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SUMMARY

The extended model concept links migration velocity analysis
and waveform inversion. This abstract presents a method to
solve a partially linearized version of the full waveform inver-
sion problem with model extension. Linearization separates
the model of the earth into the smooth long scale background
model and the short scale model. Extended waveform inver-
sion allows the short scale model to depend on an extra param-
eter, for example the shot coordinates. The objective function
is the least squares misfit function of Born modeling, plus a
differential semblance term. Minimization over the short scale
model (a quadratic problem) by an iterative method results
in a smooth objective function over the background model.
Computation of objective values from Marmousi model with
acoustic constant density modeling illustrate the smoothness
and unimodality of the objective, for proper choice of parame-
ters.

INTRODUCTION

Seismic reflection inversion is over-determined in the sense
that multiple shot gathers need to be fitted simultaneously. A
localized change in wave velocity sufficient to induce a travel-
time shift by a wavelength along some ray paths typically af-
fects the data fit for some shots but not for others, and may
generate spuriously good local fits (“cycle skipping”). Thus
the least-squares data fitting function has many local minima
far from its global minimum (Gauthier et al., 1986; Santosa
and Symes, 1989; Virieux and Operto, 2009). The density of
local minima increases, and the size of the basin of attraction
of each local minimum decreases, as the central frequency of
the data increases. That is, the least squares objective function
is not stable with respect to data frequency content, as is well
known (Jannane et al., 1989).

If we fit a different model to each shot, the least squares ob-
jective becomes much easier to drive to a global minimizer. A
shot-dependent model is not physical, of course; it is an exam-
ple of an extended model. There are many other types of ex-
tension (ways of introducing nonphysical degrees of freedom
into the model parameters). Inversion for a shot-dependent
model (or any extension) by data fitting is underdetermined.
An extra constraint must be imposed to suppress the nonphys-
ical degrees of freedom, and thus recover some control over
the model estimate.

The primary aim of this abstract is to explain how smooth ob-
jective functions of model parameters arise from data misfit
and extended modeling, augmented with a particular type of
constraint, and use numerical results to illustrate the smooth-
ness of these functions, with carefully chosen parameters.

We will limit our discussion to linearized extended model-

ing, in which the model is split into long-scale components
(the macro-model) and short-scale components (the reflectiv-
ity). Only the short-scale components are extended (allowed to
depend on parameters other than spatial coordinates). The pre-
dicted data is modeled via linearization (Born approximation),
viewing the short-scale components as perturbation about the
long-scale model. While inversion based on full wave ex-
tended modeling has been studied by a number of authors (Symes,
1986, 1991; Biondi and Almomin, 2012b), the bulk of work on
this topic has concerned linearized extended modeling and re-
lated inversion algorithms (Symes and Carazzone, 1991; Chau-
ris and Noble, 2001; Mulder and ten Kroode, 2002; Shen and
Symes, 2008; Biondi and Almomin, 2012a; Weibull and Arntsen,
2014, 2013; Shan and Wang, 2013; Shen, 2013; Chauris and
Plessix, 2013). An extensive reference list may be found in
Symes (2008), where it is argued that these methods address
the inverse problem implicitly posed by Migration Velocity
Analysis.

Extended modeling relaxes the data fit criterion; a physicality
constraint suppresses the non-physical extension. The tension
between the two is resolved at a physical model fitting the data.
An objective function combining penalties for data misfit and
non-physicality would seem an obvious approach to inversion,
but contains the data misfit function so is frequency-dependent
and just as likely to suffer from spurious local minima as is the
standard least-squares objective.

The key to smoothness and unimodality is the reduced ob-
jective, which comes from a linear inversion for short scale
component and depends only on the macro-model (Kern and
Symes, 1994; Liu et al., 2013). It is this reduced objective
which is smooth, though only for certain choices of physi-
cality constraints (Stolk and Symes, 2003). The reduced ob-
jective may also be viewed as an example of variable projec-
tion (van Leeuwen and Mulder, 2009). We will use acoustic
constant density modeling as an example to illustrate the shape
of the reduced objective function and its relation with parame-
ter choices.

EXTENDED MODELING

Denote by M = {m(x)} the physical model space and by M̄ =
{m̄(x,h)} the extended model space, which contains the phys-
ical models as a subspace. The variable h is a parameter, such
as shot position, offset, ray parameter or parameter vector, sub-
surface offset, or scattering angle, which characterizes the ad-
ditional degrees of freedom in the extended model space, over
and above position in the subsurface. Denote by D the data
space.

Denote by F : M 7→ D the forward map, or modeling operator,
and by F̄ : M̄ 7→D the extended forward map. F̄ is an extended
modeling operator because for m ∈M,

F̄ [m] = F [m].
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The abstract basic linearized inverse problem may be formu-
lated: given data d ∈ D, find ml ,δm ∈M so that

DF [ml ]δm' d−F [ml ] (1)

Here DF denotes the derivative, or Born approximation.

The extended linearized inverse problem is: given d, find ml ∈
M,δ m̄ ∈ M̄ so that

DF̄ [ml ]δ m̄' d−F [ml ]. (2)

REDUCED OBJECTIVE FUNCTION

As mentioned in the introduction, an additional ingredient is
needed to drive extended models toward physical (non-extended)
models. One approach, by far the most explored, is to intro-
duce an operator which “measures” physicality by mapping
physical models to the zero vector, and penalizing the size of
its output. Such operators have come to be called annihilators
(Brandsberg-Dahl et al., 2003).

Thus introduce an operator A on extended model space M̄, sat-
isfying the abstract annihilator property:

Aδm = 0 for all δm ∈M.

We will introduce a concrete annihilator in the next section for
shot coordinate model extension.

The solution to the basic linearized inverse problem (1) is a
solution of the extended linearized inverse problem for which
δ m̄ is physical, hence mapped to the zero vector by A. Thus
(1) is equivalent to the system

DF̄ [ml ]δ m̄ ' d−F [ml ]

Aδ m̄ ' 0. (3)

Define:

J[ml ,δ m̄] =
1
2
‖DF̄ [ml ]δ m̄− (d−F [ml ])‖2 +

α2

2
‖Aδ m̄‖2,

(4)
The weight α controls emphasis on physicality: as α → ∞,
the minimizer of J[ml , ·] tends to the solution δm of (1), inter-
preted as a least squares problem, for fixed ml ,d.

The reduced objective J̃[ml ] is the least value attained by J[ml ,δ m̄]
for any choice of extended model perturbation δ m̄:

J̃[ml ] = min
δ m̄

J[ml ,δ m̄]. (5)

Define the normal operator (or Hessian)

N[ml ] = DF̄ [ml ]
T DF̄ [ml ]+α

2AT A.

Then the minimizer δ m̄ of J may be written as

δ m̄ = N[ml ]
−1DF̄ [ml ]

T (d−F [ml ]). (6)

EXAMPLE: EXTENDED 2D CONSTANT DENSITY ACOUS-
TICS

The simplest useful model for simulation of seismograms is
the constant density acoustic wave equation. The model space
is a set of velocities, or more conveniently, squared veloci-
ties: M = {c2(x)}. For this problem, we use shot coordinate
xs as the extended coordinate and the extended model space
is M̄ = {c̄2(x,xs)}. The pressure field is causal, and solves
the constant density acoustic wave equation. The right-hand
side represents an isotropic point radiator source with time-
dependence w(t):

(
∂ 2

∂ t2 − c2(x)∇2
x

)
u(x,xs, t) = δ (x−xs)w(t),

u(x,xs, t) = 0, t << 0. (7)

The value of both the extended and non-extended forward map
for the model c2(x) is the result of sampling the pressure field
at a prescribed set of receiver points for the various source po-
sitions in the survey:

F̄ [c2] = F [c2] = {u(xr,xs, t)}.

Linearization, or extended Born approximation, results from
sampling a pressure field perturbation δu of a background pres-
sure field ul , the solution of (7) with the background squared
velocity c2 = c2

l , resulting from a extended squared-velocity
perturbation δ c̄2(x,xs). Thus the extended Born approxima-
tion model space is M = {c2

l (x),δc2(x,xs)}. The perturba-
tional pressure δu solves(

∂ 2

∂ t2 − c2
l (x)∇

2
)

δu(x,xs, t) = δ c̄2(x,xs)∇
2ul(x,xs, t),

δu(x,xs, t) = 0, t << 0. (8)

So DF̄ [c2
l ]δ c̄2 = {δu(xr,xs, t)}. Note that DF̄ is linear in δ c̄2,

but nonlinear in c2
l .

Since physical models do not depend on xs, a feasible choice
of annihilator for this shot coordinate model extension is (Kern
and Symes (1994))

A =
∂

∂xs
.

In fact, as shown by Stolk and Symes (2003), this is essen-
tially the only choice of annihilator that will lead to a smooth
reduced objective function.

The Marmousi model (Bourgeois et al., 1991) is used in the
rest of this abstract. This model is separated into smoothed
long scale background model ml and δm (see figure 1(a), and
1(b)).

The data are computed with 60 shots starting from 3 km, with
spacing 100 meters and 12 meters below the sea surface. 96
receivers are placed behind each shot, with offset 200 meters
between the first receiver and a shot , 25 meters spacing be-
tween each receiver and 8 meters below the surface. We use
Ricker wavelet with 10Hz peak frequency as the source. Fig-
ure 2 shows the data from 5.8 km shot and 6 km shot. The data
is muted and tapered to avoid edge effects.
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(a)

(b)

Figure 1: (a) smoothed Marmousi model ml . (b) δm the re-
flectivity.

Figure 2: Data is computed using the true velocity and reflec-
tivity as in figure 1(a) and 1(b) with xs = 5.8 km, 6 km. Data
shown in this figure has been applied tapering and muting.

The extended approach to inversion draws inspiration from mi-
gration velocity analysis. In principle, migrated shot record
image volumes should be ”flat” along the shot axis, i.e. in-
dependent of xs for correct velocity. In practice, amplitude
anomalies may obscure this effect, as is illustrated in figure 3(a)

(a) (b) (c)

Figure 3: RTM image gathers for (a) right velocity, (b) 1.3
times of right velocity, (c) 0.7 times of right velocity at x =
5088m.

(a) (b) (c)

Figure 4: Inversion image gathers for (a) right velocity, (b)
1.3 times of right velocity, (c) 0.7 times of right velocity for
α = 0.01.

Instead, we follow the mathematical path laid out above, and
base our construction of an objective function on the linearized
inversion volume (δ m̄, solution of equation (6), instead of the
migrated image volume. We use conjugate gradient iteration (No-
cedal and Wright, 1999) to approximately minimize J[ml ,δ m̄]
over δ m̄, solve the normal equation (6) and thus compute J̃[ml ]
(equation 5).

Figure 4 shows image (z,xs) gathers for the same horizontal
position as in figure 3. We use weight α = 0.01, and per-
form 100 conjugate gradient iterations. The gradient (normal
residual) is reduced 5% of its original value for the true low
frequency velocity, and 9% of its original value for other ve-
locities. We can see clearly the flatness of the inverted gathers
for correct velocity, and the systematic tendency to slope one
way or the other when the velocity is incorrect.

Increasing α will force the inverted velocity to be more xs-
independent, and the objective to behave more like the or-
dinary least-squares objective. Figure 5 shows the same im-
age gathers as figure 4, but this time with α = 0.1. Now the
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(a) (b) (c)

Figure 5: Inversion image gathers for (a) right velocity, (b)
1.3 times of right velocity, (c) 0.7 times of right velocity for
α = 0.1.

requirement of xs-independent has largely overwhelmed the
kinematic information in the gathers.

Figure 6 displays the values of the approximate J̃[m] along the
line segment

m = σml ,

with 11 evenly spaced points of σ ∈ [0.6,1.4], for several val-
ues of α (0.01, 0.1, and 1.0), and less (20 iterations) and more
(100 iterations) application of the conjugate gradient algorithm.
Here ml is the background velocity displayed in Figure 1(a).
Small α tends to give flat valley near the global minimum,
while with large α , the valley is deep and narrow, and station-
ary points other than global minima appear.
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Figure 6: Values of J̃[m] for m = σml with σ ∈ [0.6,1.4]: sev-
eral values of α , and 20 or 100 conjugate gradient iterations.

Figure 7 shows a similar sampling of J̃[m] values for the line
segment

m = (1−σ)ml +σm0, m0(x) = 1500m/s

with 11 evenly spaced choices of σ ∈ [−0.4,0.6].
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Figure 7: Values of J̃[m] for m = (1−σ)ml +σm0 with σ ∈
[−0.4,0.6] and m0 = 1500 m/ms: several values of α , and 20
or 100 conjugate gradient iterations.

CONCLUSION

A natural objective function for the linearized extended wave-
form inversion combines least squares data misfit and a differ-
ential semblance penalty for non-physical dependence on the
model extension coordinates. We have examined this objective
for constant density acoustic modeling of reflected waves. As
suggested by Kern and Symes (1994), the reduced objective
(with short scale components eliminated via a quadratic opti-
mization) tends to be smooth and unimodal in the background
(velocity) model parameters, with proper choice of penalty
weight and sufficiently precise solution of the inner minimiza-
tion. Stolk and Symes (2003) showed that the reduced objec-
tive has these properties only for the differential measure of
semblance, up to inessential modifications.

This conclusion suggests two important topics for further work.
First, the choice of penalty weight is obviously critical, and
an objective criterion for that choice is needed. One possible
approach to setting α lies in recognizing its identity as a La-
grange multiplier: it is possible to recast the extended wave-
form inversion problem as the minimization of the differential
semblance penalty subject to a bound on mean-square data er-
ror, and a value for the latter implies a choice of α , which
varies in a systematic way as the optimization proceeds. A sec-
ond area for further work is reduction in the cost of the inner
iteration (a version of least squares migration). Preconditioned
Krylov space methods seem natural for this problem, and many
preconditioners have been suggested in the recent literature. It
remains to evaluate them in the context of extended waveform
inversion.
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