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1 Abstract

In this lab we used the Geiger counter to take counts of different radiation sources. From
these counts, we observed the pulse height against the ionization type and energy, pulse
height and counting curve against high voltage, beta attenuation coefficients by measuring
counts through plates of aluminium, and Geiger counter dead times by measuring them from
the oscilloscope as well as calculating them using the two-source method. In experiment one,
we saw that using different sources of radiation, we saw no real difference in the pulse heights
from the Geiger counter. Due to equipment error, we were unable to draw any substantial
conclusions about how the counting curve and pulse height relates to the high voltage level
from the experimental data in experiment two. In experiment three, we calculated a mass-
attenuation coefficient of 257.6978 cm2

g
for β-particles in aluminium. This number agreed

with the number that had already been calculated through independent experiments. In
experiment four, a dead time of 376.0 µs and a recovery time of 1.03 ms were measured from
the oscilloscope. Using the two-source method we calculated a dead time of 277.379 µs. We
see much agreement between these values. Throughout the entire experiment we observed
much agreement between the theory and experiment.

2 Introduction & Objectives

In 1908, Hans Geiger would develop a machine that was capable of detecting alpha particles.
Geiger’s student, Walther Mueller, would go on to improve the counter in 1928 a way that
would allow the counter to detect any kind of ionizing radiation. And thus, the modern
Geiger-Mueller counter was born and the techniques in radiation detection were forever
changed. The Geiger-Mueller tube, or GM tube, is an extremely useful and inexpensive
way to detect radiation. While the GM tube can only detect the presence and intensity of
radiation, this is often all that is needed. It is the purpose of this lab to become acquainted
with this device and explore it’s uses in detecting radiation and also to explore it’s limits.
Using this device as a tool, it is also the purpose to explore attenuation coefficients through
a beta attenuation experiment.

3 Theory

3.1 Gas Filled Detectors

Gas-filled detectors, like other proportional counters, use gas multiplication to significantly
increase the charge represented by the ion pairs created by the ionizing radiation.

With the proportional counter, each electron creates an avalanche that is independent of all
other avalanches in the detector. All of these avalanches are nearly identical, therefore the
collected charge is proportional to the number of original electrons.
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Inside of a gas counter, the electric field causes to the electrons and the ions to drift to
their respective sides of the collector. While these electrons and ions are drifting, the collide
with each other. There is very little average energy that is gained by the ions because of
their low mobility in the electric field. Free electrons, on the other hand, have the ability to
have great amounts of energy inside the electric field. It an electron has enough energy, it is
energetically possible for another ion pair to be created from the collision of an electron and
a neutral gas molecule. There is a certain level of electric field strength that will always allow
this result from the collision. This free electron will then be accelerated by the electric field
to higher kinetic energies and then has the potential to create even more ionization inside
the tube. This process of gas multiplication forms a cascade and is known as a Townsend
Avalanche.

3.2 Geiger-Mueller Counter

The G-M counter works slightly different than these other proportional counters. Inside of
the actual gas chamber, strong electric fields are created to enhance the avalanche intensity.

Figure 1: The different regions of operation of gas-filled detectors. the observed pulse amplitude is plotted
for events depositing two difference amounts of energy within the gas.[1]

In the G-M tube, these avalanches can cause more avalanches at a different position in the
tube. At a certain level of electric field amplitude, the avalanches can cause an average of
at least one more avalanche in the G-M tube. The significance of this is a self-propagated
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chain reaction of avalanches resulting inside the tube. This process is known as the Geiger
Discharge. Figure 2 diagrammatically depicts how the Geiger discharge is triggered inside
the tube. Once the magnitude of this Geiger Discharge reaches a certain size, all of the
avalanches effect each other in such a way that all of the avalanches are terminated. This
avalanche limiting point always contains the same amount of avalanches, therefore all pulses
that are measure from a Geiger tube have the same amplitude. In figure 1, it is shown that
the Geiger counter only sees the same pulse for the two different energies. This is important
due to that fact that a Geiger counter can only be used to detect or count radiation and
nothing more.

Figure 2: The manner in which additional avalanches are triggered in a Geiger discharge.[1]

3.2.1 Fill Gasses & Quenching

Because of the fact that the Geiger counter is based on positive ions that will be formed
inside of the tube, gases that form negative ions, such as oxygen, should be avoided at all
costs. Usually noble gases are used as the main component in the Geiger counter. There is
a mixture of two gases in this chamber, however, to allow for quenching.

As radiation enters the detector it ionizes the gas inside the chamber. These ions drift away
from the anode wire after the termination of a Geiger discharge. When these ions drift out
to the cathode wall, they are neutralized by combining with an electron from the cathode
surface. The amount of energy that is liberated in this process is equal to the ionization
energy of the gas minus the energy it takes to remove an electron from the cathode surface.
The energy to remove an electron from the cathode surface is known as the work function.
In situations where the liberated energy is greater than the cathode work function, it is en-
ergetically possible to liberate more than one electron. This happens when the energy of the
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ionized gas particle is twice the magnitude of the work function. This is a significant issue
that needs to be addressed as the free electron can drift into the anode and trigger another
Geiger discharge which would penultimately cause the liberation of more free electrons and
ultimately cause the Geiger counter to produce a continuous output of pulses.

In order to deal with this, a second gas, known as the quench gas, is added to the Geiger
chamber in addition to the main gas. This gas is chosen to have an ionization potential that
is lower than and a more complex structure then the main gas. Typically, concentrations of
5 – 10% are present inside the counter. The positive ions created from incident radiation
are mostly the primary gas in the chamber. As these ions drift to the cathode wall, they
interact with the quench gas and will transfer their charge due to the difference in ionization
energies. The goal here is to have the quench gas bring the positive charge to the cathode
wall. This is desirable because the excess energy will go into the disassociation of the quench
gas molecule instead of liberating another electron. Ethyl alcohol and ethyl formate have
been popular choices for quench gas inside modern Geiger counters. Also, Halogens are a
popular choice because they are a self replenishing gas. It should be noted that organic
quench gases lead to closer to a plateau slope of zero, where inorganic quench gases lead to
larger slopes on the plateau.

Figure 3: The equivalent circuit of a G-M tube.[1]

There is another form of quenching known as external quenching. In this method, the
resistance of R in Figure 3 is made to be quite large (on the magnitude of 108 ohms). The
disadvantage is that it takes extra time for the anode to return to its normal voltage. Because
of this, external quenching is only efficient at low counting rates.

3.2.2 Geiger Counter Dead Time

The Geiger counter has an unusually large dead time. Right after a Geiger discharge, the
electric field is reduced below the critical level to trigger chain avalanches. The time that it
takes the Geiger counter to build the electric field back up to the critical level is known as
the dead time. This is because the counter is “dead” during this time and will not detect
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any ionizing radiation. This is depicted diagrammatically in Figure 4. This time is on the
order of 50 – 100 µs in most modern Geiger counters.

Figure 4: Illustration of the dead time of a G-M tube. Pulses of negative polarity conventionally observed
from the detector are show.[1]

An interesting phenomenon occurs right after the dead time. At this time, the electric field
is at the critical point that it allows the counter to detect ionizing radiation, but the electric
field is not built all the way back up to the magnitude that it was at. The time that it
takes the Geiger counter to build the electric field back up to full strength after a full Geiger
discharge1 is known as the recovery time. If a radiation event is detected at a time after
dead time but before the recovery time, the Geiger counter will produce a pulse, but this
pulse will be smaller in amplitude than a pulse created from a full Geiger discharge. This
time is also graphically depicted in Figure 4.

3.2.3 Geiger Counting Plateau

When setting up the Geiger counter, it should be connected to a high voltage source. For
a Geiger counter, we know that the voltage that it is set to will determine the amount of
radiation that it can detect. If the voltage is too low, there will not be enough potential
to create an Geiger discharges. If the voltage is too high, the Geiger counter will enter a
state of continuous discharge. There is a region of voltage that is the ideal voltage to set the
Geiger counter to. This region is called the plateau.

As can be seen in Figure 5(a), there is a specific voltage at which the Geiger counter starts
to register counts. This is called the starting voltage. The knee, the region where the curve
transition from the initial rise into the plateau, can also be seen in Figure 5(a). When the
voltage goes higher than the range of the plateau, then the counter enters the region of

1A full Geiger discharge is a Geiger discharge when the electric field is at full strength.
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Figure 5: (a) The counting curve for G-M counter around 1000-1200 V. (b)The differential pulse height
spectrum and the counting curve of the G-M counter.[1]

continuous discharge, as can be seen in Figure 5(b).

While the ideal plateau is one with zero slope, this is never the case in practice. Regions
where the electric field has a lower strength than usual, such as the ends of the tube, the
discharges may be smaller than normal. This will add a low-amplitude tail to the differential
pulse height distribution and can be a contributing cause to the nonzero slope in the plateau.
Also, pulses that occur during the recovery time will be smaller than normal as well and will
also contribute to the slope of the plateau.

It is ideal to have the voltage set within the counting curve plateau when taking measure-
ments with the Geiger counter. When inside this range, small fluctuations in voltage will

8



Rittersdorf Lab 4 - Geiger-Mueller Counting

not significantly alter measurements and will provide accurate data. It is ideal to keep the
voltage at the lower end of the plateau range, just above and out of the way of the knee, to
increase counter life.

3.2.4 Geiger Counter Counting Efficiency

Because of the way the Geiger counter is set up, it deals with detecting different types of
particles in different ways. There are three types of particles to consider: charged particles,
neutrons, and gamma rays.

The Geiger counter excels are counting charged particles. This is because these particles ion-
ize the gas in the G-M tube and these ion pairs are what cause the Geiger discharge in the
tube. Essentially, the efficiency at which the Geiger counter counts charged particles is 100%.

The Geiger counter is not a good device for counting neutrons. The gases that are usually
used in Geiger counters have extremely low cross sections for thermal neutrons. The gas
could be replaced with one that is better at capturing thermal neutrons, but the detector
could be operated in the proportional region and then the difference between neutrons and
gamma rays could be distinguished. Fast neutrons produce ion pairs that the Geiger counter
will easily respond to. Proportional counters are usually tasked with this job instead of
Geiger counters due to their ability to provide spectroscopic information.

The Geiger counter’s ability to detect gamma rays is contingent on the gamma ray interacting
with the solid wall of the counter. Such is the way for any gas-filled counter. A secondary
electron is produced if the interaction takes place close to the inner wall. This secondary
electron is ionizing and the Geiger counter will easily detect it. The efficiency for counting
these gamma-rays depends on two factors: the probability that the incident gamma will
interact with the solid wall and produce a secondary electron, and the probability that the
secondary electron reaches the fill gas of the tube before it reaches the end of its track. Only
the innermost layer wall can produce the secondary electrons required to detect the gamma,
as shown in Figure 6. To increase the probability that a gamma-ray will interact with the
solid wall, the atomic number of the wall should be increased. With an atomic number of
83, bismuth has been the classic material to build cathodes with for many years.
The counting efficiency of low energy gamma-rays and X-rays is increased by using a gas
with an atomic number and a pressure as high as possible. Xenon and krypton are popular
for these situations and often result in counting efficiencies close to 100%.

3.3 Attenuation Theory

The linear attenuation coefficient, µ, is the fixed probability per unit path length that a
gamma-ray will interact with it’s surroundings. The number of transmitted photons, I, can
be described in terms of the number without an absorber I0 as
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Figure 6: The principal mechanism by which gas-filled counters are sensitive to gamma rays involves
creation of secondary electrons in the counter wall. Only those interactions that occur within an electron
range of the wall surface can result in a pulse.[1]

I

I0

= e−µt (1)

Another important quantity is the mean free path, λ. That is the average distance that a
photon will travel through an absorber before the photon interacts. It should be noted that
the mean free path is the inverse of the linear attenuation coefficient.

λ =
1

µ
(2)

The linear attenuation coefficient varies with the density of the absorber, even though the
absorber material is the same. Because of this, a need for a mass attenuation coefficient is
prevalent. The mass attenuation coefficient is defined as

mass attenuation coefficient =
µ

ρ
(3)

where ρ is the density of the medium.

Using the definition of the mass attenuation coefficient, Eq. 1 takes on the form

I

I0

= e−(µ
ρ
)ρt (4)
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We define the product ρt as the mass thickness of the absorber. This product has units
of mg/cm2. This mass thickness is a significant parameter that determines the absorbers
degree of attenuation.

3.4 Two-Source Method Dead Time Measurements

One way that the dead time of a counting system can be calculated is from the measured
counting rates of two different sources. This is able to be done because the counting losses
are nonlinear, therefore the observed rate from the two sources in combination. This is the
case due to the fact that the background radiation is a constant, and therefore the sum of the
two individual source measurements will not equal the measurement of both sources at one
time. These sources will have similar counting rates, so it is imperative that very accurate
measurements are taken. It is also very important to note that single sources are in the
same position in the counter that they are when both sources are in the counter. This is
to preserve the solid angle and to achieve more accurate measurements. The measurements
needed for this calculation are:

1. The counting rate of source 1

2. The counting rate of source 2

3. The counting rate of sources 1 & 2 combined

4. The counting rate with no sources (background)

Next, assuming a nonparalyzable model, an equation for dead time can be derived.

Let n1, n2, and n12 be the true counting rates of the first source, the second source, and both
sources at the same time, respectively(the sample count rate and the background source
rate). Then, let m1, m2, and m12 represent the corresponding measured rates. Finally, let
nb and mb be the true and measured background rates, respectively. We can then show the
relationships between n12, nb, and the individual source count rates as

n12 − nb = (n1 − nb) + (n2 − nb) (5)

n12 + nb = n1 + n2

For a nonparalyzable system, where

• n = true interaction rate

• m = measured count rate

• τ = system dead time
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it holds that

n−m = mnτ (6)

Using the nonparalyzable system, we substitute Eq. 5 into Eq. 6 to obtain the following
result:

m12

1−m12τ
+

mb

1−mbτ
=

m1

1−m1τ
+

m2

1−m2τ
(7)

This equation can be solved for τ and will yield the following result:

τ =
X(1−

√
1− Z)

Y
(8)

where

X ≡ m1m2 −mbm12

Y ≡ m1m2(m12 + mb)−mbm12(m1 + m2)

Z ≡ Y (m1 + m2 −m12 −mb)

X2

This is the dead time of a nonparalyzable system as calculated from the two-source method.

4 Equipment List

Throughout the course of these experiments, the following equipment was used in the lab:

• Hewlett-Packard 54610 B Oscilloscope

• Tennelec TC 952A High Voltage Supply

• Ortec Dual Counter/Timer 994

• Ortec Amplifier 572

• Pre-amplifier

• TGM Detectors N210-1 Geiger-Mueller tube

• Lead Chamber housing G-M tube

• RG58u Polyethylene Coaxial Cable
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5 Experiment 1: Pulse Height vs. Ionization Type and

Energy

5.1 Setup & Procedure

To begin this experiment, the G-M tube was connected into one of the pre-amp inputs.
The pre-amp was also taking input from the high voltage supply. The pre-amp output was
connected directly to the oscilloscope. We used coaxial cable to make all connections.

Next, we would place our beta source in the G-M chamber. All of our samples were placed
on the 5th shelf from the bottom. The high voltage was increased until the pulses of around
50 mV were showing up on the oscilloscope. This voltage we set the high voltage supply at
was 645 V. From here, measurements of the pulse heights of various beta sources were made.
The same was done for the gamma side of each beta source as well. Recall that we don’t
expect all of our sources to emit gammas. See Appendices F through I for decay schemes of
the radiation sources used.

Errors in all measurements were estimated from the fluctuation in the measurement on the
oscilloscope.

5.2 Results & Analysis

The first thing that we did with our data2, was merely to observe it in this section. We were
attempting to determine how the pulse height depends on the amount of ionization initiating
the discharge. Figure 7 shows the amplitudes for the beta sides of various radiation sources.
While we see some statistical fluctuation in these pulse heights, they are very close to one
another. There is a far greater fluctuation in the decay energies of the sources then there
is in the measured pulse heights. From this, we can determine that the amount of ioniza-
tion that initiates the radiation event is independent of the pulse height of the Geiger counter.

If we recall Section 3.2.2, we know that if a radiation event is detected after the dead time
but before the end of the recovery time, the pulse height will have a smaller amplitude than
usual. This will also attribute to some of the fluctuations in the pulse heights that we saw.

Furthermore, the randomness of the quench gas molecules in the G-M tube can effect the
distribution of pulse heights, albeit very slightly. The clustering of positive heavy ions inside
the tube that ultimately terminate the avalanching effect can cause a delay in them doing
so. This would result in slightly larger pulse heights.

Upon looking at the decay schemes of the different sources that were used in this experiment,
we do not expect gammas to be emitted from each of the sources, but we do expect them to

2See Appendix A to view the raw data collected in lab.
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Figure 7: Measured amplitudes of various sources.

be emitted from some. We used the following sources:

• 60Co

• 36Cl

• 14C

• 90Sr

Of these sources, only the 60Co emits gamma-rays. It emits two distinct gammas of 1.17
MeV and 1.33 MeV.

We are still detecting radiation when we flip the sources over to their gamma emitting side,
even though the sources do not emit any gamma radiation. This can be explained by atten-
uation. The radiation detected from the gamma side of any of the sources (except 90Sr) is
a β-particle that has been attenuated (passed through) the back of the source casing. This
doesn’t effect the measured pulse heights, but it explains why some of the sources were very
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difficult to obtain radiation measurements for the gamma side.

It requires some amount of energy to pass through a medium without interacting. We notice
that we were unable to detected any radiation from the gamma side of the 14C source. 14C
emits β-particles with the lowest amount of energy. Therefore, we assume that the energy
is low enough that 14C β-particles do not have enough energy to pass through the backside
of the source casing.

6 Experiment 2: Counting Curve and Pulse Height vs.

Voltage

6.1 Setup & Procedure

To begin this experiment, we connected the pre-amplifier to a high voltage power supply
and a Geiger-Mueller (G-M) Tube. From there, the pre-amplifier output is connected to an
amplifier, then to an SCA, and finally to a counter/timer. As we did this, we would plug
the outputs into our oscilloscope to make sure that we were getting proper output. We used
coaxial cable to make all connections. Figure 8 diagrammatically displays the setup that we
used for this lab.

Figure 8: Equipment Diagram.

Next, we set the SCA on integral mode and adjusted the LLD to account for background
noise. This was done by raising the LLD setting until no counts were registering with no
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source in the G-M tube. Next, a metallic thorium source was placed near the bottom of the
tray holder. This was intended to minimize dead time losses for the system. Next, the high
voltage was reduced until the pulse height was being discriminated by the SCA. From this
point, we started to raise the high voltage and measurements of the counting rate and the
average pulse height were taken at each high voltage.

On the amplifier, we dialed in the following settings:

• Shape Time = 2 µs

• Coarse Gain = 1000

• Fine Gain = 0.5

• Uni Polar

• Positive3

On the SCA, we dialed in the following settings:

• Integral Mode

• LLD = 0.39

• Pos Out

Errors in all measurements were estimated from the fluctuation in the measurement on the
oscilloscope.

6.2 Results & Analysis

The first thing that we did with our data4, was plot the data.
If we compare our counting curve in Figure 9 to what the theory expects in Figure 5 (a) ,
we can see that our data does not match this at all. This would be a good time to explain
the errors in our lab station.

We were on lab station two for the duration of this lab. Something was already known to
have been wrong with this lab station before we even started the experiment. What was
happening, was that as the voltage was increased, at a certain point the polarity of the pulse
started to slowly switch. Figures 11 and 12 display how the pulse was transformed as the
voltage was increased from 750 V to 1000 V.
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Figure 9: A plot of Counting Rate vs. High Voltage.

This easily explains why our counting curve looks the way that it does. In Figure 9, at a
position that looks to be just above the knee at 800 V, the counting rate rapidly drops off.
This drop off is occurring because the pulse has switch polarity and is no longer above the
LLD setting on the SCA. Because of this, the counter registers no pulses after a certain point
of high voltage.

A real counting curve (Figure 5) will not have a perfectly horizontal slope. Any effect that
adds a low-amplitude tail to the differential pulse height distribution can be a contributing
cause of the slope. This is usually an result of the electronic system. There is a difference
in the electric field at the end of tube and the electric field in the middle of the tube. Any
discharge in the region of lesser electric field will yield a smaller pulse height. Also, occasion-
ally the quenching mechanism in the Geiger counter will fail. This also leads to a non-zero
slope on the plateau. Furthermore, my looking at the the technical specifications of our G-M
counter5, we notice that the chamber is filled with Neon and Halogen. This inorganic quench
gas also leads to a higher slope on the G-M counting plateau (Recall section 3.2.1).

3For the most part. Our setup had problems that will be discussed in a later section.
4See Appendix B to view the raw data collected in lab.
5See Appendix E to view this sheet.
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Figure 10: A plot of Pulse Height vs. High Voltage.

Figure 11: This a sketch of the transformation our pulse underwent as the high voltage was increased (750
V).

I am unable to calculate the slope of the counting curve plateau because the data we obtained
in lab was from the lab station that caused massive amounts of error in the measurements.
The G-M tube data sheet states that the plateau slope is less than 10% / 100 V.

Next, let us look at Figure 10. It can be seen that the pulse height increases and then
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Figure 12: This a sketch of the pulse that we ended up with as the high voltage was increased(1000 V).

decreases at about 775 V. There pulse height starts to increase again at around 950 V. The
explanation for this is that we had the oscilloscope measure the pulse height by using the
peak-to-peak measurement mode. By doing so we can see that our pulse shrinks down very
small and then starts to grow large, albeit with negative polarity, at around 950 V.

The actual pulse height vs. high voltage plot should have a linear shape to it. The pulse
height in a Geiger counter varies with the voltage applied to the counter. As we vary the
voltage linearly, we can expect the pulse heights to do the same.

7 Experiment 3: Beta Attenuation

7.1 Setup & Procedure

For this experiment, we used the same equipment setup and settings that were used in Sec-
tion 6.1 of this lab.

We used 14C as our beta source and placed it inside the G-M chamber in the second tray
position from the top. The 14C source was chosen because it does not emit any gamma ra-
diation. We then varied our timer settings so that we were getting several thousand counts
per minute from the beta source. We used a 60 second count on the counter to take all
measurements. After taking a background measurement and a measurement of just the beta
source, data was taken with aluminum absorbers of varying thickness placed on top of the
beta source.

We used a combination of two different sets of plates to take measurements. The thicker
plates were from a box labeled:
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Spectrum Techniques
Model RAS 20

Calibrated Absorber Set
Oak Ridge, Tennessee, USA

We used the plates labeled G-J from that box.

The thinner plates were from an unmarked dark wood box in the lab. Those plates had a
total surface area of 15.5 cm2. All of their labeled absorber thicknesses are ± 10%.

7.2 Results & Analysis

The first thing that we did with our data6, was plot the data.

Figure 13: A plot of the natural log of the beta count rate vs. the absorber thickness.

6See Appendix C to view the raw data collected in lab.
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After taking a look at Figure 13 of the data, we can tell that the last four plots don’t seem
to fit in. Upon looking at the data, if you subtract the background count rate from all of
the data points, you’ll see that the last four measurements are very close to zero. We can
attribute this to the thickness of the absorber plate being too thick and the counts that were
measured were just background radiation and radiation that scattered into the detector. In
other words, the plates were to thick to obtain good data from. If we remove those plates
and plot the data again, we get Figure 14.

Figure 14: A plot of Figure 13 without the last four data points.

This data in Figure 14 behaves much more nicely. From here, I used Microsoft Excel to
calculate the line of best fit for the data. Using Eq. 1 and the the data points, we can
calculate the absorption coefficient, µ, which will also be referred to as n. Since there is a
variation in the calculated value of µ from point to point, it is necessary to calculate it for
each point and take the average. The following results are achieved by doing so:
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Absorber Thickness Absorption Coefficient
3.58 0.206952101351404
5.25 0.236552078213993
7.09 0.244355658911974
10.5 0.281344691637299
14 0.286706551253106

21.6 0.290275777541789

From this data we can take an average of these calculated absorption coefficients and arrive
at a value of µ = 0.2577 cm2

mg
. In different units, µ = 257.6978 cm2

g
.

Figure 15: Beta particle absorption coefficient n in aluminum as a function of the endpoint energy Em,
average energy Eav, and E′ ≡ 0.5(Em + Eav) of different beta emitters.[5]

We are supposed to be able to use Figure 15 to compare our value of n and see how close
we are. I cannot do this because my source, 14C, is not on that list.

Figure 16 is a chart that contains experimental mass-attenuation coefficients for β-particles
in aluminium.

If we calculate a value for Emax, the maximum energy that the β-particle being ejected from
14C, we can use Figure 16 to calculate an expected value for n. We were supposed to use
Figure 15 to calculate this endpoint energy, but due to the circumstances presented to us in
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Figure 16: Mass-attenuation coefficients of β− particles for the aluminium absorber.[4]

lab, we have to solve for these values in a round-about sort of way.

We know that the beta decay of 14C is as follows:

14C → 14N + β− + νe+ Q

We can calculate the Q-value, the amount of energy that is released during this decay, by
calculating the difference in masses of the particles. The β-particle will have the maximum
energy when it does not have to share the Q-value energy with the electron antineutrino.
Therefore, Emax = Q for this decay.

We calculate the value of Q to be 156.5 keV.

Using 156.5 keV as Emax, we can then look up a mass-attenuation coefficient for β-particles
in aluminium in Figure 16. This graph is not the highest resolution graph, but we can use it
to get sort of a ballpark figure for our coefficient. It appears that the mass-attenuation coef-
ficient for a 156.5 keV β-particle in aluminium is somewhere around 200 to 350 cm2/g. This
is on the same order of magnitude as the 257.6978 cm2/g. It is hard to gauge the precision
of our measurement, but Figure 16 leads me to believe that this measurement is at least close.

Using Figure 17, the density of air and our value for Emax, we can calculate the range of the
β-particle in the air. The density of air is 0.001293 g/cm3 at standard ambient temperature
and pressure (25 ◦C and 100 kPa). Using 0.1565 MeV, we estimate a value of 0.02 in range
x density in g / cm2. Dividing this by 0.001293 g/cm3 gives a range of 15.468 cm.

Using the Handbook of Health Physics and Radiological Health, we look up the rule-of-thumb
for β-particles in the air and find that for particles with less than 2.5 MeV

23



Rittersdorf Lab 4 - Geiger-Mueller Counting

Figure 17: Range-energy plots for electrons in silicon and sodium iodide. If units of mass thickness
(distance x density) are used for the range as shown, values at the same electron energy are similar even for
materials with widely different physical properties or atomic number.[1]

R = 0.412E1.265−0.0954lnE (9)

Where R is the range in g / cm2 and E is the maximum energy. Using Eq. 9 and the value
of Emax = 156.5 keV to calculate the maximum range of a β-particle in the air, we find
that R = 0.02840773365 g / cm2. Dividing this number the density of air that was previous
mentioned in this section, we calculated a range in air for the β-particle of 21.970 cm.

As you can see, there is a close agreement between the range in air from the measured
attenuation coefficient (15.468 cm) and the range in air measure from the rule-of-thumb
(21.970 cm). We can calculate an error between the two of

[
(21.970− 15.468)

21.970

]
∗ 100% Error = 29.60%

This is a reasonable amount of error and is indicative of agreement between theory and
experiment.
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8 Experiment 4: Dead Time and Recovery Time

8.1 Setup & Procedure

Due to unforeseen complications with our lab equipment, my partner and I completed all
measurements for this section of the lab with Mr. Ian Faust and Mr. Andrew Haefner at
their lab station.

For the first set of measurements, the thorium source was propped up with some change from
Mr. Faust’s pocket to place the source as close to the end of the G-M tube as possible. The
oscilloscope scales were 1 V / div and 200 µs / div. The ‘Autostore’ option on the scope was
turned on to store the many pulses that the G-M tube was recording from the source. Once
a visibly defined envelope was present on the screen, the data on the oscilloscope screen was
recorded.

Next, the counter interval was set to 45 seconds. A background measurement was made.
Then one source was loaded into the chamber and a measurement was taken. Leaving that
source where it was, a second source was added to the chamber and another measurement
was taken. After removing the first source and leaving the second source were it was, a final
measurement was taken. Making sure that the sources were in the exact same spots for the
different measurements makes our setup one such that the solid angle difference between
measurements of one or two sources is not a concern. Both sources were metallic thorium
sources.

Care was taken so that the initial conditions are the same between the first and second sets
of measurements for this experiment. This is so that we may accurately compare the dead
time measurements that we made in both parts of this experiment.

8.2 Results & Analysis

Figure D is a sketch of the result that appeared on the oscilloscope screen after we set up the
first part of this experiment and ran it. By comparing it to Figure 4, we are able to find val-
ues for the dead time and the recovery time of this system. We observed the following values:

• dead time, τ = 376.0 µs

• recovery time = 1.03 ms

We are going to test this value for dead time against the two-source method. First we must
compute the following rates from the measurements7 made in the lab. Recalling that

7See Appendix D for the raw data collected in lab.
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Figure 18: A sketch of the oscilloscope screen in the first part of Experiment 4

σr =

√
N

t
(10)

for single counts, we calculate the following count rates in the lab:

• m1 = 114.5 ± 2.39 counts / s

• m2 = 96.45 ± 2.20 counts / s

• m12 = 204.8 ± 3.20 counts / s

• mb = 0.2222 ± 7.03x10−2 counts / s

After taking the calculating the necessary measurements, from the mathematical technique
of Section 3.4 we compute the following values:

• X = 10998.01389
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• Y = 2254567.468

• Z = 0.110490928

Using these vales and Eq. 8, the following dead time value is calculated:

τ = 277.379µ s

This value is actually with in reasonable agreement of the value measured on the oscilloscope.
After an error calculation

[
(376.0− 277.379)

376.0

]
∗ 100% Error = 26.23%

it can be shown that the two source method are in relative agreement. The source of the
discrepancy between the two values is most definitely from the 2 source method. Measuring
the value off of the oscilloscope is a far more exact measurement than any of the two-source
method measurements. Also, you run the risk of compromising the solid angle when you are
running the experiments. Furthermore, in such a calculation you have to deal with statistical
error. Ideally, you have to take many measurements to reduce this error. In this particular
lab, we only took one measurement for each of the required source rates.

9 Conclusions

Throughout the course of this lab, we have become intimately acquainted with our Geiger
counter. We closely analyzed many of the characteristics of the Geiger counter to see if they
were indeed in agreement with the theory. We proved that the pulse height from the Geiger
counter is indeed independent from the radiation that is detected. We attempted to analyze
the counting curve characteristics of the Geiger counter, but due to equipment failure we were
forced to merely speculate what we believed would happen based on theory. We calculated
a mass-attenuation coefficient for β-particles based on measurements that we made in the
laboratory. This value appeared to be on the same order of magnitude as the actual value.
Finally, we also took a close look at the abnormally large dead time that a Geiger counter
has. Using two different methods, we calculated this value and found agreement between
them. In all, with the Geiger counter know-how acquired in this lab, I know am able to
command the vast power that the Geiger counter has to offer.
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Appendices

Appendix A Experiment 1 Raw Data

Source: 14C

Side of Radiation Source Pulse Height (mV)

γ-side nothing but noise
β-side 46.88 ± 5

Source: 60Co

Side of Radiation Source Pulse Height (mV)

γ-side 53.13 ± 5
β-side 57.19 ± 10

Source: 90Sr

Side of Radiation Source Pulse Height (mV)

γ-side 45.31 ± 6
β-side 53.44 ± 3

Source: 36Cl

Side of Radiation Source Pulse Height (mV)

γ-side 45.63 ± 3
β-side 51.63 ± 15

NOTE: The β-side for the 36Cl had a very low count-rate. Taking an accurate measurement
was difficult.
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Appendix B Experiment 2 Raw Data

NOTE: All counting intervals are 10s.

Voltage (V) Count Pulse Height (V)

730 0 1.210 ± 0.1
732 12 1.280 ± 0.1
736 61 1.328 ± 0.1
741 41 1.484 ± 0.1
742 58 1.500 ± 0.1
750 74 1.656 ± 0.1
775 73 1.820 ± 0.1
801 86 1.359 ± 0.1
805 32 1.328 ± 0.1
808 11 1.266 ± 0.1
810 9 1.234 ± 0.1
826 6 1.109 ± 0.1
850 2 0.973 ± 0.05
875 2 0.796 ± 0.05
900 2 0.718 ± 0.05
925 0 0.625 ± 0.05
950 0 0.650 ± 0.05
975 0 0.750 ± 0.05
1000 0 0.980 ± 0.05
1050 1 1.500 ± 0.04
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Appendix C Experiment 3 Raw Data

NOTE: All counting intervals are 60s.

The background was measured to be 11 counts in 60s.

Plate Number / Letter Plate Thickness (mg/cm2) Count

1 0 5824
2 3.58 2782
3 5.25 1690
4 7.09 1039
5 10.5 314
6 14 116
7 21.6 22
g 129 17
h 161 25
i 206 19
j 258 13
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Appendix D Experiment 4 Raw Data

Hopefully I’ll scan a sketch of my lab notebook for this part.

The Two-Source Method:

Source A = Metallic Thorium
Source B = Metallic Thorium

NOTE: All counting intervals are 20s, except the background count, which was measured
over 45s.

Source Method Counts

Two Sources 4096
Source A 2290
Source B 1929

No Sources 10

iv



Rittersdorf Lab 4 - Geiger-Mueller Counting

Appendix E G-M Tube Technical Specifications
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Appendix F Carbon-14 Decay Scheme
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Appendix G Chlorine-36 Decay Scheme
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Appendix H Strontium-90 Decay Scheme
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Appendix I Cobalt-90 Decay Scheme
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