
between the clusters becomes extremely low, consequently, the task of merging
different event clusters (on a same topic) is not simple.

To address the above problem, we illustrate how to extend the algorithm
(in Figure 3) into a hierarchical version. Table 3 summarizes the notations that
will be used in this section. Before presenting a detailed discussion, necessary
terminology is first defined.

Definition 6. Specific term (ST). A specific term for a cluster Ci is a term,
which frequently occurs within a cluster Ci, but rarely occurs outside of Ci. The
collection of specific terms for Ci is denoted by STCi.

Definition 7. Virtual time (T ). Virtual time T is initialized by 0. At any
time T , only one operation (e.g., document insertion and cluster merge) can
be performed. In addition, T is increased by one only when an operation is
performed.

Let df i(T ) be the document frequency of a term ti in whole document dataset
at time T . Then, the document frequency of ti at time T +1 is defined as follows:

df i(T + 1) =
{

df i(T ) + 1, if d∗ is inserted at T and d∗ contains ti,
df i(T ), Otherwise

(6)

Let df ij
IN(T ) be the document frequency of a term ti within a Cj at time T .

Then df ij
IN (T + 1) is recursively defined as follows:

df ij
IN (T + 1) =

{
df ij

IN (T ) + 1, if d∗ is inserted to Cj at T and d∗ contains ti,
df ij

IN (T ), Otherwise
(7)

We denote K(T ) as a number of clusters at level 1 at time T . Then, K(T +1)
is defined as follows:

K(T + 1) =




K(T ), if d∗ is inserted to an existing cluster at T
K(T ) + 1, if d∗ itself forms a new cluster at T
K(T )− 1, if two clusters are merged at T

(8)

Although df i(T + 1) − df ij
IN could be considered for representing how much

ti occurs outside Cj at T + 1, it is not sufficient if our goal is to quantify how
much ti is informative for Cj . This is because the number of clusters can also
affect on how much ti discriminates Cj from other clusters. Thus, df ij

OUT (T +1),
which represents how much ti occurs outside Cj at time T + 1, can be defined
as follows:

df ij
OUT (T + 1) =

df i(T + 1)− df ij
IN (T + 1)

K(T + 1)− 1
(9)
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Finally, the selectivity of a term ti for the cluster Cj at time T + 1 is defined
as follows:

Selij(T + 1) = log
df ij

IN (T + 1)
df ij

OUT (T + 1)
(10)

In sum, Equation (10) assigns more weight to the terms occurring frequently
within Cj , and occurring rarely outside of Cj . Therefore, a term with high se-
lectivity for Ci can be a candidate for STCi .

Based on the definition of ST , the proposed hierarchical clustering algorithm
is described. While clusters at level 1 are generated using the algorithm in Fig-
ure 3, if no more documents are inserted to a certain cluster at level 1 during the
pre-defined time interval, then we assume that the event for the cluster ends,7

and associate ST with this cluster at level 1. We then perform a neighborhood
search for this cluster at level 2. Since ST reflects the most specific characteris-
tics for the cluster, it is not helpful if two topically similar clusters (but different
events) need to be merged. Hence, when we build a vector for Cj

i , terms in ST
(for Cj

i ) are not included for building a cluster vector.
At this moment, it is worthwhile to compare our algorithm with the SNN

approach [24, 15]. The basic strategy of SNN clustering is as follows: It first con-
structs the nearest neighbor graph from the sparsified similarity matrix, which is
obtained by keeping only k-nearest neighbor of each entry. Next, it identifies rep-
resentative points by choosing the points that have high density, and removes
noise points that have low density. Finally, it takes connected components of
points to form clusters.

The key difference between SNN and our approach is that SNN is defined on
static datasets while ours can deal with incremental datasets. The re-clustering
phase, and special data structures (e.g., DCF or signature vector) make our algo-
rithm more suitable for incremental clustering than SNN. The second distinction
is how a neighborhood is defined. In SNN, a neighborhood is defined as a set of
k-nearest neighbors while we use ε-neighborhood. Thus, as discussed in Han et
al. [21], the neighborhood constructed from k-nearest neighbors is local in that
the neighborhood is defined narrowly in dense regions while it is defined more
widely in sparse regions. However, for document clustering, a global neighbor-
hood approach produces more meaningful clusters. The third distinction is that
we intend to build a cluster hierarchy incrementally. In contrast, SNN does not
focus on hierarchical clustering. Finally, our algorithm can easily identify sin-
gleton clusters. This is especially important in our application since an outlier
document on a in a news stream may imply a valuable fact (e.g., a new event or
technology that has not been mentioned in previous articles). In contrast, SNN
overlooks the importance of singleton clusters.

7 This assumption is based on the temporal proximity of an event [48].
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Event Specific features

Court trial 1 winona, ryder, actress, shoplift, beverly

Court trial 2 andrea, yates, drown, insanity

Court trial 3 blake, bakley, actor

Court trial 4 moxley, martha, kennedy, michael

Kidnapping 1 elizabeth, smart, utah, salt, lake

Kidnapping 2 jessica, holly, soham, cambridgeshire, england

Kidnapping 3 weaver, ashlei, miranda, gaddis

Kidnapping 4 avila, samantha, runnion

Earthquake 1 san, giuliano, puglia, italy, sicily, etna

Earthquake 2 china, bachu, beijing, xinjiang

Earthquake 3 algeria, algerian

Earthquake 4 iran, qazvin

Table 4. A sample specific terms for the clusters at level 1. The term with regular font
denotes NE. Thus, this supports the argument that NE plays a key role in defining
specific details of events

Topic Specific features

Court trial attorney court defense evidence jury kill law legal
murder prosecutor testify trial

Kidnapping abduct disappear enforce family girl kidnap miss
parent police

Earthquake body collapse damage earthquake fault hit injury
magnitude quake victim

Airplane crash accident air aircraft airline aviate boeing collision crash
dead flight passenger pilot safety traffic warn

Table 5. A sample specific terms for the clusters at level 2

4.4 Building a Topic Ontology

A topic ontology is a collection of concepts and relations. One view of a concept
is as a set of terms that characterize a topic. We define two generic kinds of
relations, specialization and generalization. The former is useful when refining a
query while the latter can be used when generalizing a query to increase recall
or broaden the search.

Table 4 and Table 5 illustrate the sample specific terms for the selected
events/topics. As shown, with respect to the news event, we observed that the
specific details are captured by the lower levels (e.g., level 1), while higher levels
(e.g., level 2) are abstract. We can also generate general terms for the node,
which is defined as follows:
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Event General features

Court trial 1 arm arrest camera count delay drug hill injury order
store stand target victim

Table 6. General terms for the court trial cluster 1 in Table 4

Definition 8. General term (GT). A general term for a cluster Ci is a term,
which frequently occurs within a cluster Ci, and also frequently occurs outside
of Ci. A collection of general terms for Ci is denoted by GTCi .

Thus, in comparison with ST, the selectivity of GT is less than that of ST. Those
ST and GT constitute the concepts of a topic ontology.8

Table 6 shows GT for the “court trial 1” cluster in Table 4. When the “Winona
Ryder court trial” cluster (C1) is considered, STC1 represents the most specific
information for “Winona Ryder court trial event”, GTC1 carries the next most
specific information for the event, and specific terms for the court trial cluster
describe the general information for the event. Therefore, we can conclude that
a topic ontology can characterize a news topic at multiple levels of abstraction.

Human-understandable information needs to be associated with cluster struc-
ture such that clustering results are easily comprehensible to users. Since a topic
ontology provides an interpretation of a news topic at multiple levels of detail,
an important use of a topic ontology is automatic cluster labeling. In addition,
a topic ontology can be effectively used for suggesting alternative queries in
information retrieval.

There exists research work on extraction of hierarchical relations between
terms from a set of documents [17, 45] or term associations [46]. However, our
work is unique in that the topical relations are dynamically generated based on
incremental hierarchical clustering rather than based on human defined topics
such as Yahoo directory (http://www.yahoo.com).

5 Experimental Results for Information Analysis

In this section, we present experimental results that demonstrate the effective-
ness of the information analysis component. Section 5.1 illustrates our experi-
mental setup. Experimental results are presented in Section 5.2.

5.1 Experimental Setup

For the empirical evaluation of the proposed clustering algorithm, approximately
3,000 news articles downloaded from CNN (http://www.cnn.com) are used. The

8 There are two thresholds (for selectivity) that for ST (λ1) and GT (λ2), which are
determined by experiments.
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Sample topic Sample events

Earthquake Algeria earthquake, Alaska earthquake, Iran earthquake, etc

Flood Russia flood, Texas flood, China flood, etc

Wildfire Colorado wildfire, Arizona wildfire, New Jersey wildfire, etc

Airplane crash Ukraina airplane crash, Taiwan airplane crash, etc

Court trial David Westerfield, Andrea Yates, Robert Blake, etc

Kidnapping Smantha Runnion, Elizabath Smart, Patrick Dennehy, etc

National Security Mailbox pipebomb, Shoebomb, Dirty bomb, etc

Health 2002-West nile virus, 2003-West nile virus, SARS, etc

Table 7. Examples for selected topics and events

total number of topics and events used in this research is 15 and 180, respectively.
Thus, the maximum possible number of clusters we can obtain (at level 1) is 180.
Note that the number of documents for events ranges from 1 to 151. Table 7
illustrates sample examples for topics and events.

The quality of a generated cluster hierarchy was determined by two metrics,
precision and recall. Let Tr be a class on topic/event r.9 Then, a cluster Cr is
referred to as a topic r cluster if and only if the majority of subclusters for Cr

belong to Tr. The precision and recall of the clustering at level i (where Ki is
the number of clusters at level i) then can be defined as follows:

Pi =
1

Ki

Ki∑
r=1

|Cr ∩ Tr|
|Cr| (11)

Ri =
1

Ki

Ki∑
r=1

|Cr ∩ Tr|
|Tr| (12)

Thus, if there is large topic overlap within a cluster, then the precision will
drop down. Precision and recall are relevant metrics in that they can measure
“meaningful theme”. That is, if a cluster (C) is about “Turkey earthquake”,
then C should contain all documents about ‘Turkey earthquake”. In addition,
documents, which do not talk about ‘Turkey earthquake”, should not belong to
C.

9 A class is determined by ground truth dataset. Thus, a class on topic/event r contains
all documents on r, and does not contain any other document on other topics or
events. In contrast, a cluster is determined by clustering algorithms. Note that there
exists 1-1 mapping between event and cluster at level 1 of hierarchy, and topic and
cluster at level 2 of hierarchy.
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Fig. 5. Illustration of ε”’s sensitivity to clustering results

5.2 Experimental Results

For the purpose of comparison, we decided to use K-means clustering. However,
since K-means is not suitable for incremental clustering, K-means clustering is
performed retrospectively on datasets. In contrast, the proposed algorithm was
tested on incremental datasets after learning IDF . Moreover, since we already
knew the number of clusters at level 1 based on the ground-truth data, K could
be fixed in advance. Furthermore, to overcome K-mean’s sensitivity to initial
seed selections, a seed p is selected with the condition that the chosen seeds are
far from each other. Since we deal with document datasets, the intelligent seed
selection10 can be easily achieved by using an inverted index.

Parameterization The size of a neighborhood, which is determined by ε, in-
fluences clustering results. To observe the effect, we performed an experiment as
follows: From 3,000 documents, we organized sample datasets, which consists of
500 documents in 50 clusters of different sizes. Then, while changing the value
of ε, our clustering was conducted on the dataset.

In Figure 5, the x-axis represents the value of ε, and the y-axis represents
the number of clusters in the result (k1) over the number of clusters determined
by ground-truth data (k2). Thus, if the clustering algorithm guesses the exact
number of clusters, then the value of y corresponds to one. As observed in Fig-
ure 5, we could find the best result when ε varies between 0.1 and 0.25, i.e., the
algorithm guessed the exact number of clusters. If the value of ε was too small,
then the algorithm found a few large-size clusters. In contrast, many small-size
clusters were identified if the value ε is too large. Thus, the proposed algorithm
might be considered as sensitive to the choice of ε. However, once the value
of ε (i.e., ε = 0.2) was fixed, the approximately right number of clusters were

10 Two documents are mutually orthogonal if they share no terms. This holds true
when the Cosine metric is used for the similarity measure.
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always obtained whenever we performed clustering on different datasets. There-
fore, the number of clusters does not need to be given to our algorithm as an
input parameter, which is a key advantage over partition-based clustering.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

−0.15
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−0.05

0

0.05

0.1

0.15
a document on wildfire
a document on court trial

Fig. 6. Illustration of non-spherical document clusters

Ability to identify clusters with same density, but different shapes To
illustrate the simple example for the shapes of document clusters with the same
density, approximately the same number of documents were randomly chosen
from two different events (a wildfire event and a court trial event), and the
document×term matrix on this dataset is decomposed by Singular Value De-
composition. By keeping the first two largest singular values, the dataset could
be projected onto a 2D space corresponding to principal components. Figure 6
illustrates the plot of the documents. As shown, since the shape of document
cluster can be arbitrary, a shape of document cluster cannot be assumed in
advance (e.g., hyper-sphere in k-means).

To test the ability of identifying the different shapes of clusters, we organized
datasets where each cluster consists of approximately the same number of docu-
ments (but as illustrated in Figure 6, each document cluster will have a different
shape). As shown in Figure 7, the proposed algorithm outperforms the modified
K-means algorithm in terms of precision and recall.11 This is because the pro-
posed algorithm measures similarity between a cluster and a neighborhood of a
document while K-means clustering measures similarity between a cluster and a
document. Note that 10% increase in accuracy is significant by considering the
fact that we provided the correct the number of clusters (K) and choose the best
initial seed points for K-means.
11 We did not compare the modified k-means algorithm with ours at level 2. To do

this, we also need to develop a feature selection algorithm to extend the modified
K-means algorithm into a hierarchical version.
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Precision Recall

Level 1 91.5% 90.3%

Level 2 100% 76.4%

Precision Recall

Level 1 83.1% 86.7%

(a) Proposed algorithm (b) Modified K-means

Fig. 7. Comparison of the clustering algorithms on datasets-1. Datasets-1 consists of
five different datasets where each cluster has approximately the same density. The
values of precision and recall shown in this table are obtained by averaging the accuracy
of the algorithm on each dataset

Precision Recall

87.5% 88.6%

Precision Recall

78.7% 79.5%

(a) Proposed algorithm (b) Modified k-means algorithm

Fig. 8. Comparison of the accuracy of clustering algorithms at level 1 on datasets-2.
Datasets-2 consists of ten different datasets where each cluster has arbitrary numbers
of documents. The values of precision and recall shown in this table are obtained by
averaging the accuracy of the algorithm on each dataset

As illustrated in Figure 7, the recall of our algorithm decreases as the level
increases. The main reason for this poor recall at level 2 is related to the char-
acteristics of news articles. As discussed, a named entity (NE) plays a key role
in defining who/when/where of an event. Hence, NE contributes to high quality
clustering at level 1. However, at level 2, since the strength of topical terms are
not very strong (unlike named entities), it was not easy to merge different event
clusters (belonging to the same topic) into a same topical cluster.

Ability to discover clusters with different densities and shapes Since
the sizes of clusters can be of arbitrary numbers, clustering algorithms must
be able to identify the clusters with wide variance in size. To test the abil-
ity of identifying clusters with different densities, we organized datasets where
each dataset consists of document clusters with diverse densities. As shown in
Figure 8, when the density of each cluster is not uniform, the accuracy of the
modified K-means clustering algorithm degraded. In contrast, the accuracy of
our algorithm remains similar. Therefore, based on the experimental results on
datasets-1 and datasets-2, we can conclude that our algorithm has better ability
to find arbitrary shapes of clusters with variable sizes than K-means clustering.
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Event confusion There are some events that we could not correctly sepa-
rate. For example, on the wildfire topic, there exist different events, such as
“Oregon wildfire”, “Arizona wildfire”, etc. However, at level 1, it was hard to
separate those events into different clusters. Table 8 illustrates the reason for
this event confusion at level 1. As shown, term frequency of topical terms (e.g.,
fire, firefighter, etc) is relatively higher than that of named entities (e.g., Col-
orado, Arizona, etc). Similarly, for the airplane crash topic, it was difficult to
separate different airplane crash events since distinguishing lexical features like
plane number has extremely low term frequency.

The capability of distinguishing different events on the same topic is impor-
tant. One possible solution is to use temporal information. Rational behind this
approach is based on the assumption that news articles on same event are tem-
porally proximate, However, if two events occur during the same time interval,
then this temporal information might not be helpful. Another approach is to
use classification, i.e., training dataset is composed of multiple topic classes, and
each class is composed of multiple events. After then, we learn the weight of
topic-specific terms and named entities [49]. However, this approach is not rele-
vant since we cannot accommodate the dynamically changing topics. Therefore,
we need further study for the event confusion.

6 Conclusion and Future Work

We presented the mining framework that is vital to intelligent information re-
trieval. An experimental prototype has been developed, implemented and tested
to demonstrate the effectiveness of the proposed framework. In order to accom-
modate topics that change over time, we developed the incremental document
clustering algorithm based on a neighborhood search. The presented clustering
algorithm could identify news event clusters as well as topic clusters incremen-
tally. We also showed that presented topic ontologies could characterize news
topics at multiple levels of abstraction.

We intend to extend this work into the following five directions. First, al-
though a document hierarchy can be obtained using unsupervised clustering,
as shown in Aggarwal et al. [1], the cluster quality can be enhanced if a pre-
existing knowledge base is exploited. That is, based on this priori knowledge,
we can have some control while building a document hierarchy. Second, besides
exploiting text data, we can utilize other information since Web news articles are
composed of text, hyperlinks, and multimedia data. For example, as described
in [25], both terms and hyperlinks (which point to related news articles or Web
pages) can be used for feature selection. Third, coupling with WordNet [36], we
plan to extend the topic ontology learning framework to accommodating rich
semantic information extraction. To this end, we will annotate a topic ontology
within Protégé [38, 54]. Forth, our clustering algorithm can be tested on other
datasets like TDT corpus [53]. Finally, to strengthen our work in terms of gen-
erality, we are in the process of investigating the potential applicability of our
method to earth science information streams.
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Colorado wildfire Num Arizona wildfire Num

1 fire 14.33 fire 17.68

2 forest 5.72 rodeo 4.76

3 firefighter 4.83 blaze 4.38

4 acre 3.94 firefighter 4.21

5 evacuate 3.77 burn 3.92

6 hayman 3.22 arizona 3.46

7 blaze 3.11 paxon 3.15

8 weather 3.06 acre 3.00

9 official 2.89 wildfire 3.00

10 national 2.83 chediski 2.89

11 burn 2.72 resident 2.61

12 area 2.66 center 2.46

13 wildfire 2.56 national 2.46

14 denver 2.43 area 2.46

15 colorado 2.33 evacuate 2.65

Table 8. Top 15 high term frequency words in Colorado wildfire and Arizona wild-
fire event. Num represents the average number of term occurrences per document
in each event (without document length normalization). Terms with italic font carry
event-specific information for each wildfire event
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