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Abstract: Sensor networks are event-based systems that differ from traditional
communication networks in several ways: sensor networks have severe energy
constraints, redundant low-rate data, and many-to-one flows. The end-to-end
routing schemes that have been proposed in the literature for mobile ad-hoc
networks are not appropriate under these settings. Data-centric technologies
are needed that perform in-network aggregation of data to yield energy-efficient
dissemination. In this paper we model data-centric routing and compare its
performance with traditional end-to-end routing schemes. We examine the im-
pact of source-destination placement and communication network density on
the energy costs and delay associated with data aggregation. We show that
data-centric routing offers significant performance gains across a wide range of
operational scenarios. We also examine the complexity of optimal data aggre-
gation, showing that although it is an NP-hard problem in general, there exist
useful polynomial-time special cases.
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The Impact of Data Aggregation
in Wireless Sensor Networks

Abstract— Sensor networks are distributed event-based
systems that differ from traditional communication net-
works in several ways: sensor networks have severe en-
ergy constraints, redundant low-rate data, and many-to-one
flows. The end-to-end routing schemes that have been pro-
posed in the literature for mobile ad-hoc networks are not
appropriate under these settings. Data-centric technologies
are needed that perform in-network aggregation of data to
yield energy-efficient dissemination. In this paper we model
data-centric routing and compare its performance with tra-
ditional end-to-end routing schemes. We examine the im-
pact of source-destination placement and communication
network density on the energy costs and delay associated
with data aggregation. We show that data-centric routing
offers significant performance gains across a wide range of
operational scenarios. We also examine the complexity of
optimal data aggregation, showing that although it is an NP-
hard problem in general, there exist useful polynomial-time
special cases.

I. I NTRODUCTION

THE wireless sensor networks of the near future are
envisioned to consist of hundreds to thousands of in-

expensive wireless nodes, each with some computational
power and sensing capability, operating in an unattended
mode. They are intended for a broad range of environ-
mental sensing applications from vehicle tracking to habi-
tat monitoring [3], [18], [23]. The hardware technology
for these networks - low cost processors, miniature sens-
ing and radio modules are here today, with further im-
provements in cost and capabilities expected within the
next decade [3], [12], [14], [18], [19]. The applications,
networking principles and protocols for these systems are
just beginning to be developed [7], [8], [10], [18].

Sensor networks are quintessentially event-based sys-
tems. A sensor network consists of one or more “sinks”
which subscribe to specific data streams by expressing
interests or queries. The sensors in the network act as
“sources” which detect environmental events and push rel-
evant data to the appropriate subscriber sinks. For ex-
ample, there may be a sink that is interested in a partic-
ular spatio-temporal phenomenon (“does the temperature
ever exceed 70 degrees in area A between 10am and 11am
?”). During the given time interval all sensors in the cor-
responding spatial portion of the network act as event-
based publishers. They publish information toward the

subscribing sink if and when they detect the indicated phe-
nomenon.

Because of the requirement of unattended operation in
remote or even potentially hostile locations, sensor net-
works are extremely energy-limited. However since var-
ious sensor nodes often detect common phenomena, there
is likely to be some redundancy in the data the various
sources communicate to a particular sink. In-network fil-
tering and processing techniques can help conserve the
scarce energy resources.

Data aggregationhas been put forward as an essen-
tial paradigm for wireless routing in sensor networks [9],
[13]. The idea is to combine the data coming from differ-
ent sources enroute – eliminating redundancy, minimizing
the number of transmissions and thus saving energy. This
paradigm shifts the focus from the traditionaladdress-
centric approaches for networking (finding short routes
between pairs of addressable end-nodes) to a moredata-
centricapproach (finding routes from multiple sources to
a single destination that allows in-network consolidation
of redundant data).

In this paper we study the energy savings and the delay
tradeoffs involved in data aggregation and how they are
impacted by factors such as source-sink placements and
the density of the network. We also investigate the compu-
tational complexity of optimal data aggregation in sensor
networks and show that although it is generally NP-hard,
there exist polynomial special cases.

II. ROUTING MODELS

We focus our attention on a single network flow that
is assumed to consist of a single data sink attempting
to gather information from a number of data sources.
We start with simple models of routing schemes which
use data aggregation (which we term data-centric), and
schemes which do not (which we term address-centric). In
both cases we assume there are some common elements -
the sink first sends out a query/interest for data, the sensor
nodes which have the appropriate data then respond with
the data. They differ in the manner the data is sent from
the sources to the sink:

Address-centric Protocol (AC): Each source indepen-
dently sends data along the shortest path to sink based on
the route that the queries took ( “end-to-end routing” ).

Data-centric Protocol (DC): The sources send data
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Fig. 1. Illustration of AC versus DC routing

to the sink, but routing nodes enroute look at the con-
tent of the data and perform some form of aggrega-
tion/consolidation function on the data originating at mul-
tiple sources.

Figure 1 is a simple illustration of the difference be-
tween AC and DC schemes. In the address-centric ap-
proach, each source sends its information separately to the
sink (source 1 routing the data labelled “1” through node
A, and source 2 routing the data labelled “2” through nodes
C and B). In the data centric-approach, the data from the
two sources is aggregated at node B, and the combined
data (labelled “1+2”) is sent from B to the sink. The lat-
ter results in energy savings as fewer transmissions are re-
quired to send the information from both sources to the
sink.

III. D ATA AGGREGATION

Data aggregation is the combination of data from dif-
ferent sources, and can be implemented in a number of
ways. The simplest data aggregation function is duplicate
suppression - in the example of figure 1, if sources 1 and
2 both send the same data, node B will send only one of
these forward. Other aggregation functions could bemax,
min, or any other function with multiple inputs. For our
modelling purposes in this paper we make a simplifying
assumption - the aggregation function is such that each in-
termediate node in the routing transmits a single aggregate
packet even if it receives multiple input packets. We will
refer to the information received by the sink when it has
obtained the messages transmitted by all sources in a given
flow (whether or not these messages are aggregated) as a
“datum”.

A. Optimal Aggregation

Say there arek sources, labelledS1 throughSk, and a
sink, labelledD. Let the network graphG = (V,E) con-
sist of all the nodesV , with E consisting of edges between

nodes that can communicate with each other directly. With
the assumption that the number of transmissions from any
node in the data aggregation tree is exactly one, the data
aggregation tree can be thought of as the reverse of a mul-
ticast tree: instead of a single source sending a packet to
all receivers, all the sources are sending a single packet to
the same receiver. It is well-known that the multicast tree
with a minimum number of edges is a minimum Steiner
tree on the network graph. The following can therefore be
readily obtained:

Result 1: The optimum number of transmissions re-
quired per datum for the DC protocol is equal to the num-
ber of edges in the minimum Steiner tree in the network
which contains the node set(S1, ...Sk, D).

Corollary: Assuming an arbitrary placement of sources,
and a general network graph G, the task of doing DC rout-
ing with optimal data aggregation is NP-hard.

The latter follows from the NP-completeness of the min-
imum Steiner problem on Graphs [24].

B. Suboptimal Aggregation

The following are three generally suboptimal schemes
for generating data aggregation trees that we examine in
this paper.
1. Center at Nearest Source (CNS): In this data aggre-
gation scheme, the source which is nearest the sink acts
as the aggregation point. All other sources send their data
directly to this source which then sends the aggregated in-
formation on to the sink.
2. Shortest Paths Tree (SPT): In this data aggregation
scheme, each source sends its information to the sink along
the shortest path between the two. Where these paths over-
lap for different sources, they are combined to form the
aggregation tree.
3. Greedy Incremental Tree (GIT) : In this scheme the
aggregation tree is built sequentially. At the first step the
tree consists of only the shortest path between the sink and
the nearest source. At each step after that the next source
closest to the current tree is connected to the tree.

This is by no means an exhaustive list, but is represen-
tative of some of the data aggregation tree heuristics that
can be implemented.

C. Performance measures

In exploring the gains and tradeoffs involved in data-
centric protocols, we need to specify performance mea-
sures of interest. Two are examined in some detail in this
paper:
• Energy Savings: By aggregating the information com-
ing from the sources, the number of transmissions is re-
duced, translating to a savings in energy.
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Fig. 2. Illustration of the event-radius model for source posi-
tions

Fig. 3. Illustration of the random-sources model for source po-
sitions

• Delay: There is latency associated with aggregation.
Data from nearer sources may have to be held back at in-
termediate nodes in order to combine them with data from
sources that are farther away.

D. Source Placement Models

The chief factors that can affect the performance of data
aggregation methods are the positions of the sources in the
network, the number of sources, and the communication
network topology. In order to investigate these factors, we
study two models of source placement, the event-radius
(ER) model, and the random sources (RS) model. In both
models, we generate a sensor network by scatteringn sen-
sor nodes randomly in a unit square. One of these nodes is
the data sink. All nodes are assumed to be able to commu-
nicate with any other nodes that are within some distance
R (the communication radius). The location of the data
sources depends on the models as follows:
• Event-Radius Model: In this model, a single point in
the unit square is defined as the location of an “event.” This
may correspond to a vehicle or some other phenomenon
being tracked by the sensor nodes. All nodes within a dis-
tanceS (called the sensing range) of this event that are not

sinks are considered to be data sources. The average num-
ber of sources is approximatelyπ ∗ S2 ∗ n (somewhat less
than this if we take into account boundary effects). This
model is shown in figure 2.
• Random-Sources Model: In this model,k of the nodes
that are not sinks are randomly selected to be sources. Un-
like in the event-radius model, the sources are not neces-
sarily clustered near each other. This is illustrated in figure
3.

IV. ENERGY SAVINGS DUE TO DATA AGGREGATION

A. Theoretical Results

We now give some analytical bounds on the energy costs
and savings that can be obtained with data aggregation,
based on the distances between the sources and the sink,
and the inter-distances among the sources. The upshot of
this section is that the greatest gains due to data aggrega-
tion are obtained when the sources are all close together
and far away from the sink.

Let di be the distance of the shortest path from source
Si to the sink in the graph. Per datum, the total number of
transmissions required for the optimal AC protocol in this
case (call itNA) is:

NA = d1 + d2 + ...dk = sum(di) (1)

Let the number of transmissions required for the optimal
DC protocol beND.

Definition: The “diameter” X of a set of nodesS
in a graphG is the maximum of the pairwise shortest
paths between these nodesX = maxi,j∈SSP (i, j) where
SP (i, j) is the shortest number of hops needed to go from
nodei to j in G.

Result 2: If the source nodesS1, S2, . . . Sk have a di-
ameterX ≥ 1. The total number of transmissions (ND)
required for the optimal DC protocol satisfies the follow-
ing bounds:

ND ≤ (k − 1)X + min(di) (2)

ND ≥ min(di) + (k − 1) (3)

Proof : (2) can be obtained by a construction - the data
aggregation tree which consists of(k−1) sources sending
their packets to the remaining source which is nearest to
the sink. This tree has no more than(k − 1)X + min(di)
edges, hence the optimum tree must have no more than
this. (3) is obtained by considering the smallest possi-
ble Steiner tree which would happen if the diameter were
1. In this case, the shortest path from the source node at
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min(di) must be part of the minimum Steiner tree, and
there is exactly one edge from each of the other source
nodes to this node.�

Result 3: If the diameterX < min(di), thenND <
NA. In other words, the optimum data-centric protocol
will perform strictly better than the AC protocol in terms
of the total number of transmissions.

Proof :

⇒ ND < (k − 1)X + min(di) < (k)min(di)
⇒ ND < sum(di) = NA. (4)

�

Definition : Let us define the fractional savings,FS,
obtained by using the DC protocol as opposed to the AC
protocol as follows:

FS = (NA −ND)/(NA) (5)

FS can range from 0 (no savings) to 1 (100 percent sav-
ings). The following are the lower and upper bounds on
FS, which follow directly from (2) and (3) and the above
definition.

Result 4: The fractional savings FS satisfies the follow-
ing bounds:

FS ≥ 1− ((k − 1)X + min(di))/sum(di) (6)

FS ≤ 1− (min(di) + k − 1)/sum(di) (7)

To clarify the matter, assume that all the sources are
at the same shortest-path distance from the sink. i.e.
min(di) = max(di) = d.

Then we have that

1− ((k − 1)X + d)
kd

≤ FS

≤ 1− (d + k − 1)
(kd)

(8)

Result 5: Assume X and k are fixed, then as d tends to
infinity (i.e. as the sink is farther and farther away from
the sources):

limd→∞FS = 1− 1/k. (9)

Proof:
In the limit, X << d, andk << d. It suffices to show

that both lower and upper bounds in (8) converge to the
same right hand side value:

limd→∞

(
1− (k − 1)X + d

kd

)
= limd→∞

(
1− (k − 1)X

kd
− d

kd

)
= 1− 1/k (10)

and

limd→∞

(
1− (d + k − 1)

(kd)

)
= limd→∞

(
1− d

kd
− (k − 1)

kd

)
= 1− 1/k (11)

�

Result 6 tells us that if the distance between the sink
and the sources is large compared to the distance between
the sources, then the optimal DC protocol gives k-fold sav-
ings. For example, when there are 4 sources that are close
together and located far-away from the sink, then the AC
protocol will have about 4 times as many transmissions,
i.e. there are roughly 75% fewer transmissions with data
aggregation.

Result 6: If the subgraphG′ of the communication
graphG induced by the set of source nodes(S1, . . . Sk) is
connected, the optimal data aggregation tree can be formed
in polynomial time.

Proof: The proof is constructive. Start GIT. The tree is
initialized with the path from the sink to the nearest source.
At each additional step of the GIT, the next source to be
connected to the tree is always exactly one step away (such
a source is guaranteed to exist sinceG′ is connected). At
the end of the construction, the number of edges in the tree
is thereforedmin+(k−1), which is the lower bound given
in relation (3). Hence the lower bound is tight and there-
fore optimal. The GIT construction runs in polynomial
time w.r.t. the number of nodes [21]. Hence although find-
ing the optimal data aggregation tree is NP-hard in general,
in this particular situation, we have a polynomial special-
case.�

Result 7: In the ER model, whenR > 2S, the optimal
data aggregation tree can be formed in polynomial time.

Proof: It is easy to see that whenR > 2S, all sources
are within one hop of each other. This is therefore a special
case of result 8. Under this condition, both GIT and CNS
schemes will result in the optimal data aggregation tree.�

B. Experimental Results

We now present our experimental results showing the
energy costs of AC and DC protocols for both the ER and
RS source placement models. The experimental setup is as
follows: for the ER model, 5 evenly spaced values of the
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Fig. 4. Comparison of energy costs versus communication ra-
dius in event-radius model

Fig. 5. Comparison of energy costs versus sensing range in
event-radius model

sensing rangeS from 0.1 to 0.3 are tested, while for the
RS model the number of sourcesk is varied 1 to 15 in in-
crements of 2. For both models the communication radius
R is varied from 0.15 to 0.45 in increments of 0.05. For
each combination ofS or k andR 100 experiments were
run. Each experiment consists of a random placement of
then = 100 nodes including the sink node in a square are
of unit size. In some cases (particularly when the values
of E or R are low) a particular experiment may result in
unconnected graphs or no sources; the measurements from
these cases are not taken into account while computing the
averages. The error-bars shown in the plots represent the
standard error in the mean.

Figure 4 compares the transmission energy costs of the
various protocols as the communication range is varied,
keeping the sensing range constant at 0.2 (which corre-
sponds to about 12.5 sources on average, ignoring edge-
effects). At the very bottom is the lower bound onND

given in relation 3. In this figure it can be seen that
the GITDC seems to coincide with the lower bound all
throughout. This is because whenS is even of moder-
ate length, with high probability, the subgraph which lies
within the circle of radiusS around the event is connected,

Fig. 6. Comparison of energy costs versus communication ra-
dius in random-sources model

Fig. 7. Comparison of energy costs versus number of sources
in random-sources model

and result 7 holds. The performance of the CNSDC ap-
proaches optimal asR increases, as per result 8. The
SPTDC protocol also performs well all through. In all
cases there is a50 − 80% savings compared to the AC
protocol. Figure 6 is the equivalent plot for the Random
Sources Model. The first thing to note is that the lower
bound is no longer tight, since the sources are placed ran-
domly anywhere in the network and unless the network is
dense (highR) the sources are unlikely to be within one
hop of each other. In this setting the GITDC performs the
best, followed by SPTDC, CNSDC and AC, respectively.
CNSDC performs poorly in this setting since the sources
are far apart and it doesn’t pay to always aggregate at the
source nearest to the sink.

Figures 5 and 7 both show that the transmission costs in-
crease as the number of sources is increased. In the event-
radius model, it can be seen that the CNSDC protocol per-
forms poorly when the sensing range is really large. When
S = 0.3, nearly a third of all nodes in the experiments act
as sources and for many of these sources it may be faster
to route directly to the sink rather than through one par-
ticular source that is closest to the sink. Figure 7 shows
that the gains due to a good data aggregation technique
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Fig. 8. Distance of sink to nearest and farthest source versus
communication radius in event-radius model

Fig. 9. Distance of sink to nearest and farthest source versus
sensing range in event-radius model

(like GITDC) can be very significant when the number of
sources is high.

To summarize, our experiments show that the energy
gains due to data aggregation can be quite significant with
SPTDC or GITDC particularly when there are are a lot of
sources (largeS or largek) that are many hops from the
sink (smallR).

V. DELAY DUE TO DATA AGGREGATION

Although data aggregation results in fewer transmis-
sions, there is a tradeoff - potentially greater delay because
data from nearer sources may have to be held back at an
intermediate node in order to be aggregated with data com-
ing from sources that are farther away. This can be seen by
referring back to figure 1; in figure 1b, node B which acts
as the aggregating node for sources 1 and 2, is only one
hop from source 1 but is two hops from source 2. Thus
if both sources transmit the data simultaneously, the data
from source 1 will get to B before the data from source 2
and take longer to get to the sink than it would in the no
aggregation scheme shown in figure 1a. Note that this de-
lay depends on the aggregation function - for some simple

Fig. 10. Distance of sink to nearest and farthest source versus
communication radius in random-sources model

Fig. 11. Distance of sink to nearest and farthest source versus
number of sources in random-sources model

kinds of data aggregation such as duplicate suppression,
there is no need for data to be withheld at an aggregating
node. For more complicated forms of data aggregation,
where the output aggregated packet depends on the com-
bination of multiple input packets this delay is an issue.

It can be seen that, in the worst case, the latency due
to aggregation will be proportional to the number of hops
between the sink and the farthest source. When no aggre-
gation is employed, the delay between the time when the
various sources transmit data and the sink receives the first
packet is proportional to the number of hops between the
sink and the nearest source. Hence one way to quantify the
effect of aggregation delay is to examine the difference be-
tween these two distances. This is shown in figures 8-11.
The experimental setup is the same as discussed in section
IV-B. The upper curve in all these figures is representative
of the latency delay in DC schemes with non-trivial aggre-
gation functions and the lower curve is representative of
the latency delay in AC schemes. The difference between
these curves is greatest in both models when the commu-
nication radius is low, and when the number of sources is
high. In figure 11, as the number of sources increases the
two curves saturate to extreme values. The upper curve



7

saturates to a value of about 4 which is about the maxi-
mum number of hops between the sink and any node in
the network. The lower curve saturates at a value close to
the minimum number of hops (1).

It should be noted that there are two other possible
sources of delay that we have not taken into account - de-
lay due to congestion and the processing delay. We chose
not to model the delay due to congestion as this would de-
pend on a number of additional details such as the MAC
protocol used, and the traffic in the network which are not
likely to have a differential impact on data-centric versus
address-centric protocols. The processing delay at each
node is a second order effect and unlikely to be a signifi-
cant issue for most anticipated forms of aggregation.

VI. RELATED WORK

The use of sensor networks has been envisioned in a
range of settings such as industrial applications [23], vehi-
cle tracking applications [18] and habitat monitoring [3].
A number of independent efforts have been made in recent
years to develop the hardware and software architectures
needed for wireless sensing. Of particular note are UC
Berkeley’s Smart Dust Motes [14], TinyOS [12], and the
PicoRadio [19] project; the Wireless Integrated Network
Sensors (WINS) project [18] and PC-104 based sensors [3]
developed at University of California Los Angeles; and the
µAMPS project at MIT [16]. The challenges and design
principles involved in networking these devices are dis-
cussed in [7], [8], and [15]. Energy-efficient medium ac-
cess schemes applicable for sensor networks are presented
in [5], and [25]. Techniques for balancing the energy load
among sensors using randomized rotation of cluster heads
are discussed in [11]. Some attention has also been given
to developing localized self-configuration mechanisms in
sensor networks [4].

The great majority of wireless routing protocols devel-
oped in recent years have been for mobile ad-hoc commu-
nication networks [17]. These approaches are all address-
centric, in that they are focused on end-to-end routing be-
tween pairs of addressable nodes.

The application-specific nature of sensor networks leads
to the alternative approach we have described in this pa-
per as data-centric. The meta-naming of data is suggested
in [10] as a means to reduce transmission of redundant
data for flooding-like schemes for information dissemina-
tion. TheDirected diffusionprotocol, which is most like
the data-centric routing models analyzed in this paper, is
described in [13]. A physical implementation of directed
diffusion with a small wireless sensor test-bed consisting
of 14 nodes with 4 sources and a single sink is described in
[9]. For the particular configuration described in that paper

the form of data aggregation used (duplicate suppression)
is observed to reduce the traffic by up to42%. Our work
has generalized that result by showing the performance
of data aggregation for a wide range of source placement
topologies and densities in a larger network. Also, the ef-
fect of data aggregation on delay has not been discussed
much previously in the literature.

The use of in-network processing during routing has
also been considered in other contexts such as fsActive
Networks [22], and router-assist techniques for multicast
on the internet [2].

Optimal data aggregation, as we have shown in this pa-
per, requires the formation of a minimum Steiner tree, a
well known NP-complete problem arising in many net-
working contexts [24]. The greedy incremental tree (GIT)
heuristic scheme described in our paper is a well-known
approximation algorithm for this problem [21] with an ap-
proximation ratio of 2. A distributed version of this algo-
rithm is discussed in [1]. The best known approximation
algorithm for the minimum Steiner tree problem has an
approximation ratio of about 1.55 [20].

Finally, we mention here in passing that there is another
sense in which the phrase “data-centric networking” has
been used [6]; namely to describe an approach to ubiqui-
tous computing in which human users are identified not
with static computing devices but with their personalized
services and data.

VII. C ONCLUSIONS

Wireless sensor networks are an important type of
resource-constrained distributed event-based systems. We
have modelled and analyzed the performance of data ag-
gregation in such networks.

We identified and investigated some of the factors af-
fecting performance, such as the number of placement of
sources, and the communication network topology. The
formation of an optimal data aggregation tree is generally
NP-hard. We presented some suboptimal data aggrega-
tion tree generation heuristics and showed the existence
of polynomial special cases.

The modelling tells us that whether the sources are clus-
tered near each other or located randomly, significant en-
ergy gains are possible with data aggregation. These gains
are greatest when the number of sources is large, and when
the sources are located relatively close to each other and far
from the sink. The modelling, though, also seems to sug-
gest that aggregation latency could be non-negligible and
should be taken into consideration during the design pro-
cess. Data-centric architectures such as directed diffusion
should support a Type of Service (TOS) facility that would
permit applications to effect desired tradeoffs between la-
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tency and energy.
Our analysis has focused on the case where there is a

single sink. Although this is a reasonable scenario for
many applications, it is reasonable to ask what would hap-
pen if there were additional sinks. One solution is to think
of the different flows in that case as a superposition of
many single sink data-flows. However, this would yield
an over-estimate of the energy costs, as further aggrega-
tion savings can be possible if there are redundancies in
the sources and the data being requested by the various
sinks. This is a topic for further study.

In-system processing of data is useful to avoid over-
whelming the consumer of data notification, be it a per-
son or a program. Thus the results we have presented
in this paper for a resource-constrained event-based sys-
tem might well hold important design lessons for scalable
event-based systems, even if they are less constrained.
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