
A New Family of Authentication Protocols

Ross Anderson1, Francesco Bergadano2, Bruno Crispo2,
Jong-Hyeon Lee1, Charalampos Manifavas1 and Roger Needham3

1 Cambridge University Computer Laboratory, England
2 Dipartimento di Informatica, Università di Torino, Italy

3 Microsoft Research, Cambridge, England

Abstract. We present a related family of authentication and digital sig-
nature protocols based on symmetric cryptographic primitives which per-
form substantially better than previous constructions. Previously, one-
time digital signatures based on hash functions involved hundreds of hash
function computations for each signature; we show that given online ac-
cess to a timestamping service, we can sign messages using only two
computations of a hash function. Previously, techniques to sign infinite
streams involved one such one-time signature for each message block;
we show that in many realistic scenarios a small number of hash func-
tion computations is sufficient. Previously, the Diffie Hellman protocol
enabled two principals to create a confidentiality key from scratch: we
provide an equivalent protocol for integrity, which enables two people
who do not share a secret to set up a securely serialised channel into
which attackers cannot subsequently intrude. In addition to being of po-
tential use in real applications, our constructions also raise interesting
questions about the definition of a digital signature, and the relationship
between integrity and authenticity.

Keywords: authentication, non-repudiation, hashing, timestamping

1 Introduction

Most existing cryptographic protocols that provide non-repudiation, whether of
origin or receipt, are based on digital signature algorithms such as RSA and
DSA. However convenient this may be in some applications, is not necessary:
nonrepudiation services have been provided without signatures, and an example
is the SWIFT system for international banking transactions that was fielded in
the mid 1970’s as a replacement for older and less secure telegraphic transfer
systems. In SWIFT, pairs of corresponding banks shared MAC keys that were
exchanged manually; the messages passed from one bank to another over a pri-
vate network with multiple independently administered logging facilities (the
latest version of SWIFT has digital signatures but since they are apparently
applied to the MAC, the logging service is still needed for non-repudiation).
However third party logging facilities are expensive and in many applications it



is desired that principals should have the means to generate and store evidence
that they might need to press their claims in subsequent disputes.

An early system that did not rely on third party logging was designed by
TRW for the NSA in the 1970’s to authenticate messages from sensors placed in
missile silos to monitor the SALT 2 treaty [1]. It used concatenated encryption:
a message would first be encrypted using a Russian device and then with an
American one. The keys were made available to the other side (and to third
party monitors such as the United Nations) after the messages had been logged
by all interested parties. This technique was published in 1983 in the context of
the test ban treaty; at that time, it was preferred over RSA because neither of
the two superpowers would trust a device built by the other, and asymmetric
mechanisms were felt to offer little additional benefit given this constraint [2].

The first published approach to the provision of nonrepudiation without using
asymmetric encryption is due to Lamport, who generates signatures by opening
commitments that have been made using a one-way hash function [3]. The basic
idea here is that the signer chooses two random numbers (representing 0 and 1)
for each bit of the message, and publishes their images under a one-way hash
function. To sign a message, he reveals the preimages corresponding to the actual
0’s and 1’s. Despite refinement by Merkle [4,?], by Even, Goldreich and Micali
[6] and by Bleichenbacher and Maurer [7], this technique still requires a lot of
hash computations.

In this paper, we show how to construct digital signatures that require only a
small number of hash function computations each. This enormous improvement
is brought about by making signature interactive; users may either interact with
each other or with a time-stamping service. In many applications, interaction
with a counterparty or a trusted third party service is a requirement in order to
verify the availability of funds, the uniqueness of negotiable instruments or the
absence of a key on a certificate revocation list. In this case, it may be possible
to dispense with signatures based on number theory.

Possible benefits include the elimination of some patent royalty and export
control problems and a measure of insurance against any success that quan-
tum computers have in breaking systems based on number theory. In addition,
as there are no long term secrets in our protocols, they might help to over-
come intelligence agency concerns that signature keys can easily be abused for
encryption. Finally, our constructions raise a number of interesting theoretical
points.

2 The Basic Idea

The underlying idea came to us on the 4th November 1996 while discussing how
a modern day Guy Fawkes, about to blow up the Houses of Parliament, could
arrange publicity for his cause — but without getting caught1.
1 for the benefit of readers unfamiliar with British history, Fawkes conspired to blow

up King James the first and the Houses of Parliament in 1605; this was an attempt

2



The näıve approach might be to telephone the newsroom of the ‘Times’ and
say “I represent the free Jacobin army and we are going to carry out a liberation
action tomorrow. Once we have done it, I will call using the code word ‘Darnley’
to state our demands”.

2.1 Using hash functions

This is not a particularly secure way of doing things. The message will be passed
on to the police, who might remember that the state opening of Parliament is
imminent and double the guard. So it would be more prudent to send a hash
of the message. Provided that the hash function is truly one-way (technically,
pseudorandom), this will not leak information. If Fawkes is now successful, he
can reveal the message and find himself possessed of a very credible codeword.

We understand that organisations such as the IRA do in fact share codewords
with newspapers and use these to claim credit for their crimes. However, such
a protocol is open to abuse by newspaper staff (as well as by other people
with access, such as phone company employees and policemen authorised to tap
telephone lines). So our next logic step in improving the protocol is to replace
the codeword with its hash.

Our protocol is now

– Select a random codeword X
– Form its hash Y = h(X)
– Construct a message M = “We are the free Jacobin army and we are going

to blow up the Houses of Parliament tomorrow. The codeword by which we
will authenticate ourselves afterwards will be the preimage of Y ”

– Compute Z = h(M) and publish it anonymously
– Blow up the Houses of Parliament
– Reveal M

This might appear to be only a slightly more technological version of the
protocols already used by various liberation groups and criminals. It still suffers
from the serious problem that, in the face of a capable motivated opponent, the
password is only one-time; once it has been revealed, and is known to the news-
papers and the police, any journalist or policeman could in theory masquerade as
the rebel leader. Indeed, if Guy Fawkes tries to state his demand by sending the
‘Times’ the codeword X with a political demand P (‘votes for Catholics!’), the
police can intercept the message and replace P with the demand P ′ (‘a million
guineas for Fawkes!’), thus discrediting Fawkes and his organisation.

to end the persecution of Roman Catholics. Fawkes was caught as a result of a
comsec failure (a coded letter from one of the conspirators was intercepted and
deciphered). After his public execution, Parliament ordained the 5th of November
as a day of thanksgiving for their narrow escape, and it is still celebrated by bonfires
and fireworks displays.

3



2.2 The Guy Fawkes Protocol

Our critical innovation is to introduce a chaining mechanism that lets us bind
codewords to messages in a way that provides not just authentication but also
nonrepudiation. It also allows the secret codeword to be refreshed, so that the
system can be used an arbitrary number of times.

The basic idea is that, at each round of the protocol, we firstly commit to a
string consisting of (codeword, message, [hash of next codeword]) by publishing a
hash of it. This commitment binds the message to the codeword and its successor.
We then reveal the value of this string, proving our knowledge of the codeword
and thus authenticating ourselves.

Formally, we define the protocol by induction. Suppose that we have pub-
lished Zi followed by the message Mi containing h(Xi), where our secret code-
word is currently Xi. We wish to authenticate the message Mi+1. We follow the
following protocol:

– Select a random codeword Xi+1

– Form its hash h(Xi+1)
– Compute Zi+1 = h(Mi+1, h(Xi+1), Xi) and publish it
– Reveal Mi+1, h(Xi+1) and Xi

The first codeword needs to be bootstrapped by some external mechanism;
in most applications, this would be a conventional digital signature or an out-
of-band authentication, perhaps using a conventional CA. We will give some
examples below.

3 Discussion

Hash chains were introduced by Lamport [3] and have been used in one-time
password applications such as the S/Key one-time password system [8], as well
as several electronic payment protocols [9–11]. There, as here, the effect is to
establish secure association at low computational cost.

In S/Key, a user has a series of one-time passwords, each of which is the
preimage of its predecessor; the goal is to show that an authorised user is present
and protect against passive attacks (though not against active attacks such as
session stealing). This chain of events is rooted in a single manual authentication
event in which the last element of the hash chain is set as the first password in
the system.

In the payment protocols, the goal is to associate a number of electronic
coins with a single digital signature that authenticates them all, and thus enable
a series of small payments to be made by a customer to a single merchant
(such as a phone company) at the cost of a single digital signature or online
authentication operation.

4



In the Guy Fawkes protocol, the objective is to associate a single act of
authentication with a stream of future statements rather than a stream of future
events. Functionally, the difference is that while the format of all the digital
coins is known at the time they are signed, the future statements that we wish
to authenticate may not be. So it would not be sufficient to simply use a hash
chain (as in S/Key) as a set of one-time passwords for authenticating political
statements. As in section 2.1 above, anyone who was tapping the line when the
statement and password were sent to the newsroom could alter the statement;
and staff in the newsroom could also substitute messages at will.

In other words, the broadcast commitment step has the criticial effect of
providing nonrepudiation, and gives the Guy Fawkes protocol the same effect as a
digital signature. Were the Jacobins permitted to use asymmetric cryptography,
then their first message could just as well have read “We are going to blow up
the Houses of Parliament on the 5th November. Future demands will be digitally
signed and the public verification key is W .” This could have been encrypted
and published, with the key made known after the event.

So we might ask whether there is anything to signature other than secure
association. After all, in the conventional model, a digital signature sets up a
secure association between something that has been signed at an arbitrary time,
and an authentication instance which may have involved showing a passport to
a certification authority. Is the Guy Fawkes protocol any different?

4 It may be secure, but it is a signature?

At this point, some might argue that although the Guy Fawkes protocol gives
the same effect as a digital signature, it is not actually a signature. However,
our protocol satisfies most of the definitions of ‘digital signature’ offered in the
literature to date. We will go through them in turn.

Diffie and Hellman introduced the concept of digital signature in their sem-
inal ‘New Directions’ paper: ‘it must be easy for anyone to recognise the
signature as authentic, but impossible for anyone other than the legitimate
signer to produce it’ [12]. At the time when this paper was written, the only
known way of doing this was using Lamport’s one-time signature. The Guy
Fawkes protocol improves on Lamport and so, not surprisingly, satisfies this
definition; it also satisfies a later definition by Diffie as ‘a way of demon-
strating to other people that (a message) had come from a particular person’
[13].

Fiat and Shamir refine and extend the definition given by Diffie and Hellman.
Authentication is when A can prove to B that she’s A, but no-one else can
prove to B that he’s A; identification is when A can prove to B that she’s
A, but B cannot prove to anyone else that he’s A; and signature is when A
can prove to B that she’s A, but B can’t even prove to himself that he’s A
[14]. Guy Fawkes satisfies this definition too.

5



Goldwasser, Micali and Rivest give a more involved description that explic-
itly mentions a number of algorithms and their properties: a key generation
algorithm, a signature algorithm, and a verification algorithm. The signa-
ture algorithm produces a signature on being input the message, the key
and possibly other information (such as a random input); however, in their
definition it produces only a single output [15].

This model therefore excludes the Guy Fawkes protocol. But it also excludes
the large class of arbitrated signatures that were already well known and
in use by that time (see, for example, [16]) as well as most of the special
purpose signature constructions that require interaction, such as undeniable
signatures, designated confirmer signatures and oblivious signatures [17].

Naor and Yung refined the approach of Goldwasser, Micali and Rivest, by
cutting the complexity theoretic requirement of the construction [18]; it was
finally reduced by Rompel to the existence of one-way functions (which is
minimal) [19]. However, like Goldwasser, Micali and Rivest, their definitions
also fail to deal with signatures that use interaction.

Pfitzmann provides the most thorough study of disparate signature schemes
in her thesis [20]. She concludes that the general definition of signature is
a process with a number of access points — typically for the signer, the
recipient and the court. Time is a necessary component, although logical
time (in the sense of a ‘global notion of numbered rounds’) is sufficient
(op. cit., p 54). Special access points can be added for risk bearers such as
certification and revocation authorities. This definition clearly admits the
Guy Fawkes protocol.

So if it is claimed that the Guy Fawkes protocol is not really a signature, then
the onus would be on the objector to show how to deal with the many other
kinds of signature that use interaction, as well as the importance of context
— the framework of certification and revocation services, legal conventions and
so on — to the utility of digital signatures. In most applications, the value of
signatures ultimately depends on convention (such as a digital signature law,
or a contract between members of an EDI system) and the validation of even
conventional digital signatures involves reference to an online or at least near-
real-time certificate revocation list.

In passing, we observe that the signatures produced by Guy Fawkes are ac-
tually stronger than RSA in the sense that they can be fail-stop at no extra cost:
just choose the secrets Xi uniformly at random as bitstrings significantly longer
than the hash function’s output. That way, an attacker who finds a preimage
of a commitment or hashed codeword will with high probability have found a
different one from that known to the genuine signer, who will thus be able to
exhibit a collision for the hash function.

6



5 Signing Bidirectional Digital Streams

Hash-based signatures have been condemned as “time-consuming, costly and
wasteful” ([16]). Guy Fawkes is much less so than previous schemes; and there
are applications for which it might be practical.

Firstly, let us consider the most convincing proposal for a practical applica-
tion of hash-based signatures. This is the method of Gennaro and Rohatgi for
signing digital steams [21]. When signing a stream whose content is not known in
advance to the signer (such as a television programme), they divide the stream
into blocks; each block contains a one-time public key using the Lamport scheme,
and is signed with the one-time private key whose public key was sent in the
previous block. The first block is signed using a conventional mechanism such
as RSA. In this way, a single conventional signature can be leveraged to sign a
whole stream of data ‘on-the-fly’. The authentication thus provided is fast, in
that no use is made of asymmetric cryptography once the session is established;
but it is bulky, as both a one-time public key and a one-time signature must be
added to each block.

The Guy Fawkes mechanism can be adapted readily to this application and
can greatly reduce the amount of computation required; it can cope particularly
well with bidirectional streams, such as in videoconferencing, although it also
works well in applications where a stream is sent to a recipient who merely sends
a series of acknowledgements.

Here, our protection goals are that if any bit in the two streams is changed,
both communicating parties will detect the problem; and that the authentication
mechanisms are as fast as in Gennaro and Rohatgi’s scheme without the message
extension (in fact Guy Fawkes is faster). Finally it must provide non-repudiation
as well as simple authentication; a third party observing the stream exchange can
ascertain the information source and integrity, as opposed to symmetric MACs
where the use of shared secrets makes mutual recrimination possible.

In this protocol, Alice and Bob will exchange message streams consisting of
sequential blocks which we will call A0, A1, A2, ... and B0, B1, B2, ... respectively;
each block will be accompanies by authentication information to be described.
Bi is sent after Ai but before Ai+1.

In addition, Alice will choose a series of passwords X0, X1, X2, ... ; she will
commit to Xi in message Ai−1 and reveal it in message Ai+1. This commitment
is called ai and has the form

ai = h(Ai+1, h(Xi+1), Xi)

Similarly, Bob’s commitments take the form bi = h(Bi+1, h(Yi+1), Yi). It
should be noted that Alice needs a buffer size equal to two blocks; to send
message Ai she needs to know Ai+1 in order to compute the hash value ai. This
will not normally be a problem where, for example, each block is a frame of
video.

7



The first steps of the protocol, which use conventional signatures to bootstrap
the process, run as follows:

A −→ B : A0, a0, h(X0),signA(A0, h(X0))
B −→ A : B0, b0, h(Y0),signB(B0, h(X0))
A −→ B : h(b0, X0)
B −→ A : h(a0, Y0)

The authentication of each subsequent block now takes the following form:

A −→ B : A1, a1, h(X1), X0

B −→ A : B1, b1, h(Y1), Y0

A −→ B : h(b1, X1)
B −→ A : h(a1, Y1)
...

Thus in this step, Alice has committed to the password X2 (since a1 =
h(A2, h(X2), X1) and revealed the password X0; this revelation authenticates
A1, while the commitment also refreshes the passwords.

The security of this scheme follows inductively. Assuming faithful execution
up to step n, and an attacker who tries to masquerade as Bob to Alice, having
seen and intercepted the string Bn, bn, h(Yn), Yn−1. He cannot change Bn as bn−1

contains a commitment to it; he cannot change bn as it contains as an input Yn,
which he doesn’t know but which was committed in bn−1; h(Y1) was similarly
committed in bn−1; and if he forwards anything other than the correct value of
Yn−1 then this will fail to verify against bn and bn−1. Similarly, he cannot in the
next message forward anything other than the correct value of h(an, Yn) as he
does not know the value of Yn yet cannot change it, since it was committed at
the previous step in nn−1.

As a corollary, we obtain a protocol for authenticating a single digital stream:
Alice sends the stream to Bob, and Bob simply sends an ack with a serial number
as the text Bn.

There is one final subtlety. If all the passwords are eventually made known,
then false content can be cut and pasted at will into a record of the exchange.
In the basic protocol, we thus have something weaker that a signature, but
stronger than symmetric authentication. This is an interesting fact in itself; an
obvious direct application is witnessed communication, where (for example) a
videoconference is also viewed by a third party who may be called on to testify
about some aspects of it later. Another is in communication systems with third
party logging, such as the SWIFT system mentioned above.

However, our scheme can be converted quite simply into one with off-line
nonrepudiation. The trick is a convention that each principal keeps secret their
last password and reveals it to a judge in the event of a dispute. Alternatively,
each principal could have a notary sign a hash of his last password together with
a transcript of the session.

8



6 Other Practical Applications

We now consider a number of other applications of our technique.

6.1 An Integrity Equivalent of Diffie-Hellman

Our protocol allows us to link a number of incidents securely, and so we ask
whether it has any particularly interesting uses for the identification of principals
in computer networks. After all, a principal is in some sense just the linkage of
a series of incidents.

In the real world, it is often only necessary to remember a certain distance
back in such a chain. We may be quite unable to remember what incident first
convinced us of the identity of our mother, or of many of our other relatives
and friends; but the absence of a definitive initial authentication instance is
considered to be irrelevant in such circumstances. Similar considerations may
apply to electronic personae. Many people nowadays have built up relationships
and even scientific collaborations over the net with other people whom they only
later meet in person.

The above protocol for bidirectional authentication shows how we can inter-
lock hash-based authentication by two different individuals at the same time.
One novel implication of this is that two principals who do not originally share
any secret can protect the serialisation of the traffic between. Once this integrity
channel is established, it will guarantee both the content and the correct serial-
isation of all future messages.

This channel does for integrity what the Diffie Hellman protocol does for
secrecy. This may seem counterintuitive, and it certainly challenges the com-
mon understanding that the ‘man-in-the-middle attack can defeat any protocol
not involving a secret’ [17]. What is actually happening of course is that a mid-
dleperson attacking the integrity channel has to participate in it from the start;
she cannot join in later, or the views that the two participants of the transaction
history will differ in nontrivial ways.

At the systems level, this is because we have set up a channel with integrity
but no authenticity, in the sense that we do not know who we are speaking to.
So Alice, who wanted to speak to Bob, might in fact be speaking to Charlie.
However in this case Charlie will have to participate actively in the conversation
between them for the rest of time if he wishes to escape detection; he will not
be able to drop in and out of their traffic at will.

There are applications in which conventional authentication may not be pos-
sible and yet the limitation on active attacks that this technique provides might
be valuable. An example is communication between dissidents in an oppressive
country that compels the escrow of even signing keys. In such conditions, trust
is likely to be built up slowly over a long series of messages, and users may well
wish to be sure that a channel that they are starting to trust is not taken over
by authority.

9



A curious feature of multiparty Guy Fawkes, however, is that when one prin-
cipal introduces two others with whom he has established sessions, he cannot
ever persuade either of them that the other actually exists. Alice, on being intro-
duced to Bob by Charlie, could just as easily be introduced to another persona of
the principal behind Charlie. This appears to be a feature of electronic commu-
nications in general; it is merely brought out when we start to consider protocols
for establishing trust that do not rely on some bootstrapping event in the physi-
cal world. (The Rivest-Shamir interlock protocol is the only one we know of that
can achieve a similar effect [24]; but previous comment on it has focussed on the
understandable difficulty of using it for authentication [25].)

6.2 Tamper-evident audit trails

It is a well known problem that an intruder can often acquire root status by
using well known operating system weaknesses, and then alter the audit and log
information to remove the evidence of the intrusion. In order to prevent this,
some Unix systems require that operations on log and audit data other than
reads and appends be carried out from the system console. Others do not, and
it could be of value to arrange alternative tamper-evidence mechanisms.

A first idea might be to simply sign and timestamp the audit trail at regular
intervals, but this is not sufficient as a root intruder will be able to obtain
the private signing key and retrospectively forge audit records. In addition, the
intervals would have to be small (of the order of a second, or even less) and
the computation of RSA or DSA signatures at this frequency could impose a
noticeable system overhead.

In this application, the Guy Fawkes protocol appears well suited because of
the low computational overhead (two hash function computations per signature)
and the fact that all secrets are transient; this second’s secret codeword is no
use in forging a signature of a second ago.

The envisaged architecture here is that each server or other sensitive machine
on a LAN would authenticate its log and audit data once per second (or even
more frequently) with a local timestamping service, that would run on a machine
stripped of vulnerabilities such as sendmail. This could in its turn interact at
some suitable frequency with an external machine such as a corporate time
stamping service, which in turn could interact with a commercial service. The
protocols for this are currently under development.

6.3 Secure access to timestamping services

Third party timestamping services have much wider uses than simply providing
trust backup for audit data; they are used to provide evidence of priority for all
kinds of intellectual property, financial records and other business documents.
An example design of such as service is found in that of Haber and Stornetta
[23]. There the messages to be stamped are hashed in a tree, with a hash of

10



all input messages being made available once a second over the web and once a
week through a newspaper advertisement. A signer can incorporate the relevant
part of this hash tree with the disclosure of his message in the same way that
he would incorporate a collection of certificates.

This immediately raises the question of how the user can trust that the
timestamping service that appears to have incorporated her message into its
tree is a genuine one, and not a simulacrum created by an attacker who has
taken over her network connection. A conventional approach would be for the
timestamping service to affix a digital signature to the timestamps it returns.
However, this brings extra complexity into the trust loop, with possible attendant
costs of licensing a digital signature technology. There are also performance issues
in signature generation when providing a service sized to generate a thousand
timestamps a second, as Haber and Stornetta’s system is; this can be provided on
a workstation which will however only generate 50 RSA signatures per second.

The simple solution is to use the Guy Fawkes protocol as a means of authen-
ticating the timestamping service to the user. We are currently working on an
implementation that will work with this timestamping service.

6.4 Other applications

Other specific applications in which the Guy Fawkes protocol might offer advan-
tages over other integrity and nonrepudiation mechanisms include the updating
of root keys used by software vendors and CAs; telegambling; digital elections;
membership of clubs with optional anonymity; and software metering mecha-
nisms in which a vendor sends ‘keep-alive’ messages to the systems of those
subscribers who keep on paying their licence fees. The value that Guy Fawkes
can provide here lies in the absence of a single short long term secret that a
pirate could broadcast.

Another family of applications is in general authentication and non-repudiation
protocols where for cost reasons it is desired to use low-power processors, such as
cheap smartcards or microcontrollers. In general, where we have an interactive
application in which some combination of anonymity with either serialisation or
temporary nonrepudiation is required, a protocol based on Guy Fawkes may be
the tool for the job.

Finally, given the politics of cryptography, it may be worth remarking that
all secrets in the Guy Fawkes protocol become known; there are no long-term
user secrets that can be used as decryption keys and thus less motive to attempt
to escrow signing keys, with the consequential loss of evidential reliability. It can
of course be used to detect middleperson attacks on Diffie Hellman key exchange,
and thus to set up confidential channels indirectly. However it is unclear that
any nonrepudiation — or even authentication — can be achieved if preventing
authentic Diffie-Hellman is a national policy imperative; even a simple password
is enough to prevent middleperson attacks [22].

11



7 Conclusion

We have shown that it is possible to provide a non-repudiation service without
public key mechanisms, tamper resistance or third party logging. We do not even
require any principal to possess a long-term secret.

This involves a new protection primitive which in its simplest form behaves
extremely like a digital signature and may be obtained at a negligible compu-
tational cost, provided that a timestamp service exists. We have also shown a
bidirectional primitive that may be used to authenticate digital streams at much
less cost than the previous best protocol. This led us to an ‘integrity equivalent’
of Diffie Hellman: two users can under quite reasonable assumptions establish a
channel whose traffic is protected against modification, without either of them
possessing a secret at the start of the protocol or concealing any secrets from
authority.

Quite apart from possible applications, these constructions raise a number
of interesting questions, such as: what exactly is a digital signature? what is
the necessary role of communication in a public key infrastructure? and what
tradeoffs are there between computation, communication and the maintenance
of state?

References

1. “The History of Subliminal Channels”, GJ Simmons, in Proceedings of the First
International Workshop on Information Hiding (Springer LNCS v 1174) pp 237–
256

2. “Verification of Treaty Compliance — Revisited”, GJ Simmons, in Proceedings of
the IEEE Symposium on Security and Privacy (IEEE, 1983) pp 61–66

3. “Constructing digital signatures from a one-way function”, L Lamport, SRI TR
CSL 98 (1979)

4. “A Digital Signature Based on a Conventional Encryption Function” RC Merkle,
in Advances in Cryptology — Crypto 87 (Springer LNCS v 293) pp 369–378

5. “A Certified Digital Signature”, RC Merkle, in Advances in Cryptology — Crypto
89 (Springer LNCS v 435) pp 218–238

6. “On-line / off-line digital signatures”, S Even, O Goldreich, S Micali, in Advances
in Cryptology — Crypto 89 (Springer LNCS v 435) pp 263–275

7. “Directed Acyclic Graphs, One-way Functions and Digital Signatures”, D Bleichen-
bacher, UM Maurer, Advances in Cryptology — Crypto 94 (Springer LNCS v 839)
pp 75–82

8. “The S/KEY One-Time Password System”, N Haller, in Proceedings of the ISOC
Symposium on Network and Distributed System Security (February 1994, San
Diego, CA) pp 151 - 157; see also RFCs 1704, 1760 and 1938

9. “NetCard — A Practical Electronic Cash System”, R Anderson, C Manifavas, C
Sutherland, inProceedings of the Fourth Cambridge Security Protocols Workshop
(Springer LNCS v 1189) pp 49–57

10. “PayWord and MicroMint: Two Simple Micropayment Schemes”, RL Rivest, A
Shamir, in Proceedings of the Fourth Cambridge Security Protocols Workshop
(Springer LNCS v 1189) 69–87

12



11. “Electronic Payments of Small Amounts”, TP Pedersen, in Proceedings of the
Fourth Cambridge Security Protocols Workshop (Springer LNCS v 1189) 59–68

12. “New Directions in Cryptography”, W Diffie, ME Hellman, in IEEE Transactions
on Information Theory v IT-22 no 6 (November 1976) pp 644–654

13. “The First Ten Years of Public-Key Cryptography”, W Diffie, in Proceedings of
the IEEE v 76 no 5 (May 88) pp 560–577

14. “How To Prove Yourself: Practical Solutions to Identification and Signature prob-
lems”, A Fiat, A Shamir, in Advances in Cryptology — CRYPTO 86, Springer
LNCS v 263 pp 186–194

15. “A Digital Signature Scheme Secure Against Adaptive Chosen Message Attacks”,
S Goldwasser, S Micali, RL Rivest, in SIAM Journal of Computing v 17 no 2 (April
1988) pp 281–308

16. “Digital Signatures with Blindfold Arbitrators who Cannot Form Alliances”, SG
Akl, in Proceedings of the 1983 IEEE Computer Society Symposium on Security
and Privacy, pp 129–135

17. ‘Applied Cryptography’, B Schneier, Wiley 96
18. “Universal One-Way Hash Functions and Their Cryptographic Application”, M

Naor, M Yung, in Proceedings of the 21st Annual ACM Symposium on the Theory
of Computing (1989) pp 33–43

19. “One-Way Functions are Necessary and Sufficient for Digital Signatures”, J
Rompel, in Proceedings of the 22nd Annual ACM Symposium on the Theory of
Computing (1990) pp 387–394

20. ‘Digital Signature Schemes — General Framework and Fail-Stop Signatures’, B
Pfitzmann, Springer LNCS v 1100

21. “How to Sign Digital Streams”, R Gennaro, P Rohatgi, in Advances in Cryptology
— CRYPTO 97, Springer LNCS v 1294 pp 180–197

22. “On fortifying key negotiation schemes with poorly chosen passwords”, RJ Ander-
son, TMA Lomas, in Electronics letters v 30 no 12 (23rd July 1994) pp 1040–1041

23. “How to Time-Stamp a Digital Document”, S Haber, WS Stornetta, in Journal of
Cryptology v 3 no 2 (1991) pp 99–112

24. “How to Expose an Eavesdropper”, RL Rivest, A Shamir, in Communications of
the ACM v 27 no 4 (Apr 84) pp 393–395

25. “An Attack on the Interlock protocol When Used for Authentication”, SM Bellovin,
M Merritt, IEEE Transactions on Information Theory v 40 no 1 (Jan 94) pp 273–
275

26. “Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart’,
MK Reiter, in Proceedings of the 1994 ACM Conference on Computer and Com-
munications Security pp 68–80

27. “Maintaining Security in the Presence of Transient Faults”, R Canetti, A Herzberg,
in Advances in Cryptology — CRYPTO 94, Springer LNCS v 839 pp 425–438

28. “Network Randomization Protocol: A Proactive Pseudo-Random Generator”, CS
Chow, A Herzberg, in Usenix Security 95 pp 55–63

29. “The Omega Key Management Service”, MK Reiter, MK Franklin, JB Lacy, RA
Wright, in Proceedings of the 1996 ACM Conference on Computer and Communi-
cations Security pp 38–47

13


