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Abstract: Sensor networks are event-based systems that differ from traditional
communication networks in several ways: sensor networks have severe energy
constraints, redundant low-rate data, and many-to-one flows. The end-to-end
routing schemes that have been proposed in the literature for mobile ad-hoc
networks are not appropriate under these settings. Data-centric technologies
are needed that perform in-network aggregation of data to yield energy-efficient
dissemination. In this paper we model data-centric routing and compare its
performance with traditional end-to-end routing schemes. We examine the im-
pact of source-destination placement and communication network density on
the energy costs and delay associated with data aggregation. We show that
data-centric routing offers significant performance gains across a wide range of
operational scenarios. We also examine the complexity of optimal data aggre-
gation, showing that although it is an NP-hard problem in general, there exist
useful polynomial-time special cases.



The Impact of Data Aggregation
INn Wireless Sensor Networks

Abstract— Sensor networks are distributed event-based subscribing sink if and when they detect the indicated phe-
systems that differ from traditional communication net- nomenon.
works in several ways: sensor networks have severe en- Because of the requirement of unattended operation in
ergy constraints, redundant low-rate data, and many-to-oneé o \qte or even potentially hostile locations, sensor net-
flows. The end-to-end routing schemes that have been pro- o .
works are extremely energy-limited. However since var-

posed in the literature for mobile ad-hoc networks are not |
appropriate under these settings. Data-centric technologies I0US S€nsor nodes often detect common phenomena, there

are needed that perform in-network aggregation of data to IS likely to be some redundancy in the data the various
yield energy-efficient dissemination. In this paper we model sources communicate to a particular sink. In-network fil-
data-centric routing and compare its performance with tra- tering and processing techniques can help conserve the
ditional end-to-end routing schemes. We examine the im- scarce energy resources.

pact of sourcg-destination placement and communication  paig aggregationhas been put forward as an essen-
network density on the energy costs and delay assoc'ate‘jtial paradigm for wireless routing in sensor networks [9],

with data aggregation. We show that data-centric routing ; . . . .
offers significant performance gains across a wide range of [13]. The idea is to combine the data coming from differ-

operational scenarios. We also examine the complexity of €Nt sources enroute — eliminating redundancy, minimizing
optimal data aggregation, showing that although itis an NP- the number of transmissions and thus saving energy. This
hard problem in general, there exist useful polynomial-time paradigm shifts the focus from the traditioradidress-
special cases. centric approaches for networking (finding short routes
between pairs of addressable end-nodes) to a iz
centricapproach (finding routes from multiple sources to
a single destination that allows in-network consolidation
HE wireless sensor networks of the near future aoéredundant data).
envisioned to consist of hundreds to thousands of in-In this paper we study the energy savings and the delay

expensive wireless nodes, each with some computatiotrateoffs involved in data aggregation and how they are
power and sensing capability, operating in an unattendetpacted by factors such as source-sink placements and
mode. They are intended for a broad range of enviratie density of the network. We also investigate the compu-
mental sensing applications from vehicle tracking to haligtional complexity of optimal data aggregation in sensor
tat monitoring [3], [18], [23]. The hardware technologyetworks and show that although it is generally NP-hard,
for these networks - low cost processors, miniature setisere exist polynomial special cases.
ing and radio modules are here today, with further im-
provements in cost and capabilities expected within the Il. ROUTING MODELS
next decade [3], [12], [14], [18], [19]. The applications, We focus our attention on a single network flow that
networking principles and protocols for these systems ageassumed to consist of a single data sink attempting
just beginning to be developed [7], [8], [10], [18]. to gather information from a number of data sources.

Sensor networks are quintessentially event-based sye start with simple models of routing schemes which
tems. A sensor network consists of one or more “sinkg’se data aggregation (which we term data-centric), and
which subscribe to specific data streams by expresssmhemes which do not (which we term address-centric). In
interests or queries. The sensors in the network actlash cases we assume there are some common elements -
“sources” which detect environmental events and push riée sink first sends out a query/interest for data, the sensor
evant data to the appropriate subscriber sinks. For @éodes which have the appropriate data then respond with
ample, there may be a sink that is interested in a parttbe data. They differ in the manner the data is sent from
ular spatio-temporal phenomenon (“does the temperattine sources to the sink:
ever exceed 70 degrees in area A between 10am and 1laiddress-centric Protocol (AC) Each source indepen-
?”). During the given time interval all sensors in the codently sends data along the shortest path to sink based on
responding spatial portion of the network act as everhe route that the queries took ( “end-to-end routing”).
based publishers. They publish information toward the Data-centric Protocol (DC). The sources send data

I. INTRODUCTION



nodes that can communicate with each other directly. With
the assumption that the number of transmissions from any
l z node in the data aggregation tree is exactly one, the data
aggregation tree can be thought of as the reverse of a mul-
2 ticast tree: instead of a single source sending a packet to
all receivers, all the sources are sending a single packet to

the same receiver. It is well-known that the multicast tree

with a minimum number of edges is a minimum Steiner

Sink Sink tree on the network graph. The following can therefore be
) AC Routing b) DC Routing readily obtained:

Result T The optimum number of transmissions re-
quired per datum for the DC protocol is equal to the num-
ber of edges in the minimum Steiner tree in the network
_ _ which contains the node sgt1, ...Sk, D).
to the sink, but routing nodes enroute look at the con-cqrqiary: Assuming an arbitrary placement of sources,
tent of the data and perform some form of aggredgnq a general network graph G, the task of doing DC rout-
tion/consolidation function on the data originating at mu|ﬁg with optimal data aggregation is NP-hard.
tiple sources. The latter follows from the NP-completeness of the min-

Figure 1 is a simple illustration of the difference bey,um Steiner problem on Graphs [24].
tween AC and DC schemes. In the address-centric ap-
proach, each source sends its information separately to BaeSuboptimal Aggregation

sink (source 1 routing the data labelled “1” through node The following are three generally suboptimal schemes

A, andsource 2 routing the (_jatalabelled "2"through nodgs, generating data aggregation trees that we examine in
C and B). In the data centric-approach, the data from t s paper

two sources Is aggregated at node B, and the Combirfd(:enter at Nearest Source (CNS)In this data aggre-

data (labelled “1+27) is sent from B to the sink. The Iatgation scheme, the source which is nearest the sink acts

ter results in energy savings as fewer transmissions are{&ine aggregation point. All other sources send their data

quired to send the information from both sources to ﬂ?ﬁreetly to this source which then sends the aggregated in-

sink. formation on to the sink.

2. Shortest Paths Tree (SPT). In this data aggregation

scheme, each source sends its information to the sink along
Data aggregation is the combination of data from difhe shortest path between the two. Where these paths over-

ferent sources, and can be implemented in a numberg} for different sources, they are combined to form the

ways. The simplest data aggregation function is duplicaiggregation tree.

suppression - in the example of figure 1, if sources 1 agd Greedy Incremental Tree (GIT) : In this scheme the

2 both send the same data, node B will send only one#fgregation tree is built sequentially. At the first step the

these forward. Other aggregation functions couldna tree consists of only the shortest path between the sink and

min, or any other function with multiple inputs. For outhe nearest source. At each step after that the next source

modelling purposes in this paper we make a simplifyingosest to the current tree is connected to the tree.

assumption - the aggregation function is such that each inThis is by no means an exhaustive list, but is represen-

termediate node in the routing transmits a single aggreggiive of some of the data aggregation tree heuristics that

packet even if it receives multiple input packets. We wilan be implemented.

refer to the information received by the sink when it has

obtained the messages transmitted by all sources in a gitenPerformance measures

flow (whether or not these messages are aggregated) as|g exploring the gains and tradeoffs involved in data-
“datum”. centric protocols, we need to specify performance mea-
sures of interest. Two are examined in some detail in this
paper:

Say there aré sources, labelled; throughSy, and a « Energy Savings By aggregating the information com-
sink, labelledD. Let the network graplir = (V, E') con- ing from the sources, the number of transmissions is re-
sist of all the node¥’, with £ consisting of edges betweerduced, translating to a savings in energy.

Source 2 Source 2

Source 1

Fig. 1. lllustration of AC versus DC routing

1. DATA AGGREGATION

A. Optimal Aggregation



sources sinks are considered to be data sources. The average num-
A ST ber of sources is approximatetyx S? x n (somewhat less
e ' than this if we take into account boundary effects). This
model is shown in figure 2.
|| event « Random-Sources Model In this model .k of the nodes
that are not sinks are randomly selected to be sources. Un-
like in the event-radius model, the sources are not neces-
sarily clustered near each other. This is illustrated in figure

3.

IV. ENERGY SAVINGS DUE TO DATA AGGREGATION

Fig. 2. lllustration of the event-radius model for source posh. Theoretical Results

ion . .
tions We now give some analytical bounds on the energy costs

and savings that can be obtained with data aggregation,
based on the distances between the sources and the sink,
and the inter-distances among the sources. The upshot of
this section is that the greatest gains due to data aggrega-
k=10 tion are obtained when the sources are all close together
sourees and far away from the sink.
Let d; be the distance of the shortest path from source
S; to the sink in the graph. Per datum, the total number of
transmissions required for the optimal AC protocol in this
case (call itV ,) is:

SOUrces

Fig. 3. llustration of the random-sources model for source po-

sitions Nao=dy +dy+ ...dx, = sum(d;) D)

Let the number of transmissions required for the optimal
« Delay: There is latency associated with aggregatiomC protocol beN.

Data from nearer sources may have to be held back at inpefinitiorr The “diameter” X of a set of nodesS

termediate nodes in order to combine them with data frgm a grath is the maximum of the pairwise shortest
sources that are farther away. paths between these nod¥s= maz; jcsSP(i, j) where
SP(i,j) is the shortest number of hops needed to go from
nodei to j in G.

The chief factors that can affect the performance of dataResult 2 If the source node$, Ss, .. .S, have a di-
aggregation methods are the positions of the sources in#igeterX > 1. The total number of transmissiond’f)
network, the number of sources, and the communicatiggquired for the optimal DC protocol satisfies the follow-
network topology. In order to investigate these factors, vilgg bounds:
study two models of source placement, the event-radius
(ER) model, and the random sources (RS) model. In both
models, we generate a sensor network by scatterisen- Np < (k—1)X + min(d;) 2
sor nodes randomly in a unit square. One of these nodes is Np > min(d;) + (k —1) ©)
the data sink. All nodes are assumed to be able to commu-
nicate with any other nodes that are within some distanceProof : (2) can be obtained by a construction - the data
R (the communication radius). The location of the datggregation tree which consists(éf— 1) sources sending
sources depends on the models as follows: their packets to the remaining source which is nearest to
» Event-Radius Modet In this model, a single point in the sink. This tree has no more th@n— 1) X + min(d;)
the unit square is defined as the location of an “event.” Theslges, hence the optimum tree must have no more than
may correspond to a vehicle or some other phenomerntbis. (3) is obtained by considering the smallest possi-
being tracked by the sensor nodes. All nodes within a disle Steiner tree which would happen if the diameter were
tanceS (called the sensing range) of this event that are nbt In this case, the shortest path from the source node at

D. Source Placement Models



min(d;) must be part of the minimum Steiner tree, and

there is exactly one edge from each of the other source

nodes to this nodé.] limg— oo <1 —
Result 3 If the diameterX < min(d;), thenNp <

Ny. In other words, the optimum data-centric protocol — jjm, <1 _k-DX d > =1-1/k (10)

(k—1)X +d
Jd >

will perform strictly better than the AC protocol in terms kd kd
of the total number of transmissions. and
Proof :
= Np < (k — 1)X + min(d;) < (k)min(d;) limy <1 _(d+k- 1))
= Np < sum(d;) = No.  (4) (kd)
d k—1
0 :limd_)"o(l_kd_(kd >>:1—1/k (11)

Definition : Let us define the fractional savings,s, -

obtained by using the DC protocol as opposed to the ACResult 6 tells us that if the distance between the sink
protocol as follows: and the sources is large compared to the distance between
the sources, then the optimal DC protocol gives k-fold sav-
ings. For example, when there are 4 sources that are close
FS = (Na— Np)/(Na) (5) together and located far-away from the sink, then the AC
protocol will have about 4 times as many transmissions,
F'S can range from O (no savings) to 1 (100 percent saVe. there are roughly 7% fewer transmissions with data
ings). The following are the lower and upper bounds Qfygregation.

F'S, which follow directly from (2) and (3) and the above Result 6 If the subgraphG’ of the communication

definition. . ' o graphG induced by the set of source nodés, . .. S) is
~ Result4 The fractional savings FS satisfies the followconnected, the optimal data aggregation tree can be formed
ing bounds: in polynomial time.

Proof: The proof is constructive. Start GIT. The tree is
FS>1—((k=1X +min(d;))/sum(d;) (6) initialized with the path from the sink to the nearest source.
FS <1— (min(d;) +k —1)/sum(d;) (7) At each additional step of the GIT, the next source to be
connected to the tree is always exactly one step away (such
To clarify the matter, assume that all the sources aigsource is guaranteed to exist siti@eis connected). At
at the same shortest-path distance from the sink. ige end of the construction, the number of edges in the tree
min(d;) = mazx(d;) = d. is thereforel, i, + (k— 1), which is the lower bound given
Then we have that in relation (3). Hence the lower bound is tight and there-
fore optimal. The GIT construction runs in polynomial

(k= 1D)X +d) ) time w.r.t. the number of nodes [21]. Hence although find-

1-— rd <FS ing the optimal data aggregation tree is NP-hard in general,
in this particular situation, we have a polynomial special-
(d+k—-1)

Result 7 In the ER model, whe® > 25, the optimal

infinity (i.e. as the sink is farther and farther away from Proof: Itis easy to see that whef > 2.5, all sources
the sources): are within one hop of each other. This is therefore a special

case of result 8. Under this condition, both GIT and CNS
schemes will result in the optimal data aggregation ffee.

limg_ooF'S=1—-1/k. 9 _
HMd—o0 / © B. Experimental Results
Proof: We now present our experimental results showing the
In the limit, X << d, andk << d. It suffices to show energy costs of AC and DC protocols for both the ER and
that both lower and upper bounds in (8) converge to tiRS source placement models. The experimental setup is as
same right hand side value: follows: for the ER model, 5 evenly spaced values of the
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sensing range& from 0.1 to 0.3 are tested, while for theand result 7 holds. The performance of the CNSDC ap-
RS model the number of sourckss varied 1 to 15 in in- proaches optimal a® increases, as per result 8. The
crements of 2. For both models the communication radi8®TDC protocol also performs well all through. In all
R is varied from 0.15 to 0.45 in increments of 0.05. Farases there is 80 — 80% savings compared to the AC
each combination of or k£ and R 100 experiments were protocol. Figure 6 is the equivalent plot for the Random
run. Each experiment consists of a random placement3durces Model. The first thing to note is that the lower
then = 100 nodes including the sink node in a square at®und is no longer tight, since the sources are placed ran-
of unit size. In some cases (particularly when the valudemly anywhere in the network and unless the network is
of F or R are low) a particular experiment may result imense (highR) the sources are unlikely to be within one
unconnected graphs or no sources; the measurements fhem of each other. In this setting the GITDC performs the
these cases are not taken into account while computing best, followed by SPTDC, CNSDC and AC, respectively.
averages. The error-bars shown in the plots represent @¢SDC performs poorly in this setting since the sources
standard error in the mean. are far apart and it doesn't pay to always aggregate at the
Figure 4 compares the transmission energy costs of #mirce nearest to the sink.
various protocols as the communication range is varied,Figures 5 and 7 both show that the transmission costs in-
keeping the sensing range constant at 0.2 (which corceease as the number of sources is increased. In the event-
sponds to about 12.5 sources on average, ignoring edgehus model, it can be seen that the CNSDC protocol per-
effects). At the very bottom is the lower bound &7 forms poorly when the sensing range is really large. When
given in relation 3. In this figure it can be seen thaf = 0.3, nearly a third of all nodes in the experiments act
the GITDC seems to coincide with the lower bound adls sources and for many of these sources it may be faster
throughout. This is because whehis even of moder- to route directly to the sink rather than through one par-
ate length, with high probability, the subgraph which liescular source that is closest to the sink. Figure 7 shows
within the circle of radiuss around the event is connectedthat the gains due to a good data aggregation technique
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&inds of data aggregation such as duplicate suppression,
there is no need for data to be withheld at an aggregating

To summarize, our experiments show that the enernode. For more complicated forms of data aggregation,

. . o ere the output aggregated packet depends on the com-
gains due to data aggregation can be quite significant Wt'*mation of multiple input packets this delay is an issue.

SPTDC or GITDC particularly when there are are a lot 0 .
It can be seen that, in the worst case, the latency due
sources (larges or largek) that are many hops from the . ) .
sink (smallR). to aggregatlon_ will be proportional to the number of hops
between the sink and the farthest source. When no aggre-
gation is employed, the delay between the time when the
various sources transmit data and the sink receives the first
Although data aggregation results in fewer transmipacket is proportional to the number of hops between the
sions, there is a tradeoff - potentially greater delay becaisiek and the nearest source. Hence one way to quantify the
data from nearer sources may have to be held back atedfiect of aggregation delay is to examine the difference be-
intermediate node in order to be aggregated with data camveen these two distances. This is shown in figures 8-11.
ing from sources that are farther away. This can be seenTie experimental setup is the same as discussed in section
referring back to figure 1; in figure 1b, node B which act¥/-B. The upper curve in all these figures is representative
as the aggregating node for sources 1 and 2, is only afahe latency delay in DC schemes with non-trivial aggre-
hop from source 1 but is two hops from source 2. Thuymtion functions and the lower curve is representative of
if both sources transmit the data simultaneously, the d#te latency delay in AC schemes. The difference between
from source 1 will get to B before the data from sourcethese curves is greatest in both models when the commu-
and take longer to get to the sink than it would in the nication radius is low, and when the number of sources is
aggregation scheme shown in figure 1a. Note that this dégh. In figure 11, as the number of sources increases the
lay depends on the aggregation function - for some simpleo curves saturate to extreme values. The upper curve

(like GITDC) can be very significant when the number
sources is high.

V. DELAY DUE TO DATA AGGREGATION



saturates to a value of about 4 which is about the matie form of data aggregation used (duplicate suppression)
mum number of hops between the sink and any nodeignobserved to reduce the traffic by up42%. Our work
the network. The lower curve saturates at a value closehi@s generalized that result by showing the performance
the minimum number of hops (1). of data aggregation for a wide range of source placement
It should be noted that there are two other possibiepologies and densities in a larger network. Also, the ef-
sources of delay that we have not taken into account - deet of data aggregation on delay has not been discussed
lay due to congestion and the processing delay. We chosech previously in the literature.
not to model the delay due to congestion as this would de-The use of in-network processing during routing has
pend on a number of additional details such as the MAIso been considered in other contexts such as fsActive
protocol used, and the traffic in the network which are nbletworks [22], and router-assist techniques for multicast
likely to have a differential impact on data-centric versum the internet [2].
address-centric protocols. The processing delay at eacloptimal data aggregation, as we have shown in this pa-
node is a second order effect and unlikely to be a signifier, requires the formation of a minimum Steiner tree, a
cant issue for most anticipated forms of aggregation.  well known NP-complete problem arising in many net-
working contexts [24]. The greedy incremental tree (GIT)
VI. RELATED WORK heuristic scheme described in our paper is a well-known

The use of sensor networks has been envisioned iRProximation algorithm for this problem [21] with an ap-
range of settings such as industrial applications [23], velpiroximation ratio of 2. A distributed version of this algo-
cle tracking applications [18] and habitat monitoring [3Fithm is discussed in [1]. The best known approximation
A number of independent efforts have been made in rec@fgorithm for the minimum Steiner tree problem has an
years to develop the hardware and software architectup@proximation ratio of about 1.55 [20].
needed for wireless sensing. Of particular note are UCFinally, we mention here in passing that there is another
Berkeley’s Smart Dust Motes [14], TinyOS [12], and th&ense in which the phrase “data-centric networking” has
PicoRadio [19] project; the Wireless Integrated Netwotkeen used [6]; namely to describe an approach to ubiqui-
Sensors (WINS) project [18] and PC-104 based sensors{f@}s computing in which human users are identified not
developed at University of California Los Angeles; and th&ith static computing devices but with their personalized
uAMPS project at MIT [16]. The challenges and desig@érvices and data.
principles involved in networking these devices are dis-
cussed in [7], [8], and [15]. Energy-efficient medium ac-
cess schemes applicable for sensor networks are presentéflireless sensor networks are an important type of
in [5], and [25]. Techniques for balancing the energy loagsource-constrained distributed event-based systems. We
among sensors using randomized rotation of cluster heddse modelled and analyzed the performance of data ag-
are discussed in [11]. Some attention has also been giggagation in such networks.
to developing localized self-configuration mechanisms in We identified and investigated some of the factors af-
sensor networks [4]. fecting performance, such as the number of placement of

The great majority of wireless routing protocols devebources, and the communication network topology. The
oped in recent years have been for mobile ad-hoc comnfiormation of an optimal data aggregation tree is generally
nication networks [17]. These approaches are all addres$2-hard. We presented some suboptimal data aggrega-
centric, in that they are focused on end-to-end routing kén tree generation heuristics and showed the existence
tween pairs of addressable nodes. of polynomial special cases.

The application-specific nature of sensor networks leadsThe modelling tells us that whether the sources are clus-
to the alternative approach we have described in this pared near each other or located randomly, significant en-
per as data-centric. The meta-naming of data is suggestegly gains are possible with data aggregation. These gains
in [10] as a means to reduce transmission of redundamé greatest when the number of sources is large, and when
data for flooding-like schemes for information dissemindhe sources are located relatively close to each other and far
tion. TheDirected diffusionprotocol, which is most like from the sink. The modelling, though, also seems to sug-
the data-centric routing models analyzed in this paper,gsest that aggregation latency could be non-negligible and
described in [13]. A physical implementation of directedhould be taken into consideration during the design pro-
diffusion with a small wireless sensor test-bed consistimgss. Data-centric architectures such as directed diffusion
of 14 nodes with 4 sources and a single sink is describedsimould support a Type of Service (TOS) facility that would
[9]. For the particular configuration described in that pappermit applications to effect desired tradeoffs between la-

VIlI. CONCLUSIONS



tency and energy. crosensor Networks,33rd International Conference on System
Our analysis has focused on the case where there is aSciences (HICSS '00yanuary 2000.
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