Real-Time Digital Signal Processing. Sen M Kuo, Bob H Lee
Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-470-84137-0 (Hardback); 0-470-84534-1 (Electronic)

Real-Time
Digital Signal Processing

Real-Time Digital Signal Processing. Sen M Kuo, Bob H Lee
Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-470-84137-0 (Hardback); 0-470-84534-1 (Electronic)

Real-Time
Digital Signal Processing

Implementations, Applications, and
Experiments with the TMS320C55X

Sen M Kuo
Northern Illinois University, DeKalb, Illinois, USA

Bob H Lee
Texas Instruments, Inc., Schaumburg, Illinois, USA

JOHN WILEY & SONS, LTD.
Chichester - New York - Weinheim - Brisbane - Singapore - Toronto

Real-Time Digital Signal Processing. Sen M Kuo, Bob H Lee
Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-470-84137-0 (Hardback); 0-470-84534-1 (Electronic)

Copyright © 2001 by John Wiley & Sons, Ltd
Baffins Lane, Chichester,
West Sussex, PO 19 1UD, England
National 01243 779777
International (+44) 1243 779777

e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on http://www.wiley.co.uk
or
http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the
terms of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency, 90 Tottenham Court Road, London, W1P 9HE, UK, without the permission in writing of the
Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the publication.

Neither the authors nor John Wiley & Sons Ltd accept any responsibility or liability for loss or damage occasioned to
any person or property through using the material, instructions, methods or ideas contained herein, or acting or
refraining from acting as a result of such use. The authors and Publisher expressly disclaim all implied warranties,
including merchantability of fitness for any particular purpose. There will be no duty on the authors or Publisher to
correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
John Wiley & Sons is aware of a claim, the product names appear in initial capital or capital letters. Readers,
however, should contact the appropriate companies for more complete information regarding trademarks and
registration.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Wiley-VCH Verlag GmbH
Pappelallee 3, D-69469 Weinheim, Germany

Jacaranda Wiley Ltd, 33 Park Road, Milton,
Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road
Rexdale, Ontario, MOW 1L1, Canada

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,
Jin Xing Distripark, Singapore 129809

Library of Congress Cataloging-in-Publication Data

Kuo, Sen M. (Sen-Maw)
Real-time digital signal processing: implementations, applications, and experiments
with the TMS320C55x / Sen M. Kuo, Bob H. Lee
p. cm.
Includes bibliographical references and index.
ISBN 0-470-84137-0
1. Signal processing—Digital techniques. 2. Texas Instruments TMS320 series
microprocessors. 1. Lee, Bob H. 1II. Title.

TK5102.9 .K86 2001
621.382'2—dc21 2001026651

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
ISBN 0470841370

Typeset by Kolam Information Services Pvt. Ltd, Pondicherry, India
Printed and bound in Great Britain by Antony Rowe Ltd

This book is printed on acid-free paper responsibly manufactured from sustainable forestry,
in which at least two trees are planted for each one used for paper production.

To my wife Paolien, and children Jennifer, Kevin,
and Kathleen.
— Sen M. Kuo

To my dear wife Vikki and daughter Jenni.
— Bob H. Lee

Real-Time Digital Signal Processing. Sen M Kuo, Bob H Lee
Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-470-84137-0 (Hardback); 0-470-84534-1 (Electronic)

Contents

Preface XV
1 Introduction to Real-Time Digital Signal Processing 1
1.1 Basic Elements of Real-Time DSP Systems 2
1.2 Input and Output Channels 3
1.2.1 Input Signal Conditioning 3

1.2.2 A/D Conversion 4

1.2.3 Sampling 5

1.2.4 Quantizing and Encoding 7

1.2.5 D/A Conversion 9

1.2.6 Input/Output Devices 9

1.3 DSP Hardware 11
1.3.1 DSP Hardware Options 11

1.3.2 Fixed- and Floating-Point Devices 13

1.3.3 Real-Time Constraints 14

1.4 DSP System Design 14
1.4.1 Algorithm Development 14

1.4.2 Selection of DSP Chips 16

1.4.3 Software Development 17

1.4.4 High-Level Software Development Tools 18

1.5 Experiments Using Code Composer Studio 19
1.5.1 Experiment 1A — Using the CCS and the TMS320C55x Simulator 20

1.5.2 Experiment 1B — Debugging Program on the CCS 25

1.5.3 Experiment 1C — File Input and Output 28

1.5.4 Experiment 1D — Code Efficiency Analysis 29

1.5.5 Experiment 1E — General Extension Language 32
References 33
Exercises 33
2 Introduction to TMS320C55x Digital Signal Processor 35
2.1 Introduction 35
2.2 TMS320C55x Architecture 36
2.2.1 TMS320C55x Architecture Overview 36

2.2.2 TMS320C55x Buses 39

2.2.3 TMS320C55x Memory Map 40

viii

23

2.4

2.5

2.6

2.7
2.8

CONTENTS

Software Development Tools

2.3.1 C Compiler

2.3.2 Assembler

2.3.3 Linker

2.3.4 Code Composer Studio

2.3.5 Assembly Statement Syntax

TMS320C55x Addressing Modes

2.4.1 Direct Addressing Mode

2.4.2 Indirect Addressing Mode

2.4.3 Absolute Addressing Mode

2.4.4 Memory-Mapped Register Addressing Mode
2.4.5 Register Bits Addressing Mode

2.4.6 Circular Addressing Mode

Pipeline and Parallelism

2.5.1 TMS320C55x Pipeline

2.5.2 Parallel Execution

TMS320C55x Instruction Set

2.6.1 Arithmetic Instructions

2.6.2 Logic and Bits Manipulation Instructions

2.6.3 Move Instruction

2.6.4 Program Flow Control Instructions

Mixed C and Assembly Language Programming
Experiments — Assembly Programming Basics
2.8.1 Experiment 2A — Interfacing C with Assembly Code
2.8.2 Experiment 2B — Addressing Mode Experiments

References
Exercises

DSP Fundamentals and Implementation
Considerations

3.1

32

33

3.4

3.5

3.6

3.7

Digital Signals and Systems

3.1.1 Elementary Digital Signals

3.1.2 Block Diagram Representation of Digital Systems
3.1.3 Impulse Response of Digital Systems
Introduction to Digital Filters

3.2.1 FIR Filters and Power Estimators

3.2.2 Response of Linear Systems

3.2.3 IIR Filters

Introduction to Random Variables

3.3.1 Review of Probability and Random Variables
3.3.2 Operations on Random Variables
Fixed-Point Representation and Arithmetic
Quantization Errors

3.5.1 Input Quantization Noise

3.5.2 Coefficient Quantization Noise

3.5.3 Roundoff Noise

Overflow and Solutions

3.6.1 Saturation Arithmetic

3.6.2 Overflow Handling

3.6.3 Scaling of Signals

Implementation Procedure for Real-Time Applications

40
42
44
46
48
49
50
52
53
56
56
57
58
59
59
60
63
63
64
65
66
68
70
71
72
75
75

77

77
71
79
83
83
84
87
88
90
90
92
95
98
98
101
102
103
103
104
105
107

3.8

CONTENTS

Experiments of Fixed-Point Implementations

3.8.1 Experiment 3A — Quantization of Sinusoidal Signals
3.8.2 Experiment 3B — Quantization of Speech Signals
3.8.3 Experiment 3C — Overflow and Saturation Arithmetic
3.8.4 Experiment 3D — Quantization of Coefficients

3.8.5 Experiment 3E — Synthesizing Sine Function

References
Exercises

Frequency Analysis

4.1

4.2

4.3

44

4.5

4.6

Fourier Series and Transform

4.1.1 Fourier Series

4.1.2 Fourier Transform

The z-Transforms

4.2.1 Definitions and Basic Properties

4.2.2 Inverse z-Transform

System Concepts

4.3.1 Transfer Functions

4.3.2 Digital Filters

4.3.3 Poles and Zeros

4.3.4 Frequency Responses

Discrete Fourier Transform

4.4.1 Discrete-Time Fourier Series and Transform
4.4.2 Aliasing and Folding

4.4.3 Discrete Fourier Transform

4.4.4 Fast Fourier Transform

Applications

4.5.1 Design of Simple Notch Filters

4.5.2 Analysis of Room Acoustics

Experiments Using the TMS320C55x

4.6.1 Experiment 4A — Twiddle Factor Generation
4.6.2 Experiment 4B — Complex Data Operation
4.6.3 Experiment 4C — Implementation of DFT
4.6.4 Experiment 4D — Experiment Using Assembly Routines

References
Exercises

Design and Implementation of FIR Filters

5.1

52

53

Introduction to Digital Filters
5.1.1 Filter Characteristics

5.1.2 Filter Types

5.1.3 Filter Specifications

FIR Filtering

5.2.1 Linear Convolution

5.2.2 Some Simple FIR Filters
5.2.3 Linear Phase FIR Filters
5.2.4 Realization of FIR Filters
Design of FIR Filters

5.3.1 Filter Design Procedure
5.3.2 Fourier Series Method
5.3.3 Gibbs Phenomenon

108
109
111
112
115
117
121
122

127

127
127
130
133
133
136
141
141
143
144
148
152
152
154
157
159
160
160
162
165
167
169
171
173
176
176

181
181
182
183
185
189
189
192
194
198
201
201
202
205

5.4
5.5

5.6

CONTENTS

5.3.4 Window Functions

5.3.5 Frequency Sampling Method

Design of FIR Filters Using MATLAB

Implementation Considerations

5.5.1 Software Implementations

5.5.2 Quantization Effects in FIR Filters

Experiments Using the TMS320C55x

5.6.1 Experiment 5A — Implementation of Block FIR Filter

5.6.2 Experiment 5B — Implementation of Symmetric FIR Filter

5.6.3 Experiment 5C — Implementation of FIR Filter Using Dual-MAC

References
Exercises

Design and Implementation of IIR Filters

6.1

6.2

6.3

6.4

6.5
6.6

6.7

Laplace Transform

6.1.1 Introduction to the Laplace Transform
6.1.2 Relationships between the Laplace and z-Transforms
6.1.3 Mapping Properties

Analog Filters

6.2.1 Introduction to Analog Filters

6.2.2 Characteristics of Analog Filters

6.2.3 Frequency Transforms

Design of IIR Filters

6.3.1 Review of IIR Filters

6.3.2 Impulse-Invariant Method

6.3.3 Bilinear Transform

6.3.4 Filter Design Using Bilinear Transform
Realization of IIR Filters

6.4.1 Direct Forms

6.4.2 Cascade Form

6.4.3 Parallel Form

6.4.4 Realization Using MATLAB

Design of IIR Filters Using MATLAB
Implementation Considerations

6.6.1 Stability

6.6.2 Finite-Precision Effects and Solutions
6.6.3 Software Implementations

6.6.4 Practical Applications

Software Developments and Experiments Using the TMS320C55x

6.7.1 Design of IIR Filter

6.7.2 Experiment 6A — Floating-Point C Implementation

6.7.3 Experiment 6B — Fixed-Point C Implementation Using Intrinsics
6.7.4 Experiment 6C — Fixed-Point C Programming Considerations
6.7.5 Experiment 6D — Assembly Language Implementations

References
Exercises

Fast Fourier Transform and Its Applications

7.1

Discrete Fourier Transform
7.1.1 Definitions

7.1.2 Important Properties of DFT
7.1.3 Circular Convolution

208
214
219
221
221
223
225
227
230
233
235
236

241

241
241
245
246
247
248
249
253
255
255
256
259
261
263
263
266
268
269
271
273
274
275
279
280
284
285
286
289
292
295
297
297

303

303
304
308
311

7.2

7.3

7.4

7.5

CONTENTS

Fast Fourier Transforms

7.2.1 Decimation-in-Time

7.2.2 Decimation-in-Frequency

7.2.3 Inverse Fast Fourier Transform
7.2.4 MATLAB Implementations
Applications

7.3.1 Spectrum Estimation and Analysis
7.3.2 Spectral Leakage and Resolution
7.3.3 Power Density Spectrum

7.3.4 Fast Convolution

7.3.5 Spectrogram

Implementation Considerations

7.4.1 Computational Issues

7.4.2 Finite-Precision Effects
Experiments Using the TMS320C55x
7.5.1 Experiment 7A — Radix-2 Complex FFT

7.5.2 Experiment 7B — Radix-2 Complex FFT Using Assembly Language

7.5.3 Experiment 7C — FFT and IFFT
7.5.4 Experiment 7D — Fast Convolution

References
Exercises

Adaptive Filtering

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Introduction to Random Processes
8.1.1 Correlation Functions

8.1.2 Frequency-Domain Representations
Adaptive Filters

8.2.1 Introduction to Adaptive Filtering
8.2.2 Performance Function

8.2.3 Method of Steepest Descent

8.2.4 The LMS Algorithm
Performance Analysis

8.3.1 Stability Constraint

8.3.2 Convergence Speed

8.3.3 Excess Mean-Square Error
Modified LMS Algorithms

8.4.1 Normalized LMS Algorithm

8.4.2 Leaky LMS Algorithm
Applications

8.5.1 Adaptive System Identification
8.5.2 Adaptive Linear Prediction

8.5.3 Adaptive Noise Cancellation

8.5.4 Adaptive Notch Filters

8.5.5 Adaptive Channel Equalization
Implementation Considerations
8.6.1 Computational Issues

8.6.2 Finite-Precision Effects
Experiments Using the TMS320C55x

8.7.1 Experiment 8A — Adaptive System Identification
8.7.2 Experiment 8B — Adaptive Predictor Using the Leaky LMS Algorithm

References
Exercises

Xi

314
315
319
320
321
322
322
324
328
330
332
333
334
334
336
336
341
344
344
346
347

351

351
352
356
359
359
361
365
366
367
367
368
369
370
370
371
372
372
373
375
377
379
381
381
382
385
385
390
396
396

Xii

CONTENTS

9 Practical DSP Applications in Communications

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Sinewave Generators and Applications
9.1.1 Lookup-Table Method

9.1.2 Linear Chirp Signal

9.1.3 DTMF Tone Generator

Noise Generators and Applications

9.2.1 Linear Congruential Sequence Generator
9.2.2 Pseudo-Random Binary Sequence Generator
9.2.3 Comfort Noise in Communication Systems
9.2.4 Off-Line System Modeling

DTMF Tone Detection

9.3.1 Specifications

9.3.2 Goertzel Algorithm

9.3.3 Implementation Considerations
Adaptive Echo Cancellation

9.4.1 Line Echoes

9.4.2 Adaptive Echo Canceler

9.4.3 Practical Considerations

9.4.4 Double-Talk Effects and Solutions

9.4.5 Residual Echo Suppressor

Acoustic Echo Cancellation

9.5.1 Introduction

9.5.2 Acoustic Echo Canceler

9.5.3 Implementation Considerations

Speech Enhancement Techniques

9.6.1 Noise Reduction Techniques

9.6.2 Spectral Subtraction Techniques

9.6.3 Implementation Considerations

Projects Using the TMS320C55x

9.7.1 Project Suggestions

9.7.2 A Project Example — Wireless Application

References

Appendix A Some Useful Formulas

Al
A2
A3
A4
AS
A.6

Trigonometric Identities
Geometric Series
Complex Variables
Impulse Functions
Vector Concepts

Units of Power

Reference

Appendix B Introduction of MATLAB for DSP

B.1

B.2
B3
B.4

Applications
Elementary Operations
B.1.1 Initializing Variables and Vectors
B.1.2 Graphics
B.1.3 Basic Operators
B.1.4 Files
Generation and Processing of Digital Signals
DSP Applications
User-Written Functions

399

399
400
402
403
404
404
406
408
409
410
410
411
414
417
417
418
422
423
425
426
426
427
428
429
429
431
433
435
435
437
442

445
445
446
447
449
449
450
451

453
453
453
455
457
459
460
463
465

CONTENTS xiii

B.5 Summary of Useful MATLAB Functions 466
References 467

Appendix C Introduction of C Programming for DSP

Applications 469

C.1 A Simple C Program 470
C.1.1 Variables and Assignment Operators 472

C.1.2 Numeric Data Types and Conversion 473

C.1.3 Arrays 474

C.2 Arithmetic and Bitwise Operators 475
C.2.1 Arithmetic Operators 475

C.2.2 Bitwise Operators 476

C.3 An FIR Filter Program 476
C.3.1 Command-Line Arguments 477

C.3.2 Pointers 477

C.3.3 C Functions 478

C.3.4 Files and I/O Operations 480

C.4 Control Structures and Loops 481
C.4.1 Control Structures 481

C.4.2 Logical Operators 483

C.4.3 Loops 484

C.5 Data Types Used by the TMS320C55x 485
References 486
Appendix D About the Software 487

Index 489

Real-Time Digital Signal Processing. Sen M Kuo, Bob H Lee
Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-470-84137-0 (Hardback); 0-470-84534-1 (Electronic)

Preface

Real-time digital signal processing (DSP) using general-purpose DSP processors is very
challenging work in today’s engineering fields. It promises an effective way to design,
experiment, and implement a variety of signal processing algorithms for real-world
applications. With DSP penetrating into various applications, the demand for high-
performance digital signal processors has expanded rapidly in recent years. Many
industrial companies are currently engaged in real-time DSP research and development.
It becomes increasingly important for today’s students and practicing engineers to
master not only the theory of DSP, but equally important, the skill of real-time DSP
system design and implementation techniques.

This book offers readers a hands-on approach to understanding real-time DSP
principles, system design and implementation considerations, real-world applications,
as well as many DSP experiments using MATLAB, C/C++, and the TMS320C55x. This
is a practical book about DSP and using digital signal processors for DSP applications.
This book is intended as a text for senior/graduate level college students with emphasis
on real-time DSP implementations and applications. This book can also serve as a
desktop reference for practicing engineer and embedded system programmer to learn
DSP concepts and to develop real-time DSP applications at work. We use a practical
approach that avoids a lot of theoretical derivations. Many useful DSP textbooks with
solid mathematical proofs are listed at the end of each chapter. To efficiently develop a
DSP system, the reader must understand DSP algorithms as well as basic DSP chip
architecture and programming. It is helpful to have several manuals and application
notes on the TMS320C55x from Texas Instruments at http.//www.ti.com.

The DSP processor we will use as an example in this book is the TMS320C55x, the
newest 16-bit fixed-point DSP processor from Texas Instruments. To effectively illustrate
real-time DSP concepts and applications, MATLAB will be introduced for analysis and
filter design, C will be used for implementing DSP algorithms, and Code Composer
Studio (CCS) of the TMS320C55x are integrated into lab experiments, projects, and
applications. To efficiently utilize the advanced DSP architecture for fast software
development and maintenance, the mixing of C and assembly programs are emphasized.

Chapter 1 reviews the fundamentals of real-time DSP functional blocks, DSP hard-
ware options, fixed- and floating-point DSP devices, real-time constraints, algorithm
development, selection of DSP chips, and software development. In Chapter 2, we
introduce the architecture and assembly programming of the TMS320C55x. Chapter
3 presents some fundamental DSP concepts in time domain and practical considerations
for the implementation of digital filters and algorithms on DSP hardware. Readers who
are familiar with these DSP fundamentals should be able to skip through some of these
sections. However, most notations used throughout the book will be defined in this
chapter. In Chapter 4, the Fourier series, the Fourier transform, the z-transform, and
the discrete Fourier transforms are introduced. Frequency analysis is extremely helpful

XVi PREFACE

in understanding the characteristics of both signals and systems. Chapter 5 is focused on
the design, implementation, and application of FIR filters; digital IIR filters are covered
in Chapter 6, and adaptive filters are presented in Chapter 8. The development,
implementation, and application of FFT algorithms are introduced in Chapter 7. In
Chapter 9, we introduce some selected DSP applications in communications that have
played an important role in the realization of the systems.

As with any book attempting to capture the state of the art at a given time, there will
necessarily be omissions that are necessitated by the rapidly evolving developments in
this dynamic field of exciting practical interest. We hope, at least, that this book will
serve as a guide for what has already come and as an inspiration for what will follow. To
aid teaching of the course a Solution Manual that presents detailed solutions to most of
the problems in the book is available from the publisher.

Availability of Software

The MATLAB, C, and assembly programs that implement many DSP examples and
applications are listed in the book. These programs along with many other programs
for DSP implementations and lab experiments are available in the software package
at http://www.ceet.niu.edu/faculty/kuo/books/rtdsp.html and http://pages.prodigy.net/
sunheel/web/dspweb.htm. Several real-world data files for some applications introduced
in the book also are included in the software package. The list of files in the software
package is given in Appendix D. It is not critical you have this software as you read the
book, but it will help you to gain insight into the implementation of DSP algorithms, and it
will be required for doing experiments at the last section of each chapter. Some of these
experiments involve minor modification of the example code. By examining, studying and
modifying the example code, the software can also be used asa prototype for other practical
applications. Every attempt has been made to ensure the correctness of the code. We would
appreciate readers bringing to our attention (kuo@ceet.niu.edu) any coding errors so that
we can correct and update the codes available in the software package on the web.

Acknowledgments

We are grateful to Maria Ho and Christina Peterson at Texas Instruments, and Naomi
Fernandes at Math Works, who provided the necessary support to write the book in a
short period. The first author thanks many of his students who have taken his DSP courses,
Senior Design Projects, and Master Thesis courses. He is indebted to Gene Frentz, Dr.
Qun S. Lin, and Dr. Panos Papamichalis of Texas Instruments, John Kronenburger of
Tellabs, and Santo LaMantia of Shure Brothers, for their support of DSP activities at
Northern Illinois University. He also thanks Jennifer Y. Kuo for the proofreading of the
book. The second author wishes to thank Robert DeNardo, David Baughman, and Chuck
Brokish of Texas Instruments, for their valuable inputs, help, and encouragement during
the course of writing this book. We would like to thank Peter Mitchell, editor at Wiley, for
his support of this project. We also like to thank the staff at Wiley for the final preparation
of the book. Finally, we thank our parents and families for their endless love, encourage-
ment, and the understanding they have shown during the whole time.

Sen M. Kuo and Bob H. Lee

Real-Time Digital Signal Processing. Sen M Kuo, Bob H Lee
Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-470-84137-0 (Hardback); 0-470-84534-1 (Electronic)

1

Introduction to Real-Time
Digital Signal Processing

Signals can be divided into three categories — continuous-time (analog) signals,
discrete-time signals, and digital signals. The signals that we encounter daily are mostly
analog signals. These signals are defined continuously in time, have an infinite range
of amplitude values, and can be processed using electrical devices containing both
active and passive circuit elements. Discrete-time signals are defined only at a particular
set of time instances. Therefore they can be represented as a sequence of numbers that
have a continuous range of values. On the other hand, digital signals have discrete
values in both time and amplitude. In this book, we design and implement digital
systems for processing digital signals using digital hardware. However, the analysis
of such signals and systems usually uses discrete-time signals and systems for math-
ematical convenience. Therefore we use the term ‘discrete-time’ and ‘digital’ inter-
changeably.

Digital signal processing (DSP) is concerned with the digital representation of signals
and the use of digital hardware to analyze, modify, or extract information from these
signals. The rapid advancement in digital technology in recent years has created the
implementation of sophisticated DSP algorithms that make real-time tasks feasible. A
great deal of research has been conducted to develop DSP algorithms and applications.
DSP is now used not only in areas where analog methods were used previously, but also
in areas where applying analog techniques is difficult or impossible.

There are many advantages in using digital techniques for signal processing rather
than traditional analog devices (such as amplifiers, modulators, and filters). Some of the
advantages of a DSP system over analog circuitry are summarized as follows:

1. Flexibility. Functions of a DSP system can be easily modified and upgraded with
software that has implemented the specific algorithm for using the same hardware.
One can design a DSP system that can be programmed to perform a wide variety of
tasks by executing different software modules. For example, a digital camera may
be easily updated (reprogrammed) from using JPEG (joint photographic experts
group) image processing to a higher quality JPEG2000 image without actually
changing the hardware. In an analog system, however, the whole circuit design
would need to be changed.

2 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

2. Reproducibility. The performance of a DSP system can be repeated precisely from
one unit to another. This is because the signal processing of DSP systems work
directly with binary sequences. Analog circuits will not perform as well from each
circuit, even if they are built following identical specifications, due to component
tolerances in analog components. In addition, by using DSP techniques, a digital
signal can be transferred or reproduced many times without degrading its signal
quality.

3. Reliability. The memory and logic of DSP hardware does not deteriorate with
age. Therefore the field performance of DSP systems will not drift with changing
environmental conditions or aged electronic components as their analog counter-
parts do. However, the data size (wordlength) determines the accuracy of a DSP
system. Thus the system performance might be different from the theoretical expect-
ation.

4. Complexity. Using DSP allows sophisticated applications such as speech or image
recognition to be implemented for lightweight and low power portable devices. This
is impractical using traditional analog techniques. Furthermore, there are some
important signal processing algorithms that rely on DSP, such as error correcting
codes, data transmission and storage, data compression, perfect linear phase filters,
etc., which can barely be performed by analog systems.

With the rapid evolution in semiconductor technology in the past several years, DSP
systems have a lower overall cost compared to analog systems. DSP algorithms can be
developed, analyzed, and simulated using high-level language and software tools such as
C/C++ and MATLAB (matrix laboratory). The performance of the algorithms can be
verified using a low-cost general-purpose computer such as a personal computer (PC).
Therefore a DSP system is relatively easy to develop, analyze, simulate, and test.

There are limitations, however. For example, the bandwidth of a DSP system is
limited by the sampling rate and hardware peripherals. The initial design cost of a
DSP system may be expensive, especially when large bandwidth signals are involved.
For real-time applications, DSP algorithms are implemented using a fixed number of
bits, which results in a limited dynamic range and produces quantization and arithmetic
errors.

1.1 Basic Elements of Real-Time DSP Systems

There are two types of DSP applications — non-real-time and real time. Non-real-time
signal processing involves manipulating signals that have already been collected and
digitized. This may or may not represent a current action and the need for the result
is not a function of real time. Real-time signal processing places stringent demands
on DSP hardware and software design to complete predefined tasks within a certain
time frame. This chapter reviews the fundamental functional blocks of real-time DSP
systems.

The basic functional blocks of DSP systems are illustrated in Figure 1.1, where a real-
world analog signal is converted to a digital signal, processed by DSP hardware in

INPUT AND OUTPUT CHANNELS 3

X' X(#) | Anti-aliasing ADC x(n) Other digital | !
| Amplifier filter systems i
Input channels
DSP
hardware
Output channels
Reconstruction| DAC 4| Other digital i
filter Y'(t) (1) systems :

Figure 1.1 Basic functional blocks of real-time DSP system

digital form, and converted back into an analog signal. Each of the functional blocks in
Figure 1.1 will be introduced in the subsequent sections. For some real-time applica-
tions, the input data may already be in digital form and/or the output data may not need
to be converted to an analog signal. For example, the processed digital information may
be stored in computer memory for later use, or it may be displayed graphically. In other
applications, the DSP system may be required to generate signals digitally, such as
speech synthesis used for cellular phones or pseudo-random number generators for
CDMA (code division multiple access) systems.

1.2 Input and Output Channels

In this book, a time-domain signal is denoted with a lowercase letter. For example, x(7)
in Figure 1.1 is used to name an analog signal of x with a relationship to time ¢. The time
variable ¢ takes on a continuum of values between —oo and oo. For this reason we say
x(t) is a continuous-time signal. In this section, we first discuss how to convert analog
signals into digital signals so that they can be processed using DSP hardware. The
process of changing an analog signal to a xdigital signal is called analog-to-digital (A/D)
conversion. An A/D converter (ADC) is usually used to perform the signal conversion.
Once the input digital signal has been processed by the DSP device, the result, y(n), is
still in digital form, as shown in Figure 1.1. In many DSP applications, we need to
reconstruct the analog signal after the digital processing stage. In other words, we must
convert the digital signal y(n) back to the analog signal y(r) before it is passed to an
appropriate device. This process is called the digital-to-analog (D/A) conversion, typi-
cally performed by a D/A converter (DAC). One example would be CD (compact disk)
players, for which the music is in a digital form. The CD players reconstruct the analog
waveform that we listen to. Because of the complexity of sampling and synchronization
processes, the cost of an ADC is usually considerably higher than that of a DAC.

1.2.1 Input Signal Conditioning

As shown in Figure 1.1, the analog signal, x'(7), is picked up by an appropriate
electronic sensor that converts pressure, temperature, or sound into electrical signals.

4 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

For example, a microphone can be used to pick up sound signals. The sensor output,
X'(1), is amplified by an amplifier with gain value g. The amplified signal is

x(1) = gx'(1). (1.2.1)

The gain value g is determined such that x(#) has a dynamic range that matches the
ADC. For example, if the peak-to-peak range of the ADC is 45 volts (V), then g may be
set so that the amplitude of signal x(#) to the ADC is scaled between + 5V. In practice, it
is very difficult to set an appropriate fixed gain because the level of x'(¢) may be
unknown and changing with time, especially for signals with a larger dynamic range
such as speech. Therefore an automatic gain controller (AGC) with time-varying gain
determined by DSP hardware can be used to effectively solve this problem.

1.2.2 A/D Conversion

As shown in Figure 1.1, the ADC converts the analog signal x(¢) into the digital signal
sequence x(n). Analog-to-digital conversion, commonly referred as digitization, consists
of the sampling and quantization processes as illustrated in Figure 1.2. The sampling
process depicts a continuously varying analog signal as a sequence of values. The basic
sampling function can be done with a ‘sample and hold’ circuit, which maintains the
sampled level until the next sample is taken. Quantization process approximates a
waveform by assigning an actual number for each sample. Therefore an ADC consists
of two functional blocks — an ideal sampler (sample and hold) and a quantizer (includ-
ing an encoder). Analog-to-digital conversion carries out the following steps:

1. The bandlimited signal x(¢) is sampled at uniformly spaced instants of time, n7,
where n is a positive integer, and 7 is the sampling period in seconds. This sampling
process converts an analog signal into a discrete-time signal, x(n7T'), with continuous
amplitude value.

2. The amplitude of each discrete-time sample is quantized into one of the 27 levels,
where B is the number of bits the ADC has to represent for each sample. The
discrete amplitude levels are represented (or encoded) into distinct binary words
x(n) with a fixed wordlength B. This binary sequence, x(n), is the digital signal for
DSP hardware.

A/D converter

iIdeal sampler Quantizer i
x(1) i x(nT) | '

L 4

i‘e{
=
=
=

Figure 1.2 Block diagram of A/D converter

INPUT AND OUTPUT CHANNELS 5

The reason for making this distinction is that each process introduces different distor-
tions. The sampling process brings in aliasing or folding distortions, while the encoding
process results in quantization noise.

1.2.3 Sampling

An ideal sampler can be considered as a switch that is periodically open and closed every
T seconds and

1
T=7 (12.2)

where f; is the sampling frequency (or sampling rate) in hertz (Hz, or cycles per
second). The intermediate signal, x(nT'), is a discrete-time signal with a continuous-
value (a number has infinite precision) at discrete time n7, n = 0,1, ..., co as illustrated
in Figure 1.3. The signal x(nT) is an impulse train with values equal to the amplitude
of x(z) at time nT. The analog input signal x(¢) is continuous in both time and
amplitude. The sampled signal x(nT) is continuous in amplitude, but it is defined
only at discrete points in time. Thus the signal is zero except at the sampling instants
t=nT.

In order to represent an analog signal x(#) by a discrete-time signal x(nT") accurately,
two conditions must be met:

1. The analog signal, x(¢), must be bandlimited by the bandwidth of the signal f},.

2. The sampling frequency, f;, must be at least twice the maximum frequency com-
ponent fj, in the analog signal x(z). That is,

fi>2fu. (12.3)

This is Shannon’s sampling theorem. It states that when the sampling frequency is
greater than twice the highest frequency component contained in the analog signal, the
original signal x(#) can be perfectly reconstructed from the discrete-time sample x(nT).
The sampling theorem provides a basis for relating a continuous-time signal x(¢) with

x(nT)

/]

0 T 2T 3T 4T

AT

> Time, ¢

Figure 1.3 Example of analog signal x(¢) and discrete-time signal x(n7T)

6 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

the discrete-time signal x(nT) obtained from the values of x(¢) taken T seconds apart. It
also provides the underlying theory for relating operations performed on the sequence
to equivalent operations on the signal x(¢) directly.

The minimum sampling frequency f; = 2f), is the Nyquist rate, while fy = f;/2 is
the Nyquist frequency (or folding frequency). The frequency interval [—f;/2, f;/2]
is called the Nyquist interval. When an analog signal is sampled at sampling frequency,
fs, frequency components higher than f;/2 fold back into the frequency range [0, f;/2].
This undesired effect is known as aliasing. That is, when a signal is sampled
perversely to the sampling theorem, image frequencies are folded back into the desired
frequency band. Therefore the original analog signal cannot be recovered from the
sampled data. This undesired distortion could be clearly explained in the frequency
domain, which will be discussed in Chapter 4. Another potential degradation is due to
timing jitters on the sampling pulses for the ADC. This can be negligible if a higher
precision clock is used.

For most practical applications, the incoming analog signal x(z) may not be band-
limited. Thus the signal has significant energies outside the highest frequency of
interest, and may contain noise with a wide bandwidth. In other cases, the sampling
rate may be pre-determined for a given application. For example, most voice commu-
nication systems use an 8§ kHz (kilohertz) sampling rate. Unfortunately, the maximum
frequency component in a speech signal is much higher than 4 kHz. Out-of-band signal
components at the input of an ADC can become in-band signals after conversion
because of the folding over of the spectrum of signals and distortions in the discrete
domain. To guarantee that the sampling theorem defined in Equation (1.2.3) can be
fulfilled, an anti-aliasing filter is used to band-limit the input signal. The anti-aliasing
filter is an analog lowpass filter with the cut-off frequency of

Je <3 (1.2.4)

Ideally, an anti-aliasing filter should remove all frequency components above the
Nyquist frequency. In many practical systems, a bandpass filter is preferred in order
to prevent undesired DC offset, 60 Hz hum, or other low frequency noises. For example,
a bandpass filter with passband from 300 Hz to 3200 Hz is used in most telecommunica-
tion systems.

Since anti-aliasing filters used in real applications are not ideal filters, they cannot
completely remove all frequency components outside the Nyquist interval. Any fre-
quency components and noises beyond half of the sampling rate will alias into the
desired band. In addition, since the phase response of the filter may not be linear, the
components of the desired signal will be shifted in phase by amounts not proportional to
their frequencies. In general, the steeper the roll-off, the worse the phase distortion
introduced by a filter. To accommodate practical specifications for anti-aliasing filters,
the sampling rate must be higher than the minimum Nyquist rate. This technique is
known as oversampling. When a higher sampling rate is used, a simple low-cost anti-
aliasing filter with minimum phase distortion can be used.

Example 1.1: Given a sampling rate for a specific application, the sampling period
can be determined by (1.2.2).

INPUT AND OUTPUT CHANNELS 7

(a) In narrowband telecommunication systems, the sampling rate f; = 8§ kHz,
thus the sampling period 7= 1/8000 seconds = 125 us (microseconds).
Note that 1 s = 10~° seconds.

(b) In wideband telecommunication systems, the sampling is given as
fs = 16kHz, thus T = 1/16000 seconds = 62.5 ps.

(c) Inaudio CDs, the sampling rate is f; = 44.1kHz, thus T = 1/44 100 seconds
= 22.676 ps.

(d) In professional audio systems, the sampling rate f; =48kHz, thus
T = 1/48000 seconds = 20.833 ps.

1.2.4 Quantizing and Encoding

In the previous sections, we assumed that the sample values x(nT) are represented
exactly with infinite precision. An obvious constraint of physically realizable digital
systems is that sample values can only be represented by a finite number of bits.
The fundamental distinction between discrete-time signal processing and DSP is the
wordlength. The former assumes that discrete-time signal values x(n7') have infinite
wordlength, while the latter assumes that digital signal values x(n) only have a limited
B-bit.

We now discuss a method of representing the sampled discrete-time signal x(nT) as a
binary number that can be processed with DSP hardware. This is the quantizing and
encoding process. As shown in Figure 1.3, the discrete-time signal x(nT) has an analog
amplitude (infinite precision) at time ¢ = nT. To process or store this signal with DSP
hardware, the discrete-time signal must be quantized to a digital signal x(n) with a finite
number of bits. If the wordlength of an ADC is B bits, there are 28 different values
(levels) that can be used to represent a sample. The entire continuous amplitude range is
divided into 28 subranges. Amplitudes of waveform that are in the same subrange are
assigned the same amplitude values. Therefore quantization is a process that represents
an analog-valued sample x(n7T) with its nearest level that corresponds to the digital
signal x(n). The discrete-time signal x(nT) is a sequence of real numbers using infinite
bits, while the digital signal x(n) represents each sample value by a finite number of bits
which can be stored and processed using DSP hardware.

The quantization process introduces errors that cannot be removed. For example, we
can use two bits to define four equally spaced levels (00, 01, 10, and 11) to classify the
signal into the four subranges as illustrated in Figure 1.4. In this figure, the symbol ‘o’
represents the discrete-time signal x(nT), and the symbol ‘e’ represents the digital signal
x(n).

In Figure 1.4, the difference between the quantized number and the original value is
defined as the quantization error, which appears as noise in the output. It is also called
quantization noise. The quantization noise is assumed to be random variables that are
uniformly distributed in the intervals of quantization levels. If a B-bit quantizer is used,
the signal-to-quantization-noise ratio (SNR) is approximated by (will be derived in
Chapter 3)

8 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

Quantization level
A

Quantization errors
|

1 - 0
10 /0/7‘"
o

00 » Time,
o T 2T 3T

ha'

Figure 1.4 Digital samples using a 2-bit quantizer

SNR ~ 6BdB. (1.2.5)

This is a theoretical maximum. When real input signals and converters are used, the
achievable SNR will be less than this value due to imperfections in the fabrication of
A/D converters. As a result, the effective number of bits may be less than the number
of bits in the ADC. However, Equation (1.2.5) provides a simple guideline for determin-
ing the required bits for a given application. For each additional bit, a digital signal has
about a 6-dB gain in SNR. For example, a 16-bit ADC provides about 96 dB SNR. The
more bits used to represent a waveform sample, the smaller the quantization noise will
be. If we had an input signal that varied between 0 and 5V, using a 12-bit ADC, which
has 4096 (2'%) levels, the least significant bit (LSB) would correspond to 1.22mV
resolution. An 8-bit ADC with 256 levels can only provide up to 19.5mV resolution.
Obviously with more quantization levels, one can represent the analog signal more
accurately. The problems of quantization and their solutions will be further discussed in
Chapter 3.

If the uniform quantization scheme shown in Figure 1.4 can adequately represent
loud sounds, most of the softer sounds may be pushed into the same small value. This
means soft sounds may not be distinguishable. To solve this problem, a quantizer whose
quantization step size varies according to the signal amplitude can be used. In practice,
the non-uniform quantizer uses a uniform step size, but the input signal is compressed
first. The overall effect is identical to the non-uniform quantization. For example, the
logarithm-scaled input signal, rather than the input signal itself, will be quantized. After
processing, the signal is reconstructed at the output by expanding it. The process of
compression and expansion is called companding (compressing and expanding). For
example, the w-law (used in North America and parts of Northeast Asia) and A-law
(used in Europe and most of the rest of the world) companding schemes are used in most
digital communications.

As shown in Figure 1.1, the input signal to DSP hardware may be a digital signal
from other DSP systems. In this case, the sampling rate of digital signals from other
digital systems must be known. The signal processing techniques called interpolation or
decimation can be used to increase or decrease the existing digital signals’ sampling
rates. Sampling rate changes are useful in many applications such as interconnecting
DSP systems operating at different rates. A multirate DSP system uses more than one
sampling frequency to perform its tasks.

INPUT AND OUTPUT CHANNELS 9

1.2.5 D/A Conversion

Most commercial DACs are zero-order-hold, which means they convert the binary
input to the analog level and then simply hold that value for 7T seconds until the next
sampling instant. Therefore the DAC produces a staircase shape analog waveform y/(z),
which is shown as a solid line in Figure 1.5. The reconstruction (anti-imaging and
smoothing) filter shown in Figure 1.1 smoothes the staircase-like output signal gener-
ated by the DAC. This analog lowpass filter may be the same as the anti-aliasing filter
with cut-off frequency f, < f;/2, which has the effect of rounding off the corners of the
staircase signal and making it smoother, which is shown as a dotted line in Figure 1.5.
High quality DSP applications, such as professional digital audio, require the use of
reconstruction filters with very stringent specifications.

From the frequency-domain viewpoint (will be presented in Chapter 4), the output of
the DAC contains unwanted high frequency or image components centered at multiples
of the sampling frequency. Depending on the application, these high-frequency compon-
ents may cause undesired side effects. Take an audio CD player for example. Although
the image frequencies may not be audible, they could overload the amplifier and cause
inter-modulation with the desired baseband frequency components. The result is an
unacceptable degradation in audio signal quality.

The ideal reconstruction filter has a flat magnitude response and linear phase in the
passband extending from the DC to its cut-off frequency and infinite attenuation in
the stopband. The roll-off requirements of the reconstruction filter are similar to those
of the anti-aliasing filter. In practice, switched capacitor filters are preferred because of
their programmable cut-off frequency and physical compactness.

1.2.6 Input/Output Devices

There are two basic ways of connecting A/D and D/A converters to DSP devices: serial
and parallel. A parallel converter receives or transmits all the B bits in one pass, while
the serial converters receive or transmit B bits in a serial data stream. Converters with
parallel input and output ports must be attached to the DSP’s address and data buses,

y'(0) Smoothed output
signal

0 T 2T 3T 4T 5T > Time, ¢

Figure 1.5 Staircase waveform generated by a DAC

10 INTRODUCTION TO REAL-TIME DIGITAL SIGNAL PROCESSING

which are also attached to many different types of devices. With different memory
devices (RAM, EPROM, EEPROM, or flash memory) at different speeds hanging on
DSP’s data bus, driving the bus may become a problem. Serial converters can be
connected directly to the built-in serial ports of DSP devices. This is why many practical
DSP systems use serial ADCs and DACs.

Many applications use a single-chip device called an analog interface chip (AIC) or
coder/decoder (CODEC), which integrates an anti-aliasing filter, an ADC, a DAC, and a
reconstruction filter all on a single piece of silicon. Typical applications include modems,
speech systems, and industrial controllers. Many standards that specify the nature of the
CODEC have evolved for the purposes of switching and transmission. These devices
usually use a logarithmic quantizer, i.e., A-law or p-law, which must be converted into a
linear format for processing. The availability of inexpensive companded CODEC justi-
fies their use as front-end devices for DSP systems. DSP chips implement this format
conversion in hardware or in software by using a table lookup or calculation.

The most popular commercially available ADCs are successive approximation, dual
slope, flash, and sigma-delta. The successive-approximation ADC produces a B-bit
output in B cycles of its clock by comparing the input waveform with the output of a
digital-to-analog converter. This device uses a successive-approximation register to split
the voltage range in half in order to determine where the input signal lies. According to
the comparator result, one bit will be set or reset each time. This process proceeds
from the most significant bit (MSB) to the LSB. The successive-approximation type of
ADC is generally accurate and fast at a relatively low cost. However, its ability to follow
changes in the input signal is limited by its internal clock rate, so that it may be slow to
respond to sudden changes in the input signal.

The dual-slope ADC uses an integrator connected to the input voltage and a reference
voltage. The integrator starts at zero condition, and it is charged for a limited time. The
integrator is then switched to a known negative reference voltage and charged in the
opposite direction until it reaches zero volts again. At the same time, a digital counter
starts to record the clock cycles. The number of counts required for the integrator
output voltage to get back to zero is directly proportional to the input voltage. This
technique is very precise and can produce ADCs with high resolution. Since the
integrator is used for input and reference voltages, any small variations in temperature
and aging of components have little or no effect on these types of converters. However,
they are very slow and generally cost more than successive-approximation ADCs.

A voltage divider made by resistors is used to set reference volt