
High Performance Fortran

Language Speci�cation

High Performance Fortran Forum

November ��� ����

Version ���

The High Performance Fortran Forum �HPFF�� with participation from over �� organ�
izations� met from March �		
 to March �		� to discuss and de�ne a set of extensions to
Fortran called High Performance Fortran �HPF�
 Our goal was to address the problems
of writing data parallel programs for architectures where the distribution of data impacts
performance
 While we hope that the HPF extensions will become widely available� HPFF is
not sanctioned or supported by any o�cial standards organization
 The HPFF had a second
series of meetings from April �		� to October �		� to consider requests for corrections�
clari�cations� and interpretations to the Version �
� HPF document and also to develop
user requirements for possible future changes to HPF

This is the Final Report� Version �
�� of the High Performance Fortran Forum �		�
meetings
 This document contains all the technical features proposed for the version of the
language known as HPF �
� This copy of the draft was processed by LaTEX on November
��� �		�

HPFF encourages requests for interpretation of this document� and comments on the
language de�ned here
 We will give our best e�ort to answering interpretation questions�
and general comments will be considered in future HPFF language speci�cations

Please send interpretation requests to hpff�interpret�cs�rice�edu
 Your request is
archived and forwarded to a group of HPFF committee members who attempt to respond
to it

The text of interpretation requests becomes the property of Rice University

c��		� Rice University� Houston Texas
 Permission to copy without fee all or part of
this material is granted� provided the Rice University copyright notice and the title of this
document appear� and notice is given that copying is by permission of Rice University

Contents

Acknowledgments vii

�
� HPFF Acknowledgements � vii
�

 HPFF	� Acknowledgements � x

� Overview �

�
� Goals and Scope of High Performance Fortran � � � � � � � � � � � � � � � � � �
�

 Fortran 	� Binding �

�
� New Features in High Performance Fortran � � � � � � � � � � � � � � � � � � �

�
�
� Data Distribution Features �
�
�

 Data Parallel Execution Features �
�
�
� Extended Intrinsic Functions and Standard Library � � � � � � � � � �
�
�
� Extrinsic Procedures �
�
�
� Sequence and Storage Association �

�
� Fortran 	� and Subset HPF �
�
� Notation �
�
� HPF�Conforming and Subset�Conforming �
�
� Journal of Development �

�
�
� VIEW Directive �
�
�

 Nested WHERE Statements �
�
�
� EXECUTE�ON�HOME and LOCAL�ACCESS Directives � � � � � � �
�
�
� Elemental Reference of Pure Procedures � � � � � � � � � � � � � � � � �
�
�
� Parallel I�O �

�
� HPF
 Scope of Activities Document �
�
	 Organization of this Document �

� High Performance Fortran Terms and Concepts �

� Fortran 	� 	

 The HPF Model ��

� Simple Communication Examples ��

 Aggregate Communication Examples � � � � � � � � � � � � � � � � � � ��

� Interaction of Communication and Parallelism � � � � � � � � � � � � ��

� Syntax of Directives �	

� Data Alignment and Distribution Directives ��

�
� Model �
�
�

 Syntax of Data Alignment and Distribution Directives � � � � � � � � � � � �
�
�
� DISTRIBUTE and REDISTRIBUTE Directives � � � � � � � � � � � � � � � �
�
�
� ALIGN and REALIGN Directives ��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� DYNAMIC Directive ��
�
� Allocatable Arrays and Pointers ��
�
� PROCESSORS Directive ��
�
� TEMPLATE Directive ��
�
	 INHERIT Directive ��
�
�� Alignment� Distribution� and Subprogram Interfaces � � � � � � � � � � � � � ��

� Data Parallel Statements and Directives ��

�
� The FORALL Statement ��
�
�
� General Form of Element Array Assignment � � � � � � � � � � � � � � ��
�
�

 Interpretation of Element Array Assignments � � � � � � � � � � � � � �	
�
�
� Examples of the FORALL Statement � � � � � � � � � � � � � � � � � ��
�
�
� Scalarization of the FORALL Statement � � � � � � � � � � � � � � � � ��
�
�
� Consequences of the De�nition of the FORALL Statement � � � � � � ��

�

 The FORALL Construct ��

�

� General Form of the FORALL Construct � � � � � � � � � � � � � � � ��
�

 Interpretation of the FORALL Construct � � � � � � � � � � � � � � � ��
�

� Examples of the FORALL Construct � � � � � � � � � � � � � � � � � � ��
�

� Scalarization of the FORALL Construct � � � � � � � � � � � � � � � � �	
�

� Consequences of the De�nition of the FORALL Construct � � � � � � ��

�
� Pure Procedures ��
�
�
� Pure Procedure Declaration and Interface � � � � � � � � � � � � � � � ��
�
�

 Pure Procedure Reference ��
�
�
� Examples of Pure Procedure Usage ��
�
�
� Comments on Pure Procedures �

�
� The INDEPENDENT Directive ��
�
�
� Examples of INDEPENDENT ��
�
�

 Visualization of INDEPENDENT Directives � � � � � � � � � � � � � � ��

� Intrinsic and Library Procedures ��

�
� Notation � 	�
�

 System Inquiry Intrinsic Functions � 	�
�
� Computational Intrinsic Functions � 	

�
� Library Procedures � 	

�
�
� Mapping Inquiry Subroutines � 	

�
�

 Bit Manipulation Functions � 	

�
�
� Array Reduction Functions � 	�
�
�
� Array Combining Scatter Functions � � � � � � � � � � � � � � � � � � 	�
�
�
� Array Pre�x and Su�x Functions � � � � � � � � � � � � � � � � � � � 	�
�
�
� Array Sorting Functions � 		

�
� Generic Intrinsic and Library Procedures � � � � � � � � � � � � � � � � � � � 		
�
�
� System inquiry intrinsic functions � 		
�
�

 Array location intrinsic functions ���
�
�
� Mapping inquiry subroutines ���
�
�
� Bit manipulation functions ���

�
�
� Array reduction functions ���
�
�
� Array combining scatter functions ���
�
�
� Array pre�x and su�x functions ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
�
� Array sort functions ��

�
� Speci�cations of Intrinsic Procedures ���

�
�
� ILEN�I� ���
�
�

 MAXLOC�ARRAY� DIM� MASK� ���
�
�
� MINLOC�ARRAY� DIM� MASK� ���
�
�
� NUMBER OF PROCESSORS�DIM� � � � � � � � � � � � � � � � � � � ���
�
�
� PROCESSORS SHAPE�� ���

�
� Speci�cations of Library Procedures ���
�
�
� ALL PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � � � � ���
�
�

 ALL SCATTER�MASK�BASE�INDX��

� INDXn� � � � � � � � � � � ���
�
�
� ALL SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � � � � ���
�
�
� ANY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � � � ���
�
�
� ANY SCATTER�MASK�BASE�INDX��

� INDXn� � � � � � � � � � ��	
�
�
� ANY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � � � ��	
�
�
� COPY PREFIX�ARRAY� DIM� SEGMENT� � � � � � � � � � � � � � ���
�
�
� COPY SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � � � ���
�
�
	 COPY SUFFIX�ARRAY� DIM� SEGMENT� � � � � � � � � � � � � � ���
�
�
�� COUNT PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � ��

�
�
�� COUNT SCATTER�MASK�BASE�INDX��

� INDXn� � � � � � � � ��

�
�
�
 COUNT SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � � ���
�
�
�� GRADE DOWN�ARRAY�DIM� ���
�
�
�� GRADE UP�ARRAY�DIM� ���
�
�
�� HPF ALIGNMENT�ALIGNEE� LB� UB� STRIDE� AXIS MAP� IDEN�

TITY MAP� DYNAMIC� NCOPIES� � � � � � � � � � � � � � � � � � � ���
�
�
�� HPF TEMPLATE�ALIGNEE� TEMPLATE RANK� LB� UB� AXIS TYPE�

AXIS INFO� NUMBER ALIGNED� DYNAMIC� � � � � � � � � � � ���
�
�
�� HPF DISTRIBUTION�DISTRIBUTEE� AXIS TYPE� AXIS INFO�

PROCESSORS RANK� PROCESSORS SHAPE� � � � � � � � � � � �
�
�
�
�� IALL�ARRAY� DIM� MASK� �

�
�
�	 IALL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE� � �
�
�
�

� IALL SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � � � � �
�
�
�

� IALL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE� � �
�
�
�

 IANY�ARRAY� DIM� MASK� �
�
�
�

� IANY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE� �
�
�
�

� IANY SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � � � �
�
�
�

� IANY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE� � �
�
�
�

� IPARITY�ARRAY� DIM� MASK� �
�
�
�

� IPARITY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE��
	
�
�

� IPARITY SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � �
	
�
�

	 IPARITY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE����
�
�
�� LEADZ�I� ���
�
�
�� MAXVAL PREFIX�ARRAY�DIM� MASK� SEGMENT� EXCLUSIVE����
�
�
�
 MAXVAL SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � ��

�
�
�� MAXVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE���

�
�
�� MINVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE����
�
�
�� MINVAL SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � ���
�
�
�� MINVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE����
�
�
�� PARITY�MASK� DIM� ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
�
�� PARITY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � ���

�
�
�	 PARITY SCATTER�MASK�BASE�INDX��

� INDXn� � � � � � � � ���
�
�
�� PARITY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE� � � � � ���

�
�
�� POPCNT�I� ���
�
�
�
 POPPAR�I� ���

�
�
�� PRODUCT PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLU�
SIVE� ���

�
�
�� PRODUCT SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� ���

�
�
�� PRODUCT SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLU�
SIVE� ��	

�
�
�� SUM PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE� � ��	
�
�
�� SUM SCATTER�ARRAY�BASE�INDX��

� INDXn� MASK� � � � � ���

�
�
�� SUM SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE� � ���

	 Extrinsic Procedures ���

�
� Overview ���

�

 De�nition and Invocation of Extrinsic Procedures � � � � � � � � � � � � � � � ���
�
� Requirements on the Called Extrinsic Procedure � � � � � � � � � � � � � � � ���

� Storage and Sequence Association ���

�
� Storage Association ��	
�
�
� De�nitions ��	

�
�

 Examples of De�nitions ���
�
�
� Sequence Directives ���

�
�
� Storage Association Rules ��

�
�
� Storage Association Discussion ��

�
�
� Examples of Storage Association ���

�

 Argument Passing and Sequence Association � � � � � � � � � � � � � � � � � ���
�

� Sequence Association Rules ���

�

 Discussion of Sequence Association ���
�

� Examples of Sequence Association ���

 Subset High Performance Fortran ���

�
� Fortran 	� Features in Subset High Performance Fortran � � � � � � � � � � � ���
�

 Discussion of the Fortran 	� Subset Features � � � � � � � � � � � � � � � � � ��	

�
� HPF Features Not in Subset High Performance Fortran � � � � � � � � � � � ���

�
� Discussion of the HPF Extension Subset ���

A Coding Local Routines in HPF and Fortran �� �	�

A
� Conventions for Local Subprograms ��

A
�
� Conventions for Calling Local Subprograms � � � � � � � � � � � � � � ���
A
�

 Calling Sequence ���

A
�
� Information Available to the Local Procedure � � � � � � � � � � � � � ���
A

 Local Routines Written in HPF ���

A

� Restrictions ���
A

 Argument Association ���

A

� HPF Local Routine Library ���

A

� MY PROCESSOR�� ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A

� LOCAL BLKCNT�ARRAY� DIM� PROC� � � � � � � � � � � � � � � ���
A

� LOCAL LINDEX�ARRAY� DIM� PROC� � � � � � � � � � � � � � � � ���
A

� LOCAL UINDEX�ARRAY� DIM� PROC� � � � � � � � � � � � � � � � ���

A
� Local Routines Written in Fortran 	� ���
A
�
� Argument Association ���

A
� Example HPF Extrinsic Procedures ���

B Coding Single Processor Routines in HPF �
�

B
� Conventions for Uniprocessor Subprograms � � � � � � � � � � � � � � � � � � ���
B
�
� Calling Sequence ���

B

 Serial Routines Written in HPF ��

B

� Restrictions ��

B
� Intrinsic and Library Procedures ���
B
� Example HPF SERIAL Extrinsic Procedure � � � � � � � � � � � � � � � � � � ���

C Syntax Rules �
�

C

 High Performance Fortran Terms and Concepts � � � � � � � � � � � � � � � � ���
C

� Syntax of Directives ���

C
� Data Alignment and Distribution Directives � � � � � � � � � � � � � � � � � � ���
C
�

 Syntax of Data Alignment and Distribution Directives � � � � � � � � ���
C
�
� DISTRIBUTE and REDISTRIBUTE Directives � � � � � � � � � � � ���
C
�
� ALIGN and REALIGN Directives ���
C
�
� DYNAMIC Directive ��	
C
�
� PROCESSORS Directive ��	
C
�
� TEMPLATE Directive ��	
C
�
	 INHERIT Directive ��	

C
� Data Parallel Statements and Directives ��	
C
�
� The FORALL Statement ��	
C
�

 The FORALL Construct �	�
C
�
� Pure Procedures �	�
C
�
� The INDEPENDENT Directive �	�

C
� Extrinsic Procedures �	�
C
�

 De�nition and Invocation of Extrinsic Procedures � � � � � � � � � � � �	�

C
� Storage and Sequence Association �	�
C
�
� Storage Association �	�

D Syntax Cross�reference ���

D
� Nonterminal Symbols That Are De�ned �	�
D

 Nonterminal Symbols That Are Not De�ned � � � � � � � � � � � � � � � � � � �	�
D
� Terminal Symbols �	�

Bibliography ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Acknowledgments

Since its introduction over three decades ago� Fortran has been the language of choice
for scienti�c programming for sequential computers
 Exploiting the full capability of modern
architectures� however� increasingly requires more information than ordinary FORTRAN ��
or Fortran 	� programs provide
 This information applies to such areas as�

� Opportunities for parallel execution�

� Type of available parallelism � MIMD� SIMD� or some combination�

� Allocation of data among individual processor memories� and

� Placement of data within a single processor

The High Performance Fortran Forum �HPFF� was founded as a coalition of industrial
and academic groups working to suggest a set of standard extensions to Fortran to provide
the necessary information
 Its intent was to develop extensions to Fortran that provide
support for high performance programming on a wide variety of machines� including mas�
sively parallel SIMD and MIMD systems and vector processors
 From its beginning� HPFF
included most vendors delivering parallel machines� a number of government laboratories�
and many university research groups
 Public input was encouraged to the greatest extent
possible
 The result of this project is this document� intended to be a language speci�cation
portable from workstations to massively parallel supercomputers while being able to express
the algorithms needed to achieve high performance on speci�c architectures

��� HPFF Acknowledgements

Technical development for HPF �
� was carried out by subgroups� and was reviewed by the
full committee
 Many people served in positions of responsibility�

� Ken Kennedy� Convener and Meeting Chair�

� Charles Koelbel� Executive Director and Head of the FORALL Subgroup�

� Mary Zosel� Head of the Fortran 	� and Storage Association Subgroup�

� Guy Steele� Head of the Data Distribution Subgroup�

� Rob Schreiber� Head of the Intrinsics Subgroup�

� Bob Knighten� Head of the Parallel I�O Subgroup�

� Marc Snir� Head of the Extrinsics Subgroup�

� Joel Williamson and Marina Chen� Heads of the Subroutine Interface Subgroup� and

� David Loveman� Editor

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Geo�rey Fox convened the �rst HPFF meeting with Ken Kennedy and later led a group
to develop benchmarks for HPF
 Clemens�August Thole organized a group in Europe and
was instrumental in making this an international e�ort
 Charles Koelbel produced detailed
meeting minutes that were invaluable to subgroup heads in preparing successive revisions
to the draft proposal
 Guy Steele developed LaTEX macros for a variety of tasks� including
formatting BNF grammar� Fortran code and pseudocode� and commentary material� the
document would have been much less aesthetically pleasing without his e�orts

Many companies� universities� and other entities supported their employees� attendance
at the HPFF meetings� both directly and indirectly
 The following organizations were
represented at two or more meetings by the following individuals �not including those present
at the �rst HPFF meeting in January of �		
� for which there is no accurate attendee list��

Alliant Computer Systems Corporation �David Reese
Amoco Production Company � Jerrold Wagener� Rex Page
Applied Parallel Research � � � � � � �John Levesque� Rony Sawdayi� Gene Wagenbreth
Archipel � Jean�Laurent Philippe
CONVEX Computer Corporation �Joel Williamson
Cornell Theory Center � David Presberg
Cray Research� Inc
 �Tom MacDonald� Andy Meltzer
Digital Equipment Corporation � David Loveman
Fujitsu America � Siamak Hassanzadeh� Ken Muira
Fujitsu Laboratories � Hidetoshi Iwashita
GMD�I�
T� Sankt Augustin �Clemens�August Thole
Hewlett Packard � � � � � � � � � � � � � � Maureen Ho�ert� Tin�Fook Ngai� Richard Schooler
IBM � � � � � � � � � � � � � � �Alan Adamson� Randy Scarborough� Marc Snir� Kate Stewart
Institute for Computer Applications in Science � Engineering � � �Piyush Mehrotra
Intel Supercomputer Systems Division � Bob Knighten
Lahey Computer � � � � � �Lev Dyadkin� Richard Fuhler� Thomas Lahey� Matt Snyder
Lawrence Livermore National Laboratory �Mary Zosel
Los Alamos National Laboratory � � � � � � � � � � � � �Ralph Brickner� Margaret Simmons
Louisiana State University � J
 Ramanujam
MasPar Computer Corporation � Richard Swift
Meiko� Inc
 �James Cownie
nCUBE� Inc
 �Barry Keane� Venkata Konda
Ohio State University �P
 Sadayappan
Oregon Graduate Institute of Science and Technology � � � � � � � � � � � � �Robert Babb II
The Portland Group� Inc
 �Vince Schuster
Research Institute for Advanced Computer Science � � � � � � � � � � � � � �Robert Schreiber
Rice University � Ken Kennedy� Charles Koelbel
Schlumberger �Peter Highnam
Shell � Don Heller
State University of New York at Bu�alo �Min�You Wu
SunPro and Sun Microsystems � � � � � � � � � � � � � � � � � � Prakash Narayan� Douglas Walls
Syracuse University � Alok Choudhary� Tom Haupt
TNO�TU Delft � Edwin Paalvast� Henk Sips
Thinking Machines Corporation � � � � � � � � � Jim Bailey� Richard Shapiro� Guy Steele
United Technologies Corporation �Richard Shapiro
University of Stuttgart � � � � � � � � � � � � �Uwe Geuder� Bernhard Woerner� Roland Zink
University of Southampton � John Merlin

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

University of Vienna �Barbara Chapman� Hans Zima

Yale University �Marina Chen� Aloke Majumdar

Many people contributed sections to the �nal language speci�cation and HPF Journal
of Development� including Alok Choudhary� Geo�rey Fox� Tom Haupt� Maureen Ho�ert�
Ken Kennedy� Robert Knighten� Charles Koelbel� David Loveman� Piyush Mehrotra� John
Merlin� Tin�Fook Ngai� Rex Page� Sanjay Ranka� Robert Schreiber� Richard Shapiro� Marc
Snir� Matt Snyder� Guy Steele� Richard Swift� Min�You Wu� and Mary Zosel
 Many others
contributed shorter passages and examples and corrected errors

Because public input was encouraged on electronic mailing lists� it is impossible to
identify all who contributed to discussions� the entire mailing list was over ��� names long

Following are some of the active participants in the HPFF process not mentioned above�

N
 Arunasalam Werner Assmann Marc Baber
Babak Bagheri Vasanth Bala Jason Behm
Peter Belmont Mike Bernhardt Keith Bierman
Christian Bishof John Bolstad William Camp
Duane Carbon Richard Carpenter Brice Cassenti
Doreen Cheng Mark Christon Fabien Coelho
Robert Corbett Bill Crutch�eld J
 C
 Diaz
James Demmel Alan Egolf Bo Einarsson
Pablo Elustondo Robert Ferrell Rhys Francis
Hans�Hermann Frese Steve Goldhaber Brent Gorda
Rick Gorton Robert Halstead Reinhard von Hanxleden
Hiroki Honda Carol Hoover Steven Huss�Lederman
Ken Jacobsen Elaine Jacobson Behm Jason
Alan Karp Ronan Keryell Anthony Kimball
Ross Knippe Bruce Knobe David Kotz
Ed Krall Tom Lake Peter Lawrence
Bryan Lawver Bruce Leasure Stewart Levin
David Levine Theodore Lewis Woody Lichtenstein
Ruth Lovely Doug MacDonald Raymond Man
Stephen Mark Philippe Marquet Jeanne Martin
Oliver McBryan Charlie McDowell Michael Metcalf
Charles Mosher Len Moss Lenore Mullin
Yoichi Muraoka Bernie Murray Vicki Newton
Dale Nielsen Kayutov Nikolay Steve O�Neale
Je� Painter Cherri Pancake Harvey Richardson
Bob Riley Kevin Robert Ron Schmucker
J
L
 Schonfelder Doug Sco�eld David Sera�ni
G
M
 Sigut Anthony Skjellum Niraj Srivastava
Paul St
Pierre Nick Stanford Mia Stephens
Jaspal Subhlok Xiaobai Sun Hanna Szoke
Bernard Tourancheau Anna Tsao Alex Vasilevsky
Stephen Vavasis Arthur Veen Brian Wake
Ji Wang Karen Warren D
C
B
 Watson
Matthijs van Waveren Robert Weaver Fred Webb
Stephen Whitley Michael Wolfe Fujio Yamamoto
Marco Zagha

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

The following organizations made the language draft available by anonymous FTP
access and�or mail servers� AT�T Bell Laboratories� Cornell Theory Center� GMD�I�
T
�Sankt Augustin�� Oak Ridge National Laboratory� Rice University� Syracuse University�
and Thinking Machines Corporation
 These outlets were instrumental in distributing the
document

The High Performance Fortran Forum also received a great deal of volunteer e�ort in
nontechnical areas
 Theresa Chatman and Ann Redelfs were responsible for most of the
meeting planning and organization� including the �rst HPFF meeting� which drew over �
�
people
 Shaun Bonton� Rachele Harless� Rhonda Perales� Seryu Patel� and Daniel Swint
helped with many logistical details
 Danny Powell spent a great deal of time handling the
�nancial details of the project
 Without these people� it is unlikely that HPF would have
been completed

HPFF operated on a very tight budget �in reality� it had no budget when the �rst
meeting was announced�
 The �rst meeting in Houston was entirely �nanced from the
conferences budget of the Center for Research on Parallel Computation� an NSF Science
and Technology Center
 DARPA and NSF have supported research at various institutions
that have made a signi�cant contribution towards the development of High Performance
Fortran
 Their sponsored projects at Rice� Syracuse� and Yale Universities were particularly
in�uential in the HPFF process
 Support for several European participants was provided
by ESPRIT through projects P���� �PPPE� and P���� �PREPARE�

��� HPFF�� Acknowledgements

The HPF �
� version of the document was prepared during the HPFF	� series of meetings
 A
number of people shared technical responsibilities for the activities of the HPFF	� meetings�

� Ken Kennedy� Convener and Meeting Chair�

� Mary Zosel� Executive Director and head of CCI Group
�

� Richard Shapiro� Head of CCI Group ��

� Ian Foster� Head of Tasking Subgroup�

� Alok Choudhary� Head of Parallel I�O Subgroup�

� Chuck Koelbel� Head of Irregular Distributions Subgroup�

� Rob Schreiber� Head of Implementation Subgroup�

� Joel Saltz� Head of Benchmarks Subgroup�

� David Loveman� Editor� assisted by Chuck Koelbel� Rob Schreiber� Guy Steele� and
Mary Zosel� section editors

Attendence at the HPFF	� meetings included the following people from organizations
that were represented two or more times

Don Heller �Ames Laboratory
Jerrold Wagener �Amoco Production Company
John Levesque �Applied Parallel Research
Ian Foster � Argonne National Laboratory

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Terry Pratt � CESDIS�NASA Goddard
Jim Cowie �Cooperating Systems
Andy Meltzer� Jon Steidel � Cray Research� Inc

David Loveman � Digital Equipment Corporation
Bruce Olsen � Hewlett Packard
E
 Nunohiro� Satoshi Itoh �Hitachi
Henry Zongaro �IBM
Piyush Mehrotra � � � Institute for Computer Applications in Science � Engineering
Bob Knighten� Roy Touzeau � Intel SSD
Mary Zosel� Bor Chan� Karen Warren � � Lawrence Livermore National Laboratory
Ralph Brickner � Los Alamos National Laboratory
J
 Ramanujam � Louisiana State University
Paula Vaughan� Donna Reese � � � � � � � � � � � � � � � � �Miss
 State University � NSF ERC
Shoichi Sakon� Yoshiki Seo �NEC
P
 Sadayappan� Chua�Huang Huang �Ohio State University
Andrew Johnson �OSF Research Institute
Chip Rodden� Je� Vanderlip �Paci�c Sierra Research
Larry Meadows� Doug Miles � The Portland Group� Inc

Robert Schreiber � � � � � � � � � � � � � �Research Institute for Advanced Computer Science
Ken Kennedy� Charles Koelbel � Rice University
Ira Baxter � Schlumberger
Alok Choudhary � Syracuse University
Guy Steele � � � � � � � � � � � � � � � � � � �Thinking Machines Corporation� Sun MicroSystems
Richard Shapiro � � � � � � � � � � � � � � � � � �Thinking Machines Corp
� Silicon Graphics Inc

Scott Baden� Val Donaldson � � � � � � � � � � � � � � � � � � � University of California� San Diego
Robert Babb �University of Denver
Joel Saltz� Paul Havlak �University of Maryland
Nicole Nemer�Preece �University of Missouri�Rolla
Hans Zima� Siegfried Benkner� Thomas Fahringer � � � � � � � � � � � �University of Vienna
An important activity of HPFF	� was the processing of the many items submitted for

comment and interpretation which led to the HPF �
� update of the language document

A special acknowlegement goes to Henry Zongaro� IBM� for many thoughtful questions
exposing dark corners of language design that were previously overlooked� and to Guy
Steele� Thinking Machines�Sun Microsystems for his analysis of� and solutions for some of
the thornier issues discussed
 And general thanks to the people who submitted comments
and interpretation requests� including�

David Loveman� Michael Hennecke� James Cownie� Adam Marshall� Stephen Ehrlich�
Mary Zosel� Matt Snyder� Larry Meadows� Dick Hendrickson� Dave Watson� John Merlin�
Vasanth Bala� Paul
Wesson� Denis
Hugli� Stanly Steinberg� Henk Sips� Henry Zongaro�
Eiji Nunohiro� Jens Bloch Helmers� Rob Schreiber� David B
 Sera�ni� and Allan Knies

Other special mention goes to Chuck Koelbel at Rice University for continued mainte�
nance of the HPFF mailing lists� to Donna Reese and sta� at Mississippi State University
for establishing and maintaining a WWW home�page for HPFF� and to the University of
Maryland for establishing a benchmark FTP site

Theresa Chatman and sta� at Rice University were responsible for meeting planning
and organization and Danny Powell continued to handle �nancial details of the project

HPFF	� received direct support for research and administrative activities from grants
from ARPA� DOE� and NSF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Overview

This document speci�es the form and establishes the interpretation of programs expressed
in the High Performance Fortran �HPF� language
 It is designed as a set of extensions and
modi�cations to the established International Standard for Fortran �ISO�IEC ���	��		��E�
and ANSI X�
�	���		
�� informally referred to as �Fortran 	�� ���
��
 Many sections of this
document reference related sections of the Fortran 	� standard to facilitate its incorporation
into new standards� should ISO and national standards committees deem that desirable

��� Goals and Scope of High Performance Fortran

The goals of HPF� as de�ned at an early HPFF meeting� were to de�ne language extensions
and feature selection for Fortran supporting�

� Data parallel programming �de�ned as single threaded� global name space� and loosely
synchronous parallel computation��

� Top performance on MIMD and SIMD computers with non�uniform memory access
costs �while not impeding performance on other machines�� and

� Code tuning for various architectures

The FORALL construct and several new intrinsic functions were designed primarily to meet
the �rst goal� while the data distribution features and some other directives are targeted
toward the second goal
 Extrinsic procedures allow access to low�level programming in
support of the third goal� although performance tuning using the other features is also
possible

A number of subsidiary goals were also established�

� Deviate minimally from other standards� particularly those for FORTRAN �� and
Fortran 	��

� Keep the resulting language simple�

� De�ne open interfaces to other languages and programming styles�

� Provide input to future standards activities for Fortran and C�

� Encourage input from the high performance computing community through widely
distributed language drafts�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

 SECTION �� OVERVIEW

� Produce validation criteria�

� Present the �nal proposals in November �		
 and accept the �nal draft in January
�		��

� Make compiler availability feasible in the near term with demonstrated performance
on an HPF test suite� and

� Leave an evolutionary path for research

These goals were quite aggressive when they were adopted in March �		
� and led to a
number of compromises in the �nal language
 In particular� support for explicit MIMD
computation� message�passing� and synchronization was limited due to the di�culty in
forming a consensus among the participants
 We hope that future e�orts will address these
important issues

��� Fortran �� Binding

HPF is an extension of Fortran 	�
 The array calculation and dynamic storage allocation
features of Fortran 	� make it a natural base for HPF
 The new HPF language features fall
into four categories with respect to Fortran 	��

� New directives�

� New language syntax�

� Library routines� and

� Language changes and restrictions

The new directives are structured comments that suggest implementation strategies
or assert facts about a program to the compiler
 They may a�ect the e�ciency of the
computation performed� but do not change the value computed by the program
 The form
of the HPF directives has been chosen so that a future Fortran standard may choose to
include these features as full statements in the language by deleting the initial comment
header

A few new language features� including the FORALL statement and a few intrinsic func�
tions� are also de�ned
 They were made �rst�class language constructs rather than com�
ments because they can a�ect the interpretation of a program� for example by returning
a value used in an expression
 These are proposed as direct extensions to the Fortran 	�
syntax and interpretation

The HPF library of computational functions de�nes a standard interface to routines
that have proven valuable for high performance computing including additional reduction
functions� combining scatter functions� pre�x and su�x functions� and sorting functions

Two small changes are made in the Fortran 	� speci�cation
 First� a DIM argument
is added to the MINLOC and MAXLOC routines
 Second� in the list of keyword speci�ers for
the I�O INQUIRE statement� the types of RECL� NEXTREC� and IOLENGTH are changed to
scalar�integer�variable �from scalar�default�integer�variable� in order to allow for very long
�les that may occur in large parallel applications

Full support of Fortran sequence and storage association is not compatible with the
data distribution features of HPF
 Some restrictions on the use of sequence and storage
association are de�ned
 These restrictions may in turn require insertion of HPF directives
into standard Fortran 	� programs in order to preserve correct semantics

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� NEW FEATURES IN HIGH PERFORMANCE FORTRAN �

��� New Features in High Performance Fortran

HPF extends Fortran 	� in several areas� including�

� Data distribution features�

� Data parallel execution features�

� Extended intrinsic functions and standard library�

� EXTRINSIC procedures�

� Changes in sequence and storage association

In addition� a subset of HPF suitable for earlier implementation is de�ned
 The following
subsections give short overviews of these areas

In addition to the features that became part of HPF� the HPFF committee consid�
ered and rejected many proposals
 Suggestions that the committee considered particularly
promising for future language e�orts to pursue have been collected in a companion docu�
ment� the HPF Journal of Development ����
 Section �
� below gives an overview of this
document

����� Data Distribution Features

Modern parallel and sequential architectures attain their highest speed when the data ac�
cessed exhibits locality of reference
 The sequential storage order implied by FORTRAN ��
and Fortran 	� often con�icts with the locality demanded by the architecture
 To avoid this�
HPF includes features which describe the collocation of data �ALIGN� and the partitioning
of data among memory regions or abstract processors �DISTRIBUTE�
 Compilers may inter�
pret these annotations to improve storage allocation for data� subject to the constraint that
semantically every data object has a single value at any point in the program
 In all cases�
users should expect the compiler to arrange the computation to minimize communication
while retaining parallelism
 Section � describes the distribution features

����� Data Parallel Execution Features

To express parallel computation explicitly� HPF o�ers a new statement and a new directive

The FORALL construct expresses assignments to sections of arrays� it is similar in many ways
to the array assignment of Fortran 	�� but allows more general sections and computations to
be speci�ed
 The INDEPENDENT directive asserts that the statements in a particular section
of code do not exhibit any sequentializing dependences� when properly used� it does not
change the semantics of the construct� but may provide more information to the language
processor to allow optimizations
 Section � describes these features

����� Extended Intrinsic Functions and Standard Library

Experience with massively parallel machines has identi�ed several basic operations that
are very valuable in parallel algorithm design
 The Fortran 	� array intrinsics anticipated
some of these� but not all
 HPF adds several classes of parallel operations to the language
de�nition as intrinsic functions and as standard library functions
 In addition� several
system inquiry functions useful for controlling parallel execution are provided in HPF

Section � describes these functions and subroutines

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� OVERVIEW

����� Extrinsic Procedures

Because HPF is designed as a high�level� machine�independent language� there are certain
operations that are di�cult or impossible to express directly
 For example� many applica�
tions bene�t from �nely�tuned systolic communications on certain machines� HPF�s global
address space does not express this well
 Extrinsic procedures de�ne an explicit interface to
procedures written in other paradigms� such as explicit message�passing subroutine libraries

Section � describes this interface
 Annex A gives a speci�c interface for HPF LOCAL rou�
tines� for HPF SERIAL routines� and for Fortran 	�

����� Sequence and Storage Association

A goal of HPF was to maintain compatibility with Fortran 	�
 Full support of Fortran
sequence and storage association� however� is not compatible with the goal of high perfor�
mance through distribution of data in HPF
 Some forms of associating subprogram dummy
arguments with actual values make assumptions about the sequence of values in physical
memory which may be incompatible with data distribution
 Certain forms of EQUIVALENCE
statements are recognized as requiring a modi�ed storage association paradigm
 In both
cases� HPF provides a directive to assert that full sequence and storage association for af�
fected variables must be maintained
 In the absence of such explicit directives� reliance on
the properties of association is not allowed
 An optimizing compiler may then choose to
distribute any variables across processor memories in order to improve performance
 To
protect program correctness� a given implementation should provide a mechanism to ensure
that all such default optimization decisions are consistent across an entire program
 Sec�
tion � describes the restrictions and directives related to storage and sequence association

��� Fortran �� and Subset HPF

An important goal for HPF is early compiler availability
 Because full Fortran 	� compilers
may not be available in a timely fashion on all platforms and implementation of some HPF
features is more complex than others� we have de�ned Subset HPF
 Users who are most
concerned about multi�machine portability may choose to stay within this subset initially

This subset language includes the Fortran 	� array language� dynamic storage allocation�
and long names as well as the MIL�STD����� features ��
	��� which are already commonly
used with FORTRAN �� programs
 The subset does not include features of Fortran 	�� such
as generic functions and free source form� that are not closely related to high performance
on parallel machines
 Section � describes Subset HPF

��� Notation

This document uses the same notation as the Fortran 	� standard
 In particular� the same
conventions are used for syntax rules
 BNF descriptions of language features are given in
the style used in the Fortran 	� standard
 To distinguish HPF syntax rules from Fortran 	�
rules� each HPF rule has an identifying number of the form Hsnn� where s is a one�digit
major section number and nn is a one� or two�digit sequence number
 The syntax rules
are also collected in Annex C
 Nonterminals not de�ned in this document are de�ned in
the Fortran 	� standard
 Also note that certain technical terms such as �storage unit� are
de�ned by the Fortran 	� standard� Annex D identi�es the Fortran 	� rules de�ning these
nonterminals
 References in parentheses in the text refer to the Fortran 	� standard

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� HPF�CONFORMING AND SUBSET�CONFORMING �

Rationale� Throughout this document� material explaining the rationale for including
features� choosing particular feature de�nitions� and other decisions is set o� in this
format
 Readers interested in the language de�nition only may wish to skip these
sections� while readers interested in language design may want to read them more
carefully
 �End of rationale��

Advice to users� Throughout this document� material that is primarily commentary
for users �including most examples of syntax and interpretation� is set o� in this
format
 Readers interested in technical material only may wish to skip these sections�
while readers wanting a more basic approach may want to read them more carefully

�End of advice to users��

Advice to implementors� Throughout this document� material that is primarily
commentary for implementors is set o� in this format
 Readers interested in the
language de�nition only may wish to skip these sections� while readers interested in
compiler implementation may want to read them more carefully
 �End of advice to
implementors��

��	 HPF
Conforming and Subset
Conforming

An executable program is HPF�conforming if it uses only those forms and relationships
described in this document and if the program has an interpretation according to this
document
 A program unit is HPF�conforming if it can be included in an executable program
in a manner that allows the executable program to be HPF�conforming

An executable program is Subset�conforming if it uses only the forms and relationships
described in this document for Subset HPF �Section �� and if it has an interpretation
under the constraints of Subset HPF
 A program unit is Subset�conforming if it can be
included in an executable program in a manner that allows the executable program to be
Subset�conforming

�The above de�nitions were adapted from the Fortran 	� standard
�

��� Journal of Development

The HPFF committee considered many proposals� and rejected some that had merit due
to external factors �such as lack of agreement in committee�
 The most promising of these
features were collected in the HPF Journal of Development ����
 This section summarizes
some of the more detailed proposals

����� VIEW Directive

One proposal suggested a directive for relating processor arrangements to each other
 This
ability is extremely useful in certain applications which use interacting one� and two�
dimensional arrays� and has applications for problems consisting of several disjoint data�
parallel parts
 This feature was carefully discussed� and the committee felt that it was
important� however� questions of its implementation complexity eventually caused its rejec�
tion

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� OVERVIEW

����� Nested WHERE Statements

One proposal suggested allowing WHERE statements and constructs to be nested within each
other
 The committee felt that the feature was useful� but declined to include it in HPF
because they felt it was too large a change to make to the base language

����� EXECUTE
ON
HOME and LOCAL
ACCESS Directives

One proposal suggested a method for specifying the processor�s� to execute a given state�
ment
 The same proposal suggested a method for identifying data references which would
be mapped to the same processor
 In essence� both methods added new directives similar
to INDEPENDENT �see Section �
��
 Like INDEPENDENT� these directives provided information
that a compiler might �nd useful in optimizing the program
 Although the committee felt
this was an important area to investigate� the proposals were rejected due to technical �aws

����� Elemental Reference of Pure Procedures

One proposal suggested allowing elemental invocation of pure procedures �see Section �
��
under certain conditions
 The essential idea was that functions with scalar arguments which
could be guaranteed to have no side e�ects could be invoked elementally� as are intrinsic
functions such as SIN
 The proposal was rejected in a narrow vote� in part because it was seen
as too large a change to Fortran 	�
 After its rejection� the committee voted unanimously
to recommend that the ANSI X�J� committee consider user�de�ned elemental functions for
a future version of Fortran

����� Parallel I�O

HPF is primarily designed to obtain high performance on massively parallel computers

Such massively parallel machines also need massively parallel input and output
 Accord�
ingly� there were three major proposals to include explicitly parallel I�O features in HPF�
as well as several minor variations on the same theme
 After much debate� HPFF voted
not to include I�O extensions in the �rst version of HPF
 �NOTE� however� that HPF�
�
de�nes changes to Fortran 	� data type of a few of the I�O keyword inquiry speci�ers to
allow for the possibility of very large �les
 See section �

 on Fortran 	� Binding earlier in
this chapter
�

The arguments for not making further extensions or changes for parallel I�O in HPF
included�

� The diversity of current parallel I�O systems does not suggest any portable abstraction
of I�O useful in a language model

� Fortran I�O is already highly expressive

� The HPF compiler can optimize the I�O when writing distributed arrays without any
extensions to the source language

� The management of distributed �les �and their implementation� is a matter for the
operating system� not the language

Moreover the current lack of extensions does not limit features that may be added by system
vendors
 In particular�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� HPF� SCOPE OF ACTIVITIES DOCUMENT �

� Vendors are allowed to implement any I�O extensions to the language they may wish

Indeed this would be impossible to prevent
 There are simply no special I�O mecha�
nisms mandated by HPF

� The HPF run�time system may use whatever facilities the operating system provides
for accessing �high performance� �les� though the HPF language contains no I�O
extensions that speci�cally describe such access

��
 HPF� Scope of Activities Document

As part of the HPFF	� activities� an additional document� entitled �HPF
� Scope
of Activities�� was created� with the intent of de�ning the set of potential added features
to be considered in a new HPF development project
 The document includes a variety
of benchmark Fortran codes that seem to require features not currently present in HPF in
order to achieve high performance on distributed memory parallel machines
 The document
also includes a discussion of potential language extensions that could be added to HPF to
facilitate expression of these algorithms
 In addition� the notion of creating a kernel subset
of HPF is introduced

��� Organization of this Document

Section �� this section� presents an overview of HPF

Section
 sets out some basics of HPF� including�

� The reasons for using Fortran 	� as a base language�

� A partial cost model for HPF programs� and

� Lexical rules for HPF directives

Section � describes the facilities for data partitioning in HPF
 These include�

� The distribution model�

� Features for distributing array elements among processors�

� Features for aligning array elements which are accessed together� and

� Features for mapping ALLOCATABLE arrays� pointers� and dummy procedure argu�
ments

Section � describes the explicitly parallel statement types in HPF
 These include�

� The single� and multi�statement forms of the FORALL parallel construct�

� Pure functions callable from within FORALL� and

� The INDEPENDENT assertion for loops

Section � describes new standard functions available in HPF
 These include�

� Inquiry intrinsic functions to check system and data partitioning status�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� OVERVIEW

� New computational intrinsic functions and extensions to existing intrinsic functions�
and

� A standard library of computational and inquiry functions

Section � describes extrinsic procedures in HPF� particularly the EXTRINSIC procedure
interface
 The material in Annex A builds on this interface

Section � describes the treatment of sequence and storage association in HPF
 This includes�

� Limitations on storage association of explicitly distributed variables� and

� Limitations on sequence association of explicitly distributed variables

Section � describes Subset HPF� which may be implemented more quickly than full HPF

This includes�

� A list of Fortran 	� features that are in Subset HPF�

� A list of HPF features that are not in Subset HPF� and

� Discussions of why these decisions were made

Annex A describes a binding for a local execution model for use as an EXTRINSIC option

The model implements the Single Program Multiple Data programming paradigm� which
has wide �but not universal� applicability

Annex C collects the grammar and syntactic constraints for HPF de�ned in the main text
of this document

Annex D cross�references the BNF terminals and nonterminals de�ned and used in this
document

The Bibliography provides references to various HPF sources�

� Fortran standards�

� Fortran implementations�

� Books about Fortran 	�� and

� Technical papers

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

High Performance Fortran

Terms and Concepts

This Section presents some rationale for the selection of Fortran 	� as HPF�s base language�
HPF�s model of computation� and the high level syntax and lexical rules for HPF directives

��� Fortran ��

The facilities for array computation in Fortran 	� make it particularly suitable for program�
ming scienti�c and engineering numerical calculations on high performance computers
 In�
deed� some of these facilities are already supported in compilers from a number of vendors

The introductory overview in the Fortran 	� standard states�

Operations for processing whole arrays and subarrays �array sections� are
included in the language for two principal reasons� ��� these features provide a
more concise and higher level language that will allow programmers more quickly
and reliably to develop and maintain scienti�c	engineering applications
 and
��� these features can signi�cantly facilitate optimization of array operations on
many computer architectures�

� Fortran Standard �page xiii�

Other features of Fortran 	� that improve upon the features provided in FORTRAN ��
include�

� Additional storage classes of objects
 The new storage classes such as allocatable�
automatic� and assumed�shape objects as well as the pointer facility of Fortran 	� add
signi�cantly to those of FORTRAN �� and should reduce the use of FORTRAN ��
constructs that can lead to less than full computational speed on high performance
computers� such as EQUIVALENCE between array objects� COMMON de�nitions with non�
identical array de�nitions across subprograms� and array reshaping transformations
between actual and dummy arguments

� Support for a modular programming style
 The module facilities of Fortran 	� enable
the use of data abstractions in software design
 These facilities support the speci�ca�
tion of modules� including user�de�ned data types and structures� de�ned operators
on those types� and generic procedures for implementing common algorithms to be

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

used on a variety of data structures
 In addition to modules� the de�nition of in�
terface blocks enables the application programmer to specify subprogram interfaces
explicitly� allowing a high quality compiler to use the information speci�ed to provide
better checking and optimization at the interface to other subprograms

� Additional intrinsic procedures
 Fortran 	� includes the de�nition of a large number of
new intrinsic procedures
 Many of these support mathematical operations on arrays�
including the construction and transformation of arrays
 Also� there are numerical
accuracy intrinsic procedures designed to support numerical programming� and bit
manipulation intrinsic procedures derived from MIL�STD�����

HPF conforms to Fortran 	� except for additional restrictions placed on the use of
storage and sequence association
 Because of the e�ort involved in producing a full Fortran
	� compiler� HPF is de�ned at two levels� Subset HPF and full HPF
 Subset HPF is a
subset of Fortran 	� with a subset of the HPF extensions
 HPF is Fortran 	� �with the
restrictions noted in Section �� with all of the HPF language features

��� The HPF Model

An important goal of HPF is to achieve code portability across a variety of parallel ma�
chines
 This requires not only that HPF programs compile on all target machines� but also
that a highly�e�cient HPF program on one parallel machine be able to achieve reason�
ably high e�ciency on another parallel machine with a comparable number of processors

Otherwise� the e�ort spent by a programmer to achieve high performance on one machine
would be wasted when the HPF code is ported to another machine
 Although SIMD proces�
sor arrays� MIMD shared�memory machines� and MIMD distributed�memory machines use
very di�erent low�level primitives� there is broad similarity with respect to the fundamental
factors that a�ect the performance of parallel programs on these machines
 Thus� achieving
high e�ciency across di�erent parallel machines with the same high level HPF program is a
feasible goal
 While describing a full execution model is beyond the scope of this language
speci�cation� we focus here on two fundamental factors and show how HPF relates to them�

� The parallelism inherent in a computation� and

� The communication inherent in a computation

The quantitative cost associated with each of these factors is machine dependent� vendors
are strongly encouraged to publish estimates of these costs in their system documentation

Note that� like any execution model� these may not re�ect all of the factors relevant to
performance on a particular architecture

The parallelism in a computation can be expressed in HPF by the following constructs�

� Fortran 	� array expressions and assignment �including masked assignment in the
WHERE statement��

� Array intrinsics� including both the Fortran 	� intrinsics and the new intrinsic func�
tions�

� The FORALL statement� and

� The INDEPENDENT assertion on DO loops

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE HPF MODEL ��

These features allow a user to specify explicitly potential data parallelism in a machine�
independent fashion
 The purpose of this section is to clarify some of the performance
implications of these features� particularly when they are combined with the HPF data
distribution features
 In addition� EXTRINSIC procedures provide an escape mechanism in
HPF to allow the use of e�cient machine�speci�c primitives by using another programming
paradigm
 Because the resulting model of computation is inherently outside the realm of
data�parallel programming� we will not discuss this feature further in this section

A compiler may choose not to exploit information about parallelism� for example be�
cause of lack of resources or excessive overhead
 In addition� some compilers may detect
parallelism in sequential code by use of dependence analysis
 This document does not
discuss such techniques

The interprocessor or inter�memory data communication that occurs during the execu�
tion of an HPF program is partially determined by the HPF data distribution directives in
Section �
 The compiler will determine the actual mapping of data objects to the physical
machine and will be guided in this by the directives
 The actual mapping and the com�
putation speci�ed by the program determine the needed actual communication� and the
compiler will generate the code required to perform it
 In general� if two data references
in an expression or assignment are mapped to di�erent processors or memory regions then
communication is required to bring them together
 The following examples illustrate how
this may occur

Clearly� there is a tradeo� between parallelism and communication
 If all the data are
mapped to one processor�s local memory� then a sequential computation with no commu�
nication is possible� although the memory of one processor may not su�ce to store all the
program�s data
 Alternatively� mapping data to multiple processors� local memories may
permit computational parallelism but also may introduce communications overhead
 The
optimal resolution of such con�icts is very dependent on the architecture and underlying
system software

The following examples illustrate simple cases of communication� parallelism� and their
interaction
 Note that the examples are chosen for illustration and do not necessarily re�ect
e�cient data layouts or computational methods for the program fragments shown
 Rather�
the intent is to derive lower bounds on the amount of communication that are needed to
implement the given computations as they are written
 This gives some indication of the
maximum possible e�ciency of the computations on any parallel machine
 A particular
system may not achieve this e�ciency due to analysis limitations� or may disregard these
bounds if other factors determine the performance of the code

����� Simple Communication Examples

The following examples illustrate the communication requirements of scalar assignment
statements
 The purpose is to illustrate the implications of data distribution speci�ca�
tions on communication requirements for parallel execution
 The explanations given do not
necessarily re�ect the actual compilation process

Consider the following statements�

REAL a������	 b������	 c������	 x�
���	 y���
���

INTEGER inx������

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs �� a	 b	 inx

�HPF
 DISTRIBUTE �CYCLIC� ONTO procs �� c

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

�HPF
 ALIGN x�i� WITH y�i���

���

a�i� � b�i� � Assignment �

x�i� � y�i��� � Assignment �

a�i� � c�i� � Assignment �

a�i� � a�i��� � a�i� � a�i��� � Assignment �

c�i� � c�i��� � c�i� � c�i��� � Assignment

x�i� � y�i� � Assignment �

a�i� � a�inx�i�� � b�inx�i�� � Assignment �

In this example� the PROCESSORS directive speci�es a linear arrangement of �� pro�
cessors
 The DISTRIBUTE directives recommend to the compiler that the arrays a� b� and
inx should be distributed among the �� processors with blocks of ��� contiguous elements
per processor
 The array c is to be cyclically distributed among the processors with c����
c����� � � � � c����� mapped onto processor procs���� c���� c����� � � � � c����� mapped
onto processor procs���� and so on
 The complete mapping of arrays x and y onto the
processors is not speci�ed� but their relative alignment is indicated by the ALIGN directive

The ALIGN statement causes x�i� and y�i��� to be stored on the same processor for all
values of i� regardless of the actual distribution chosen by the compiler for x and y �y���
and y��� are not aligned with any element of x�
 The PROCESSORS� DISTRIBUTE� and ALIGN
directives are discussed in detail in Section �

In Assignment � �a�i� � b�i��� the identical distribution of a and b ensures that for
all i� a�i� and b�i� are mapped to the same processor
 Therefore� the statement requires
no communication

In Assignment
 �x�i� � y�i����� there is no inherent communication
 In this case�
the relative alignment of the two arrays matches the assignment statement for any actual
distribution of the arrays

Although Assignment � �a�i� � c�i�� looks very similar to the �rst assignment� the
communication requirements are very di�erent due to the di�erent distributions of a and
c
 Array elements a�i� and c�i� are mapped to the same processor for only ��� of the
possible values of i
 �This can be seen by inspecting the de�nitions of BLOCK and CYCLIC

in Section �
� The elements are located on the same processor if and only if b�i� ������c
�i � �� mod ��
 For example� the assignment involves no inherent communication �i
e
�
both a�i� and c�i� are on the same processor� if i � or i ��
� but does require
communication if i

In Assignment � �a�i� � a�i��� � a�i� � a�i����� the references to array a are all
on the same processor for about 	�� of the possible values of i
 The exceptions to this are
i ���k for any k ��
� � � � � 	� �when a�i� and a�i��� are on procs�k� and a�i��� is
on procs�k���� and i ���k ! � for any k ��
� � � � � 	 �when a�i� and a�i��� are on
procs�k��� and a�i��� is on procs�k��
 Thus� except for �boundary� elements on each
processor� this statement requires no inherent communication

Assignment �� c�i� � c�i��� � c�i� � c�i���� while super�cially similar to Assign�
ment �� has very di�erent communication behavior
 Because the distribution of c is CYCLIC
rather than BLOCK� the three references c�i�� c�i���� and c�i��� are mapped to three
distinct processors for any value of i
 Therefore� this statement requires communication for
at least two of the right�hand side references� regardless of the implementation strategy

The �nal two assignments have very limited information regarding the communication
requirements
 In Assignment � �x�i� � y�i�� the only information available is that x�i�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE HPF MODEL ��

and y�i��� are on the same processor� this has no logical consequences for the relationship
between x�i� and y�i�
 Thus� nothing can be said regarding communication in the state�
ment without further information
 In Assignment � �a�i� � a�inx�i�� � b�inx�i����
it can be proved that a�inx�i�� and b�inx�i�� are always mapped to the same proces�
sor
 Similarly� it is easy to deduce that a�i� and inx�i� are mapped together
 Without
knowledge of the values stored in inx� however� the relation between a�i� and a�inx�i��

is unknown� as is the relationship between a�i� and b�inx�i��

The inherent communication for a sequence of assignment statements is the union of

the communication requirements for the individual statements
 An array element used in
several statements contributes to the total inherent �i
e
 minimal� communication only once
�assuming an optimizing compiler that eliminates common subexpressions�� unless the array
element may have been changed since its last use
 For example� consider the code below�

REAL a������	 b������	 c������

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �CYCLIC� ONTO procs �� a	 b	 c

���

a�i� � b�i��� � Statement �

b�i� � c�i��� � Statement �

b�i��� � � � a�i��� � Statement �

c�i� � a�i��� � b�i��� � c�i��� � Statement �

Statements � and
 each require one array element to be communicated for any value of i

Statement � has no inherent communication
 To simplify the discussion� assume that all
four statements are executed on the processor storing the array element being assigned
 �

Then� for Statement ��

� Element a�i��� induces communication� since it is not local and was not communi�
cated earlier�

� Element b�i��� induces communication� since it is nonlocal and has changed since
its last use� and

� Element c�i��� does not induce new communication� since it was used in statement

and not changed since

Thus� the minimum total inherent communication in this program fragment is four
array elements
 It is important to note that this is a minimum
 Some compilation strategies
may produce communication for element c�i��� in the last statement

����� Aggregate Communication Examples

The following examples illustrate the communication implications of some more complex
constructs
 The purpose is to show how communication can be quanti�ed� but again the
explanations do not necessarily re�ect the actual compilation process
 It is important to
note that the communication requirement for each statement in this section is estimated
without considering the surrounding context

Consider the following statements�

�This is an optimal strategy for this example� although not for all programs�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

REAL a������	 b������	 c������

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs �� a	 b

�HPF
 DISTRIBUTE �CYCLIC� ONTO procs �� c

���

FORALL � i � ������ � a�i� � b�i� � Forall �

FORALL � i � ������ � a�i� � c�i� � Forall �

� Forall �

FORALL � i � ����� � a�i� � a�i��� � a�i� � a�i���

� Forall �

FORALL � i � ����� � c�i� � c�i��� � c�i� � c�i���

The FORALL statement conceptually evaluates its right�hand side for all values of its in�
dexes� then assigns to the left�hand side for all index values
 These semantics allow parallel
execution
 Section � describes the FORALL statement in detail
 The aggregate communica�
tion requirements of these statements follow directly from the inherent communication of
the corresponding examples in Section

�

In Forall �� there is no inherent communication for any value of i� therefore� there is
no communication for the aggregate construct

In Forall
� 	�� of the references to c�i� are mapped to a processor di�erent from that
containing the corresponding a�i�
 The aggregate communication must therefore transfer
	�� array elements
 Furthermore� analysis based on the de�nitions of BLOCK and CYCLIC

shows that to update the values of a owned locally� each processor requires data from every
other processor
 For example� procs��� must somehow receive�

� Elements f
� �
�

� � � � � 	
g from procs����

� Elements f�� ���
�� � � � � 	�g from procs���� and

� So on for the other processors

This produces an all�to�all communication pattern similar to the pattern for transposing a

�dimensional array with certain distributions
 The details of implementing such a pattern
are very machine dependent and beyond the scope of this standard

In Forall �� the array references are all mapped to the same processor except for the
�rst and last values of i on each processor
 The aggregate communication requirement
is therefore two array elements per processor �except procs��� and procs������ or ��
elements total
 Each processor must receive values from its left and right neighbors �again�
except for procs��� and procs�����
 This leads to a simple shift communication pattern
�without wraparound�

In Forall �� the update of each array element requires two o��processor values� each
from a di�erent processor
 The total communication volume is therefore �		� array ele�
ments
 Further analysis reveals that all elements on processor procs�k� require elements
from procs�k � �� and procs�k � �� �MODULO�k � �	 ��� � � and MODULO�k	 ��� �

� respectively� so called �clock arithmetic��
 This leads to a massive shift communication
pattern �with wraparound�

The aggregate communication for other constructs can be computed similarly
 Iterative
constructs generate the sum of the inherent communication for nested statements� while

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE HPF MODEL ��

conditionals require at least the communication needed by the conditional branch that is
taken
 Repeated communication of the same array elements in any construct is not necessary
unless the values of those elements may change

Array expressions require an analysis similar to that for FORALL statements
 In these
cases� the inherent communication for each element of the result can be analyzed and the
aggregate formed on that basis
 The following statements have the same communication
requirements as the above FORALL statements�

REAL a������	 b������	 c������

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs �� a	 b

�HPF
 DISTRIBUTE �CYCLIC� ONTO procs �� c

���

� Assignment � �equivalent to Forall ��

a��� � b���

� Assignment � �equivalent to Forall ��

a�������� � c��������

� Assignment � �equivalent to Forall ��

a������� � a������� � a������� � a��������

� Assignment � �equivalent to Forall ��

c������� � c������� � c������� � c��������

Some array intrinsics have inherent communication costs as well
 For example� consider�

REAL a������	 b������	 scalar

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs �� a	 b

���

� Intrinsic �

scalar � SUM� a �

� Intrinsic �

a � SPREAD� b���	 DIM��	 NCOPIES����� �

� Intrinsic �

a � CSHIFT�a	��� � a � CSHIFT�a	��

In general� the inherent communication derives from the mathematical de�nition of the
function
 For example� the inherent communication for computing SUM is one element for
each processor storing part of the operand� minus one
 �Further communication may be
needed to store the result
� The optimal communication pattern is very machine�speci�c

Similar remarks apply to any accumulation operation� pre�x and su�x intrinsics may require
a larger volume based on the distribution
 The SPREAD operation above requires a broadcast
from procs��� to all processors� which may take advantage of available hardware
 The
CSHIFT operations produce a shift communication pattern �with wraparound�
 This list of
examples illustrating array intrinsics is not meant to be exhaustive

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

There are other examples of situations in which nonaligned data must be communi�
cated�

REAL a������	 c����	����	 d����	����

�HPF
 PROCESSORS procs����

�HPF
 ALIGN c�i	j� WITH d�j	i�

�HPF
 DISTRIBUTE �BLOCK� ONTO procs �� a

�HPF
 DISTRIBUTE �BLOCK	�� ONTO procs �� d

���

a������� � a������� � a���������

c � c � d

In the �rst assignment� the use of di�erent strides in the two references to a on the right�
hand side will cause communication
 The second assignment statement requires either a
transpose of c or d or some complex communication pattern overlapping computation and
communication

A REALIGN directive may change the location of every element of the array
 This will
cause communication of all elements that change their home processor� in some compilation
schemes� data will also be moved to new locations on the same processor
 The communica�
tion volume is the same as an array assignment from an array with the original alignment
to another array with the new alignment
 The REDISTRIBUTE statement changes the dis�
tribution for every array aligned to the operand of the REDISTRIBUTE
 Therefore� its cost
is similar to the cost of a REALIGN on many arrays simultaneously
 Compiler analysis may
sometimes detect that data movement is not needed because an array has no values that
could be accessed� such analysis and the resulting optimizations are beyond the scope of
this document

����� Interaction of Communication and Parallelism

The examples in Sections

� and

 were chosen so that parallelism and communication
were not in con�ict
 The purpose of this section is to show cases where there is a tradeo�

The best implementation of all these examples will be machine dependent
 As in the other
sections� these examples do not necessarily re�ect good programming practice

Analyzing communication as in Sections

� and

 does not completely determine
a program�s performance
 Consider the code�

REAL x�����	 y�����

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs�� x	 y

���

DO k � �	 ��

x�k� � y�k� � �x�k��� � x�k� � x�k���� � ���

y�k� � x�k� � �y�k��� � y�k��� � y�k��� � y�k���� � ���

ENDDO

Only a few values need be communicated at the boundary of each processor
 However�
every iteration of the DO loop uses data computed on previous iterations for the references
x�k���� y�k���� and y�k���
 Therefore� although there is little inherent communication�
the computation will run sequentially

In contrast� consider the following code�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� THE HPF MODEL ��

REAL x�����	 y�����	 z�����

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs�� x	 y	 z

���

�HPF
 INDEPENDENT

DO k � �	 ��

x�k� � y�k� � �z�k��� � z�k� � z�k���� � ���

y�k� � x�k� � �z�k��� � z�k��� � z�k��� � z�k���� � ���

ENDDO

The INDEPENDENT directive asserts to the compiler that the iterations of the DO loop are
completely independent of each other and none of the data accessed in the loop by an
iteration is written by any other iteration
� Therefore� the loop has substantial potential
parallelism and is likely to execute much faster than the last example
 Section � describes
the INDEPENDENT directive in more detail

Assignment of work to processors may itself require communication
 Consider the
following code�

INTEGER indx������	 inv������

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK� ONTO procs �� indx	 inv

���

FORALL � j � ������ � inv�indx�j�� � j���

�Here� indx must be a permutation of the integers from � to ���� in order for the FORALL
to be well�de�ned
� Since the processor owning element inv�indx�j�� depends on the
values stored in indx� some data must be communicated simply to determine where the
results will be stored
 Two possible implementations of this are�

� Each processor calculates the squares for elements of indx that it owns and performs
a scatter operation to communicate those values to the elements of inv where the
�nal results are stored

� Each processor determines the owner of inv�indx�j�� for all elements of indx that
it owns and noti�es those processors
 Each processor then computes the right�hand
side for all elements for which it received noti�cation

In either case� nontrivial communication must be performed to distribute the work among
processors
 The optimal sharing scheme� its implementation� and its cost will be highly
architecture dependent

The parallelism in a section of code may con�ict with the distribution of data� thus
limiting the overall performance
 Consider the following code�

REAL a�����	�����	 b�����	�����

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �BLOCK	�� ONTO procs �� a	 b

���

DO i � �	 ����

a�i	�� � a�i	�� � �b�i	�������a�i��	��

ENDDO
�Many compilers would detect this without the assertion� What cases of implicit parallelism are detected

is highly compiler dependent and beyond the scope of this document�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

Here� each iteration of the DO loop has a potential parallelism of ����
 However� all elements
of a�i	�� and b�i	�� are located on the same processor
 Therefore� exploitation of any
of the potential parallelism will require scattering the data to other processors
 �This is
independent of the inherent communication required for the reference to a�i��	��
� There
are several implementation strategies available for the overall computation

� Redistribute a and b before the DO loop to achieve the e�ect of

�HPF
 DISTRIBUTE ��	BLOCK� ONTO procs �� a	 b

Redistribute back to the original distributions after the DO loop
 This allows parallel
updates of columns of a� at the cost of two all�to�all communication operations

� Group the columns of a into blocks� then operate on the blocks separately
 This
strategy can produce a pipelined e�ect� allowing substantial parallelism
 It sends
many small messages to the neighboring processor rather than one large message

� Execute the vector operations sequentially
 This results in totally sequential operation�
but avoids overhead from process start�up and small messages

This list is not exhaustive
 The optimal strategy will be highly machine dependent

There is often a choice regarding where the result of an intermediate array expression

will be stored� and di�erent choices may lead to di�erent communication performance

A straightforward implementation of the following code� for example� would require two
transposition �communication� operations�

REAL	 DIMENSION����	���� �� x	 y	 z

�HPF
 ALIGN WITH x �� y	 z

���

x � TRANSPOSE�y� � TRANSPOSE�z� � x

Despite two occurrences of the TRANSPOSE intrinsic� an optimizing compiler might implement
this as�

REAL	 DIMENSION����	���� �� x	 y	 z	 t�

�HPF
 ALIGN WITH x �� y	 z	 t�

���

t� � y � z

x � TRANSPOSE�t�� � x

with only one use of transposition

Choosing an intermediate storage location is sometimes more complex� however
 Con�

sider the following code�

REAL a������	 b������	 c������	 d������

INTEGER ix������

�HPF
 PROCESSORS procs����

�HPF
 DISTRIBUTE �CYCLIC� ONTO procs�� a	 b	 c	 d	 ix

���

a � b�ix� � c�ix� � d�ix�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� SYNTAX OF DIRECTIVES �	

and the following implementation strategies�

� Evaluate each element of the right�hand side on the processor where it will be stored

This strategy potentially requires fetching three values �the elements of b� c� and d�
for each element computed
 It always uses the maximum parallelism of the machine

� Evaluate each element of the right�hand side on the processor where the corresponding
elements of b�ix�� c�ix�� and d�ix� are stored
 Ignoring set�up costs� this potentially
communicates one result for each element computed
 If the values of ix are evenly
distributed� then it also uses the maximum machine parallelism

On the basis of communication� the second strategy is better by a factor of �� adding
additional terms can make this factor arbitrarily large
 However� that analysis does not
consider parallel execution costs
 If there are repeated values in ix� the second strategy
may produce poor load balance
 �For example� consider the case of ix�i� � �� for all i
�
Minimizing this cost is a compiler optimization and is outside the scope of this language
speci�cation

��� Syntax of Directives

HPF directives are consistent with Fortran 	� syntax in the following sense� if any
HPF directive were to be adopted as part of a future Fortran standard� the only change
necessary to convert an HPF program would be to replace the directive�origin with blanks

H
�� hpf�directive�line is directive�origin hpf�directive

H
�
 directive�origin is �HPF

or CHPF

or �HPF

H
�� hpf�directive is specification�directive
or executable�directive

H
�� specification�directive is processors�directive
or align�directive
or distribute�directive
or dynamic�directive
or inherit�directive
or template�directive
or combined�directive
or sequence�directive

H
�� executable�directive is realign�directive
or redistribute�directive
or independent�directive

Constraint� An hpf�directive�line cannot be commentary following another statement on
the same line

Constraint� A speci�cation�directive may appear only where a declaration�construct may
appear

Constraint� An executable�directive may appear only where an executable�construct may
appear

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

Constraint� An hpf�directive�line follows the rules of either Fortran 	� free form ��
�
�
��
or �xed form ��
�

�� comment lines� depending on the source form of the
surrounding Fortran 	� source form in that program unit
 ��
��

An hpf�directive is case insensitive and conforms to the rules for blanks in free source
form ��
�
��� even in an HPF program otherwise in �xed source form
 However an HPF�
conforming processor is not required to diagnose extra or missing blanks in an HPF directive

Note that� due to Fortran 	� rules� the directive�origin in free source form must be the
characters �HPF

 HPF directives may be continued� in which case each continued line
also begins with a directive�origin
 No statements may be interspersed within a continued
HPF�directive
 HPF directive lines must not appear within a continued statement
 HPF
directive lines may include trailing commentary

In either source form� the blanks in the adjacent keywords END FORALL and NO SEQUENCE

are optional

An example of an HPF directive continuation in free source form is�

�HPF
 ALIGN ANTIDISESTABLISHMENTARIANISM�I	J	K� �

�HPF
 WITH ORNITHORHYNCHUS�ANATINUS�J	K	I�

An example of an HPF directive continuation in �xed source form follows
 Observe
that column � must be blank� except when signifying continuation

�HPF
 ALIGN ANTIDISESTABLISHMENTARIANISM�I	J	K�

�HPF
�WITH ORNITHORHYNCHUS�ANATINUS�J	K	I�

This example shows an HPF directive continuation which is �universal� in that it can
be treated as either �xed source form or free source form
 Note that the ��� in the �rst
line is in column ��

�HPF
 ALIGN ANTIDISESTABLISHMENTARIANISM�I	J	K� �

�HPF
�WITH ORNITHORHYNCHUS�ANATINUS�J	K	I�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Data Alignment and Distribution

Directives

HPF data alignment and distributions directives allow the programmer to advise the com�
piler how to assign array elements to processor memories

��� Model

HPF adds directives to Fortran 	� to allow the user to advise the compiler on the allocation
of data objects to processor memories
 The model is that there is a two�level mapping
of data objects to memory regions� referred to as �abstract processors
� Data objects
�typically array elements� are �rst aligned relative to one another� this group of arrays is then
distributed onto a rectilinear arrangement of abstract processors
 �The implementation then
uses the same number� or perhaps some smaller number� of physical processors to implement
these abstract processors
 This mapping of abstract processors to physical processors is
implementation�dependent
�

The following diagram illustrates the model�

��
��

��
��

��
��

��
��

� � �

Arrays or

other objects

Group of

aligned objects

Abstract

processors as a

user�declared

Cartesian mesh

Physical

processors

ALIGN

�static� or

REALIGN

�dynamic�

DISTRIBUTE

�static� or

REDISTRIBUTE

�dynamic�

Optional

implementation�

dependent

directive

The underlying assumptions are that an operation on two or more data objects is
likely to be carried out much faster if they all reside in the same processor� and that it may
be possible to carry out many such operations concurrently if they can be performed on
di�erent processors

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

 SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Fortran 	� provides a number of features� notably array syntax� that make it easy
for a compiler to determine that many operations may be carried out concurrently
 The
HPF directives provide a way to inform the compiler of the recommendation that certain
data objects should reside in the same processor� if two data objects are mapped �via
the two�level mapping of alignment and distribution� to the same abstract processor� it
is a strong recommendation to the implementation that they ought to reside in the same
physical processor
 There is also a provision for recommending that a data object be stored
in multiple locations� which may complicate any updating of the object but makes it faster
for multiple processors to read the object

There is a clear separation between directives that serve as speci�cation statements and
directives that serve as executable statements �in the sense of the Fortran standards�
 Spec�
i�cation statements are carried out on entry to a program unit� as if all at once� only then
are executable statements carried out
 �While it is often convenient to think of speci�cation
statements as being handled at compile time� some of them contain speci�cation expres�
sions� which are permitted to depend on run�time quantities such as dummy arguments�
and so the values of these expressions may not be available until run time� speci�cally the
very moment that program control enters the scoping unit
�

The basic concept is that every array �indeed� every object� is created with some
alignment to an entity� which in turn has some distribution onto some arrangement of
abstract processors
 If the speci�cation statements contain explicit speci�cation directives
specifying the alignment of an array A with respect to another array B� then the distribution
of A will be dictated by the distribution of B� otherwise� the distribution of A itself may be
speci�ed explicitly
 In either case� any such explicit declarative information is used when
the array is created

Advice to implementors� This model gives a better picture of the actual amount
of work that needs to be done than a model that says �the array is created in some
default location� and then realigned and�or redistributed if there is an explicit direc�
tive
� Using ALIGN and DISTRIBUTE speci�cation directives doesn�t have to cause any
more work at run time than using the implementation defaults
 �End of advice to
implementors��

In the case of an allocatable object� we say that the object is created whenever it is
allocated
 Speci�cation directives for allocatable objects �and allocated pointer targets�
may appear in the speci�cation�part of a program unit� but take e�ect each time the array
is created� rather than on entry to the scoping unit

Alignment is considered an attribute �in the Fortran 	� sense� of a data object
 If an
object A is aligned �statically or dynamically� with an object B� which in turn is already
aligned to an object C� this is regarded as an alignment of A with C directly� with B serving
only as an intermediary at the time of speci�cation
 �This matters only in the case where
B is subsequently realigned� the result is that A remains aligned with C
� We say that A
is immediately aligned with B but ultimately aligned with C
 If an object is not explicitly
aligned with another object� we say that it is ultimately aligned with itself
 The alignment
relationships form a tree with everything ultimately aligned to the object at the root of the
tree� however� the tree is always immediately �collapsed� so that every object is related
directly to the root
 Any object that is not a root can be explicitly realigned but not
explicitly redistributed
 Any object that is a root can be explicitly redistributed but must
not be explicitly realigned if anything else is aligned to it

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� SYNTAX OF DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES
�

Every object which is the root of an alignment tree has an associated template or index
space
 Typically� this template has the same rank and size in each dimension as the object
associated with it
 �The most important exception to this rule is dummy arguments with
the INHERIT attribute� described in Section �
	
� We often refer to �the template for an
array�� which means the template of the object to which the array is ultimately aligned

�When an explicit TEMPLATE �see Section �
�� is used� this may be simply the template to
which the array is explicitly aligned
�

The distribution step of the HPF model technically applies to the template of an
array� although because of the close relationship noted above we often speak loosely of
the distribution of an array
 Distribution partitions the template among a set of abstract
processors according to a given pattern
 The combination of alignment �from arrays to
templates� and distribution �from templates to processors� thus determines the relationship
of an array to the processors� we refer to this relationship as the mapping of the array

�These remarks also apply to a scalar� which may be regarded as having an index space
whose sole position is indicated by an empty list of subscripts
�

Every object is created as if according to some complete set of speci�cation directives�
if the program does not include complete speci�cations for the mapping of some object� the
compiler provides defaults
 By default an object is not aligned with any other object� it is
ultimately aligned with itself
 The default distribution is implementation�dependent� but
must be expressible as explicit directives for that implementation
 �The distribution of a
sequential object must be expressible as explicit directives only if it is an aggregate cover
�see Section ��
� Identically declared objects need not be provided with identical default
distribution speci�cations� the compiler may� for example� take into account the contexts in
which objects are used in executable code
 The programmer may force identically declared
objects to have identical distributions by specifying such distributions explicitly
 �On the
other hand� identically declared processor arrangements are guaranteed to represent �the
same processors arranged the same way
� This is discussed in more detail in Section �
�
�

Once an object has been created� it can be remapped by realigning it or redistributing
an object to which it is ultimately aligned� but communication may be required in moving
the data around
 Redistributing an object causes all objects then ultimately aligned with
it also to be redistributed so as to maintain the alignment relationships

Sometimes it is desirable to consider a large index space with which several smaller
arrays are to be aligned� but not to declare any array that spans the entire index space

HPF allows one to declare a TEMPLATE� which is like an array whose elements have no
content and therefore occupy no storage� it is merely an abstract index space that can be
distributed and with which arrays may be aligned

By analogy with the Fortran 	� ALLOCATABLE attribute� HPF includes the attribute
DYNAMIC
 It is not permitted to REALIGN an array that has not been declared DYNAMIC

Similarly� it is not permitted to REDISTRIBUTE an array or template that has not been
declared DYNAMIC

��� Syntax of Data Alignment and Distribution Directives

Speci�cation directives in HPF have two forms� speci�cation statements� analogous to the
DIMENSION and ALLOCATABLE statements of Fortran 	�� and an attribute form analogous to
type declaration statements in Fortran 	� using the ���� punctuation

The attribute form allows more than one attribute to be described in a single directive

HPF goes beyond Fortran 	� in not requiring that the �rst attribute� or indeed any of them�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

be a type speci�er

For syntactic convenience� the executable directives REALIGN and REDISTRIBUTE also
come in two forms �statement form and attribute form� but may not be combined with
other attributes in a single directive

H��� combined�directive is combined�attribute�list �� entity�decl�list

H��
 combined�attribute is ALIGN align�attribute�stuff
or DISTRIBUTE dist�attribute�stuff
or DYNAMIC

or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION � explicit�shape�spec�list �

Constraint� The same combined�attribute must not appear more than once in a given
combined�directive

Constraint� If the DIMENSION attribute appears in a combined�directive� any entity to which
it applies must be declared with the HPF TEMPLATE or PROCESSORS type spec�
i�er

The following rules constrain the declaration of various attributes� whether in separate
directives or in a combined�directive

If the DISTRIBUTE attribute is present� then every name declared in the entity�decl�list
is considered to be a distributee and is subject to the constraints listed in section �
�

If the ALIGN attribute is present� then every name declared in the entity�decl�list is
considered to be an alignee and is subject to the constraints listed in section �
�

The HPF keywords PROCESSORS and TEMPLATE play the role of type speci�ers in
declaring processor arrangements and templates
 The HPF keywords ALIGN� DISTRIBUTE�
DYNAMIC� and INHERIT play the role of attributes
 Attributes referring to processor arrange�
ments� to templates� or to entities with other types �such as REAL� may be combined in an
HPF directive without having the type speci�er appear

No entity may be given a particular attribute more than once

Dimension information may be speci�ed after an object�name or in a DIMENSION at�
tribute
 If both are present� the one after the object�name overrides the DIMENSION attribute
�this is consistent with the Fortran 	� standard�
 For example� in�

�HPF
 TEMPLATE	DIMENSION���	��� �� A	B	C���	���	D

A� B� and D are ��� �� templates� C is �
� �

If a speci�cation expression includes a reference to the value of an element of an array
speci�ed in the same speci�cation�part� any explicit mapping or INHERIT attribute for the
array must be completely speci�ed in prior speci�cation�directives
 �This restriction is
inspired by and extends section �
�
�

 of the Fortran 	� standard� which states in part� If
a speci�cation expression includes a reference to the value of an element of an array speci�ed
in the same speci�cation�part� the array bounds must be speci�ed in a prior declaration

A comment on asterisks� The asterisk character ��� appears in the syntax rules for
HPF alignment and distribution directives in three distinct roles�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� DISTRIBUTE AND REDISTRIBUTE DIRECTIVES
�

� When a lone asterisk appears as a member of a parenthesized list� it indicates either
a collapsed mapping� wherein many elements of an array may be mapped to the same
abstract processor� or a replicated mapping� wherein each element of an array may
be mapped to many abstract processors
 See the syntax rules for align�source and
align�subscript �see Section �
�� and for dist�format �see Section �
��

� When an asterisk appears before a left parenthesis ��� or after the keyword WITH

or ONTO� it indicates that the directive constitutes an assertion about the current
mapping of a dummy argument on entry to a subprogram� rather than a request for a
desired mapping of that dummy argument
 This use of the asterisk may appear only
in directives that apply to dummy arguments �see Section �
���

� When an asterisk appears in an align�subscript�use expression� it represents the usual
integer multiplication operator

��� DISTRIBUTE and REDISTRIBUTE Directives

The DISTRIBUTE directive speci�es a mapping of data objects to abstract processors in a
processor arrangement
 For example�

REAL SALAMI�������

�HPF
 DISTRIBUTE SALAMI�BLOCK�

speci�es that the array SALAMI should be distributed across some set of abstract proces�
sors by slicing it uniformly into blocks of contiguous elements
 If there are �� processors�
the directive implies that the array should be divided into groups of
�� elements� with
SALAMI������� mapped to the �rst processor� SALAMI��������� mapped to the second
processor� and so on
 If there is only one processor� the entire array is mapped to that
processor as a single block of ����� elements

The block size may be speci�ed explicitly�

REAL WEISSWURST�������

�HPF
 DISTRIBUTE WEISSWURST�BLOCK��
���

This speci�es that groups of exactly
�� elements should be mapped to successive abstract
processors
 �There must be at least d������
��e �� abstract processors if the directive
is to be satis�ed
 The fortieth processor will contain a partial block of only �� elements�
namely WEISSWURST����
�������
�

HPF also provides a cyclic distribution format�

REAL DECK�OF�CARDS�
��

�HPF
 DISTRIBUTE DECK�OF�CARDS�CYCLIC�

If there are � abstract processors� the �rst processor will contain DECK OF CARDS���������
the second processor will contain DECK OF CARDS���
����� the third processor will contain
DECK OF CARDS���
����� and the fourth processor will contain DECK OF CARDS���
����

Successive array elements are dealt out to successive abstract processors in round�robin
fashion

Distributions may be speci�ed independently for each dimension of a multidimensional
array�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

INTEGER CHESS�BOARD��	��	 GO�BOARD���	���

�HPF
 DISTRIBUTE CHESS�BOARD�BLOCK	 BLOCK�

�HPF
 DISTRIBUTE GO�BOARD�CYCLIC	��

The CHESS BOARD array will be carved up into contiguous rectangular patches� which will
be distributed onto a two�dimensional arrangement of abstract processors
 The GO BOARD

array will have its rows distributed cyclically over a one�dimensional arrangement of abstract
processors
 �The ��� speci�es that GO BOARD is not to be distributed along its second axis�
thus an entire row is to be distributed as one object
 This is sometimes called �on�processor�
distribution
�

The REDISTRIBUTE directive is similar to the DISTRIBUTE directive but is considered
executable
 An array �or template� may be redistributed at any time� provided it has
been declared DYNAMIC �see Section �
��
 Any other arrays currently ultimately aligned
with an array �or template� when it is redistributed are also remapped to re�ect the new
distribution� in such a way as to preserve alignment relationships �see Section �
��
 �This
can require a lot of computational and communication e�ort at run time� the programmer
must take care when using this feature
�

The DISTRIBUTE directive may appear only in the speci�cation�part of a scoping unit

The REDISTRIBUTE directive may appear only in the execution�part of a scoping unit
 The
principal di�erence between DISTRIBUTE and REDISTRIBUTE is that DISTRIBUTE must con�
tain only a speci�cation�expr as the argument to a BLOCK or CYCLIC option� whereas in
REDISTRIBUTE such an argument may be any integer expression
 Another di�erence is that
DISTRIBUTE is an attribute� and so can be combined with other attributes as part of a
combined�directive� whereas REDISTRIBUTE is not an attribute �although a REDISTRIBUTE

statement may be written in the style of attributed syntax� using ���� punctuation�

Formally� the syntax of the DISTRIBUTE and REDISTRIBUTE directives is�

H��� distribute�directive is DISTRIBUTE distributee dist�directive�stuff

H��� redistribute�directive is REDISTRIBUTE distributee dist�directive�stuff
or REDISTRIBUTE dist�attribute�stuff �� distributee�list

H��� dist�directive�stuff is dist�format�clause � dist�onto�clause �

H��� dist�attribute�stuff is dist�directive�stuff
or dist�onto�clause

H��� distributee is object�name
or template�name

H��� dist�format�clause is � dist�format�list �

or � � dist�format�list �

or �

H��	 dist�format is BLOCK � � int�expr � �
or CYCLIC � � int�expr � �
or �

H��� dist�onto�clause is ONTO dist�target

H��� dist�target is processors�name
or � processors�name
or �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� DISTRIBUTE AND REDISTRIBUTE DIRECTIVES
�

Constraint� An object�name mentioned as a distributee must be a simple name and not a
subobject designator

Constraint� An object�name mentioned as a distributee may not appear as an alignee

Constraint� An object�namementioned as a distributeemay not have the POINTER attribute

Constraint� A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC
attribute �see Section �
��

Constraint� If a dist�format�list is speci�ed� its length must equal the rank of each distribu�
tee

Constraint� If both a dist�format�list and a processors�name appear� the number of elements
of the dist�format�list that are not ��� must equal the rank of the named
processor arrangement

Constraint� If a processors�name appears but not a dist�format�list� the rank of each dis�
tributee must equal the rank of the named processor arrangement

Constraint� If either the dist�format�clause or the dist�target in a DISTRIBUTE directive
begins with ��� then every distributee must be a dummy argument

Constraint� Neither the dist�format�clause nor the dist�target in a REDISTRIBUTEmay begin
with ���

Constraint� Any int�expr appearing in a dist�format of a DISTRIBUTE directive must be a
speci�cation�expr

Note that the possibility of a DISTRIBUTE directive of the form

�HPF
 DISTRIBUTE dist�attribute�stuff �� distributee�list

is covered by syntax rule H��� for a combined�directive

Examples�

�HPF
 DISTRIBUTE D��BLOCK�

�HPF
 DISTRIBUTE �BLOCK	�	BLOCK� ONTO SQUARE�� D�	D�	D�

The meanings of the alternatives for dist�format are given below

De�ne the ceiling division function CD�J	K� � �J�K����K �using Fortran integer arith�

metic with truncation toward zero
�
De�ne the ceiling remainder function CR�J	K� � J�K�CD�J	K�

The dimensions of a processor arrangement appearing as a dist�target are said to corre�

spond in left�to�right order with those dimensions of a distributee for which the corresponding
dist�format is not �
 In the example above� processor arrangement SQUARE must be two�
dimensional� its �rst dimension corresponds to the �rst dimensions of D�� D�� and D� and
its second dimension corresponds to the third dimensions of D�� D�� and D�

Let d be the size of a distributee in a certain dimension and let p be the size of the pro�
cessor arrangement in the corresponding dimension
 For simplicity� assume all dimensions
have a lower bound of �
 Then BLOCK�m� means that a distributee position whose index
along that dimension is j is mapped to an abstract processor whose index along the corre�
sponding dimension of the processor arrangement is CD�j	m� �note that m � p � d must

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

be true�� and is position number m�CR�j	m� among positions mapped to that abstract
processor
 The �rst distributee position in abstract processor k along that axis is position
number ��m��k���

The block size m must be a positive integer

BLOCK by de�nition means the same as BLOCK�CD�d	p��

CYCLIC�m� means that a distributee position whose index along that dimension is
j is mapped to an abstract processor whose index along the corresponding dimension of
the processor arrangement is ��MODULO�CD�j	m���	p�
 The �rst distributee position in
abstract processor k along that axis is position number ��m��k���

The block size m must be a positive integer

CYCLIC by de�nition means the same as CYCLIC���

CYCLIC�m� and BLOCK�m� imply the same distribution whenm�p � d� but BLOCK�m�

additionally asserts that the distribution will not wrap around in a cyclic manner� which
a compiler cannot determine at compile time if m is not constant
 Note that CYCLIC and
BLOCK �without argument expressions� do not imply the same distribution unless p � d� a
degenerate case in which the block size is � and the distribution does not wrap around

Suppose that we have �� abstract processors and an array of length ����

�HPF
 PROCESSORS SEDECIM����

REAL CENTURY�����

Distributing the array BLOCK �which in this case would mean the same as BLOCK�����

�HPF
 DISTRIBUTE CENTURY�BLOCK� ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

���

Distributing the array BLOCK����

�HPF
 DISTRIBUTE CENTURY�BLOCK���� ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� DISTRIBUTE AND REDISTRIBUTE DIRECTIVES
	

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

���

Distributing the array BLOCK��� is not HPF�conforming because �� �� � ���

Distributing the array CYCLIC �which means exactly the same as CYCLIC�����

�HPF
 DISTRIBUTE CENTURY�CYCLIC� ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

� � � �
 � � � � �� �� �� �� �� �
 ��

�� �� �� �� �� �� �� �� �
 �� �� �� �� �� �� ��

�� �� �
 �� �� �� �� �� �� �� �� �� �
 �� �� ��

��
�
�
�
�
�

�
�
�
� �� �� �� �� ��

�
 �� �� �� �� �� �� �� �� �� �
 �� �� �� �� ��

�� �� �� �� �
 �� �� �� �� �� �� �� �� �� �
 ��

�� �� �� ���

Distributing the array CYCLIC����

�HPF
 DISTRIBUTE CENTURY�CYCLIC���� ONTO SEDECIM

results in this mapping of array elements onto abstract processors�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Note that it is perfectly permissible for an array to be distributed so that some pro�
cessors have no elements
 Indeed� an array may be �distributed� so that all elements reside
on one processor
 For example�

�HPF
 DISTRIBUTE CENTURY�BLOCK��
��� ONTO SEDECIM

results in having only one non�empty block�a partially��lled one at that� having only ���
elements�on processor �� with processors
 through �� having no elements of the array

A DISTRIBUTE or REDISTRIBUTE directive must not cause any data object associated
with the distributee via storage association �COMMON or EQUIVALENCE� to be mapped such
that storage units of a scalar data object are split across more than one abstract processor

See Section � for further discussion of storage association

The statement form of a DISTRIBUTE or REDISTRIBUTE directive may be considered
an abbreviation for an attributed form that happens to mention only one distributee� for
example�

�HPF
 DISTRIBUTE distributee � dist�format�list � ONTO dist�target

is equivalent to

�HPF
 DISTRIBUTE � dist�format�list � ONTO dist�target �� distributee

Note that� to prevent syntactic ambiguity� the dist�format�clause must be present in the
statement form� so in general the statement form of the directive may not be used to
specify the mapping of scalars

If the dist�format�clause is omitted from the attributed form� then the language pro�
cessor may make an arbitrary choice of distribution formats for each template or array
 So
the directive

�HPF
 DISTRIBUTE ONTO P �� D�	D�	D�

means the same as

�HPF
 DISTRIBUTE ONTO P �� D�

�HPF
 DISTRIBUTE ONTO P �� D�

�HPF
 DISTRIBUTE ONTO P �� D�

to which a compiler� perhaps taking into account patterns of use of D�� D�� and D� within
the code� might choose to supply three distinct distributions such as� for example�

�HPF
 DISTRIBUTE D��BLOCK	 BLOCK� ONTO P

�HPF
 DISTRIBUTE D��CYCLIC	 BLOCK� ONTO P

�HPF
 DISTRIBUTE D��BLOCK����	CYCLIC� ONTO P

Then again� the compiler might happen to choose the same distribution for all three arrays

In either the statement form or the attributed form� if the ONTO clause is present� it

speci�es the processor arrangement that is the target of the distribution
 If the ONTO clause
is omitted� then a implementation�dependent processor arrangement is chosen arbitrarily
for each distributee
 So� for example�

REAL	 DIMENSION������ �� ARTHUR	 ARNOLD	 LINUS	 LUCY

�HPF
 PROCESSORS EXCALIBUR����

�HPF
 DISTRIBUTE �BLOCK� ONTO EXCALIBUR �� ARTHUR	 ARNOLD

�HPF
 DISTRIBUTE �BLOCK� �� LINUS	 LUCY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	� ALIGN AND REALIGN DIRECTIVES ��

causes the arrays ARTHUR and ARNOLD to have the same mapping� so that corresponding ele�
ments reside in the same abstract processor� because they are the same size and distributed
in the same way �BLOCK� onto the same processor arrangement �EXCALIBUR�
 However� LUCY
and LINUS do not necessarily have the same mapping because they might� depending on
the implementation� be distributed onto di�erently chosen processor arrangements� so cor�
responding elements of LUCY and LINUS might not reside on the same abstract processor

�The ALIGN directive provides a way to ensure that two arrays have the same mapping
without having to specify an explicit processor arrangement
�

��� ALIGN and REALIGN Directives

The ALIGN directive is used to specify that certain data objects are to be mapped in the
same way as certain other data objects
 Operations between aligned data objects are likely
to be more e�cient than operations between data objects that are not known to be aligned
�because two objects that are aligned are intended to be mapped to the same abstract
processor�
 The ALIGN directive is designed to make it particularly easy to specify explicit
mappings for all the elements of an array at once
 While objects can be aligned in some
cases through careful use of matching DISTRIBUTE directives� ALIGN is more general and
frequently more convenient

The REALIGN directive is similar to the ALIGN directive but is considered executable

An array �or template� may be realigned at any time� provided it has been declared DYNAMIC
�see Section �
�� Unlike redistribution �see Section �
��� realigning a data object does not
cause any other object to be remapped
 �However� realignment of even a single object� if
it is large� could require a lot of computational and communication e�ort at run time� the
programmer must take care when using this feature
�

The ALIGN directive may appear only in the speci�cation�part of a scoping unit
 The
REALIGN directive is similar but may appear only in the execution�part of a scoping unit

The principal di�erence between ALIGN and REALIGN is that ALIGN must contain only a
speci�cation�expr as a subscript or in a subscript�triplet� whereas in REALIGN such subscripts
may be any integer expressions
 Another di�erence is that ALIGN is an attribute� and so
can be combined with other attributes as part of a combined�directive� whereas REALIGN is
not an attribute �although a REALIGN statement may be written in the style of attributed
syntax� using ���� punctuation�

Formally� the syntax of ALIGN and REALIGN is as follows�

H��
 align�directive is ALIGN alignee align�directive�stuff

H��� realign�directive is REALIGN alignee align�directive�stuff
or REALIGN align�attribute�stuff �� alignee�list

H��� align�directive�stuff is � align�source�list � align�with�clause

H��� align�attribute�stuff is � � align�source�list � � align�with�clause

H��� alignee is object�name

H��� align�source is �

or �

or align�dummy

H��� align�dummy is scalar�int�variable

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Constraint� An object�name mentioned as an alignee must be a simple name and not a
subobject designator

Constraint� An object�name mentioned as an alignee may not appear as a distributee

Constraint� An object�name mentioned as an alignee may not have the POINTER attribute

Constraint� Any alignee that appears in a REALIGN directive must have the DYNAMIC at�
tribute �see Section �
��

Constraint� If the align�target speci�ed in the align�with�clause has the DYNAMIC

attribute� then each alignee must also have the DYNAMIC attribute

Constraint� If the alignee is scalar� the align�source�list �and its surrounding parentheses�
must not appear
 In this case the statement form of the directive is not allowed

Constraint� If the align�source�list is present� its length must equal the rank of the alignee

Constraint� An align�dummy must be a named variable

Constraint� An object may not have both the INHERIT attribute and the ALIGN attribute

�However� an object with the INHERIT attribute may appear as an alignee in
a REALIGN directive� provided that it does not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive
�

Note that the possibility of an ALIGN directive of the form

�HPF
 ALIGN align�attribute�stuff �� alignee�list

is covered by syntax rule H��� for a combined�directive

The statement form of an ALIGN or REALIGN directive may be considered an abbrevia�

tion of an attributed form that happens to mention only one alignee�

�HPF
 ALIGN alignee � align�source�list � WITH align�spec

is equivalent to

�HPF
 ALIGN � align�source�list � WITH align�spec �� alignee

If the align�source�list is omitted from the attributed form and the alignees are not
scalar� the align�source�list is assumed to consist of a parenthesized list of ��� entries� equal
in number to the rank of the alignees
 Similarly� if the align�subscript�list is omitted from
the align�spec in either form� it is assumed to consist of a parenthesized list of ��� entries�
equal in number to the rank of the align�target
 So the directive

�HPF
 ALIGN WITH B �� A�	 A�	 A�

means

�HPF
 ALIGN ��	�� WITH B��	�� �� A�	 A�	 A�

which in turn means the same as

�HPF
 ALIGN A���	�� WITH B��	��

�HPF
 ALIGN A���	�� WITH B��	��

�HPF
 ALIGN A���	�� WITH B��	��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	� ALIGN AND REALIGN DIRECTIVES ��

because an attributed�form directive that mentions more than one alignee is equivalent to
a series of identical directives� one for each alignee� all alignees must have the same rank

With this understanding� we will assume below� for the sake of simplifying the description�
that an ALIGN or REALIGN directive has a single alignee

Each align�source corresponds to one axis of the alignee� and is speci�ed as either ���
or ��� or a dummy variable�

� If it is ���� then positions along that axis will be spread out across the matching axis
of the align�spec �see below�

� If it is ���� then that axis is collapsed� positions along that axis make no di�erence
in determining the corresponding position within the align�target
 �Replacing the ���
with a dummy variable name not used anywhere else in the directive would have the
same e�ect� ��� is merely a convenience that saves the trouble of inventing a variable
name and makes it clear that no dependence on that dimension is intended
�

� A dummy variable is considered to range over all valid index values for that dimension
of the alignee

The WITH clause of an ALIGN has the following syntax�

H��	 align�with�clause is WITH align�spec

H�
� align�spec is align�target � � align�subscript�list � �
or � align�target � � align�subscript�list � �

H�
� align�target is object�name
or template�name

H�

 align�subscript is int�expr
or align�subscript�use
or subscript�triplet
or �

H�
� align�subscript�use is � � int�level�two�expr � add�op � align�add�operand
or align�subscript�use add�op int�add�operand

H�
� align�add�operand is � int�add�operand � � align�primary
or align�add�operand � int�mult�operand

H�
� align�primary is align�dummy
or � align�subscript�use �

H�
� int�add�operand is add�operand

H�
� int�mult�operand is mult�operand

H�
� int�level�two�expr is level���expr

Constraint� An object�name mentioned as an align�target must be a simple name and not
a subobject designator

Constraint� An align�target may not have the OPTIONAL attribute

Constraint� If the align�spec in an ALIGN directive begins with ��� then every alignee must
be a dummy argument

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Constraint� The align�spec in a REALIGN may not begin with ���

Constraint� Each align�dummy may appear at most once in an align�subscript�list

Constraint� An align�subscript�use expression may contain at most one occurrence of an
align�dummy

Constraint� An align�dummy may not appear anywhere in the align�spec except where
explicitly permitted to appear by virtue of the grammar shown above
 Para�
phrased� one may construct an align�subscript�use by starting with an align�
dummy and then doing additive and multiplicative things to it with any integer
expressions that contain no align�dummy

Constraint� A subscript in an align�subscript may not contain occurrences of any align�
dummy

Constraint� An int�add�operand� int�mult�operand� or int�level�two�expr must be of type
integer

The syntax rules for an align�subscript�use take account of operator precedence issues�
but the basic idea is simple� an align�subscript�use is intended to be a linear function of a
single occurrence of an align�dummy

For example� the following align�subscript�use expressions are valid� assuming that J�
K� and M are align�dummys and N is not an align�dummy�

J J�� ��K ��M N�M ������M

�J �J �K�� M����� M�N ������IOR��	����K�����
���

M�� N��M�N� ���J���
�K�� ������M�� ������K�����������

The following expressions are not valid align�subscript�use expressions�

J�J J�J ��K���K M��N�M� ��J���J�J ������K��������K

J�J J�K ��K ���M M�K K���M

K�J IOR�J	�� �K�� M����M� M��M�N� ������J���J�J�

The align�spec must contain exactly as many subscript�triplets as the number of colons
����� appearing in the align�source�list
 These are matched up in corresponding left�to�right
order� ignoring� for this purpose� any align�source that is not a colon and any align�subscript
that is not a subscript�triplet
 Consider a dimension of the alignee for which a colon appears
as an align�source and let the lower and upper bounds of that array be LA and UA
 Let
the corresponding subscript triplet be LT �UT �ST or its equivalent
 Then the colon could
be replaced by a new� as�yet�unused dummy variable� say J� and the subscript triplet by
the expression �J�LA��ST�LT without a�ecting the meaning of the directive
 Moreover�
the axes must conform� which means that

max��� UA� LA! �� max��� d�UT � LT ! ���STe�

must be true
 �This is entirely analogous to the treatment of array assignment
�
To simplify the remainder of the discussion� we assume that every colon in the align�

source�list has been replaced by new dummy variables in exactly the fashion just described�
and that every ��� in the align�source�list has likewise been replaced by an otherwise unused
dummy variable
 For example�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��	� ALIGN AND REALIGN DIRECTIVES ��

�HPF
 ALIGN A��	�	K	�	�	�� WITH B����	�	K��	���������

may be transformed into its equivalent

�HPF
 ALIGN A�I	J	K	L	M	N� WITH B�I�LBOUND�A	�����	 �

�HPF
 L�LBOUND�A	���LBOUND�B	��	K��	�M�LBOUND�A	
��������

with the attached requirements

SIZE�A	�� �EQ� UBOUND�B	�����

SIZE�A	�� �EQ� SIZE�B	��

SIZE�A	
� �EQ� ������������

Thus we need consider further only the case where every align�source is a dummy variable
and no align�subscript is a subscript�triplet

Each dummy variable is considered to range over all valid index values for the cor�
responding dimension of the alignee
 Every combination of possible values for the index
variables selects an element of the alignee
 The align�spec indicates a corresponding element
�or section� of the align�target with which that element of the alignee should be aligned� this
indication may be a function of the index values� but the nature of this function is syntac�
tically restricted �as discussed above� to linear functions in order to limit the complexity of
the implementation
 Each align�dummy variable may appear at most once in the align�spec
and only in certain rigidly prescribed contexts
 The result is that each align�subscript ex�
pression may contain at most one align�dummy variable and the expression is constrained
to be a linear function of that variable
 �Therefore skew alignments are not possible
�

An asterisk ��� as an align�subscript indicates a replicated representation
 Each ele�
ment of the alignee is aligned with every position along that axis of the align�target

Rationale� It may seem strange to use ��� to mean both collapsing and replication�
the rationale is that ��� always stands conceptually for a dummy variable that appears
nowhere else in the statement and ranges over the set of indices for the indicated
dimension
 Thus� for example�

�HPF
 ALIGN A��� WITH D��	��

means that a copy of A is aligned with every column of D� because it is conceptually
equivalent to

for every legitimate index j	 align A��� with D��	j�

just as

�HPF
 ALIGN A��	�� WITH D���

is conceptually equivalent to

for every legitimate index j	 align A��	j� with D���

Note� however� that while HPF syntax allows

�HPF
 ALIGN A��	�� WITH D���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

to be written in the alternate form

�HPF
 ALIGN A��	J� WITH D���

it does not allow

�HPF
 ALIGN A��� WITH D��	��

to be written in the alternate form

�HPF
 ALIGN A��� WITH D��	J�

because that has another meaning �only a variable appearing in the align�source�list
following the alignee is understood to be an align�dummy� so the current value of the
variable J is used� thus aligning A with a single column of D�

Replication allows an optimizing compiler to arrange to read whichever copy is closest

�Of course� when a replicated data object is written� all copies must be updated� not
just one copy
 Replicated representations are very useful for use as small lookup
tables� where it is much faster to have a copy in each physical processor but without
giving it an extra dimension that is logically unnecessary to the algorithm
� �End of
rationale��

By applying the transformations given above� all cases of an align�subscript may be
conceptually reduced to either an int�expr �not involving an align�dummy� or an align�
subscript�use and the align�source�listmay be reduced to a list of index variables with no ���
or ���
 An align�subscript�list may then be evaluated for any speci�c combination of values
for the align�dummy variables simply by evaluating each align�subscript as an expression

The resulting subscript values must be legitimate subscripts for the align�target
 �This
implies that the alignee is not allowed to �wrap around� or �extend past the edges� of an
align�target
� The selected element of the alignee is then considered to be aligned with the
indicated element of the align�target� more precisely� the selected element of the alignee is
considered to be ultimately aligned with the same object with which the indicated element
of the align�target is currently ultimately aligned �possibly itself�

Once a relationship of ultimate alignment is established� it persists� even if the ultimate
align�target is redistributed� unless and until the alignee is realigned by a REALIGN directive�
which is permissible only if the alignee has the DYNAMIC attribute

More examples of ALIGN directives�

INTEGER D��N�

LOGICAL D��N	N�

REAL	 DIMENSION�N	N��� X	A	B	C	AR�	AR�A	P	Q	R	S

�HPF
 ALIGN X��	�� WITH D����

�HPF
 ALIGN ��	�� WITH D��� A	B	C	AR�	AR�A

�HPF
 ALIGN WITH D�	 DYNAMIC�� P	Q	R	S

Note that� in a alignee�list� the alignees must all have the same rank but need not all have
the same shape� the extents need match only for dimensions that correspond to colons in the
align�source�list
 This turns out to be an extremely important convenience� one of the most
common cases in current practice is aligning arrays that match in distributed ��parallel��
dimensions but may di�er in collapsed ��on�processor�� dimensions�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
� DYNAMIC DIRECTIVE ��

REAL A��	N�	 B��	N�	 C���	N�	 Q�N�

�HPF
 DISTRIBUTE Q�BLOCK�

�HPF
 ALIGN ��	�� WITH Q�� A	B	C

Here there are processors �perhaps N of them� and arrays of di�erent sizes ��� �� ��� within
each processor are required
 As far as HPF is concerned� the numbers �� �� and �� may be
di�erent� because those axes will be collapsed
 Thus array elements with indices di�ering
only along that axis will all be aligned with the same element of Q �and thus be speci�ed
as residing in the same processor�

In the following examples� each directive in the group means the same thing� assuming
that corresponding axis upper and lower bounds match�

�Second axis of X is collapsed

�HPF
 ALIGN X��	�� WITH D����

�HPF
 ALIGN X�J	�� WITH D��J�

�HPF
 ALIGN X�J	K� WITH D��J�

�Replicated representation along second axis of D�

�HPF
 ALIGN X��	�� WITH D���	�	��

�HPF
 ALIGN X�J	K� WITH D��J	�	K�

�Transposing two axes

�HPF
 ALIGN X�J	K� WITH D��K	J�

�HPF
 ALIGN X�J	�� WITH D���	J�

�HPF
 ALIGN X��	K� WITH D��K	��

�But there isn�t any way to get rid of �both� index variables�

� the subscript�triplet syntax alone cannot express transposition�

�Reversing both axes

�HPF
 ALIGN X�J	K� WITH D��M�J��	N�K���

�HPF
 ALIGN X��	�� WITH D��M�����	N������

�Simple case

�HPF
 ALIGN X�J	K� WITH D��J	K�

�HPF
 ALIGN X��	�� WITH D���	��

�HPF
 ALIGN �J	K� WITH D��J	K��� X

�HPF
 ALIGN ��	�� WITH D���	���� X

�HPF
 ALIGN WITH D��� X

��� DYNAMIC Directive

The DYNAMIC attribute speci�es that an object may be dynamically realigned or redis�
tributed

H�
	 dynamic�directive is DYNAMIC alignee�or�distributee�list

H��� alignee�or�distributee is alignee
or distributee

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

Constraint� An object in COMMON may not be declared DYNAMIC and may not be aligned to
an object �or template� that is DYNAMIC
 �To get this kind of e�ect� Fortran 	�
modules must be used instead of COMMON blocks
�

Constraint� An object with the SAVE attribute may not be declared DYNAMIC and may not
be aligned to an object �or template� that is DYNAMIC

A REALIGN directive may not be applied to an alignee that does not have the DYNAMIC
attribute
 A REDISTRIBUTE directive may not be applied to a distributee that does not have
the DYNAMIC attribute

A DYNAMIC directive may be combined with other directives� with the attributes stated
in any order� consistent with the Fortran 	� attribute syntax

Examples�

�HPF
 DYNAMIC A	B	C	D	E

�HPF
 DYNAMIC�� A	B	C	D	E

�HPF
 DYNAMIC	 ALIGN WITH SNEEZY�� X	Y	Z

�HPF
 ALIGN WITH SNEEZY	 DYNAMIC�� X	Y	Z

�HPF
 DYNAMIC	 DISTRIBUTE�BLOCK	 BLOCK� �� X	Y

�HPF
 DISTRIBUTE�BLOCK	 BLOCK�	 DYNAMIC �� X	Y

The �rst two examples mean exactly the same thing
 The next two examples mean exactly
the same second thing
 The last two examples mean exactly the same third thing

The three directives

�HPF
 TEMPLATE A���	���	B���	���	C���	���	D���	���

�HPF
 DISTRIBUTE�BLOCK	 BLOCK� ONTO P�� A	B	C	D

�HPF
 DYNAMIC A	B	C	D

may be combined into a single directive as follows�

�HPF
 TEMPLATE	 DISTRIBUTE�BLOCK	 BLOCK� ONTO P	 �

�HPF
 DIMENSION���	���	DYNAMIC �� A	B	C	D

��	 Allocatable Arrays and Pointers

A variable with the POINTER or ALLOCATABLE attribute may appear as an alignee in an
ALIGN directive or as a distributee in a DISTRIBUTE directive
 Such directives do not take
e�ect immediately� however� they take e�ect each time the array is allocated by an ALLOCATE
statement� rather than on entry to the scoping unit
 The values of all speci�cation expres�
sions in such a directive are determined once on entry to the scoping unit and may be used
multiple times �or not at all�
 For example�

SUBROUTINE MILLARD�FILLMORE�N	M�

REAL	 ALLOCATABLE	 DIMENSION��� �� A	 B

�HPF
 ALIGN B�I� WITH A�I�N�

�HPF
 DISTRIBUTE A�BLOCK�M����

N � ��

M � ��

ALLOCATE�A�����

ALLOCATE�B�����

���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ALLOCATABLE ARRAYS AND POINTERS �	

The values of the expressions N and M�� on entry to the subprogram are conceptually
retained by the ALIGN and DISTRIBUTE directives for later use at allocation time
 When
the array A is allocated� it is distributed with a block size equal to the retained value of
M��� not the value ��

 When the array B is allocated� it is aligned relative to A according
to the retained value of N� not its new value ��

Note that it would have been incorrect in the MILLARD FILLMORE example to perform
the two ALLOCATE statements in the opposite order
 In general� when an object X is created
it may be aligned to another object Y only if Y has already been created or allocated
 The
following example illustrates several related cases

SUBROUTINE WARREN�HARDING�P	Q�

REAL P���

REAL Q���

REAL R�SIZE�Q��

REAL	 ALLOCATABLE �� S���	T���

�HPF
 ALIGN P�I� WITH T�I� �Nonconforming

�HPF
 ALIGN Q�I� WITH �T�I� �Nonconforming

�HPF
 ALIGN R�I� WITH T�I� �Nonconforming

�HPF
 ALIGN S�I� WITH T�I�

ALLOCATE�S�SIZE�Q��� �Nonconforming

ALLOCATE�T�SIZE�Q���

The ALIGN directives are not HPF�conforming because the array T has not yet been allocated
at the time that the various alignments must take place
 The four cases di�er slightly in their
details
 The arrays P and Q already exist on entry to the subroutine� but because T is not
yet allocated� one cannot correctly prescribe the alignment of P or describe the alignment of
Q relative to T
 �See Section �
�� for a discussion of prescriptive and descriptive directives
�
The array R is created on subroutine entry and its size can correctly depend on the SIZE
of Q� but the alignment of R cannot be speci�ed in terms of the alignment of T any more
than its size can be speci�ed in terms of the size of T
 It is permitted to have an alignment
directive for S in terms of T� because the alignment action does not take place until S is
allocated� however� the �rst ALLOCATE statement is nonconforming because S needs to be
aligned but at that point in time T is still unallocated

If an ALLOCATE statement is immediately followed by REDISTRIBUTE and�or REALIGN
directives� the meaning in principle is that the array is �rst created with the statically
declared alignment� then immediately remapped
 In practice there is an obvious optimiza�
tion� create the array in the processors to which it is about to be remapped� in a single
step
 HPF implementors are strongly encouraged to implement this optimization and HPF
programmers are encouraged to rely upon it
 Here is an example�

REAL	ALLOCATABLE��	�� �� TINKER	 EVERS

�HPF
 DYNAMIC �� TINKER	 EVERS

REAL	 POINTER �� CHANCE���

�HPF
 DISTRIBUTE�BLOCK�	DYNAMIC �� CHANCE

���

READ �	M	N

ALLOCATE�TINKER�N�M	N�M��

�HPF
 REDISTRIBUTE TINKER�CYCLIC	 BLOCK�

ALLOCATE�EVERS�N	N��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

�HPF
 REALIGN EVERS��	�� WITH TINKER�M��M	���M�

ALLOCATE�CHANCE��������

�HPF
 REDISTRIBUTE CHANCE�CYCLIC�

While CHANCE is by default always allocated with a BLOCK distribution� it should be possible
for a compiler to notice that it will immediately be remapped to a CYCLIC distribution

Similar remarks apply to TINKER and EVERS
 �Note that EVERS is mapped in a thinly�
spread�out manner onto TINKER� adjacent elements of EVERS are mapped to elements of
TINKER separated by a stride M
 This thinly�spread�out mapping is put in the lower left
corner of TINKER� because EVERS��	�� is mapped to TINKER�M	��
�

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee� align�target�
or distributee if and only if it is currently associated with a whole array� not an array section

One may remap an object by using a pointer as an alignee or distributee only if the object
was created by ALLOCATE but is not an ALLOCATABLE array

Any directive that remaps an object constitutes an assertion on the part of the program�
mer that the remainder of program execution would be una�ected if all pointers associated
with any portion of the object were instantly to acquire unde�ned pointer association status�
except for the one pointer� if any� used to indicate the object in the remapping directive

Advice to implementors� If HPF directives were ever to be absorbed as actual
Fortran statements� the previous paragraph could be written as �Remapping an object
causes all pointers associated with any portion of the object to have unde�ned pointer
association status� except for the one pointer� if any� used to indicate the object in
the remapping directive
� The more complicated wording here is intended to avoid
any implication that the remapping directives� in the form of structured comment
annotations� have any e�ect on the execution semantics� as opposed to the execution
speed� of the annotated program
� �End of advice to implementors��

When an array is allocated� it will be aligned to an existing template if there is an
explicit ALIGN directive for the allocatable variable
 If there is no explicit ALIGN directive�
then the array will be ultimately aligned with itself
 It is forbidden for any other object
to be ultimately aligned to an array at the time the array becomes unde�ned by reason
of deallocation
 All this applies regardless of whether the name originally used in the
ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the
POINTER attribute

��� PROCESSORS Directive

The PROCESSORS directive declares one or more rectilinear processor arrangements� specify�
ing for each one its name� its rank �number of dimensions�� and the extent in each dimension

It may appear only in the speci�cation�part of a scoping unit
 Every dimension of a proces�
sor arrangement must have nonzero extent� therefore a processor arrangement cannot be
empty

In the language of section ��
�

 of the Fortran 	� standard� processor arrangements
are local entities of class ���� therefore a processor arrangement may not have the same
name as a variable� named constant� internal procedure� etc
� in the same scoping unit

Names of processor arrangements obey the same rules for host and use association as other
names in the long list in section �

�

� of the Fortran 	� standard

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� PROCESSORS DIRECTIVE ��

A processor arrangement declared in a module has the default accessibility of the
module

Rationale� Because the name of a processor arrangement is not a �rst�class en�
tity in HPF� but must appear only in directives� it cannot appear in an access�stmt
�PRIVATE or PUBLIC�
 If directives ever become full��edged Fortran statements rather
than structured comments� then it would be appropriate to allow the accessibility of
a processor arrangement to be controlled by listing its name in an access�stmt
 �End
of rationale��

If two processor arrangements have the same shape� then corresponding elements of the
two arrangements are understood to refer to the same abstract processor
 �It is anticipated
that implementation�dependent directives provided by some HPF implementations could
overrule the default correspondence of processor arrangements that have the same shape
�

If directives collectively specify that two objects be mapped to the same abstract pro�
cessor at a given instant during the program execution� the intent is that the two objects
be mapped to the same physical processor at that instant

The intrinsic functions NUMBER OF PROCESSORS and PROCESSORS SHAPE may be used to
inquire about the total number of actual physical processors used to execute the program

This information may then be used to calculate appropriate sizes for the declared abstract
processor arrangements

H��� processors�directive is PROCESSORS processors�decl�list

H��
 processors�decl is processors�name � � explicit�shape�spec�list � �

H��� processors�name is object�name

Examples�

�HPF
 PROCESSORS P�N�

�HPF
 PROCESSORS Q�NUMBER�OF�PROCESSORS���	 �

�HPF
 R��	NUMBER�OF�PROCESSORS�����

�HPF
 PROCESSORS BIZARRO����������	�������

�HPF
 PROCESSORS SCALARPROC

If no shape is speci�ed� then the declared processor arrangement is conceptually scalar

Rationale� A scalar processor arrangement may be useful as a way of indicating
that certain scalar data should be kept together but need not interact strongly with
distributed data
 Depending on the implementation architecture� data distributed
onto such a processor arrangement may reside in a single �control� or �host� processor
�if the machine has one�� or may reside in an arbitrarily chosen processor� or may be
replicated over all processors
 For target architectures that have a set of computational
processors and a separate scalar host computer� a natural implementation is to map
every scalar processor arrangement onto the host processor
 For target architectures
that have a set of computational processors but no separate scalar �host� computer�
data mapped to a scalar processor arrangement might be mapped to some arbitrarily
chosen computational processor or replicated onto all computational processors
 �End
of rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

An HPF compiler is required to accept any PROCESSORS declaration in which the prod�
uct of the extents of each declared processor arrangement is equal to the number of physical
processors that would be returned by the call NUMBER OF PROCESSORS��
 It must also accept
all declarations of scalar PROCESSOR arrangements
 Other cases may be handled as well�
depending on the implementation

For compatibility with the Fortran 	� attribute syntax� an optional ���� may be
inserted
 The shape may also be speci�ed with the DIMENSION attribute�

�HPF
 PROCESSORS �� RUBIK��	�	��

�HPF
 PROCESSORS	 DIMENSION��	�	�� �� RUBIK

As in Fortran 	�� an explicit�shape�spec�list in a processors�decl will override an explicit
DIMENSION attribute�

�HPF
 PROCESSORS	 DIMENSION��	�	�� �� �

�HPF
 RUBIK	 RUBIKS�REVENGE��	�	��	 SOMA

Here RUBIKS REVENGE is �� �� � while RUBIK and SOMA are each �� �� �
 �By the rules
enunciated above� however� such a statement may not be completely portable because no
HPF language processor is required to handle shapes of total sizes
� and �� simultaneously
�

Returning from a subprogram causes all processor arrangements declared local to that
subprogram to become unde�ned
 It is not HPF�conforming for any array or template to be
distributed onto a processor arrangement at the time the processor arrangement becomes
unde�ned unless at least one of two conditions holds�

� The array or template itself becomes unde�ned at the same time by virtue of returning
from the subprogram

� Whenever the subprogram is called� the processor arrangement is always locally de�
�ned in the same way� with identical lower bounds� and identical upper bounds

Rationale� Note that the second condition is slightly less stringent than requiring
all expressions to be constant
 This allows calls to NUMBER OF PROCESSORS or
PROCESSORS SHAPE to appear without violating the condition
 �End of rationale��

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
processor arrangement� but because the �rst condition cannot hold for such variables �they
don�t become unde�ned�� the second condition must be observed
 This allows COMMON

variables to work properly through the customary strategy of putting identical declarations
in each scoping unit that needs to use them� while allowing the processor arrangements to
which they may be mapped to depend on the value returned by NUMBER OF PROCESSORS

Advice to implementors� It may be desirable to have a way for the user to spec�
ify at compile time the number of physical processors on which the program is to
be executed
 This might be speci�ed either by a implementation�dependent direc�
tive� for example� or through the programming environment �for example� as a UNIX
command�line argument�
 Such facilities are beyond the scope of the HPF speci�ca�
tion� but as food for thought we o�er the following illustrative hypothetical examples�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� TEMPLATE DIRECTIVE ��

�Declaration for multiprocessor by ABC Corporation

�ABC
 PHYSICAL PROCESSORS���

�Declaration for mpp by XYZ Incorporated

�XYZ
 PHYSICAL PROCESSORS��

���

�Declaration for hypercube machine by PDQ Limited

�PDQ
 PHYSICAL PROCESSORS��	�	�	�	�	�	�	�	�	��

�Declaration for two�dimensional grid machine by TLA GmbH

�TLA
 PHYSICAL PROCESSORS����	���

�One of the preceding might affect the following

�HPF
 PROCESSORS P�NUMBER�OF�PROCESSORS���

It may furthermore be desirable to have a way for the user to specify the precise
mapping of the processor arrangement declared in a PROCESSORS statement to the
physical processors of the executing hardware
 Again� this might be speci�ed either
by a implementation�dependent directive or through the programming environment
�for example� as a UNIX command�line argument�� such facilities are beyond the scope
of the HPF speci�cation� but as food for thought we o�er the following illustrative
hypothetical example�

�PDQ
 PHYSICAL PROCESSORS��	�	�	�	�	�	�	�	�	�	�	�	��

�HPF
 PROCESSORS G��	��	���

�PDQ
 MACHINE LAYOUT G��GRAY�����	�GRAY������	�BINARY���
	����

This might specify that the �rst dimension of G should use hypercube axes �� ��
 with
a Gray�code ordering� the second dimension should use hypercube axes � through ��
with a Gray�code ordering� and the third dimension should use hypercube axes �� ��
�� and �
 with a binary ordering
 �End of advice to implementors��

��
 TEMPLATE Directive

The TEMPLATE directive declares one or more templates� specifying for each the name� the
rank �number of dimensions�� and the extent in each dimension
 It must appear in the
speci�cation�part of a scoping unit

In the language of section ��
�

 of the Fortran 	� standard� templates are local entities
of class ���� therefore a template may not have the same name as a variable� named constant�
internal procedure� etc
� in the same scoping unit
 Template names obey the rules for host
and use association as other names in the list in section �

�

� of the Fortran 	� standard

A template declared in a module has the default accessibility of the module

Rationale� Because the name of a template is not a �rst�class entity in HPF� but must
appear only in directives� it cannot appear in an access�stmt �PRIVATE or PUBLIC�

If directives ever become full��edged Fortran statements rather than structured com�
ments� then it would be appropriate to allow the accessibility of a template to be
controlled by listing its name in an access�stmt
 �End of rationale��

A template is simply an abstract space of indexed positions� it can be considered as an
�array of nothings� �as compared to an �array of integers�� say�
 A template may be used
as an abstract align�target that may then be distributed

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

H��� template�directive is TEMPLATE template�decl�list

H��� template�decl is template�name � � explicit�shape�spec�list � �

H��� template�name is object�name

Examples�

�HPF
 TEMPLATE A�N�

�HPF
 TEMPLATE B�N	N�	 C�N	��N�

�HPF
 TEMPLATE DOPEY����	����	SNEEZY����	GRUMPY���	�	
�

If the ���� syntax is used� then the declared templates may optionally be distributed
in the same combined�directive
 In this case all templates declared by the directive must
have the same rank so that the DISTRIBUTE attribute will be meaningful
 The DIMENSION
attribute may also be used

�HPF
 TEMPLATE	 DISTRIBUTE�BLOCK	�� �� �

�HPF
 WHINEY���	���	MOPEY����	����

�HPF
 TEMPLATE	 DIMENSION���	��� �� BORED	WHEEZY	PERKY

Templates are useful in the particular situation where one must align several arrays
relative to one another but there is no need to declare a single array that spans the entire
index space of interest
 For example� one might want four N �N arrays aligned to the four
corners of a template of size �N ! ��� �N ! ���

�HPF
 TEMPLATE	 DISTRIBUTE�BLOCK	 BLOCK� �� EARTH�N��	N���

REAL	 DIMENSION�N	N� �� NW	 NE	 SW	 SE

�HPF
 ALIGN NW�I	J� WITH EARTH� I 	 J �

�HPF
 ALIGN NE�I	J� WITH EARTH� I 	J���

�HPF
 ALIGN SW�I	J� WITH EARTH�I��	 J �

�HPF
 ALIGN SE�I	J� WITH EARTH�I��	J���

Templates may also be useful in making assertions about the mapping of dummy arguments
�see Section �
���

Unlike arrays� templates cannot be in COMMON
 So two templates declared in di�erent
scoping units will always be distinct� even if they are given the same name
 The only way
for two program units to refer to the same template is to declare the template in a module
that is then used by the two program units

Templates are not passed through the subprogram argument interface
 The template
to which a dummy argument is aligned is always distinct from the template to which the
actual argument is aligned� though it may be a copy �see Section �
	�
 On exit from a
subprogram� an HPF implementation arranges that the actual argument is aligned with the
same template with which it was aligned before the call

Returning from a subprogram causes all templates declared local to that subprogram
to become unde�ned
 It is not HPF�conforming for any variable to be aligned to a template
at the time the template becomes unde�ned unless at least one of two conditions holds�

� The variable itself becomes unde�ned at the same time by virtue of returning from
the subprogram

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� INHERIT DIRECTIVE ��

� Whenever the subprogram is called� the template is always locally de�ned in the same
way� with identical lower bounds� identical upper bounds� and identical distribution
information �if any� onto identically de�ned processor arrangements �see Section �
��

Rationale� �Note that this second condition is slightly less stringent than requir�
ing all expressions to be constant
 This allows calls to NUMBER OF PROCESSORS

or PROCESSORS SHAPE to appear without violating the condition
� �End of ratio�
nale��

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
template� but because the �rst condition cannot hold for such variable �they don�t become
unde�ned�� the second condition must be observed

��� INHERIT Directive

The INHERIT directive speci�es that a dummy argument should be aligned to a copy of the
template of the corresponding actual argument in the same way that the actual argument
is aligned

H��� inherit�directive is INHERIT dummy�argument�name�list

The INHERIT directive causes the named subprogram dummy arguments to have the
INHERIT attribute
 Only dummy arguments may have the INHERIT attribute
 An object
must not have both the INHERIT attribute and the ALIGN attribute
 The INHERIT directive
may appear only in a speci�cation�part of a scoping unit

If a dummy argument has the TARGET attribute and no explicit mapping attributes�
then the INHERIT attribute is implicitly assumed
 �See section �
��
�

The INHERIT attribute speci�es that the template for a dummy argument should be
inherited� by making a copy of the template of the actual argument
 Moreover� the INHERIT
attribute implies a default distribution of DISTRIBUTE � ONTO �

Note that this default distribution is not part of Subset HPF� if a program uses INHERIT�
���

it must override the default distribution with an explicit mapping directive in order to
conform to Subset HPF

See Section �
�� for further exposition
 If an explicit mapping directive appears for the
dummy argument� thereby overriding the default distribution� then the actual argument
must be a whole array or a regular array section� it may not be an expression of any other
form

If none of the attributes INHERIT� ALIGN� and DISTRIBUTE is speci�ed explicitly for a
dummy argument� then the template of the dummy argument has the same shape as the
dummy itself and the dummy argument is aligned to its template by the identity mapping

An INHERIT directive may be combined with other directives� with the attributes stated
in any order� more or less consistent with Fortran 	� attribute syntax

Consider the following example�

REAL DOUGH�����

�HPF
 DISTRIBUTE DOUGH�BLOCK�����

CALL PROBATE� DOUGH�������� �

���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

SUBROUTINE PROBATE�BREAD�

REAL BREAD���

�HPF
 INHERIT BREAD

The inherited template of BREAD has shape ������ element BREAD�I� is aligned with
element � !
"I of the inherited template and� since BREAD does not appear in a prescriptive
DISTRIBUTE directive� it has a BLOCK���� distribution

���� Alignment� Distribution� and Subprogram Interfaces

Mapping directives may be applied to dummy arguments in the same manner as for other
variables� such directives may also appear in interface blocks
 However� there are addi�
tional options that may be used only with dummy arguments� asterisks� indicating that a
speci�cation is descriptive rather than prescriptive� and the INHERIT attribute

First� consider the rules for the caller
 If there is an explicit interface for the called sub�
program and that interface contains mapping directives �whether prescriptive or descriptive�
for the dummy argument in question� the actual argument will be remapped if necessary
to conform to the directives in the explicit interface
 The template of the dummy will then
be as declared in the interface
 If there is no explicit interface� then actual arguments that
are whole arrays or array sections not involving vector subscripts may be remapped at the
discretion of the language processor� the values of other expressions may be mapped in any
manner at the discretion of the language processor

Rationale� The caller is required to treat descriptive directives in an explicit interface
as if they were prescriptive so that the directives in the interface may be an exact
textual copy of the directives appearing in the subprogram
 If the caller enforces
descriptive directives as if they were prescriptive� then the descriptive directives in
the called routine will in fact be correct descriptions
 �End of rationale��

In order to describe explicitly the distribution of a dummy argument� the template
that is subject to distribution must be determined
 A dummy argument always has a fresh
template to which it is ultimately aligned� this template is constructed in one of three ways�

� If the dummy argument appears explicitly as an alignee in an ALIGN directive� its
template is speci�ed by the align�target

� If the dummy argument is not explicitly aligned and does not have the INHERIT

attribute� then the template has the same shape and bounds as the dummy argument�
this is called the natural template for the dummy

� If the dummy argument is not explicitly aligned and does have the INHERIT attribute�
then the template is �inherited� from the actual argument according to the following
rules�

 If the actual argument is a whole array� the template of the dummy is a copy of
the template with which the actual argument is ultimately aligned

 If the actual argument is an array section of array A where no subscript is a
vector subscript� then the template of the dummy is a copy of the template with
which A is ultimately aligned

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� ALIGNMENT� DISTRIBUTION� AND SUBPROGRAM INTERFACES ��

 If the actual argument is any other expression� the shape and distribution of the
template may be chosen arbitrarily by the language processor �and therefore the
programmer cannot know anything a priori about its distribution�

In all of these cases� we say that the dummy has an inherited template rather than a
natural template

Consider the following example�

LOGICAL FRUG�����	TWIST�����

�HPF
 PROCESSORS DANCE�FLOOR����

�HPF
 DISTRIBUTE �BLOCK� ONTO DANCE�FLOOR��FRUG	TWIST

CALL TERPSICHORE�FRUG��������	TWIST���������

The two array sections FRUG�������� and TWIST�������� are mapped onto abstract pro�
cessors in the same manner�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

��

��

��

��

��

�

��

��

��

��

��

However� the subroutine TERPSICHORE will view them in di�erent ways because it
inherits the template for the second dummy but not the �rst�

SUBROUTINE TERPSICHORE�FOXTROT	TANGO�

LOGICAL FOXTROT���	TANGO���

�HPF
 INHERIT TANGO

Therefore the template of TANGO is a copy of the �
� element template of the whole array
TWIST
 The template is mapped like this�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

��

��

��

��

��

�

��

��

��

��

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

��

���

���

���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

TANGO�I� is aligned with element �"I�
 of the template
 But the template of FOXTROT has
the same size �� as FOXTROT itself
 The actual argument� FRUG�������� is mapped to the
�� processors in this manner�

Abstract Elements
processor of FRUG

� ��
� �

 �� �� �
� �� �
� 	� ��� ��
� �
� ��� ��
�#�� none

It would be reasonable to understand the mapping of the template of FOXTROT to
coincide with the layout of the array section�

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

�

�

�

��

��

��

��

��

but we shall see that this is not permitted in HPF
 Within subroutine TERPSICHORE it would
be correct to make the descriptive assertion

�HPF
 DISTRIBUTE TANGO ��BLOCK�

but it would not be correct to declare

�HPF
 DISTRIBUTE FOXTROT ��BLOCK� �Nonconforming

Each of these asserts that the template of the speci�ed dummy argument is already dis�
tributed BLOCK on entry to the subroutine
 The shape of the template for TANGO is ������
inherited �copied� from the array TWIST� whose section was passed as the corresponding
actual argument� and that template does indeed have a BLOCK distribution
 But the shape
of the template for FOXTROT is ����� the layout of the elements of the actual argument
FRUG�������� �� on the �rst processor� � on the second processor�
 on the third processor�
� on the fourth processor� � � � � cannot properly be described as a BLOCK distribution of a
length��� template� so the DISTRIBUTE declaration for FOXTROT shown above would indeed
be erroneous

On the other hand� the layout of FRUG�������� can be described in terms of an align�
ment to a length��
� template which can be described by an explicit TEMPLATE declaration
�see Section �
��� so the directives

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� ALIGNMENT� DISTRIBUTION� AND SUBPROGRAM INTERFACES �	

�HPF
 PROCESSORS DANCE�FLOOR����

�HPF
 TEMPLATE	 DISTRIBUTE�BLOCK� ONTO DANCE�FLOOR��GURF�����

�HPF
 ALIGN FOXTROT�J� WITH �GURF���J���

could be correctly included in TERPSICHORE to describe the layout of FOXTROT on entry to
the subroutine without using an inherited template

The simplest case is the use of the INHERIT attribute alone
 If a dummy argument
has the INHERIT attribute and no explicit DISTRIBUTE attribute� the net e�ect is to tell
the compiler to leave the data exactly where it is�and not attempt to remap the actual
argument
 The dummy argument will be mapped in exactly the same manner as the actual
argument� the subprogram must be compiled in such a way as to work correctly no matter
how the actual argument may be mapped onto abstract processors
 �It has this e�ect
because an INHERIT attribute on a dummy D implicitly speci�es the default distribution

�HPF
 DISTRIBUTE D � ONTO �

rather than allowing the compiler to choose any distribution it pleases for the dummy
argument
 The meaning of this implied DISTRIBUTE directive is discussed below
�

In the general case of a DISTRIBUTE directive� where every distributee is a dummy
argument� either the dist�format�clause or the dist�target� or both� may begin with� or
consist of� an asterisk

� Without an asterisk� a dist�format�clause or dist�target is prescriptive� the clause de�
scribes a distribution and constitutes a request of the language processor to make it
so
 This might entail remapping or copying the actual argument at run time in order
to satisfy the requested distribution for the dummy

� Starting with an asterisk� a dist�format�clause or dist�target is descriptive� the clause
describes a distribution and constitutes an assertion to the language processor that
it will already be so
 The programmer claims that� for every call to the subprogram�
the actual argument will be such that the stated distribution already describes the
mapping of that data
 �The intent is that if the argument is passed by reference� no
movement of the data will be necessary at run time
 All this is under the assumption
that the language processor has observed all other directives
 While a conforming
HPF language processor is not required to obey mapping directives� it should handle
descriptive directives with the understanding that their implied assertions are relative
to this assumption
�

� Consisting of only an asterisk� a dist�format�clause or dist�target is transcriptive� the
clause says nothing about the distribution but constitutes a request of the language
processor to copy that aspect of the distribution from that of the actual argument

�The intent is that if the argument is passed by reference� no movement of the data
will be necessary at run time
� Note that the transcriptive case� whether explicit or
implicit� is not included in Subset HPF

It is possible that� in a single DISTRIBUTE directive� the dist�format�clause might have an
asterisk but not the dist�target� or vice versa

These examples of DISTRIBUTE directives for dummy arguments illustrate the various
combinations�

�HPF
 DISTRIBUTE URANIA �CYCLIC� ONTO GALILEO

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

The language processor should do whatever it takes to cause URANIA to have a CYCLIC

distribution on the processor arrangement GALILEO

�HPF
 DISTRIBUTE POLYHYMNIA � ONTO ELVIS

The language processor should do whatever it takes to cause POLYHYMNIA to be distributed
onto the processor arrangement ELVIS� using whatever distribution format it currently has
�which might be on some other processor arrangement�
 �You can�t say this in Subset HPF
�

�HPF
 DISTRIBUTE THALIA ��CYCLIC� ONTO FLIP

The language processor should do whatever it takes to cause THALIA to have a CYCLIC

distribution on the processor arrangement FLIP� THALIA already has a cyclic distribution�
though it might be on some other processor arrangement

�HPF
 DISTRIBUTE CALLIOPE �CYCLIC� ONTO �HOMER

The language processor should do whatever it takes to cause CALLIOPE to have a CYCLIC

distribution on the processor arrangement HOMER� CALLIOPE is already distributed onto
HOMER� though it might be with some other distribution format

�HPF
 DISTRIBUTE MELPOMENE � ONTO �EURIPIDES

MELPOMENE is asserted to already be distributed onto EURIPIDES� use whatever distribution
format the actual argument had so� if possible� no data movement should occur
 �You can�t
say this in Subset HPF
�

�HPF
 DISTRIBUTE CLIO ��CYCLIC� ONTO �HERODOTUS

CLIO is asserted to already be distributed CYCLIC onto HERODOTUS so� if possible� no data
movement should occur

�HPF
 DISTRIBUTE EUTERPE �CYCLIC� ONTO �

The language processor should do whatever it takes to cause EUTERPE to have a CYCLIC

distribution onto whatever processor arrangement the actual was distributed onto
 �You
can�t say this in Subset HPF
�

�HPF
 DISTRIBUTE ERATO � ONTO �

The mapping of ERATO should not be changed from that of the actual argument
 �You can�t
say this in Subset HPF
�

�HPF
 DISTRIBUTE ARTHUR�MURRAY ��CYCLIC� ONTO �

ARTHUR MURRAY is asserted to already be distributed CYCLIC onto whatever processor ar�
rangement the actual argument was distributed onto� and no data movement should occur

�You can�t say this in Subset HPF
�

Please note that DISTRIBUTE ERATO � ONTO � does not mean the same thing as

�HPF
 DISTRIBUTE ERATO ���� ONTO �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� ALIGNMENT� DISTRIBUTION� AND SUBPROGRAM INTERFACES ��

This latter means� ERATO is asserted to already be distributed � �that is� on�processor� onto
whatever processor arrangement the actual was distributed onto
 Note that the processor
arrangement is necessarily scalar in this case

One may omit either the dist�format�clause or the dist�onto�clause for a dummy ar�
gument
 If such a clause is omitted and the dummy argument has the INHERIT attribute�
then the compiler must handle the directive as if � or ONTO � had been speci�ed explicitly

If such a clause is omitted and the dummy does not have the INHERIT attribute� then the
compiler may choose the distribution format or a target processor arrangement arbitrarily

Examples�

�HPF
 DISTRIBUTE WHEEL�OF�FORTUNE ��CYCLIC�

WHEEL OF FORTUNE is asserted to already be CYCLIC
 As long as it is kept CYCLIC� it may
be remapped it onto some other processor arrangement� but there is no reason to

�HPF
 DISTRIBUTE ONTO �TV �� DAVID�LETTERMAN

DAVID LETTERMAN is asserted to already be distributed on TV in some fashion
 The distri�
bution format may be changed as long as DAVID LETTERMAN is kept on TV
 �Note that this
declaration must be made in attributed form� the statement form

�HPF
 DISTRIBUTE DAVID�LETTERMAN ONTO �TV �Nonconforming

does not conform to the syntax for a DISTRIBUTE directive
�
The asterisk convention allows the programmer to make claims about the pre�existing

distribution of a dummy based on knowledge of the mapping of the actual argument
 But
what claims may the programmer correctly make$

If the dummy argument has an inherited template� then the subprogram may contain
directives corresponding to the directives describing the actual argument
 Sometimes it is
necessary� as an alternative� to introduce an explicit named template �using a TEMPLATE

directive� rather than inheriting a template� an example of this �GURF� appears above� near
the beginning of this section

If the dummy argument has a natural template �no INHERIT attribute� then things
are more complicated
 In certain situations the programmer is justi�ed in inferring a pre�
existing distribution for the natural template from the distribution of the actual�s template�
that is� the template that would have been inherited if the INHERIT attribute had been
speci�ed
 In all these situations� the actual argument must be a whole array or array
section� and the template of the actual must be coextensive with the array along any axes
having a distribution format other than ��
�

If the actual argument is a whole array� then the pre�existing distribution of the natural
template of the dummy is identical to that of the actual argument

If the actual argument is an array section� then� from each section�subscript and the
distribution format for the corresponding axis of the array being subscripted� one constructs
an axis distribution format for the corresponding axis of the natural template�

� If the section�subscript is scalar and the array axis is collapsed �as by an ALIGN direc�
tive� then no entry should appear in the distribution for the natural template

� If the section�subscript is a subscript�triplet and the array axis is collapsed �as by an
ALIGN directive�� then � should appear in the distribution for the natural template

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

� If the section�subscript is scalar and the array axis corresponds to an actual template
axis distributed �� then no entry should appear in the distribution for the natural
template

� If the section�subscript is a subscript�triplet and the array axis corresponds to an actual
template axis distributed �� then � should appear in the distribution for the natural
template

� If the section�subscript is a subscript�triplet l�u�s and the array axis corresponds to
an actual template axis distributed BLOCK�n� �which might have been speci�ed as
simply BLOCK� but there will be some n that describes the resulting distribution� and
LB is the lower bound for that axis of the array� then BLOCK�n�s� should appear in
the distribution for the natural template� provided that s divides n evenly and that
l� LB � s

� If the section�subscript is a subscript�triplet l�u�s and the array axis corresponds to
an actual template axis distributed CYCLIC�n� �which might have been speci�ed as
simply CYCLIC� in which case n �� and LB is the lower bound for that axis of the
array� then CYCLIC�n�s� should appear in the distribution for the natural template�
provided that s divides n evenly and that l � LB � s

If the situation of interest is not described by the cases listed above� no assertion about the
distribution of the natural template of a dummy is HPF�conforming

Here is a typical example of the use of this feature
 The main program has a two�
dimensional array TROGGS� which is to be processed by a subroutine one column at a time

�Perhaps processing the entire array at once would require prohibitive amounts of temporary
space
� Each column is to be distributed across many processors

REAL TROGGS�����	����

�HPF
 DISTRIBUTE TROGGS�BLOCK	��

DO J��	���

CALL WILD�THING�TROGGS��	J��

END DO

Each column of TROGGS has a BLOCK distribution
 The rules listed above justify the pro�
grammer in saying so�

SUBROUTINE WILD�THING�GROOVY�

REAL GROOVY���

�HPF
 DISTRIBUTE GROOVY ��BLOCK� ONTO �

Consider now the ALIGN directive
 The presence or absence of an asterisk at the start
of an align�spec has the same meaning as in a dist�format�clause� it speci�es whether the
ALIGN directive is descriptive or prescriptive� respectively

If an align�spec that does not begin with � is applied to a dummy argument� the
meaning is that the dummy argument will be forced to have the speci�ed alignment on
entry to the subprogram �which may require temporarily remapping the data of the actual
argument or a copy thereof�

Note that a dummy argument may also be used as an align�target

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� ALIGNMENT� DISTRIBUTION� AND SUBPROGRAM INTERFACES ��

SUBROUTINE NICHOLAS�TSAR	CZAR�

REAL	 DIMENSION������ �� TSAR	CZAR

�HPF
 INHERIT �� TSAR

�HPF
 ALIGN WITH TSAR �� CZAR

In this example the �rst dummy argument� TSAR� is allowed to remain aligned with the
corresponding actual argument� while the second dummy argument� CZAR� is forced to be
aligned with the �rst dummy argument
 If the two actual arguments are already aligned�
no remapping of the data will be required at run time� but the subprogram will operate
correctly even if the actual arguments are not already aligned� at the cost of remapping the
data for the second dummy argument at run time

If the align�spec begins with ���� then the alignee must be a dummy argument and
the directive must be ALIGN and not REALIGN
 The ��� indicates that the ALIGN directive
constitutes a guarantee on the part of the programmer that� on entry to the subprogram�
the indicated alignment will already be satis�ed by the dummy argument� without any
action to remap it required at run time
 For example�

SUBROUTINE GRUNGE�PLUNGE	SPONGE�

REAL PLUNGE������	SPONGE������

�HPF
 INHERIT SPONGE

�HPF
 ALIGN PLUNGE WITH �SPONGE

This asserts that� for every J in the range ������� on entry to subroutine GRUNGE� the
directives in the program have speci�ed that PLUNGE�J� is currently mapped to the same
abstract processor as SPONGE�J�
 �The intent is that if the language processor has in fact
honored the directives� then no interprocessor communication will be required to achieve
the speci�ed alignment
�

The alignment of a general expression is up to the language processor and therefore
unpredictable by the programmer� but the alignment of whole arrays and array sections is
predictable
 In the code fragment

REAL FIJI�
����	SQUEEGEE������

�HPF
 ALIGN SQUEEGEE�K� WITH FIJI���K�

CALL GRUNGE�FIJI�������������	SQUEEGEE��������

it is true that every element of the array section SQUEEGEE������� is aligned with the corre�
sponding element of the array section FIJI�������������� so the claim made in subroutine
GRUNGE is satis�ed by this particular call

Under certain circumstances� it may be possible to specify that one dummy argument
be remapped if necessary and then to specify that another dummy will then be aligned with
it�

SUBROUTINE MURKY�THINK	 DENSE�

�HPF
 PROCESSORS GUNK����

�HPF
 DISTRIBUTE �BLOCK� ONTO GUNK �� DENSE

�HPF
 ALIGN WITH �DENSE �� THICK

Note that the programmer cannot be justi�ed in descriptively asserting that THICK will be
aligned with DENSE after its remapping unless the remapping is fully speci�ed �that is� no
part of the remapping is left to the compiler to choose�
 Therefore an explicit processors

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

arrangement necessarily appears in the example
 The caller must ensure that the �rst actual
argument is appropriately mapped onto an identical processors arrangement

It is not permitted to say simply �ALIGN WITH ��� an align�target must follow the
asterisk
 �The proper way to say �accept any alignment� is INHERIT
�

If a dummy argument has no explicit ALIGN or DISTRIBUTE attribute� then the compiler
provides an implicit alignment and distribution speci�cation� one that could have been
described explicitly without any �assertion asterisks�

The rules on the interaction of the REALIGN and REDISTRIBUTE directives with a sub�
program argument interface are�

�
 A dummy argument may be declared DYNAMIC
 However� it is subject to the general
restrictions concerning the use of the name of an array to stand for its associated
template

 If an array or any section thereof is accessible by two or more paths� it is not HPF�
conforming to remap it through any of those paths
 For example� if an array is passed
as an actual argument� it is forbidden to realign that array� or to redistribute an array
or template to which it was aligned at the time of the call� until the subprogram has
returned from the call
 This prevents nasty aliasing problems
 An example�

MODULE FOO

REAL A���	���

�HPF
 DYNAMIC �� A

END

PROGRAM MAIN

USE FOO

CALL SUB�A���
	�����

END

SUBROUTINE SUB�B�

USE FOO

REAL B��	��

���

�HPF
 REDISTRIBUTE A �nonconforming

���

END

Situations such as this are forbidden� for the same reasons that an assignment to A

at the statement marked �nonconforming� would also be forbidden
 In general� in
any situation where assignment to a variable would be nonconforming by reason of
aliasing� remapping of that variable by an explicit REALIGN or REDISTRIBUTE directive
is also forbidden

An overriding principle is that any mapping or remapping of arguments is not visible
to the caller
 This is true whether such remapping is implicit �in order to conform to
prescriptive directives� which may themselves be explicit or implicit� or explicit �speci�ed
by REALIGN or REDISTRIBUTE directives�
 When the subprogram returns and the caller

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���
� ALIGNMENT� DISTRIBUTION� AND SUBPROGRAM INTERFACES ��

resumes execution� all objects accessible to the caller after the call are mapped exactly as
they were before the call
 It is not possible for a subprogram to change the mapping of any
object in a manner visible to its caller� not even by means of REALIGN and REDISTRIBUTE

Advice to implementors� There are several implementation strategies for achieving
this behavior
 For example� one may be able to use a copy�in�copy�out strategy for
arguments that require remapping on subprogram entry
 Alternatively� one may be
able to remap the actual argument on entry and remap again on exit to restore the
original mapping
 �End of advice to implementors��

There is one sticky point in preserving this principle� a recent Fortran 	� interpretation
states�

If the dummy argument does not have the TARGET or POINTER attribute� any
pointers associated with the actual argument do not become associated with the
corresponding dummy argument on invocation of the procedure

If the dummy argument has the TARGET attribute and the corresponding actual
argument has the TARGET attribute but is not an array section with a vector
subscript�

�
 Any pointers associated with the actual argument become associated with
the corresponding dummy argument on invocation of the procedure

 When execution of the procedure completes� any pointers associated with
the dummy argument remain associated with the actual argument

If the dummy argument has the TARGET attribute and the corresponding actual
argument does not have the TARGET attribute or is an array section with a vector
subscript� any pointers associated with the dummy argument become unde�ned
when execution of the procedure completes

In order to support this behavior in the face of implicit remapping across the subpro�
gram interface� HPF imposes the following restriction�

If� on invocation of a procedure P� �a� a dummy argument has the TARGET

attribute� and �b� the corresponding actual argument has the TARGET attribute
and is not an array section with a vector subscript �and therefore is an object
A or a section of an array A�� then the program is not HPF�conforming unless�

�
 No remapping of the actual argument occurs during the call� or

 the remainder of program execution would be una�ected if

�a� each pointer associated with any portion of the dummy argument or
with any portion of A during execution of P were to acquire unde�ned
pointer association status on exit from P� and

�b� each pointer associated with any portion of A before the call were to
acquire unde�ned pointer association status on entry to P and� if not
reassigned during execution of P� were to be restored on exit to the
pointer association status it had before entry

Note that if a dummy argument has the TARGET attribute and no explicit mapping
attributes� then the INHERIT attribute is implicitly assumed �see section �
	�� therefore no
remapping occurs for such a dummy argument and there is no problem

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION �� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Data Parallel Statements and

Directives

The purpose of the FORALL statement and construct is to provide a convenient syntax
for simultaneous assignments to large groups of array elements
 Such assignments lie at
the heart of the data parallel computations that HPF is designed to express
 The multiple
assignment functionality it provides is very similar to that provided by the array assignment
statement and the WHERE construct in Fortran 	�
 FORALL di�ers from these constructs in
its syntax� which is intended to be more suggestive of local operations on each element of an
array� and in its generality� which allows a larger class of array sections to be speci�ed
 In
addition� a FORALL may call user�de�ned functions on the elements of an array� simulating
Fortran 	� elemental function invocation �albeit with a di�erent syntax�

HPF de�nes a new procedure attribute� PURE� to declare the class of functions that
may be invoked in this way
 Both single�statement and block FORALL forms are de�ned in
this Section� as well as the PURE attribute and constraints arising from the use of PURE

HPF also de�nes a new directive� INDEPENDENT
 The purpose of the INDEPENDENT

directive is to allow the programmer to give additional information to the compiler
 The
user can assert that no data object is de�ned by one iteration of a DO loop and used �read or
written� by another� similar information can be provided about the combinations of index
values in a FORALL statement or construct
 Such information is sometimes valuable to enable
compiler optimizations� but may require knowledge of the application that is available only
to the programmer
 Therefore� HPF allows a user to specify these assertions� on which the
compiler may in turn rely in its translation process
 If the assertion is true� the semantics
of the program are not changed� if it is false� the program is not HPF�conforming and has
no de�ned meaning

��� The FORALL Statement

Fortran 	� places several restrictions on array assignments
 In particular� it requires that
operands of the right side expressions be conformable with the left hand side array
 These
restrictions can be relaxed by introducing the element array assignment statement� usually
referred to as the FORALL statement
 This statement is used to specify an array assign�
ment in terms of array elements or groups of array sections� possibly masked with a scalar
logical expression
 In functionality� it is similar to array assignment statements and WHERE

statements
 The FORALL statement essentially preserves the semantics of Fortran 	� array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

assignments and allows for convenient assignments like

FORALL � i���n	 j���m � a�i	j��i�j

as opposed to standard Fortran 	�

a � SPREAD����i	i��	n���	 DIM��	 NCOPIES�m� � �

SPREAD����i	i��	m���	 DIM��	 NCOPIES�n�

It can also express more general array sections than the standard triplet notation for array
expressions
 For example�

FORALL � i � ��n � a�i	i� � b�i�

assigns to the elements on the main diagonal of array a

Rationale� It is important to note� however� that FORALL is not intended to be a
general parallel construct� for example� it does not express pipelined computations
or MIMD computation well
 This was an explicit design decision made in order to
simplify the construct and promote agreement on the statement�s semantics
 �End of
rationale��

����� General Form of Element Array Assignment

Rule R
�� in the Fortran 	� standard for action�stmt is extended to include the forall�
stmt

H��� forall�stmt is FORALL forall�header forall�assignment

H��
 forall�header is � forall�triplet�spec�list � 	 scalar�mask�expr � �

Constraint� Any procedure referenced in the scalar�mask�expr of a forall�header must be
pure� as de�ned in Section �
�

Rationale� Pure functions are guaranteed to be free of side e�ects
 Therefore� they
are safe to invoke in the scalar�mask�expr

Note that functions referenced in the forall�triplet�spec�list are not syntactically con�
strained as the scalar�mask�expr is
 This is consistent with the handling of bounds
expressions in DO loops
 �End of rationale��

H��� forall�triplet�spec is index�name � subscript � subscript � � stride �

Constraint� index�name must be a scalar integer variable

Constraint� A subscript or stride in a forall�triplet�spec�list must not contain a reference to
any index�name in the forall�triplet�spec�list in which it appears

H��� forall�assignment is assignment�stmt
or pointer�assignment�stmt

Constraint� Any procedure referenced in a forall�assignment � including one referenced by
a de�ned operation or assignment� must be pure as de�ned in Section �
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL STATEMENT �	

Rationale� Pure functions are guaranteed to have no side e�ects� and thus have an
unambiguous meaning when used in a FORALL statement
 Experience also suggests
that they form a useful class of functions for use in scienti�c computation� and are
particularly useful when applied as data�parallel operations
 For these reasons� there
was a strong consensus to allow their use in FORALL
 More general functions called from
FORALL were also considered� but eventually rejected for lack of agreement on their
desirability� ease of implementation� or the semantics of complex cases they allowed

�End of rationale��

To determine the set of permitted values for each index�name in the forall�header� we
introduce some simplifying notation
 In the forall�triplet�spec� let

� m� be �rst subscript ��lower bound���

� m
 be second subscript ��upper bound���

� m� be the stride� and

� max be
j
m��m��m�

m�

k

If stride is missing� it is as if it were present with the value �
 Stride must not have
the value �
 The set of permitted values is determined on entry to the statement and is
m�!�k����m�� k ��
� ����max
 If max � � for some index�name� the forall�assignment
is not executed

A FORALL statement assigns to memory locations speci�ed by the forall�assignment for
permitted values of the index�name variables
 A program that causes multiple values to be
assigned to the same location is not HPF�conforming and therefore has no de�ned meaning

This is a semantic constraint rather than a syntactic constraint� however� in general� it
cannot be checked during compilation

����� Interpretation of Element Array Assignments

Execution of an element array assignment consists of the following steps�

�
 Evaluation in any order of the subscript and stride expressions in the forall�triplet�
spec�list
 The set of valid combinations of index�name values is then the Cartesian
product of the sets de�ned by these triplets

 Evaluation of the scalar�mask�expr for all valid combinations of index�name values

The mask elements may be evaluated in any order
 The set of active combinations of
index�name values is the subset of the valid combinations for which the mask evaluates
to �TRUE�

�
 Evaluation in any order of the expr and all expressions within variable �in the case
of assignment�stmt� or target and all expressions within pointer�object �in the case
of pointer�assignment�stmt�� of the forall�assignment for all active combinations of
index�name values
 In the case of pointer assignment where the target is not a pointer�
the evaluation consists of identifying the object referenced rather than computing its
value

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

�
 Assignment of the computed expr values to the corresponding variable locations �in
the case of assignment�stmt� or the association of the target values with the corre�
sponding pointer�object locations �in the case of pointer�assignment�stmt� for all active
combinations of index�name values
 The assignments or associations may be made in
any order
 In the case of a pointer assignment where the target is not a pointer� this
assignment consists of associating the pointer�object with the object referenced

If the scalar mask expression is omitted� it is as if it were present with the value �TRUE�
The scope of an index�name is the FORALL statement itself

��

An index�name of a forall�stmt has statement scope� that is� its scope is the FORALL
itself

Rationale� This is the same as the treatment of a DO index in an implied�do list of a
DATA statement
 In both cases� the index is used only for its range of values� this was
the basis for the similar treatment
 �End of rationale��

A forall�stmt is not HPF�conforming if the result of evaluating any expression in the
forall�header a�ects or is a�ected by the evaluation of any other expression in the forall�
header

Rationale� This is consistent with the handling of DO loop bounds and strides

Disallowing references to impure functions in a forall�triplet�spec�list was suggested�
but the analogy to DO bounds was considered too strong to overlook
 Note that the
scalar�mask�expr can only invoke pure functions� which are side�e�ect free
 Therefore�
the scalar�mask�expr cannot a�ect the values of the bounds
 �End of rationale��

A forall�stmt is not HPF�conforming if it causes any atomic data object to be assigned
more than one value
 A data object is atomic if it contains no subobjects
 For the purposes
of this restriction� any assignment �including array assignment or assignment to a variable
of derived type� to a non�atomic object is considered to assign to all subobjects contained
by that object

Rationale� For example� an integer variable is an atomic object� but an array of
integers is an object that is not atomic
 Similarly� assignment to an array section
is equivalent to assignments to each individual element �which may require further
reductions when the array contains objects of derived type�
 This restriction allows
cases such as

FORALL � i � ���� � a�indx�i�� � b�i�

if and only if indx contains no repeated values
 Note that it restricts FORALL behav�
ior� but not syntax
 Syntactic restrictions to enforce this behavior would be either
incomplete �ie
 allow unde�ned behavior� or exclude conceptually legal programs

Since a function called from a forall�assignment must be pure� it is impossible for
that function�s evaluation to a�ect other expressions� evaluations� either for the same
combination of index�name values or for a di�erent combination
 In addition� it
is possible that the compiler can perform more extensive optimizations because all
functions are pure
 �End of rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL STATEMENT ��

����� Examples of the FORALL Statement

FORALL �j���m	 k���n� x�k	j� � y�j	k�

FORALL �k���n� x�k	��m� � y���m	k�

These statements both copy columns � through n of array y into rows � through n of
array x
 This is equivalent to the standard Fortran 	� statement

x���n	��m� � TRANSPOSE�y���m	��n��

FORALL �i���n	 j���n� x�i	j� � ��� � REAL�i�j���

This FORALL sets array element x�i� j� to the value �

i�j��
for values of i and j between

� and n
 In Fortran 	�� the same operation can be performed by the statement

x���n	��n� � ����REAL� SPREAD����i	i��	n���	DIM��	NCOPIES�n� �

� SPREAD����j	j��	n���	DIM��	NCOPIES�n� � � �

Note that the FORALL statement does not imply the creation of temporary arrays and
is much more readable

FORALL �i���n	 j���n	 y�i	j��NE����� x�i	j� � ��� � y�i	j�

This statement takes the reciprocal of each nonzero element of array y�� � n� � � n� and
assigns it to the corresponding element of array x
 Elements of y that are zero do not have
their reciprocal taken� and no assignments are made to the corresponding elements of x

This is equivalent to the standard Fortran 	� statement

WHERE �y���n	��n� �NE� ���� x���n	��n� � � � y���n	��n�

TYPE monarch

INTEGER	 POINTER �� p

END TYPE monarch

TYPE�monarch� �� a�n�

INTEGER	 TARGET �� b�n�

� Set up a butterfly pattern

FORALL �j���n� a�j��p � b���IEOR�j��	���k��

This FORALL statement sets the elements of array a to point to a permutation of the
elements of b
 When n � and k �� then elements � through � of a point to elements
�� �� ��
� �� �� �� and � of b� respectively
 This requires a DO loop or other control �ow in
Fortran 	�

FORALL � i���n � x�indx�i�� � x�i�

This FORALL statement is equivalent to the Fortran 	� array assignment

x�indx���n�� � x���n�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

If indx contains a permutation of the integers from � to n� then the �nal contents of x
will be a permutation of the original values
 If indx contains repeated values� neither the
behavior of the FORALL nor the array assignment are de�ned by their respective standards

FORALL �i����� x�i� � x�i��� � x�i� � x�i���

If this statement is executed with

x �����
���� ������ ������� ��������

then after execution the new values of array x will be

x ����� �
���� ��
���� �������� ��������

This has the same e�ect as the Fortran 	� statement

x����� � x����� � x����� � x���
�

Note that it does not have the same e�ect as the Fortran 	� loop

DO i � �	 �

x�i� � x�i��� � x�i� � x�i���

END DO

FORALL �i���n� a�i	i� � x�i�

This FORALL statement sets the elements of the main diagonal of matrix a to the
elements of vector x
 This cannot be done by an array assignment in Fortran 	� unless
EQUIVALENCE or WHERE is also used

FORALL �i����� a�i	ix�i�� � x�i�

This FORALL statement sets one element in each row of matrix a to an element of
vector x
 The particular elements in a are chosen by the integer vector ix
 If

x ������
���� ����� �����

ix ���
�
� ��

and array a represents the matrix

��� ��� ��� ��� ���
��� ��� ��� ��� ���

��
��
��
��
��
��� ��� ��� ��� ���

before execution of the FORALL� then a will represent

���� ��� ��� ��� ���
���
��� ��� ��� ���

�� ����
��
��
��
��� ��� ��� ��� ����

after its execution
 This operation cannot be accomplished with a single array assignment
in Fortran 	�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL STATEMENT ��

FORALL �k����� x�k� � SUM�x������k��

This FORALL statement computes nine sums of subarrays of x
 �SUM is allowed in a
FORALL because Fortran 	� intrinsic functions are pure� see Section �
�
� If before the
FORALL

x �����
��� ���� ���� ���� ���� ���� ���� 	��� �����

then after the FORALL

x ������
����

��� ����� ���� ���� 	��� ����� ����� �����

This computation cannot be done by Fortran 	� array expressions alone

����� Scalarization of the FORALL Statement

One way to understand the semantics of the FORALL statement is to exhibit a naive trans�
lation to scalar Fortran 	� code
 We provide such a translation below

Advice to implementors� Note� however� that such a translation is meant for illus�
tration rather than as the de�nitive reference to the FORALL semantics of or practical
implementation in the compiler
 In particular� implementing a FORALL using DO loops
imposes an apparent order on the operations that is not implied by the formal de�ni�
tion
 Additionally� compiler analysis of particular cases may allow signi�cant simpli�
�cation and optimization
 For example� if the array assigned in a FORALL statement
is not referenced in any other expression in the FORALL �including its use in functions
called from the FORALL�� it is legal and� on many machines� more e�cient to perform
the computations and �nal assignments in a single loop nest
 Also note the discussion
at the end of this section regarding other di�culties of a Fortran 	� translation
 �End
of advice to implementors��

A forall�stmt of the form

FORALL �v��l��u��s�	v��l��u��s�	���	vn�ln�un�sn	mask� a�e�	���	em��rhs

is equivalent to the following code�

� Evaluate subscript and stride expressions�
� These assignments may be executed in any order�
templ� � l�
tempu� � u�
temps� � s�
templ� � l�
tempu� � u�
temps� � s�
���

templ
n

� l
n

tempun � un
tempsn � sn

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

� Evaluate the scalar mask expression	 and evaluate the
� forall�assignment subexpressions where the mask is true�
� The iterations of this loop nest may be executed in any order�
� The assignments in the loop body may be executed in any order	
� provided that the mask element is evaluated before any other
� expression in the same iteration�
� The loop body need not be executed atomically�
� The DO statements may be nested in any order
DO v��templ�	tempu�	temps�

DO v��templ�	tempu�	temps�
���

DO vn�templn	tempun	tempsn
tempmask�v�	v�	���	vn� � mask
IF �tempmask�v�	v�	���	vn�� THEN

temprhs�v�	v�	���	vn� � rhs
tempe��v�	v�	���	vn� � e�
tempe��v�	v�	���	vn� � e�
����

tempem�v�	v�	���	vn� � em
END IF

END DO

���

END DO

END DO

� Perform the assignment of these values to the corresponding
� elements of the array on the left�hand side�
� The iterations of this loop nest may be executed in any order�
� The DO statements may be nested in any order�
DO v��templ�	tempu�	temps�

DO v��templ�	tempu�	temps�
���

DO vn�templn	tempun	tempsn
IF �tempmask�v�	v�	���	vn�� THEN

a�tempe��v�	v�	���	vn�	���	tempem�v�	v�	���	vn�� � �

temprhs�v�	v�	���	vn�
END IF

END DO

���

END DO

END DO

The scalarization of a FORALL statement containing a pointer assignment is similar�
replacing the assignments to temprhs and a with pointer assignments

Advice to implementors� Several subtleties are not speci�ed in the above outline
to promote readability
 When rhs is an array�valued expression� then several of the
statements cannot be translated directly into Fortran 	�
 In particular� at least one

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL CONSTRUCT ��

of the ei will be a triplet� both bounds and stride must be saved in tempei� possibly
by using derived type assignment or adding a dimension to the data structure
 The
translation of the subscripts in the �nal assignment to a must also be generalized to
handle triplets
 Storage allocation for temprhs may be complicated by the fact that it
must store arrays �possibly with di�erent sizes for di�erent values of v�� � � � � vn�
 If the
forall�assignment is a pointer�assignment�stmt� then a suitable derived type must be
produced for temprhs
 The assignments to tempe�� � � � � tempem must� however� remain
true �integer� assignments
 Finally� there may also be more than seven indexes� this
may forbid a direct translation on implementations that support a limited number of
dimensions in arrays
 �End of advice to implementors��

����� Consequences of the De�nition of the FORALL Statement

Rationale� The scalar�mask�expr may depend on the index�name values
 This allows
a wide range of masking operations

A syntactic consequence of the semantic rule that no two execution instances of the
body may assign to the same atomic data object is that each of the index�name
variables must appear on the left�hand side of a forall�assignment
 The converse is
not true �i
e
� using all index�name variables on the left�hand side does not guarantee
there will be no interference�
 Because the condition is not su�cient� it does not
appear a syntax constraint
 This also allows for easier future extensions for private
variables or other syntactic sugar

Right�hand sides and expressions on the left hand side of a forall�assignment are
de�ned as evaluated only for combinations of index�names for which the scalar�mask�
expr evaluates to �TRUE� This has implications when the masked computation might
create an error condition
 For example�

FORALL �i���n	 y�i��NE����� x�i� � ��� � y�i�

does not cause a division by zero
 �End of rationale��

��� The FORALL Construct

The FORALL construct is a generalization of the FORALL statement allowing multiple as�
signments� masked array assignments� and nested FORALL statements and constructs to be
controlled by a single forall�triplet�spec�list

����� General Form of the FORALL Construct

Rule R
�� of the Fortran 	� standard for executable�construct is extended to include the
forall�construct

H��� forall�construct is FORALL forall�header
forall�body�stmt
� forall�body�stmt � ���
END FORALL

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

H��� forall�body�stmt is forall�assignment
or where�stmt
or where�construct
or forall�stmt
or forall�construct

Constraint� Any procedure referenced in a forall�body�stmt � including one referenced by a
de�ned operation or assignment� must be pure as de�ned in Section �
�

Constraint� If a forall�stmt or forall�construct is nested in a forall�construct� then the inner
FORALL may not rede�ne any index�name used in the outer forall�construct

Rationale� These statements are allowed in a FORALL construct because they are
de�ned as forms of assignment in Fortran 	� and HPF
 The intent is that forall�
construct� like forall�stmt� is a block assignment rather than a general�purpose �parallel
loop
� �End of rationale��

To determine the set of permitted values for an index�name� we introduce some sim�
plifying notation
 In the forall�triplet�spec� let

� m� be the �rst subscript ��lower bound���

� m
 be the second subscript ��upper bound���

� m� be the stride� and

� max be
j
m��m��m�

m�

k

If stride is missing� it is as if it were present with the value �
 The set of permitted values
is determined on entry to the construct and is m� ! �k � �� � m�� k ��
� ����max
 The
expression stride must not have the value �
 If for some index�name max � �� no forall�
body�stmt is executed

Each assignment nested within a FORALL construct assigns to memory locations speci�
�ed by the forall�assignment for permitted values of the index�name variables
 A program
that causes multiple values to be assigned to the same location by a single statement is not
HPF�conforming and therefore has no de�ned meaning
 An HPF�conforming program may�
however� assign to the same location in syntactically di�erent assignment statements
 This
is a semantic constraint rather than a syntactic constraint� however� in general� it cannot
be checked during compilation

����� Interpretation of the FORALL Construct

Execution of a FORALL construct consists of the following steps�

�
 Evaluation in any order of the subscript and stride expressions in the forall�triplet�
spec�list
 The set of valid combinations of index�name values is then the Cartesian
product of the sets de�ned by these triplets

 Evaluation of the scalar�mask�expr for all valid combinations of index�name values

The mask elements may be evaluated in any order
 The set of active combinations of
index�name values is the subset of the valid combinations for which the mask evaluates
to �TRUE�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL CONSTRUCT ��

�
 Execute the forall�body�stmts in the order they appear
 Each statement is executed
completely �that is� for all active combinations of index�name values� according to the
following interpretation�

�a� Statements in the forall�assignment category �i
e
 assignment statements and
pointer assignment statements� evaluate the expr and all expressions within
variable �in the case of assignment�stmt� or target and all expressions within
pointer�object �in the case of pointer�assignment�stmt� of the forall�assignment
for all active combinations of index�name values
 These evaluations may be done
in any order
 The expr values are then assigned to the corresponding variable lo�
cations �in the case of assignment�stmt� or the target values are associated with
the corresponding pointer�object locations �in the case of pointer�assignment�
stmt�
 The assignment or association operations may also be performed in any
order

�b� Statements in the where�stmt and where�construct categories evaluate theirmask�
expr for all active combinations of values of index�names
 All elements of all
masks may be evaluated in any order
 The WHERE statement�s assignment �or
assignments within the WHERE branch of the construct� are then executed in order
using the above interpretation of array assignments within the FORALL� but the
only array elements assigned are those selected by both the active index�name
values and the WHERE mask
 Finally� the assignments in the ELSEWHERE branch
are executed if that branch is present
 The assignments here are also treated as
array assignments� but elements are only assigned if they are selected by both
the active combinations and by the negation of the WHERE mask

�c� Statements in the forall�stmt and forall�construct categories �rst evaluate the
subscript and stride expressions in the forall�triplet�spec�list for all active combi�
nations of the outer FORALL constructs
 The set of valid combinations of index�
names for the inner FORALL is then the union of the sets de�ned by these bounds
and strides for each active combination of the outer index�names� the outer index
names being included in the combinations generated for the inner FORALL
 The
scalar mask expression is then evaluated for all valid combinations of the inner
FORALL�s index�names to produce the set of active combinations
 If there is no
scalar mask expression� it is as if it were present with the constant value �TRUE�
Each statement in the inner FORALL is then executed for each active combina�
tion �of the inner FORALL�� recursively following the interpretations given in this
section

If the scalar mask expression is omitted� it is as if it were present with the value �TRUE�
The scope of an index�name is the FORALL construct itself
 That is� the index�name

de�nes a new variable that is only valid in the statements of the FORALL body
 The same
name may be used outside the FORALL construct as a local or global entity without con�ict�
and refers to a di�erent entity when so used

Rationale� This extends the Fortran 	� concept of �statement scope� to include
entire constructs
 The reasons for limiting the scope of the index are the same as
for FORALL statement indices
 However� tradtional statement scope is insu�cient
for a multi�statement construct� we therefore made the natural extension
 �End of
rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

Each forall�assignment must obey the same restrictions in a forall�construct as in a
simple forall�stmt
 In addition� each where�stmt or assignment nested within a where�
construct must obey these restrictions
 �Note that any innermost statement within nested
FORALL constructs must fall into one of these two categories
� For example� an assignment
may not cause the same array element to be assigned more than once
 Di�erent statements
may� however� assign to the same array element� and assignments made in one statement
may a�ect the execution of a later statement

����� Examples of the FORALL Construct

FORALL � i���n��	 j���n�� �

a�i	j� � a�i	j��� � a�i	j��� � a�i��	j� � a�i��	j�

b�i	j� � a�i	j�

END FORALL

This FORALL is equivalent to the two Fortran 	� statements

a���n��	��n��� � a���n��	��n����a���n��	��n� �

�a���n��	��n����a���n	��n���

b���n��	��n��� � a���n��	��n���

In particular� note that the assignment to array b uses the values of array a computed in
the �rst statement� not the values before the FORALL began execution

FORALL � i���n�� �

FORALL � j�i���n �

a�i	j� � a�j	i�

END FORALL

END FORALL

This FORALL construct assigns the transpose of the lower triangle of array a �i
e
� the
section below the main diagonal� to the upper triangle of a
 For example� if n � and a

originally contained the matrix

��� ��� ��� ��� ���
��� ��� ��� ��� ���

�� ��� ��� ���� �
��
��� 	��
��� ����
����
��� ���� ����
���� ��
���

then after the FORALL it would contain

��� ���
�� ��� ���
��� ��� ��� 	�� ����

�� ��� ���
��� ����
��� 	��
��� ����
����
��� ���� ����
���� ��
���

This cannot be done using array expressions without introducing mask expressions

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL CONSTRUCT �	

FORALL � i���
 �

WHERE � a�i	�� �NE� ��� �

a�i	�� � a�i��	�� � a�i��	��

ELSEWHERE

b�i	�� � a���i	��

END WHERE

END FORALL

This FORALL construct� when executed with the input arrays

a

�
BBBBB�

��� ��� ��� ��� ���
��� ��� ��� ��� ���

��
�� ���
��
��
��� ��� ��� ��� ���
��� ��� ��� ��� ���

�
CCCCCA � b

�
BBBBB�

��� ��� ��� ��� ���
���� ���� ���� ���� ����

���
���
���
���
���
���� ���� ���� ���� ����
���� ���� ���� ���� ����

�
CCCCCA

will produce as results

a

�
BBBBB�

��� ��� ��� ��� ���

��
�� ��� ���
��
��� ��� ��� ��� ���

�� ��� ���
��
��
��� ��� ��� ��� ���

�
CCCCCA � b

�
BBBBB�

��� ��� ��� ��� ���
���� ���� ����
�� ����

���
��� ���
���
���
����
�� ���� ���� ����
��� ��� ��� ��� ���

�
CCCCCA

Note that� as with WHERE statements in ordinary Fortran 	�� assignments in the WHERE

branch may a�ect computations in the ELSEWHERE branch

����� Scalarization of the FORALL Construct

Advice to implementors� As with the FORALL statement� the following translations of
FORALL constructs to DO loops are meant to illustrate the meaning� not necessarily to
serve as an implementation guide
 The caveats for the FORALL statement scalarization
apply here as well
 �End of advice to implementors��

A forall�construct of the form�

FORALL ���� e� ��� e� ��� e
n
����

s�
s�
���

sn
END FORALL

where each si is a forall�assignment� is equivalent to the following code�

temp� � e�
temp� � e�
���

tempn � en
FORALL ���� temp� ��� temp� ��� tempn ���� s�
FORALL ���� temp� ��� temp� ��� temp

n
���� s�

���

FORALL ���� temp� ��� temp� ��� tempn ���� sn

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

When the si are FORALL or WHERE statements or constructs� then the FORALL statements
above must be replaced with FORALL constructs �since FORALL statements can only contain
assignments�
 The scalarizations below must then be applied to the shortened FORALL

constructs

A forall�construct of the form�

FORALL � v��l��u��s�	 mask� �

WHERE � mask� �

a�l��u��s�� � rhs�
ELSEWHERE

a�l��u��s�� � rhs�
END WHERE

END FORALL

is equivalent to the following code�

� Evaluate subscript and stride expressions�
� These assignments can be made in any order�
templ� � l�
tempu� � u�
temps� � s�

� Evaluate the FORALL mask expression�
� The iterations of this loop may be executed in any order�
DO v��templ�	tempu�	temps�
tempmask��v�� � mask�

END DO

� Evaluate the bounds and masks for the WHERE�

� The iterations of this loop may be executed in any order�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

tempmask��v�� � mask�
END IF

END DO

� Evaluate the WHERE branch�
� The iterations of this loop may be executed in any order�
� The assignments in the loop body may be executed in any order�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�
IF �tempmask��v��� THEN

tmpl��v�� � l�
tmpu��v�� � u�
tmps��v�� � s�
WHERE � tempmask��v�� �

temprhs��v�� � rhs�
END WHERE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL CONSTRUCT ��

END IF

END DO

� The iterations of this loop may be executed in any order�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

WHERE � tempmask��v�� �

a�tmpl��v���tmpu��v���tmps��v��� � temprhs��v��
END WHERE

END IF

END DO

� Evaluate the ELSEWHERE branch�
� The iterations of this loop may be executed in any order�
� The assignments in the loop body may be executed in any order�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

tmpl��v�� � l�
tmpu��v�� � u�
tmps��v�� � s�
WHERE � �NOT� tempmask��v�� �

temprhs��v�� � rhs�
END WHERE

END IF

END DO

� The iterations of this loop may be executed in any order�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

WHERE � �NOT� tempmask��v�� �

a�tmpl��v���tmpu��v���tmps��v��� � temprhs��v��
END WHERE

END IF

END DO

Advice to implementors� Note that the assignments to tempmask� and temprhsi
are array assignments and require special treatment �including saving of shape infor�
mation� similar to that for array assignments in the FORALL statement scalarization

The extension to multiple dimensions �in either the FORALL index space or the array
dimensions� is straightforward
 If there are multiple statements in a branch of the
WHERE construct� each statement will generate two loops similar to those shown above

�End of advice to implementors��

A forall�construct of the form�

FORALL � v��l��u��s�	 mask� �

FORALL � v��l��u��s�	 mask� �

a�e�� � rhs�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

b�e�� � rhs�
END FORALL

END FORALL

is equivalent to the following Fortran 	� code�

� Evaluate subscript and stride expressions and outer mask�
� These assignments may be executed in any order�
templ� � l�
tempu� � u�
temps� � s�
� The iterations of this loop may be executed in any order�
DO v��templ�	tempu�	temps�
tempmask��v�� � mask�

END DO

� Evaluate the inner FORALL bounds	 etc
� The iterations of this loop may be executed in any order�
� The assignments in the loop body may be executed in any order	
� provided that the mask bounds are computed before the mask itself�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

templ��v�� � l�
tempu��v�� � u�
temps��v�� � s�
DO v� � templ��v��	tempu��v��	temps��v��
tempmask��v�	v�� � mask�

END DO

END IF

END DO

� Evaluate first statement
� The iterations of this loop may be executed in any order�
� The assignments in this loop body may be executed in any order�
� The loop body need not be executed atomically�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

DO v� � templ��v��	tempu��v��	temps��v��
IF � tempmask��v�	v�� � THEN

temprhs��v�	v�� � rhs�
tmpe��v�	v�� � e�

END IF

END DO

END IF

END DO

� The iterations of this loop may be executed in any order�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� THE FORALL CONSTRUCT ��

DO v� � templ��v��	tempu��v��	temps��v��
IF � tempmask��v�	v�� � THEN

a�tmpe��v�	v��� � temprhs��v�	v��
END IF

END DO

END IF

END DO

� Evaluate second statement�
� Ordering constraints are as for the first statement�
DO v��templ�	tempu�	temps�

IF �tempmask��v��� THEN

DO v� � templ��v��	tempu��v��	temps��v��
IF � tempmask��v�	v�� � THEN

temprhs��v�	v�� � rhs�
tmpe��v�	v�� � e�

END IF

END DO

END IF

END DO

DO v��templ�	tempu�	temps�
IF �tempmask��v��� THEN

DO v� � templ��v��	tempu��v��	temps��v��
IF � tempmask��v�	v�� � THEN

b�tmpe��v�	v��� � temprhs��v�	v��
END IF

END DO

END IF

END DO

Again� the extensions to higher dimensions are straightforward� as is the extension to deeper
nesting levels

Advice to implementors� Note that each statement at the deepest nesting level will
generate two loops of the types shown
 �End of advice to implementors��

����� Consequences of the De�nition of the FORALL Construct

Rationale�

A block FORALL means roughly the same thing as does replicating the FORALL header
in front of each array assignment statement in the block� except that any expres�
sions in the FORALL header are evaluated only once� rather than being re�evaluated
before each of the statements in the body
 The exceptions to this rule are nested
FORALL statements and WHERE statements� which introduce syntactic and functional
complications into the copying

One may think of a block FORALL as synchronizing twice per contained assignment
statement� once after handling the right�hand side and other expressions but before
performing assignments� and once after all assignments have been performed but

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

before commencing the next statement
 In practice� appropriate analysis will often
permit the compiler to eliminate unnecessary synchronizations

In general� any expression in a FORALL is evaluated only for valid combinations of all
surrounding index�names for which all the scalar mask expressions are �TRUE�

Nested FORALL bounds and strides can depend on outer FORALL index�names
 They
cannot rede�ne those names� even temporarily �if they did� there would be no way to
avoid multiple assignments to the same array element�

Statements can use the results of computations in lexically earlier statements� includ�
ing computations done for other name values
 However� an assignment never uses a
value assigned in the same statement by another index�name value combination

�End of rationale��

��� Pure Procedures

A pure function is one that obeys certain syntactic constraints that ensure it produces no
side e�ects
 This means that the only e�ect of a pure function reference on the state of
a program is to return a result�it does not modify the values� pointer associations� or
data mapping of any of its arguments or global data� and performs no external I�O
 A
pure subroutine is one that produces no side e�ects except for modifying the values and�or
pointer associations of INTENT�OUT� and INTENT�INOUT� arguments
 These properties are
declared by a new attribute �the PURE attribute� of the the procedure

A pure procedure �i
e
� function or subroutine� may be used in any way that a normal
procedure can
 However� a procedure is required to be pure if it is used in any of the
following contexts�

� The mask or body of a FORALL statement or construct�

� Within the body of a pure procedure� or

� As an actual argument in a pure procedure reference

Rationale�

The freedom from side e�ects of a pure function allows the function to be invoked
concurrently in a FORALL without such undesirable consequences as nondeterminism�
and additionally assists the e�cient implementation of concurrent execution
 Syn�
tactic constraints �rather than semantic constraints on behavior� are used to enable
compiler checking

The HPF Journal of Development also proposes allowing elemental invocation of pure
procedures with scalar arguments

�End of rationale��

����� Pure Procedure Declaration and Interface

If a user�de�ned procedure is used in a context that requires it to be pure� then its interface
must be explicit in the scope of that use� and that interface must specify the PURE attribute

This attribute is speci�ed in the function�stmt or subroutine�stmt by an extension of rules
R�
�� �for pre�x� and R�

� �for subroutine�stmt� in the Fortran 	� standard
 Rule R�
��
�for function�stmt� is not changed� but is rewritten here as Rule H��	 for clarity

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� PURE PROCEDURES ��

H��� prefix is prefix�spec � prefix�spec � ���

H��� prefix�spec is type�spec
or RECURSIVE

or PURE

or extrinsic�prefix

H��	 function�stmt is � prefix � FUNCTION function�name function�stuff

H��� function�stuff is � � dummy�arg�name�list � � � RESULT � result�name � �

H��� subroutine�stmt is � prefix � SUBROUTINE subroutine�name subroutine�stuff

H��
 subroutine�stuff is � � � dummy�arg�list � � �

Constraint� A pre�x must contain at most one of each variety of pre�x�spec

Constraint� The pre�x of a subroutine�stmt must not contain a type�spec

�For a discussion of the extrinsic�pre�x �Rule H����� see Section �

�
Intrinsic functions� including the HPF intrinsic functions� are always pure and require

no explicit declaration of this fact
 Intrinsic subroutines are pure if they are elemental �i
e
�
MVBITS� but not otherwise
 Functions and subroutines in the HPF library are declared to
be pure
 A statement function is pure if and only if all functions that it references are pure

A procedure with the PURE attribute is referred to as a �pure procedure� in the following
constraints

������� Pure function de�nition

The following constraints are added to Rule R�
�� in Section �

�

 of the Fortran 	�
standard �de�ning function�subprogram��

Constraint� The speci�cation�part of a pure function must specify that all dummy argu�
ments have INTENT�IN� except procedure arguments and arguments with the
POINTER attribute

Constraint� A local variable declared in the speci�cation�part or internal�subprogram�part
of a pure function must not have the SAVE attribute

Advice to users� Note local variable initialization in a type�declaration�
stmt or a data�stmt implies the SAVE attribute� therefore� such initializa�
tion is also disallowed
 �End of advice to users��

Constraint� The execution�part and internal�subprogram�part of a pure function may not
use a dummy argument� a global variable� or an object that is storage associ�
ated with a global variable� or a subobject thereof� in the following contexts�

� As the assignment variable of an assignment�stmt�

� As a DO variable or implied DO variable� or as an index�name in a forall�
triplet�spec�

� As an input�item in a read�stmt �

� As an internal��le�unit in a write�stmt �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

� As an IOSTAT� or SIZE� speci�er in an I�O statement

� In an assign�stmt �

� As the pointer�object or target of a pointer�assignment�stmt �

� As the expr of an assignment�stmt whose assignment variable is of a de�
rived type� or is a pointer to a derived type� that has a pointer component
at any level of component selection�

� As an allocate�object or stat�variable in an allocate�stmt or deallocate�
stmt � or as a pointer�object in a nullify�stmt � or

� As an actual argument associated with a dummy argument with INTENT

�OUT� or INTENT�INOUT� or with the POINTER attribute

Constraint� Any procedure referenced in a pure function� including one referenced via a
de�ned operation or assignment� must be pure

Constraint� A dummy argument or the dummy result of a pure function may be explicitly
aligned only with another dummy argument or the dummy result� and may
not be explicitly distributed or given the INHERIT attribute

Constraint� In a pure function� a local variable may be explicitly aligned only with another
local variable� a dummy argument� or the result variable
 A local variable may
not be explicitly distributed

Constraint� In a pure function� a dummy argument� local variable� or the result variable
must not have the DYNAMIC attribute

Constraint� In a pure function� a global variable must not appear in a realign�directive or
redistribute�directive

Constraint� A pure function must not contain a backspace�stmt� close�stmt� end�le�stmt�
inquire�stmt � open�stmt� print�stmt� rewind�stmt� or a read�stmt or write�stmt
whose io�unit is an external��le�unit or �

Constraint� A pure function must not contain a pause�stmt or stop�stmt

The above constraints are designed to guarantee that a pure function is free from side
e�ects �i
e
� modi�cations of data visible outside the function�� which means that it is safe
to reference concurrently� as explained earlier

Rationale�

It is worth mentioning why the above constraints are su�cient to eliminate side e�ects

The �rst constraint �requiring explicit INTENT�IN�� declares behavior that is ensured
by the following rules
 It is not technically necessary� but is included for consistency
with the explicit declaration rules for de�ned operators
 Note that POINTER argu�
ments may not have the INTENT attribute� the restrictions below ensure that POINTER
arguments also behave as if they had INTENT�IN�� for both the argument itself and
the object pointed to

The second constraint �disallowing SAVE variables� ensures that a pure function does
not retain an internal state between calls� which would allow side�e�ects between calls
to the same procedure

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� PURE PROCEDURES ��

The third constraint �the restrictions on use of global variables and dummy arguments�
ensures that dummy arguments and global variables are not modi�ed by the function

In the case of a dummy or global pointer� this applies to both its pointer association
and its target value� so it cannot be subject to a pointer assignment or to an ALLOCATE�
DEALLOCATE� or NULLIFY statement
 Incidentally� these constraints imply that only
local variables and the dummy result variable can be subject to assignment or pointer
assignment

In addition� a dummy or global data object cannot be the target of a pointer assign�
ment �i
e
� it cannot be used as the right hand side of a pointer assignment to a local
pointer or to the result variable�� for then its value could be modi�ed via the pointer

�An alternative approach would be to allow such objects to be pointer targets� but
disallow assignments to those pointers� syntactic constraints to allow this would be
even more draconian than these
�

In connection with the last point� it should be noted that an ordinary �as opposed
to pointer� assignment to a variable of derived type that has a pointer component at
any level of component selection may result in a pointer assignment to the pointer
component of the variable
 That is certainly the case for an intrinsic assignment

In that case� the expression on the right hand side of the assignment has the same
type as the assignment variable� and the assignment results in a pointer assignment
of the pointer components of the expression result to the corresponding components
of the variable �see section �
�
�
� of the Fortran 	� standard�
 However� it may also
be the case for a de�ned assignment to such a variable� even if the data type of the
expression has no pointer components� the de�ned assignment may still involve pointer
assignment of part or all of the expression result to the pointer components of the
assignment variable
 Therefore� a dummy or global object cannot be used as the right
hand side of any assignment to a variable of derived type with pointer components�
for then it� or part of it� might be the target of a pointer assignment� in violation of
the restriction mentioned above

�Incidentally� the last two paragraphs only prevent the reference of a dummy or global
object as the only object on the right hand side of a pointer assignment or an assign�
ment to a variable with pointer components
 There are no constraints on its reference
as an operand� actual argument� subscript expression� etc
 in these circumstances
�

Finally� a dummy or global data object cannot be used in a procedure reference as
an actual argument associated with a dummy argument of INTENT�OUT� or INTENT
�INOUT� or with a dummy pointer� for then it may be modi�ed by the procedure
reference
 This constraint� like the others� can be statically checked� since any proce�
dure referenced within a pure function must be either a pure function� which does not
modify its arguments� or a pure subroutine� whose interface must specify the INTENT
or POINTER attributes of its arguments �see below�
 Incidentally� notice that in this
context it is assumed that an actual argument associated with a dummy pointer is
modi�ed� since Fortran 	� does not allow its intent to be speci�ed

The fourth constraint �only pure procedures may be called� ensures that all proce�
dures called from a pure function are themselves side�e�ect free� except� in the case
of subroutines� for modifying actual arguments associated with dummy pointers or
dummy arguments with INTENT�OUT� or INTENT�INOUT�
 As we have just explained�
it can be checked that global or dummy objects are not used in such arguments� which

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

would violate the required side�e�ect freedom

Constraints � and � restrict the explicit declaration of the mapping of local variables
and the dummy arguments and dummy results
 This is because the function may be
invoked concurrently� with each invocation active on a subset of processors speci�c to
that invocation� and operating on data that are mapped to that processor subset
 In�
deed� in an optimising implementation� the caller may well automatically arrange the
mapping of the actual arguments and result according to the context� e
g
 to maximise
concurrency in a FORALL� and�or to reduce communication� taking into account the
mappings of other arguments� other terms in the expression� the assignment variable�
etc
 Thus� a dummy argument or result may not appear in a mapping directive that
�xes its location with respect to the processor array �e
g
 it may not be aligned with a
global variable or template� or be explicitly distributed� or given the inherit attribute�
all of which would remove the caller�s freedom to determine the actual�s mapping as
described above�
 The only type of mapping information that may be speci�ed for
the dummy arguments and result is their alignment with each other� this will provide
useful information to the caller about their required relative mappings
 For similar
reasons� local variables may be aligned with the dummy arguments or result �either
directly or through other local variables�� but may not have arbitrary mappings

Constraints � and � prevent the side e�ect of realignment and redistribution of data
within a pure function

The penultimate constraint prevents external I�O and �le operations� whose order
would be non�deterministic in the context of concurrent execution
 Note that internal
I�O is allowed� provided that it does not modify global variables or dummy arguments

Finally� the last constraint disallows PAUSE and STOP statements
 A PAUSE statement
requires input and so is disallowed for the same reason as I�O
 A STOP brings execution
to a halt� which is a rather drastic side e�ect

�End of rationale��

Advice to implementors� Note that PURE functions may prescriptively align their
dummy arguments� thus possibly causing remapping on function call
 Because only
alignment is involved� this cannot result in mapping data to processors that do not
already store some data involved in the call

Also note that PURE functions may read� but not write� distributed global data
 This
may be very di�cult to implement on machines without shared memory
 One possible
implementation would be to use interrupt�driven messages to fetch data� another
would be to use interprocedural analysis to detect all possible global data use in a
PURE procedure
 Some feedback from the compiler indicating such expensive access
patterns would be quite valuable to serious users
 �End of advice to implementors��

������� Pure subroutine de�nition

The following constraints are added to Rule R�
�	 in Section �

�

� of the Fortran 	�
standard �de�ning subroutine�subprogram��

Constraint� The speci�cation�part of a pure subroutine must specify the intents of all
dummy arguments except procedure arguments and arguments that have the
POINTER attribute

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� PURE PROCEDURES �	

Constraint� A local variable declared in the speci�cation�part or internal�function�part of a
pure subroutine must not have the SAVE attribute

Constraint� The execution�part or internal�subprogram�part of a pure subroutine must not
use a dummy parameter with INTENT�IN�� a global variable� or an object that
is storage associated with a global variable� or a subobject thereof� in the
following contexts�

� As the assignment variable of an assignment�stmt�

� As a DO variable or implied DO variable� or as a index�name in a forall�
triplet�spec�

� As an input�item in a read�stmt �

� As an internal��le�unit in a write�stmt �

� As an IOSTAT� or SIZE� speci�er in an I�O statement

� In an assign�stmt �

� As the pointer�object or target of a pointer�assignment�stmt �

� As the expr of an assignment�stmt whose assignment variable is of a de�
rived type� or is a pointer to a derived type� that has a pointer component
at any level of component selection�

� As an allocate�object or stat�variable in an allocate�stmt or deallocate�
stmt � or as a pointer�object in a nullify�stmt �

� As an actual argument associated with a dummy argument with INTENT

�OUT� or INTENT�INOUT� or with the POINTER attribute

Constraint� Any procedure referenced in a pure subroutine� including one referenced via a
de�ned operation or assignment� must be pure

Constraint� A dummy argument of a pure subroutine may be explicitly aligned only with
another dummy argument� and may not be explicitly distributed or given the
INHERIT attribute

Constraint� In a pure subroutine� a local variable may be explicitly aligned only with
another local variable or a dummy argument
 A local variable may not be
explicitly distributed

Constraint� In a pure subroutine� a dummy argument or local variable must not have the
DYNAMIC attribute

Constraint� In a pure subroutine� a global variable must not appear in a realign�directive
or redistribute�directive

Constraint� A pure subroutine must not contain a backspace�stmt� close�stmt� end�le�stmt�
inquire�stmt � open�stmt� print�stmt� rewind�stmt� print�stmt� or a read�stmt or
write�stmt whose io�unit is an external��le�unit or �

Constraint� A pure subroutine must not contain a pause�stmt or stop�stmt

Constraint� A pure subroutine must not contain an asterisk ��� in its dummy�argument�list

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

Rationale�

The constraints for pure subroutines are based on the same principles as for pure func�
tions� except that side e�ects to INTENT�OUT� and INTENT�INOUT� dummy arguments
are permitted
 Pointer dummy arguments are always treated as INTENT�INOUT�

Pure subroutines are included to allow subroutine calls from pure procedures in a safe
way� and to allow forall�assignments to be de�ned assignments

In addition� the last constraint disallows alternate returns in pure subroutines
 These
were not explicitly forbidden in pure functions� because no function can contain alter�
nate returns
 An alternate return from a pure subroutine would change the control
�ow in the calling routine� this was judged to be not in the spirit of pure procedures

�End of rationale��

������� Pure procedure interfaces

To de�ne interface speci�cations for pure procedures� the following constraints are added
to Rule R�
�� in Section �

�

� of the Fortran 	� standard �de�ning interface�body��

Constraint� An interface�body of a pure procedure must specify the intents of all dummy
arguments except POINTER and procedure arguments

The procedure characteristics de�ned by an interface body must be consistent with the
procedure�s de�nition
 Regarding pure procedures� this is interpreted as follows�

� A procedure that is declared pure at its de�nition may be declared pure in an interface
body� but this is not required

� A procedure that is not declared pure at its de�nition must not be declared pure in
an interface body

That is� if an interface body contains a PURE attribute� then the corresponding pro�
cedure de�nition must also contain it� though the reverse is not true
 When a procedure
de�nition with a PURE attribute is compiled� the compiler may check that it satis�es the
necessary constraints

����� Pure Procedure Reference

To de�ne pure procedure references� the following extra constraint is added to Rules R�
�	
and R�
�� in Section �

�
� of the Fortran 	� standard �de�ning function�reference and
call�stmt��

Constraint� In a reference to a pure procedure� a procedure�name actual�arg must be the
name of a pure procedure

Rationale� This constraint ensures that the purity of a procedure cannot be under�
mined by allowing it to call a non�pure procedure
 �End of rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	��� PURE PROCEDURES ��

����� Examples of Pure Procedure Usage

Pure functions may be used in expressions in FORALL statements and constructs� unlike
general functions
 Several examples of this are given below

� This statement function is pure since it does not reference

� any other functions

REAL myexp

myexp�x� � � � x � x�x���� � x�x�x����

FORALL � i � ��n � a�i� � myexp� a�i��� �

���

� Intrinsic functions are always pure

FORALL � i � ��n � a�i	i� � log� abs� a�i	i� � �

Because a forall�assignment may be an array assignment� the pure function can have
an array result
 Such functions may be particularly helpful for performing row�wise or
column�wise operations on an array
 The next example illustrates this

INTERFACE

PURE FUNCTION f�x�

REAL	 DIMENSION��� �� f	

REAL	 DIMENSION���	 INTENT�IN� �� x

END FUNCTION f

END INTERFACE

REAL v ��	��	���

���

FORALL �i�����	 j������ v��	i	j� � f�v��	i	j��

A limited form of MIMD parallelism can be obtained by means of branches within the
pure procedure that depend on arguments associated with array elements or their subscripts
when the function is called from a FORALL
 This may sometimes provide an alternative to
using sequences of masked FORALL or WHERE statements with their potential synchronization
overhead
 The next example suggests how this may be done

REAL PURE FUNCTION f �x	 i�

REAL	 INTENT�IN� �� x � associated with array element

INTEGER	 INTENT�IN� �� i � associated with array subscript

IF �x ���� THEN � content�based conditional

f � x�x

ELSE IF �i��� �OR� i��n� THEN � subscript�based conditional

f � ���

ELSE

f � x

ENDIF

END FUNCTION

���

REAL a�n�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

INTEGER i

���

FORALL �i���n� a�i� � f� a�i�	 i�

Because pure procedures have no constraints on their internal control �ow �except
that they may not use the STOP statement�� they also provide a means for encapsulating
more complex operations than could otherwise be nested within a FORALL
 For example� the
fragment below performs an iterative algorithm on every element of an array
 Note that
di�erent amounts of computation may be required for di�erent inputs
 Some machines may
not be able to take advantage of this �exibility

PURE INTEGER FUNCTION iter�x�

COMPLEX	 INTENT�IN� �� x

COMPLEX xtmp

INTEGER i

i � �

xtmp � �x

DO WHILE �ABS�xtmp��LT���� �AND� i�LT������

xtmp � xtmp � xtmp � x

i � i � �

END DO

iter � i

END FUNCTION

���

FORALL �i���n	 j���m� ix�i	j� � iter�CMPLX�a�i�da	b�j�db��

����� Comments on Pure Procedures

Rationale�

The constraints for a pure procedure guarantee freedom from side�e�ects� thus en�
suring that it can be invoked concurrently at each �element� of an array �where an
�element� may itself be a data structure� including an array�

The constraints on pure procedures may appear complicated� but it is not necessary
for a programmer to be intimately familiar with them
 %From the programmer�s
point of view� these constraints can be summarized as follows� a pure procedure must
not contain any operation that could conceivably result in an assignment or pointer
assignment to a global variable or INTENT �IN� dummy argument� or perform any
I�O or STOP operation
 Note the use of the word conceivably � it is not su�cient for a
pure procedure merely to be side�e�ect free in practice
 For example� a function that
contains an assignment to a global variable but in a branch that is not executed in
any invocation of the function is nevertheless not a pure function
 The exclusion of
functions of this nature is unavoidable if strict compile�time checking is to be used
 In
the choice between compile�time checking and �exibility� the HPF committee decided
in favor of enhanced checking

It is expected that most library procedures will conform to the constraints required
of pure procedures �by the very nature of library procedures�� and so can be declared
pure and referenced in FORALL statements and constructs and within user�de�ned

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	�	� THE INDEPENDENT DIRECTIVE ��

pure procedures
 It is also anticipated that most library procedures will not reference
global data� whose use may sometimes inhibit concurrent execution

The constraints on pure procedures are limited to those necessary to check statically
for freedom from side e�ects� processor independence� and for lack of saved internal
state
 Subject to these restrictions� maximum functionality has been preserved in the
de�nition of pure procedures
 This has been done to make function calls in FORALL

as widely available as possible� and so that quite general library procedures can be
classi�ed as pure

A drawback of this �exibility is that pure procedures permit certain features whose use
may hinder� and in the worst case prevent� concurrent execution in FORALL �that is�
such references may have to be implemented by sequentialization�
 Foremost among
these features are the access of global data� particularly distributed global data� and
the fact that the arguments and� for a pure function� the result may be pointers or data
structures with pointer components� including recursive data structures such as lists
and trees
 The programmer should be aware of the potential performance penalties
of using such features

�End of rationale��

��� The INDEPENDENT Directive

The INDEPENDENT directive can precede an indexed DO loop or FORALL statement or
construct
 It asserts to the compiler that the operations in the following FORALL statement
or construct or iterations in the following DO loop may be executed independently�that
is� in any order� or interleaved� or concurrently�without changing the semantics of the
program

The INDEPENDENT directive precedes the DO loop or FORALL for which it is asserting behavior�
and is said to apply to that loop or FORALL
 The syntax of the INDEPENDENT directive is

H��� independent�directive is INDEPENDENT � 	 new�clause �

H��� new�clause is NEW � variable�list �

Constraint� The �rst non�comment line following an independent�directive must be a do�
stmt� forall�stmt� or a forall�construct

Constraint� If the �rst non�comment line following an independent�directive is a do�stmt�
then that statement must contain a loop�control option containing a do�vari�
able

Constraint� If the NEW option is present� then the directive must apply to a DO loop

Constraint� A variable named in the NEW option or any component or element thereof must
not�

� Be a pointer or dummy argument� nor

� Have the SAVE or TARGET attribute

Rationale� The second constraint means that an INDEPENDENT directive loop cannot
be applied to a WHILE or a simple DO �i
e
 a �do forever��
 An INDEPENDENT in such

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

cases could only indicate loops with zero or one trips� and the confusion factor in
those cases was felt to outweigh the possible bene�ts
 �End of rationale��

When applied to a DO loop� an INDEPENDENT directive is an assertion by the programmer
that no iteration can a�ect any other iteration� either directly or indirectly
 The following
operations de�ne such interference�

� Any two operations that assign to the same atomic object �de�ned in Section �
�

�
interfere with each other
 �Note the NEW clause below� however
�

� An operation that assigns to an atomic object interferes with any operation that uses
the value of that object
 �Note the NEW clause below� however
�

Rationale� These are the classic Bernstein ��� conditions to enable parallel
execution
 Note that two assignments of the same value to a variable interfere
with each other and thus an INDEPENDENT loop with such assignments is not
HPF�conforming
 This is not allowed because such overlapping assignments are
di�cult to support on some hardware� and because the given de�nition was
felt to be conceptually clearer
 Similarly� it is not HPF�conforming to assert
that assignment of multiple values to the same location is INDEPENDENT� even if
the program logically can accept any of the possible values
 In this case� both
the �conceptually clearer� argument and the desire to avoid nondeterministic
behavior favored the given solution
 �End of rationale��

� An ALLOCATE statement� DEALLOCATE statement� NULLIFY statement or pointer as�
signment statement interferes with any other access� pointer assignment� allocation�
deallocation� or nulli�cation of the same pointer
 In addition� a DEALLOCATE statement
interferes with any other use of or assignment to the object which is deallocated

Rationale� These constraints extend Bernstein�s conditions to pointers
 Because
a Fortran 	� pointer is an alias to a section of memory rather than a �rst�class
data type� a bit more precision is needed than for other variables
 �End of
rationale��

� Any transfer of control to a branch target statement outside the body of the loop
interferes with all other operations in the loop

� Any execution of an EXIT� STOP� or PAUSE statement interferes with all other opera�
tions in the loop

Rationale� Branching �by GOTO or ERR� branches in I�O statements� implies
that some iterations of the loop are not executed� which is drastic interference
with those computations
 The same is true for EXIT and the other statements

Note that these conditions do not restrict procedure calls in INDEPENDENT loops�
except to disallow taking alternate returns to statements outside the loop
 �End
of rationale��

� A READ operation assigns to the objects in its input�item�list� a WRITE or PRINT opera�
tion uses the values of the objects on its output�item�list
 I�O operations may interfere
with other operations �including other I�O operations� as per the conditions above

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	�	� THE INDEPENDENT DIRECTIVE ��

� An internal READ operation uses its internal �le� an internal WRITE operation assigns
to its internal �le
 These uses and assignments may interfere with other operations
as outlined above

� Any two �le I�O operations except INQUIRE associated with the same �le or unit
interfere with each other
 Two INQUIRE operations do not interfere with each other�
however� an INQUIRE operation interferes with any other I�O operation associated
with the same �le

Rationale� Because Fortran carefully de�nes the �le position after a data
transfer or �le positioning statement� these operations a�ect the global state of a
program
 �Note that �le position is de�ned even for direct access �les
� Multiple
non�advancing data transfer statements a�ect the �le position in ways similar to
multiple assignments of the same value to a variable� and is disallowed for the
same reason
 Multiple OPEN and CLOSE operations a�ect the status of �les and
units� which is another global side e�ect
 INQUIRE does not a�ect the �le status�
and therefore does not a�ect other inquiries
 However� other �le operations may
a�ect the properties reported by INQUIRE
 �End of rationale��

� Any data realignment or redistribution performed in the loop interferes with any
access to or any other realignment of the same data

Rationale� REALIGN and REDISTRIBUTE may change the processor storing a
particular array element� which interferes with any assignment or use of that
element
 Similarly� multiple remapping operations may cause the same element
to be stored in multiple locations
 �End of rationale��

If a procedure is called from within an INDEPENDENT loop or FORALL� then any local
variables in that procedure are considered distinct on each call unless they have the SAVE
attribute
 This is consistent with the Fortran 	� standard
 Therefore� uses of local variables
on calls from di�erent iterations do not cause interference as de�ned above

Advice to implementors� A legal Fortran 	� implementation can often avoid creating
distinct storage for locals on every call
 The same is true for an HPF implementation�
however� such an implementation must still interpret INDEPENDENT in the same way
 If
locals are not allocated unique storage locations on every call� then the INDEPENDENT
loop must be serialized to respect these semantics �or other techniques must be used
for the purpose�
 �End of advice to implementors��

Note that all of these describe interfering behavior� they do not disallow speci�c syn�
tax
 Statements that appear to violate one or more of these restrictions are allowed in an
INDEPENDENT loop� if they are not executed due to control �ow
 These restrictions allow an
INDEPENDENT loop to be executed safely in parallel if computational resources are available

The directive is purely advisory and a compiler is free to ignore it if it cannot make use of
the information

Advice to implementors� Although the restrictions allow safe parallel implementation
of INDEPENDENT loops� they do not imply that this will be pro�table �or even possible�
on all architectures or all programs
 For example�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

� An INDEPENDENT loop may call a routine with explicitly mapped local variables

The implementation must then either implement the mapping �which may require
serializing the calls� or override the explicit directives �which may surprise the
user�

� An INDEPENDENT loop may have very di�erent behavior on every iteration
 For
example�

�HPF
 INDEPENDENT

DO i � �	 �

IF �i�EQ��� CALL F�A�

IF �i�EQ��� CALL G�B�

IF �i�EQ��� CALL H�C�

END DO

This poses obvious problems for implementations on SIMD machines

In all cases� it is the implementation�s responsibility to produce correct behavior�
which may in turn limit optimization
 It is recommended that implementations pro�
vide some feedback if an INDEPENDENT assertion may be ignored
 �End of advice to
implementors��

The NEW option modi�es the INDEPENDENT directive and all surrounding INDEPENDENT

directives by asserting that those assertions would be true if new objects were created for
the named variables for each iteration of the DO loop
 Thus� variables named in the new�
clause behave as if they were private to the body of the DO loop
 More formally� it asserts
that the remainder of program execution is una�ected if all variables in the variable�list and
any variables associated with them were to become unde�ned immediately before execution
of every iteration of the loop� and also become unde�ned immediately after the completion
of each iteration of the loop

Advice to implementors�

The wording here is similar to the treatment of realignment through pointers in Sec�
tion �
�
 As with that section� it may be reworded if HPF directives are absorbed as
actual Fortran statements

�End of advice to implementors��

Rationale� NEW variables provide the means to declare temporaries in INDEPENDENT

loops
 Without this feature� many conceptually independent loops would need sub�
stantial rewriting �including expansion of scalars into arrays� to meet the rather strict
requirements described above
 Note that a temporary need only be declared NEW at
the innermost lexical level at which it is assigned� since all enclosing INDEPENDENT

assertions must take that NEW into account
 Note also that index variables for nested
DO loops must be declared NEW� the alternative was to limit the scope of an index
variable to the loop itself� which changes Fortran semantics
 FORALL indices� however�
are restricted by the semantics of the FORALL� they require no NEW declarations
 �End
of rationale��

Advice to users� Section �
�
� contains several examples of the syntax and semantics
of INDEPENDENT applied to DO loops
 �End of advice to users��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	�	� THE INDEPENDENT DIRECTIVE ��

The interpretation of INDEPENDENT for FORALL is similar to that for DO� it asserts that
no combination of the indexes that INDEPENDENT applies assigns to an atomic storage unit
that is read by another combination
 �Note that an HPF FORALL statement or construct
does not allow exits from the construct� etc
� A DO and a FORALL with the same body are
equivalent if they both have the INDEPENDENT directive
 This is illustrated in Section �
�

����� Examples of INDEPENDENT

�HPF
 INDEPENDENT

DO i � �	 ��

a�i� � b�i��� � b�i� � b�i���

END DO

This is one of the simplest examples of an INDEPENDENT loop
 �For simplicity� all
examples in this section assume there is no storage or sequence association between any
variables used in the code
� Every iteration assigns to a di�erent location in the a array�
thus satisfying the �rst condition above
 Since no elements of a are used on the right�
hand side� no location that is assigned in the loop is also read� thus satisfying the second
condition
 Note� however� that many elements of b are used repeatedly� this is allowed by
the de�nition of INDEPENDENT
 The other conditions relate to constructs not used in the
loop
 In this example� the assertion is true regardless of the values of the variables involved

�HPF
 INDEPENDENT

FORALL � i���n � a�i� � b�i��� � b�i� � b�i���

This example is equivalent in all respects to the �rst example

�HPF
 INDEPENDENT

DO i��	 ���

a�p�i�� � b�i�

END DO

This INDEPENDENT directive asserts that the array p does not have any repeated entries
�else they would cause interference when a was assigned�
 The DO loop is therefore equivalent
to the Fortran 	� statement

a�p�������� � b�������

�HPF
 INDEPENDENT	 NEW �i��

DO i� � �	n�

�HPF
 INDEPENDENT	 NEW �i��

DO i� � �	n�

�HPF
 INDEPENDENT	 NEW �i��

DO i� � �	n�

DO i� � �	n� � The inner loop is NOT independent�

a�i�	i�	i�� � a�i�	i�	i�� � b�i�	i�	i���c�i�	i�	i��

END DO

END DO

END DO

END DO

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

The inner loop is not independent because each element of a is assigned repeatedly

However� the three outer loops are independent because they access di�erent elements of a

The NEW clauses are required� since the inner loop indices are assigned and used in di�erent
iterations of the outermost loops

�HPF
 INDEPENDENT	 NEW �j�

DO i � �	 ���	 �

�HPF
 INDEPENDENT	 NEW�vl	 vr	 ul	 ur�

DO j � � 	 ���	 �

vl � p�i	j� � p�i��	j�

vr � p�i��	j� � p�i	j�

ul � p�i	j� � p�i	j���

ur � p�i	j��� � p�i	j�

p�i	j� � f�i	j� � p�i	j� � ���
 � �vr � vl � ur � ul�

END DO

END DO

Without the NEW option on the j loop� neither loop would be independent� because an
interleaved execution of loop iterations might cause other values of vl� vr� ul� and ur to be
used in the assignment of p�i� j� than those computed in the same iteration of the loop
 The
NEW option� however� speci�es that this is not true if distinct storage units are used in each
iteration of the loop
 Using this implementation makes iterations of the loops independent
of each other
 Note that there is no interference due to accesses of the array p because of
the stride of the DO loop �i
e
 i and j are always even� therefore i� �� etc
 are always odd
�

�HPF
 INDEPENDENT

DO i � �	 ��

WRITE �iounit�i�	���� a�i�

END DO

��� FORMAT � F���� �

If iounit�i� evaluates to a di�erent value for every i 	 f�� � � � � ��g� then the loop writes
to a di�erent I�O unit �and thus a di�erent �le� on every iteration
 The loop is then properly
described as independent
 On the other hand� if iounit�i� � for all i� then the assertion
is in error and the loop is not HPF�conforming

����� Visualization of INDEPENDENT Directives

Graphically� the INDEPENDENT directive can be visualized as eliminating edges from a
precedence graph representing the program
 Figure �
� shows some of the dependences that
may normally be present in a DO and a FORALL
 �Most of the transitive dependences are not
shown
� An arrow from a left�hand side node �for example� �lhsa����� to a right�hand side
node ��rhsb����� means that the right�hand side computation might use values assigned
in the left�hand side node� thus the right�hand side must be computed after the left�hand
side completes its store
 Similarly� an arrow from a right�hand side node to a left�hand
side node means that the left�hand side may overwrite a value needed by the right�hand
side computation� again forcing an ordering
 Edges from the �BEGIN� and to the �END�
nodes represent control dependences
 The INDEPENDENT directive asserts that the only
dependences that a compiler need enforce are those in Figure �

 That is� the programmer

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	�	� THE INDEPENDENT DIRECTIVE �	

DO i � �	 �

lhsa�i� � rhsa�i�

lhsb�i� � rhsb�i�

END DO

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

�

�

�� �

�

�� �

�

�

�

�� �

�

�� �

�

�

�

FORALL � i � ��� �

lhsa�i� � rhsa�i�

lhsb�i� � rhsb�i�

END FORALL

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

HHHHHHHj

XXXXXXXXXXXXXXz

�������� �

HHHHHHHj�

��������

���������������

�

HHHHHHHj

XXXXXXXXXXXXXXz

�������� �

HHHHHHHj�

��������

���������������

�

HHHHHHHj

XXXXXXXXXXXXXXz

�������� �

HHHHHHHj�

��������

���������������

Figure �
�� Dependences in DO and FORALL without INDEPENDENT assertions

�HPF
 INDEPENDENT

DO i � �	 �

lhsa�i� � rhsa�i�

lhsb�i� � rhsb�i�

END DO

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

�

�

�

�

�

�

�

�

�HPF
 INDEPENDENT

FORALL � i � ��� �

lhsa�i� � rhsa�i�

lhsb�i� � rhsb�i�

END FORALL

BEGIN

rhsa��� rhsa��� rhsa���

lhsa��� lhsa��� lhsa���

rhsb��� rhsb��� rhsb���

lhsb��� lhsb��� lhsb���

END

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������� �

HHHHHHHj

HHHHHHHj�

��������

�

�

�

�

�

�

�

�

�

Figure �

� Dependences in DO and FORALL with INDEPENDENT assertions

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION 	� DATA PARALLEL STATEMENTS AND DIRECTIVES

who uses INDEPENDENT is certifying that if the compiler enforces only these edges� then the
resulting program will be equivalent to the one in which all the edges are present
 Note that
the set of asserted dependences is identical for INDEPENDENT DO and FORALL constructs

The compiler is justi�ed in producing a warning if it can prove that one of these
assertions is incorrect
 It is not required to do so� however
 A program containing any false
assertion of this type is not HPF�conforming� thus is not de�ned by HPF� and the compiler
may take any action it deems appropriate

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Intrinsic and Library Procedures

HPF includes Fortran 	��s intrinsic procedures
 It also adds new intrinsic procedures in two
categories� system inquiry intrinsic functions and computational intrinsic functions

The de�nitions of two Fortran 	� intrinsic functions� MAXLOC and MINLOC� are extended
by the addition of an optional DIM argument

In addition to the new intrinsic functions� HPF de�nes a library module� HPF LIBRARY�
that must be provided by vendors of any full HPF implementation

This description of HPF intrinsic and library procedures follows the form and con�
ventions of Section �� of the Fortran 	� standard
 The material of Sections ��
�� ��

�
��
�� ��
�
�� ��
�
�� ��
�

� ��
	� and ��
�� is applicable to the HPF intrinsic and library
procedures and to their descriptions in this section of the HPF document

��� Notation

In the examples of this section� T and F are used to denote the logical values true and false

��� System Inquiry Intrinsic Functions

In a multi�processor implementation� the processors may be arranged in an implemen�
tation�dependent multi�dimensional processor array
 The system inquiry functions return
values related to this underlying machine and processor con�guration� including the size and
shape of the underlying processor array
 NUMBER OF PROCESSORS returns the total number
of processors available to the program or the number of processors available to the program
along a speci�ed dimension of the processor array
 PROCESSORS SHAPE returns the shape of
the processor array

The values returned by the system inquiry intrinsic functions remain constant for the
duration of one program execution
 Thus� NUMBER OF PROCESSORS and PROCESSORS SHAPE

have values that are restricted expressions and may be used wherever any other Fortran 	�
restricted expression may be used
 In particular� NUMBER OF PROCESSORS may be used in a
speci�cation expression

The values of system inquiry functions may not occur in initialization expressions�
because they may not be assumed to be constants
 In particular� HPF programs may be
compiled to run on machines whose con�gurations are not known at compile time

Note that the system inquiry functions query the physical machine� and have nothing
to do with any PROCESSORS directive that may occur

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Advice to users� SIZE�PROCESSORS SHAPE��� returns the rank of the processor array

References to system inquiry functions may occur in array declarations and in HPF
directives� as in�

INTEGER	 DIMENSION�SIZE�PROCESSORS�SHAPE���� �� PSHAPE

�HPF
 TEMPLATE T����	 ��NUMBER�OF�PROCESSORS���

�End of advice to users��

��� Computational Intrinsic Functions

HPF adds one new intrinsic function� ILEN� which computes the number of bits needed to
store an integer value
 HPF also generalizes the Fortran 	� MAXLOC and MINLOC intrinsic
functions with an optional DIM parameter� for �nding the locations of maximum or minimum
elements along a given dimension

The HPF and the Fortran 	� intrinsic functions MAXLOC and MINLOC have a required
�rst argument� ARRAY
 In HPF� these functions have an optional second argument� DIM of
type integer� and an optional third argument� MASK of type logical
 The Fortran 	� intrinsic
functions MAXLOC and MINLOC have only one optional argument� MASK of type logical

Thus� an invocation with two arguments in Fortran 	�� the second being the mask
argument� might be interpreted incorrectly by an HPF compiler
 The type of DIM must
be integer and the type of MASK must be logical� however� and an HPF implementation is
required to correctly distinguish by the type of the second actual argument� in invocations
with two arguments present� between these possibilities

��� Library Procedures

The mapping inquiry subroutines and computational functions described in this section
are available in the HPF library module� HPF LIBRARY
 Use of these procedures must be
accompanied by an appropriate USE statement in each scoping unit in which they are used

They are not intrinsic

����� Mapping Inquiry Subroutines

HPF provides data mapping directives that are advisory in nature
 The mapping inquiry
subroutines allow the program to determine the actual mapping of an array at run time
 It
may be especially important to know the exact mapping when an EXTRINSIC subprogram is
invoked
 For these reasons� HPF includes mapping inquiry subroutines which describe how
an array is actually mapped onto a machine
 To keep the number of routines small� the
inquiry procedures are structured as subroutines with optional INTENT �OUT� arguments

����� Bit Manipulation Functions

The HPF library includes three elemental bit�manipulation functions
 LEADZ computes the
number of leading zero bits in an integer�s representation
 POPCNT counts the number of
one bits in an integer
 POPPAR computes the parity of an integer

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� LIBRARY PROCEDURES 	�

����� Array Reduction Functions

HPF adds additional array reduction functions that operate in the same manner as the
Fortran 	� SUM and ANY intrinsic functions
 The new reduction functions are IALL� IANY�
IPARITY� and PARITY� which correspond to the commutative� associative binary operations
IAND� IOR� IEOR� and �NEQV� respectively

In the speci�cations of these functions� the terms �XXX reduction� are used� where XXX
is one of the binary operators above
 These are de�ned by means of an example
 The IAND
reduction of all the elements of array for which the corresponding element of mask is true
is the scalar integer computed in result by

result � IAND�IDENTITY�ELEMENT

DO i�� � LBOUND�array	��	 UBOUND�array	��

���

DO i�n � LBOUND�array	n�	 UBOUND�array	n�

IF � mask�i��	i��	���	i�n� � �

result � IAND� result	 array�i��	i��	���	i�n� �

END DO

���

END DO

Here� n is the rank of array and IAND IDENTITY ELEMENT is the integer which has all bits
equal to one
 �The interpretation of an integer as a sequence of bits is given in Section
��
�
� of the Fortran 	� standard
� The other three reductions are similarly de�ned
 The
identity elements for IOR and IEOR are zero
 The identity element for PARITY is �FALSE�

����� Array Combining Scatter Functions

These are all generalized array reduction functions in which completely general� but nonover�
lapping� subsets of array elements can be combined
 There is a corresponding scatter func�
tion for each of the twelve reduction operation in the language
 The way the elements of
the source array are associated with the elements of the result is described in this section�
the method of combining their values is described in the speci�cations of the individual
functions in Section �
�

These functions all have the form

XXX�SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

The allowed values of XXX are ALL� ANY� COPY� COUNT� IALL� IANY� IPARITY� MAXVAL� MINVAL�
PARITY� PRODUCT� and SUM
 The number of INDX arguments must equal the rank of BASE

Except for COUNT SCATTER� ARRAY and BASE are arrays of the same type
 For COUNT SCATTER�
ARRAY is of type logical and BASE is of type integer
 The argument MASK is logical� and the
INDX arrays are integer
 ARRAY� MASK� and all the INDX arrays are conformable
 MASK is
optional
 �For ALL SCATTER� ANY SCATTER� COUNT SCATTER�and PARITY SCATTER� the ARRAY
must be logical
 These functions do not have an optional MASK argument
 To conform with
the conventions of the F	� standard� the required ARRAY argument to these functions is
called MASK in their speci�cations in Section �
�
� The result has the same type� kind type
parameter� and shape as BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

For every element a in ARRAY there is a corresponding element in each of the INDX

arrays
 Let s� be the value of the element of INDX� that is indexed by the same subscripts
as element a of ARRAY
 More generally� for each j ��
� ���� n� let sj be the value of the
element of INDXj that corresponds to element a in ARRAY� where n is the rank of BASE
 The
integers sj � j �� ���� n� form a subscript selecting an element of BASE� BASE�s�� s�� ���� sn�

Thus the INDX arrays establish a mapping from all the elements of ARRAY onto selected
elements of BASE
 Viewed in the other direction� this mapping associates with each element
b of BASE a set S of elements from ARRAY

Because BASE and the result are conformable� for each element of BASE there is a
corresponding element of the result

If S is empty� then the element of the result corresponding to the element b of BASE
has the same value as b

If S is non�empty� then the elements of S will be combined with element b to produce
an element of the result
 The particular means of combining these values is described
in the result value section of the speci�cation of the routine below
 As an example� for
SUM SCATTER� if the elements of S are a�� ���� am� then the element of the result corresponding
to the element b of BASE is the result of evaluating SUM���a�� a�� � � � � am� b���

Note that� since a scalar is conformable with any array� a scalar may be used in place
of an INDX array� in which case one hyperplane of the result is selected
 See the example
below

If the optional� �nal MASK argument is present� then only the elements of ARRAY in
positions for which MASK is true participate in the operation
 All other elements of ARRAY
and of the INDX arrays are ignored and cannot have any in�uence on any element of the
result

For example� if

A is the array

�
�� � � �

�
 �

� � �

�
	
� B is the array

�
�� �� �� ��

�� �
 ��

�� �� ��

�
	
�

I� is the array

�
�� � � �

� � �

� � �

�
	
� I� is the array

�
�� � � �

� � �

� � �

�
	

then

SUM SCATTER�A	 B	 I�	 I�� is

�
�� �� � �

� �
 ��

� �� ��

�
	
�

SUM SCATTER�A	 B	 �	 I�� is

�
�� �� �� ��

�� � ��

�� �� ��

�
	
�

SUM SCATTER�A	 B	 I�	 �� is

�
�� �� �� ��

�� � ��

�� �� ��

�
	
�

SUM SCATTER�A	 B	 �	 �� is

�
�� �� �� ��

�� �� ��

�� �� ��

�
	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� LIBRARY PROCEDURES 	�

If A is the array
h
�� �� �� �� ���

i
� B is the array

h
� � � �

i
�

and IND is the array
h
� � � � �

i
�

then SUM SCATTER�A	 B	 IND	 MASK��A �GT� ��� is
h
��
� �� �

i

����� Array Pre�x and Su�x Functions

In a scan of a vector� each element of the result is a function of the elements of the vector
that precede it �for a pre�x scan� or that follow it �for a su�x scan�
 These functions
provide scan operations on arrays and subarrays
 The functions all have the form

XXX�PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

XXX�SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

The allowed values of XXX are ALL� ANY� COPY� COUNT� IALL� IANY� IPARITY� MAXVAL� MINVAL�
PARITY� PRODUCT� and SUM

When comments below apply to both pre�x and su�x forms of the routines� we will
refer to them as YYYFIX functions

The arguments DIM� MASK� SEGMENT� and EXCLUSIVE are optional
 The COPY YYYFIX

functions do not have MASK or EXCLUSIVE arguments
 The ALL YYYFIX� ANY YYYFIX� COUNT �
YYYFIX� and PARITY YYYFIX functions do not have MASK arguments
 Their ARRAY argument
must be of type logical� it is denoted MASK in their speci�cations in Section �
�

The arguments MASK and SEGMENT must be of type logical
 SEGMENT must have the
same shape as ARRAY
 MASK must be conformable with ARRAY
 EXCLUSIVE is a logical scalar

DIM is a scalar integer between one and the rank of ARRAY

Result Value� The result has the same shape as ARRAY� and� with the exception
of COUNT YYYFIX� the same type and kind type parameter as ARRAY
 �The result of
COUNT YYYFIX is default integer
�

In every case� every element of the result is determined by the values of certain
selected elements of ARRAY in a way that is speci�c to the particular function and is
described in its speci�cation
 The optional arguments a�ect the selection of elements
of ARRAY for each element of the result� the selected elements of ARRAY are said to
contribute to the result element
 This section describes fully which elements of ARRAY
contribute to a given element of the result

If no elements of ARRAY are selected for a given element of the result� that result
element is set to a default value that is speci�c to the particular function and is
described in its speci�cation

For any given element r of the result� let a be the corresponding element of ARRAY

Every element of ARRAY contributes to r unless disquali�ed by one of the following
rules

�
 If the function is XXX PREFIX� no element that follows a in the array element
ordering of ARRAY contributes to r
 If the function is XXX SUFFIX� no element
that precedes a in the array element ordering of ARRAY contributes to r

 If the DIM argument is provided� an element z of ARRAY does not contribute
to r unless all its indices� excepting only the index for dimension DIM� are the
same as the corresponding indices of a
 �It follows that if the DIM argument is

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

omitted� then ARRAY� MASK� and SEGMENT are processed in array element order�
as if temporarily regarded as rank�one arrays
 If the DIM argument is present�
then a family of completely independent scan operations are carried out along
the selected dimension of ARRAY
�

�
 If the MASK argument is provided� an element z of ARRAY contributes to r only if
the element of MASK corresponding to z is true
 �It follows that array elements
corresponding to positions where the MASK is false do not contribute anywhere
to the result
 However� the result is nevertheless de�ned at all positions� even
positions where the MASK is false
�

�
 If the SEGMENT argument is provided� an element z of ARRAY does not contribute
if there is some intermediate element w of ARRAY� possibly z itself� with all of
the following properties�

�a� If the function is XXX PREFIX� w does not precede z but does precede a in
the array element ordering� if the function is XXX SUFFIX� w does not follow
z but does follow a in the array element ordering�

�b� If the DIM argument is present� all the indices of w� excepting only the index
for dimension DIM� are the same as the corresponding indices of a� and

�c� The element of SEGMENT corresponding to w does not have the same value
as the element of SEGMENT corresponding to a
 �In other words� z can
contribute only if there is an unbroken string of SEGMENT values� all alike�
extending from z through a
�

�
 If the EXCLUSIVE argument is provided and is true� then a itself does not con�
tribute to r

These general rules lead to the following important cases�

Case �i�� If ARRAY has rank one� element i of the result of XXX PREFIX�ARRAY� is
determined by the �rst i elements of ARRAY� element SIZE�ARRAY�� i!�
of the result of XXX SUFFIX�ARRAY� is determined by the last i elements
of ARRAY

Case �ii�� If ARRAY has rank greater than one� then each element of the result of
XXX PREFIX�ARRAY� has a value determined by the corresponding element
a of the ARRAY and all elements of ARRAY that precede a in array element
order
 For XXX SUFFIX� a is determined by the elements of ARRAY that
correspond to or follow a in array element order

Case �iii�� Each element of the result of XXX PREFIX�ARRAY	MASK�MASK� is deter�
mined by selected elements of ARRAY� namely the corresponding element
a of the ARRAY and all elements of ARRAY that precede a in array ele�
ment order� but an element of ARRAY may contribute to the result only
if the corresponding element of MASK is true
 If this restriction results in
selecting no array elements to contribute to some element of the result�
then that element of the result is set to the default value for the given
function

Case �iv�� Each element of the result of XXX PREFIX�ARRAY	DIM�DIM� is determined
by selected elements of ARRAY� namely the corresponding element a of
the ARRAY and all elements of ARRAY that precede a along dimension

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� LIBRARY PROCEDURES 	�

DIM� for example� in SUM PREFIX�A���N	��N�	 DIM���� result element
�i�� i�� could be computed as SUM�A�i�	� � i���
 More generally� in
SUM PREFIX�ARRAY	 DIM�� result element i�� i�� � � � � iDIM � � � � � in could be
computed as SUM�ARRAY� i�� i�� � � � � �iDIM � ���� in ��
 �Note the colon
before iDIM in that last expression
�

Case �v�� If ARRAY has rank one� then element i of the result of XXX PREFIX�ARRAY	

EXCLUSIVE��TRUE�� is determined by the �rst i� � elements of ARRAY

Case �vi�� The options may be used in any combination

Advice to users� A new segment begins at every transition from false to true or
true to false� thus a segment is indicated by a maximal contiguous subsequence of like
logical values�

��T	T	T	F	T	F	F	F	T	F	F	T��

����� � � ����� � ��� � seven segments

�End of advice to users��

Rationale�

One existing library delimits the segments by indicating the start of each segment

Another delimits the segments by indicating the stop of each segment
 Each method
has its advantages
 There is also the question of whether this convention should
change when performing a su�x rather than a pre�x
 HPF adopts the symmetric
representation above
 The main advantages of this representation are�

�A� It is symmetrical� in that the same segment speci�er may be meaningfully used
for pre�x and su�x without changing its interpretation �start versus stop�

�B� The start�bit or stop�bit representation is easily converted to this form by us�
ing PARITY PREFIX or PARITY SUFFIX
 These might be standard idioms for a
compiler to recognize�

SUM�PREFIX�FOO	SEGMENT�PARITY�PREFIX�START�BITS��

SUM�PREFIX�FOO	SEGMENT�PARITY�SUFFIX�STOP�BITS��

SUM�SUFFIX�FOO	SEGMENT�PARITY�SUFFIX�START�BITS��

SUM�SUFFIX�FOO	SEGMENT�PARITY�PREFIX�STOP�BITS��

�End of rationale��

Examples� The examples below illustrate all possible combinations of optional
arguments for SUM PREFIX
 The default value for SUM YYYFIX is zero

Case �i�� SUM PREFIX����	�	
	���� is
h
� � � ��

i

Case �ii�� If B is the array

�
�� � � �

�
 �

� � �

�
	
�

SUM PREFIX�B� is the array

�
�� � �� ��

 �� ��

�� �� �

�
	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

	� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Case �iii�� If A is the array
h
�
 �� �� � � �

i
�

then SUM PREFIX�A	 MASK � A �LT� �� is
h
� � �

 � �

i

Case �iv�� If B is the array

�
�� � � �

�
 �

� � �

�
	
� then SUM PREFIX�B	 DIM��� is the array

�
�� � � �

 � �

�� �
 ��

�
	
 and SUM PREFIX�B	 DIM��� is the array

�
�� � � �

� � �

� �
 ��

�
	

Case �v�� SUM PREFIX����	�	
	���	 EXCLUSIVE��TRUE�� is
h
� � � �

i

Case �vi�� If B is the array

�
�� � � � �

� � � � ��

�� �� �� �� �

�
	
� M is the array

�
�� T T T T T

F F T T T

T F T F F

�
	
� and S is the array

�
�� T T F F F

F T T F F

T T T T T

�
	
� then�

SUM PREFIX�B	 DIM��	 MASK�M	 SEGMENT�S	 EXCLUSIVE��TRUE�� is�
�� � � � � �

� � � � �

� �� �� �� ��

�
	

SUM PREFIX�B	 DIM��	 MASK�M	 SEGMENT�S	 EXCLUSIVE��FALSE�� is�
�� � � � � ��

� � � � ��

�� �� �� �� ��

�
	

SUM PREFIX�B	 DIM��	 MASK�M	 EXCLUSIVE��TRUE�� is

�
�� � � � � ��

� � � � ��

� �� �� �� ��

�
	

SUM PREFIX�B	 DIM��	 MASK�M	 EXCLUSIVE��FALSE�� is

�
�� � � � �� �

� � � �� ��

�� �� �� �� ��

�
	

SUM PREFIX�B	 DIM��	 SEGMENT�S	 EXCLUSIVE��TRUE�� is

�
�� � � � � �

� � � � �

� �� �� ��
�

�
	

SUM PREFIX�B	 DIM��	 SEGMENT�S	 EXCLUSIVE��FALSE�� is�
�� � � � � ��

� � �
 � ��

�� �� ��
� �

�
	

SUM PREFIX�B	 DIM��	 EXCLUSIVE��TRUE�� is

�
�� � � � � ��

� � �� �� ��

� �� �� ��
�

�
	

SUM PREFIX�B	 DIM��	 EXCLUSIVE��FALSE�� is

�
�� � � � �� �

� �� �� �� ��

�� �� ��
� �

�
	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� GENERIC INTRINSIC AND LIBRARY PROCEDURES 		

SUM PREFIX�B	 MASK�M	 SEGMENT�S	 EXCLUSIVE��TRUE�� is

�
�� � �� � � �

� �� � �

� �� � � �

�
	

SUM PREFIX�B	 MASK�M	 SEGMENT�S	 EXCLUSIVE��FALSE�� is�
�� � �� � �

� �� � �� �

�� �� �� � �

�
	

SUM PREFIX�B	 MASK�M	 EXCLUSIVE��TRUE�� is

�
�� � �� �� ��
�

� �� �� ��
�

� �� �

� ��

�
	

SUM PREFIX�B	 MASK�M	 EXCLUSIVE��FALSE�� is

�
�� � �� �� ��
�

� �� �

� ��

�� �� ��
� ��

�
	

SUM PREFIX�B	 SEGMENT�S	 EXCLUSIVE��TRUE�� is

�
�� � �� � � �

� �� � �

� �� � � �

�
	

SUM PREFIX�B	 SEGMENT�S	 EXCLUSIVE��FALSE�� is

�
�� � �� � �

� �� � �� �

�� �� �� �� �

�
	

SUM PREFIX�B	 EXCLUSIVE��TRUE�� is

�
�� � �� �� �� ��

� �� �� �� �

� ��
� �� ��

�
	

SUM PREFIX�B	 EXCLUSIVE��FALSE�� is

�
�� � �� �� �� �

� ��
� �� ��

�� �� �� �� ���

�
	

����	 Array Sorting Functions

HPF includes procedures for sorting multidimensional arrays
 These are structured as
functions that return sorting permutations
 An array can be sorted along a given axis� or
the whole array may be viewed as a sequence in array element order
 The sorts are stable�
allowing for convenient sorting of structures by major and minor keys

��� Generic Intrinsic and Library Procedures

For all of the intrinsic and library procedures� the arguments shown are the names that
must be used for keywords when using the keyword form for actual arguments
 Many of the
argument keywords have names that are indicative of their usage� as is the case in Fortran
	�
 See Section ��
�� of the standard

����� System inquiry intrinsic functions

NUMBER OF PROCESSORS�DIM� The number of executing processors
Optional DIM

PROCESSORS SHAPE�� The shape of the executing processor array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

����� Array location intrinsic functions

MAXLOC�ARRAY	 DIM	 MASK� Location of a maximum value in an array
Optional DIM	 MASK

MINLOC�ARRAY	 DIM	 MASK� Location of a minimum value in an array
Optional DIM	 MASK

����� Mapping inquiry subroutines

HPF ALIGNMENT�ALIGNEE	 LB	 UB	 STRIDE	 AXIS MAP	 IDENTITY MAP	 �

DYNAMIC	 NCOPIES�

Optional LB	 UB	 STRIDE	 AXIS MAP	 IDENTITY MAP	 DYNAMIC	 NCOPIES

HPF TEMPLATE�ALIGNEE	 TEMPLATE RANK	 LB	 UB	 AXIS TYPE	 AXIS INFO	 �

NUMBER ALIGNED	 DYNAMIC�

Optional TEMPLATE RANK	 LB	 UB	 AXIS TYPE	 AXIS INFO	

NUMBER ALIGNED	 DYNAMIC

HPF DISTRIBUTION�DISTRIBUTEE	 AXIS TYPE	 AXIS INFO	 PROCESSORS RANK	 �

PROCESSORS SHAPE�

Optional AXIS TYPE	 AXIS INFO	 PROCESSORS RANK	 PROCESSORS SHAPE

����� Bit manipulation functions

ILEN�I� Bit length �intrinsic�
LEADZ�I� Leading zeros
POPCNT�I� Number of one bits
POPPAR�I� Parity

����� Array reduction functions

IALL�ARRAY	 DIM	 MASK� Bitwise logical AND reduction
Optional DIM	 MASK

IANY�ARRAY	 DIM	 MASK� Bitwise logical OR reduction
Optional DIM	 MASK

IPARITY�ARRAY	 DIM	 MASK� Bitwise logical EOR reduction
Optional DIM	 MASK

PARITY�MASK	 DIM� Logical EOR reduction
Optional DIM

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� GENERIC INTRINSIC AND LIBRARY PROCEDURES ���

����	 Array combining scatter functions

ALL SCATTER�MASK	 BASE	 INDX� ���	 INDXn�
ANY SCATTER�MASK	 BASE	 INDX�	 ���	 INDXn�

COPY SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
COUNT SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
IALL SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
IANY SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
IPARITY SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
IALL SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
MAXVAL SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
MINVAL SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
PARITY SCATTER�MASK	 BASE	 INDX�	 ���	 INDXn�
PRODUCT SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK
SUM SCATTER�ARRAY	 BASE	 INDX�	 ���	 INDXn	 MASK�

Optional MASK

����� Array pre�x and su�x functions

ALL PREFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

ALL SUFFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

ANY PREFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

ANY SUFFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

COPY PREFIX�ARRAY	 DIM	 SEGMENT�

Optional DIM	 SEGMENT

COPY SUFFIX�ARRAY	 DIM	 SEGMENT�

Optional DIM	 SEGMENT

COUNT PREFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

COUNT SUFFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

IALL PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

IALL SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

IANY PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

IANY SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

IPARITY PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

IPARITY SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

MAXVAL PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

MAXVAL SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

MINVAL PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

MINVAL SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

PARITY PREFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

PARITY SUFFIX�MASK	 DIM	 SEGMENT	 EXCLUSIVE�

Optional DIM	 SEGMENT	 EXCLUSIVE

PRODUCT PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

PRODUCT SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

SUM PREFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

SUM SUFFIX�ARRAY	 DIM	 MASK	 SEGMENT	 EXCLUSIVE�

Optional DIM	 MASK	 SEGMENT	 EXCLUSIVE

����
 Array sort functions

GRADE DOWN�ARRAY	DIM� Permutation that sorts into descending order
Optional DIM

GRADE UP�ARRAY	DIM� Permutation that sorts into ascending order
Optional DIM

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF INTRINSIC PROCEDURES ���

��	 Speci�cations of Intrinsic Procedures

��	�� ILEN�I�

Description� Returns one less than the length� in bits� of the two�s�complement
representation of an integer

Class� Elemental function

Argument� I must be of type integer

Result Type and Type Parameter� Same as I

Result Value� If I is nonnegative� ILEN�I� has the value dlog ��I! ��e� if I is
negative� ILEN�I� has the value dlog ���I�e

Examples� ILEN��� � �
 ILEN���� � �� ���ILEN�N��� rounds N up to a power
of
 �for N � ��� whereas ����ILEN�N���� rounds N down to a power of

 Compare
with LEADZ

The value returned is one less than the length of the two�s�complement representation
of I� as the following explains
 The shortest two�s�complement representation of �
is ����
 The leading zero is the required sign bit
 In ��bit two�s complement� ���
represents ��

��	�� MAXLOC�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Determine the locations of the �rst elements of ARRAY along dimension
DIM having the maximum value of the elements identi�ed by MASK

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type default integer

If DIM is absent the result is an array of rank one and size equal to the rank of ARRAY�
otherwise� the result is an array of rank n� � and shape �d�� � � � � dDIM��� dDIM���
� � � � dn�� where �d�� � � � � dn� is the shape of ARRAY

Result Value�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Case �i�� The result of executing S � MAXLOC�ARRAY� � LBOUND�ARRAY� � � is a
rank�one array S of size equal to the rank n of ARRAY
 It is such that
ARRAY�S���	 ���	 S�n�� has the maximum value of all of the elements
of ARRAY
 If more than one element has the maximum value� the ele�
ment whose subscripts are returned is the �rst such element� taken in
array element order
 If ARRAY has size zero� the result is implementation
dependent

Case �ii�� The result of executing S � MAXLOC�ARRAY	 MASK� � LBOUND�ARRAY� �

� is a rank�one array S of size equal to the rank n of ARRAY
 It is such
that ARRAY�S���	 ���	 S�n�� corresponds to a true element of MASK�
and has the maximum value of all such elements of ARRAY
 If more than
one element has the maximum value� the element whose subscripts are
returned is the �rst such element� taken in array element order
 If there
are no such elements �that is� if ARRAY has size zero or every element of
MASK has the value false�� the result is implementation dependent

Case �iii�� If ARRAY has rank one� the result of MAXLOC�ARRAY	 DIM �	MASK�� is a
scalar S such that ARRAY�S � LBOUND�ARRAY	�� � �� corresponds to a
true element of MASK �if MASK is present� and has the maximum value of all
such elements �all elements if MASK is absent�
 It is the smallest such sub�
script
 Otherwise� the value of element �s�� � � � � sDIM��� sDIM��� � � � � sn�
of
MAXLOC�ARRAY	 DIM �	MASK�� is equal to
MAXLOC�ARRAY�s�� � � � � sDIM��� �� sDIM��� � � � � sn�
�	MASK � MASK�s�� � � � � sDIM��� �� sDIM��� � � � � sn���

Examples�

Case �i�� The value of MAXLOC���
	 ��	 � ��� is
h
�
i

Case �ii�� MAXLOC�C	 MASK � C �LT� �� �nds the location of the �rst element of
C that is the maximum of the negative elements

Case �iii�� The value of MAXLOC���
	 ��	 � ��	 DIM��� is �
 If B is the array�
� � ��

� � �

�
� MAXLOC� B	 DIM � � � is

h
� � �

i
and MAXLOC� B	 DIM � � � is

h
� �

i

Note that this is true even if B has a declared lower bound other than �

��	�� MINLOC�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Determine the locations of the �rst elements of ARRAY along dimension
DIM having the minimum value of the elements identi�ed by MASK

Class� Transformational function

Arguments�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF INTRINSIC PROCEDURES ���

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type default integer

If DIM is absent the result is an array of rank one and size equal to the rank of ARRAY�
otherwise� the result is an array of rank n� � and shape �d�� � � � � dDIM��� dDIM���

� � � � dn�� where �d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i�� The result of executing S � MINLOC�ARRAY� � LBOUND�ARRAY� � � is a
rank�one array S of size equal to the rank n of ARRAY
 It is such that
ARRAY�S���	 ���	 S�n�� has the minimum value of all of the elements
of ARRAY
 If more than one element has the minimum value� the element
whose subscripts are returned is the �rst such element� taken in array
element order
 If ARRAY has size zero� the result is implementation de�
pendent

Case �ii�� The result of executing S � MINLOC�ARRAY	 MASK� � LBOUND�ARRAY� �

� is a rank�one array S of size equal to the rank n of ARRAY
 It is such
that ARRAY�S���	 ���	 S�n�� corresponds to a true element of MASK�
and has the minimum value of all such elements of ARRAY
 If more than
one element has the minimum value� the element whose subscripts are
returned is the �rst such element� taken in array element order
 If there
are no such elements �that is� if ARRAY has size zero or every element of
MASK has the value false�� the result is implementation dependent

Case �iii�� If ARRAY has rank one� the result of MINLOC�ARRAY	 DIM �	MASK�� is a
scalar S such that ARRAY�S � LBOUND�ARRAY	�� � �� corresponds to a
true element of MASK �if MASK is present� and has the minimum value of all
such elements �all elements if MASK is absent�
 It is the smallest such sub�
script
 Otherwise� the value of element �s�� � � � � sDIM��� sDIM��� � � � � sn�
of
MINLOC�ARRAY	 DIM �	MASK�� is equal to
MINLOC� ARRAY��s�� � � � � sDIM��� �� sDIM��� � � � � sn��
�	MASK � MASK��s�� � � � � sDIM��� �� sDIM��� � � � � sn�����

Examples�

Case �i�� The value of MINLOC���
	 ��	 � ��� is
h
�
i

Case �ii�� MINLOC�C	 MASK � C �GT� �� �nds the location of the �rst element of
C that is the minimum of the positive elements

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Case �iii�� The value of MINLOC���
	 ��	 � ��	 DIM��� is

 If B is the array�
� � ��

� � �

�
� MINLOC� B	 DIM � � � is

h
� � �

i
and MINLOC� B	 DIM � � � is

h
� �

i

Note that this is true even if B has a declared lower bound other than �

��	�� NUMBER OF PROCESSORS�DIM�

Optional Argument� DIM

Description� Returns the total number of processors available to the program or
the number of processors available to the program along a speci�ed dimension of the
processor array

Class� System inquiry function

Arguments�

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n where n is the rank of the processor
array

Result Type� Type Parameter� and Shape� Default integer scalar

Result Value� The result has a value equal to the extent of dimension DIM of the
implementation�dependent hardware processor array or� if DIM is absent� the total
number of elements of the implementation�dependent hardware processor array
 The
result is always greater than zero

Examples� For a computer with ��	
 processors arranged in a �
� by �� rectangular
grid� the value of NUMBER OF PROCESSORS�� is ��	
� the value of NUMBER OF PROCES�

SORS�DIM��� is �
�� and the value of NUMBER OF PROCESSORS�DIM��� is ��
 For a
single�processor workstation� the value of NUMBER OF PROCESSORS�� is �� since the
rank of a scalar processor array is zero� no DIM argument may be used

��	�� PROCESSORS SHAPE��

Description� Returns the shape of the implementation�dependent processor array

Class� System inquiry function

Arguments� None

Result Type� Type Parameter� and Shape� The result is a default integer
array of rank one whose size is equal to the rank of the implementation�dependent
processor array

Result Value� The value of the result is the shape of the implementation�dependent
processor array

Example� In a computer with
��� processors arranged in a hypercube� the value
of PROCESSORS SHAPE�� is �
�
�
�
�
�
�
�
�
�
�
�
 In a computer with ��	
 proces�
sors arranged in a �
� by �� rectangular grid� the value of PROCESSORS SHAPE�� is
��
�����
 For a single processor workstation� the value of PROCESSORS SHAPE�� is ��
�the size�zero array of rank one�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

��� Speci�cations of Library Procedures

����� ALL PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented logical AND scan along dimension DIM of
MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ALL��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ALL PREFIX� ��T	F	T	T	T��	 SEGMENT� ��F	F	F	T	T�� � ish
T F F T T

i

����� ALL SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by
index arrays INDX��

� INDXn
 An element of the result is true if and only if the
corresponding element of BASE and all elements of MASK scattered to that position
are true

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type logical with the same kind type parameter
as MASK
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Result Value� The element of the result corresponding to the element b of BASE has
the value ALL� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of MASK
associated with b as described in Section �
�
�

Example� ALL SCATTER� ��T	 T	 T	 F��	 ��T	 T	 T��	 ���	 �	 �	 ��� � ish
T F T

i
�

����� ALL SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented logical AND scan along dimension
DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ALL��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ALL SUFFIX� ��T	F	T	T	T��	 SEGMENT� ��F	F	F	T	T�� � ish
F F T T T

i

����� ANY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented logical OR scan along dimension DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ��	

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ANY��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ANY PREFIX� ��F	T	F	F	F��	 SEGMENT� ��F	F	F	T	T�� � ish
F T T F F

i

����� ANY SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by
index arrays INDX��

� INDXn
 An element of the result is true if and only if the
corresponding element of BASE or any element of MASK scattered to that position is
true

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type logical with the same kind type parameter
as MASK
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE has
the value ANY� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of MASK
associated with b as described in Section �
�
�

Example� ANY SCATTER� ��T	 F	 F	 F��	 ��F	 F	 T��	 ���	 �	 �	 ��� � ish
T F T

i
�

����	 ANY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented logical OR scan along dimension DIM

of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value ANY��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of MASK selected to contribute to
r by the rules stated in Section �
�
�

Example� ANY SUFFIX� ��F	T	F	F	F��	 SEGMENT� ��F	F	F	T	T�� � ish
T T F F F

i

����� COPY PREFIX�ARRAY� DIM� SEGMENT�

Optional Arguments� DIM� SEGMENT

Description� Computes a segmented copy scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY may be of any type
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value a� where �a�� � � � � am� is the
set� in array element order� of elements of ARRAY selected to contribute to r by the
rules stated in Section �
�
�

Example� COPY PREFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

����
 COPY SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX��

� INDXn
 Each element of the result is equal to
one of the elements of ARRAY scattered to that position or� if there is none� to the
corresponding element of BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

Class� Transformational function

Arguments�

ARRAY may be of any type
 It must not be scalar

BASE must be of the same type and kind type parameter as
ARRAY

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number ofINDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� Let S be the set of elements of ARRAY associated with element b of
BASE as described in Secion �
�
�

If S is empty� then the element of the result corresponding to the element b of BASE
has the same value as b

If S is non�empty� then the element of the result corresponding to the element b of
BASE is the result of choosing one element from S
 HPF does not specify how the
choice is to be made� the mechanism is implementation dependent

Example� COPY SCATTER����	 �	 �	 ���	 ���	 �	 ���	 ���	 �	 �	 ���� is
�x	 y	 ��� where x is a member of the set f��
g and y is a member of the set
f�� �g

����� COPY SUFFIX�ARRAY� DIM� SEGMENT�

Optional Arguments� DIM� SEGMENT

Description� Computes a reverse� segmented copy scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY may be of any type
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value am where �a�� � � � � am� is the
set� in array element order� of elements of ARRAY selected to contribute to r by the
rules stated in Section �
�
�

Example� COPY SUFFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

������ COUNT PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented COUNT scan along dimension DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� The result is of type default integer
and of the same shape as MASK

Result Value� Element r of the result has the value COUNT��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� COUNT PREFIX� ��F	T	T	T	T��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

������ COUNT SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by index
arrays INDX��

� INDXn
 Each element of the result is the sum of the corresponding
element of BASE and the number of true elements of MASK scattered to that position

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type integer
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value b � COUNT� ��a�� a�� ���� am�� �� where �a�� � � � � am� are the elements
of MASK associated with b as described in Section �
�
�

Example� COUNT SCATTER���T	 T	 T	 F��	���	 ��	 ���	���	 �	 �	 ���� ish
� � �

i
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

������ COUNT SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented COUNT scan along dimension DIM of
MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� The result is of type default integer
and of the same shape as MASK

Result Value� Element r of the result has the value COUNT��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� COUNT SUFFIX� ��T	F	T	T	T��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

������ GRADE DOWN�ARRAY�DIM�

Optional Argument� DIM

Description� Produces a permutation of the indices of an array� sorted by descend�
ing array element values

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or character

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result is of type default integer

If DIM is present� the result has the same shape as ARRAY
 If DIM is absent� the result
has shape �� SIZE�SHAPE�ARRAY��	 PRODUCT�SHAPE�ARRAY�� ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Result Value�

Case �i�� The result of S � GRADE DOWN�ARRAY� has the property that if one com�
putes the rank�one array B of size PRODUCT�SHAPE�ARRAY�� by
FORALL �K���SIZE�B	��� B�K��ARRAY�S��	K�	S��	K�	���	S�N	K��

where N has the value SIZE�SHAPE�ARRAY��� then B is sorted in descend�
ing order� moreover� all of the columns of S are distinct� that is� if j
 m

then ALL�S��	j� �EQ� S��	m�� will be false
 The sort is stable� if
j � m and B�j� B�m�� then ARRAY�S��� j�	S�
� j�	���	S�n� j�� pre�
cedes ARRAY�S��� m�	S�
� m�	���	S�n�m�� in the array element order�
ing of ARRAY

Case �ii�� The result of R � GRADE DOWN�ARRAY	DIM�K� has the property that if
one computes the array B�i�� i�� � � � � ik� � � � � in� �

ARRAY�i�� i�� � � � � R�i�� i�� � � � � ik� � � � � in�� � � � � in �

then for all i�� i�� � � � � �omit ik�� � � � � in� the vector B�i�� i�� � � � � �� � � � � in� is
sorted in descending order� moreover� R�i�� i�� � � � � �� � � � � in� is a permu�
tation of all the integers in the range
LBOUND�ARRAY	K��UBOUND�ARRAY	K��The sort is stable� that is� if j � m

and B�i�� i�� � � � � j� � � � � in� B�i�� i�� � � � � m� � � �� in�� then
R�i�� i�� � � � � j� � � � � in� � R�i�� i�� � � � � m� � � �� in��

Examples�

Case �i�� GRADE DOWN� ����	 ��	 ��	 ��	 ����� � is a rank two array of shapeh
�

i
with the value

h
� � � �

i

 �To produce a rank�one

result� the optional DIM � � argument must be used
�

If A is the array

�
�� � � �

�
 �

� � �

�
	
�

then GRADE DOWN�A� has the value

�
� � � � � � � � �

� � � � � � � � �

�

Case �ii�� If A is the array

�
�� � � �

�
 �

� � �

�
	
�

then GRADE DOWN�A	 DIM � �� has the value

�
�� � � �

� � �

� � �

�
	

������ GRADE UP�ARRAY�DIM�

Optional Argument� DIM

Description� Produces a permutation of the indices of an array� sorted by ascending
array element values

Class� Transformational function

Arguments�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

ARRAY must be of type integer� real� or character

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result is of type default integer

If DIM is present� the result has the same shape as ARRAY
 If DIM is absent� the result
has shape �� SIZE�SHAPE�ARRAY��	 PRODUCT�SHAPE�ARRAY�� ���

Result Value�

Case �i�� The result of S � GRADE UP�ARRAY� has the property that if one com�
putes the rank�one array B of size PRODUCT�SHAPE�ARRAY�� by
FORALL �K���SIZE�B	��� B�K��ARRAY�S��	K�	S��	K�	���	S�N	K��

where N has the value SIZE�SHAPE�ARRAY��� then B is sorted in ascending
order� moreover� all of the columns of S are distinct� that is� if j
 m then
ALL�S��	j� �EQ� S��	m�� will be false
 The sort is stable� if j � m
and B�j� B�m�� then ARRAY�S��� j�	S�
� j�	���	S�n� j�� precedes
ARRAY�S��� m�	S�
�m�	���	S�n�m�� in the array element ordering of
ARRAY

Case �ii�� The result of R � GRADE UP�ARRAY	DIM�K� has the property that if one
computes the array B�i�� i�� � � � � ik� � � � � in� �

ARRAY�i�� i�� � � � � R�i�� i�� � � � � ik� � � � � in�� � � � � in �

then for all i�� i�� � � � � �omit ik�� � � � � in� the vector B�i�� i�� � � � � �� � � � � in� is
sorted in ascending order� moreover� R�i�� i�� � � � � �� � � � � in� is a permuta�
tion of all the integers in the range
LBOUND�ARRAY	K��UBOUND�ARRAY	K��The sort is stable� that is� if j � m
and B�i�� i�� � � � � j� � � � � in� B�i�� i�� � � � � m� � � �� in�� then
R�i�� i�� � � � � j� � � � � in� � R�i�� i�� � � � � m� � � �� in��

Examples�

Case �i�� GRADE UP� ����	 ��	 ��	 ��	 ����� � is a rank two array of shapeh
�

i
with the value

h

 � � � �

i

 �To produce a rank�one

result� the optional DIM � � argument must be used
�

If A is the array

�
�� � � �

�
 �

� � �

�
	
�

then GRADE UP�A� has the value

�
� � � � � � � � �

� � � � � � � � �

�

Case �ii�� If A is the array

�
�� � � �

�
 �

� � �

�
	
�

then GRADE UP�A	 DIM � �� has the value

�
�� � � �

� � �

� � �

�
	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

������ HPF ALIGNMENT�ALIGNEE� LB� UB� STRIDE� AXIS MAP� IDENTITY MAP�
DYNAMIC� NCOPIES�

Optional Arguments� LB� UB� STRIDE� AXIS MAP� IDENTITY MAP� DYNAMIC� NCOPIES

Description� Returns information regarding the correspondence of a variable and
the align�target �array or template� to which it is ultimately aligned

Class� Mapping inquiry subroutine

Arguments�

ALIGNEE may be of any type
 It may be scalar or array valued

It must not be an assumed�size array
 It must not be a
structure component
 If it is a member of an aggregate
variable group� then it must be an aggregate cover of the
group
 �See Section � for the de�nitions of �aggregate
variable group� and �aggregate cover
�� It must not be a
pointer that is disassociated or an allocatable array that
is not allocated
 It is an INTENT �IN� argument

If ALIGNEE is a pointer� information about the alignment
of its target is returned
 The target must not be an
assumed�size dummy argument or a section of an assumed�
size dummy argument
 If the target is �a section of� a
member of an aggregate variable group� then the mem�
ber must be an aggregate cover of the group
 The target
must not be a structure component� but the pointer may
be

LB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT� argument
 The �rst element of the ith axis
of ALIGNEE is ultimately aligned to the LB�i�th align�target
element along the axis of the align�target associated with
the ith axis of ALIGNEE
 If the ith axis of ALIGNEE is a
collapsed axis� LB�i� is implementation dependent

UB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT� argument
 The last element of the ith axis
of ALIGNEE is ultimately aligned to the UB�i�th align�target
element along the axis of the align�target associated with
the ith axis of ALIGNEE
 If the ith axis of ALIGNEE is a
collapsed axis� UB�i� is implementation dependent

STRIDE �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT� argument
 The ith element of STRIDE is
set to the stride used in aligning the elements of ALIGNEE
along its ith axis
 If the ith axis of ALIGNEE is a collapsed
axis� STRIDE�i� is zero

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

AXIS MAP �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of ALIGNEE
 It is an
INTENT �OUT� argument
 The ith element of AXIS MAP is
set to the align�target axis associated with the ith axis of
ALIGNEE
 If the ith axis of ALIGNEE is a collapsed axis�
AXIS MAP�i� is �

IDENTITY MAP �optional� must be scalar and of type default logical
 It is an INTENT
�OUT� argument
 It is set to true if the ultimate align�
target associated with ALIGNEE has a shape identical to
ALIGNEE� the axes are mapped using the identity per�
mutation� and the strides are all positive �and therefore
equal to �� because of the shape constraint�� otherwise it
is set to false
 If a variable has not appeared as an alignee
in an ALIGN or REALIGN directive� and does not have the
INHERIT attribute� then IDENTITY MAP must be true� it
can be true in other circumstances as well

DYNAMIC �optional� must be scalar and of type default logical
 It is an INTENT
�OUT� argument
 It is set to true if ALIGNEE has the
DYNAMIC attribute� otherwise it is set to false
 If ALIGNEE
has the pointer attribute� then the result applies to ALIGN�
EE itself rather than its target

NCOPIES �optional� must be scalar and of type default integer
 It is an INTENT
�OUT� argument
 It is set to the number of copies of
ALIGNEE that are ultimately aligned to align�target
 For
a non�replicated variable� it is set to one

Examples� If ALIGNEE is scalar� then no elements of LB� UB� STRIDE� or AXIS MAP

are set

Given the declarations

REAL PI � �����
���

POINTER P�TO�A���

DIMENSION A���	���	B���	���	C���	��	���	D����

�HPF
 TEMPLATE T���	���

�HPF
 DYNAMIC A

�HPF
 ALIGN A�I	�� WITH T�����I	�������

�HPF
 ALIGN C�I	�	J� WITH T�J	���I�

�HPF
 ALIGN D�I� WITH T�I	��

�HPF
 PROCESSORS PROCS��	��	 SCALARPROC

�HPF
 DISTRIBUTE T�BLOCK	BLOCK� ONTO PROCS

�HPF
 DISTRIBUTE B�CYCLIC	BLOCK� ONTO PROCS

�HPF
 DISTRIBUTE ONTO SCALARPROC �� PI

P�TO�A � A������	 ��

assuming that the actual mappings are as the directives specify� the results of HPF ALIGNMENT

are�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

A B C D P TO A

LB ��� �
 ��� �
 ��
� N�A� �
 ��
 ��

UB ���� �

 ��
� �

 � �� N�A� �

 ��

 ���

STRIDE ��� �
 ��� �
 ����
� �
 ��
 � �

AXIS MAP ��� �
 ��� �
 ���
� �
 ��
 � �

IDENTITY MAP false true false false false

DYNAMIC true false false false false
NCOPIES � � � � �

where �N�A� denotes a implementation�dependent result
 To illustrate the use of NCOPIES�
consider�

LOGICAL BOZO���	���	RONALD�MCDONALD����

�HPF
 TEMPLATE EMMETT�KELLY����	����

�HPF
 ALIGN RONALD�MCDONALD�I� WITH BOZO�I	��

�HPF
 ALIGN BOZO�J	K� WITH EMMETT�KELLY�J	
�K�

CALL HPF ALIGNMENT�RONALD MCDONALD	 NCOPIES � NC� sets NC to
�
 Now consider�

LOGICAL BOZO���	���	RONALD�MCDONALD����

�HPF
 TEMPLATE WILLIE�WHISTLE�����

�HPF
 ALIGN RONALD�MCDONALD�I� WITH BOZO�I	��

�HPF
 ALIGN BOZO�J	�� WITH WILLIE�WHISTLE�
�J�

CALL HPF ALIGNMENT�RONALD MCDONALD	 NCOPIES � NC� sets NC to one

�����	 HPF TEMPLATE�ALIGNEE� TEMPLATE RANK� LB� UB� AXIS TYPE� AXIS
INFO� NUMBER ALIGNED� DYNAMIC�

Optional Arguments� LB� UB� AXIS TYPE� AXIS INFO� NUMBER ALIGNED�
TEMPLATE RANK� DYNAMIC

Description� The HPF TEMPLATE subroutine returns information regarding the ul�
timate align�target associated with a variable� HPF TEMPLATE returns information
concerning the variable from the template�s point of view �assuming the alignment
is to a template rather than to an array�� while HPF ALIGNMENT returns information
from the variable�s point of view

Class� Mapping inquiry subroutine

Arguments�

ALIGNEE may be of any type
 It may be scalar or array valued

It must not be an assumed�size array
 It must not be a
structure component
 If it is a member of an aggregate
variable group� then it must be an aggregate cover of the
group
 �See Section � for the de�nitions of �aggregate
variable group� and �aggregate cover
�� It must not be a
pointer that is disassociated or an allocatable array that
is not allocated
 It is an INTENT �IN� argument

If ALIGNEE is a pointer� information about the alignment
of its target is returned
 The target must not be an

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ��	

assumed�size dummy argument or a section of an assumed�
size dummy argument
 If the target is �a section of� a
member of an aggregate variable group� then the mem�
ber must be an aggregate cover of the group
 The target
must not be a structure component� but the pointer may
be

TEMPLATE RANK �optional� must be scalar and of type default integer
 It is an INTENT
�OUT� argument
 It is set to the rank of the ultimate
align�target
 This can be di�erent from the rank of the
ALIGNEE� due to collapsing and replicating

LB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT� argu�
ment
 The ith element of LB contains the declared align�
target lower bound for the ith template axis

UB �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT� argu�
ment
 The ith element of UB contains the declared align�
target upper bound for the ith template axis

AXIS TYPE �optional� must be a rank one array of type default character
 It
may be of any length� although it must be of length
at least �� in order to contain the complete value
 Its
elements are set to the values below as if by a char�
acter intrinsic assignment statement
 Its size must be
at least equal to the rank of the align�target to which
ALIGNEE is ultimately aligned� this is the value returned
in TEMPLATE RANK
 It is an INTENT �OUT� argument
 The
ith element of AXIS TYPE contains information about the
ith axis of the align�target
 The following values are de�
�ned by HPF �implementations may de�ne other values��

�NORMAL� The align�target axis has an axis of ALIGNEE
aligned to it
 For elements of AXIS TYPE assigned
this value� the corresponding element of AXIS INFO

is set to the number of the axis of ALIGNEE aligned
to this align�target axis

�REPLICATED� ALIGNEE is replicated along this align�tar�
get axis
 For elements of AXIS TYPE assigned this
value� the corresponding element of AXIS INFO is set
to the number of copies of ALIGNEE along this align�
target axis

�SINGLE� ALIGNEE is aligned with one coordinate of the
align�target axis
 For elements of AXIS TYPE assigned

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

this value� the corresponding element of AXIS INFO is
set to the align�target coordinate to which ALIGNEE

is aligned

AXIS INFO �optional� must be of type default integer and of rank one
 Its size
must be at least equal to the rank of the align�target to
which ALIGNEE is ultimately aligned� this is the value
returned in TEMPLATE RANK
 It is an INTENT �OUT� argu�
ment
 See the description of AXIS TYPE above

NUMBER ALIGNED �optional� must be scalar and of type default integer
 It is an
INTENT �OUT� argument
 It is set to the total number
of variables aligned to the ultimate align�target
 This is
the number of variables that are moved if the align�target
is redistributed

DYNAMIC �optional� must be scalar and of type default logical
 It is an INTENT
�OUT� argument
 It is set to true if the align�target has
the DYNAMIC attribute� and to false otherwise

Example� Given the declarations in the example of Section �
�
��� and assuming
that the actual mappings are as the directives specify� the results of HPF TEMPLATE

are�

A C D

LB ��� �
 ��� �
 ��� �

UB ��
� �

 ��
� �

 ��
� �

AXIS TYPE ��NORMAL�� ��NORMAL�� ��NORMAL��

�NORMAL�
 �NORMAL�
 �SINGLE�

AXIS INFO ��� �
 ��� �
 ��� �

NUMBER ALIGNED � � �

TEMPLATE RANK � � �
DYNAMIC false false false

������ HPF DISTRIBUTION�DISTRIBUTEE� AXIS TYPE� AXIS INFO� PROCESSORS
RANK� PROCESSORS SHAPE�

Optional Arguments� AXIS TYPE� AXIS INFO� PROCESSORS RANK�
PROCESSORS SHAPE

Description� The HPF DISTRIBUTION subroutine returns information regarding the
distribution of the ultimate align�target associated with a variable

Class� Mapping inquiry subroutine

Arguments�

DISTRIBUTEE may be of any type
 It may be scalar or array valued

It must not be an assumed�size array
 It must not be a
structure component
 If it is a member of an aggregate
variable group� then it must be an aggregate cover of the
group
 �See Section � for the de�nitions of �aggregate

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

variable group� and �aggregate cover
�� It must not be a
pointer that is disassociated or an allocatable array that
is not allocated
 It is an INTENT �IN� argument

If DISTRIBUTEE is a pointer� information about the dis�
tribution of its target is returned
 The target must not
be an assumed�size dummy argument or a section of an
assumed�size dummy argument
 If the target is �a sec�
tion of� a member of an aggregate variable group� then
the member must be an aggregate cover of the group

The target must not be a structure component� but the
pointer may be

AXIS TYPE �optional� must be a rank one array of type default character
 It
may be of any length� although it must be of length
at least 	 in order to contain the complete value
 Its
elements are set to the values below as if by a char�
acter intrinsic assignment statement
 Its size must be
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned� this is the value re�
turned by HPF TEMPLATE in TEMPLATE RANK�
 It is an
INTENT �OUT� argument
 Its ith element contains infor�
mation on the distribution of the ith axis of that align�
target
 The following values are de�ned by HPF �imple�
mentations may de�ne other values��

�BLOCK� The axis is distributed BLOCK
 The correspond�
ing element of AXIS INFO contains the block size

�COLLAPSED� The axis is collapsed �distributed with the
��� speci�cation�
 The value of the corresponding
element of AXIS INFO is implementation dependent

�CYCLIC� The axis is distributed CYCLIC
 The correspond�
ing element of AXIS INFO contains the block size

AXIS INFO �optional� must be a rank one array of type default integer� and size
at least equal to the rank of the align�target to which
DISTRIBUTEE is ultimately aligned �which is returned by
HPF TEMPLATE in TEMPLATE RANK�
 It is an INTENT �OUT�

argument
 The ith element of AXIS INFO contains the
block size in the block or cyclic distribution of the ith axis
of the ultimate align�target of DISTRIBUTEE� if that axis
is a collapsed axis� then the value is implementation de�
pendent

PROCESSORS RANK �optional� must be scalar and of type default integer
 It is set
to the rank of the processor arrangement onto which
DISTRIBUTEE is distributed
 It is an INTENT �OUT� ar�
gument

PROCESSORS SHAPE �optional� must be a rank one array of type default integer and
of size at least equal to the value� m� returned in PROCES�
SORS RANK
 It is an INTENT �OUT� argument
 Its �rst m

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�

 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

elements are set to the shape of the processor arrange�
ment onto which DISTRIBUTEE is mapped
 �It may be
necessary to call HPF DISTRIBUTION twice� the �rst time
to obtain the value of PROCESSORS RANK in order to allo�
cate PROCESSORS SHAPE
�

Example� Given the declarations in the example of Section �
�
��� and assuming
that the actual mappings are as the directives specify� the results of HPF DISTRIBUTION

are�

A B PI

AXIS TYPE ��BLOCK�� �BLOCK�
 ��CYCLIC�� �BLOCK�
 �

AXIS INFO ��
� �

 ��� ��
 �

PROCESSORS SHAPE ��� �
 ��� �
 �

PROCESSORS RANK � �

�����
 IALL�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Computes a bitwise logical AND reduction along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type integer with
the same kind type parameter as ARRAY
 It is scalar if DIM is absent or if ARRAY has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i�� The result of IALL�ARRAY� is the IAND reduction of all the elements of
ARRAY
 If ARRAY has size zero� the result is equal to a implementation�
dependent integer value x with the property that IAND�I	 x� � I for all
integers I of the same kind type parameter as ARRAY
 See Section �
�
�

Case �ii�� The result of IALL�ARRAY	 MASK�MASK� is the IAND reduction of all the
elements of ARRAY corresponding to the true elements of MASK� if MASK con�
tains no true elements� the result is equal to a implementation�dependent
integer value x �of the same kind type parameter as ARRAY� with the
property that IAND�I	 x� � I for all integers I

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

Case �iii�� If ARRAY has rank one� IALL�ARRAY	 DIM �	MASK�� has a value equal to
that of IALL�ARRAY �	MASK��
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of IALL�ARRAY	 DIM �	MASK�� is equal
to IALL�ARRAY�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn�

�	MASK � MASK�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn���

Examples�

Case �i�� The value of IALL����	 �	 �	 ���� is

Case �ii�� The value of IALL�C	 MASK � BTEST�C	��� is the IAND reduction of the
odd elements of C

Case �iii�� If B is the array

�
� �

� � �

�
� then IALL�B	 DIM � �� is

h
� �

i
and IALL�B	 DIM � �� is

h
� �

i

������ IALL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented bitwise logical AND scan along dimension DIM
of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IALL��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IALL PREFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

������ IALL SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 The jthbit of an element of the result is
� if and only if the jthbits of the corresponding element of BASE and of the elements
of ARRAY scattered to that position are all equal to �

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

BASE must be of type integer with the same kind type param�
eter as ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value IALL� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� IALL SCATTER����	 �	 �	 ���	 ���	 �	 ���	 ���	 �	 �	 ���� ish
� � �

i
�

������ IALL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented bitwise logical AND scan along di�
mension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IALL��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IALL SUFFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � �

i

������ IANY�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Computes a bitwise logical OR reduction along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type integer with
the same kind type parameter as ARRAY
 It is scalar if DIM is absent or if ARRAY has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i�� The result of IANY�ARRAY� is the IOR reduction of all the elements of
ARRAY
 If ARRAY has size zero� the result has the value zero
 See Sec�
tion �
�
�

Case �ii�� The result of IANY�ARRAY	 MASK�MASK� is the IOR reduction of all the
elements of ARRAY corresponding to the true elements of MASK� if MASK
contains no true elements� the result is zero

Case �iii�� If ARRAY has rank one� IANY�ARRAY	 DIM �	MASK�� has a value equal to
that of IANY�ARRAY �	MASK��
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of IANY�ARRAY	 DIM �	MASK�� is equal
to IANY�ARRAY�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn�
�	MASK � MASK�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Examples�

Case �i�� The value of IANY����	 �	 �	 ���� is ��

Case �ii�� The value of IANY�C	 MASK � BTEST�C	��� is the IOR reduction of the
odd elements of C

Case �iii�� If B is the array

�
� �

� � �

�
� then IANY�B	 DIM � �� is

h
� � �

i
and IANY�B	 DIM � �� is

h
� �

i

������ IANY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented bitwise logical OR scan along dimension DIM

of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IANY��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IANY PREFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

������ IANY SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 The jthbit of an element of the result
is � if and only if the jthbit of the corresponding element of BASE or of any of the
elements of ARRAY scattered to that position is equal to �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES �
�

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

BASE must be of type integer with the same kind type param�
eter as ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value IANY� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� IANY SCATTER����	 �	 �	 ���	 ���	 �	 ���	 ���	 �	 �	 ���� ish
� � �

i
�

������ IANY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented bitwise logical OR scan along dimen�
sion DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IANY��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� IANY SUFFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

�����	 IPARITY�ARRAY� DIM� MASK�

Optional Arguments� DIM� MASK

Description� Computes a bitwise logical exclusive OR reduction along dimension
DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� The result is of type integer with
the same kind type parameter as ARRAY
 It is scalar if DIM is absent or if ARRAY has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of ARRAY

Result Value�

Case �i�� The result of IPARITY�ARRAY� is the IEOR reduction of all the elements
of ARRAY
 If ARRAY has size zero� the result has the value zero
 See Sec�
tion �
�
�

Case �ii�� The result of IPARITY�ARRAY	 MASK�MASK� is the IEOR reduction of all
the elements of ARRAY corresponding to the true elements of MASK� if MASK
contains no true elements� the result is zero

Case �iii�� If ARRAY has rank one� IPARITY�ARRAY	 DIM �	MASK�� has a value equal
to that of IPARITY�ARRAY �	MASK��
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of IPARITY�ARRAY	 DIM �	MASK�� is
equal to IPARITY�ARRAY�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn�
�	MASK � MASK�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn���

Examples�

Case �i�� The value of IPARITY�����	 �	 �	 ���� is �

Case �ii�� The value of IPARITY�C	 MASK � BTEST�C	��� is the IEOR reduction of
the odd elements of C

Case �iii�� If B is the array

�
� � �

� � �

�
� then IPARITY�B	 DIM � �� is

h
� �

i
and IPARITY�B	 DIM � �� is

h
� �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES �
	

������ IPARITY PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented bitwise logical exclusive OR scan along di�
mension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IPARITY��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� IPARITY PREFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

�����
 IPARITY SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 The jthbit of an element of the result is �
if and only if there are an odd number of ones among the jthbits of the corresponding
element of BASE and the elements of ARRAY scattered to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

BASE must be of type integer with the same kind type param�
eter as ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value IPARITY� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements
of ARRAY associated with b as described in Section �
�
�

Example� IPARITY SCATTER����	�	�	���	 ���	�	���	 ���	�	�	���� ish
� � �

i
�

������ IPARITY SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented bitwise logical exclusive OR scan
along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value IPARITY��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� IPARITY SUFFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � �

i

������ LEADZ�I�

Description� Return the number of leading zeros in an integer

Class� Elemental function

Argument� I must be of type integer

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

Result Type and Type Parameter� Same as I

Result Value� The result is a count of the number of leading ��bits in the integer
I
 The model for the interpretation of an integer as a sequence of bits is in Section
��
�
� of the Fortran 	� Standard
 LEADZ��� is BIT SIZE�I�
 For nonzero I� if the
leftmost one bit of I occurs in position k� � �where the rightmost bit is bit �� then
LEADZ�I� is BIT SIZE�I� � k

Examples� LEADZ��� has the value BIT SIZE��� � �
 For scalar I� LEADZ�I� �EQ�

MINVAL� �� �J	 J��	 BIT SIZE�I� � ��	 MASK�M � where M ��� �BTEST�I	J�	

J�BIT SIZE�I���	 �	 ���	 �TRUE� ��� A given integer I may produce di�erent
results from LEADZ�I�� depending on the number of bits in the representation of the
integer �BIT SIZE�I��
 That is because LEADZ counts bits from the most signi�cant
bit
 Compare with ILEN

������ MAXVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented MAXVAL scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MAXVAL��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MAXVAL PREFIX� ���	�	�
	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

������ MAXVAL SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 Each element of the result is assigned
the maximum value of the corresponding element of BASE and the elements of ARRAY
scattered to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value MAXVAL� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� MAXVAL SCATTER����	 �	 �	 ���	 ���	 �
	 ���	 ���	 �	 �	 ����

is
h
� � �

i
�

������ MAXVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented MAXVAL scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MAXVAL��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MAXVAL SUFFIX� ���	�	�
	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � �

i

������ MINVAL PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented MINVAL scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MINVAL��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MINVAL PREFIX� ���	�	��	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � �� � �

i

������ MINVAL SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 Each element of the result is assigned
the minimum value of the corresponding element of BASE and the elements of ARRAY
scattered to that position

Class� Transformational function

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value MINVAL� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of
ARRAY associated with b as described in Section �
�
�

Example� MINVAL SCATTER��� �	��	��	� ��	 �� �	�	� ��	 �� �	�	�	� ���

is
h
�� �� �

i
�

�����	 MINVAL SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented MINVAL scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer or real
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value MINVAL��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� MINVAL SUFFIX� ���	�	��	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
�� �� �� �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

������ PARITY�MASK� DIM�

Optional Argument� DIM

Description� Determine whether an odd number of values are true in MASK along
dimension DIM

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter� and Shape� The result is of type logical with
the same kind type parameter as MASK
 It is scalar if DIM is absent or if MASK has
rank one� otherwise� the result is an array of rank n� � and shape
�d�� d�� � � � � dDIM��� dDIM��� � � � � dn� where �d�� d�� � � � � dn� is the shape of MASK

Result Value�

Case �i�� The result of PARITY�MASK� is the �NEQV� reduction of all the elements of
MASK
 If MASK has size zero� the result has the value false
 See Section �
�
�

Case �ii�� If MASK has rank one� PARITY�MASK	 DIM� has a value equal to that of
PARITY�MASK�
 Otherwise� the value of element
�s�� s�� � � � � sDIM��� sDIM��� � � � � sn� of PARITY�MASK	 DIM� is equal to
PARITY�MASK�s�� s�� � � � � sDIM��� �� sDIM��� � � � � sn��

Examples�

Case �i�� The value of PARITY���T	 T	 T	 F��� is true

Case �ii�� If B is the array

�
T T F

T T T

�
� then PARITY�B	 DIM � �� is

h
F F T

i
and PARITY�B	 DIM � �� is

h
F T

i

�����
 PARITY PREFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a segmented logical exclusive OR scan along dimension
DIM of MASK

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value PARITY��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PARITY PREFIX� ��T	F	T	T	T��	 SEGMENT� ��F	F	F	T	T�� � ish
T T F T F

i

������ PARITY SCATTER�MASK�BASE�INDX�� ���� INDXn�

Description� Scatters elements of MASK to positions of the result indicated by index
arrays INDX�� � � � � INDXn
 An element of the result is true if and only if the number
of true values among the corresponding element of BASE and the elements of MASK
scattered to that position is odd

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

BASE must be of type logical with the same kind type parameter
as MASK
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with MASK
 The
number of INDX arguments must be equal to the rank of
BASE

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value PARITY� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of
MASK associated with b as described in Section �
�
�

Example� PARITY SCATTER��� T	T	T	T ��	 �� T	F	F ��	 �� �	�	�	� ��� ish
F T F

i
�

������ PARITY SUFFIX�MASK� DIM� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented logical exclusive OR scan along di�
mension DIM of MASK

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

Class� Transformational function

Arguments�

MASK must be of type logical
 It must not be scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of MASK

SEGMENT �optional� must be of type logical and must have the same shape as
MASK

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as MASK

Result Value� Element r of the result has the value PARITY��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of MASK selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PARITY SUFFIX� ��T	F	T	T	T��	 SEGMENT� ��F	F	F	T	T�� � ish
F T T F T

i

������ POPCNT�I�

Description� Return the number of one bits in an integer

Class� Elemental function

Argument� I must be of type integer

Result Type and Type Parameter� Same as I

Result Value� POPCNT�I� is the number of one bits in the binary representation of
the integer I
 The model for the interpretation of an integer as a sequence of bits is
in Section ��
�
� of the Fortran 	� Standard

Example� POPCNT�I� � COUNT��� �BTEST�I	J�	 J��	 BIT SIZE�I���� ���� for
scalar I

������ POPPAR�I�

Description� Return the parity of an integer

Class� Elemental function

Argument� I must be of type integer

Result Type and Type Parameter� Same as I

Result Value� POPPAR�I� is � if there are an odd number of one bits in I and zero
if there are an even number
 The model for the interpretation of an integer as a
sequence of bits is in Section ��
�
� of the Fortran 	� Standard

Example� For scalar I� POPPAR�I� � MERGE��	�	BTEST�POPCNT�I�	����

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

������ PRODUCT PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented PRODUCT scan along dimension DIM of ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value PRODUCT��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PRODUCT PREFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � ��

i

������ PRODUCT SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 Each element of the result is equal to
the product of the corresponding element of BASE and the elements of ARRAY scattered
to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ��	

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE
has the value PRODUCT� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements
of ARRAY associated with b as described in Section �
�
�

Example� PRODUCT SCATTER��� �	�	�	� ��	 �� �	�
	� ��	 �� �	�	�	� ���

is
h
� ��
 �

i
�

������ PRODUCT SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented PRODUCT scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value PRODUCT��� a�� � � � � am ���

where �a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to con�
tribute to r by the rules stated in Section �
�
�

Example� PRODUCT SUFFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � ��

i

�����	 SUM PREFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a segmented SUM scan along dimension DIM of ARRAY

Class� Transformational function

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION
� INTRINSIC AND LIBRARY PROCEDURES

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value SUM��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� SUM PREFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
� � � � �

i

������ SUM SCATTER�ARRAY�BASE�INDX�� ���� INDXn� MASK�

Optional Argument� MASK

Description� Scatters elements of ARRAY selected by MASK to positions of the result
indicated by index arrays INDX�� � � � � INDXn
 Each element of the result is equal to
the sum of the corresponding element of BASE and the elements of ARRAY scattered
to that position

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

BASE must be of the same type and kind type parameter as
ARRAY
 It must not be scalar

INDX�	���	INDXn must be of type integer and conformable with ARRAY
 The
number of INDX arguments must be equal to the rank of
BASE

MASK �optional� must be of type logical and must be conformable with
ARRAY

Result Type� Type Parameter� and Shape� Same as BASE

Result Value� The element of the result corresponding to the element b of BASE has
the value SUM� ��a�� a�� ���� am� b�� �� where �a�� � � � � am� are the elements of ARRAY
associated with b as described in Section �
�
�

Example� SUM SCATTER����	 �	 �	 ���	 ���	 �
	 ���	 ���	 �	 �	 ���� ish
� �� �

i
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SPECIFICATIONS OF LIBRARY PROCEDURES ���

�����
 SUM SUFFIX�ARRAY� DIM� MASK� SEGMENT� EXCLUSIVE�

Optional Arguments� DIM� MASK� SEGMENT� EXCLUSIVE

Description� Computes a reverse� segmented SUM scan along dimension DIM of
ARRAY

Class� Transformational function

Arguments�

ARRAY must be of type integer� real� or complex
 It must not be
scalar

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

MASK �optional� must be of type logical and must be conformable with
ARRAY

SEGMENT �optional� must be of type logical and must have the same shape as
ARRAY

EXCLUSIVE �optional� must be of type logical and must be scalar

Result Type� Type Parameter� and Shape� Same as ARRAY

Result Value� Element r of the result has the value SUM��� a�� � � � � am ��� where
�a�� � � � � am� is the �possibly empty� set of elements of ARRAY selected to contribute
to r by the rules stated in Section �
�
�

Example� SUM SUFFIX� ���	�	�	�	
��	 SEGMENT� ��F	F	F	T	T�� � ish
�
 � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION
� INTRINSIC AND LIBRARY PROCEDURES

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Extrinsic Procedures

This chapter de�nes the mechanism by which HPF programs may call non�HPF subpro�
grams as extrinsic procedures
 It provides the information needed to write an explicit inter�
face for a non�HPF procedure
 It de�nes the means for handling distributed and replicated
data at the interface
 This allows the programmer to use non�Fortran language facilities�
perhaps to descend to a lower level of abstraction to handle problems that are not e��
ciently addressed by HPF� to hand�tune critical kernels� or to call optimized libraries
 This
interface can also be used to interface HPF to other languages� such as C

Advice to implementors� Annex A describes a suggested approach to supporting the
coding of single�processor �node� code in single�processor Fortran 	� or in a single�
processor subset of HPF� the idea is that only data that is mapped to a given physical
processor is accessible to it
 This allows the programming of MIMD multiprocessor
machines in a single�program multiple�data �SPMD� style
 �End of advice to imple�
mentors��

	�� Overview

It may be desirable for an HPF program to call a procedure written in a language other
than HPF
 Such a procedure might be written in any of a number of languages�

� A single�thread�of�control language not unlike HPF� where one copy of the procedure
is conceptually executing and there is a single locus of control within the program
text

� A multiple�thread�of�control language� perhaps with dynamic assignment of loop iter�
ations to processors or explicit dynamic process forking� where again there is� at least
initially �upon invocation� one copy of the procedure that is conceptually executing
but which may spawn multiple loci of control� possibly changing in number over time�
within the program text

� Any programming language targeted to a single processor� with the understanding
that many copies of the procedure will be executed� one on each processor� this is
frequently referred to as SPMD �Single Program� Multiple Data� style
 We refer to a
procedure written in this fashion as a local procedure

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� EXTRINSIC PROCEDURES

A local procedure might be written in Fortran ��� Fortran 	�� C� Ada� or Pascal� for
example
 A particularly interesting possibility is that a local procedure might be written
in HPF& Not all HPF facilities may be used in writing local code� because some facilities
address the question of executing on multiple processors and local code by de�nition runs
on a single processor
 See Annex A

A called procedure that is written in a language other than HPF� whether or not it
uses the local procedure execution model should be declared EXTRINSIC within an HPF
program that calls it
 The EXTRINSIC pre�x declares what sort of interface should be used
when calling indicated subprograms

	�� De�nition and Invocation of Extrinsic Procedures

An explicit interface must be provided for each extrinsic procedure entry in the scope
where it is called
 This interface de�nes the �HPF view� of the extrinsic procedure

H��� extrinsic�prefix is EXTRINSIC � extrinsic�kind�keyword �

H��
 extrinsic�kind�keyword is HPF

or HPF�LOCAL

or HPF�SERIAL

An extrinsic�pre�x may appear in a subroutine�stmt or function�stmt �as de�ned in the
Fortran 	� standard� in the same place that the keyword RECURSIVE might appear
 See
Section �
� for the extended forms of the grammar rules for function�stmt and subroutine�
stmt covering this case

The extrinsic�kind�keyword indicates the kind of extrinsic interface to be used
 �It may
be helpful to think of this name as being to the subprogram calling interface what a KIND

parameter is for a numeric type
 However� an extrinsic�kind is not integer�valued� it is
merely a keyword
� HPF de�nes three such keywords� HPF� HPF LOCAL� and HPF SERIAL

The keyword HPF LOCAL is intended for use in calling routines coded in the �local HPF�
style described in Annex A
 The keyword HPF refers to the interface normally used for
calling ordinary HPF routines

Thus writing EXTRINSIC�HPF� in an HPF program has exactly the same e�ect as not
���

using an EXTRINSIC speci�er at all

Thus writing EXTRINSIC�HPF� at the beginning of a external�subprogram in an HPF

program has exactly the same e�ect as not using an EXTRINSIC speci�er at all

Rationale� HPF de�nes the extrinsic�kind�keyword HPF primarily to set an example
for other programming languages that might adopt this style of interface speci�cation

For example� in an extended Fortran 	� compiler it would not be redundant to specify
EXTRINSIC�HPF�� though it might be redundant to specify EXTRINSIC�F���
 In a C
compiler it would not be redundant to specify extrinsic�hpf�
 �End of rationale��

A subprogram with an extrinsic interface lies outside the scope of HPF
 However�
explicit interfaces to such subprograms must conform to HPF
 Note that any particular
HPF implementation is free to support any selection of extrinsic kind keywords� or none at
all except for HPF itself
 Examples�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� DEFINITION AND INVOCATION OF EXTRINSIC PROCEDURES ���

INTERFACE

EXTRINSIC�HPF�LOCAL� FUNCTION BAGEL�X�

REAL X���

REAL BAGEL�����

�HPF
 DISTRIBUTE �CYCLIC� �� X	 BAGEL

END FUNCTION

END INTERFACE

INTERFACE OPERATOR ���

EXTRINSIC�C�LOCAL� FUNCTION LATKES�X	 Y� RESULT�Z�

REAL	 DIMENSION��	�� �� X

REAL	 DIMENSION�SIZE�X	��	 SIZE�X	��� �� Y	 Z

�HPF
 ALIGN WITH X �� Y	 Z

�HPF
 DISTRIBUTE �BLOCK	 BLOCK� X

END FUNCTION

END INTERFACE

INTERFACE KNISH

FUNCTION RKNISH�X� �normal HPF interface

REAL X���	 RKNISH

END RKNISH

EXTRINSIC�SISAL� FUNCTION CKNISH�X� �extrinsic interface

COMPLEX X���	 CKNISH

END CKNISH

END INTERFACE

In the last interface block� two external procedures� one of them extrinsic and one not�
are associated with the same generic procedure name� which returns a scalar of the same
type as its array argument

The intent is that a call to an extrinsic subprogram behaves� as observed by a calling
program coded in HPF� exactly as if the subprogram has been coded in HPF

Advice to implementors� This is an obligation placed on the implementation of the
interface and perhaps on the programmer when coding an extrinsic routine
 However�
it is also desirable to grant a certain freedom of implementation strategy so long as the
obligation is satis�ed
 To this end an implementation may place certain restrictions
on the programmer� moreover� each extrinsic�kind�keyword may call for a di�erent set
of restrictions

For example� an implementation on a parallel processor may �nd it convenient to
replicate scalar arguments so as to provide a copy on every processor
 This is permitted
so long as this process is invisible to the caller
 One way to achieve this is to place a
restriction on the programmer� on return from the subprogram� all the copies of this
scalar argument must have the same value
 This implies that if the dummy argument
has INTENT�OUT�� then all copies must have been updated consistently by the time of
subprogram return
 �End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� EXTRINSIC PROCEDURES

More generally� within a program unit of any given HPF kind� in order to call a
subprogram of some other extrinsic kind� that subprogram must have an explicit interface�
and the subprogram is expected to behave� as observed by the caller� roughly as if it had
been written as code of the same extrinsic kind as the caller
 Some of the responsibility for
meeting this requirement may rest on the compiler and some on the programmer
 Annex A�
for example� spells out the responsbilities of the compiler and the programmer for calls from
HPF code to HPF LOCAL subprograms

A particular restriction is placed on subprograms of extrinsic kind HPF LOCAL� array
dummy arguments of such subprograms must be declared as assumed�shape� both in the
de�nition of the subprogram itself and in any interface blocks in other program units

An extrinsic�pre�x may also appear at the beginning of a program�stmt� module�stmt�
or block�data�stmt

H��� program�stmt is � extrinsic�prefix � PROGRAM program�name

H��� module�stmt is � extrinsic�prefix � MODULE module�name

H��� block�data�stmt is � extrinsic�prefix � BLOCK DATA block�data�name

Fortran 	� syntax rule R���
 �for program�stmt� is here rewritten as rule H���� rule R����
�for module�stmt� is here rewritten as rule H���� and rule R���� �for block�data�stmt� as
rule H���

Writing EXTRINSIC�HPF� at the beginning of any program unit of an HPF program has
exactly the same e�ect as not using an EXTRINSIC speci�er at all
 Conversely� any program
unit of an HPF program that has no extrinsic�pre�x in its �rst statement is assumed to be
of extrinsic kind HPF

All extrinsic kind keywords whose names begin with the three letters �HPF� are reserved
for present or future de�nition by this speci�cation and its successors
 A program unit whose
extrinsic kind keyword begins with �HPF� is said to be �of an HPF extrinsic kind
�

A main�program whose extrinsic kind is HPF LOCAL or HPF SERIAL behaves as if it
were a subroutine of extrinsic kind HPF LOCAL that is called with no arguments from a main
program of extrinsic kind HPF whose executable part consists solely of that call

Within any module of an HPF extrinsic kind� every module�subprogram must be of
that same extrinsic kind and any module�subprogram whose extrinsic kind is not given
explicitly is assumed to be of that extrinsic kind
 Similarly� within any main�program or
external�subprogram of an HPF extrinsic kind� every internal�subprogram must be of that
same extrinsic kind and any internal�subprogram whose extrinsic kind is not given explicitly
is assumed to be of that extrinsic kind

A function�stmt or subroutine�stmt that appears within an interface�block within a
program unit of an HPF extrinsic kind may have an extrinsic pre�x mentioning any extrinsic
kind supported by the language implementation� but if no extrinsic�pre�x appears in such
a function�stmt or subroutine�stmt� then it is assumed to be of the same HPF extrinsic kind
as the host scoping unit

The following sample code illustrates these rules�

PROGRAM DUMPLING

INTERFACE

EXTRINSIC�HPF�LOCAL� SUBROUTINE GNOCCHI�P	 L	 X�

INTERFACE

SUBROUTINE P�Q�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� DEFINITION AND INVOCATION OF EXTRINSIC PROCEDURES ���

extrinsic kind of the used module
HPF HPF SERIAL HPF LOCAL

extrinsic kind HPF T P D T P T P

of the using HPF SERIAL T T P D T

program unit HPF LOCAL T T T P D

T derived type de�nitions
P procedures and procedure interfaces
D data objects

Table �
�� Entities that a using program unit is entitled to access from a module� according
to the HPF extrinsic kind of each

REAL Q

END SUBROUTINE P

EXTRINSIC�COBOL�LOCAL� SUBROUTINE L�R�

REAL R��	��

END SUBROUTINE L

END INTERFACE

REAL X���

END SUBROUTINE GNOCCHI

EXTRINSIC�HPF�LOCAL� SUBROUTINE POTSTICKER�Q�

REAL Q

END SUBROUTINE POTSTICKER

EXTRINSIC�COBOL�LOCAL� SUBROUTINE LEBERKNOEDEL�R�

REAL R��	��

END SUBROUTINE LEBERKNOEDEL

END INTERFACE

���

CALL GNOCCHI�POTSTICKER	 LEBERKNOEDEL	 �� ���	 ���	
�� �� �

���

END PROGRAM DUMPLING

The main program� DUMPLING� when compiled by an HPF compiler� is implicitly of extrinsic
kind HPF
 Interfaces are declared to three external subroutines GNOCCHI� POTSTICKER� and
KNOEDEL
 The �rst two are of extrinsic kind HPF LOCAL and the third is of kind COBOL LOCAL

Now GNOCCHI accepts two dummy procedure arguments and so interfaces must be declared
for those
 Because no extrinsic�pre�x is given for dummy argument P� its extrinsic kind is
that of its host scoping unit� the declaration of subroutine GNOCCHI� which ahs extrinsic
kind HPF LOCAL
 The declaration of the corresponding actual argument POTSTICKER needs
to have an explicit extrinsic�pre�x because its host scoping unit is program DUMPLING� of
extrinsic kind HPF

If a module X of one HPF extrinsic kind is used from a program unit Y of another
HPF extrinsic kind� then only names of items in X that Y is entitled to use or invoke may
be imported� that is� either X makes private all items that Y is not entitled to use� or the
USE statement in Y has an ONLY options that lists only names of items it is entitled to use

A named COMMON block in any program unit of an HPF kind will be associated with the
COMMON block� if any� of that same name in every other program unit of that same extrinsic
kind� similarly for unnamed COMMON
 �Such COMMON storage behaves as other declared

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� EXTRINSIC PROCEDURES

data objects within program units of that extrinsic kind� in particular� for HPF LOCAL code
there will be one copy of the COMMON block on each processor
�

It is not permitted for any given COMMON block name to be used in program units of
di�erent HPF kinds within a single program� similarly� it is not permitted for unnamed
COMMON to be used in program units of di�erent HPF kinds within a single program

Advice to implementors� �Implementors are advised to follow a similar rule for all
extrinsic kind keywords� not just those starting with HPF
� �End of advice to imple�
mentors��

	�� Requirements on the Called Extrinsic Procedure

HPF requires a called extrinsic procedure to satisfy the following behavioral requirements�

�
 The overall implementation must behave as if all actions of the caller preceding the
subprogram invocation are completed before any action of the subprogram is executed�
and as if all actions of the subprogram are completed before any action of the caller
following the subprogram invocation is executed

 IN�OUT intent restrictions declared in the interface for the extrinsic subroutine must
be obeyed

�
 Replicated variables� if updated� must be updated consistently
 More precisely� if
a variable accessible to a local subprogram has a replicated representation and is
updated by �one or more copies of� the local subroutine� then all copies of the repli�
cated data must have identical values when the last processor returns from the local
procedure

�
 No HPF variable is modi�ed unless it could be modi�ed by an HPF procedure with
the same explicit interface

Note in particular that even though an HPF LOCAL routine is not permitted to access
and modify HPF global data� other kinds of extrinsic routines may do so to the extent
that an HPF procedure could

�
 When a subprogram returns and the caller resumes execution� all objects accessible
to the caller after the call are mapped exactly as they were before the call

Advice to implementors�

Note that� as with a non�extrinsic �that is� ordinary HPF� subprogram� actual
arguments may be copied or remapped in any way� so long as the e�ect is undone
on return from the subprogram

�End of advice to implementors��

�
 Exactly the same set of processors are visible to the HPF environment before and
after the subprogram call

The call to an extrinsic procedure that ful�lls these rules is semantically equivalent to
the execution of an ordinary HPF procedure

Annex A has examples of the use of local subprograms through extrinsic interfaces

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section �

Storage and Sequence Association

HPF allows the mapping of variables across multiple processors in order to improve parallel
performance
 FORTRAN �� and Fortran 	� both specify relationships between the storage
for data objects associated through COMMON and EQUIVALENCE statements� and the order of
array elements during association at procedure boundaries between actual arguments and
dummy arguments
 Otherwise� the location of data is not constrained by the language

COMMON and EQUIVALENCE statements constrain the alignment of di�erent data items
based on the underlying model of storage units and storage sequences�

Storage association is the association of two or more data objects that occurs
when two or more storage sequences share or are aligned with one or more storage
units�
� Fortran Standard ���
�
�
��

The model of storage association is a single linearly addressed memory� based on the tradi�
tional single address space� single memory unit architecture
 This model can cause severe
ine�ciencies on architectures where storage for variables is mapped

Sequence association refers to the order of array elements that Fortran requires when
an array expression or array element is associated with a dummy array argument�

The rank and shape of the actual argument need not agree with the rank and
shape of the dummy argument
 � � �
� Fortran Standard ��

�
�
��

As with storage association� sequence association is a natural concept only in systems with
a linearly addressed memory

As an aid to porting FORTRAN �� codes� HPF allows codes that rely on sequence and
storage association to be valid in HPF
 Some modi�cation to existing FORTRAN �� codes
may nevertheless be necessary
 This chapter explains the relationship between HPF data
mapping and sequence and storage association

��� Storage Association

����� De�nitions

�
 COMMON blocks are either sequential or nonsequential� as determined by either explicit
directive or compiler default
 A sequential COMMON block has a single common block
storage sequence ��
�

��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� STORAGE AND SEQUENCE ASSOCIATION

 An aggregate variable group is a collection of variables whose individual storage se�
quences are parts of a single storage sequence

Variables associated by EQUIVALENCE statements or by a combination of EQUIVALENCE
and COMMON statements form an aggregate variable group
 The variables of a sequential
COMMON block form a single aggregate variable group

�
 The size of an aggregate variable group is the number of storage units in the group�s
storage sequence ���
�
�
��

�
 If there is a member in an aggregate variable group whose storage sequence is totally
associated ���
�
�
�� with the storage sequence of the aggregate variable group� that
variable is called an aggregate cover

�
 Variables are either sequential or nonsequential
 A variable is sequential if and only if
any of the following holds�

�a� it appears in a sequential COMMON block�

�b� it is a member of an aggregate variable group�

�c� it is an assumed�size array�

�d� it is a component of a derived type with the Fortran 	� SEQUENCE attribute� or

�e� it is declared to be sequential in an HPF SEQUENCE directive

A sequential variable can be storage associated or sequence associated� nonsequential
variables cannot

�
 A COMMON block contains a sequence of components
 Each component is either an
aggregate variable group� or a variable that is not a member of any aggregate variable
group
 Sequential COMMON blocks contain a single component
 Nonsequential COMMON
blocks may contain several components that may be nonsequential or sequential vari�
ables or aggregate variable groups

�
 A variable is explicitly mapped if it appears in an HPF mapping directive within the
scoping unit in which it is declared� otherwise it is implicitly mapped
 A mapping
directive is an ALIGN� or DISTRIBUTE� or REALIGN� or REDISTRIBUTE� or INHERIT� or
DYNAMIC directive� or any directive that confers an alignment � a distribution� or the
INHERIT or DYNAMIC attribute

����� Examples of De�nitions

IMPLICIT REAL �A�Z�

COMMON �FOO� A�����	 B�����	 C�����	 D�����	 E�����

DIMENSION X�����	 Y��
��	 Z�����

�Example ��

EQUIVALENCE � A���	 Z��� �

�Four components� �A	 B�	 C	 D	 E

�Sizes are� ���	 ���	 ���	 ���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� STORAGE ASSOCIATION ���

�Example ��

EQUIVALENCE � B�����	 Y��� �

�Three components A	 �B	 C	 D�	 E

�Sizes are� ���	 ���	 ���

�Example ��

EQUIVALENCE � E���	 Y��� �

�Five components� A	 B	 C	 D	 E

�Sizes are� ���	 ���	 ���	 ���	 �
�

�Example ��

EQUIVALENCE � A�
��	 X��� � � B�����	 Y��� �

�Two components �A	 B	 C	 D�	 E

�Sizes are� ���	 ���

�Example
�

EQUIVALENCE � A�
��	 X��� � � C����	 Y��� �

�Two components� �A	 B�	 �C	 D	 E�

�Sizes are� ���	 ���

�Example ��

EQUIVALENCE �Y�����	 Z����

�One aggregate variable group �Y	 Z�	 not involving the COMMON block�

�Size is ���

�Example ��

�HPF
 SEQUENCE �FOO�

�The COMMON has one component	 �A	 B	 C	 D	 E�

�Size is
��

In Examples �#�� COMMON block �FOO� is nonsequential
 Aggregate variable groups are shown
as components in parentheses
 Aggregate covers are Z in Example � and Y in Example �

����� Sequence Directives

A SEQUENCE directive is de�ned to allow a user to declare explicitly that variables or COMMON
blocks are to be treated by the compiler as sequential
 �COMMON blocks are by default non�
sequential
 Variables are nonsequential unless De�nition � applies
� Some implementations
may supply an optional compilation environment where the SEQUENCE directive is applied
by default
 For completeness in such an environment� HPF de�nes a NO SEQUENCE directive
to allow a user to establish that the usual nonsequential default should apply to a scoping
unit� or selected variables and COMMON blocks within the scoping unit

H��� sequence�directive is SEQUENCE � � �� � association�name�list �
or NO SEQUENCE � � �� � association�name�list �

H��
 association�name is object�name
or function�name
or � � common�block�name � �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 SECTION �� STORAGE AND SEQUENCE ASSOCIATION

Constraint� A variable or COMMON block name may appear at most once in a sequence�
directive within any scoping unit

Constraint� Only one sequence directive with a given association�name is permitted in the
same scoping unit

����� Storage Association Rules

�
 A sequence�directive with an empty association�name�list is treated as if it contained
the name of all implicitly mapped variables and COMMON blocks in the scoping unit
which cannot otherwise be determined to be sequential or nonsequential by their
language context

 A sequential variable may not be explicitely mapped unless it is a scalar or rank�one
array� and is an aggregate cover
 If there is more than one aggregate cover for an
aggregate variable group� only one may be explicitly mapped

�
 No explicit mapping may be given for a component of a derived type having the
Fortran 	� SEQUENCE attribute
 In HPF �� no components may have explicit mapping�
but the consequence of Fortran 	� semantics are that even if� in some future version of
HPF� components could have explicit mappings� those with the Fortran 	� SEQUENCE
attribute may not

�
 No explicit mapping may be given for a dummy argument that is an assumed size
array

�
 If a COMMON block is nonsequential� then all of the following must hold�

�a� Every occurrence of the COMMON block has exactly the same number of compo�
nents with each corresponding component having a storage sequence of exactly
the same size�

�b� If a component is a nonsequential variable in any occurrence of the COMMON block�
then it must be nonsequential with identical type� shape� and mapping attributes
in every occurrence of the COMMON block�

�c� If a component is sequential and explicitly mapped �either a variable or an aggre�
gate variable group with an explicitly mapped aggregate cover� in any occurrence
of the COMMON block� then it must be sequential and explicitly mapped with iden�
tical mapping attributes in every occurrence of the COMMON block
 In addition�
the type and shape of the explicitly mapped variable must be identical in all
occurrences� and

�d� Every occurrence of the COMMON block must be nonsequential

����� Storage Association Discussion

Advice to users� Under these rules� variables in a COMMON block can be mapped as
long as the components of the COMMON block are the same in every scoping unit that
declares the COMMON block
 Rule
 also allows variables involved in an EQUIVALENCE

statement to be mapped by the mechanism of declaring a rank�one array to cover
exactly the aggregate variable group and mapping that array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� STORAGE ASSOCIATION ���

Since an HPF program is nonconforming if it speci�es any mapping that would cause
a scalar data object to be mapped onto more than one abstract processor� there is a
constraint on the sequential variables and aggregate covers that can be mapped
 In
particular� programs that direct double precision or complex arrays to be mapped such
that the storage units of a single array element are split because of some EQUIVALENCE
statement or COMMON block layout are nonconforming

Correct FORTRAN �� or Fortran 	� programs will not necessarily be correct with�
out modi�cation in HPF
 As the examples in the next section illustrate� use of
EQUIVALENCE with COMMON blocks can impact mappability of the variables in subtle
ways
 To allow maximum optimization for performance� the HPF default for variables
is to consider them mappable
 In order to get correct separate compilation for sub�
programs that use COMMON blocks with di�erent aggregate variable groups in di�erent
scoping units� it will be necessary to insert the HPF SEQUENCE directive

As a check�list for a user to determine the status of a variable or COMMON block� the
following questions can be applied� in order�

� Does the variable appear in some explicit language context which dictates se�
quential �e
g
 EQUIVALENCE� or nonsequential �e
g
 array�valued function result
variable�$

� If not� does the variable appear in an explicit mapping directive$

� If not� does the variable or COMMON block name appear in the list of names on a
SEQUENCE or NO SEQUENCE directive$

� If not� does the scoping unit contain a nameless SEQUENCE or NO SEQUENCE$

� If not� is the compilation a�ected by some special implementation�dependent
environment which dictates that names default to SEQUENCE$

� If not� then the compiler will consider the variable or COMMON block name non�
sequential and is free to apply data mapping optimizations disregarding Fortran
sequence and storage association

�End of advice to users��

Advice to implementors� In order to protect the user and to facilitate portability
of older codes� two implementation options are strongly recommended
 First� every
implementation should supply some mechanism to verify that the type and shape of
every mappable array and the sizes of aggregate variable groups in COMMON blocks are
the same in every scoping unit unless the COMMON blocks are declared to be sequential

This same check should also verify that identical mappings have been selected for
the variables in COMMON blocks
 Implementations without interprocedural information
can use a link�time check
 The second implementation option recommended is a
mechanism to declare that variables and COMMON blocks for a given compilation should
be considered sequential unless declared otherwise
 The purpose of this feature is to
permit compilation of large old libraries or subprograms where storage association
is known to exist without requiring that the code be modi�ed to apply the HPF
SEQUENCE directive to every COMMON block
 �End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� STORAGE AND SEQUENCE ASSOCIATION

����	 Examples of Storage Association

IMPLICIT REAL �A�Z�

COMMON �FOO� A�����	 B�����	 C�����	 D�����	 E�����

DIMENSION X�����	 Y��
��	 Z�����	 ZZ�����

EQUIVALENCE � A���	 Y��� �

�Aggregate variable group is not mappable�

�Sizes are� ���	 ���	 ���	 ����

EQUIVALENCE � B�����	 Y��� �	 � B���	 ZZ��� �

�Aggregate variable group is mappable only by mapping ZZ�

�ZZ is an aggregate cover for B	 C	 D	 and Y�

�Sizes are� ���	 ���	 ����

EQUIVALENCE � E���	 Y��� �

�Aggregate variable group is mappable by mapping Y�

�Sizes are� ���	 ���	 ���	 ���	 �
��

COMMON �TWO� A���	���	E���	���	G���	���	�����	H�����	P�����

REAL COVER�����

EQUIVALENCE �COVER���	 H����

�HPF
 SEQUENCE A

�HPF
 ALIGN E ���

�HPF
 DISTRIBUTE COVER �CYCLIC����

Here A is sequential and implicitly mapped� E is explicitly mapped� G is implicitly mapped�
the aggregate cover of the aggregate variable group �H	 P� is explicitly mapped
 �TWO� is
a nonsequential COMMON block

In another subprogram� the following declarations may occur�

COMMON �TWO� A�����	 E���	���	 G���	���	�����	 Z�����

�HPF
 SEQUENCE A	 Z

�HPF
 ALIGN E ���

�HPF
 DISTRIBUTE Z �CYCLIC����

There are four components of the same size in both occurrences
 Components one and four
are sequential
 Components two and four are explicitly mapped� with the same type� shape
and mapping attributes

The �rst component� A� must be declared sequential in both occurrences because its
shape is di�erent
 It may not be explicitly mapped in either because it is not rank�one or
scalar in the �rst

E and G must agree in type and shape in both occurrences
 E must have the same
explicit mapping and G must have no explicit mapping in both occurrences� since they are
nonsequential variables

The fourth component must have the same explicit mapping in both occurrences� and
must be made sequential explicitly in the second

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� ARGUMENT PASSING AND SEQUENCE ASSOCIATION ���

��� Argument Passing and Sequence Association

For actual arguments in a procedure call� Fortran 	� allows an array element �scalar� to be
associated with a dummy argument that is an array
 It furthermore allows the shape of a
dummy argument to di�er from the shape of the corresponding actual array argument� in
e�ect reshaping the actual argument via the subroutine call
 Storage sequence properties of
Fortran are used to identify the values of the dummy argument
 This feature� carried over
from FORTRAN ��� has been widely used to pass starting addresses of subarrays� rows
or columns of a larger array� to procedures
 For HPF arrays that are potentially mapped
across processors� this feature is not fully supported

����� Sequence Association Rules

�
 When an array element or the name of an assumed�size array is used as an actual
argument� the associated dummy argument must be a scalar or speci�ed to be a
sequential array

An array�element designator of a nonsequential array must not be associated with a
dummy array argument

 When an actual argument is an array or array section and the corresponding dummy
argument di�ers from the actual argument in shape� then the dummy argument must
be declared sequential and the actual array argument must be sequential

�
 A variable of type character �scalar or array� is nonsequential if it conforms to the
requirements of De�nition � of Section �
�
�
 If the length of an explicit�length char�
acter dummy argument di�ers from the length of the actual argument� then both the
actual and dummy arguments must be sequential

�
 Without an explicit interface� a sequential actual may not be associated with a nonse�
quential dummy and a nonsequential actual may not be associated with a sequential
dummy

����� Discussion of Sequence Association

When the shape of the dummy array argument and its associated actual array argument
di�er� the actual argument must not be an expression
 There is no HPF mechanism for
declaring that the value of an array�valued expression is sequential
 In order to associate
such an expression as an actual argument with a dummy argument of di�erent rank� the
actual argument must �rst be assigned to a named array variable that is forced to be
sequential according to De�nition � of Section �
�
�

����� Examples of Sequence Association

Given the following subroutine fragment�

SUBROUTINE HOME �X�

DIMENSION X ���	���

By rule �

CALL HOME �ET ��	���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� STORAGE AND SEQUENCE ASSOCIATION

is legal only if X is declared sequential in HOME and ET is sequential in the calling routine

Likewise� by rule
 and �

CALL HOME �ET�

requires either that ET and X are both sequential arrays or that ET and X have the same
shape and have the same sequence attribute

Rule � addresses a special consideration for variables of type character
 Change of the
length of character variables across a call� as in

CHARACTER �LEN���� one�long�word

one�long�word � �Chargoggagoggmanchaugagoggchaubunagungamaugg�

CALL webster�one�long�word�

SUBROUTINE webster�short�dictionary�

CHARACTER �LEN��� short�dictionary ����

�Note that short�dictionary��� is �agog�	 for example

is conceptually legal in FORTRAN �� and Fortran 	�
 In HPF� both the actual argument
and dummy argument must be sequential
 �By the way� �Chargoggagoggmanchaugagog�
gchaubunagungamaugg� is the original Nipmuc name for what is now called �Lake Webster�
in Massachusetts
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Section 	

Subset High Performance Fortran

This chapter presents a subset of HPF capable of being implemented more rapidly than the
full HPF
 A subset implementation will provide a portable interim HPF capability
 Full
HPF implementations should be developed as rapidly as possible
 The de�nition of the
subset language is intended to be a minimal requirement
 A given implementation may
support additional Fortran 	� and HPF features

�� Fortran �� Features in Subset High Performance Fortran

The items listed here are the features of the HPF subset language
 For reference� the section
numbers from the Fortran 	� standard are given along with the related syntax rule numbers�

� All FORTRAN �� standard conforming features� except for storage and sequence
association
 �See Section � for detailed discussion of the exception
�

� The Fortran 	� de�nitions of MIL�STD����� features�

 DO WHILE statement ��
�
�
�
� � R�
��

 END DO statement ��
�
�
�
� � R�
��

 IMPLICIT NONE statement ��
� � R����

 INCLUDE line ��
��

 scalar bit manipulation intrinsic procedures� IOR� IAND� NOT� IEOR� ISHFT�
ISHFTC� BTEST� IBSET� IBCLR� IBITS� MVBITS ���
���

 binary� octal and hexadecimal constants for use in DATA statements ��
�
�
� �
R��� and �

	 � R����

� Arithmetic and logical array features�

 array sections ��

� � R���#�
��

� subscript triplet notation ��

�
��

� vector�valued subscripts ��

�

�

 array constructors limited to one level of implied DO ��
� � R����

 arithmetic and logical operations on whole arrays and array sections �

�
��

�
��
and �
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� SUBSET HIGH PERFORMANCE FORTRAN

 array assignment �

�
�� �
�� �
�
�
�� and �
�
�
��

 masked array assignment ��
�
��

� WHERE statement ��
�
� � R����

� block WHERE

 ELSEWHERE construct ��
�
� � R��	�

 array�valued external functions ��

�

�

 automatic arrays ��
�

�
��

 ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements ��
�

�
��
�
�
� � R�

� and �
�
� � R����

 assumed�shape arrays ��
�

�

 � R����

� Intrinsic procedures�

The list of intrinsic functions and subroutines below is a combination of �a� routines
which are entirely new to Fortran and �b� routines that have always been part of
Fortran� but now have been extended to new argument and result types
 The new
or extended de�nitions of these routines are part of the subset
 If a FORTRAN ��
routine is not included in this list� then only the original FORTRAN �� de�nition is
part of the subset

For all of the intrinsics that have an optional argument DIM� only actual argument
expressions for DIM that are initialization expressions are part of the subset
 The
intrinsics with this constraint are marked with yin the list below

 the argument presence inquiry function� PRESENT ���
��
��

 all the numeric elemental functions� ABS� AIMAG� AINT� ANINT� CEILING� CMPLX�
CONJG� DBLE� DIM� DPROD� FLOOR� INT� MAX� MIN� MOD� MODULO� NINT� REAL� SIGN
���
��

�

 all mathematical elemental functions� ACOS� ASIN� ATAN� ATAN�� COS� COSH� EXP�
LOG� LOG��� SIN� SINH� SQRT� TAN� TANH ���
��
��

 all the bit manipulation elemental functions � BTEST� IAND� IBCLR� IBITS� IBSET�
IEOR� IOR� ISHFT� ISHFTC� NOT ���
��
���

 all the vector and matrix multiply functions� DOT PRODUCT� MATMUL ���
��
���

 all the array reduction functions� ALLy� ANYy� COUNTy� MAXVALy� MINVALy�
PRODUCTy� SUMy���
��
���

 all the array inquiry functions� ALLOCATED� LBOUNDy� SHAPE� SIZEy�
UBOUNDy���
��
���

 all the array construction functions� MERGE� PACK� SPREADy� UNPACK ���
��
���

 the array reshape function� RESHAPE ���
��
���

 all the array manipulation functions� CSHIFTy� EOSHIFTy� TRANSPOSE ���
��
���

 all array location functions� MAXLOCy� MINLOCy���
��
�	�

 all intrinsic subroutines� DATE AND TIME� MVBITS� RANDOM NUMBER� RANDOM SEED�
SYSTEM CLOCK ��
���

� Declarations�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

���� DISCUSSION OF THE FORTRAN �
 SUBSET FEATURES ��	

 Type declaration statements� with all forms of type�spec except kind�selector
and TYPE�type�name�� and all forms of attr�spec except access�spec� TARGET� and
POINTER
 ��
� � R�������� R����

 attribute speci�cation statements� ALLOCATABLE� INTENT� OPTIONAL� PARAMETER�
SAVE ��

�

� Procedure features�

 INTERFACE blocks with no generic�spec or module�procedure�stmt ��

�

��

 optional arguments ��

�

 keyword argument passing ��

�
� �R�
�
�

� Syntax improvements�

 long ��� character� names ��

�

 lower case letters ��
�
��

 use of � � in names ��
�
��

 �&� initiated comments� both full line and trailing ��
�

��

�� Discussion of the Fortran �� Subset Features

Rationale� There are many Fortran 	� features which are useful and relatively easy
to implement� but are not included in the subset language
 Features were selected for
the subset language for several reasons

The MIL�STD����� features have been implemented so widely that many users have
forgotten that they are not part of FORTRAN ��
 They are included in the HPF
subset

The biggest addition to FORTRAN �� in the HPF subset language is the inclusion
of the array language
 A number of vendors have identi�ed the usefulness of array
operations for concise expression of parallelism and already support these features

However� the character array language is not part of the subset

The new storage classes such as allocatable� automatic� and assumed�shape objects
are included in the subset
 They provide an important alternative to the use of storage
association features such as EQUIVALENCE for memory management

Interface blocks have been added to the subset in order to facilitate use of the HPF
directives across subroutine boundaries
 The interface blocks provide a mechanism
to specify the expected mapping of data� in addition to the types and intents of the
arguments

There were other Fortran 	� features considered for the subset
 Some features such as
CASE or NAMELIST were recognized as popular features of Fortran 	�� but had no direct
bearing on high performance
 Other features such as support for double precision
complex �via KIND� or procedureless MODULES were rejected because of the perception
that the additional implementation complexity might delay release of subset compilers

It was not a goal of HPFF to de�ne an �ideal� subset of Fortran 	� for all purposes

Additional syntactic improvements are included� such as long names and the �&� form
of comments� because of their general usefulness in program documentation� including
the description of HPF itself
 �End of rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION �� SUBSET HIGH PERFORMANCE FORTRAN

�� HPF Features Not in Subset High Performance Fortran

All HPF directives and language extensions are included in the HPF subset language with
the following exceptions�

� The REALIGN� REDISTRIBUTE� and DYNAMIC directives�

� The INHERIT directive

� The PURE function attribute�

� The forall�construct�

� The HPF library and the HPF LIBRARY module�

� Actual argument expressions corresponding to optional DIM arguments to the Fortran
	� MAXLOC and MINLOC intrinsic functions that are not initialization expressions� and

� The EXTRINSIC function attribute

�� Discussion of the HPF Extension Subset

Rationale� The data mapping features of the HPF subset are limited to static
mappings� plus the possible remapping of arguments across the interface of subpro�
gram boundaries
 Since the subset language does not include MODULES� and COMMON

block variables cannot be remapped� this restriction only impacts remapping of local
variables and additional remapping of arguments� after the subprogram boundary

The INHERIT directive is no longer included in the subset
 The case where it is most
useful �to describe the template of the full array� when only a section of an array is
passed as an argument� cannot not be declared properly with the former restriction
on use of transcriptive distributions� combined with the fact that processor directives
cannot be used to describe only parts of the processor set

Only the simplest version of FORALL statement is required in the subset
 Note that the
omission of the PURE attribute from the subset means that only HPF and Fortran 	�
intrinsic functions can be called from the FORALL statement
 No other subprograms
can be called

Only the intrinsics which are useful for declaration of variables and mapping inquiries
are included in the subset
 The full set of extended operations proposed for the HPF
library is not required and since MODULE is not part of the subset� the HPF LIBRARY

module is also not part of the subset
 The extrinsic interface attribute is also not in
the subset
 This includes any speci�c extrinsic models such as the model described in
the Annex A

All of these HPF language reductions are made in the spirit of allowing vendors to
produce a usable subset version of HPF quickly so that initial experimentation with
the language can begin
 This list of HPF features excluded from the subset should
not be interpreted as requiring implementors to omit the features from the subset

Implementations with as many HPF features as possible are encouraged
 The list does�
however� establish the features a user should avoid if an HPF application is expected
to be moved between di�erent HPF subset implementations
 �End of rationale��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex A

Coding Local Routines in HPF

and Fortran ��

This annex de�nes a mechanism for coding single�processor �node� code in single�processor
Fortran 	� or in a single�processor subset of HPF� the idea is that only data that is mapped
to a given physical processor is accessible to it
 This allows the programming of MIMD
multiprocessor machines in a single�program multiple�data �SPMD� style
 Implementation�
speci�c libraries may be provided to facilitate communication between the physical proces�
sors that are independently executing this code� but the speci�cation of such libraries is
outside the scope of HPF and outside the scope of this annex

The EXTRINSIC mechanism� which allows an HPF programmer to declare a calling
interface to a non�HPF subprogram� is described in Section � of the HPF speci�cation

From the caller�s standpoint� an invocation of an extrinsic procedure from a �global�
HPF program has the same semantics as an invocation of a regular procedure
 The callee
may see a di�erent picture
 This annex describes a particular set of conventions for coding
callees in the �local� style in which a copy of the subprogram executes on each processor
�of which there may be one or many�

An extrinsic procedure can be de�ned as explicit SPMD code by specifying the local
procedure code that is to execute on each processor
 HPF provides a mechanism for de�ning
local procedures in a subset of HPF that excludes only data mapping directives� which are
not relevant to local code
 If a subprogram de�nition or interface uses the extrinsic�kind�
keyword HPF LOCAL� then an HPF compiler should assume that the subprogram is coded as
a local procedure
 Because local procedures written in HPF are thus syntactically distin�
guished� they may be intermixed unambiguously with global HPF code if the implementor
of an HPF language processor chooses to support such intermixing

This annex is divided into three parts�

�
 The contract between the caller and a callee that is a local procedure� that is� de�ned
as explicit Single Program Multiple Data �SPMD� code

 A speci�c version of this interface for the case where the callee is a local procedure
coded in HPF �extrinsic�kind�keyword HPF LOCAL�
 Such local procedures may be com�
piled separately or included as part of the text of a global HPF program

�
 A speci�c version of this interface for the case where extrinsic procedures are de�ned
as explicit SPMD code with each local procedure coded in Fortran 	� �the extrinsic�
kind�keyword might be� for instance� F�� LOCAL�
 Ideally these local procedures may

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

be separately compiled by a Fortran 	� compiler and then linked with HPF code�
though this depends on implementation details

A�� Conventions for Local Subprograms

All HPF arrays accessible to an extrinsic procedure �arrays passed as arguments� are logi�
cally carved up into pieces� the local procedure executing on a particular physical processor
sees an array containing just those elements of the global array that are mapped to that
physical processor

It is important not to confuse the extrinsic procedure� which is conceptually a single
procedural entity called from the HPF program� with the local procedures� which are exe�
cuted on each node� one apiece
 An invocation of an extrinsic procedure results in a separate
invocation of a local procedure on each processor
 The execution of an extrinsic procedure
consists of the concurrent execution of a local procedure on each executing processor
 Each
local procedure may terminate at any time by executing a RETURN statement
 However� the
extrinsic procedure as a whole terminates only after every local procedure has terminated�
in e�ect� the processors are synchronized before return to a global HPF caller

It is technically feasible to de�ne extrinsic procedures in any other parallel language
that maps to this basic SPMD execution model� or in any sequential language� including
single�processor Fortran 	�� with the understanding that one copy of the sequential code
is executed on each processor
 The extrinsic procedure interface is designed to ease im�
plementation of local procedures in languages other than HPF� however� it is beyond the
scope of the HPF speci�cation or this annex to dictate implementation requirements for
such languages or implementations
 Nevertheless� a suggested way to use Fortran 	� to
de�ne local procedures is discussed in Section A
�

With the exception of returning from a local procedure to the global caller that initiated
local execution� there is no implicit synchronization of the locally executing processors
 A
local procedure may use any control structure whatsoever
 To access data outside the
processor requires either preparatory communication to copy data into the processor before
running the local code� or communication between the separately executing copies of the
local procedure
 Individual implementations may provide implementation�dependent means
for communicating� for example through a message�passing library or a shared�memory
mechanism
 Such communication mechanisms are beyond the scope of this speci�cation

Note� however� that many useful portable algorithms that require only independence of
control structure can take advantage of local routines� without requiring a communication
facility

This model assumes only that array axes are mapped independently to axes of a rectan�
gular processor grid� each array axis to at most one processor axis �no �skew� distributions�
and no two array axes to the same processor axis
 This restriction su�ces to ensure that
each physical processor contains a subset of array elements that can be locally arranged in a
rectangular con�guration
 �Of course� to compute the global indices of an element given its
local indices� or vice versa� may be quite a tangled computation�but it will be possible
�

It is recommended that if� in any given implementation� an interface kind does not
obey the conventions described in the section� then the name of that interface kind should
not end in � LOCAL�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� CONVENTIONS FOR LOCAL SUBPROGRAMS ���

A���� Conventions for Calling Local Subprograms

The default mapping of scalar dummy arguments and of scalar function results is such that
the argument is replicated on each physical processor
 These mappings may� optionally� be
explicit in the interface� but any other explicit mapping is not HPF conforming

As in the case of non�extrinsic subprograms� actual arguments may be mapped in any
way� if necessary� they are copied automatically to correctly mapped temporaries before
invocation of and after return from the extrinsic procedure

A���� Calling Sequence

The actions detailed below have to occur prior to the invocation of the local procedure on
each processor
 These actions are enforced by the compiler of the calling routine� and are
not the responsibility of the programmer� nor do they impact the local procedure
 �The
next section discusses restrictions on the local procedure
�

�
 The processors are synchronized
 In other words� all actions that logically precede the
call are completed

 Each actual argument is remapped� if necessary� according to the directives �explicit
or implicit� in the declared interface for the extrinsic procedure
 Thus� HPF map�
ping directives appearing in the interface are binding�the compiler must obey these
directives in calling local extrinsic procedures
 �The reason for this rule is that data
mapping is explicitly visible in local routines�
 Actual arguments corresponding to
scalar dummy arguments are replicated �by broadcasting� for example� in all proces�
sors

�
 If a variable accessible to the called routine has a replicated representation� then all
copies are updated prior to the call to contain the correct current value according to
the sequential semantics of the source program

After these actions have occurred� the local procedure is invoked on each processor

The information available to the local invocation is described below in Section A
�
�

The following actions must occur before control is transferred back to the caller

�
 All processors are synchronized after the call
 In other words� execution of every copy
of the local routine is completed before execution in the caller is resumed

 The original distribution of arguments �and of the result of an extrinsic function� is
restored� if necessary

Advice to implementors� An implementation might check� before returning from the
local subprogram� to make sure that replicated variables have been updated consis�
tently by the subprogram
 However� there is certainly no requirement�perhaps not
even any encouragement�to do so
 This is merely a tradeo� between speed and� for
instance� debuggability
 �End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

A���� Information Available to the Local Procedure

The local procedure invoked on each processor is passed a local argument for each global
argument passed by the caller to the �global� extrinsic procedure interface
 Each global
argument is a distributed HPF array or a replicated scalar
 The corresponding local argu�
ment is the part of the global array stored locally� or the local copy of a scalar argument

An array actual argument passed by an HPF caller is called a global array� the subgrid of
that global array passed to one copy of a local routine �because it resides in that processor�
is called a local array

If the extrinsic procedure is a function� then the local procedure is also a function
 Each
local invocation of that function will return the local part of the extrinsic function return
value
 If the extrinsic function is scalar�valued then the implicit mapping of the return value
is replicated
 Thus� all local functions must return the same value
 If one desires to return
one� possibly distinct� value per processor� then the extrinsic function must be declared to
return a distributed rank�one array of size NUMBER OF PROCESSORS

The run�time interface should provide enough information that each local function
can discover for each local argument the mapping of the corresponding global argument�
translate global indices to local indices� and vice�versa
 A speci�c set of procedures that
provide this information is listed in Section A

�
 The manner in which this information is
made available to the local routine depends on the implementation and the programming
language used for the local routine

A�� Local Routines Written in HPF

This section provides a speci�c design for providing the required information to local pro�
cedures in the case these procedures are written in HPF

Local procedures may be declared within an HPF program �and be compiled by an
HPF compiler�
 The subroutine�stmt or function�stmt that begins the subprogram must
contain the pre�x EXTRINSIC�HPF LOCAL�

A���� Restrictions

There are some restrictions on what HPF features may be used in writing a local� per�
processor procedure

A local HPF program unit may invoke other local program units or internal procedures�
but it may not invoke an ordinary� �global� HPF routine
 If a global HPF program calls
local subprogram A with an actual array argument X� and A receives a portion of array X as
dummy argument P� then A may call another local subprogram B and pass P or a section of
P as an actual argument to B

A local HPF program unit may not access global HPF data other than data that is
accessible� either directly or indirectly� via the actual arguments
 In particular� a local HPF
program unit does not have access to global HPF COMMON blocks� COMMON blocks appearing
in local HPF program units are not identi�ed with global HPF COMMON blocks
 The same
name may not be used to identify a COMMON block both within a local HPF program unit
and an HPF program unit in the same executable program

Local program units can use all HPF constructs except for DISTRIBUTE� REDISTRIBUTE�
������������������������������

ALIGN� REALIGN� and INHERIT directives

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ���

Local program units can use all HPF constructs except for REDISTRIBUTE and REALIGN

Moreover� DISTRIBUTE� ALIGN� and INHERIT directives may be applied only to dummy
arguments and function results� that is� every alignee and distributeemust be a dummy
argument or function result and every align�targetmust be a template� dummy argument�
or function result
 Mapping directives in local HPF program units are understood to have
global meaning� as if they had appeared in global HPF code� applying the the global array of
which a portion is passed on each processor
 �The principal use of such mapping directives
is in an HPF LOCAL module that is used by a global HPF module
�

The distribution query library subroutines HPF ALIGNMENT� HPF TEMPLATE� and HPF DISTRIBUTION

may be applied to local arrays
 Their outcome is the same as for a global array that happens
to have all its elements on a single node

Scalar dummy arguments must be mapped so that each processor has a copy of the
argument
 This holds true� by convention� if no mapping is speci�ed for the argument in the
interface
 Thus� the constraint disallows only explicit alignment and distribution directives
in an explicit interface that imply that a scalar dummy argument is not replicated on all
processors

An EXTRINSIC�HPF LOCAL� routine may not be RECURSIVE

An EXTRINSIC�HPF LOCAL� routine may not have alternate returns

An EXTRINSIC�HPF LOCAL� routine may not be invoked� either directly or indirectly�
in the body of a FORALL construct or in the body of an INDEPENDENT loop

The attributes �type� kind� rank� optional� intent� of the dummy arguments must match
the attributes of the corresponding dummy arguments in the explicit interface
 A dummy
argument of an EXTRINSIC�HPF LOCAL� routine may not be a procedure name

A dummy argument of an EXTRINSIC�HPF LOCAL� routine may not have the POINTER
attribute

A dummy argument of an EXTRINSIC�HPF LOCAL� routine must be nonsequential

A dummy array argument of an EXTRINSIC�HPF LOCAL� routine must have assumed
shape� even when it is explicit shape in the interface
 Note that� in general� the shape of a
dummy array argument di�ers from the shape of the corresponding actual argument� unless
there is a single executing processor

Explicit mapping directives for dummy arguments and function result variables may
���

not appear in a local procedure� although they may appear �in the case of the result of an
array�valued function� they must appear� in the required explicit interface accessible to the
caller

Explicit mapping directives for dummy arguments and function result variables may
appear in a local procedure
 Such directives are understood as applying to the global array
whose local sections are passed as actual arguments or results on each processor
 If such
directives appear� corresponding mapping directives must be visible to every global HPF
caller
 This may be done by providing an interface block in the caller� or by placing the
local procedure in a module of extrinsic kind HPF LOCAL that is then used by the global
HPF program unit that calls the local procedure

A local procedure may have several ENTRY points
 A global HPF caller must contain a
separate extrinsic interface for each entry point that can be invoked from the HPF program

The behavior of I�O statements in a local procedure is implementation�dependent

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

A���� Argument Association

If a dummy argument of an EXTRINSIC�HPF LOCAL� routine is an array� then the corre�
sponding dummy argument in the speci�cation of the local procedure must be an array of
the same rank� type� and type parameters
 When the extrinsic procedure is invoked� the
local dummy argument is associated with the local array that consists of the subgrid of the
global array that is stored locally
 This local array will be a valid HPF array

If a dummy argument of an EXTRINSIC�HPF LOCAL� routine is a scalar then the cor�
responding dummy argument of the local procedure must be a scalar of the same type

When the extrinsic procedure is invoked then the local procedure is passed an argument
that consists of the local copy of the replicated scalar
 This copy will be a valid HPF scalar

If an EXTRINSIC�HPF LOCAL� routine is a function� then the local procedure is a function
that returns a scalar of the same type and type parameters� or an array of the same rank�
type� and type parameters� as the HPF extrinsic function
 The value returned by each local
invocation is the local part of the value returned by the HPF invocation

Each physical processor has at most one copy of each HPF variable

Consider the following extrinsic interface�

INTERFACE

EXTRINSIC�HPF�LOCAL� FUNCTION MATZOH�X	 Y� RESULT�Z�

REAL	 DIMENSION��	�� �� X

REAL	 DIMENSION�SIZE�X	��� �� Y	 Z

�HPF
 ALIGN WITH X��	�� �� Y���	 Z���

�HPF
 DISTRIBUTE X�BLOCK	 CYCLIC�

END FUNCTION

END INTERFACE

The corresponding local HPF procedure is speci�ed as follows

EXTRINSIC�HPF�LOCAL� FUNCTION MATZOH�XX	 YY� RESULT�ZZ�

REAL	 DIMENSION��	�� �� XX

REAL	 DIMENSION�
 � SIZE�XX	����� �� YY	 ZZ

NX� � SIZE�XX	 ��

LX� � LBOUND�XX	 ��

UX� � UBOUND�XX	 ��

NX� � SIZE�XX	 ��

LX� � LBOUND�XX	 ��

UX� � UBOUND�XX	 ��

NY � SIZE�YY	 ��

LY � LBOUND�YY	 ��

UY � UBOUND�YY	 ��

���

END FUNCTION

Assume that the function is invoked with an actual �global� array X of shape �� � and
an actual vector Y of length � on a ��processor machine� using a
�
 processor arrangement
�assuming one abstract processor per physical processor�

Then each local invocation of the function MATZOH receives the following actual argu�
ments�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ���

Processor ����� Processor ���
�

X��	�� X��	�� X��	��

X��	�� X��	�� X��	��

Y��� Y���

Y��� Y���

Processor �
��� Processor �
�
�

X��	�� X��	�� X��	��

Y��� Y���

Here are the values to which each processor would set NX�� LX�� UX�� NX�� LX�� UX�� NY� LY�
and UY�

Processor ����� Processor ���
�

NX� � LX� � UX� � NX� � LX� � UX� �

NX� � LX� � UX� � NX� � LX� � UX� �

NY � LY
 UY � NY � LY
 UY �

Processor �
��� Processor �
�
�

NX� � LX� � UX� � NX� � LX� � UX� �

NX� � LX� � UX� � NX� � LX� � UX� �

NY � LY
 UY
 NY � LY
 UY

The return array ZZ is distributed identically to YY� Processors ����� and ���
� should
return identical rank one arrays of size
� processors �
��� and �
�
� should return identical
rank one arrays of size �

An actual argument to an extrinsic procedure may be a pointer
 Since the correspond�
ing dummy argument may not have the POINTER attribute� the dummy argument becomes
associated with the target of the HPF global pointer
 In no way may a local pointer become
pointer associated with a global HPF target
 Therefore� an actual argument may not be of
a derived�type containing a pointer component

Rationale� It is expected that global pointer variables will have a di�erent represen�
tation from that of local pointer variables� at least on distributed memory machines�
because of the need to carry additional information for global addressing
 This restric�
tion could be lifted in the future
 �End of rationale��

Other inquiry intrinsics� such as ALLOCATED or PRESENT� should also behave as expected

Note that when a global array is passed to a local routine� some processors may receive an
empty subarray
 Such argument is PRESENT and has SIZE zero

A���� HPF Local Routine Library

Local HPF procedures can use any HPF intrinsic or library procedure

Advice to implementors� The arguments to such procedures will be local arrays

Depending on the implementation� the actual code for the intrinsic and library routines
used by local HPF procedures may or may not be the same code used when called
from global HPF code

�End of advice to implementors��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

In addition� local library procedures GLOBAL ALIGNMENT� GLOBAL DISTRIBUTION� and
GLOBAL TEMPLATE are provided to query the global mapping of an actual argument to an
extrinsic function
 Other local library procedures are provided to query the size� shape�
and array bounds of an actual argument
 These library procedures take as input the name
of a dummy argument and return information on the corresponding global HPF actual
argument
 They may be invoked only by a local procedure that was directly invoked
by global HPF code
 If module facilities are available� they reside in a module called
HPF LOCAL LIBRARY� a local routine that calls them should include the statement

USE HPF�LOCAL�LIBRARY

or some functionally appropriate variant thereof

The local HPF library also provides a new derived type PROCID� to be used for processor

��

identi�ers
 Each physical processor has a distinct identi�er of type PROCID
 It is assumed
that a function is available to �nd the identi�er of each executing processor�the syntax for
calling such a function is beyond the scope of this document

Advice to implementors�

It is likely that in many implementations type PROCID will be e�ectively identical to
type INTEGER

�End of advice to implementors��

The local HPF library identi�es each physical processor by an integer in the range � to
n��� where n is the value returned by the global HPF LIBRARY function NUMBER OF PROCESSORS

Processor identi�ers are returned by ABSTRACT TO PHYSICAL� which establishes the one�to�
one correspondence between the abstract processors of an HPF processors arrangement and
the physical processors
 Also� the local library function MY PROCESSOR returns the identi�er
of the calling processor

A������ Accessing Dummy Arguments by Blocks

The mapping of a global HPF array to the physical processors places one or more blocks�
which are groups of elements with consecutive indices� on each processor
 The number
of blocks mapped to a processor is the product of the number of blocks of consecutive
indices in each dimension that are mapped to it
 For example� a rank�one array X with
a CYCLIC��� distribution will have blocks containing four elements� except for a possible
last block having � ! SIZE�X� mod � elements
 On the other hand� if X is �rst aligned to a
template or an array having a CYCLIC��� distribution� and a non�unit stride is employed �as
is �HPF
 ALIGN X�I� WITH T���I��� then its blocks may have fewer than four elements

In this case� when the align stride is three and the template has a block�cyclic distribution
with four template elements per block� the blocks of X have either one or two elements each

If the align stride were �ve� then all blocks of X would have exactly one element� as template
blocks to which no array element is aligned are not counted in the reckoning of numbers of
blocks

The portion of a global array argument associated with a dummy argument in an
HPF LOCAL subprogram may be accessed in a block�by�block fashion
 Three of the local
library routines� LOCAL BLKCNT� LOCAL LINDEX� and LOCAL UINDEX� allow easy access to the
local storage of a particular block
 Their use for this purpose is illustrated by the following
example� in which the local data are initialized one block at a time�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ��	

EXTRINSIC�HPF�LOCAL� SUBROUTINE NEWKI�DONT�HEBLOCK�X�

REAL X��	�	��

INTEGER BL���

INTEGER	 ALLOCATABLE LIND����	 LIND����	 LIND����

INTEGER	 ALLOCATABLE UIND����	 UIND����	 UIND����

BL � LOCAL�BLKCNT�X�

ALLOCATE LIND��BL����

ALLOCATE LIND��BL����

ALLOCATE LIND��BL����

ALLOCATE UIND��BL����

ALLOCATE UIND��BL����

ALLOCATE UIND��BL����

LIND� � LOCAL�LINDEX�X	 DIM � ��

UIND� � LOCAL�UINDEX�X	 DIM � ��

LIND� � LOCAL�LINDEX�X	 DIM � ��

UIND� � LOCAL�UINDEX�X	 DIM � ��

LIND� � LOCAL�LINDEX�X	 DIM � ��

UIND� � LOCAL�UINDEX�X	 DIM � ��

DO IB� � �	 BL���

DO IB� � �	 BL���

DO IB� � �	 BL���

FORALL �I� � LIND��IB�� � UIND��IB��	 �

I� � LIND��IB�� � UIND��IB��	 �

I� � LIND��IB�� � UIND��IB�� � �

X�I�	 I�	 I�� � IB� � ���IB� � ����IB�

ENDDO

ENDDO

ENDDO

END SUBROUTINE NEWKI�DONT�HEBLOCK

A������ GLOBAL ALIGNMENT�ARRAY� ����

This has the same interface and behavior as the HPF inquiry subroutine HPF ALIGNMENT�
but it returns information about the global HPF array actual argument associated with the
local dummy argument ARRAY� rather than returning information about the local array

A������ GLOBAL DISTRIBUTION�ARRAY� ����

This has the same interface and behavior as the HPF inquiry subroutine HPF DISTRIBUTION�
but it returns information about the global HPF array actual argument associated with the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

local dummy argument ARRAY� rather than returning information about the local array

A������ GLOBAL TEMPLATE�ARRAY� ����

This has the same interface and behavior as the HPF inquiry subroutine HPF TEMPLATE�
but it returns information about the global HPF array actual argument associated with the
local dummy argument ARRAY� rather than returning information about the local array

A������ GLOBAL LBOUND�ARRAY� DIM�

Optional argument� DIM

Description� Returns all the lower bounds or a speci�ed lower bound of the actual
HPF global array argument associated with an HPF LOCAL dummy array argu�
ment

Class� Inquiry function

Arguments�

ARRAY may be of any type
 It must not be a scalar
 It must be
a dummy array argument of an HPF LOCAL procedure
which is argument associated with a global HPF array
actual argument

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter and Shape� The result is of type default integer

It is scalar if DIM is present� otherwise the result is an array of rank one and size n�
where n is the rank of ARRAY

Result Value�

Case �i�� If the actual argument associated with the actual argument associated
with ARRAY is an array section or an array expression� other than a whole
array or an array structure component� GLOBAL LBOUND�ARRAY	 DIM� has
the value �� otherwise it has a value equal to the lower bound for sub�
script DIM of the actual argument associated with the actual argument
associated with ARRAY

Case �ii�� GLOBAL LBOUND�ARRAY� has a value whose ith component is equal to
GLOBAL LBOUND�ARRAY	 i�� for i ��
� � � �n where n is the rank of ARRAY

Examples� Assuming A is declared by the statement

INTEGER A������	 ����

and is argument associated with B� the value of GLOBAL LBOUND�B� is
h
� �

i

 If B is

argument associated with the section� A�
���	 ���� the value of GLOBAL LBOUND�B	 ��

is �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ���

A�����	 GLOBAL SHAPE�SOURCE�

Description� Returns the shape of the global HPF actual argument associated with
an array or scalar dummy argument of an HPF LOCAL procedure

Class� Inquiry function

Argument�

SOURCE may be of any type
 It may be array valued or a scalar
 It must be
a dummy argument of an HPF LOCAL procedure which is argument
associated with a global HPF actual argument

Result Type� Type Parameter and Shape� The result is a default integer array
of rank one whose size is equal to the rank of SOURCE

Result Value� The value of the result is the shape of the global actual argument
associated with the actual argument associated with SOURCE

Examples� Assuming A is declared by the statement

INTEGER A������	 ����

and is argument associated with B� the value of GLOBAL SHAPE�B� is
h
�� ���

i

 If B

is argument associated with the section� A�
���	 ���� the value of GLOBAL SHAPE�B�

is
h
�
i

A������ GLOBAL SIZE�ARRAY� DIM�

Optional argument� DIM

Description� Returns the extent along a speci�ed dimension of the global HPF
actual array argument associated with a dummy array argument of an HPF LOCAL
procedure

Class� Inquiry function

Argument�

ARRAY may be of any type
 It must not be a scalar
 It must be a dummy
argument of an HPF LOCAL procedure which is argument associated
with a global HPF actual argument

DIM �optional� must be scalar and of type integer with a value in the range � �
DIM � n� where n is the rank of ARRAY

Result Type� Type Parameter and Shape� Default integer scalar

Result Value� The result has a value equal to the extent of dimension DIM of the
actual argument associated with the actual argument associated with ARRAY or� if
DIM is absent� the total number of elements in the actual argument associated with
the actual argument associated with ARRAY

Examples� Assuming A is declared by the statement

INTEGER A�����	 ���

and is argument associated with B� the value of GLOBAL SIZE�B	 �� is �
 If B is
argument associated with the section� A�
���	 ����� the value of GLOBAL SIZE�B�

is ��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

A�����
 GLOBAL UBOUND�ARRAY� DIM�

Optional argument� DIM

Description� Returns all the upper bounds or a speci�ed upper bound of the
actual HPF global array argument associated with an HPF LOCAL dummy array
argument

Class� Inquiry function

Arguments�

ARRAY may be of any type
 It must not be a scalar
 It must be
a dummy array argument of an HPF LOCAL procedure
which is argument associated with a global HPF array
actual argument

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

Result Type� Type Parameter and Shape� The result is of type default integer

It is scalar if DIM is present� otherwise the result is an array of rank one and size n�
where n is the rank of ARRAY

Result Value�

Case �i�� If the actual argument associated with the actual argument associated
with ARRAY is an array section or an array expression� other than a whole
array or an array structure component� GLOBAL UBOUND�ARRAY	 DIM� has
a value equal to the number of elements in the given dimension� otherwise
it has a value equal to the upper bound for subscript DIM of the actual
argument associated with the actual argument associated with ARRAY� if
dimension DIM does not have size zero and has the value zero if dimension
DIM has size zero

Case �ii�� GLOBAL UBOUND�ARRAY� has a value whose ith component is equal to
GLOBAL UBOUND�ARRAY	 i�� for i ��
� � � �n where n is the rank of ARRAY

Examples� Assuming A is declared by the statement

INTEGER A������	 ����

and is argument associated with B� the value of GLOBAL UBOUND�B� is
h
��� ���

i

 If

B is argument associated with the section� A�
���	 ������ the value of GLOBAL UBOUND�B	 ��

is �

A������ ABSTRACT TO PHYSICAL�ARRAY� INDEX� PROC�

Description� Returns processor identi�cation for the physical processor associated
with a speci�ed abstract processor relative to a global actual argument array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ���

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN� argument

INDEX must be a rank�� integer array containing the coordinates
of an abstract processor in the processors arrangement
onto which the global HPF array is mapped
 It is an
INTENT�IN� argument
 The size of INDEX must equal the
rank of the processors arrangement

PROC must be scalar and of type integer
 It is an INTENT�OUT�

argument
 It receives the identifying value for the physi�
cal processor associated with the abstract processor spec�
i�ed by INDEX

A������� PHYSICAL TO ABSTRACT�ARRAY� PROC� INDEX�

Description� Returns coordinates for an abstract processor� relative to a global
actual argument array� corresponding to a speci�ed physical processor

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN� argument

PROC must be scalar and of type default integer
 It is an
INTENT�IN� argument
 It contains an identifying value
for a physical processor

INDEX must be a rank�� integer array
 It is an INTENT�OUT� ar�
gument
 The size of INDEX must equal the rank of the
processor arrangement onto which the global HPF array
is mapped
 INDEX receives the coordinates within this
processors arrangement of the abstract processor associ�
ated with the physical processor speci�ed by PROC

This procedure can be used only on systems where there is a one�to�one correspondence
between abstract processors and physical processors
 On systems where this correspondence
is one�to�many an equivalent� system�dependent procedure should be provided

A������� LOCAL TO GLOBAL�ARRAY� L INDEX� G INDEX�

Description� Converts a set of local coordinates within a local dummy array to an
equivalent set of global coordinates within the associated global HPF actual argument
array

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN� argument

L INDEX must be a rank�� integer array whose size is equal to the
rank of ARRAY
 It is an INTENT�IN� argument
 It contains
the coordinates of an element within the local dummy
array ARRAY

G INDEX must be a rank�� integer array whose size is equal to the
rank of ARRAY
 It is an INTENT�OUT� argument
 It receives
the coordinates within the global HPF array actual argu�
ment of the element identi�ed within the local array by
L INDEX

A������� GLOBAL TO LOCAL�ARRAY� G INDEX� L INDEX� LOCAL� NCOPIES� PROCS�

Optional arguments� L INDEX� LOCAL� NCOPIES� PROCS

Description� Converts a set of global coordinates within a global HPF actual
argument array to an equivalent set of local coordinates within the associated local
dummy array

Class� Subroutine

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument
 It
is an INTENT�IN� argument

G INDEX must be a rank�� integer array whose size is equal to the
rank of ARRAY
 It is an INTENT�IN� argument
 It contains
the coordinates of an element within the global HPF ar�
ray actual argument associated with the local dummy
array ARRAY

L INDEX �optional� must be a rank�� integer array whose size is equal to
the rank of ARRAY
 It is an INTENT�OUT� argument
 It
receives the coordinates within a local dummy array of
the element identi�ed within the global actual argument
array by G INDEX
 �These coordinates are identical on any
processor that holds a copy of the identi�ed global array
element
�

However� the values in L INDEX are unde�ned if the value
�������������������������������

returned �or that would be returned� in LOCAL is false

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ���

LOCAL �optional� must be scalar and of type LOGICAL
 It is an INTENT�OUT�
argument
 It is set to �TRUE� if the local array contains
a copy of the global array element and to �FALSE� oth�
erwise

NCOPIES �optional� must be scalar and of type integer
 It is an INTENT�OUT�

argument
 It is set to the number of processors that hold
a copy of the identi�ed element of the global actual array

PROCS �optional� must be a rank�� integer array whose size is at least the
number of processors that hold copies of the identi�ed
element of the global actual array
 The identifying num�
bers of those processors are placed in PROCS
 The order
in which they appear is implementation dependent

A���� MY PROCESSOR��

Description� Returns the identifying number of the calling physical processor

Class� Pure function

Result Type� Type Parameter� and Shape� The result is scalar and of type
default integer

Result Value� Returns the identifying number of the physical processor from which
the call is made
 This value is in the range � � MY PROCESSOR � n � � where n is
the value returned by NUMBER OF PROCESSORS

A���� LOCAL BLKCNT�ARRAY� DIM� PROC�

Optional arguments� DIM� PROC

Description� Returns the number of blocks of elements in each dimension� or of a
speci�c dimension of the array on a given processor

Class� Pure function

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument

DIM �optional� must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY
 The
corresponding actual argument must not be an optional
dummy argument

PROC �optional� must be scalar and of type integer
 It must be a valid
processor number

Result Type� Type Parameter� and Shape� The result is of type default integer

It is scalar if DIM is present� otherwise the result is an array of rank one and size n�
where n is the rank of ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

Result Value�

Case �i�� The value of LOCAL BLKCNT�ARRAY	 DIM	 PROC� is the number of blocks
of the ultimate align target of ARRAY in dimension DIM that are mapped
to processor PROC and which have at least one element of ARRAY aligned
to them

Case �ii�� LOCAL BLKCNT�ARRAY	 DIM� returns the same value as LOCAL BLKCNT�ARRAY	

DIM	 PROC�MY PROCESSOR���

Case �iii�� LOCAL BLKCNT�ARRAY� has a value whose ith component is equal to
LOCAL BLKCNT�ARRAY	 i�� for i �� � � � � n� where n is the rank of ARRAY

Examples� Given the declarations

REAL A���	���	 B����

�HPF
 TEMPLATE T����	����

�HPF
 ALIGN B�J� WITH A��	J�

�HPF
 ALIGN A�I	J� WITH T���I	 ��J�

�HPF
 PROCESSORS PR�
	
�

�HPF
 DISTRIBUTE T�CYCLIC���	 CYCLIC���� ONTO PR

�HPF
 CALL LOCAL�COMPUTE�A	 B�

���

���

���

EXTRINSIC�HPF�LOCAL� SUBROUTINE LOCAL�COMPUTE�X	 Y�

USE HPF�LOCAL�LIBRARY

REAL X��	��	 Y���

INTEGER NBY���	 NBX���

NBX � LOCAL�BLKCNT�X�

NBY � LOCAL�BLKCNT�Y�

the values returned on the physical processor corresponding to PR��	�� in NBX is
h
� �

i
and in NBY is

h
�
i

A���	 LOCAL LINDEX�ARRAY� DIM� PROC�

Optional argument� PROC

Description� Returns the lowest local index of all blocks of an array dummy argu�
ment in a given dimension on a processor

Class� Pure function

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument

DIM must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A��� LOCAL ROUTINES WRITTEN IN HPF ���

PROC �optional� must be scalar and of type integer
 It must be a valid
processor number

Result Type� Type Parameter� and Shape� The result is a rank�one array of
type default integer and size b� where b is the value returned by LOCAL BLKCNT�ARRAY	

DIM �	 PROC��

Result Value�

Case �i�� The value of LOCAL LINDEX�ARRAY	 DIM	 PROC� has a value whose ith
component is the local index of the �rst element of the ith block in di�
mension DIM of ARRAY on processor PROC

Case �ii�� LOCAL LINDEX�ARRAY	 DIM� returns the same value as LOCAL LINDEX�ARRAY	

DIM	 PROC�MY PROCESSOR���

Examples� With the same declarations as in the example under LOCAL BLKCNT� on
the physical processor corresponding to PR��	�� the value returned by LOCAL LINDEX�X	

DIM��� is
h
� � � �

i
� the value of LOCAL LINDEX�X	 DIM��� is

h
� � �

i

A���� LOCAL UINDEX�ARRAY� DIM� PROC�

Optional argument� PROC

Description� Returns the highest local index of all blocks of an array dummy
argument in a given dimension on a processor

Class� Pure function

Arguments�

ARRAY may be of any type� it must be a dummy array that is
associated with a global HPF array actual argument

DIM must be scalar and of type integer with a value in the
range � � DIM � n� where n is the rank of ARRAY

PROC �optional� must be scalar and of type integer
 It must be a valid
processor number

Result Type� Type Parameter� and Shape� The result is a rank�one array of
type default integer and size b� where b is the value returned by LOCAL BLKCNT�ARRAY	

DIM �	 PROC��

Result Value�

Case �i�� The value of LOCAL UINDEX�ARRAY	 DIM	 PROC� has a value whose ith
component is the local index of the last element of the ith block in di�
mension DIM of ARRAY on processor PROC

Case �ii�� LOCAL UINDEX�ARRAY	 DIM� returns the same value as LOCAL UINDEX�ARRAY	

DIM	 PROC�MY PROCESSOR���

Examples� With the same declarations as in the example under LOCAL BLKCNT� on
the physical processor corresponding to PR��	�� the value returned by LOCAL UINDEX�X	

DIM��� is
h
� � � �

i
� the value of LOCAL UINDEX�X	 DIM��� is

h
� � �

i

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

A�� Local Routines Written in Fortran ��

The suggested interface to local SPMD routines written in Fortran 	� is the same as that
for HPF local routines� with these few exceptions�

� Only Fortran 	� constructs should be used� it may not be possible to use extensions
peculiar to HPF such as FORALL and the HPF library routines

� It is recommended that Fortran 	� language processors to be used for this purpose
be extended to support the HPF local distribution query routines GLOBAL ALIGNMENT�
GLOBAL TEMPLATE� and GLOBAL DISTRIBUTION as described in Section A

�
 It is
also recommended that these facilities be de�ned in a Fortran 	� module named
HPF LOCAL LIBRARY

� Assuming that the intent is to compile such routines with a non�HPF Fortran 	� com�
piler� the Fortran 	� program text should be in separate �les rather than incorporated
into HPF source code

� The suggested extrinsic kind keyword for this calling interface is F�� LOCAL

The restrictions listed in Section A

� ought to apply as well to local routines written
in Fortran 	�

A���� Argument Association

If a dummy argument in the HPF explicit extrinsic interface is an array� then the corre�
sponding dummy argument in the speci�cation of the local procedure must be an array of
the same rank� type� and type parameters
 When the extrinsic procedure is invoked� the
local dummy argument is associated with the local array that consists of the subgrid of the
global array that is stored locally
 This local array will be a valid Fortran 	� array

If a dummy argument in the HPF explicit extrinsic interface is a scalar then the cor�
responding dummy argument of the local procedure must be a scalar of the same type

When the extrinsic procedure is invoked then the local procedure is passed an argument
that consists of the local copy of the replicated scalar
 This copy will be a valid Fortran 	�
scalar

If an HPF explicit extrinsic interface de�nes a function� then the local procedure should
be a Fortran 	� function that returns a scalar of the same type and type parameters� or
an array of the same rank� type� and type parameters� as the HPF extrinsic function
 The
value returned by each local invocation is the local part of the value returned by the HPF
invocation

A�� Example HPF Extrinsic Procedures

The �rst example shows an INTERFACE block� call� and subroutine de�nition for matrix
multiplication�

� The NEWMATMULT routine computes C�A�B� A copy of row A�I	�� and

� column B��	J� is broadcast to the processor that computes C�I	J�

� before the call to NEWMATMULT�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

A�	� EXAMPLE HPF EXTRINSIC PROCEDURES ��	

INTERFACE

EXTRINSIC�HPF�LOCAL� SUBROUTINE NEWMATMULT�A	 B	 C�

REAL	 DIMENSION��	��	 INTENT�IN� �� A	 B

REAL	 DIMENSION��	��	 INTENT�OUT� �� C

�HPF
 ALIGN A�I	J� WITH �C�I	��

�HPF
 ALIGN B�I	J� WITH �C��	J�

END SUBROUTINE NEWMATMULT

END INTERFACE

���

CALL NEWMATMULT�A	B	C�

���

� The Local Subroutine Definition�

� Each processor is passed � arrays of rank �� Assume that the

� global HPF arrays A	B and C have dimensions LxM	 MxN and LxN	

� respectively� The local array CC is �a copy of� a rectangular

� subarray of C� Let I�	I�	���	Ir and J�	J�	���	Js be	

� respectively	 the row and column indices of this subarray at a

� processor� Then AA is �a copy of� the subarray of A with row

� indices I�	���	Ir and column indices �	���	M� and BB is �a copy

� of� the subarray of B with row indices �	���	M and column

� indices J�	���	Js� C may be replicated	 in which case copies

� of C�I	J� will be consistently updated at various processors�

EXTRINSIC�HPF�LOCAL� SUBROUTINE NEWMATMULT�AA	 BB	 CC�

REAL	 DIMENSION��	��	 INTENT�IN� �� AA	 BB

REAL	 DIMENSION��	��	 INTENT�OUT� �� CC

�HPF
 ALIGN AA�I	J� WITH �CC�I	��

�HPF
 ALIGN BB�I	J� WITH �CC��	J�

INTEGER I	J

� loop uses local indices

DO I � LBOUND�CC	��	 UBOUND�CC	��

DO J � LBOUND�CC	��	 UBOUND�CC	��

CC�I	J� � DOT�PRODUCT�AA�I	��	 BB��	J��

END DO

END DO

RETURN

END

The second example shows an INTERFACE block� call� and subroutine de�nition for sum
reduction�

� The SREDUCE routine computes at each processor the sum of

� the local elements of an array of rank �� It returns an

� array that consists of one sum per processor� The sum

� reduction is completed by reducing this array of partial

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX A� CODING LOCAL ROUTINES IN HPF AND FORTRAN �

� sums� The function fails if the array is replicated�

� �Replicated arrays could be handled by a more complicated code��

INTERFACE

EXTRINSIC�HPF�LOCAL� FUNCTION SREDUCE�A� RESULT�R�

REAL	 DIMENSION�NUMBER�OF�PROCESSORS��� �� R

�HPF
 DISTRIBUTE �BLOCK� �� R

REAL	 DIMENSION���	 INTENT�IN� �� A

END FUNCTION SREDUCE

END INTERFACE

���

TOTAL � SUM�SREDUCE�A��

���

� The Local Subroutine Definition

EXTRINSIC�HPF�LOCAL� FUNCTION SREDUCE�AA� RESULT�R�

REAL	 DIMENSION��� �� R

�HPF
 DISTRIBUTE �BLOCK� �� R

REAL	 DIMENSION���	 INTENT�IN� �� AA

INTEGER COPIES

CALL GLOBAL�ALIGNMENT�AA	 NUMBER�OF�COPIES � COPIES�

IF �COPIES �� CALL ERROR�� � array is replicated

� Additional code to check that template is not replicated

���

� Array is not replicated �� compute local sum

R��� � SUM�AA�

RETURN

END

The DISTRIBUTE directive in the local function SREDUCE speci�es that the global actual
argument is to have block distribution� the subarray seen on any particular processor during
local execution will of course reside entirely within that processor

Instead of including the interface block in the caller� one could also enclose the de�nition
of SREDUCE in a module called� say� REDUCTION� and then replace the interface block with
the statement

USE REDUCTION

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex B

Coding Single Processor Routines

in HPF

This annex de�nes a set of conventions for writing code in which an instance of a subprogram
executes on only one processor �of which there may be more than one�

If a program unit has extrinsic kind HPF SERIAL� an HPF compiler should assume that
the subprogram is coded to be executed on a single processor
 From the point of view of a
global HPF caller� the HPF SERIAL procedure behaves the same as an identically coded HPF
procedure would
 Di�erences might only arise in implementation�speci�c behavior �such as
the performance�

The EXTRINSIC mechanism� which allows an HPF programmer to declare a calling
interface to a non�HPF subprogram� is described in Section � of the HPF speci�cation

B�� Conventions for Uniprocessor Subprograms

The rules stated in section ��
� of the Fortran 	� standard will apply to variables de�ned
in HPF SERIAL scoping units
 In particular� if the de�nition status� association status� or
allocation status of a variable is de�ned upon execution of a RETURN statement or an END

statement in a Fortran 	� subprogram� such a variable in an HPF SERIAL subprogram will
be de�ned upon execution of a RETURN statement or an END statement

As is the case with HPF LOCAL� any I�O performed within an HPF SERIAL subprogram�
and the correspondence of �le names and unit numbers used to those used in global HPF
and HPF LOCAL code will be implementation�de�ned

B���� Calling Sequence

Prior to invocation of an HPF SERIAL procedure from global HPF� the behavior of the
program will be as if the following actions take place�

�
 The processors are synchronized
 All actions that logically precede the call are com�
pleted

 All actual arguments are remapped to the processor that will actually execute the
HPF SERIAL procedure
 The argument will appear to the HPF SERIAL procedure as a
sequential argument

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��
 ANNEX B� CODING SINGLE PROCESSOR ROUTINES IN HPF

The behavior of the HPF SERIAL procedure will be as if it was executed on only one
processor
 After the instance of the HPF SERIAL procedure invoked from global HPF has
completed� the behavior will be as if the following happen�

�
 All processors are synchronized after the call

 The original mappings of actual arguments are restored

B�� Serial Routines Written in HPF

A subprogram may be de�ned to be of extrinsic kind HPF SERIAL �and be compiled by an
HPF compiler�
 The subroutine�stmt or function�stmt that begins the subprogram must
contain the pre�x EXTRINSIC�HPF SERIAL�

B���� Restrictions

There are restrictions that apply to an HPF SERIAL subprogram

No speci�cation�directive� realign�directive� or redistribute�directive is permitted to be
appear in an HPF SERIAL subprogram or interface body

Rationale� An HPF mapping directive would likely be meaningless in an HPF SERIAL

subprogram
 Note� however� that the independent�directivemay appear in an HPF SERIAL

subprogram� since it may provide meaningful information to a compiler about a DO

loop or a FORALL statement or construct
 �End of rationale��

Any dummy data objects and any function result variables of an HPF SERIAL procedure
will be considered to be sequential

An HPF SERIAL subprogram must not contain a de�nition of a common block that has
the same name as a common block de�ned in an HPF or HPF LOCAL program unit
 In
addition� an HPF SERIAL subprogram must not contain a de�nition of the blank common
block if an HPF or HPF LOCAL program unit has a de�nition of the blank common block

A dummy argument or function result variable of an HPF SERIAL procedure that is
referenced in global HPF must not have the POINTER attribute
 A subobject of a dummy
argument or function result of an HPF SERIAL procedure that is referenced in global HPF�
must not have the POINTER attribute

A dummy argument of an HPF SERIAL procedure that is referenced in global HPF and
any subobject of such a dummy argument must not have the TARGET attribute

A dummy procedure argument of an HPF SERIAL procedure must be an HPF SERIAL

procedure

An HPF SERIAL procedure referenced in global HPF must have an accessible explicit
interface

An HPF SERIAL subprogram must not contain a reference to a procedure that has
extrinsic�kind HPF or HPF LOCAL

A reference to an HPF SERIAL procedure must not appear in an HPF LOCAL unit

There is currently no manner in which to specify which processor is to execute an
HPF SERIAL procedure

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

B��� INTRINSIC AND LIBRARY PROCEDURES ���

B�� Intrinsic and Library Procedures

An HPF SERIAL subprogrammay contain references to any HPF intrinsic function or HPF LIBRARY

procedure� except HPF ALIGNMENT� HPF DISTRIBUTION or HPF TEMPLATE
 The HPF LOCAL LIBRARY

module must not be used within an HPF SERIAL scope

References to the intrinsic functions NUMBER OF PROCESSORS and PROCESSORS SHAPE

will return the same value as if the function reference appeared in global HPF

B�� Example HPF SERIAL Extrinsic Procedure

PROGRAM MY�TEST

INTERFACE

EXTRINSIC�HPF�SERIAL� SUBROUTINE GRAPH�DISPLAY�DATA�

INTEGER	 INTENT�IN� �� DATA��	 ��

END SUBROUTINE GRAPH�DISPLAY

END INTERFACE

INTEGER	 PARAMETER �� X�SIZE � ����	 Y�SIZE � ����

INTEGER DATA�ARRAY�X�SIZE	 Y�SIZE�

�HPF
 DISTRIBUTE DATA�ARRAY�BLOCK	 BLOCK�

� Compute DATA�ARRAY

���

CALL DISPLAY�DATA�DATA�ARRAY�

END PROGRAM MY�TEST

� The definition of a graphical display subroutine� In some implementation�

� dependent fashion	 this will plot a graph of the data in DATA�

EXTRINSIC�HPF�SERIAL� SUBROUTINE GRAPH�DISPLAY�DATA�

INTEGER	 INTENT�IN� �� DATA��	 ��

INTEGER �� X�IDX	 Y�IDX

DO Y�IDX � LBOUND�DATA	 ��	 UBOUND�DATA	 ��

DO X�IDX � LBOUND�DATA	 ��	 UBOUND�DATA	 ��

���

END DO

END DO

END SUBROUTINE GRAPH�DISPLAY

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX B� CODING SINGLE PROCESSOR ROUTINES IN HPF

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex C

Syntax Rules

C�� High Performance Fortran Terms and Concepts

C���� Syntax of Directives

H
�� hpf�directive�line is directive�origin hpf�directive

H
�
 directive�origin is �HPF

or CHPF

or �HPF

H
�� hpf�directive is specification�directive
or executable�directive

H
�� specification�directive is processors�directive
or align�directive
or distribute�directive
or dynamic�directive
or inherit�directive
or template�directive
or combined�directive
or sequence�directive

H
�� executable�directive is realign�directive
or redistribute�directive
or independent�directive

Constraint� An hpf�directive�line cannot be commentary following another statement on
the same line

Constraint� A speci�cation�directive may appear only where a declaration�construct may
appear

Constraint� An executable�directive may appear only where an executable�construct may
appear

Constraint� An hpf�directive�line follows the rules of either Fortran 	� free form ��
�
�
��
or �xed form ��
�

�� comment lines� depending on the source form of the
surrounding Fortran 	� source form in that program unit
 ��
��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX C� SYNTAX RULES

C�� Data Alignment and Distribution Directives

C���� Syntax of Data Alignment and Distribution Directives

H��� combined�directive is combined�attribute�list �� entity�decl�list

H��
 combined�attribute is ALIGN align�attribute�stuff
or DISTRIBUTE dist�attribute�stuff
or DYNAMIC

or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION � explicit�shape�spec�list �

Constraint� The same combined�attribute must not appear more than once in a given
combined�directive

Constraint� If the DIMENSION attribute appears in a combined�directive� any entity to which
it applies must be declared with the HPF TEMPLATE or PROCESSORS type spec�
i�er

C���� DISTRIBUTE and REDISTRIBUTE Directives

H��� distribute�directive is DISTRIBUTE distributee dist�directive�stuff

H��� redistribute�directive is REDISTRIBUTE distributee dist�directive�stuff
or REDISTRIBUTE dist�attribute�stuff �� distributee�list

H��� dist�directive�stuff is dist�format�clause � dist�onto�clause �

H��� dist�attribute�stuff is dist�directive�stuff
or dist�onto�clause

H��� distributee is object�name
or template�name

H��� dist�format�clause is � dist�format�list �

or � � dist�format�list �

or �

H��	 dist�format is BLOCK � � int�expr � �
or CYCLIC � � int�expr � �
or �

H��� dist�onto�clause is ONTO dist�target

H��� dist�target is processors�name
or � processors�name
or �

Constraint� An object�name mentioned as a distributee must be a simple name and not a
subobject designator

Constraint� An object�name mentioned as a distributee may not appear as an alignee

Constraint� An object�namementioned as a distributeemay not have the POINTER attribute

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

C��� DATA ALIGNMENT AND DISTRIBUTION DIRECTIVES ���

Constraint� A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC
attribute �see Section �
��

Constraint� If a dist�format�list is speci�ed� its length must equal the rank of each distribu�
tee

Constraint� If both a dist�format�list and a processors�name appear� the number of elements
of the dist�format�list that are not ��� must equal the rank of the named
processor arrangement

Constraint� If a processors�name appears but not a dist�format�list� the rank of each dis�
tributee must equal the rank of the named processor arrangement

Constraint� If either the dist�format�clause or the dist�target in a DISTRIBUTE directive
begins with ��� then every distributee must be a dummy argument

Constraint� Neither the dist�format�clause nor the dist�target in a REDISTRIBUTEmay begin
with ���

Constraint� Any int�expr appearing in a dist�format of a DISTRIBUTE directive must be a
speci�cation�expr

C���� ALIGN and REALIGN Directives

H��
 align�directive is ALIGN alignee align�directive�stuff

H��� realign�directive is REALIGN alignee align�directive�stuff
or REALIGN align�attribute�stuff �� alignee�list

H��� align�directive�stuff is � align�source�list � align�with�clause

H��� align�attribute�stuff is � � align�source�list � � align�with�clause

H��� alignee is object�name

H��� align�source is �

or �

or align�dummy

H��� align�dummy is scalar�int�variable

Constraint� An object�name mentioned as an alignee must be a simple name and not a
subobject designator

Constraint� An object�name mentioned as an alignee may not appear as a distributee

Constraint� An object�name mentioned as an alignee may not have the POINTER attribute

Constraint� Any alignee that appears in a REALIGN directive must have the DYNAMIC at�
tribute �see Section �
��

Constraint� If the align�target speci�ed in the align�with�clause has the DYNAMIC

attribute� then each alignee must also have the DYNAMIC attribute

Constraint� If the alignee is scalar� the align�source�list �and its surrounding parentheses�
must not appear
 In this case the statement form of the directive is not allowed

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� ANNEX C� SYNTAX RULES

Constraint� If the align�source�list is present� its length must equal the rank of the alignee

Constraint� An align�dummy must be a named variable

Constraint� An object may not have both the INHERIT attribute and the ALIGN attribute

�However� an object with the INHERIT attribute may appear as an alignee in
a REALIGN directive� provided that it does not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive
�

H��	 align�with�clause is WITH align�spec

H�
� align�spec is align�target � � align�subscript�list � �
or � align�target � � align�subscript�list � �

H�
� align�target is object�name
or template�name

H�

 align�subscript is int�expr
or align�subscript�use
or subscript�triplet
or �

H�
� align�subscript�use is � � int�level�two�expr � add�op � align�add�operand
or align�subscript�use add�op int�add�operand

H�
� align�add�operand is � int�add�operand � � align�primary
or align�add�operand � int�mult�operand

H�
� align�primary is align�dummy
or � align�subscript�use �

H�
� int�add�operand is add�operand

H�
� int�mult�operand is mult�operand

H�
� int�level�two�expr is level���expr

Constraint� An object�name mentioned as an align�target must be a simple name and not
a subobject designator

Constraint� An align�target may not have the OPTIONAL attribute

Constraint� If the align�spec in an ALIGN directive begins with ��� then every alignee must
be a dummy argument

Constraint� The align�spec in a REALIGN may not begin with ���

Constraint� Each align�dummy may appear at most once in an align�subscript�list

Constraint� An align�subscript�use expression may contain at most one occurrence of an
align�dummy

Constraint� An align�dummy may not appear anywhere in the align�spec except where
explicitly permitted to appear by virtue of the grammar shown above
 Para�
phrased� one may construct an align�subscript�use by starting with an align�
dummy and then doing additive and multiplicative things to it with any integer
expressions that contain no align�dummy

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

C�	� DATA PARALLEL STATEMENTS AND DIRECTIVES ��	

Constraint� A subscript in an align�subscript may not contain occurrences of any align�
dummy

Constraint� An int�add�operand� int�mult�operand� or int�level�two�expr must be of type
integer

C���� DYNAMIC Directive

H�
	 dynamic�directive is DYNAMIC alignee�or�distributee�list

H��� alignee�or�distributee is alignee
or distributee

Constraint� An object in COMMON may not be declared DYNAMIC and may not be aligned to
an object �or template� that is DYNAMIC
 �To get this kind of e�ect� Fortran 	�
modules must be used instead of COMMON blocks
�

Constraint� An object with the SAVE attribute may not be declared DYNAMIC and may not
be aligned to an object �or template� that is DYNAMIC

C���� PROCESSORS Directive

H��� processors�directive is PROCESSORS processors�decl�list

H��
 processors�decl is processors�name � � explicit�shape�spec�list � �

H��� processors�name is object�name

C���
 TEMPLATE Directive

H��� template�directive is TEMPLATE template�decl�list

H��� template�decl is template�name � � explicit�shape�spec�list � �

H��� template�name is object�name

C���� INHERIT Directive

H��� inherit�directive is INHERIT dummy�argument�name�list

C�� Data Parallel Statements and Directives

C���� The FORALL Statement

H��� forall�stmt is FORALL forall�header forall�assignment

H��
 forall�header is � forall�triplet�spec�list � 	 scalar�mask�expr � �

Constraint� Any procedure referenced in the scalar�mask�expr of a forall�header must be
pure� as de�ned in Section �
�

H��� forall�triplet�spec is index�name � subscript � subscript � � stride �

Constraint� index�name must be a scalar integer variable

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� ANNEX C� SYNTAX RULES

Constraint� A subscript or stride in a forall�triplet�spec�list must not contain a reference to
any index�name in the forall�triplet�spec�list in which it appears

H��� forall�assignment is assignment�stmt
or pointer�assignment�stmt

Constraint� Any procedure referenced in a forall�assignment � including one referenced by
a de�ned operation or assignment� must be pure as de�ned in Section �
�

C���� The FORALL Construct

H��� forall�construct is FORALL forall�header
forall�body�stmt
� forall�body�stmt � ���
END FORALL

H��� forall�body�stmt is forall�assignment
or where�stmt
or where�construct
or forall�stmt
or forall�construct

Constraint� Any procedure referenced in a forall�body�stmt � including one referenced by a
de�ned operation or assignment� must be pure as de�ned in Section �
�

Constraint� If a forall�stmt or forall�construct is nested in a forall�construct� then the inner
FORALL may not rede�ne any index�name used in the outer forall�construct

C���� Pure Procedures

H��� prefix is prefix�spec � prefix�spec � ���

H��� prefix�spec is type�spec
or RECURSIVE

or PURE

or extrinsic�prefix

H��	 function�stmt is � prefix � FUNCTION function�name function�stuff

H��� function�stuff is � � dummy�arg�name�list � � � RESULT � result�name � �

H��� subroutine�stmt is � prefix � SUBROUTINE subroutine�name subroutine�stuff

H��
 subroutine�stuff is � � � dummy�arg�list � � �

Constraint� A pre�x must contain at most one of each variety of pre�x�spec

Constraint� The pre�x of a subroutine�stmt must not contain a type�spec

Constraint� The speci�cation�part of a pure function must specify that all dummy argu�
ments have INTENT�IN� except procedure arguments and arguments with the
POINTER attribute

Constraint� A local variable declared in the speci�cation�part or internal�subprogram�part
of a pure function must not have the SAVE attribute

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

C�	� DATA PARALLEL STATEMENTS AND DIRECTIVES �	�

Advice to users� Note local variable initialization in a type�declaration�
stmt or a data�stmt implies the SAVE attribute� therefore� such initializa�
tion is also disallowed
 �End of advice to users��

Constraint� The execution�part and internal�subprogram�part of a pure function may not
use a dummy argument� a global variable� or an object that is storage associ�
ated with a global variable� or a subobject thereof� in the following contexts�

� As the assignment variable of an assignment�stmt�

� As a DO variable or implied DO variable� or as an index�name in a forall�
triplet�spec�

� As an input�item in a read�stmt �

� As an internal��le�unit in a write�stmt �

� As an IOSTAT� or SIZE� speci�er in an I�O statement

� In an assign�stmt �

� As the pointer�object or target of a pointer�assignment�stmt �

� As the expr of an assignment�stmt whose assignment variable is of a de�
rived type� or is a pointer to a derived type� that has a pointer component
at any level of component selection�

� As an allocate�object or stat�variable in an allocate�stmt or deallocate�
stmt � or as a pointer�object in a nullify�stmt � or

� As an actual argument associated with a dummy argument with INTENT

�OUT� or INTENT�INOUT� or with the POINTER attribute

Constraint� Any procedure referenced in a pure function� including one referenced via a
de�ned operation or assignment� must be pure

Constraint� A dummy argument or the dummy result of a pure function may be explicitly
aligned only with another dummy argument or the dummy result� and may
not be explicitly distributed or given the INHERIT attribute

Constraint� In a pure function� a local variable may be explicitly aligned only with another
local variable� a dummy argument� or the result variable
 A local variable may
not be explicitly distributed

Constraint� In a pure function� a dummy argument� local variable� or the result variable
must not have the DYNAMIC attribute

Constraint� In a pure function� a global variable must not appear in a realign�directive or
redistribute�directive

Constraint� A pure function must not contain a backspace�stmt� close�stmt� end�le�stmt�
inquire�stmt � open�stmt� print�stmt� rewind�stmt� or a read�stmt or write�stmt
whose io�unit is an external��le�unit or �

Constraint� A pure function must not contain a pause�stmt or stop�stmt

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	
 ANNEX C� SYNTAX RULES

Constraint� The speci�cation�part of a pure subroutine must specify the intents of all
dummy arguments except procedure arguments and arguments that have the
POINTER attribute

Constraint� A local variable declared in the speci�cation�part or internal�function�part of a
pure subroutine must not have the SAVE attribute

Constraint� The execution�part or internal�subprogram�part of a pure subroutine must not
use a dummy parameter with INTENT�IN�� a global variable� or an object that
is storage associated with a global variable� or a subobject thereof� in the
following contexts�

� As the assignment variable of an assignment�stmt�

� As a DO variable or implied DO variable� or as a index�name in a forall�
triplet�spec�

� As an input�item in a read�stmt �

� As an internal��le�unit in a write�stmt �

� As an IOSTAT� or SIZE� speci�er in an I�O statement

� In an assign�stmt �

� As the pointer�object or target of a pointer�assignment�stmt �

� As the expr of an assignment�stmt whose assignment variable is of a de�
rived type� or is a pointer to a derived type� that has a pointer component
at any level of component selection�

� As an allocate�object or stat�variable in an allocate�stmt or deallocate�
stmt � or as a pointer�object in a nullify�stmt �

� As an actual argument associated with a dummy argument with INTENT

�OUT� or INTENT�INOUT� or with the POINTER attribute

Constraint� Any procedure referenced in a pure subroutine� including one referenced via a
de�ned operation or assignment� must be pure

Constraint� A dummy argument of a pure subroutine may be explicitly aligned only with
another dummy argument� and may not be explicitly distributed or given the
INHERIT attribute

Constraint� In a pure subroutine� a local variable may be explicitly aligned only with
another local variable or a dummy argument
 A local variable may not be
explicitly distributed

Constraint� In a pure subroutine� a dummy argument or local variable must not have the
DYNAMIC attribute

Constraint� In a pure subroutine� a global variable must not appear in a realign�directive
or redistribute�directive

Constraint� A pure subroutine must not contain a backspace�stmt� close�stmt� end�le�stmt�
inquire�stmt � open�stmt� print�stmt� rewind�stmt� print�stmt� or a read�stmt or
write�stmt whose io�unit is an external��le�unit or �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

C��� EXTRINSIC PROCEDURES �	�

Constraint� A pure subroutine must not contain a pause�stmt or stop�stmt

Constraint� A pure subroutine must not contain an asterisk ��� in its dummy�argument�list

Constraint� An interface�body of a pure procedure must specify the intents of all dummy
arguments except POINTER and procedure arguments

Constraint� In a reference to a pure procedure� a procedure�name actual�arg must be the
name of a pure procedure

C���� The INDEPENDENT Directive

H��� independent�directive is INDEPENDENT � 	 new�clause �

H��� new�clause is NEW � variable�list �

Constraint� The �rst non�comment line following an independent�directive must be a do�
stmt� forall�stmt� or a forall�construct

Constraint� If the �rst non�comment line following an independent�directive is a do�stmt�
then that statement must contain a loop�control option containing a do�vari�
able

Constraint� If the NEW option is present� then the directive must apply to a DO loop

Constraint� A variable named in the NEW option or any component or element thereof must
not�

� Be a pointer or dummy argument� nor

� Have the SAVE or TARGET attribute

C�	 Extrinsic Procedures

C�	�� De�nition and Invocation of Extrinsic Procedures

H��� extrinsic�prefix is EXTRINSIC � extrinsic�kind�keyword �

H��
 extrinsic�kind�keyword is HPF

or HPF�LOCAL

or HPF�SERIAL

H��� program�stmt is � extrinsic�prefix � PROGRAM program�name

H��� module�stmt is � extrinsic�prefix � MODULE module�name

H��� block�data�stmt is � extrinsic�prefix � BLOCK DATA block�data�name

C�� Storage and Sequence Association

C���� Storage Association

H��� sequence�directive is SEQUENCE � � �� � association�name�list �
or NO SEQUENCE � � �� � association�name�list �

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� ANNEX C� SYNTAX RULES

H��
 association�name is object�name
or function�name
or � � common�block�name � �

Constraint� A variable or COMMON block name may appear at most once in a sequence�
directive within any scoping unit

Constraint� Only one sequence directive with a given association�name is permitted in the
same scoping unit

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Annex D

Syntax Cross�reference

D�� Nonterminal Symbols That Are De�ned

Symbol De�ned Referenced

add�op R��� H�
�
add�operand R��� H�
�
align�add�operand H�
� H�
� H�
�
align�attribute�stu� H��� H��
 H���
align�directive H��
 H
��
align�directive�stu� H��� H��
 H���
align�dummy H��� H��� H�
�
align�primary H�
� H�
�
align�source H��� H��� H���
align�spec H�
� H��	
align�subscript H�

 H�
�
align�subscript�use H�
� H�

 H�
� H�
�
align�target H�
� H�
�
align�with�clause H��	 H��� H���
alignee H��� H��
 H��� H���
alignee�or�distributee H��� H�
	
allocate�object R�
�
allocate�stmt R�

array�constructor R���
array�spec R��

assign�stmt R���
assignment�stmt R��� H���
association�name H��
 H���
block�data�stmt H���
call�stmt R�
��
combined�attribute H��
 H���
combined�directive H��� H
��
data�stmt R�
	
deallocate�stmt R���
directive�origin H
�
 H
��
dist�attribute�stu� H��� H��
 H���
dist�directive�stu� H��� H��� H��� H���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� ANNEX D� SYNTAX CROSS�REFERENCE

dist�format H��	 H���
dist�format�clause H��� H���
dist�onto�clause H��� H��� H���
dist�target H��� H���
distribute�directive H��� H
��
distributee H��� H��� H��� H���
dummy�arg R�

� H��

dynamic�directive H�
	 H
��
end�function�stmt R�
��
end�subroutine�stmt R�

entity�decl R��� H���
executable�construct R
��
executable�directive H
�� H
��
execution�part R
��
explicit�shape�spec R��� H��
 H��
 H���
expr R�
�
extrinsic�kind�keyword H��
 H���
extrinsic�pre�x H��� H��� H��� H��� H���
forall�assignment H��� H��� H���
forall�body�stmt H��� H���
forall�construct H��� H���
forall�header H��
 H��� H���
forall�stmt H��� H���
forall�triplet�spec H��� H��

function�reference R�
�	
function�stmt H��	
function�stu� H��� H��	
function�subprogram R�
��
hpf�directive H
�� H
��
hpf�directive�line H
��
independent�directive H��� H
��
inherit�directive H��� H
��
input�item R	��
int�add�operand H�
� H�
� H�
�
int�expr R�
� H��	 H�

int�level�two�expr H�
� H�
�
int�mult�operand H�
� H�
�
int�variable R��� H���
interface�body R�
��
internal�subprogram�part R
��
level���expr R��� H�
�
mask�expr R��� H��

module�stmt H���
mult�operand R��� H�
�
namelist�group�object R���
namelist�stmt R���
new�clause H��� H���
nullify�stmt R�
	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

D��� NONTERMINAL SYMBOLS THAT ARE NOT DEFINED �	�

output�item R	��
pause�stmt R���
pointer�assignment�stmt R��� H���
pointer�object R���
pre�x H��� H��	 H���
pre�x�spec H��� H���
processors�decl H��
 H���
processors�directive H��� H
��
processors�name H��� H��� H��

program�stmt H���
read�stmt R���
realign�directive H��� H
��
redistribute�directive H��� H
��
section�subscript R���
sequence�directive H��� H
��
speci�cation�directive H
�� H
��
speci�cation�expr R���
speci�cation�part R
��
stat�variable R�
�
stop�stmt R��

stride R�
� H���
subroutine�stmt H���
subroutine�stu� H��
 H���
subscript R��� H���
subscript�triplet R��	 H�

target R���
template�decl H��� H���
template�directive H��� H
��
template�name H��� H��� H�
� H���
type�declaration�stmt R���
type�spec R��
 H���
variable R��� H���
where�construct R��	 H���
where�stmt R��� H���
write�stmt R���

D�� Nonterminal Symbols That Are Not De�ned

Symbol Referenced

block�data�name H���
common�block�name H��

dummy�arg�name H���
dummy�argument�name H���
function�name H��	 H��

index�name H���
module�name H���
object�name H��� H��� H�
� H��� H��� H��

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	� ANNEX D� SYNTAX CROSS�REFERENCE

program�name H���
result�name H���
subroutine�name H���

D�� Terminal Symbols

Symbol Referenced

�HPF
 H
�

� H��
 H��� H��	 H��� H��� H�
� H�
�

H��
 H��� H��
 H��� H��
 H��� H���
� H��
 H��� H��	 H��� H��� H�
� H�
�

H��
 H��� H��
 H��� H��
 H��� H���
� H��� H��	 H��� H��� H�
� H�

 H�
�
�HPF
 H
�

	 H��
 H���
� H��

� H��� H���
�� H��� H��� H��� H���
� H���
ALIGN H��
 H��

BLOCK H��	 H���
CHPF
 H
�

CYCLIC H��	
DATA H���
DIMENSION H��

DISTRIBUTE H��
 H���
DYNAMIC H��
 H�
	
END H���
EXTRINSIC H���
FORALL H��� H���
FUNCTION H��	
HPF H��

HPF LOCAL H��

HPF SERIAL H��

INDEPENDENT H���
INHERIT H��
 H���
MODULE H���
NEW H���
NO H���
ONTO H���
PROCESSORS H��
 H���
PROGRAM H���
PURE H���
REALIGN H���
RECURSIVE H���
REDISTRIBUTE H���
RESULT H���

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

D��� TERMINAL SYMBOLS �		

SEQUENCE H���
SUBROUTINE H���
TEMPLATE H��
 H���
WITH H��	

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�� ANNEX D� SYNTAX CROSS�REFERENCE

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

Bibliography

��� Jeanne C Adams� Walter S
 Brainerd� Jeanne T
 Martin� Brian T
 Smith� and Jerrold
L
 Wagener
 Fortran
� Handbook� Intertext�McGraw Hill� �		

�
� Eugene Albert� Joan D
 Lukas� and Guy L
 Steele� Jr
 �Data Parallel Computers and the
FORALL Statement�� Journal of Parallel and Distributed Computing� October �		�

��� American National Standards Institute� Inc
� ���� Broadway� New York� NY
 American
National Standard Programming Language FORTRAN� ANSI X�
	��	��� approved April
�� �	��

��� American National Standards Institute� Inc
� ���� Broadway� New York� NY
 Ameri�
can National Standard for Information Systems Programming Language FORTRAN� S�
�X�
	��	�x� Revision of X�
	��	��� Draft S�� Version ���� April �	��

��� Bernstein� A
 J
 �Analysis of Programs for Parallel Processing�� IEEE Transactions on
Electronic Computers� Vol
 ��� pp ������
� �	��

��� P
 Brezany� M
 Gerndt� P
 Mehrotra and H
 Zima
 Concurrent File Operations in a High
Performance Fortran

��� Barbara Chapman� Piyush Mehrotra� and Hans Zima
 Programming in Vienna Fortran�
Scienti�c Programming ���� August �		
� Also published as� ACPC�TR 	
��� Austrian
Center of Parallel Computation� March �		

��� M
 Chen and J
 Wu
 Optimizing Fortran
� Programs for Data Motion on Massively
Parallel Systems� Yale University� YALEU�DCS�TR���
� New Haven� CT� �		�

�	� M
 Chen and J
 Cowie
 �Prototyping Fortran 	� Compilers for Massively Parallel Ma�
chines�� SIGPLAN
�� �		

���� Digital Equipment Corporation� Maynard� Massachusetts
 DECmpp ����� Sx � High
Performance Fortran Reference Manual� February� �		�� �AA�PMAHC�TE�

���� Geo�rey Fox� Seema Hiranandani� Ken Kennedy� Charles Koelbel� Uli Kremer� Chau�
Wen Tseng� and Min�You Wu
 Fortran D Language Speci�cation
 Report COMP TR	��
��� �Rice� and SCCS��
c �Syracuse�� Department of Computer Science� Rice University�
Houston� Texas� and Syracuse Center for Computational Science� Syracuse University�
Syracuse� New York� April �		�

��
� ISO
 Fortran
�� May �		�
 �ISO�IEC ���	� �		� �E� and now ANSI X�
�	���		
�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�
 BIBLIOGRAPHY

���� High Performance Fortran Forum
 High Performance Fortran Language Speci�cation
Scienti�c Programming�
��� �		�
 Also published as� CRPC�TR	

�� Center for Re�
search on Parallel Computation� Rice University� Houston� TX� �		
 �revised May

�		��
 Also published as� Fortran Forum� �
��� Dec
 �		� and ���
� June �		�

���� High Performance Fortran Forum
 High Performance Fortran Language Speci�cation

version ��� CRPC�TR	

�� Center for Research on Parallel Computation� Rice Uni�
versity� Houston� TX� �		
 �revised May
 �		��

���� High Performance Fortran Forum
 High Performance Fortran Journal of Development
CRPC�TR	����� Center for Research on Parallel Computation� Rice University� Hous�
ton� TX� May
 �		�

���� C
 Koelbel and D
 Loveman and R
 Schreiber and G
 Steele� Jr
 adn M
 Zosel
 The
HIgh Performance Fortran Handbook MIT Press� Cambridge� MA� �		�

���� C
 Koelbel and P
 Mehrotra
 �An Overview of High Performance Fortran�� Fortran
Forum� Vol
 ��� No
 �� December� �		

���� David B
 Loveman
 �High Performance Fortran�� IEEE Parallel � Distributed Tech�
nology� Vol
 �� No
 �� February �		�

��	� David B
 Loveman
 �Element Array Assignment � the FORALL Statement�� Third
Workshop on Compilers for Parallel Computers� Vienna� Austria� July ��	� �		

�
�� MasPar Computer Corporation� ��	 North Mary Avenue� Sunnyvale� California
 Mas�
Par Fortran Reference Manual� May �		�
 �Software Version �
�� 	��������� Rev
 A
�

�
�� Piyush Mehrotra and J
 Van Rosendale
 �Programming Distributed Memory Archi�
tectures Using Kali�� In� Nicolau�A
 et al
�Eds�� Advances in Languages and Compilers
for Parallel Processing� pp
�������� Pitman�MIT�Press� �		�

�

� Andrew Meltzer� Douglas M
 Pase� and Tom MacDonald
 Basic Features of the MPP
Fortran Programming Model� Cray Research� Inc� Eagan� Minnesota� August �	� �		

�
�� John Merlin
 Techniques for the Automatic Parallelisation of �Distributed Fortran

�� � Technical Report SNARC 	
��
� Dept
 of Electronics and Comp
 Science� Univ
 of
Southampton� November �		�

�
�� Michael Metcalf and John Reid
 Fortran
� Explained� Oxford University Press� �		�

�
�� Robert E
 Millstein
 �Control Structures in ILLIAC IV Fortran�� Communications of
the ACM� ��������
���
�� October �	��

�
�� Douglas M
 Pase� Tom MacDonald� and Andrew Meltzer
 MPP Fortran Programming
Model� Cray Research� Inc� Eagan� Minnesota� August
�� �		

�
�� Guy L
 Steele Jr
 �High Performance Fortran� Status Report�� em Workshop on Lan�
guages� Compilers� and Runtime Environments for Distributed�Memory Multiproces�
sors� ACM SIGPlan Notices� Vol

�� No
 �� January �		�

�
�� Thinking Machines Corporation� Cambridge� Massachusetts
 CM Fortran Reference
Manual� July �		�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

BIBLIOGRAPHY
��

�
	� US Department of Defense
 Military Standard
 MIL�STD������ FORTRAN
 DoD
Supplement to American National Standard X��
��
��� November 	� �	��

���� Hans Zima� Peter Brezany� Barbara Chapman� Piyush Mehrotra� and Andreas Schwald

Vienna Fortran � a Language Speci�cation� ICASE Interim Report
�� ICASE NASA
Langley Research Center� Hampton� Virginia
����� March �		

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

