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Preface

Real-time digital signal processing (DSP) using general-purpose DSP processors is very
challenging work in today’s engineering fields. It promises an effective way to design,
experiment, and implement a variety of signal processing algorithms for real-world
applications. With DSP penetrating into various applications, the demand for high-
performance digital signal processors has expanded rapidly in recent years. Many
industrial companies are currently engaged in real-time DSP research and development.
It becomes increasingly important for today’s students and practicing engineers to
master not only the theory of DSP, but equally important, the skill of real-time DSP
system design and implementation techniques.

This book offers readers a hands-on approach to understanding real-time DSP
principles, system design and implementation considerations, real-world applications,
as well as many DSP experiments using MATLAB, C/C++, and the TMS320C55x. This
is a practical book about DSP and using digital signal processors for DSP applications.
This book is intended as a text for senior/graduate level college students with emphasis
on real-time DSP implementations and applications. This book can also serve as a
desktop reference for practicing engineer and embedded system programmer to learn
DSP concepts and to develop real-time DSP applications at work. We use a practical
approach that avoids a lot of theoretical derivations. Many useful DSP textbooks with
solid mathematical proofs are listed at the end of each chapter. To efficiently develop a
DSP system, the reader must understand DSP algorithms as well as basic DSP chip
architecture and programming. It is helpful to have several manuals and application
notes on the TMS320C55x from Texas Instruments at http.//www.ti.com.

The DSP processor we will use as an example in this book is the TMS320C55x, the
newest 16-bit fixed-point DSP processor from Texas Instruments. To effectively illustrate
real-time DSP concepts and applications, MATLAB will be introduced for analysis and
filter design, C will be used for implementing DSP algorithms, and Code Composer
Studio (CCS) of the TMS320C55x are integrated into lab experiments, projects, and
applications. To efficiently utilize the advanced DSP architecture for fast software
development and maintenance, the mixing of C and assembly programs are emphasized.

Chapter 1 reviews the fundamentals of real-time DSP functional blocks, DSP hard-
ware options, fixed- and floating-point DSP devices, real-time constraints, algorithm
development, selection of DSP chips, and software development. In Chapter 2, we
introduce the architecture and assembly programming of the TMS320C55x. Chapter
3 presents some fundamental DSP concepts in time domain and practical considerations
for the implementation of digital filters and algorithms on DSP hardware. Readers who
are familiar with these DSP fundamentals should be able to skip through some of these
sections. However, most notations used throughout the book will be defined in this
chapter. In Chapter 4, the Fourier series, the Fourier transform, the z-transform, and
the discrete Fourier transforms are introduced. Frequency analysis is extremely helpful
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in understanding the characteristics of both signals and systems. Chapter 5 is focused on
the design, implementation, and application of FIR filters; digital IIR filters are covered
in Chapter 6, and adaptive filters are presented in Chapter 8. The development,
implementation, and application of FFT algorithms are introduced in Chapter 7. In
Chapter 9, we introduce some selected DSP applications in communications that have
played an important role in the realization of the systems.

As with any book attempting to capture the state of the art at a given time, there will
necessarily be omissions that are necessitated by the rapidly evolving developments in
this dynamic field of exciting practical interest. We hope, at least, that this book will
serve as a guide for what has already come and as an inspiration for what will follow. To
aid teaching of the course a Solution Manual that presents detailed solutions to most of
the problems in the book is available from the publisher.

Availability of Software

The MATLAB, C, and assembly programs that implement many DSP examples and
applications are listed in the book. These programs along with many other programs
for DSP implementations and lab experiments are available in the software package
at  http://www.ceet.niu.edu/faculty/kuo/books/rtdsp.html and http://pages.prodigy.net/
sunheel/web/dspweb.htm. Several real-world data files for some applications introduced
in the book also are included in the software package. The list of files in the software
package is given in Appendix D. It is not critical you have this software as you read the
book, but it will help you to gain insight into the implementation of DSP algorithms, and it
will be required for doing experiments at the last section of each chapter. Some of these
experiments involve minor modification of the example code. By examining, studying and
modifying the example code, the software can also be used asa prototype for other practical
applications. Every attempt has been made to ensure the correctness of the code. We would
appreciate readers bringing to our attention (kuo@ceet.niu.edu) any coding errors so that
we can correct and update the codes available in the software package on the web.
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1

Introduction to Real-Time
Digital Signal Processing

Signals can be divided into three categories — continuous-time (analog) signals,
discrete-time signals, and digital signals. The signals that we encounter daily are mostly
analog signals. These signals are defined continuously in time, have an infinite range
of amplitude values, and can be processed using electrical devices containing both
active and passive circuit elements. Discrete-time signals are defined only at a particular
set of time instances. Therefore they can be represented as a sequence of numbers that
have a continuous range of values. On the other hand, digital signals have discrete
values in both time and amplitude. In this book, we design and implement digital
systems for processing digital signals using digital hardware. However, the analysis
of such signals and systems usually uses discrete-time signals and systems for math-
ematical convenience. Therefore we use the term ‘discrete-time’ and ‘digital’ inter-
changeably.

Digital signal processing (DSP) is concerned with the digital representation of signals
and the use of digital hardware to analyze, modify, or extract information from these
signals. The rapid advancement in digital technology in recent years has created the
implementation of sophisticated DSP algorithms that make real-time tasks feasible. A
great deal of research has been conducted to develop DSP algorithms and applications.
DSP is now used not only in areas where analog methods were used previously, but also
in areas where applying analog techniques is difficult or impossible.

There are many advantages in using digital techniques for signal processing rather
than traditional analog devices (such as amplifiers, modulators, and filters). Some of the
advantages of a DSP system over analog circuitry are summarized as follows:

1. Flexibility. Functions of a DSP system can be easily modified and upgraded with
software that has implemented the specific algorithm for using the same hardware.
One can design a DSP system that can be programmed to perform a wide variety of
tasks by executing different software modules. For example, a digital camera may
be easily updated (reprogrammed) from using JPEG (joint photographic experts
group) image processing to a higher quality JPEG2000 image without actually
changing the hardware. In an analog system, however, the whole circuit design
would need to be changed.
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2. Reproducibility. The performance of a DSP system can be repeated precisely from
one unit to another. This is because the signal processing of DSP systems work
directly with binary sequences. Analog circuits will not perform as well from each
circuit, even if they are built following identical specifications, due to component
tolerances in analog components. In addition, by using DSP techniques, a digital
signal can be transferred or reproduced many times without degrading its signal
quality.

3. Reliability. The memory and logic of DSP hardware does not deteriorate with
age. Therefore the field performance of DSP systems will not drift with changing
environmental conditions or aged electronic components as their analog counter-
parts do. However, the data size (wordlength) determines the accuracy of a DSP
system. Thus the system performance might be different from the theoretical expect-
ation.

4. Complexity. Using DSP allows sophisticated applications such as speech or image
recognition to be implemented for lightweight and low power portable devices. This
is impractical using traditional analog techniques. Furthermore, there are some
important signal processing algorithms that rely on DSP, such as error correcting
codes, data transmission and storage, data compression, perfect linear phase filters,
etc., which can barely be performed by analog systems.

With the rapid evolution in semiconductor technology in the past several years, DSP
systems have a lower overall cost compared to analog systems. DSP algorithms can be
developed, analyzed, and simulated using high-level language and software tools such as
C/C++ and MATLAB (matrix laboratory). The performance of the algorithms can be
verified using a low-cost general-purpose computer such as a personal computer (PC).
Therefore a DSP system is relatively easy to develop, analyze, simulate, and test.

There are limitations, however. For example, the bandwidth of a DSP system is
limited by the sampling rate and hardware peripherals. The initial design cost of a
DSP system may be expensive, especially when large bandwidth signals are involved.
For real-time applications, DSP algorithms are implemented using a fixed number of
bits, which results in a limited dynamic range and produces quantization and arithmetic
errors.

1.1 Basic Elements of Real-Time DSP Systems

There are two types of DSP applications — non-real-time and real time. Non-real-time
signal processing involves manipulating signals that have already been collected and
digitized. This may or may not represent a current action and the need for the result
is not a function of real time. Real-time signal processing places stringent demands
on DSP hardware and software design to complete predefined tasks within a certain
time frame. This chapter reviews the fundamental functional blocks of real-time DSP
systems.

The basic functional blocks of DSP systems are illustrated in Figure 1.1, where a real-
world analog signal is converted to a digital signal, processed by DSP hardware in
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Figure 1.1 Basic functional blocks of real-time DSP system

digital form, and converted back into an analog signal. Each of the functional blocks in
Figure 1.1 will be introduced in the subsequent sections. For some real-time applica-
tions, the input data may already be in digital form and/or the output data may not need
to be converted to an analog signal. For example, the processed digital information may
be stored in computer memory for later use, or it may be displayed graphically. In other
applications, the DSP system may be required to generate signals digitally, such as
speech synthesis used for cellular phones or pseudo-random number generators for
CDMA (code division multiple access) systems.

1.2 Input and Output Channels

In this book, a time-domain signal is denoted with a lowercase letter. For example, x(7)
in Figure 1.1 is used to name an analog signal of x with a relationship to time ¢. The time
variable ¢ takes on a continuum of values between —oo and oo. For this reason we say
x(t) is a continuous-time signal. In this section, we first discuss how to convert analog
signals into digital signals so that they can be processed using DSP hardware. The
process of changing an analog signal to a xdigital signal is called analog-to-digital (A/D)
conversion. An A/D converter (ADC) is usually used to perform the signal conversion.
Once the input digital signal has been processed by the DSP device, the result, y(n), is
still in digital form, as shown in Figure 1.1. In many DSP applications, we need to
reconstruct the analog signal after the digital processing stage. In other words, we must
convert the digital signal y(n) back to the analog signal y(r) before it is passed to an
appropriate device. This process is called the digital-to-analog (D/A) conversion, typi-
cally performed by a D/A converter (DAC). One example would be CD (compact disk)
players, for which the music is in a digital form. The CD players reconstruct the analog
waveform that we listen to. Because of the complexity of sampling and synchronization
processes, the cost of an ADC is usually considerably higher than that of a DAC.

1.2.1 Input Signal Conditioning

As shown in Figure 1.1, the analog signal, x'(7), is picked up by an appropriate
electronic sensor that converts pressure, temperature, or sound into electrical signals.
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For example, a microphone can be used to pick up sound signals. The sensor output,
X'(1), is amplified by an amplifier with gain value g. The amplified signal is

x(1) = gx'(1). (1.2.1)

The gain value g is determined such that x(#) has a dynamic range that matches the
ADC. For example, if the peak-to-peak range of the ADC is 45 volts (V), then g may be
set so that the amplitude of signal x(#) to the ADC is scaled between + 5V. In practice, it
is very difficult to set an appropriate fixed gain because the level of x'(¢) may be
unknown and changing with time, especially for signals with a larger dynamic range
such as speech. Therefore an automatic gain controller (AGC) with time-varying gain
determined by DSP hardware can be used to effectively solve this problem.

1.2.2 A/D Conversion

As shown in Figure 1.1, the ADC converts the analog signal x(¢) into the digital signal
sequence x(n). Analog-to-digital conversion, commonly referred as digitization, consists
of the sampling and quantization processes as illustrated in Figure 1.2. The sampling
process depicts a continuously varying analog signal as a sequence of values. The basic
sampling function can be done with a ‘sample and hold’ circuit, which maintains the
sampled level until the next sample is taken. Quantization process approximates a
waveform by assigning an actual number for each sample. Therefore an ADC consists
of two functional blocks — an ideal sampler (sample and hold) and a quantizer (includ-
ing an encoder). Analog-to-digital conversion carries out the following steps:

1. The bandlimited signal x(¢) is sampled at uniformly spaced instants of time, n7,
where n is a positive integer, and 7 is the sampling period in seconds. This sampling
process converts an analog signal into a discrete-time signal, x(n7T'), with continuous
amplitude value.

2. The amplitude of each discrete-time sample is quantized into one of the 27 levels,
where B is the number of bits the ADC has to represent for each sample. The
discrete amplitude levels are represented (or encoded) into distinct binary words
x(n) with a fixed wordlength B. This binary sequence, x(n), is the digital signal for
DSP hardware.

A/D converter

iIdeal sampler Quantizer i
x(1) i x(nT) | '

L 4

i‘e{
=
=
=

Figure 1.2 Block diagram of A/D converter
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The reason for making this distinction is that each process introduces different distor-
tions. The sampling process brings in aliasing or folding distortions, while the encoding
process results in quantization noise.

1.2.3 Sampling

An ideal sampler can be considered as a switch that is periodically open and closed every
T seconds and

1
T=7 (12.2)

where f; is the sampling frequency (or sampling rate) in hertz (Hz, or cycles per
second). The intermediate signal, x(nT'), is a discrete-time signal with a continuous-
value (a number has infinite precision) at discrete time n7, n = 0,1, ..., co as illustrated
in Figure 1.3. The signal x(nT) is an impulse train with values equal to the amplitude
of x(z) at time nT. The analog input signal x(¢) is continuous in both time and
amplitude. The sampled signal x(nT) is continuous in amplitude, but it is defined
only at discrete points in time. Thus the signal is zero except at the sampling instants
t=nT.

In order to represent an analog signal x(#) by a discrete-time signal x(nT") accurately,
two conditions must be met:

1. The analog signal, x(¢), must be bandlimited by the bandwidth of the signal f},.

2. The sampling frequency, f;, must be at least twice the maximum frequency com-
ponent fj, in the analog signal x(z). That is,

fi>2fu. (12.3)

This is Shannon’s sampling theorem. It states that when the sampling frequency is
greater than twice the highest frequency component contained in the analog signal, the
original signal x(#) can be perfectly reconstructed from the discrete-time sample x(nT).
The sampling theorem provides a basis for relating a continuous-time signal x(¢) with

x(nT)

/]

0 T 2T 3T 4T

AT

> Time, ¢

Figure 1.3 Example of analog signal x(¢) and discrete-time signal x(n7T)
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the discrete-time signal x(nT) obtained from the values of x(¢) taken T seconds apart. It
also provides the underlying theory for relating operations performed on the sequence
to equivalent operations on the signal x(¢) directly.

The minimum sampling frequency f; = 2f), is the Nyquist rate, while fy = f;/2 is
the Nyquist frequency (or folding frequency). The frequency interval [—f;/2, f;/2]
is called the Nyquist interval. When an analog signal is sampled at sampling frequency,
fs, frequency components higher than f;/2 fold back into the frequency range [0, f;/2].
This undesired effect is known as aliasing. That is, when a signal is sampled
perversely to the sampling theorem, image frequencies are folded back into the desired
frequency band. Therefore the original analog signal cannot be recovered from the
sampled data. This undesired distortion could be clearly explained in the frequency
domain, which will be discussed in Chapter 4. Another potential degradation is due to
timing jitters on the sampling pulses for the ADC. This can be negligible if a higher
precision clock is used.

For most practical applications, the incoming analog signal x(z) may not be band-
limited. Thus the signal has significant energies outside the highest frequency of
interest, and may contain noise with a wide bandwidth. In other cases, the sampling
rate may be pre-determined for a given application. For example, most voice commu-
nication systems use an 8§ kHz (kilohertz) sampling rate. Unfortunately, the maximum
frequency component in a speech signal is much higher than 4 kHz. Out-of-band signal
components at the input of an ADC can become in-band signals after conversion
because of the folding over of the spectrum of signals and distortions in the discrete
domain. To guarantee that the sampling theorem defined in Equation (1.2.3) can be
fulfilled, an anti-aliasing filter is used to band-limit the input signal. The anti-aliasing
filter is an analog lowpass filter with the cut-off frequency of

Je <3 (1.2.4)

Ideally, an anti-aliasing filter should remove all frequency components above the
Nyquist frequency. In many practical systems, a bandpass filter is preferred in order
to prevent undesired DC offset, 60 Hz hum, or other low frequency noises. For example,
a bandpass filter with passband from 300 Hz to 3200 Hz is used in most telecommunica-
tion systems.

Since anti-aliasing filters used in real applications are not ideal filters, they cannot
completely remove all frequency components outside the Nyquist interval. Any fre-
quency components and noises beyond half of the sampling rate will alias into the
desired band. In addition, since the phase response of the filter may not be linear, the
components of the desired signal will be shifted in phase by amounts not proportional to
their frequencies. In general, the steeper the roll-off, the worse the phase distortion
introduced by a filter. To accommodate practical specifications for anti-aliasing filters,
the sampling rate must be higher than the minimum Nyquist rate. This technique is
known as oversampling. When a higher sampling rate is used, a simple low-cost anti-
aliasing filter with minimum phase distortion can be used.

Example 1.1: Given a sampling rate for a specific application, the sampling period
can be determined by (1.2.2).
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(a) In narrowband telecommunication systems, the sampling rate f; = 8§ kHz,
thus the sampling period 7= 1/8000 seconds = 125 us (microseconds).
Note that 1 s = 10~° seconds.

(b) In wideband telecommunication systems, the sampling is given as
fs = 16kHz, thus T = 1/16000 seconds = 62.5 ps.

(c) Inaudio CDs, the sampling rate is f; = 44.1kHz, thus T = 1/44 100 seconds
= 22.676 ps.

(d) In professional audio systems, the sampling rate f; =48kHz, thus
T = 1/48000 seconds = 20.833 ps.

1.2.4 Quantizing and Encoding

In the previous sections, we assumed that the sample values x(nT) are represented
exactly with infinite precision. An obvious constraint of physically realizable digital
systems is that sample values can only be represented by a finite number of bits.
The fundamental distinction between discrete-time signal processing and DSP is the
wordlength. The former assumes that discrete-time signal values x(n7') have infinite
wordlength, while the latter assumes that digital signal values x(n) only have a limited
B-bit.

We now discuss a method of representing the sampled discrete-time signal x(nT) as a
binary number that can be processed with DSP hardware. This is the quantizing and
encoding process. As shown in Figure 1.3, the discrete-time signal x(nT) has an analog
amplitude (infinite precision) at time ¢ = nT. To process or store this signal with DSP
hardware, the discrete-time signal must be quantized to a digital signal x(n) with a finite
number of bits. If the wordlength of an ADC is B bits, there are 28 different values
(levels) that can be used to represent a sample. The entire continuous amplitude range is
divided into 28 subranges. Amplitudes of waveform that are in the same subrange are
assigned the same amplitude values. Therefore quantization is a process that represents
an analog-valued sample x(n7T) with its nearest level that corresponds to the digital
signal x(n). The discrete-time signal x(nT) is a sequence of real numbers using infinite
bits, while the digital signal x(n) represents each sample value by a finite number of bits
which can be stored and processed using DSP hardware.

The quantization process introduces errors that cannot be removed. For example, we
can use two bits to define four equally spaced levels (00, 01, 10, and 11) to classify the
signal into the four subranges as illustrated in Figure 1.4. In this figure, the symbol ‘o’
represents the discrete-time signal x(nT), and the symbol ‘e’ represents the digital signal
x(n).

In Figure 1.4, the difference between the quantized number and the original value is
defined as the quantization error, which appears as noise in the output. It is also called
quantization noise. The quantization noise is assumed to be random variables that are
uniformly distributed in the intervals of quantization levels. If a B-bit quantizer is used,
the signal-to-quantization-noise ratio (SNR) is approximated by (will be derived in
Chapter 3)
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Quantization level
A

Quantization errors
|

1 - 0
10 /0/7‘"
o

00 » Time,
o T 2T 3T

ha'

Figure 1.4 Digital samples using a 2-bit quantizer

SNR ~ 6BdB. (1.2.5)

This is a theoretical maximum. When real input signals and converters are used, the
achievable SNR will be less than this value due to imperfections in the fabrication of
A/D converters. As a result, the effective number of bits may be less than the number
of bits in the ADC. However, Equation (1.2.5) provides a simple guideline for determin-
ing the required bits for a given application. For each additional bit, a digital signal has
about a 6-dB gain in SNR. For example, a 16-bit ADC provides about 96 dB SNR. The
more bits used to represent a waveform sample, the smaller the quantization noise will
be. If we had an input signal that varied between 0 and 5V, using a 12-bit ADC, which
has 4096 (2'%) levels, the least significant bit (LSB) would correspond to 1.22mV
resolution. An 8-bit ADC with 256 levels can only provide up to 19.5mV resolution.
Obviously with more quantization levels, one can represent the analog signal more
accurately. The problems of quantization and their solutions will be further discussed in
Chapter 3.

If the uniform quantization scheme shown in Figure 1.4 can adequately represent
loud sounds, most of the softer sounds may be pushed into the same small value. This
means soft sounds may not be distinguishable. To solve this problem, a quantizer whose
quantization step size varies according to the signal amplitude can be used. In practice,
the non-uniform quantizer uses a uniform step size, but the input signal is compressed
first. The overall effect is identical to the non-uniform quantization. For example, the
logarithm-scaled input signal, rather than the input signal itself, will be quantized. After
processing, the signal is reconstructed at the output by expanding it. The process of
compression and expansion is called companding (compressing and expanding). For
example, the w-law (used in North America and parts of Northeast Asia) and A-law
(used in Europe and most of the rest of the world) companding schemes are used in most
digital communications.

As shown in Figure 1.1, the input signal to DSP hardware may be a digital signal
from other DSP systems. In this case, the sampling rate of digital signals from other
digital systems must be known. The signal processing techniques called interpolation or
decimation can be used to increase or decrease the existing digital signals’ sampling
rates. Sampling rate changes are useful in many applications such as interconnecting
DSP systems operating at different rates. A multirate DSP system uses more than one
sampling frequency to perform its tasks.
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1.2.5 D/A Conversion

Most commercial DACs are zero-order-hold, which means they convert the binary
input to the analog level and then simply hold that value for 7T seconds until the next
sampling instant. Therefore the DAC produces a staircase shape analog waveform y/(z),
which is shown as a solid line in Figure 1.5. The reconstruction (anti-imaging and
smoothing) filter shown in Figure 1.1 smoothes the staircase-like output signal gener-
ated by the DAC. This analog lowpass filter may be the same as the anti-aliasing filter
with cut-off frequency f, < f;/2, which has the effect of rounding off the corners of the
staircase signal and making it smoother, which is shown as a dotted line in Figure 1.5.
High quality DSP applications, such as professional digital audio, require the use of
reconstruction filters with very stringent specifications.

From the frequency-domain viewpoint (will be presented in Chapter 4), the output of
the DAC contains unwanted high frequency or image components centered at multiples
of the sampling frequency. Depending on the application, these high-frequency compon-
ents may cause undesired side effects. Take an audio CD player for example. Although
the image frequencies may not be audible, they could overload the amplifier and cause
inter-modulation with the desired baseband frequency components. The result is an
unacceptable degradation in audio signal quality.

The ideal reconstruction filter has a flat magnitude response and linear phase in the
passband extending from the DC to its cut-off frequency and infinite attenuation in
the stopband. The roll-off requirements of the reconstruction filter are similar to those
of the anti-aliasing filter. In practice, switched capacitor filters are preferred because of
their programmable cut-off frequency and physical compactness.

1.2.6 Input/Output Devices

There are two basic ways of connecting A/D and D/A converters to DSP devices: serial
and parallel. A parallel converter receives or transmits all the B bits in one pass, while
the serial converters receive or transmit B bits in a serial data stream. Converters with
parallel input and output ports must be attached to the DSP’s address and data buses,

y'(0) Smoothed output
signal

0 T 2T 3T 4T 5T > Time, ¢

Figure 1.5 Staircase waveform generated by a DAC
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which are also attached to many different types of devices. With different memory
devices (RAM, EPROM, EEPROM, or flash memory) at different speeds hanging on
DSP’s data bus, driving the bus may become a problem. Serial converters can be
connected directly to the built-in serial ports of DSP devices. This is why many practical
DSP systems use serial ADCs and DACs.

Many applications use a single-chip device called an analog interface chip (AIC) or
coder/decoder (CODEC), which integrates an anti-aliasing filter, an ADC, a DAC, and a
reconstruction filter all on a single piece of silicon. Typical applications include modems,
speech systems, and industrial controllers. Many standards that specify the nature of the
CODEC have evolved for the purposes of switching and transmission. These devices
usually use a logarithmic quantizer, i.e., A-law or p-law, which must be converted into a
linear format for processing. The availability of inexpensive companded CODEC justi-
fies their use as front-end devices for DSP systems. DSP chips implement this format
conversion in hardware or in software by using a table lookup or calculation.

The most popular commercially available ADCs are successive approximation, dual
slope, flash, and sigma-delta. The successive-approximation ADC produces a B-bit
output in B cycles of its clock by comparing the input waveform with the output of a
digital-to-analog converter. This device uses a successive-approximation register to split
the voltage range in half in order to determine where the input signal lies. According to
the comparator result, one bit will be set or reset each time. This process proceeds
from the most significant bit (MSB) to the LSB. The successive-approximation type of
ADC is generally accurate and fast at a relatively low cost. However, its ability to follow
changes in the input signal is limited by its internal clock rate, so that it may be slow to
respond to sudden changes in the input signal.

The dual-slope ADC uses an integrator connected to the input voltage and a reference
voltage. The integrator starts at zero condition, and it is charged for a limited time. The
integrator is then switched to a known negative reference voltage and charged in the
opposite direction until it reaches zero volts again. At the same time, a digital counter
starts to record the clock cycles. The number of counts required for the integrator
output voltage to get back to zero is directly proportional to the input voltage. This
technique is very precise and can produce ADCs with high resolution. Since the
integrator is used for input and reference voltages, any small variations in temperature
and aging of components have little or no effect on these types of converters. However,
they are very slow and generally cost more than successive-approximation ADCs.

A voltage divider made by resistors is used to set reference volt