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ABSTRACT. Canonical extensions of (bounded) lattices have been extensively
studied, and the basic existence and uniqueness theorems for these have been
extended to general posets. This paper focuses on the intermediate class S
of (unital) meet semilattices. Any S € 8o embeds into the algebraic closure
system Filt(Filt(S)). This iterated filter completion, denoted Filt%(S), is a
compact and \/ /\ -dense extension of S. The complete meet-subsemilattice S
of Filt?(S) consisting of those elements which satisfy the condition of A/ -
density is shown to provide a realisation of the canonical extension of S. The
easy validation of the construction is independent of the theory of Galois con-
nections. Canonical extensions of bounded lattices are brought within this
framework by considering semilattice reducts.

Any S in 8 has a profinite completion, Prog, (S). Via the duality theory
available for semilattices, Prog , (S) can be identified with Filt?(S), or, if an
abstract approach is adopted, with Fi,(F~(S)), the free join completion of the
free meet completion of S. Lifting of semilattice morphisms can be considered
in any of these settings. This leads, inter alia, to a very transparent proof
that a homomorphism between bounded lattices lifts to a complete lattice
homomorphism between the canonical extensions. Finally, we demonstrate,
with examples, that the profinite completion of S, for S € 8, need not be
a canonical extension. This contrasts with the situation for the variety of
bounded distributive lattices, within which profinite completion and canonical
extension coincide.

1. INTRODUCTION

Canonical extensions of ordered algebraic structures are completions with par-
ticular properties. The present paper focuses on the variety 8, of meet semilattices
with 1. Our objectives are to give an account of canonical extensions tailored
to semilattices and to relate the canonical extension of a semilattice to its profi-
nite completion and also to provide a fresh perspective on canonical extensions for
bounded lattices. The theory of profinite completions of semilattices is very rich,
and much of its power derives from the different ways in which, as expedient (or
according to taste), these completions can be described and analysed. We therefore
reap considerable benefit by working with canonical extensions as they sit inside
semilattice profinite completions.

Historically, the theory of canonical extensions has evolved from its beginnings
sixty years ago with the classic work of Jénsson and Tarski on Boolean algebras with
operators, through successive generalisations, so that today it embraces posets with
additional operations. Landmarks in the development have been the treatment,
exploiting topological duality, of canonical extensions of algebras with reducts in
the variety D of bounded distributive lattices (Gehrke and Jénsson [11]) and the
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development of the theory of canonical extensions of bounded lattices (Gehrke
and Harding [9]). Gehrke and Harding obtained the canonical extension L° of a
bounded lattice L as the complete lattice of Galois-closed sets of a polarity between
the lattice of filters of L and the lattice of ideals of L [9, Proposition 2.5]). They
also draw attention [9, Remark 2.10] to the relationship between their construction
and Urquhart’s duality for lattices [20]. An alternative approach, exploiting free
join- and meet-completions, was presented by Gehrke and Priestley [12]. Once
existence and uniqueness have been established, canonical extensions can be studied
abstractly via their characterising properties, without reference to a concrete model;
this is exemplified by Gehrke and Vosmaer [13]. The properties of density and
compactness used to define and to characterise canonical extensions of bounded
lattices were shown to carry over with only minor modification to posets (Dunn,
Gehrke and Palmigiano [6]) and the study of these canonical extensions has recently
spawned fruitful investigations of poset completions in their own right (Gehrke,
Jansana and Palmigiano [10]). Interesting as this pure order theory proves to
be, in the passage from Boolean algebras, via distributive lattices and lattices, to
posets, there is one striking omission in the literature: semilattices have received
no customised attention. This is curious, since semilattices sit naturally between
lattices and posets. Furthermore, they form in their own right an important class of
ordered structures and have a duality theory, due to Hofmann, Mislove and Stralka
[18], analogous to Priestley duality for D. We note also that a uniqueness theorem
guarantees that the canonical extension of a lattice is the same as that of either of
its semilattice reducts so that a treatment for semilattices subsumes one for lattices.
Indeed, we shall reveal that analysing lattice completions by considering semilattice
reducts, separately and together, provides new insights into such completions.
Section 2 of the paper first recalls the requisite definitions concerning completions
and canonical extensions. It then presents our approach to canonical extensions of
semilattices. In outline this proceeds as follows. Given S € 8., we have a natural
embedding e of S into its iterated filter lattice Filt(Filt(S)), which we shall usually
denote by Filt?(S). The lattice Filt?(S) is an algebraic closure system, so that
meets are given by intersection and directed joins by union. Moreover, the comple-
tion (e, Filt*(8)) is “2/3-canonical”, in that it is a compact extension and satisfies
one of the two density requirements for a canonical extension. We then consider
the subset of Fith(S) consisting of those elements for which the other density con-
dition also holds, and can show easily that this complete meet-subsemilattice S?
of Filtz(S) supplies a concrete representation of the canonical extension of S. Our
set-based approach has certain merits. The construction and its validation are very
direct and entirely elementary. In particular it makes no reference to the theory
of Galois connections, and only once our framework is in place do we relate our
construction to those given by other authors. We should however note already here
that Filt?(S) is a concrete manifestation of Fi,(Fn(S)), the free join-completion of
the free meet-completion of S and from this viewpoint the 2/3-canonicity property
is a near triviality. In Section 3 we turn to consideration of profinite completions
in 8,. We show that F ith(S) serves as the semilattice profinite completion of S,
as a consequence of known facts about the duality for semilattices. We thus have a
wealth of equivalent ways in which we may view a semilattice profinite completion:
concretely, via a set-based representation; abstractly an as an iterated free comple-
tion; via duality theory; or, more categorically, as a profinite object. In Section 4 we
demonstrate how each of these viewpoints provides a viable approach to the lifting
of semilattice morphisms, each with insights to contribute. In Section 5 we apply
our results on morphisms to bounded lattices, by considering semilattice reducts.
There we also venture very briefly into the territory of additional operations to
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bring our results to bear on unary operations which preserve binary join or meet;
such operations, of course, are used to model modalities.

For a member L of a finitely generated variety 'V of bounded lattices, and for a
bounded distributive lattice in particular, it is known that the profinite completion
of L in 'V may be identified with L°. It is therefore natural to ask under what
circumstances S? (for 8 € 8,), regarded as a subset of Filt*(S), coincides with
Filtz(S). The concluding section of the paper presents selected examples demon-
strating that a variety of behaviours can occur. In particular we indicate that
FiltZ(S) may coincide with 8%, or may contain a single additional point or count-
ably many additional points; we show, at the opposite extreme, that S° may have
strictly smaller (infinite) cardinality than Filt?(S) has. (In a separate paper [15] we
analyse in depth the case that S is a semilattice reduct of a bounded distributive
lattice. The techniques employed there are quite different from those used here and
draw heavily on the theory of continuous lattices.)

The authors acknowledge with gratitude valuable discussions on draft versions
of this paper with Leonardo Cabrer. The second author has benefitted also from
the opportunity to discuss with M. Andrew Moshier the connections between parts
of the work presented in Section 2 and that by Moshier and Jipsen [19]. However
our approach is more direct, and, unlike that in [19], places strong emphasis on
the iterated filter completion and the canonical extension. Finally we are grateful
to Mai Gehrke to drawing our attention to the connection between our results in
Section 5 and the Esakia Lemma in modal logic, in its algebraic formulation.

2. COMPLETIONS OF SEMILATTICES

Throughout, the semilattices we consider will be unital and the lattices will be
assumed to have universal bounds, and our subsequent notation will generally leave
this tacit. As above, we denote by 8, the class of meet semilattices with 1. The
underlying order of S € 8§, is given in the expected way by the relation < defined
by a < b if and only if a A b = a. We shall not distinguish notationally between S
and its associated poset.

Given any poset P, an ideal is a down-set in P which is up-directed and a
filter is an up-set which is down-directed (or, in alternative terminology, filtered);
by convention, up- and down-directed sets are required to be non-empty. In the
special case in which P is taken to be the ordered set underlying a semilattice
S € 8x, the notion of a filter in the poset sense coincides with that in the usual
semilattice sense, that is, a non-empty up-set closed under A. We denote by Id1(S)
the family of poset ideals of S and by Filt(S) the family of semilattice filters of S,
both ordered by set inclusion. The filter lattice Filt(S) of any S € S, is the lattice
of closed sets for the closure operator sending a subset A of S to the filter A that
it generates. Specifically, for A C S,

i {beS|bza A---Na, for some n € Nand ay,...,a, € A} if A#0,
{1} if A=0.

For any poset P we have natural order-embeddings

ap: P — Idl(P), ap:a—la,
Bp: P —Filt(P)°,  Bp:aw ta.

In addition, ap preserves all existing finite joins and all existing meets, and Gp
preserves all existing finite meets and all existing joins. Here ? applied to a poset
denotes the order dual.

The poset P has a free dcpo-completion, concretely modelled by Id1(P). The
key facts are recalled in the following proposition (see [6, Section 2]).
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Proposition 2.1. Let P be a poset. Let QQ be a dcpo, that is, a poset in which
every directed subset has a join, and assume that a: P — @Q is an order-embedding.
Then the following are equivalent:

(1) whenever Q' is a decpo and f: P — @' is an order-preserving map, then
there exists a unique map f: Q — Q' preserving directed joins and such that
foa = f, and this map is given by f(x) = [ [{f(p) | = a(p) }, where | |
denotes directed join;

(2) there exists an isomorphism n: Q = Id1(P) with n(a(p)) = lp for all p € P.

The proposition shows that every poset P has an essentially unique dcpo com-
pletion satisfying condition (2). Because of this universal mapping property, this
completion will be referred to as the free join-completion of P. We denote it by
F,(P) and the embedding of P into F,(P) by ap. No confusion will arise from
what is a slight abuse of notation, whereby we use the same symbol for the em-
bedding of P into the ‘abstract’ Fi,(P) and into the ‘concrete’ Id1(P). When P is
closed under the formation of finite joins (including the empty join) then F,(P)
is a complete lattice. Order dually, there exists a free meet-completion of P de-
noted Fr(P), concretely modelled by (Filt(P))?; the embedding of P into Fr(P)
is denoted by Sp.

For S € 8,, we know that Filt(S) is certainly a complete lattice; in general
Id1(S) is closed under directed joins, but not a complete lattice. This dictates the
preferential status we give to filters over ideals in our treatment of meet semilattices.
Henceforth in this paper, a completion of a poset P is a pair (e, C), where C' is a
complete lattice and e: S — C is an order-embedding. When working with a
single completion (e, C) we shall usually refer to the completion simply as C. Two
completions, (€1,C1) and (e2,Cy) of P are said to be isomorphic if there exists an
isomorphism ¢: C; — C5 such that ¢ o e = e3. We shall explore completions
specifically when P is a semilattice S € §5. We may view S as being embedded,
upside-down, in Filt(S) by the map fs. Repeating the process using Bpiy(s), we
obtain by composition an order embedding e of S into Filt2(S). We shall often
have two filter lattices in play at the same time, namely Filt(S) and Filt*(S). For
clarity it will be helpful to adopt the notation TG for the principal filter in Filt*(S)
generated by a filter G of S. Thus e(a) = (1) for a € S.

Certainly (e, Filt?(S)) is a completion of S. The iterated filter lattice Filt*(S) can
be viewed alternatively as Idl((Filt(S))?) or, abstractly, as F,(F+(S)). But for our
immediate needs it is the concretely constructed completion (e, Filt*(S)) that will
play a central role. (The abstract viewpoint will come into its own only in Section 4,
in which we consider morphisms and where we shall make use of universal mapping
properties.) The family of sets Filt2(S) is an algebraic closure system, and forms an
algebraic lattice in which arbitrary meet and directed join are given, respectively,
by intersection and directed union. The join of an arbitrary family of elements {F;}
is N{ G € Filt*(S) | G 2 | Fi }. (For background on algebraic closure systems, see
for example [5, Chapter 7].)

We wish to compare the completion Filt*(S) of S € 8, with the canonical
extension of (the underlying poset of) S. We recall the relevant definitions from
the theory of canonical extensions for posets. Assume we have a completion (e, C') of
a poset P. An element of C which is of the form A e(F'), the meet in C of the image
under e of a filter F in P, is called a filter element; likewise, an element \/ e(J),
where J is an ideal in P, is an ideal element (the terms closed and open, respectively,
are used in the older literature of canonical extensions). The completion C is
said to be dense (more precisely, a Aj-completion) if every element of C' is both
a join of filter elements and a meet of ideal elements. Since the down-set |D
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in P generated by a directed set D in P is an ideal in P having the same join
in C' as D has, and a dual statement also holds, we may alternatively express the
density condition as the requirement that every element of C be a join of down-
directed meets and a meet of (up-)directed joins. The completion C' is compact if,
whenever F' and J are, respectively, a filter and an ideal in P, then A e(F) <V e(J)
in C implies F NJ # (. Finally, C is a canonical extension of P if it is both
dense and compact. Then it can be shown ([6, Theorem 2.6 and Theorem 2.5])
that every poset P possesses a canonical extension, and that this is unique up
to isomorphism of completions, as defined above. We shall denote the canonical
extension of a poset P by P°. We need to clear up a small issue. The definition
of the canonical extension of a bounded lattice L, as given in [9] demands, more
stringently, that the embedding be a lattice embedding. No comment is made in
[6] about this point. However it is very easy to see that there is no conflict: the
canonical extension of L, qua poset, and of L, qua bounded lattice, are the same (up
to isomorphism). This follows from the existence results [6, 2.6] and [9, 2.6] for the
two cases, combined with uniqueness of the canonical extension of a poset [6, 2.5].
Moreover, the embedding is necessarily a lattice embedding. We may therefore
record the following compatibility result, which guarantees that our subsequent
results about canonical extensions for semilattices apply also to lattices.

Proposition 2.2. Let L be a bounded lattice. Then the canonical extensions of L
and of its Sx-reduct Ly coincide, and the natural embedding e: L — L‘f\ is a lattice
embedding.

We shall show that the iterated filter completion Filt*(S) of S € 8, is 2/3-
canonical: it is always a compact extension and it satisfies one part of the density
condition (\/ A -density) in a rather trivial way. We remark here that 2/3-canonicity
of Filt?(S) can be seen as coming directly from the fact that Filt?(S) serves as a
concrete realisation of the iterated free completion Fy,(Fr(S)) of S. However we
include a derivation of these facts within Filt?(S) since the formulae we obtain en
route will be useful later on.

We first record, in the notation adopted above, simple formulae for particular
meets and joins in Filt2(S). We shall principally need these formulae for the special
cases in which Z is a filter and Y is an ideal. In what follows, recall that Z denotes
the filter of S generated by Z.

Proposition 2.3. Let S € S,.
(i) Let Z CS. Then

Ne(Z)={G eFilt(S) |G2 Z} =1Z.

In particular, if F is a filter in S then \e(F) = NF.
(ii) Let Y be a directed subset of S. Then \/e(Y) = Je(Y) and this holds, in
particular, if Y is an ideal of S.

Proof. We have

Ne(Z) =N {M(ta) |a€ Z}.
But a filter G belongs to the right-hand side if and only if G 2 fa for all a € Z and
this happens if and only if G O Z. The last condition is equivalent to G O Z.

Now consider \/ e(Y). Since Y is directed and e is order-preserving, e(Y) is
directed and hence its join in Filt*(S) is given by union. |

Lemma 2.4. Let S € S\.
(i) A finite join of filter elements in Filt*(S) is a filter element.
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(i) Bwvery element F of Filt*(S) satisfies
F=V{NelF) | FeF}

where the join is directed, and so given by union.

Proof. For any F € Filt(S) we have Ae(F) = f1F by the previous proposition.
Consider (i). We have

Ne(F) V Ne(Fz) = AN{F € Filt’(S) | Ae(F1) U \e(Fy) € F}
=N{FeFilt*(S) | F|,F, € F}
=M{F<cFilt*S) | ANF, e F}
=MNFNF)=Ae(F1NE).

Now consider (ii). The family of sets A e(F), for F € F, is directed, from the
argument above and using the fact that F is a filter. Hence

V{AeF)|FeF}=U{AelF) | FeF}t=U{NF|FeF}=F. O
Lemma 2.5. Let S € S5. For every ideal J and every filter F in S,
Ne(F)<Ve(J) & FNJ#0.

Proof. Assume that the ideal J and the filter F' of S are such that A e(F) < \/ e(J).
By Proposition 2.3, ' F C [ Je(J). Then, in particular, F' € |Je(J). Therefore there
exists a € J such that F' € 1(fa). This means that F' O fa. But this is equivalent
to saying a € F. Hence a € F'NJ. Conversely, if there exists a € F N J, then

Ne(F) <e(a) < Ve(J). O

From Lemma 2.4(ii) and Lemma 2.5 and by the remarks made at the beginning
of section 2 we deduce the following theorem.

Theorem 2.6. Let S € S,. Then the completion (e, Filt*(S)) is a compact and
\/ A\ -dense completion of S. In fact, every element of Filt*(S) is a directed join of
down-directed meets of elements drawn from e(S).

The iterated filter lattice Filt?(S) is, as noted already, algebraic. An example
due to Gehrke and Vosmaer [13], which we review below (see Example 6.3), shows
that the canonical extension of a bounded lattice need not be meet-continuous and
so not an algebraic lattice. Therefore we cannot expect Filt?(S) to be a A\ \/-dense
completion of S for every S € 8,: an element of Filt?(S) will not necessarily be a
meet of directed joins of elements drawn from e(S). However we have an obvious
candidate for a canonical extension. We restrict attention to the subset of Filt?(S)
consisting of those of its elements which are meets of directed joins from e(S). We
shall temporarily denote this set—our candidate for the canonical extension—by C.
We know already that every directed join in Filt2(S)7 and in particular any directed
join of elements of e(S), is obtained by forming the union. Certainly C is closed
under arbitrary meets since an iterated meet formed in Filt?(S) may be expressed
as a single meet; the empty meet is included here, and corresponds to the top
element both in C' and in Fith(S). Hence C' is a complete lattice, sitting inside
Filt*(S) as a complete meet subsemilattice.

In the definition of a completion we gave earlier in the context of posets, we
required an order embedding of a poset into a complete lattice. The proposition
recorded below may be compared with Proposition 2.2.

Proposition 2.7. For S € 8, and e and C as above, (e,C) is a completion of S
with the property that e preserves A and 1.
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Proof. We note that any singleton set in e(S) is directed. Therefore all the images
e(a), with a € S, belong to C. So e embeds S into C.
To verify that e preserves A and 1, just observe that, for a,b € S,

e(a) Ae(b) = M(ta) NT(10) = { F € Filt(S) |a € Fand b€ F}
={F€eFilt(S) |anbe F}="T(taAb) =e(aAb)
and e(1) = f(11), which is the set of all filters of S. O

We shall denote by € the map from S to C' obtained by restricting the codomain
of e. We now easily obtain the following theorem.

Theorem 2.8. Let S € Sx. The lattice C' as specified above is a complete lattice
each of whose elements is expressible as a directed join of down-directed meets and
as a meet of directed joins of elements drawn from its subset e(S). Moreover, (€, C)
serves as the canonical extension of the semilattice S. Its filter elements coincide
with, those of Filt*(S) and form a subset of C' closed under finite joins.

Proof. A little care is needed, since we must make sure that when we move from
Filt*(S) to C the joins and meets we work with are not altered. We note that in
applying Lemma 2.5 we can legitimately restrict from Fith(S) to the subset C' since
the particular joins and meets arising in the compactness criterion for C' coincide
with those calculated in Fﬂtz(S), the joins and meets being obtained via union
and intersection, respectively, in each case. Also note that from the coincidence of
meets in Filt>(S) and in C, and in particular meets of sets e(F) for F' € Filt(S),
the filter elements of the two completions are the same. The final assertion in the
theorem comes from Lemma 2.4(i). ]

In view of the uniqueness of canonical extensions (of posets), we are justified
in regarding C, or more precisely (g, C), as the canonical extension of S, for any
S € 8,. We shall henceforth denote C' by S°.

We could present a full description of the construction and properties of the
canonical extension of a member of the variety 8\, of join semilattices with 0. We
shall merely highlight a few points. We have already observed that Fith(S)7 for
S € 8,, can be viewed as a concrete realisation of F(Fq(S)). It will now be
convenient to denote the embedding a +— T'(ta) by e, rather than just e and, to
make the parallels between the 8, and 8, situations, revert to writing Filt(Filt(S))
rather than Filt?(S). Now we apply our construction for meet semilattices to S?,
remembering that (S?)° = (S°)? (see [6, Theorem 2.8]). We obtain the following
analogue of what we obtained for S,.

Proposition 2.9. LetS € 8. Then there is an embedding ey, : S — (Filt(1d1(S)))?
given by ey(a) = {J € IdI(S) | J > a}, where (Filt(1d1(S)))? may also be taken
to be (1d1(Id1(S)?))?. Moreover, (ey, (Filt(Id1(S)))?) is a compact and \/ \-dense
completion of S. A canonical extension of S is obtained by taking the complete join-
subsemilattice S° of (Id1(1d1(S)?))? consisting of those elements which are joins of
down-directed meets of sets of elements drawn from ey(S5).

Our principal reason for introducing join semilattices above was that we wish to
make use of a meet semilattice and a join semilattice as these arise simultaneously
as the reducts L, and Ly of a bounded lattice L. The slickest way to arrive at the
concrete realisations of the canonical extensions of these reducts is, however, to work
with free join- and meet-completions. Following [12], we have the diagram shown in
Fig. 1. The maps into the various free completions, designated with double-hooked
arrows, are the natural lifting maps. The maps €, and €, are obtained from the
counterparts without overlining just by redefining the codomains. We do not need



8 M.J. GOUVEIA AND H.A. PRIESTLEY

yet the properties of these maps, but note that the diagram is indeed commutative;
for details see [12, Section 2] and Section 4 below.

Fr(L) & F(Fn(L)) & Filt(Filt(L)) «——=; L],

Fi,(L) & Fn(Fu(L)) = (IdI((1d(L))?))? " L},

FIGURE 1. Embedding a bounded lattice L into its iterated free completions

In canonical extensions of general bounded lattices we cannot expect unrestricted
distributivity of joins over meets or of meets over joins. However a pair of re-
stricted complete distributivity laws is known to hold in the canonical extension
of a bounded lattice. These originate with Harding [16, Theorem 3.2] and their
significance as a technical tool in the treatment of canonical extensions of lattices
was fully demonstrated by Gehrke and Harding [9, Section 2] (or see Gehrke and
Vosmaer [13]). In fact the validity of these restricted distributive laws in the lattice
case does not rely on the interaction of the join and meet in L. The corresponding
laws hold in the canonical extension of a semilattice in 84 or in 8y, and can be
applied to the semilattice reducts of a bounded lattice, operating independently.
For S € 84, the restricted distributive law holding in S° takes the form

A{Ve)|YeV}=V{Ae(Z)|ZCSand ZNY £PforallY € YV},

where ) is a family of directed subsets of S. This is proved by an argument
similar to that used to prove Proposition 2.10 below. The key facts needed are that
Ne(Z) = Ne(Z) for any Z C S and that \/e(Y) =V e(lY).
It is instructive to relate our realisation of the canonical extension of (the un-
derlying poset of) a semilattice to the polarity which gives rise to this extension.
Given a poset P, one may consider the relation R C Filt(P) x Idl(P) defined by
FRJ <= FnNJ#0{. The associated Galois connection is given by

(). QEFI(P) = QUId(P)) : B(-)
A = {J|FeA=FRJ}
{F|JeB=FRJ} <« B
The family of Galois-closed subsets of Filt(P) is
S(Filt(P),1dl(P), R) = { A C Filt(P) | A = BAR)} = {EB | BC 1dI(P) }

and the map e': P — G(Filt(P),1dl(P), R) given by ¢'(p) = { F € Filt(P) |pe F }
is an embedding. That (e¢/, G(Filt(P),Idl(P), R)) is indeed a dense and compact
completion of P was established in [6, Section 2] (see also [10]), that is, it is a
canonical extension of P.

Now assume that P = S where S € 8,. Every element of G(Filt(S),1dl(S), R)
is of the form B = {F | J € B= FNJ # 0} and this is a filter in Filt(S), so
that G(Filt(S),1dI(S), R) C Filt*(S). In addition, it is easy to see that the maps e
and ¢’ into S° and into G(Filt(S), Id1(S), R), both regarded as subsets of Filt*(S),
are the same.

Proposition 2.10. Let S € 8. Then S? = G(Filt(S),1d1(S), R).
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Proof. Take F € S° and express it as the meet of a family J of ideal elements in
Filt?(S). By Lemma 2.4(ii) we have

F=V{Ae(F)|FeF}=N{Ve(J)|Je T}

Then, by the compactness property, F NJ # @ for all FF € F and all J € 7.
Consider

G=R7={GeFilt(S)|GNJ £ foral Je T}

From above, G D F, as subsets of Filt(S). Also, by Lemma 2.5, A e(G) < \/ e(J)
for all G € G and all J € 7, and hence, in Filt*(S),

G=V{Ael@)[GeG}<A{Vel))|JeT}=F

Therefore G C F. So F is equal to G and so belongs to G(Filt(S),1d1(S), R).

In the other direction, let G € G(Filt(S),Id1(S), R) so that G = #(G) and is in
Filt*(S). We claim that G = A{\e(J) | J € Gf}. We have GN.J # () for all
J € GF and every G € G. So

ANVe) [ T€GR}=>V{Ae(G)|GeG}

The element on the left-hand side can be expressed as \/ { A e(F) | F € F } for some
filter 7 € Filt*(S). Then for any F € F and any J € G we have A e(F) < \/ e(J).
From the compactness property in FiltZ(S) we deduce that F'NJ # (. But this
tells us that 7 C %(GF) = G. Therefore

VIAe(@) [ Ge Gt = V{Ae(F) | FeF}=F.

Combining the inequalities we have proved, we obtain A {\e(J) | J € GF} =G,
so that G € S°. d

We now make some comments on what we have achieved here. We stress that
in arriving at Proposition 2.10 we have not assumed that G(Filt(S),1dl(S), R) is
a canonical extension of S. The proposition identifies precisely which elements of
Filt?(S) belong to G(Filt(S),1dl(S)), R); and in particular the second half of the
proof establishes that G(Filt(S),Idl(S)), R) is a A \/-dense completion of S. (For S
a bounded lattice, this fact is proved in [9] by making use of the V-reduct. For
semilattices in general this strategy is of course not available.) We may therefore
record the following result as a corollary of Theorem 2.8 and Proposition 2.10.

Corollary 2.11. Let S € S5. Then G(Filt(S),Idl(S), R) is a canonical extension
of S.

As is clear, we have arrived at this result without calling on the theory associated
with Galois connections. We observe in addition that the strategy employed in [6]
to demonstrate that G(Filt(S),1d1(S), R) is indeed a canonical extension of the
semilattice S (regarded as a poset) goes via the so-called intermediate structure
Int(S); the canonical extension is then the MacNeille completion of Int(S).

The iterated filter lattice Filtz(S) is a particularly amenable completion, not
least because it is an algebraic lattice. It is therefore natural to ask under what
condition Filt?(S) is the canonical extension of S.

Corollary 2.12. Let S € 85. Then the following statements are equivalent:

(1) (e, Filt*(S)) is a canonical extension of S;

(2) A=E(AR) for all A C Filt(S).

Proof. Just note that both statements are ways of saying that the closure operators
C1: A Aand Cy: A F(AF) on Filt(S) are equal. O
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We deliberately presented Proposition 2.10 in the way that we did, focusing on
the canonical extension of a semilattice. But in the lattice case there is more to
be said. Let L be a bounded lattice and consider the polarity (Filt(L),Idl(L), R)
where F' R J if and only if FNJ # ). Observe that, for A C Filt(L) and B C Idl(L),

AR = {Jeld(L) | FNJ #0 for all F € A} € Filt(Idl(L)),
B .= {F € Filt(L) | FNJ # { for all J € B} € Filt(Filt(L)).

Customarily this polarity would be regarded as setting up a a dual adjunction
(between Filt(Filt(L)) and Filt(Idl(L)). But here we prefer to think in terms of an
adjunction between Filt(Filt(L)) and (Filt(Idl(L)))?, so that the adjoint maps

&: Filt(Filt(L)) = (Filt(Id(L)))? : ¥,

given respectively by (—)f and #(—) are order-preserving rather than order-reversing.
Then we see immediately, calling on Proposition 2.10 (and its order dual) and
Proposition 2.9, that an order-isomorphism between the associated complete lat-
tices of stable sets is set up by maps ®° and ¥°® obtained from ® and ¥ by restric-
tion. These lattices are exactly L‘f\ and L‘sv, as we have identified them concretely.
The situation is as shown in Fig. 2. (For the theory of adjunctions as we employ
it here the survey by Erné [7, Section 1] provides a convenient reference, or see [5,
Chapter 7].) We therefore have the commutative diagram shown in Fig. 2. In it,
ta and ¢y are the inclusion maps.

. . L
Filt(Filt(L)) —2— LI,

P
L LUK
k

(Filt(Id1(L)))? — LY

\115 @6 — (\116)71

FIGURE 2. Relating canonical extensions and iterated free completions

We have mutually inverse maps ®°: Ly — L¢, and ¥°: LY, — L. It is informa-
tive to see explicitly how these isomorphisms act.

Proposition 2.13. Let L be a bounded lattice. The map ®° = (—)% from LS onto
LY is given by
®(F)=V{Aew(F) | FeF}.
Proof. Consider first an element of L3 of the form A e (F). Then, from Proposi-
tion 2.3 and Proposition 2.9,
D(Nea(F)={Jecld(L) | FNJ#0}

={Jeldl(L) | J > a for some a € F'}

=U{ev(a) [ae F}

= Aev(F).

A general element F of L9 satisfies F = \/ { Aen(F) | F € F}. The map ®, being
a lower adjoint, preserves all existing joins. Therefore

®(F)=V{Aew(F)|FeF}. U
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3. PROFINITE COMPLETIONS OF SEMILATTICES

The initial impetus for our study of completions of members of §, came from
two results holding for any bounded distributive lattice L. The first asserts that
the canonical extension of L coincides with the profinite completion of this lattice
[1, 17]. Secondly, the construction of the canonical extension of L € D as pre-
sented by Gehrke and Jénsson [11] exploits Priestley duality for D. This variety
is equal to ISP(2), the class of isomorphic copies of subalgebras of powers of the
two-element lattice, regarded as a member of D. In [4], Davey, Gouveia, Haviar
and Priestley demonstrated that a parallel construction, of what they termed the
natural extension, can be carried out in the context of any prevariety A = ISP(M),
where M is a set of finite algebras of common type. In [4, Theorem 3.6] it was
proved that the natural extension n4(A) of an algebra A in A, viewed as a topo-
logical algebra, acts as a profinite completion of A (where the definition of profinite
completion traditionally adopted for varieties is appropriately amended to apply to
the more general setting of a class A = ISP(M) as above). In the special case that
A = D, the natural extension of any member of A reduces to (the concrete model
of) the canonical extension obtained by Gehrke and Jénsson. Thus, for L € D,
the canonical extension coincides with the natural extension and with the profinite
completion.

It is well known, and easy to check, that 8, is generated, as a variety and
as a quasivariety, by the two-element semilattice 2 = ({0,1};A,1) in which the
underlying strict order is given by requiring 0 < 1. So the variety 8, certainly
comes within the scope of [4]. In particular 8, is residually finite and therefore every
member S of 8§, has a profinite completion Prog, (S) in which it naturally embeds
by a map which we shall denote by ug. As a semilattice, Prog, (S) is constructed as
a projective limit of the finite quotients of S; giving each of these finite quotients the
discrete topology and topologising the limit as a subspace of a product of discrete
spaces, Prog, (S) becomes a compact zero-dimensional semilattice. For details and
background see [4, Section 2]. It is therefore natural to ask whether the canonical
extension of S € 8, is given by ns, (S), or equivalently by Prog, (S), the profinite
completion of S, where we suppress the topology of the latter two structures. This
problem is made tractable by the very simple, purely order-theoretic, description of
ng, (S) made available by Hofmann—Mislove—Stralka duality for semilattices, which
we now describe.

We make 8, into a category by taking as morphisms the maps which preserve A
and 1. Any finite member of 8§, becomes a compact zero-dimensional semilattice
when it is equipped with the discrete topology. We denote by Z the category
of all compact zero-dimensional semilattices with as morphisms the continuous
maps which preserve A and 1. Details of the Hofmann—Mislove-Stralka duality
linking 8, and Z can be found in the original source [18], or, as brought within the
general framework of natural dualities, in [3, Subsection 4.4.6]. The duality can be
summarised as follows. The natural hom-functors

DIS/\%Z’, D:S/\(752)7
E:% 8, E=%(—29)

set up a dual equivalence between 8, and Z. Here 25 denotes 2 equipped with
the discrete topology; for S € §,, the hom-set D(S) is equipped with pointwise-
defined A and 1 and topologised as a subspace of the product space 2§ and the
hom-set E(Z) has pointwise-defined A and 1. For any S € 8, the isomorphism
S = ED(S) is given by the natural evaluation map eg: eg(a)(z) = z(a) for all
a € S and all z € D(S). (In denoting this map by eg we are following the notation
normally employed in natural duality theory; no confusion should thereby result
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with the embedding map into FﬂtZ(S) which we have been writing as e.) Thus S
embeds into 2%5, via the map eg. Then the natural extension ng, (S) is, according
to the general definition [4, Section 3], the topological closure of eg(S) in the
product 2%5 and, moreover, the natural extension construction is functorial. We
may take advantage of [4, Theorem 3.6] to obtain that ng, (S) is, algebraically and
topologically, isomorphic to the profinite completion Prog, (S) of S for any S € S,.
Furthermore, (eg,ns,(S)) and (us,Prog, (S)) are isomorphic completions of the
semilattice S, where now we have suppressed the topology.

Taking advantage of Hofmann—Mislove—Stralka duality, [4, Theorem 4.3], applied
with A = 8x, tells us that ng, (S) is just (Do ” o D)(S), where *: Z — 8, is the
functor which forgets the topology. Expressing this another way,

ns, (S) = 8A(SA(S,2),2).

The description is made especially simple in this case because the object 2 which
generates 8 as a quasivariety and the object 24, which generates the dual category
Z as a topological quasivariety, have the same algebraic structure. We note that
the relationship between S, (8, (S, 2),2) and the profinite completion Prog, (S) was
already recognised by Hofmann, Mislove and Stralka [18, Chapter I, Section 3], ex-
ploiting the fact that both 8, and Z are generated by their finite members. We
have elected not to rely solely on [18] for this foundational material since the mono-
graph may not be easily accessible and because we wished also to draw attention
to the wider context provided by [4].

An elementary lemma now links the natural extension of S to the completion
(e, Filt?(S)) investigated in Section 2.

Lemma 3.1. Let S € 8. Then there exists an order-isomorphism ¢: Filt*(S) —
SA(8A(S,2)) such that poe =eg.

Proof. For any T € 8, we have an isomorphism 01 between Filt(T) and 8,(T, 2)
set up by the correspondence

Frexr (F S Filt(T)),
fe f7H1) (f €8A(T,2)),

where xp(z) =1if 2 € F and xp(z) = 0 otherwise. The isomorphism g between
8A(S,2) and Filt(S) identifies a map = € 8,(S,2) with the filter z71(1). We
then have an associated isomorphism © from Filt?(S) to Filt(SA(S,2)) set up by
O(A) = {z € 8A(S,2) | 271(1) € A}. Then, using O with T = 84(S,2), we
define the isomorphism ¢ to be the composite O o ©: Filt*(S) — SA(SA(S,2)).
Hence ¢(A) = xg(a) and s0 ¢(A)(z) =1 <=z € O(A) <= 27 !(1) € A.

Now assume that @ € S. For any = € 8,(S,2) we have

es(a)(r) =1<=acaz (1) <= 27 1(1) € N(1a) = e(a) <= ¢(e(a))(z) =1. O

We can sum up the preceding results in the following theorem, whose conclusions
are depicted in Fig. 3.

Theorem 3.2. Let S € 8. Then the following completions of S are all isomorphic
to each other, and isomorphic to the completion denoted in Section 2 by (e, §)
(i) (us,Pros,(S)), the profinite completion of S;
(ii) (es,ns.(S)), the natural extension of S;
(iii) (eS,S,\(SA(S 2),2)), where each hom-set is ordered pointwise;
(iv) (e, Filt?S)), where at each stage the filter lattice is ordered by inclusion;
) (

(V) (ar,(s) © Bs: FL(Fn(S)))-
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For a semilattice in 8/, the variety of join semilattices with 0, the corresponding
completion is given likewise, and can be identified in particular with (Id1(1d1(8)?))?
or equivalently with Fr(F(S)).

Proof. The connections between the completions in (i), (ii) and (iii) were discussed
above. Lemma 3.1 supplies the link between (iii) and (iv). The relationship between
(iv) and (v) was discussed in Section 2.

The final statement in the theorem is obtained by order duality. O

We may now, if we so choose, recast the results of Section 2 in terms not of
Filt*(S) but in terms of one of the alternative completions listed in the above theo-
rem. In particular one may elect to use (iii). In this formulation, our 2/3-canonical
completion of S is 85(8A(S,2),2)), ordered pointwise. Meets are calculated point-
wise, as are directed joins. The canonical extension S° can be identified with those
elements of 8, (8A(S,2),2)) which are (pointwise-defined) meets of directed joins
of elements from eg(.S).

Pros, (S)

FIGURE 3. S: the five-fold way

The core philosophy of this paper is that one can benefit from having to hand
alternative realisations of the semilattice profinite completion to arrive at, or to
visualise, this completion. Indeed, in the next section, we shall present equivalent
ways to describe liftings of semilattice morphisms based on the different descrip-
tions. Henceforth we shall generally use the notation (e, §) generically to denote
the profinite completion in any of its incarnations, decorating e as necessary to dis-
tinguish between meet or join semilattice cases (in Section 5) and with the domain
of the embedding where more than one semilattice or lattice is in play.

4. LIFTINGS OF SEMILATTICE MORPHISMS

In this section we show how 8,-morphisms lift to maps between profinite com-
pletions, and to maps between canonical extensions, and we reveal the properties
that these liftings have. Theorem 3.2 suggests a myriad of possible strategies for
working with morphisms, each of which, as we shall see, has insights to contribute.

We state in Theorem 4.1, in _generic f form, the central result on lifting an Sx-
morphism f: S — T to a map f ST preserving arbitrary meets and directed
joins, or equivalently to a continuous 8 o-morphism if we elect to regard the comple-
tions as topological semilattices. The asserted existence and uniqueness of the map
fand the functoriality assertion can be seen, categorically, as an immediate conse-
quence of the universal mapping property characterising profinite completions; in
this formulation the lifted map is construed as a Z-morphism. Alternatively, it may
be derived by taking advantage of the properties of the natural extension functor.
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Theorem 4.1. Let S, T € 8\ and let f € S\(S,T). Then there exists a unique
map f: S — T such that on eS =eTof and f preserves arbitrary meets and
directed joins.

Furthermore, the assignment S > S and fe fsets up a functor from Sx to Sp
(orto % zf§ and T are regarded as topological algebras).

Our primary interest is in the form the lifted map takes when we operate in the
various settings of the ‘five-fold way’, since these give us practical tools for working
with morphisms in a flexible way, and allow us to see why certain properties hold
transparently if we adopt a suitable viewpoint. We look at these settings in turn.

Interpreting S as Filt2(S). We begin by discussing the set-based approach, since
this formed the basis of our methodology in Section 2. Given a map h: P — Q,
where P and @ are sets, we shall denote by h~![B] the inverse image under h of
B C Q. Take S,T € 8, and f € 85(S,T). Let F € Filt(S). Then, because F is
down-directed and f is order-preserving, f(F') is down-directed. Hence 1Tf(F) is a
filter (indeed, it is f(F), the filter generated by f(F)). Also, f~[G] € Filt(S) for
any G € Filt(T), because f preserves meets (and in particular preserves the order,
which ensures that f~1[G] is an up-set). We therefore have well-defined maps
Filt(f): Filt(S) — Filt(T) and (introducing a temporary notation) f,: Filt(T) —
Filt(S) given by

Filt(f)(F) = 1f(F) for F € Filt(S) and f.(G) = f~*[G] for G € Filt(T).

We then have a map Filt?(f) := Filt(Filt(f)): Filt*(S) — Filt*>(T). We have, for
G € Filt(T) and F € Filt*(S),

G € (f.) '[F] <= 3F € F such that F C f[G]
<= 3F € F such that 1f(F) C G
<= JF € F such that Filt(f)(F) C G
< G e MFilt(f)(F).

Hence Filt?(f)(F) = (f.)~*[F]. Now recall that meets and directed joins in Filt*(S)
are given, respectively, by intersections and directed unions, and that these are
trivially preserved under set-theoretic inverse images. Therefore Filt?(f) preserves
arbitrary meets and directed joins. It is routine to check that Fith(f) oeT =eSof.
Therefore Filt?(f) is a lifting of f. It is unique since every element of Filt(S) is
a directed join of meets of elements from €5(S). (We remark that what we have
here is essentially an order dual formulation of an instance of a standard result in
the duality theory of algebraic lattices, as given in [14, Proposition IV-1.18]; at the
first stage, Filt(f) and f, set up an adjunction, and it is this fact that leads to
the relationship between Filt2( f) and f, that yields the preservation properties of

Filt?(f).)

Interpreting S as the abstract iterated free completion F_(F-(S)). Here
we exploit the universal properties of free completions. Following the usage in
[12], we shall identify S with its image in Fq(S) and, at the second stage, Fr(S)
with its image in F,(Fq(S)), and likewise with S replaced by T. We can first
lift f to a map Fr(f): Fq(S) — Fq(T), and this map preserves all meets (by the
order dual of [12, Lemma 2.4)(i)(b)]). Repeating the process, Fn(f) lifts to a map
Fu(Fnq(f)): Fu(FR(S)) = Fu(Fq(T)). This is given by

Fu(Fn(f): a= | H{TH /W) lyeSyza}|zeFn(S),z<al.

We claim that F,(IFn(f)) preserves directed joins and all meets. The first asser-
tion holds by [12, Lemma 2.4(i)(a)] (note that F(f) is order-preserving but not
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necessarily V-preserving, so we cannot say that F(Fq(f)) preserves all joins). To
see why I (F(f)) preserves all meets, we may proceed as follows. Because Fr(f)
preserves all meets, it has a lower adjoint g: Fq(T) — Fn(S), and this preserves
all joins. The map F,(g): F,(Fr(T)) — Fu(FA(S)) also preserves all joins, by [12,
Lemma 2.4(i)(b)]. The required result follows once it is checked that Fi,(g) acts as
the lower adjoint of F,(Fn(f)).

Interpreting S via Hofmann—Mislove—Stralka duality. We may work directly
with the natural duality between 8, and % outlined in the previous section. From
this perspective, the definition of ]? (and the functoriality property) are entirely
routine. Specifically, we view S, for S € 8y, as being given by (D((D(S))*))°. We
then see that f: S — T first gives rise to a Z-morphism D(f): D(T) — D(S), given
by D(f)(u) = wo f, for all u € D(T). Forgetting the topology and repeating the
process, we obtain a Z-morphism from S to ’i regarded here as Z-objects. But
Z-morphisms can be characterised order-theoretically as those which preserve all
meets and directed joins (see [18, Chapter II, Section 3] or [14, VI-3.13]). Sup-
pressing the topology, we obtain the map ]?: S — T that we seek. For a € S and
u € D(T), we have (D(f)(u))(a) = u(f(a)). In the same way, for « € D(T) and
z €S, we have (f(x))(u) = z(D(f)(w)). In particular,

(Fle(@))(w) = e(@)(D(£)(w))) = (D(f)(w)(a) = u(f(a)) = e(f(a))(u),
so that fo e = eo f, as claimed. In summary, the required lifting is given by
(D*)2(f) (shorthand for the composite > o D o * 0 D) or by (Do b o D)(f) if the
completions S and T are regarded as Z-objects.

The forms the liftings take in the most useful interpretations, at the first and
second levels, are summarised in Fig. 4. In the figure, =2 denotes dual order
isomorphism and = indicates an adjunction. Making the requisite identifications
of domains and of codomains, the associated maps coincide.

Fn(s) — o) £ Fn(s) ) g oy
~0 ~0 ~ =
Filt(S) L(f) Filt(T) Filt*(S) Rl Filt?*(T)

| -
D(S) = D) or(s) ~ P oy

FIGURE 4. Liftings of semilattice morphisms, in three incarnations

We use the next proposition to illustrate how a judicious choice of viewpoint may
provide a quick proof of useful facts about lifted maps. The corresponding result can
be obtained by explicit calculations with FiltZ( f), but the argument is more arduous
and less illuminating. We first need to make precise the use of the term ‘embedding’
as it applies to 8, and Z. In 8, an embedding is simply an injective homomorphism.
In Z an embedding is an injective continuous homomorphism. The latter usage is in
accord with that in [3, p. 327 and p. 22, since the general definition of an embedding
in a category of topological structures reduces to the one we give for Z since the
members of Z are Boolean topological algebras. From the categorical perspective,
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embeddings and surjections are respectively monomorphisms and epimorphisms;
see [18, Chapter I, 2.8 and 4.1], in both 8§, and Z.

Pr0p051t10n 4.2. Let S, T € 8\ and let f:' S — T be an Sx-morphism and
f S — T be the lifting given by Theorem 4.1. Then

(i) f is a surjection if and only if f is a surjection;

(ii) f is an embedding if and only if f is an embedding.
Proof. We present a proof based on known facts about Hofmann—Mislove—Stralka
duality [18, Chapter I, Proposition 2.8], asserting that, in both 8, and in Z the
monomorphisms are the injective morphisms and the epimorphisms are the surjec-
tive morphisms. Let f be an 8,-morphism. Note that f arises by applying the
forgetful functor to to D(g), where g = (> oD)(f). Then, because D and E set up
a dual equivalence, we have

fis surjective <= g is a Sy-embedding
<= D(f) is a Z-embedding
<= f is surjective.

This proves (i). The proof of (ii) proceeds similarly. (We could here instead have
called on [3, Lemma 3.2.6 and 4.4.6].) O

Explicitly or implicitly, the A \/-density property of the profinite completion
underlies the construction and uniqueness of the lifting of semilattice morphisms
to these completions. We now cut down from profinite completions to canonical
extensions. Here /\ \/-density comes into play. The proposition below is very simple,
but crucial. To keep notation consistent with that in Section 2, we shall take S
to be Filt?(S). The canonical extension S° will be taken to be given by the set of
elements which are meets of directed joins of elements drawn from ex (.5).

Proposition 4.3. Let S,T € 8, and let f € SA(S,T). Then f maps S° into
T and the map f0: 8% — T given by the restriction of f to S% is such that
fo0eS =€T o f. Moreover, f° preserves arbitrary meets and directed joins.

Proof. Write F € S? in the form F = A{\/eA(I) | I € T}, for some family J of
ideals of S; here the join is directed, and, as noted in the proof of Theorem 2.8, both
the meet and the join here are calculated in the same way in S° as in S. Because
fpreserves meets and directed joins, we have

F)=MVARW)TeT}t=A{Vex(f(1) [ JeT}
Since each set f(J) is directed (because f is order—preserving) the element on the
right-hand side belongs to T°. The equatlon f2oeS =eT o f is obtained from the
equation given by Theorem 4.1, fr o €S = €T o f, because €S (5) C S9.
It is obvious that f° preserves arbitrary meets and directed joins since they are
calculated in the same way in S% as in S. O

Proposition 4.4. Let S, T € 8, and let f € 85(S,T). Let f2:S° — T? be the
lifting of f defined in Proposition 4.3. Then

(i) f is a surjection if f$ is a surjection and the converse holds whenever f is

such that f=Y[D] is directed for any directed subset D of T;

(ii) f° is an embedding if and only if f is an embedding.
Proof. Consider (i). Assume f° is surjective. Then, for every b € T, the element
eT(b) of eT(T) is such that f°(F) = eT(b), for some F € S°. Writing F € S° in
the form F = A{Vea(J) | I € T}, for some family J of ideals of S, we obtain

eT(0) = FAF) = MV LS Te Ty =NV (f(I) | T €T}
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because f preserves arbitrary meets and directed joins. Now, by compactness,
b € f(S) (note that \/eT(f(J)) = VeT(Lf(J)) for any ideal J). Conversely,
assume that f is surjective. Every element y of T? is a meet of directed joins of
elements of €T (T), specifically, y = A{VeX(J) | J € J} for some family J of
ideals in T. Since f: S — T is surjective, J = f(f~1[J]). Also, it follows from the
assumption on f that f~1[J] is an ideal in S. Therefore

y=NVE oAU INITeTr= NV (fo®)(f I IJTeT}
= FINVESTIN I Te T},
and this expresses y as the image under f° of an element of S°.

We now prove (ii). We already know from Proposition 4.2(ii) that the lifting of f
to f/\ is an embedding if and only if f is an embedding. Assume f is an embedding.
Then f2, as the restriction of the embedding f,\, is itself an embedding. Conversely,
since 5 is an embedding, the composite fJ o is also an embedding. But then
€¥ o f is an embedding. Hence f is an embedding, because €x is an isomorphism
onto its image.

O

We draw attention to the fact that we did not claim in Proposition 4.4(i) that if
f is surjective then f5 must always be surjective. In the restricted context in which
f is a homomorphism of bounded lattices the supplementary condition is satisfied.
We exploit this fact in Proposition 6.5 below.

5. CANONICAL EXTENSIONS OF BOUNDED LATTICES

In this section we apply results from Section 4 to study liftings of lattice homo-
morphisms between bounded lattices to maps between their canonical extensions
or between the profinite completions of their semilattice reducts. Throughout,
homomorphisms are required to preserve bounds. We first assemble the facts from
Theorem 4.1 and Proposition 4.3 (and their order dual versions) that we require.
Since we have both Sx- and 8- profinite completions in play at the same time,
embedding maps and liftings will now be tagged with A or V, as appropriate. Let
L and K be bounded lattices and f: L - K be a homomorphism. Then lifting
maps exist as follows:

° f/\: I/JX — I/(\A, which preserves arbitrary meets and directed joins and
L

satisfies fn o ek = Ko f;

e f,: L, — Ky, which preserves arbitrary joins and down-directed meets
and satisfies f, o el = e¥ o f;

e f0: LS — K9, which preserves arbitrary meets and directed joins and
satisfies fJ oel =Ko f;

o f5: L% — K9, which preserves arbitrary joins and down-directed meets
and satisfies fJ oel =e¥ o f.

We are now ready to give a new proof that homomorphisms between bounded
lattices lift to complete lattice homomorphisms between their canonical extensions.
The proof of this fact is a simple map-chase. It may be contrasted with the rather
circuitous proofs in [12, Section 4] and in [9, Section 4],

Theorem 5.1. Let L and K be bounded lattices and f: L — K a homomorphism.
Let @%: L, — Ly and <I>‘IS<: Ki — Ky be the order isomorphisms arising from the
polarity R, as in Fig. 2. Then fo = (®)"' o f5 0 ®Y, so the diagram in Fig. 5
commutes. Moreover, each of fJ: L — K and f3: LS — K9 lifts f and each is
a complete homomorphism.
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Proof. We claim that every element of L? is a down-directed meet of directed joins
of elements from e%(L). Apart from the inclusion here of ’down-directed’, this
comes immediately from the definition of L. Because L is a bounded lattice, the
set of ideal elements of its canonical extension is closed under finite meets (by the
order dual of Lemma 2.4). Therefore the meets involved are indeed down-directed.
Also, order dually, every element of Ké, is a directed join of down-directed meets
of elements from ¥ (K).

We now note that (®g)~! and ®J, being order isomorphisms, preserve all joins
and meets. Therefore, by what we have just shown and the preservation properties
of fJ and f$, the maps f and (®3)~! o f$ o ®J are equal. Furthermore, the first
preserves all meets and the second preserves all joins. Hence each of fJ and fS is
a complete homomorphism. O

FIGURE 5. Lifting a lattice homomorphism to the canonical extension

The power of canonical extensions as a tool in logic arises largely from their ap-
plication to the study of lattice-, semilattice- and poset-based algebras: the char-
acterising properties of the extensions are used to lift any non-lattice operations
from the algebras to operations on their completions and to analyse the behaviour
of these liftings. At whatever level of order-theoretic generality one operates here,
it is necessary first fully to understand the canonical extensions of the lattice, semi-
lattice or poset reducts of the algebras in question, and it is in this respect that we
have sought to make a novel contribution in this paper. In particular in this sec-
tion and the previous one, we have concentrated on morphisms of semilattices and
lattices. We now make some brief comments on lattices with additional operations,
specifically unary modalities. We emphasise that a given bounded lattice L has
semilattice reducts L and Ly, belonging respectively to 8, and 8,. We then have
two copies of the canonical extension L in play, where the one derived from L sits
inside F,(Fn (L)), alias Filt*(L), and the other derived from Ly, and sitting inside
Fr(F(L)). Which of these is the more appropriate to work with when additional
operations are present will be governed by the properties that such operations pos-
sess. Or we could toggle between these isomorphic lattices, should we need to do
S0, via the adjunction arising from the polarity R, as in Proposition 2.13.

Assume we work with bounded lattices equipped with an additional operation,
denoted [, which preserves A and 1. For such an operation, the traditional way to
lift O, interpreted on L, to an operation on L? is to form

O7(z) := A{V{O(a) | L>a<gq}|qis an ideal element and z < ¢} }.

Here, to align notation with the usage in the canonical extensions literature, we have
suppressed the embedding map and treated L as a subset of L°. This is, of course,
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exactly the way we would have lifted [J if it were regarded as an 8 ,-endomorphism of
L. By Theorem 4.1 and Proposition 4.3, the resulting map [(1°: LY — L? preserves
all meets and all directed joins existing in L?. Order dually, working with ¢,
preserving V and 0 and lifting ¢ to %, we deduce that ° preserves all joins and
all existing (down-)directed meets, and in particular (down-directed) meets of sets
of elements drawn from L. Thus we have obtained, in a somewhat strengthened
form, the algebraic form of Esakia’s Lemma as presented by Gehrke [8, Section 7].
This algebraic result, as it applies to operators on bounded distributive lattices,
first appears in [11, Lemma 3.8] and was a key ingredient in the proof given there
that varieties of distributive lattices with operators are canonical. The result as
presented in [11, 9, 8] seems a little mysterious. We can now see quite clearly how
the preservation of down-directed meets comes about and why the statement holds
in a somewhat more general form than has hitherto been recognised.

We now complete the overall picture by presenting a result about liftings of
lattice homomorphisms to iterated free completions. To do this we shall call on
the special way the lifting arises in two stages. We note that we cannot argue in
exactly the same way as in the proof of Theorem 5.1. Not only do we not have the
freedom to write elements both as meets of joins and as joins of meets, but we have
adjunctions, rather than isomorphisms, toggling between the A- and V-versions of
the completions, as in Fig. 2.

Theorem 5.2. Let L and K be bounded lattices and f: L — K a homomorphism.
Then the diagram in Fig. 6 commutes cmd the following statements hold for the
maps involved. The liftings Pk o f/\ and fv o ®1, coincide on LA, and are uniquely
determined by the properties

(i) the restriction to a map from the filter elements off; to the filter elements

ofI/{-; preserves down-directed meets, and

(ii) directed joins of filter elements are preserved.
Moreover, the image of the unique lifting of f to a map from E\ to R; having
properties (i) and (11) is contained in K¢ . Order dual statements hold for liftings
of f for maps from Lv to K/\

\

/
=

\/

K,

L,

FIGURE 6. Lifting a lattice homomorphism to the iterated free completion

Proof. We first claim that the restrictions of ¢k o ?; and ?; o &1, to the filter
elements of f/\\ are equal. In fact, by the definitions of the maps involved and
Proposition 2.13, each of these restrictions is given by h: Aen(F) — Aev(Tf(F))
(F a filter in L). This can be verified directly, or seen as the construction of the
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unique lifting of f: L — K to a map Fn(f) from Fq(L) into Fr(K) preserving
down-directed meets; here Fr(K) is interpreted as a subset of I/{-;

We now consider the lifting of h to L. There is a unique such map preserving
directed joins; its existence and uniqueness can be obtained from the universal
mapping property of a free JOln—completlon apphed to h, here regarded as having
codomain Kv To obtain equality of ¢k o f/\ and fv o®, on LA, it suffices to note
that each preserves directed joins (of filter elements). Note here that @y, and Pk,
being lower adjoints, preserve all joins. Similar considerations apply to Vg o f\?
and ?; oWry,.

Finally, commutativity of the diagram in Fig. 6 comes from what we have already
shown and from Fig. 2, as it applies to L and to K. O

F1GURE 7. Lifting lattice homomorphisms: unified summary

We remark that the commutativity of the diagram in Fig. 5, from which we
deduced that a homomorphism f: L — K lifts to a complete homomorphism
fo: L% — K9, can alternatively be obtained from that of Fig. 6 by restriction.
In conclusion, the diagram in Fig. 7 commutes and encompasses both Theorem 5.1
and Theorem 5.2.

6. COMPARISON OF THE CANONICAL EXTENSION AND THE PROFINITE
COMPLETION OF A SEMILATTICE

In this section we investigate circumstances under which the canonical exten-
sion of a semilattice S € 8, coincides with the profinite extension A of S and
circumstances under which the canonical extension of a semilattice S is a proper
subsemilattice of A. Calling on Theorem 2.8, we can formalise non-coincidence as
the assertion that S?, constructed as a subset of S as in Section 2, is a proper subset
of S. We remark that, in case we have a bounded distributive lattice L and one of
the semilattice reducts, S = L, say, is such that S° and S do not coincide, then
necessarily the profinite completions of L (in D) and of L (in 8,) are different.

We begin with the trivial observation that when S is a f finite member of 8§, then
it is a complete lattice, and coincides with S° and with S. We can easily see that
S% and S can coincide under weaker conditions than finiteness of S.
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Proposition 6.1. Let S € 8,. If the filter lattice Filt(S) satisfies the Descending
Chain Condition (DCC), then the canonical extension S° and the profinite comple-
tion' S of S coincide, and both are isomorphic to Filt(S)?.

Proof. We may regard S as Filt?(S). Since Filt(S) has (DCC), every filter of Filt(S)
is principal, and S is dually isomorphic to Filt(S). Consequently every element of
S is of the form Ne(F), for some F' € Filt(S), and so is an element of the canonical
extension S°.

An alternative proof comes from Corollary 2.12. If every filter F' of Filt(S) is
principal, then we can write F' = fa, for some a. Then F N.J # () can be re-stated
as a € J. Tt is then easy to verify that F(A®) = A for any subset A of Filt*(S). O

As instances of Proposition 6.1 we can easily build infinite semilattices which
admit coincident profinite and canonical completions. For example, take S to be
the linear sum of a 2-element antichain {a,b} and the order dual N’ of the chain N,
with a zero element adjoined. Then the passage to either S° or S adds one extra
point ¢, serving as the join of a and b.

It is easy to see that the absence of infinite descending chains in the filter lattice
Filt(S) of a semilattice S is not necessary for coincidence of S and S°. Simply
take S to be the chain N@ 1. Here the filter lattice Filt(S), which is isomorphic to
the chain 0@ N?, does not satisfy (DCC) but S and S? coincide and are isomorphic
to the chain N @ 2 (all the elements except one are filter elements; the remaining
element is an ideal element).

Example 6.2. Consider the meet semilattice S represented in Fig. 8(i). We claim
that S is as shown in Fig. 8(iii). Observe that within S we have: filter elements
(indicated by unshaded and shaded circles); ideal elements (all the elements indi-
cated by black triangles, except for ¢ and also the shaded points); and ¢, which is
the unique element which is neither a filter nor an ideal element. Note that the
point ¢ is the join of the infinite chain of filter elements a,, with n € N. It is also
the meet of the infinite descending chain of ideal elements b,,, with m € Z. Hence
S is a dense completion of S and consequently is the canonical extension of S.

We now turn to examples in which the canonical extension and profinite com-
pletion do not coincide. We have already noted that the profinite completion S
of a semilattice S € 8, is an algebraic lattice. Hence any S € 8§, for which the
canonical extension S? fails to be algebraic must be such that S° and S do not
coincide. Our next example illustrates that non-coincidence of the completions S?
and Filt2(S) can indeed occur this way, and also in the minimal way possible, that
is, with the latter completion containing a single additional point.

Example 6.3. We are able to pick our example ‘off the shelf’: Gehrke and Vosmaer
[13, Figure 2] present a bounded lattice which demonstrates that the canonical
extension of a bounded lattice may fail to be meet-continuous, and hence not an
algebraic lattice; note also Harding [16, Proposition 3.4]. Take S to be the S-reduct
L, of the non-distributive lattice L shown in Fig. 9; this is Gehkre and Vosmaer’s
example with the bottom element deleted since this serves no purpose for us. The
profinite completion of L, is depicted in Fig. 9. The element labelled x is the only
element which is not a meet of directed joins of the embedded copy of L. So L%
is obtained from I/;\ by deleting z its removal leaves us with a lattice which is not
algebraic. To see this, note that the join in Ij; of the chain x,, with n > 0, is x,
whereas the join of this chain calculated in LS is the top element of LS. Hence, for
example, a is compact in f; but is no longer compact in L and, moreover, is not
the join of compact elements in L9.
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S Filt(S) S = Filt*(S)
(i) (ii) (iii)

FiGUure 8. Diagrams for Example 6.2

L Filt(L) L,

FI1GURE 9. Diagrams for Example 6.3

In Example 6.3 we had just a single element belonging to the profinite completion
but not to the canonical extension. We next show that by considering suitable linear
sums we can manufacture examples of semilattices 8 in which the completions are
different, but of the same cardinality, and for which there are infinitely many points
inS\ S’

Example 6.4. We let T be the 8,-reduct of the lattice in Example 6.3, or any
other semilattice for which the profinite completion and the canonical extension
differ. We let C be the chain w? and take copies T,, (n € w) arranged as a linear
sum --- ® Ty @ T & Ty. Denote this meet semilattice by S.
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Now consider the profinite completion of S. When we calculate the filter lattice
of S we obtain a lattice isomorphic to Filt(To) @ Filt(T1) @ - -+ (only this part of
this lattice concerns us immediately). The top part of Filt(Filt(S)) takes the form
of a lattice isomorphic to - -- @ Filt(Filt(T;)) & Filt(Filt(Ty)). We know that in
Filt(Filt(Ty)) there is (at least) one element, = say, which is not a meet of directed
joins of elements of the naturally embedded copy of Ty. We claim it also cannot
be a meet of directed joins from the copy of S embedded in Filtz(S). In order that
we can realise x as a meet of directed joins in S of elements from 8 it is necessary
that each directed join itself lies in the top component Filt(Filt(Ty)). Since the top
element 14, say, of Filt(Filt(T;)) and the bottom element 0y, say, of Filt(Filt(Ty))
are such that § = 111 ® 109, we deduce that for each directed join \/e(J) lying
above x we must have that Jy := JNTy # 0 and \Ve(J) = Ve(Jp), and this is
now expressed as a directed join from the copy of Ty. But x cannot be a meet of
such joins, by assumption. We conclude that S? is a proper subset of S. Indeed,
there will be, likewise, at least one point of S \8‘s in each summand of the infinite
descending chain of copies of Filt(Filt(T)). (We note as an aside that canonical
extensions of ordinal sums more generally were considered by Busaniche and Cabrer
2].)

With T chosen to be the lattice from Example 6.3, all of S, S and S° have
cardinality No, and so does S \ S?.

The following general result shows how one example of non-coincidence of the
semilattice profinite completion and the canonical extension can be used to generate
other such examples. Its proof makes use of Proposition 4.4.

Proposition 6.5. Let S, T € 85 and assume that there exists an 8-morphism f
from S to T for which the lifting f3 is surjective. Then, if S° and S coincide, T?
and T also coincide.

The assumption on fﬁ is satisfied when S and T are bounded lattices and f: S —
T is a homomorphism.

Proof. For the first part we only need to note that S=8/ implies
T=Jr8)=faS)CT CT.
For the last part we apply Proposition 4.4(i). Under the additional assumptions

now made, f9 is surjective because the inverse image under f of an ideal in T is an
ideal in S. O

Our final examples are different in character from those presented so far. We
illustrate that non-coincidence can arise in a very strong way: the profinite com-
pletion of a semilattice may have larger cardinality than its canonical extension,
and this phenomenon can even occur for both semilattice reducts of a bounded
distributive lattice.

Example 6.6. Here we take S € 8§ to be the free algebra in 85 on x generators,
written #2. It can be concretely realised as the family of finite subsets of k under
the reverse inclusion order.

By basic facts from Hofmann-Mislove-Stralka duality (see [18, Chapter II], we
have D(S) = 2". Regarding 2" as a member of 8§, we now need to describe
Filt(2%). One way to proceed here is to note that 2% is a Boolean algebra, and
that its Stone space is the Stone-Cech compactification 3(k), where & carries the
discrete topology. By Stone duality, the lattice of filters of 2% can be identified
with the lattice of open subsets of (k). Calling on a standard result about B(k)
(see for example [21, Section 3.2]), we deduce that the cardinality of S is 22", (The
ingredients for this argument appear in [18], but are awkwardly scattered.)
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Because S satisfies (ACC), every ideal of S is principal. It follows that S° =
Filt(S)?; to obtain this we may make use of the intermediate structure, as in [6]
r [12]). An alternative way to obtain the canonical extension is to apply Priestley
duality to 1 & S, for which the dual space X is a discretely topologised infinite
antichain of cardinality x one-point compactified by the addition of a top element;
S? is then isomorphic to the lattice of non-empty up-sets of X. Note also that
Sp := 1@ S is a bounded distributive lattice for which

Sy’ @ has cardinality 2 and @0)\/\ has cardinality 22"

We can take the use of Hofmann—Mislove—Stralka duality one step further here.
Assume that T € 8, is such that there is an Sx-embedding of #2 into T. Then
2% is a Z-quotient of D(T). This implies that 2% is an 8,-quotient of D(S)?. Now
apply duality again to deduce that D(2") 8$,-embeds into D(D(S)") = S. Thus
the cardinality of T is at least 22°. In general however we do not have a way of
estimating the cardinality of T°.

A minor adaptation of Example 6.6 allows us to provide an example of a bounded
distributive lattice L for which L is of smaller cardinality than either of the profi-
nite completions of its semilattice reducts.

Example 6.7. We take L to be the Boolean algebra of finite and cofinite subsets
of w. Then the dual space X = D(L,2) of L may be viewed as the one-point
compactification w U {oo} of w, where w is equipped with the discrete topology; X
carries the discrete order. The canonical extension L° is isomorphic to §(X) and
has cardinality 2¢. Now consider the profinite completions. The lattice Filt(L)
may be identified with the open (down-)sets of X. These take two forms: arbitrary
subsets of X which do not contain oo and cofinite subsets of X which do contain co.
We see that Filt(L) contains a D-sublattice isomorphic to 1 & §(w). To get infor-
mation about Filt(Filt(L)) we consider the dual space of Filt(L), which we denote
by Y. We note that the dual space of 1®§(w) is Z := S(w) ® 1, where S(w) carries
the discrete order. By Priestley duality there is a continuous order-preserving sur-
jection, ¢ say, from Y onto Z. Then the map V + ¢~(V), for V an open down-set
in Z, is injective, because ¢ is surjective, and each set ¢~ (V) is an open down-set
in Y. Therefore the cardinality of Filt(Filt(L)) is no smaller than that of the set of
open subsets of 3(w), and this is 22°. Therefore the cardinality of L is strictly less

than that of I/JX and also that of f\\/ (The final assertion holds because L = L?.)

In our companion paper [15] we investigate in depth semilattices arising as a
reduct of a bounded distributive lattice L. There we set the two preceding exam-
ples in context and reveal in particular the role played by free semilattices on w
generators in relation to coincidence or non-coincidence of L® with the iterated free
completions of L, and Ly,.
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