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Abstract

We propose a RT-Level hierarchical test generation
methodology based on the concept of transparent
hierarchical test paths, which results in significant test
generation speedup over traditional gate-level ATPG,
while preserving equivalent fault coverage and vector
count. Additionally, we demonstrate how hierarchical test
paths may assist in design diagnosis and debug through an
algorithm that disambiguates among several possibly
faulty modules in a design. Furthermore, we devise an on-
line test methodology using invariance inherent in
hierarchical test paths and in the algorithm implemented
by controller/datapath pairs. This scheme results in fault
security in excess of 90% while keeping the hardware
overhead below 40%. Utilization of hierarchical test paths
not only for off-line test but also for design diagnosis and
on-line test helps in reducing the overhead associated with
each of these tasks, by amortizing the cost of the required
hardware.

1. Introduction

The size and complexity of modern electronic circuits
impose significant challenges to several tasks such as off-
line test generation, design diagnosis and on-line test.
Significant efforts are therefore expended towards
simplifying the aforementioned tasks. However, such
efforts incur an additional cost both in developing
efficient test and diagnosis methodologies and in area and
performance overhead in the actual design. While it is
inevitable that additional cost needs to be invested into
such methodologies, it is highly desirable to amortize this
cost among several tasks, in order to minimize the
overhead. Towards this direction, we describe how a
common off-line hierarchical test methodology may be
used to simplify the design diagnosis problem and to
support an on-line test scheme. More specifically, we
demonstrate how the concept of transparent hierarchical

test paths, commonly used for off-line test, can be utilized
for identifying faulty modules in a hierarchical design and
for devising an invariance-based on-line test
methodology.

In section 2, we discuss the concept of transparent
hierarchical test paths, based on which a hierarchical test
generation methodology is proposed, achieving equivalent
fault coverage to gate-level ATPG in significantly less
time as shown through experimental results. In section 3,
we discuss the role of hierarchical test paths in assisting
with the problem of design diagnosis. In section 4, we
utilize the inherent invariance of transparent hierarchical
test paths, in order to devise a low-cost, highly fault
secure on-line test methodology, as supported through
experimental results. Conclusions about the applicability
of hierarchical test paths are drawn in section 5.

2. Hierarchical test paths and off-line test

sIn hierarchical test methodologies [1,2,5,6,11], highly
efficient test is locally generated for each module.
However, the success of these approaches relies on the
ability to apply the locally generated test to each module
through the surrounding logic. Reachability paths through
the upstream and downstream modules are utilized for
justifying vectors and propagating responses to the
module under test, as depicted in figure (1). Such paths
may be either inherent in the design specification or
explicitly incorporated in the design implementation
through DFT hardware. The transparency behavior of the
surrounding modules is utilized on these paths to establish
bijective functions between the primary inputs (outputs)
of the design and the inputs (outputs) of the module under
test. Through these bijective functions, test vectors and
responses can be justified to the inputs and propagated
from the outputs of the module under test. The concept of
transparency channels for capturing bijective behavior is
introduced in this section and their applicability in RT-
Level hierarchical test generation is discussed.



Figure (1): Hierarchical Test Paths

Figure (2): Transparency Channel Definition and Examples

Figure (3): RT-Level Hierarchical Test Generation

2.1. RTL hierarchical test generation

Transparency channels capture modular transparency
in terms of bijection functions between input and output
signal entities. Channel functions may be bit-
decomposable (e.g. left rotation) or not (e.g. addition
MOD k). Channels are instantiated upon compliance of
conditions that require a specific potential on signal
entities. The potential may be either controllability or
observability of the signal entity to a set of values. Signal
entities may be defined either on the full word bitwidth or
on sub-word bitwidths. A succinct definition of the
transparency channels is given in figure (2) along with a
few examples of simple RTL modules and channels.

2.2. RTL hierarchical test generation

Hierarchical test paths facilitate a powerful test
generation methodology resulting in significant test
generation time reduction and highly efficient test for

modular designs. In the proposed methodology
hierarchical test paths comprise bijective behavior of the
modules on the path, captured in terms of transparency
channels [4]. Local test is generated for each module and
subsequently translated through the hierarchical test paths
into global design test. The proposed methodology is
shown in figure (3). This scheme is independent of the
actual method employed for local test generation for each
module. Since globally translated vectors are functionally
justified at-speed to the module under test, any fault
model can be accommodated. In addition, channel-based
translation paths are identified regardless of the locally
generated test vectors. As a result, local tests can be
modified and enhanced in order to provide higher fault
coverage, without invalidating the translation paths.

A recursive design traversal algorithm introduced in
[5] is applied for each module in the design, employing
transparency channels in order to identify test justification
and propagation paths. The algorithm traverses the
design, backtracking as necessary, in order to satisfy the
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Benchmark
Circuit

Gate-Level
ATPG

Hierarchical
Test Generation

MTC100 3.383 sec 0.44 sec
MUL 13.58 sec 4.63 sec
MAC 21.30 sec 8.87 sec

Table (1): Test Generation Time Comparison

Benchmark
Circuit

Gate-Level
ATPG

Hierarchical
Test

Generation

Random
Test

Generation
MTC100 1034 faults 1038 faults 748 faults

MUL 760 faults 790 faults 569 faults
MAC 27896  faults 27245 faults 22454 faults

Table (2): Fault Coverage Comparison

Benchmark
Circuit

Gate-Level
ATPG

Hierarchical
Test

Generation
MTC100 146 vectors 178 vectors

MUL 191 vectors 198 vectors
MAC 627 vectors 703 vectors

Table (3): Vector Count Comparison

test requirements for each module. While traversing an
upstream/downstream module, available channels are
probed as to their suitability for providing the required
potential. Channels may be combined into wider channels
or broken into smaller ones. Reconvergence and feedback
loops are considered in order to prioritize the probing of
channels, accelerating algorithm convergence. The
transparency channels and conditions on the test
translation paths are reported and subsequently combined
into test translation templates for each module. An
extensive description of the test requirements, the
recursive path identification algorithm and its
applicability on testability analysis may be found in [5].
Channels on the identified vector justification and
response propagation paths are combined into test
translation templates. Using these templates, the actual
test translation can be rapidly performed.

2.3. Experimental results

In order to evaluate the proposed hierarchical RT-level
test generation methodology, we compare it to full circuit
gate level ATPG and to random test generation. The
experimental setup is applied on three benchmark designs.
Full circuit gate-level ATPG [8] is applied and the test
generation time, fault coverage and vector count is
obtained. Then, the proposed scheme is applied and the
test generation time, fault coverage and vector count are
also noted. Finally, a number of random patterns [3] equal
to the number of patterns produced by the proposed
method are fault simulated [9] and the corresponding fault
coverage is obtained. As shown in Table (1), in the first
circuit the reduction was almost of an order of magnitude,
while for the other two circuits it was approximately 65%.
Table (2) shows that fault coverage slightly increased in
the first two circuits, while in the third there was a 2.5%
drop. Random vectors achieved significantly lower

coverage in all cases. In terms of vector count, a slight
increase in the order of 10-15% was observed, as shown
in Table (3), due to the divide-&-conquer scheme.
According to these results, transparency channels
facilitate a powerful RT-level hierarchical test generation.

3. Module diagnosis

The module reachability capacity of hierarchical test
paths is currently extensively exploited for the purpose of
hierarchical test application. Based on such paths,
hierarchical test methods reveal the existence of faults in
the design. However, the capabilities of the hierarchical
test paths are not fully exploited. Additional information,
relevant to fault diagnosis and design debugging [10], is
inherently attainable through these paths. Thorough
utilization of each path may not only provide information
for the MUT, but also assist in identifying possibly faulty
modules and exonerating unambiguously non-faulty
modules. We first investigate the debug-related
information that can be obtained from hierarchical test
paths. We then introduce an algorithm that utilizes this
information in order to identify the minimal set of
possibly faulty modules under the single faulty module
assumption. Finally, we give a necessary and sufficient
condition relating the modules on the hierarchical paths so
that we can always identify the faulty module, under any
combination of test path outcomes.

3.1 Debug information

We first examine which modules are fully testable
through a path. Full testability implies that a complete test
set, capable of 100% fault coverage, can be applied to a
module. Each hierarchical test path has the ability to
provide the complete test set and evaluate all the
responses of the MUT. Additional modules may also be
fully testable through this particular test path, if the MUT
exhibits appropriate bijection behavior. Such modules
need to have all their inputs and outputs on the bijection
path used for fully testing the MUT. For each fully testable
module on the path, we can apply the complete set of test
vectors and attain the following information, depending
on the test application outcome:
 i) If no faulty response is reported then we certainly

know that the module for which the complete test set
was applied is not faulty and can be exonerated.
However, no additional conclusions can be drawn
about other modules in the design.

 ii) If a faulty response is obtained, any module on the
path can be the faulty one. However, under the single
faulty module assumption, if a fault has already been
reported while applying the test set of a previous
module, then the faulty module has to be in the
intersection of the cones of logic used for testing the
current module and the previous module. All other
modules can be exonerated. In addition, we may be



able to exonerate some modules if the observation
path splits and one of the sub-paths always produces
correct responses. Under the single faulty module
assumption, the fault has to be in the cone of logic
driving the observation sub-path that reports the fault.
Any module on the path outside this cone of logic can
be exonerated. Modules on the common portion of the
path cannot be exonerated, since a fault in them may
affect only one sub-path.

3.2 Module diagnosis algorithm

In this section we utilize the debug information
provided by hierarchical test paths in order to devise a
faulty module diagnosis algorithm, which we further
demonstrate by an example. The input to the faulty
module diagnosis algorithm is a set of hierarchical test
paths available in a design. Each path has associated with
it a list of modules that are fully testable through this path
and the test vectors for each of these modules. The
algorithm utilizes these paths in order to apply the test
vectors to each fully testable module and combines the
attained information in order to provide a minimal list of
possibly faulty modules. Initially the candidate list
comprises all design modules. Each time the complete test
set of a module is applied through a path, modules are
removed from the list according to the disambiguation
criteria of the previous section. The algorithm is provided
below in pseudo-code form:

Candidate_List = {All Design Modules};
For each Path
   {For each Fully Testable Module on the Path
     {Apply Complete Set of Test Vectors to Module;
        If no fault is reported
          {Reduce Candidate_List according to case (i);}

    else
           {Candidate_List=Candidate_List �$OO�0RGXOHV�RQ�3DWK�

          Reduce Candidate_List according to case (ii);}}}

Depending on the participating modules, paths may
not always be able to identify the faulty module. The
following section provides a rule for checking if a given
set of paths can always diagnose the faulty module.

3.3 Disambiguation rule

If an arbitrary module M is faulty then any path on
which M is fully testable will certainly report a fault. The
modules on the intersection of these paths are the possibly
faulty modules. Additionally, any path not using M at all
will not report a fault, exonerating all modules that are
fully testable through these paths. Based on this
information, the following relation between the modules
on the hierarchical test path is a necessary and sufficient
condition for always reducing the faulty module
Candidate_List to a single module.

Disambiguation Rule: If M is a module in the design, let
PT(M) be the set of paths that can fully test module M,
and let PNC(M) be the set of paths that do not contain M.
Let also AM(P) be the set of all modules on a path P and
let TM(P) be the set of all modules that a path P can fully
test. We can diagnose the faulty module if and only if:
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4. On-line test

Transparency behavior, whether inherent in the design
or explicitly incorporated through DFT, provides a simple
and rapid mechanism for traversing a hierarchical design
in order to access and test a module through reachability
paths. In this section we examine the applicability of
modular transparency for on-line test [7].

4.1 Modular transparency and on-line test

As discussed in section 2, transparency channels
express modular transparency behavior in terms of
bijective functions, appropriate for justifying vectors and
propagating responses to and from the module under test.
Such behavior is activated under certain conditions
imposed on the inputs of the module in transparency
mode. The transparency functions most commonly
employed, such as Identity and Inversion, establish a
simple relationship between the inputs and the outputs of
the module in transparency mode. Checking that this
simple relationship holds, whenever the respective
activation conditions are met during normal functionality,
provides an on-line test scheme capable of detecting any
fault that disturbs the transparency behavior of the
module, as demonstrated in figure (4). In addition,
whenever the transparency function has an if-and-only-if
relation to the conditions, we can perform a dual-rail logic
check. We not only verify the transparency existence
whenever the activation conditions hold, but also verify
the lack of transparency whenever the activation
conditions do not hold, thus increasing the number of
faults that can be detected through this mechanism.

4.2 Transparency-based path invariance

Checking each transparency function of every module
in the design would result in very expensive hardware
overhead, making such a scheme impractical. In order to
reduce this cost, the key idea is to combine several of
these modular transparency functions on a transparent
path, such that only one checking mechanism for the
complete path suffices for all the constituent transparency
functions. Such a path may span across several modules
of the design and across several clock cycles.



Figure (4): On-Line Test via Modular Transparency Functions

Figure (5): Transparency Path Composition Example

As an example of transparent path composition,
consider the circuit shown in figure (5). Three
transparency functions are provided for each of the two
modules in the design, requiring six distinct checking
mechanisms. However, a path spanning 5 clock cycles
can be composed, comprising all of the six transparency
functions. Although the activation conditions of the
modular transparency functions still need to be checked
for, the composite path has a simple-to-check
transparency function, requiring only one checking
mechanism instead of six. As a result, path composition
reduces significantly the hardware required, while
preserving the attained fault coverage.

4.3 Algorithmic path invariance

While modular transparency functions and the
composite invariant paths are capable of detecting many
faults, the resulting fault coverage may not be adequate in
itself to ensure high fault security in the design.
Additional sources of invariance, capable of checking for
faults that can not be detected through transparency
functions, are therefore required. Invariant behavior of the
implemented algorithm, captured through the interaction
between the datapath and the controller, is such a source.
Algorithmic invariance can be identified directly from the
controller-datapath interaction, thus providing additional
invariant paths in the design. Algorithmic invariance
essentially captures the restrictions imposed by the
controller on the datapath components. Any fault causing
a deviation from this restricted behavioral domain of the
controller-datapath pair will be detected.

The most interesting cases of algorithmic invariance
capture non-transparency behavior, therefore covering
faults that cannot be detected through transparency
functions. Especially in the controller, where transparency
rarely exists, algorithmic invariance helps significantly in

achieving high fault security. Additionally, algorithmic
invariance has a clear advantage in terms of activation
frequency; algorithmically invariant paths are always
active and therefore the on-line test scheme is
continuously checking for errors. Even if such invariance
is valid only in parts of an algorithm, the activation
frequency is still expected to be very high, reflecting the
activation frequency of the specific part of the algorithm.
In short, identification of simple-to-check algorithmic
path invariance provides a very efficient on-line test
mechanism that complements the transparency-based path
invariance methodology in terms of coverage and latency.

4.4 Experimental results

To evaluate the proposed methodology we examine
the fault security and fault coverage achieved by the
identified path invariance, as well as the area overhead
imposed by the invariance checking hardware on three
benchmarks. These are difficult-to-test sequential circuits,
implemented as controller-datapath pairs, on which
ATPG has a hard time reaching high fault coverage. We
first apply gate-level ATPG using HITEC [8], in order to
obtain the deterministic off-line test fault coverage as a
reference point. Subsequently, for the main part of the
experimental validation, we utilize fault simulation of
random input values for each design. For the GCD circuit,
1000 random pairs of numbers are generated and the
corresponding GCDs are calculated. These vectors are
fault simulated on the design using HOPE [3] and the
random off-line test fault coverage is obtained, along with
the set of covered faults. The design is then augmented
with path invariance checking hardware and an on-line
test output pin. Only the on-line test output is considered
a primary output in the modified design. The same
random vectors are then fault simulated on the
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Total

Faults

Deterministic

Off-Line Test

Fault Coverage

Random

Off-Line Test

Fault Coverage

Random

On-Line Test

Fault Security

Random

On-Line Test

Fault Coverage

Area

Before

Area

After

Area

Overhead

GCD 973
863/973

(88.69%)

822/973

(84.48%)

744/822

(90.51%)

781/973

(80.26%)

480 Gates

27 F-Fs

646 Gates

39 F-Fs
36.39%

MINMAX 1185
1117/1185

(94.26%)

1054/1185

(88.94%)

952/1054

(90.32%)

996/1185

(84.05%)

534 Gates

56 F-Fs

781 Gates

64 F-Fs
36.80%

MULT 834
798/834

(95.68%)

769/834

(92.20%)

693/769

(90.11%)

719/834

(86.21%)

356 Gates

30 F-Fs

471 Gates

48 F-Fs
39.28%

Table (4): Experimental Results

modified design, targeting only the faults covered in off-
line random vector fault simulation. The fault coverage
achieved in this experiment indicates the percentage of
faults that can be detected both on the original and on the
modified design, thus providing the random on-line test
fault security. In addition, the random vectors are fault
simulated targeting all faults in the modified design, in
order to obtain the random on-line test fault coverage.
The results are summarized in Table (4), where the area
overhead of the proposed scheme is also shown. The area
overhead is calculated assuming an implementation with
only 2-input gates and 4 gates for each flip-flop.

The obtained results demonstrate that the proposed on-
line test methodology achieves fault security exceeding
90%, while area overhead is kept below 40%. The
proposed scheme also provides on-line random test fault
coverage that is only 6% worse than random off-line fault
coverage on difficult-to-test sequential benchmark
designs. It is important to note that a large portion of the
remaining faults is due to primary I/O faults that no
invariance-based, on-line test methodology can capture.

5. Conclusions

We discuss an efficient off line hierarchical test
methodology based on the concept of transparent
hierarchical test paths. The proposed RTL test generation
methodology results in significant test generation speedup
while preserving fault coverage and vector count
equivalent to traditional gate-level ATPG. Furthermore,
we demonstrate the applicability of hierarchical test paths
for design diagnosis. We discuss the debug-related
information that can be obtained through hierarchical test
paths and we describe an algorithm that utilizes this
information to identify the minimal set of possibly faulty
modules. Finally, we utilize the invariance present in
transparent hierarchical test paths and we propose an on-
line test methodology achieving high fault security with
very low hardware overhead. In short, we demonstrate
that a single feature, namely the transparent hierarchical

test paths, may be utilized across several test-related
tasks, amortizing and reducing the cost incurred by each
individual task.
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