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Abstract. We prove that the flat product metric on Dn × S1 is
scattering rigid where Dn is the unit ball in Rn and n ≥ 2.

The scattering data (loosely speaking) of a Riemannian manifold
with boundary is map S : U+∂M → U−∂M from unit vectors V
at the boundary that point inward to unit vectors at the boundary
that point outwards. The map (where defined) takes V to γ′

V (T0)
where γV is the unit speed geodesic determined by V and T0 is the
first positive value of t (when it exists) such that γV (t) again lies
in the boundary.

We show that any other Riemannian manifold (M,∂M, g) with
boundary ∂M isometric to ∂(Dn×S1) and with the same scattering
data must be isometric to Dn × S1.

This is the first scattering rigidity result for a manifold that has
a trapped geodesic. The main issue is to show that the unit vectors
tangent to trapped geodesics in (M,∂M, g) have measure 0 in the
unit tangent bundle.

1. Introduction

In this paper we prove scattering rigidity (see below) for a number
of compact Riemannian manifolds with boundary that have trapped
geodesics.

Consider a compact Riemannian manifold (M,∂M, g) with boundary
∂M and metric g. We will let U+∂M represent the space of inwardly
pointing unit vectors at the boundary. That is V ∈ U+∂M means
that V is a unit vector based at a boundary point and < V, η+ >≥ 0
where η+ is the unit vector of M normal to ∂M and pointing in-
ward. Similarly we let U−∂M represent the outward vectors. Note
that U+∂M ∩ U−∂M = U(∂M) the unit tangent bundle of ∂M .

For V ∈ U+∂M let γV (t) be the geodesic with γ′(0) = V . We let
TT (V ) ∈ [0,∞] (the travel time) be the first time t > 0 when γV (t)
hits the boundary again. If γV (t) never hits the boundary again then
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TT (V ) = ∞ while if either γV (t) does not exist for any t > 0 or there
are arbitrarily small values of t > 0 such that γ(t) ∈ ∂M then we let
TT (V ) = 0. Note that TT (V ) = 0 implies that V ∈ U(∂M).

The scattering map S : U+∂M → U−∂M takes a vector V ∈
U+∂M to the vector γ′(TT (V )) ∈ U−∂M . It will not be defined when
TT (V ) = ∞ and will be V itself when TT (V ) = 0. If another mani-
fold (M1, ∂M1, g1) has isometric boundary to (M,∂M, g) in the sense
that (∂M, g) (g restricted to ∂M) is isometric to (∂M1, g1) then we can
identify U+∂M1 with U+∂M and U−∂M1 with U−∂M . We say that
(M,∂M, g) and (M1, ∂M1, g1) have the same scattering data if they
have isometric boundaries and under the identifications given by the
isometry they have the same scattering map. If in addition the travel
times TT (V ) coincide then they are said to have the same lens data.

A compact manifold (M,∂M, g) is said to be scattering (resp. lens)
rigid if for any other manifold (M1, ∂M1, g1) with the same scattering
(resp. lens) data there is an isometry from M1 to M that agrees with
the given isometry of the boundaries.

Theorem 1.1. For any n ≥ 2 the flat product metric on Dn × S1 is
scattering rigid where Dn is a ball in Rn.

The fact that not all manifolds are scattering rigid was pointed out in
[Cr91]. For 1

4
> ϵ > 0 let h(t) be a small smooth bump function which

is 0 outside (−ϵ, ϵ) and positive in (−ϵ, ϵ). For s ∈ (−1 + 2ϵ, 1 − 2ϵ)
consider surfaces of revolution gs with smooth generating functions
Fs(t) = 1 + h(s + t) for t ∈ [−1, 1]. These surfaces of revolution look
like flat cylinders with bumps on them that are shifted depending on s
but otherwise look the same (see figure 1). The Clairaut relations show
that, independent of s, geodesics entering one side with a given initial
condition exit out the other side after the same distance at the same
point with the same angle. Hence all metrics have the same scattering
data (and in fact lens data) but are not isometric. A much larger class
of examples was given in section 6 of [Cr-Kl94]. All of the examples
have in common that there are trapped geodesics.

The scattering and lens rigidity problems are closely related to other
inverse problems. In particular the boundary rigidity problem is equiv-
alent to the lens rigidity question in the Simple and SGM cases. See
[Cr91] and [Cr04] for definitions and relations to some other problems.
There is a vast literature on these problems (see for example [Be83,
Bu-Iv06, Cr91, Cr90, Gr83, Mi81, Mu77, Ot90, Pe-Sh88, Pe-Uh05]).
However all of the results to date concern manifolds without trapped
geodesics. The results in this paper constitute the first examples of
scattering rigid manifolds that have trapped geodesics.
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Figure 1.1. not isometric but same scattering and lens data

The key difficulty in our case is to show that the set of unit vectors
tangent to trapped geodesic rays in the metric g1 has measure 0 in the
unit tangent bundle. This allows us (with an application of Santaló’s
formula) to conclude that g and g1 have the same volumes. Since the
metric g has a real factor (i.e. Dn ⊂ R×Rn−1) we can use a result from
[Cr-Kl98] to complete the argument. In fact, the argument in Theorem
1.1 extends (see section 3) to the case where Dn above is replaced by a
ball in R×Nn−1 where N is a complete simply connected Riemannian
manifold with nonpositive curvature. (In fact with more work one could
extend this to the case of no conjugate points but we chose not to give
the slightly different arguments here.)

One case that was not dealt with in Theorem 1.1 is the two dimen-
sional case, namely the flat cylinder [−1, 1]×S1 and the Möbius strip.
There are ways in which this case is easier and ways in which it is
harder. The major differences are that the scattering data does not
determine the lens data and we cannot conclude that the C∞ jets of
the metrics agree at the boundary. The problem of lens rigidity in the
two dimensional case will be taken up in a future paper with Pilar Her-
reros. In particular, it turns out that the Möbius strip is not scattering
rigid if (M1, ∂M1, g1) is allowed to be C1.

The author would like to thank Gunther Uhlmann who first posed
the problem of the rigidity of D2×S1 to him some years ago, and Pilar
Herreros for a careful reading of earlier drafts.

2. The Dn × S1 for n ≥ 2 case

In this section we prove of Theorem 1.1. We consider generalizations
in Section 3. Throughout the section n ≥ 2 and g will be the standard
flat product metric on M = Dn × S1. For concreteness we will take
Dn to be the unit ball and S1 to have length 2π. (M1, S

n−1 × S1, g1)
will be another Riemannian metric on a manifold M1 whose boundary
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is isometric to that of M . We use this isometry to identify the two
boundaries. We assume that g1 has the same scattering data as g.

The first thing to note is that the C∞ jets of g and g1 agree at the
boundary. This follows from [L-S-U03],[Uh-Wa03], or [Zh11] since, for
the flat metric g, the second fundamental form of the boundary has a
positive eigenvalue at every point. (Note that this argument wont work
in the two dimensional case n = 1.) This in particular means that we
can glue (Rn −Dn)× S1 along the boundary of M1 to yield a smooth
metric M ext

1 which is isometric to Rn × S1 outside of M1.
The scattering data assumption tells us that the only geodesic loops

at a point p ∈ ∂M1 are the multiples of the S1 running through p
(which stay in the boundary). One consequence of the above is that
every geodesic loop at a point p ∈ ∂M1 is locally minimizing in the
space of loops at p. This is true since it is true in M ext

1 since there are
no conjuagate points along γ because all the sectional curvatures are
0.

Lemma 2.1. π1(M1) = Z and the generator is represented by the S1

factor of the boundary.

Proof: To see this fix a base point p on the boundary. We have
pointed out that the only geodesic loops at p are multiples of S1. Fur-
ther the convexity of the boundary guarantees that there is at least one
geodesic loop in each homotopy class (the shortest curve in that class).
Thus we need only see that any nonzero multiple γ of the S1 through
p is not null homotopic. By the above γ is locally minimizing. If it
were null homotopic then a standard minimax argument along with the
convexity of the boundary would guarantee a minimax geodesic loop
at p. But since all geodesic loops at p are locally minimizing we get
the desired contradiction. The lemma follows.

�

Thus the Riemannian universal cover M̃1 of M1 sits naturally in

M̃ ext
1 the universal cover of M ext

1 and further M̃ ext
1 − M̃1 is isometric to

(Rn−Dn)×R. Also M̃ = Dn×R has the same scattering data as M̃1.
We will slightly abuse notation and call the metrics on the universal
covers g and g1 as well.

Lemma 2.2. g1 has the same lens data as g.

Proof: This is an application of the first variation formula. For V ∈
U+∂M let G(V ) = L(γV ) − L(γ1V ). We need to show that G(V ) = 0
for all V . A smooth curve of initial conditions V (s) in the interior of
U+∂M gives rise to smooth variations γV (t) through geodesics in M
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and γ1V (t) through geodesics in M1 whose initial and final conditions
agree. (Note that this uses the convexity of the boundary since for
more general manifolds with boundary there may be a discontinuous
jump in the endpoints of geodesics.) The first variation formula (along
with the fact that the metrics agree at the boundary) tells us that
G(V (s)) = L(γV (s)) − L(γ1 V (s)) is independent of s. Since U+∂M is
connected, G is constant. Further when V approaches a non vertical
vector (i.e. one not tangent to the S1 factor) in ∂(U+∂M) = U∂M
then L(γV ) and L(γ1V ) approach 0 and hence G(V ) approaches 0. Thus
G ≡ 0 and the lemma follows.

�
Lemma 2.3. An M1 geodesic γ between boundary points is the shortest
path in its homotopy class (rel boundary points).

Proof: This is the same as saying that such geodesics in the universal
cover are the minimizing paths between the endpoints. This is true for

M̃ where there is a unique geodesic between any two boundary points.

Thus there is also a unique geodesic between boundary points in M̃1

which must thus be the minimizing geodesic.
�

In fact, this implies that all geodesic segments in M̃ ext
1 are minimizing

except possibly in the case that they are segments of geodesics trapped

in M̃1. If p and q are points in M̃ ext
1 − M̃1 = Rn+1 −Dn ×R then this

implies that d1(p, q) = d(p, q).
A geodesic γ1V will either be trapped or coincide with an oriented

Euclidean line LV outside M̃1. By the direction of LV we mean the
oriented line through the origin parallel to LV .

There are two cases that are exceptional. These are trapped geodesics
and vertical geodesics (i.e. {x}×R for x ∈ Rn −Dn). We will exclude

both these cases by the phrase “Lv is not vertical”. For p ∈ M̃ ext
1 we let

A(p) = {V ∈ UpM̃ ext
1 |LV is not vertical}. Note that for p ∈ M̃ ext

1 −M̃1

we have A(p) is just the unit sphere with the north and south pole
removed. A will represent the union of the A(p).

Lemma 2.4. If Vi ∈ A(p) converges to a vector V ∈ Up −A(p) then
the directions of the lines LVi

become vertical.

Proof: Assume this is not the case. Then there is a subsequence of
the Vi (which we will still call Vi) such that the directions of the lines LVi

converge to a non vertical direction L. We claim that a subsequence of
these LVi

converge to a line LW . To see this we only need to note that
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the lines LVi
intersect a common compact set. Now the length of γVi

∩
M̃i is the same as the length of LVi

∩Dn×R ⊂ Rn+1 which is uniformly
bounded above (say by B) since the directions of the LVi

converge to

L. Thus all the LVi
intersect the boundary of M̃i inside the compact

ball about p of radius B. This means that the geodesics γVi
(for the

subsequence) converge to LV outside M̃i but they converge to γV which
is supposed to be trapped. This yields the desired contradiction.

�
We next see that even though M̃ ext

1 might a-priori have conjugate

points (along geodesics trapped in M̃1), Busemann functions along rays
where LV is not vertical behave like those in manifolds without conju-
gate points. In particular they are C1,1 smooth, |∇b1V | = 1, and the
Lipshitz constant for ∇b1V is uniformly bounded.

For V ∈ UM̃ ext
1 , let b1V : M̃ ext

1 → R be the Busemann function
defined by V . I.e.

b1V (p) = limt→∞d1(p, γv(t))− t.

Since d1(p, q) = d(p, q) when p and q are points in M̃ ext
1 −M̃1, b1V co-

incides with the Euclidean bV outside M̃1 as long as γ1V is not trapped.
That is b1V will coincide with the hight function (up to a constant) in
the direction LV .

For all reals s we will let HV (s) = {p ∈ M̃ ext
1 |b1V (p) = s} be the s

level set of b1V . Of course, outside of M̃1, HV (s) is just a hyperplane
perpendicular to LV .

Lemma 2.5. For all V ∈ A, b1V is C1,1 and the Lipshitz constant of
∇b1V is bounded by a constant independent of V .

Proof: The proof is the usual proof that such a statement holds
on manifolds without conjugate points. This is done by showing that
the approximating functions, ft(p) = d1(p, γ1V (t)) − t, are C∞ have

|∇ft| = 1 and have uniformly bounded Hessian. If γ1V (t) ∈ M̃ ext
1 − M̃1

then all geodesics from γ1V (t) minimize so the distance function from
γ1V (t) is C

∞ for large t. The fact that |∇ft| = 1 is clear. The uniform
control on the Hessian is also the same as we will see. Fix a number
r less than the convexity radius of M ext

1 - which exist since it is flat
outside M1. Since there is a compact set K of base points such that for
q /∈ K the ball B(q, r) is flat we conclude that the eigenvalues of the
second fundamental forms of the boundaries of B(q, r) are uniformly
bounded above and below independent of q. This same bound applies

to balls in the universal cover M̃ ext
1 . Now to bound the Hessian of ft at
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q ∈ M̃ ext
1 let τ(s) be the (unique) geodesic from γ1V (t) to q = τ(s0) (we

can assume s0 >> r since we will be taking the limit as t → ∞). Then
by the triangle inequality the level set of ft at q (i.e. ∂B(γ1V (t), s0)) lies
outside both B(τ(s0 − r), r) and B(τ(s0 + r), r) which are tangent to
the level set at q. Hence the second fundamental forms of the level sets
are uniformly bounded and hence so is the Hessian. Thus the lemma
follows.

�
The usual properties of Busemann functions (see [Es77] for basic

properties of Busemann functions) tell us that if W (p) = ∇b1V (p) then
γ′
1W (t) = ∇b1V (γ1W (t)) for all t. Hence if γ1W is not trapped then LW

will be parallel to LV . A straightforward open and closed argument
shows that for all p, γ1W (p) is not trapped.

Lemma 2.6. Let V and W in A be such that LV and LW are not
parallel to each other and W is not horizontal. Then for any given s

the maximum and minimum values of b1V on the compact HW (s)∩ M̃1

are achieved on the boundary of HW (s) ∩ M̃1.

Proof: We first note that HW (s) ∩ M̃1 is compact. If D is the

diameter of M1 then for every p ∈ HW (s) ∩ M̃1 there is a point q ∈
∂(M̃1) with d(p, q) ≤ D. Since b1W has Lipshitz constant 1, we know
that s − D ≤ b1w(q) ≤ s + D and hence p lies in the (compact) set
of points that are at distance ≤ D from the compact (since W is not

horizontal) set of boundary points {q ∈ ∂M̃1|s−D ≤ b1W (q) ≤ s+D} =
{q ∈ ∂(Bn−1 × R)|s−D ≤ bW (q) ≤ s+D}.

If the maximum (or minimum) value of b1V occurs in the interior
then ∇b1V must be perpendicular to HW (s) there and hence coincides
with ∇b1W at that point. However this contradicts the condition that
LV and LW are not parallel.

�
We now see that if V and W in A are such that LV and LW are

parallel then b1V − b1W is constant. Since they agree with the height

functions outside M̃1, b1V − b1W = C outside M̃1. But then they must
also differ by C along any geodesic whose corresponding line is parallel
to LV and LW . But since such a geodesic passes though every point

p ∈ M̃1 (i.e. take the geodesic in the direction of ∇b1V (p)) this says
b1V − b1W = C everywhere. In particular for every p there is a unique
geodesic passing through p and parallel to a given line. This gives a
natural identification of A(p) with the space of non vertical directions.
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Proposition 2.7. Through every p ∈ M̃1 there is exactly one trapped
geodesic.

Proof: This is equivalent to showing that for every p ∈ M̃ ext
1 , A(p)

consists of the unit sphere UpM̃ ext
1 minus a pair of antipodal points.

Assume that p is a point with more trapped geodesics. Note that if
there is a trapped half geodesic at p then the other half must also
be trapped by the assumption that the scattering data coincides with
the flat case. Thus the tangent directions to trapped geodesics come
in antipodal pairs. Of course there is at least one trapped geodesic
through p since one could take the limit of a subsequence of geodesics
from p to a boundary points qi where qi runs off to infinity. We only

need to consider p in the interior of M̃1.
A limiting half geodesic of a sequence of trapped half geodesics start-

ing at p will be a half geodesic starting at p that stays in M̃1. (In fact

it stays in the interior since the only half geodesics in M̃1 that are tan-
gent to the boundary are the vertical ones hence stay in the boundary.)
Thus the set of tangent directions to trapped geodesics (i.e. Up−A(p))
is closed in Up and thus A(p) is open and nonempty (by the correspon-
dence with non vertical directions). The set of boundary points of
Up − A(p) is thus non empty and if it consisted of a single antipodal
pair then Up −A(p) would also be a single antipodal pair. Thus there
is a pair of distinct unit vectors V and W in Up − A(p) such that
⟨V,W ⟩ = C with −1 < C < 1 (one could take C ≥ 0) and such that
there exists sequences Vi ∈ A(p) and Wi ∈ A(p) such that Vi converges
to V and Wi converges to W . We extend Vi and Wi to vector fields
by letting Vi(q) = ∇b1Vi

(q) and Wi(q) = ∇b1Wi
(q). By the uniform

bound on Lipshitz constants on busemann functions, i.e. Lemma 2.5,
there is an ϵ > 0 (depending only on C and the Lipshitz constant of
the busemann functions but not on i) such that for all q ∈ Bp(ϵ) (the
ϵ ball about p) and all sufficiently large i we have

−1 + C

2
< ⟨Vi(q),Wi(q)⟩ <

1 + C

2
.

This holds since for large i we have ⟨Vi(p),Wi(p)⟩ is approximately C
and then, with respect to a parallel frame along geodesics of length ϵ,
the change of Vi and Wi is uniformly bounded by the Lipshitz constant

and ϵ. We can further take ϵ less than the distance from p to ∂M̃1.
Now consider the busemann function b1Vi

on the 0 level set HWi
(0)

of b1Wi
(i.e. the level set through p). By the inner product condition

above we can find unit speed differentiable curves τ1 and τ2 in HWi
(0)
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starting at p of length ϵ (and hence in HWi
(0) ∩Bp(ϵ)) such that

⟨τ ′1(s), Vi(τ1(s))⟩ > C̄ =

√
1−

(1 + C

2

)2

and

⟨τ ′2(s), Vi(τ2(s))⟩ < −C̄ = −
√

1−
(1 + C

2

)2

.

Thus for every sufficiently large i there are points z1i , z
2
i ∈ HWi

(0) ∩
Bp(ϵ) such that b1Vi

(z1i ) > C̄ϵ and b1Vi
(z2i ) < −C̄ϵ. Thus by lemma 2.6

for every sufficiently large i there are points y1i and y2i on the boundary

of HWi
(0) ∩ M̃1 with b1Vi

(y1i ) > C̄ϵ and b1Vi
(y2i ) < −C̄ϵ.

Since Vi and Wi converge to trapped geodesics, Lemma 2.4 says
that as i → ∞ the lines LVi

and LWi
converge to vertical. But this

means that the the Busemann functions b1Vi
and b1Wi

(which are height

functions outside M̃1) approximate the vertical height function. In
particular, for i large enough the values of b1Vi

on the boundary of

HWi
(0) ∩ M̃1 vary by less than C̄ϵ. This contradicts the simultaneous

existence of y1i and y2i for large i.
�

The first consequence of this proposition is that the trapped geodesics
are also minimizing (as limits of minimizing geodesics) and hence g
has no conjugate points. Start with a large enough flat n + 1 torus
T n×S1 so that Dn sits isometrically in T n. Now replace Dn×S1 with
(M1, ∂M1, g) to get an n+1 torus with no conjugate points. Then the
theorem of Burago-Ivanov [Bu-Iv94] proving the E. Hopf conjecture
says that the metric is flat. This gives a proof of Theorem 1.1.

However the above proof does not generalize very far. In the next
section we give an alternative proof that does generalize.

3. generalizations

In the previous section we considered only flat metrics so as to make
the the proof more transparent. However the arguments extend almost
without change to give

Proposition 3.1. Let Dn be a ball in a complete simply connected
manifold Nn with nonpositive curvature, and (M1, ∂M1, g1) a Riemann-
ian manifold with boundary that has the same scattering data as (D ×
S1, ∂D×S1, g) where g is the product metric. Then through every point
of M1 there is exactly one trapped geodesic.

The only change that affects the proof is that geodesics in M̃ ext
1 are

not lines outside M̃1 but geodesics inN . Geodesic rays inN are thought
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of as parallel if they have the same limit point at infinity (which means
that they stay a bounded distance from each other). This allows us to
relate A(p) to A(q) and all the arguments go through.

�
Remark 3.2. To extend this to manifolds without conjugate points
one first needs to deal with the fact that balls may not be convex. This
would seem to give us problems with the differentiability of the metric

on M̃ ext
1 at the boundary of M̃1. However (except possibly in the case

where the boundary of D contains a region that is totally geodesic)
since there are no conjugate points Theorem 1 of [St-Uh09] will still
tell us that the metric will be smooth. In fact very little of the argument
really needs the boundary to be convex (or the metric to be smooth
for that mater) but extending the arguments would look somewhat
different from the above. Also one has to worry about relating A(p)

and A(q). This can be done by fixing a base point x0 ∈ M̃ ext
1 − M̃1

and looking only at Busemann functions defined by vectors in Ux0 . In
any event the arguments would look somewhat different and we wont
pursue them.

We now want to generalize Theorem 1.1 to the nonflat case. The
first point to note is that for g and g1 as in Proposition 3.1 we have

V ol(g1) = V ol(g).

Let T1 ⊂ UM1 be the set of unit vectors tangent to trapped geodesic
rays. Similarly define T ⊂ UM (here M = D × S1). Using the fact
that the metrics are lens equivalent we consider the standard measure
preserving map F : UM1 −T → UM −T which assigns to each vector
V ∈ UM1 − T the unique vector W ∈ UM1 − T such that V = γ′

1(t)
and W = γ′(t) where γ and γ1 are geodesics with corresponding initial
conditions on the boundary. I.e. γ(0) ∈ ∂M and γ1(0) ∈ ∂M1 are
corresponding points while γ′(0) and γ′

1(0) are corresponding inwardly
pointing unit vectors. That F (which conjugates the geodesic flows) is
measure preserving is a standard fact which follows for example from
Santaló’s formula (see for example [Cr91]). The fact that T and T1

have measure 0 tells us that the unit tangent bundles (and hence the
manifolds) have the same volume.

The generalization of Theorem 1.1 is

Theorem 3.3. Let Dn be a ball in Nn−1 × R where N is a complete
simply connected manifold with nonpositive curvature. Then D×S1 is
scattering rigid.
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Proof: One proves this via Proposition 2.2 of [Cr-Kl98]. That result
compares two metrics g and g1 on manifolds without conjugate points
with an additional condition on g that it contain a real factor (which
is satisfied by our assumption on D). Under a weak lens equivalency
condition (which is satisfied since the metrics are lens equivalent) one
concludes that V ol(g1) ≥ V ol(g) with equality holding if and only if
g1 is isometric to g. This (along with the above fact that V ol(g1) =
V ol(g)) proves the Theorem.

�
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