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Preface

This book takes an operational approach to presenting programming language

concepts, studying those concepts in interpreters and compilers for a range of

toy languages, and pointing out where those concepts are found in real-world

programming languages.

What is covered Topics covered include abstract and concrete syntax; func-

tional and imperative; interpretation, type checking, and compilation; contin-

uations and peep-hole optimizations; abstract machines, automatic memory

management and garbage collection; the Java Virtual Machine and Microsoft’s

(.NET) Common Language Runtime; and reflection and runtime code genera-

tion using these execution platforms.

Some effort is made throughout to put programming language concepts into

their historical context, and to show how the concepts surface in languages

that the students are assumed to know already; primarily Java or C#.

We do not cover regular expressions and parser construction in much detail.

For this purpose, we have used compiler design lecture notes written by Torben

Mogensen [?], University of Copenhagen.

Why virtual machines? We do not consider generation of machine code for

‘real’ microprocessors, nor classical compiler subjects such as register alloca-

tion. Instead the emphasis is on virtual stack machines and their intermediate

languages, often known as bytecode.

Virtual machines are machine-like enough to make the central purpose and

concepts of compilation and code generation clear, yet they are much simpler

than present-day microprocessors such as Intel Pentium. Full understand-

ing of performance issues in ‘real’ microprocessors, with deep pipelines, regis-

ter renaming, out-of-order execution, branch prediction, translation lookaside

buffers and so on, requires a very detailed study of their architecture, usu-

ally not conveyed by compiler text books anyway. Certainly, an understand-

ing of the instruction set, such as x86, does not convey any information about
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whether code is fast and or not.

The widely used object-oriented languages Java and C# are rather far re-

moved from the ‘real’ hardware, and are most conveniently explained in terms

of their virtual machines: the Java Virtual Machine and Microsoft’s Common

Language Runtime. Understanding the workings and implementation of these

virtual machines sheds light on efficiency issues and design decisions in Java

and C#. To understand memory organization of classic imperative languages,

we also study a small subset of C with arrays, pointer arithmetics, and recur-

sive functions.

Why F#? We use the functional language F# as presentation language through-

out to illustrate programming language concepts by implementing interpreters

and compilers for toy languages. The idea behind this is two-fold.

First, F# belongs to the ML family of languages and is ideal for implement-

ing interpreters and compilers because it has datatypes and pattern matching

and is strongly typed. This leads to a brevity and clarity of examples that

cannot be matched by non-functional languages.

Secondly, the active use of a functional language is an attempt to add a new

dimension to students’ world view, to broaden their imagination. The prevalent

single-inheritance class-based object-oriented programming languages (namely,

Java and C#) are very useful and versatile languages. But they have come

to dominate computer science education to a degree where students may be-

come unable to imagine other programming tools, especially such that use a

completely different paradigm. Our thesis is that knowledge of a functional

language will make the student a better designer and programmer, whether

in Java, C# or C, and will prepare him or her to adapt to the programming

languages of the future.

For instance, so-called generic types and methods appeared in Java and C#

in 2004 but has been part of other languages, most notably ML, since 1978.

Similarly, garbage collection has been used in functional languages since Lisp

in 1960, but entered mainstream use more than 30 years later, with Java.

Appendix A gives a brief introduction to those parts of F# we use in the rest

of the book. The intention is that students learn enough of F# in the first third

of this course, using a textbook such as Syme et al. [?].

Supporting material The book is accompanied by complete implementa-

tions in F# of lexer and parser specifications, abstract syntaxes, interpreters,

compilers, and runtime systems (abstract machines, in Java and C) for a range

of toy languages. Also, there are lecture slides in PDF, and practical exercises

for every lecture (to be included in the book). This material is available sepa-

rately from the author or from the course home page [?].
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Chapter 1

Plan for the book

[This chapter requires more work; including variable lifetime vs scope]. This

chapter introduces the approach taken and the plan followed in this book.

1.1 Meta language and object language

In linguistics and mathematics, an object language is a language we study

(such as C++ or Latin) and the meta language is the language in which we

conduct our discussions (such as Danish or English). Throughout this book we

shall use the F# language as the meta language. We could use Java of C#, but

that would be more cumbersome because of the lack of datatypes and pattern

matching.

F# is a strict, strongly typed functional programming language in the ML

family. Appendix A presents the basic concepts of F#: value, variable, binding,

type, tuple, function, recursion, list, pattern matching, and datatype. Several

books give a more detailed introduction, including Syme et al. [?].

It is convenient to run F# interactive sessions inside Microsoft Visual Stu-

dio (under MS Windows), or executing fsi interactive sessions using Mono

(under Linux and MacOS X); see Appendix A.

1.2 A simple language of expressions

As an example object language we start by studying a simple language of

expressions, with constants, variables (of integer type), let-bindings, (nested)

scope, and operators; see file sem1.fs.

9



10 A simple language of expressions

Thus in our example language, an abstract syntax tree (AST) represents an

expression.

1.2.1 Expressions without variables

First, let us consider expressions consisting only of integer constants and two-

argument (dyadic) operators such as (+) and (*). We model an expression as

a term of an F# datatype expr, where integer constants are modelled by con-

structor CstI, and operator applications are modelled by constructor Prim:

type expr =
| CstI of int
| Prim of string * expr * expr

Here are some example expressions in this representation:

Expression Representation in type expr
17 CstI 17
3−4 Prim("-", CstI 3, CstI 4)
7 ·9 + 10 Prim("+", Prim("*", CstI 7, CstI 9), CstI 10)

An expression in this representation can be evaluated to an integer by a func-

tion eval : expr -> int that uses pattern matching to distinguish the various

forms of expression. Note that to evaluate e1 + e2, it must evaluate e1 and e2

and to obtain two integers, and then add those, so the evaluation functionmust

call itself recursively:

let rec eval (e : expr) : int =
match e with

| CstI i -> i
| Prim("+", e1, e2) -> eval e1 + eval e2
| Prim("*", e1, e2) -> eval e1 * eval e2
| Prim("-", e1, e2) -> eval e1 - eval e2
| Prim _ -> failwith "unknown primitive";;

The eval function is an interpreter for ‘programs’ in the expression language.

It looks rather boring, as it maps the expression language constructs directly

into F# constructs. However, we might change it to interpret the operator (-)
as cut-off subtraction, whose result is never negative, then we get a ‘language’

with the same expressions but a very different meaning. For instance, 3− 4
now evaluates to zero:

let rec eval (e : expr) : int =
match e with
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| CstI i -> i
| Prim("+", e1, e2) -> eval e1 + eval e2
| Prim("*", e1, e2) -> eval e1 * eval e2
| Prim("-", e1, e2) ->

let res = eval e1 - eval e2
in if res < 0 then 0 else res

| Prim _ -> failwith "unknown primitive";;

1.2.2 Expressions with variables

Now, let us extend our expression language with variables. First, we add a

new constructor Var to the syntax:

type expr =
| CstI of int
| Var of string
| Prim of string * expr * expr

Here are some expressions and their representation in this syntax:

Expression Representation in type expr
17 CstI 17
x , Var "x"
3 + a Prim("+", CstI 3, Var "a")
b ·9 + a Prim("+", Prim("*", Var "b", CstI 9), Var "a")

Next we need to extend the eval interpreter to give a meaning to such vari-

ables. To do this, we give eval an extra argument env, a so-called environment.

The role of the environment is to associate a value (here, an integer) with a

variable; that is, the environment is a map or dictionary, mapping a variable

name to the variable’s current value. A simple classical representation of such

a map is an association list: a list of pairs of a variable name and the associated

value:

let env = [("a", 3); ("c", 78); ("baf", 666); ("b", 111)];;

This environment maps "a" to 3, "c" to 78, and so on. The environment has

type (string * int) list. An empty environment, which does not map any

variable to anything, is represented by the empty association list

let emptyenv = [];;

To look up a variable in an environment, we define a function lookup of type

(string * int) list -> string -> int. An attempt to look up variable x in
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en empty environment fails; otherwise, if the environment first associates y
with v and x equals y, then result is v; else the result is obtained by looking for

x in the rest r of the environment:

let rec lookup env x =
match env with
| [] -> failwith (x ^ " not found")
| (y, v)::r -> if x=y then v else lookup r x;;

As promised, our new eval function takes both an expression and an envi-

ronment, and uses the environment and the lookup function to determine the

value of a variable Var x. Otherwise the function is as before, except that env
must be passed on in recursive calls:

let rec eval e (env : (string * int) list) : int =
match e with

| CstI i -> i
| Var x -> lookup env x
| Prim("+", e1, e2) -> eval e1 env + eval e2 env
| Prim("*", e1, e2) -> eval e1 env * eval e2 env
| Prim("-", e1, e2) -> eval e1 env - eval e2 env
| Prim _ -> failwith "unknown primitive";;

Note that our lookup function returns the first value associated with a variable,

so if env is [("x", 11); ("x", 22)], then lookup env "x" is 11, not 22. This is

useful when we consider nested scopes in Chapter 2.

1.3 Syntax and semantics

We have already mentioned syntax and semantics. Syntax deals with form: is

this text a well-formed program? Semantics deals with meaning: what does

this (well-formed) program mean, how does it behave – what happens when

we execute it?

• Syntax – form: is this a well-formed program?

– Abstract syntax – programs as trees, or values of an F# datatype

such as Prim("+", CstI 3, Var "a")

– Concrete syntax – programs as linear texts such as ‘3 + a’.

• Semantics – meaning: what does this well-formed program mean?

– Static semantics – is this well-formed program a legal one?
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– Dynamic semantics – what does this program do when executed?

The distinction between syntax and static semantics is not clear-cut. Syntax

can tell us that x12 is a legal variable name (in Java), but it is impractical to

use syntax to tells us that we cannot declare x12 twice in the same scope (in

Java). Hence this restriction is usually enforced by static semantics checks.

In the rest of the book we shall study a small example language, two small

functional languages (a first-order and a higher-order one), a subset of the

imperative language C, and a subset of the backtracking (or goal-directed) lan-

guage Icon. In each case we take the following approach:

• We describe abstract syntax using F# datatypes.

• We describe concrete syntax using lexer and parser specifications (see

Chapter 3), and implement lexers and parsers using fslex and fsyacc.

• We describe semantics using F# functions, both static semantics (checks)

and dynamic semantics (execution). The dynamic semantics can be de-

scribed in two ways: by direct interpretation using functions typically

called eval, or by compilation to another language, such as stack machine

code, using functions typically called comp.

In addition we study some abstract stack machines, both homegrown ones and

two widely used so-called managed execution platforms: The Java Virtual Ma-

chine (JVM) and Microsoft’s .Net Common Language Runtime.

1.4 Object-oriented representation of expressions

In this book we use a functional language to represent expressions and other

program fragments. In particular, we use the F# algebraic datatype expr to

represent expressions in the form of abstract syntax. We use the eval function

to define their dynamic semantics, using pattern matching to distinguish the

different forms of expressions: constants, variables, operators applications.

In this section we briefly consider an object-oriented modelling (in Java,

say) of expression syntax and expression evaluation. In general, this would in-

volve an abstract base class Expr of expressions (instead of the expr datatype),

and a concrete subclass for each form of expression (instead of datatype con-

structor for each form of expression):

abstract class Expr { }
class CstI extends Expr {
protected final int i;
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public CstI(int i) { this.i = i; }
}
class Var extends Expr {
protected final String name;
public Var(String name) { this.name = name; }

}
class Prim extends Expr {
protected final String oper;
protected final Expr e1, e2;
public Prim(String oper, Expr e1, Expr e2) {
this.oper = oper; this.e1 = e1; this.e2 = e2;

}
}

Note that each Expr subclass has fields of exactly the same types as the argu-

ments of the corresponding constructor in the expr datatype from Section 1.2.2.

Also, in object-oriented terms Prim is a composite because it has fields whose

type is its base type Expr; in functional programming terms one would say that

the type declaration is recursive.

How can we define a function (method) that processes object structures that

represent expressions; for instance, converts an expression to its String repre-

sentation? We declare an abstract method on class Expr, override it in each

subclass, and then rely on virtual method calls to invoke the correct override

in the composite case:

abstract class Expr {
abstract public String fmt();

}
class CstI extends Expr {
protected final int i;
...
public String fmt() { return i + ""; }

}
class Var extends Expr {
protected final String name;
...
public String fmt() { return name; }

}
class Prim extends Expr {
protected final String oper;
protected final Expr e1, e2;
...
public String fmt() {
return "(" + e1.fmt() + oper + e2.fmt() + ")";

}
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}

Most of the developments in this book could have been carried out in an object-

oriented language, but the extra verbosity (of Java or C#) and the lack of nested

pattern matching, would make the presentation considerable more involved in

many cases.

1.5 The history of programming languages

Since 1956, thousands of programming languages have been proposed and im-

plemented, but only a modest number of them, maybe a few hundred, have

been widely used. Most new programming languages arise as a reaction to

some language that the designer knows (and likes or dislikes) already, so one

can propose a family tree or genealogy for programming languages, just as for

living organisms. Figure 1.1 presents one such attempt.

In general, languages lower in the diagram (near the time axis) are closer

to the real hardware than those higher in the diagram, which are more ‘high-

level’ in some sense. In Fortran77 or C, it is fairly easy to predict what instruc-

tions and how many instructions will be executed at run-time for a given line

of program. The mental machine model that the C or Fortran77 programmer

must use to write efficient programs is very close to the real machine.

Conversely, the top-most languages (SASL, Haskell, Standard ML, F#) are

functional languages, possibly with lazy evaluation, with dynamic or advanced

static type systems and with automatic memory management, and it is in gen-

eral difficult to predict how many machine instructions are required to eval-

uate any given expression. The mental machine model that the Haskell or

Standard ML or F# programmer must use to write efficient programs is far

from the details of a real machine, so he can think on a rather higher level. On

the other hand, he loses control over detailed efficiency.

It is remarkable that the recent mainstream languages Java and C#, es-

pecially their post-2004 incarnations, have much more in common with the

academic languages of the 1980’s than with those languages that were used in

the ‘real world’ during those years (C, Pascal, C++).
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Chapter 2

Interpreters and compilers

[This chapter is rather sketchy too.] This chapter introduces the distinction

between interpreters and compilers, and demonstrates some concepts of com-

pilation, using the simple expression language as an example. Some concepts

of interpretation are illustrated also, using a stack machine as an example.

2.1 What files are provided for this chapter

File Contents

sem2.fs expression abstract syntax, evaluators, compilers

prog.ps a simple Postscript program (see Section 2.6)

sierpinski.eps an intricate Postscript program (see Section 2.6)

Expr/Machine.java abstract machine in Java (see Section 2.8)

2.2 Interpreters and compilers

An interpreter executes a program on some input, producing an output or re-

sult; see Figure 2.1. An interpreter is usually itself a program, but one might

also say that an Intel x86 processor (using in PC’s) or an IBM PowerPC pro-

cessor (used in Apple’s computers) is an interpreter, implemented in silicon.

For an interpreter program we must distinguish the interpreted language L

(the language of the programs being executed, for instance our expression lan-

guage expr) from the implementation language I (the language in which the

interpreter is written, for instance F#). When program in the interpreted lan-

guage L is a sequence of simple instructions, and thus looks like machine code,

the interpreter is often called an abstract machine or virtual machine.

17
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InterpreterProgram

Input

Output

Figure 2.1: Interpretation in one stage

Source program Target programCompiler (Abstract) machine

Input

Output

Figure 2.2: Compilation and execution in two stages

A compiler takes as input a source program and generates as output an-

other (equivalent) program, called a target program, which can then be exe-

cuted; see Figure 2.2. We must distinguish three languages: the source lan-

guage S (eg. expr) of the input programs, the target language T (eg. texpr) of
the output programs, and the implementation language I (for instance, F#) of
the compiler itself.

The compiler does not execute the program; after the target program has

been generated it must be executed by a machine or interpreter which can

execute programs written in language T . Hence we can distinguish between

compile-time (at which time the source program is compiled into a target pro-

gram) and run-time (at which time the target program is executed on actual

inputs to produce a result). At compile-time one usually also performs vari-

ous so-called well-formedness checks of the source program: are all variables

bound? do operands have the correct type in expressions? etc.

2.3 Variables: scope, and bound and free occur-

rences

The scope of a variable binding is that part of a program in which it is vis-

ible. For instance, the scope of the binding of x in this F# expression is the

expression x + 3:

let x = 6 in x + 3
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A language has static scope if the scopes of bindings follow the syntactic struc-

ture of the program. Most modern languages, such as C, C++, Pascal, Algol,

Scheme, Java, C# and F# have static scope; but see Section 4.6 for some that

do not.

A language has nested scope if an inner scope may create a ‘hole’ in an outer

scope by declaring a new variable with the same name, as shown by this F#

expression, where the second binding of x hides the first one in x+2 but not in

x+3:

let x = 6 in (let x = x + 2 in x * 2) + (x + 3)

Nested scope is known also from Standard ML, C, C++, Pascal, Algol; and from

Java and C#, for instance when a parameter or local variable in a method hides

a field from an enclosing class, or when a declaration in a Java anonymous

inner class or a C# anonymous method hides a local variable already in scope.

It is useful to distinguish bound and free occurrences of a variable. A vari-

able occurrence is bound if it occurs within the scope of a binding for that

variable, and free otherwise. That is, x occurs bound in the body of this let-

binding:

let x = 6 in x + 3

but x occurs free in this one:

let y = 6 in x + 3

and in this one

let y = x in y + 3

and it occurs free (the first time) as well as bound (the second time) in this

expression

let x = x + 6 in x + 3

2.3.1 Expressions with let-bindings and static scope

Now let us extend the expression language from Section 1.2 with let-bindings
of the form let x = e1 in e2, here represented by the Let constructor:

type expr =
| CstI of int
| Var of string
| Let of string * expr * expr
| Prim of string * expr * expr
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Using the same environment representation and lookup function as in Sec-

tion 1.2.2, we can interpret let x = erhs in ebody as follows. We evaluate the

right-hand side erhs in the same environment as the entire let-expression, ob-

taining a value xval for x; then we create a new environment env1 by adding

the association (x, xval) and interpret the let-body ebody in that environment;

finally we return the result as the result of the let-binding:

let rec eval e (env : (string * int) list) : int =
match e with

| CstI i -> i
| Var x -> lookup env x
| Let(x, erhs, ebody) ->
let xval = eval erhs env
let env1 = (x, xval) :: env
in eval ebody env1

| Prim("+", e1, e2) -> eval e1 env + eval e2 env
| Prim("*", e1, e2) -> eval e1 env * eval e2 env
| Prim("-", e1, e2) -> eval e1 env - eval e2 env
| Prim _ -> failwith "unknown primitive";;

The new binding of xwill hide any existing binding of x, thanks to the definition
of lookup. Also, since the old environment env is not destructively modified

— the new environment env1 is just a temporary extension of it — further

evaluation will continue on the old environment. Hence we obtain nested static

scopes.

2.3.2 Closed expressions

An expression is closed if no variable occurs free in the expression. In most

programming languages, programs must be closed: they cannot have unbound

(undeclared) names. To efficiently test whether an expression is closed, we

define a slightly more general concept, closedin e vs, of an expression e being

closed in a list vs of bound variables:

let rec closedin (e : expr) (vs : string list) : bool =
match e with

| CstI i -> true
| Var x -> List.exists (fun y -> x=y) vs
| Let(x, erhs, ebody) ->
let vs1 = x :: vs
in closedin erhs vs && closedin ebody vs1

| Prim(ope, e1, e2) -> closedin e1 vs && closedin e2 vs;;

A constant is always closed. A variable occurrence x is closed in vs if x appears

in vs. The expression let x=erhs in ebody is closed in vs if erhs is closed in vs
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and ebody is closed in x :: vs. An operator application is closed in vs if both

its operands are.

Now, an expression is closed if it is closed in the empty environment []:

let closed1 e = closedin e [];;

2.3.3 The set of free variables

Now let us compute the set of variables that occur free in an expression. First,

if we represent a set of variables as a list without duplicates, then [] represents
the empty set, and [x] represents the singleton set containing just x, and one

can compute set union and set difference like this:

let rec union (xs, ys) =
match xs with
| [] -> ys
| x::xr -> if mem x ys then union(xr, ys)

else x :: union(xr, ys);;
let rec minus (xs, ys) =

match xs with
| [] -> []
| x::xr -> if mem x ys then minus(xr, ys)

else x :: minus (xr, ys);;

Now the set of free variables can be computed easily:

let rec freevars e : string list =
match e with
| CstI i -> []
| Var x -> [x]
| Let(x, erhs, ebody) ->

union (freevars erhs, minus (freevars ebody, [x]))
| Prim(ope, e1, e2) -> union (freevars e1, freevars e2);;

The set of free variables in a constant is the empty set []. The set of free

variables in a variable occurrence x is the singleton set [x]. The set of free

variables in let x=erhs in ebody is the union of the free variables in erhs,
with the free variables of ebodyminus x. The set of free variables in an operator

application is the union of the sets of free variables in its operands.

This gives a direct way to compute whether an expression is closed; simply

check that the set of its free variables is empty:

let closed2 e = (freevars e = []);;



22 Integer addresses instead of names

2.4 Integer addresses instead of names

For efficiency, symbolic variable names are replaced by variable addresses (in-

tegers) in real machine code and in most interpreters. To show how this may

be done, we define an abstract syntax texpr for target expressions that uses

(integer) variable indexes instead of symbolic variable names:

type texpr = (* target expressions *)
| TCstI of int
| TVar of int (* index into runtime environment *)
| TLet of texpr * texpr (* erhs and ebody *)
| TPrim of string * texpr * texpr

Then we can define a function

tcomp : expr -> string list -> texpr

to compile an expr to a texpr within a given compile-time environment. The

compile-time environment maps the symbolic names to integer variable in-

dexes. In the interpreter teval for texpr, a run-time environment maps in-

tegers (variable indexes) to variable values (accidentally also integers in this

case).

In fact, the compile-time environment in tcomp is just a string list, a list

of the bound variables. The position of a variable in the list is its binding

depth (the number of other let-bindings between the variable occurrence and

the binding of the variable). Correspondingly, the run-time environment in

teval is an int list storing the values of the variables in the same order as

their names in compile-time environment. Therefore we can simply use the

binding depth of a variable to access the variable at run-time. The integer

giving the position is called an offset by compiler writers, and a deBruijn index

by theoreticians (in the lambda calculus): the number of binders between this

occurrence of a variable, and its binding.

The type of teval is

teval : texpr -> int list -> int

Note that in one-stage interpretive execution (eval) the environment had type

(string * int) list and contained both variable names and variable values.

In the two-stage compiled execution, the compile-time environment (in tcomp)
had type string list and contained variable names only, whereas the run-

time environment (in teval) had type int list and contained variable values

only.

Thus effectively the joint environment from interpretive execution has been

split into a compile-time environment and a run-time environment. This is no



Stack machines for expression evaluation 23

accident: the purpose of compiled execution is to perform some computations

(such as variable lookup) early, at compile-time, and perform other computa-

tions (such as multiplications of variables’ values) only later, at run-time.

The correctness requirement on a compiler can be stated using equivalences

such as this one:

eval e [] equals teval (tcomp e []) []

which says that

• if te = tcomp e [] is the result of compiling the closed expression e in

the empty compile-time environment [],

• then evaluation of the target expression te using the teval interpreter

and empty run-time environment [] should produce the same result as

evaluation of the source expression e using the eval interpreter and an

empty environment [],

• and vice versa.

2.5 Stack machines for expression evaluation

Expressions, and more generally, functional programs, are often evaluated by

a stack machine. We shall study a simple stack machine (an interpreter which

implements an abstract machine) for evaluation of expressions in postfix (or

reverse Polish) form. Reverse Polish form is named after the Polish philosopher

and mathematician Jan Łukasiewicz (1878–1956).

Stack machine instructions for an example language without variables (and

hence without let-bindings) may be described using this F# type:

type rinstr =
| RCstI of int
| RAdd
| RSub
| RMul
| RDup
| RSwap

The state of the stack machine is a pair (c,s) of the control and the stack. The

control c is the sequence of instructions yet to be evaluated. The stack s is a

list of values (here integers), namely, intermediate results.

The stack machine can be understood as a transition system, described

by the rules shown in Figure 2.3. Each rule says how the execution of one
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Instruction Stack before Stack after Effect

RCst i s ⇒ s, i Push constant

RAdd s, i1, i2 ⇒ s,(i1 + i2) Addition

RSub s, i1, i2 ⇒ s,(i1 − i2) Subtraction

RMul s, i1, i2 ⇒ s,(i1 ∗ i2) Multiplication

RDup s, i ⇒ s, i, i Duplicate stack top

RSwap s, i1, i2 ⇒ s, i2, i1 Swap top elements

Figure 2.3: Stack machine instructions for expression evaluation

instruction causes the machine may go from one state to another. The stack

top is to the right.

For instance, the second rule says that if the two top-most stack elements

are 5 and 7, so the stack has form s,7,5 for some s, then executing the RAdd
instruction will cause the stack to change to s,12.

The rules of the abstract machine are quite easily translated into an F#

function (see file sem2.fs):

reval : rinstr list -> int list -> int

The machine terminates when there are no more instructions to execute (or we

might invent an explicit RStop instruction, whose execution would cause the

machine to ignore all subsequent instructions). The result of a computation is

the value on top of the stack when the machine stops.

The net effect principle for stack-based evaluation says: regardless what is

on the stack already, the net effect of the execution of an instruction sequence

generated from an expression e is to push the value of e onto the evaluation

stack, leaving the given contents of the stack unchanged.

Expressions in postfix or reverse Polish notation are used by scientific pocket

calculators made by Hewlett-Packard, primarily popular with engineers and

scientists. A significant advantage of postfix notation is that one can avoid

the parentheses found on other calculators. The disadvantage is that the user

must ‘compile’ expressions from their usual algebraic notation to stack ma-

chine notation, but that is surprisingly easy to learn.

2.6 Postscript, a stack-based language

Stack-based (interpreted) languages are widely used. The most notable among

them is Postscript (ca 1984), which is implemented in almost all high-end laser-
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printers. By contrast, Portable Document Format (PDF), also from Adobe Sys-

tems, is not a full-fledged programming language.

Forth (ca. 1968) is another stack-based language, which is an ancestor of

Postscript. It is used in embedded systems to control scientific equipment,

satellites etc.

In Postscript one can write

4 5 add 8 mul =

to compute (4 + 5)∗ 8 and print the result, and

/x 7 def
x x mul 9 add =

to bind x to 7 and then compute x*x+9 and print the result. The ‘=’ function in

Postscript pops a value from the stack and prints it. A name, such as x, that
appears by itself causes its value to be pushed onto the stack. When defining

the name (as opposed to using its value), it must be escaped with a slash as in

/x.
The following defines the factorial function under the name fac:

/fac { dup 0 eq { pop 1 } { dup 1 sub fac mul } ifelse } def

This is equivalent to the F# function declaration

let rec fac n = if n=0 then 1 else n * fac (n-1)

Note that the ifelse conditional expression is postfix also, and expects to find

three values on the stack: a boolean, a then-branch, and an else-branch. The

then- and else-branches are written as code fragments, which in Postscript are

enclosed in curly braces.

Similarly, a for-loop expects four values on the stack: a start value, a step

value, and an end value for the loop index, and a loop body. It repeatedly

pushes the loop index and executes the loop body. Thus one can compute and

print factorial of 0,1, . . . ,12 this way:

0 1 12 { fac = } for

One can use the gs (Ghostscript) interpreter to experiment with Postscript

programs. Under Linux, use

gs -dNODISPLAY

and under Windows, use something like
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gswin32 -dNODISPLAY

For more convenient interaction, run Ghostscript inside an Emacs shell (under

Linux or MS Windows).

If prog.ps is a file containing Postscript definitions, gs will execute them on

start-up if invoked with

gs -dNODISPLAY prog.ps

A function definition entered interactively in Ghostscript must fit on one line,

but a function definition included from a file need not.

The example Postscript program below (file prog.ps)) prints some text in

Times Roman and draws a rectangle. If you send this program to a Postscript

printer, it will be executed by the printer’s Postscript interpreter, and a sheet

of printed paper will be produced:

/Times-Roman findfont 25 scalefont setfont
100 500 moveto
(Hello, Postscript!!) show
newpath
100 100 moveto
300 100 lineto 300 250 lineto
100 250 lineto 100 100 lineto stroke
showpage

Another short but much fancier Postscript example is found in file sierpinski.eps.
It defines a recursive function that draws a Sierpinski curve, a recursively de-

fined figure in which every part is similar to the whole. The core of the program

is function sierp, which either draws a triangle (first branch of the ifelse) or
calls itself recursively three times (second branch). The percent sign (%) starts
and end-of-line comment in Postscript:

%!PS-Adobe-2.0 EPSF-2.0
%%Title: Sierpinski
%%Author: Morten Larsen (ml@dina.kvl.dk) LIFE, University of Copenhagen
%%CreationDate: Fri Sep 24 1999
%%BoundingBox: 0 0 444 386
% Draw a Sierpinski triangle

/sierp { % stack xtop ytop w h
dup 1 lt 2 index 1 lt or {
% Triangle less than 1 point big - draw it

4 2 roll moveto
1 index -.5 mul exch -1 mul rlineto 0 rlineto closepath stroke

} {
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% recurse
.5 mul exch .5 mul exch
4 copy sierp
4 2 roll 2 index sub exch 3 index .5 mul 5 copy sub exch 4 2 roll sierp
add exch 4 2 roll sierp

} ifelse
} bind def

0 setgray
.1 setlinewidth
222 432 60 sin mul 6 add 432 1 index sierp
showpage

A complete web-server has been written in Postscript, see

http://www.pugo.org/main/project_pshttpd/
The Postscript Language Reference [?] can be downloaded from Adobe Cor-

poration.

2.7 Compiling expressions to stackmachine code

The datatype sinstr is the type of instructions for a stack machine with vari-

ables, where the variables are stored on the evaluation stack:

type sinstr =
| SCstI of int (* push integer *)
| SVar of int (* push variable from env *)
| SAdd (* pop args, push sum *)
| SSub (* pop args, push diff. *)
| SMul (* pop args, push product *)
| SPop (* pop value/unbind var *)
| SSwap (* exchange top and next *)

Since both stk in reval and env in teval behave as stacks, and because of

lexical scoping, they could be replaced by a single stack, holding both variable

bindings and intermediate results. The important property is that the binding

of a let-bound variable can be removed once the entire let-expression has been

evaluated.

Thus we define a stack machine seval that uses a unified stack both for

storing intermediate results and bound variables. We write a new version

scomp of tcomp to compile every use of a variable into an (integer) offset from

the stack top. The offset depends not only on the variable declarations, but

also the number of intermediate results currently on the stack. Hence the

same variable may be referred to by different indexes at different occurrences.

In the expression
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Let("z", CstI 17, Prim("+", Var "z", Var "z"))

the two uses of z in the addition get compiled to two different offsets, like this:

[SCstI 17, SVar 0, SVar 1, SAdd, SSwap, SPop]

The expression 20 + let z = 17 in z + 2 end + 30 is compiled to

[SCstI 20, SCstI 17, SVar 0, SCst 2, SAdd, SSwap, SPop, SAdd,
SCstI 30, SAdd]

Note that the let-binding z = 17 is on the stack above the intermediate result

20, but once the evaluation of the let-expression is over, only the intermediate

results 20 and 19 are on the stack, and can be added.

The correctness of the scomp compiler and the stack machine seval relative

to the expression interpreter eval can be asserted as follows. For an expression

e with no free variables,

seval (scomp e []) [] equals eval e [] eval e []

More general functional languages may be compiled to stack machine code

with stack offsets for variables. For instance, Moscow ML is implemented that

way, with a single stack for temporary results, function parameter bindings,

and let-bindings.

2.8 Implementing an abstract machine in Java

An abstract machine implemented in F# may not seem very machine-like. One

can get a step closer to real hardware by implementing the abstract machine

in Java. One technical problem is that the sinstr instructions must be repre-

sented as numbers, so that the Java program can read the instructions from a

file. We can adopt a representation such as this one:

Instruction Bytecode

SCst i 0 i
SVar x 1 x
SAdd 2
SSub 3
SMul 4
SPop 5
SSwap 6
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Note that most sinstr instructions are represented by a single number (‘byte’)

but that those that take an argumen (SCst i and SVar x) are represented by

two numbers: the instruction code and the argument. For example, the [SCstI
17, SVar 0, SVar 1, SAdd, SSwap, SPop] instruction sequence will be repre-

sented by the number sequence 0 17 1 0 1 1 2 6 5.
This form of numeric program code can be executed by the method seval

shown in Figure 2.4.

class Machine {
final static int
CST = 0, VAR = 1, ADD = 2, SUB = 3, MUL = 4, POP = 5, SWAP = 6;

static int seval(int[] code) {
int[] stack = new int[1000]; // evaluation and env stack
int sp = -1; // pointer to current stack top
int pc = 0; // program counter
int instr; // current instruction
while (pc < code.length)
switch (instr = code[pc++]) {
case CST:
stack[sp+1] = code[pc++]; sp++; break;

case VAR:
stack[sp+1] = stack[sp-code[pc++]]; sp++; break;

case ADD:
stack[sp-1] = stack[sp-1] + stack[sp]; sp--; break;

case SUB:
stack[sp-1] = stack[sp-1] - stack[sp]; sp--; break;

case MUL:
stack[sp-1] = stack[sp-1] * stack[sp]; sp--; break;

case POP:
sp--; break;

case SWAP:
{ int tmp = stack[sp];

stack[sp] = stack[sp-1];
stack[sp-1] = tmp;
break;

}
default: ... error: unknown instruction ...

return stack[sp];
}

}

Figure 2.4: Stack machine in Java for expression evaluation
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