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Abstract

This dissertation addresses the problem of modularizing the capabilities of a humanoid

agent into skill level behaviors. Our approach to this problem is to derive the skill level

behaviors in a data-driven fashion from human demonstration. The humanoid agent is

provided with a repertoire of basic skills by leveraging underlying behaviors in observed

human movement. These skills serve as a foundation for endowing a humanoid agent

with the ability to act autonomously. Given such a repertoire, a humanoid agent can

autonomously perform functions such as control for various tasks, classification of human

motion, and learning by imitation. Additionally, a repertoire of skills provides a common

vocabulary for human-agent interaction and interface for non-technical users.

We developed Performance-Derived Behavior Vocabularies (PDBV), an automated

data-driven methodology for deriving a vocabulary of skill level behaviors from human

motion data. PDBV assumes as input an unlabeled kinematic time-series of joint an-

gle values, acquired from human performance demonstrative of multiple activities. We

present spatio-temporal Isomap as an unsupervised dimension reduction technique for

uncovering underlying spatio-temporal structure in kinematic motion. Using spatio-

temporal Isomap, demonstrated motion data are clustered into groups of exemplars,

where each group contains exemplars of an underlying primitive behavior. Exemplars
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of a behaviors can be generalized and realized as forward models that encode the nonlin-

ear dynamics of the underlying behaviors in the joint angle space of the agent. Skills as

forward models can be used in a variety of functions, including control and perception.

We validate and evaluate the above approach to automated skill derivation in several

ways. First, the methodology is empirically evaluated on multiple sources of time-series

data, spanning scripted activities such as dancing and athletics, in order to validate in-

put motion preprocessing, the structure of derived behavior vocabularies, realizing each

behavior as forward models, and humanoid agent control. Second, we analyze and dis-

cuss our approach for deriving capabilities with respect to our empirical results. Lastly,

we illustrate the utility of derived behavior vocabularies for use in movement imitation,

addressing two subproblems: humanoid motion synthesis and human movement classifi-

cation.
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Chapter 1

Introduction

Robots are emerging as a ubiquitous and crucial component in our society. Robotic

technologies are now used in a variety of contexts, including manufacturing, entertain-

ment, education, medical domains, space exploration, and emergency response. These

technologies have much promise for other applications such as assistants for the elderly,

training/rehabilitation, homeland security, and environmental monitoring/cleanup. In

addition to physically embodied robotic systems, artificially embodied robots, situated in

virtual environments with simulated physics, are increasingly used for computer anima-

tion, interactive entertainment, and digital special effects. Both physically and virtually

embodied robots fall under the category of robotic agents.

This dissertation focuses on autonomous humanoid agents, a subset of robotic agents

with the embodiment characteristics of a human and the ability to act without exter-

nal supervision. Examples of physically embodied and artificially embodied humanoid

robotic agents are shown in Figure 1.1. Many variations of humanoid agents have been

successfully designed and implemented. Endowing such agents with the ability to act
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autonomously remains an open problem, due to the complex challenges of autonomous

control, external interaction, and task specification.

Challenges in control of robotic agents:

• Autonomous control: How do we endow a humanoid agent with
autonomous control?

• External interaction: How do we communicate our intentions to a
humanoid agent?

• Task structure: How do we represent tasks in a manner amenable
to autonomous humanoid control?

One of the promising approaches to dealing with the complex problems outlined above

is through the use of primitives [93, 120]. These modules provide a substrate or repertoire

of skills for the agent that are meant to replace otherwise intractable on-line trajectory

planning. Using an example from [120] , the number of possible actions for a 30-degree-

of-freedom (DOF) humanoid agent with 3 possible values for each DOF is 303 > 1014.

This exponential explosion in the space of actions limits the applicability of search-based

trajectory planning techniques for the selection of humanoid actions. By representing

the capabilities of a humanoid as primitives, the space of possible actions for the agent

can be modularized into a more compact and accessible interface. Furthermore, such

modularization enables a variety of approaches to autonomous control to be employed,

including reactive, behavior-based, and hybrid (for a complete survey of relevant archi-

tectures see [92]). Finally, primitives have been employed as a foundation for learning by

demonstration, a technique for humanoid control that is growing in popularity [120, 93].

Even though modular skills can serve as a useful action repertoire, it remains unclear

what constitutes a set of primitive modules suitable for autonomous humanoid agents.
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Figure 1.1: Humanoid agents can be physically embodied, as with the NASA Robonauts
[1] (left), or virtually embodied in physical simulations, as with Adonis [91] (center) and
Zordan’s boxing simulation [148] (right).

Such a repertoire could be model-based, created according to models of human motor

control or domain-specific behaviors (e.g., dancing, athletics). In contrast, this disserta-

tion addresses the problem of skill acquisition in a data-driven model-free fashion, through

learning from demonstration. We propose a methodology to automatically derive a reper-

toire of skill-level behaviors for a humanoid agent from motion demonstrated by a human.

More specifically, our methodology is aimed at extracting behaviors that underlie unla-

beled time-series data of kinematic motion consisting of unsegmented performances of

multiple activities. By deriving skills in this manner, we leverage the inherent human

capabilities for structuring and modularizing motion, and attempt to uncover that struc-

ture automatically and apply it toward humanoid agent control. By using a data-driven

approach, we seek to remove bias from the modularization by avoiding as many explicit

assumptions as possible.

Dissertation goal: Development of a methodology for endowing a hu-
manoid agent with a modular repertoire of skills automatically derivated
from kinematic human motion.
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1.1 Aims and Motivation

In order to realize the goal of this dissertation, we must address two fundamental problems

regarding modularization and learning.

Problems addressed in this dissertation:

• Capability modularization: how to modularize or subdivide the
functionality of a system into a repertoire of basic capabilities (e.g.,
behaviors or procedures)?

• Spatio-temporal clustering: how to uncover underlying structure
in spatio-temporal data (data whose points have both spatial and
temporal relationships)?

The ability to modularize the functionality of a system is a problem encountered

throughout the field of Computer Science. This problem of capability modularization is an

aspect of system construction that aims to define and implement the basic procedures used

by a system. Programmers and researchers typically must select and then implement a set

of basic and modular procedures (or functions) that can be invoked by other programs for

various purposes. For example, a module for sorting data could be used in one program

to alphabetize a list of names, another program to search more efficiently for relevant

information, and still another program to help construct an indexing structure for a

database. Thus, such modular routines serve as a foundation for creating new programs

and algorithms.

Additionally, modularity can also be realized as a set of primitives. The notion of a

primitive refers to a module that cannot be further subdivided and can be combined using

defined operations with other primitives to create more intricate modules. Consider, for

example, constructive solid geometry [45], where geometric structures are created from a
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set of chosen primitive modules, including a rectangle, a sphere, and a cylinder module.

New geometries in this paradigm are created by instantiating primitive modules to create

shapes. More intricate shapes are formed by combining previously created shapes through

Boolean operations.

In this dissertation, we aim to provide a method for automatically modularizing hu-

manoid agent control as a set of motion primitives. We assume that control for humanoids

is structured by a set of motion primitives that can be sequenced and/or superimposed.

Each primitive is a controller for performing a general capability, such as “reaching”

or “punching”. We assume the presence of a high level controller that sequences the

primitives to achieve the agent’s goals. Our focus is on how to derive such modules

or primitives automatically, and express them as nonparametric, exemplar-based mem-

ory models. Each module or primitive is a model that represents a family of motions

which, collectively, express a single capability. Similar to a manually-intensive approach

proposed by Rose et al. [116], each module is described as a potentially sparse set of

exemplars, where exemplars are motion examples of a single capability being performed.

These exemplars are generalized to express an infinite family of motions that perform a

capability. A family of motions serves as a memory that can be used to instantiate (or

recall) motions that perform a particular capability. For example, a family of reaching

motion can be instantiated or recalled to produce a reach to a particular location. De-

scribed at length in Chapter 4, representing capabilities in this way, as memory models,

allows for them to be used as predictors, which enables the invocation of these models in

a variety of functions.
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Automated construction of capabilities as primitives is relevant to several active ar-

eas of research, including artificial intelligence, autonomous agents, humanoid robotics,

and computer animation. As discussed in Section 1.3, we can avoid problems of manual

design of primitives by automatically deriving them from human motion. However, the

use of automatic derivation is contingent upon having a mechanism capable of extracting

structure from unlabeled spatio-temporal movement data (in our case, kinematic joint

angle data). We must be able to extract and cluster exemplars of capabilities from such

data as an unsupervised machine learning problem. We address the problem of handling

the spatio-temporal nature of motion data and the development of spatio-temporal clus-

tering, described at length in Chapter 3. We use the combination of our spatio-temporal

method for dimension reduction accompanied by a simple clustering procedure.

In summary, our goal is to develop a methodology for modularizing control of hu-

manoid agents. Through automatic derivation of modular capabilities, we aim to endow

a humanoid agent with autonomy by having it use those capabilities as a repertoire for

control. To avoid manual development and bias, we use an automated approach based

on capabilities demonstrated by humans.

1.2 General Approach to Autonomous Humanoid Control

We use a general structure for humanoid control consisting of four levels: plant, motor,

skill, and task, as shown in Figure 1.2.

• The plant level is the lowest, and contains the embodiment of the humanoid agent.

It provides the agent’s basic interface to the world through sensing and actuation.
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controllers
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Motor-level
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Agent Plant

Figure 1.2: Our general approach to autonomous humanoid control consists of: i) an agent
plant as the embodied interface to the world, ii) motor level sensing and actuation for
achieving desired static configurations, iii) skill level capabilities for setting configurations
over time according to a motor program, and iv) task level controllers for directing skills
to achieve the objectives of the agent.

• Above the plant, the motor level contains controllers that produce actuation forces

to the plant level. These forces are determined based on the difference between the

agent’s current and desired configurations.

• Above the motor level is the skill level, which contains a set of behaviors used to

determine desired configurations for the agent over time. A behavior at the skill

level is the realization of some motor program defining a capability for the agent. A

set of skill level behaviors comprise a capability repertoire for that agent. Through

arbitration or fusion [108], the outputs of all skill level behaviors are combined to

continuously provide desired configurations to the motor level.
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• Finally, the task level contains controllers constructed from a skill level repertoire

to provide control for robot tasks in general. These controllers have objectives

with respect to the world. Task level controllers accomplish their objectives by

arbitrating, fusing, and indexing into skill behaviors. The work in this dissertation

is focused on constructing behaviors at the skill level.

Skill level control can be effectively modularized through a variety methodologies,

as discussed in Section 2.2.2. Our approach to modularizing skills for humanoid agents

is inspired by the notion of primitives and behaviors, and is data-driven. Underlying

behaviors are derived from time-series of kinematic data captured from human perfor-

mance. Dimension reduction and clustering techniques are used to group motions within

the resulting time-series that are indicative of a common underlying behavior. Using

interpolation and eager evaluation, clustered groups of motion are generalized to realize

behaviors.

Such derived behaviors can be used as skill level primitives in a variety of functions,

including motion prediction, motion synthesis, motion classification, and imitation. Ad-

ditionally, our method for deriving behaviors can be applied to produce the behaviors

and skills assumed in a variety of control architectures for reactive, behavior-based, and

hybrid systems [92].

Developing skill level behaviors through our methodology helps to address the prob-

lems of autonomy, interaction, and task structuring for humanoid agents we outlined

above. First, skill behaviors abstract the details of motor level control, which otherwise

typically requires desired robot configurations to be specified. Configurations for hu-
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manoid robots are likely to be high dimensional (in the tens of DOF). Control in the con-

figuration space of DOF can be both unintuitive and tedious for expressing autonomous

control. This is further evidenced by the amount of detail, effort, and infrastructure

required for procedures such as teleoperation and keyframe animation. Skill behaviors

provide context with respect to a particular basic capability of an agent. The details of a

specific motor level sequence can thus be abstracted. For instance, a reaching motion can

be identified as a variation on a “reach” capability instead of a collection of parameter

values specifying DOF values over time.

Second, because skill behaviors abstract low level control, these behaviors serve as

building blocks for structuring autonomous control for robot tasks. Skills do not necessar-

ily incorporate robot goals. Instead, skills contain preconditions and postconditions that

are specific to a particular capability. In contrast, task level control explicitly incorporates

objectives for the robot. Task level controllers perform sequencing and/or superposition

of skill level behaviors in order to achieve the agent’s objectives. Therefore, skill behav-

iors as abstract building blocks provide a means for addressing the questions of autonomy

and task structuring for humanoid agents.

Finally, a capability repertoire provides a shared grounding between humans and

robots to address the question of interaction. A skill behavior embodies a capability of

the humanoid agent. Together, a set of skill behaviors form a vocabulary of capabilities for

the agent. By using this vocabulary, humans can communicate directly with the robots,

by translating the vocabulary into control or objectives for the robot.

In addition to modularity, behaviors express general capabilities of the humanoid

agent, regardless of the specific function being performed. Borrowing inspiration from
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concepts in neuroscience, interactions between skill level behaviors and a function specific

mechanism (e.g., perception, control) can be viewed as functionally similar to interactions

between motor primitives [11] and mirror neurons [115]. Motor primitives have been pro-

posed as a biological model for the structure of the motor system in various animals,

including humans [132]. Mirror neurons are hypothesized to map observed movement

onto motor programs, possibly onto a set of motor primitives [93]. This mapping allows

for movement to be executed from observation and provides a guiding principle for im-

itation learning. For the purposes of this dissertation, the biological concepts of motor

primitives and mirror neurons serve as inspiration for the derivation of behaviors that

are not specific to a particular function. Analogous to motor primitives, skill behaviors

should allow an agent to perform functions for control, perception, or internal modeling

using common underlying mechanisms and provide building blocks for task level control.

In this sense, skill behaviors fit within the model of perceptual-motor primitives [93] that

links perception and motor functions into a common structure.

1.3 Issues in Developing Humanoid Capabilities

Several approaches to autonomous humanoid control and learning utilize skill level capa-

bilities [21, 90, 105, 59]. Yet, the creation and maintenance of a repertoire of capabilities

for an agent is subject to several complexities. Fully automated or tabula raza approaches

to learning capabilities are appropriate for learning mappings such as in inverse kinemat-

ics (mapping end-effector coordinates to joint angles) and inverse dynamics (mapping

actuation forces to control commands). For modularization of general capabilities, how-
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Figure 1.3: Examples of functionality modes for interfacing with a vocabulary of skill
level capabilities. These modes include abstracting motor level functions, supporting
task level functions, and encoding skill level interactions. Regardless of functionality, the
underlying skill behaviors should not change.
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ever, a fully automated learning approach would need both a means to explore the space

of possible modularizations and judge the quality of each modularization. Given the

complexity of humanoid agents, exhaustive exploration of module space is likely to be

intractable. More importantly, the metric used to judge the quality of a given modu-

larization is probably based on a hypothesis of capabilities inherent to human beings.

Assuming no definitive “ground truth” knowledge about capabilities inherent to humans

is available, such a modularization metric is specific to a particular domain or biased

towards a particular hypothesis of human structure.

Manual development of a skill repertoire is a valid approach, especially when domain

knowledge is available. While manual development appears straightforward, several issues

remain unaddressed. A repertoire developer must design a specification of behaviors in

the repertoire and implement the behaviors as controllers. The design of a repertoire must

consider factors such as the selection of necessary behaviors, the scope and complexity

of each behavior, the potential need for mutual exclusion between behaviors, and the

parsimony of the repertoire as a whole. We assume that no definitive knowledge about

the inherent capabilities of human beings is currently available. Consequently, a manually

designed repertoire is likely to be specific to a certain domain or hypothesis about human

capabilities.

Once designed, conceptualized behaviors are manually implemented as controllers for

a humanoid agent. Depending on complexity, proper implementation of a controller re-

alizing a behavior can be tedious and time consuming. In addition, manual design and

implementation is susceptible to errors in human judgment and execution. Any method

(automatic or manual) is susceptible to producing a repertoire of with errors. Although
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errors in a repertoire are inevitable, scalable approaches to modularization allow such

errors to be corrected through manual or automatic refinement without complication.

Scalability factors include the relative ease in adding new capabilities, subtracting unnec-

essary capabilities, modifying existing capabilities, and rebuilding controllers from altered

designs.

Within our general methodology, we utilize automated approaches to capability de-

velopment to serve as an “initialization” for a scalable repertoire amenable to manual

refinement. Our approach to skill acquisition avoids biasing a repertoire towards a certain

model of humans by using motion capture data from human performance. Capabilities

are produced in a data-driven fashion from motion data exhibiting desired capabilities,

directly or indirectly. From this data-driven perspective, we avoid the issues that plague

manual development by leveraging abilities demonstrated through human performance.

Derived behaviors are exemplar-based and are amenable to manual or automatic modifi-

cation through these exemplars, similar to Verbs and Adverbs [116]. Automatic reimple-

mentation for controllers of modified behaviors is performed through interpolation and

eager evaluation.

1.4 Dissertation Contributions

The goal of this dissertation is to provide a method for automatically deriving skills from

a human subject through demonstration. These skills serve to enable and enhance other

methods for task-level control and motor-level actuation, as well as the sensing and actu-

ation capabilities of various humanoid agent platforms. As a whole, our general approach
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aims to enable control through demonstration rather than explicit programming. Endow-

ing autonomy in this manner provides an agent with the ability to collaborate, compete,

learn, and train with humans other agents.

Primary dissertation contribution: The primary contribution of
this dissertation is a methodology for automatically deriving skill-level
behaviors from kinematic motion data collected from human perfor-
mance.

This contribution can be viewed as the automated “compilation” of behavior vocabu-

laries from existing motion data. The compiled behavior vocabulary has several desirable

properties. First, each behavior is defined by a set of clustered exemplars generalized

through interpolation and transition probabilities to other behaviors. From this repre-

sentation, the exemplars and transitions can be modified to manually refine the vocab-

ulary. Vocabulary compilation then serves as vocabulary initialization. Second, motion

data may be perceptually meaningful to a non-specialist user but not intuitive in the

space of an agents’ DOF. Automated compilation serves to handle the low-level details of

modularization while leaving the source and target observably intuitive. Even for users

experienced with kinematic motion, automated derivation serves to reduce the amount

of time and effort spent towards skill generation. Lastly, a compiled behavior vocabulary

reduces the space of control into modules, providing a more accessible agent interface for

non-specialist users, task-level controllers, and for human-agent interaction.

The primary contribution of this dissertation is further divided into several subcon-

tributions:

14



Secondary dissertation contributions:

• automated grouping of free-space motion data into exemplars of
underlying behaviors

• extension of geodesic-based multidimensional scaling for clustering
behavior exemplars with spatio-temporal structure

• expression of exemplar-based behaviors as flowfields encapsulating
nonlinear dynamics of an underlying skill

• using the dynamics of skill behaviors for motion synthesis, classi-
fication, and imitation

The basic representation for skill behaviors is exemplar-based. To produce exemplar-

based behaviors, our methodology segments a continuous input motion and groups seg-

ments with common spatio-temporal signatures. We assume motion segments with similar

spatio-temporal signatures are instances of variations on a common underlying behavior.

For finding clusters of motions, we developed a spatio-temporal extension to Isomap

[131, 34], a geodesic distance technique for nonlinear dimension reduction. Interpolation

is used to generalize exemplars to an infinite family of variations of an underlying be-

havior. We developed a method to pre-evaluate a behavior for variations off-line. By

performing pre-evaluation, desired variations of a behavior can be quickly indexed, elimi-

nating the need for exhaustive search. In addition, a behavior can be used as an indivisible

dynamical process, requiring neither indexing nor searching. Furthermore, behaviors as

dynamical processes can be used as predictors. These predictors can be used for functions

such as control, perception, and planning, without modifying the underlying behavior.
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1.5 Dissertation Outline

The remainder of this dissertation is organized into six main chapters and three appendix

chapters, as follows.

Chapter 2 (Background) will survey work related to learning structure from data,

building agent capabilities for kinematic motion and robotics, and neuroscience inspira-

tions for mechanisms that combine perception and motor control.

Chapter 3 (Spatio-Temporal Isomap) presents our technique for learning spatio-temporal

structure and its relationship to other methods for linear, nonlinear, and spatio-temporal

dimension reduction.

Chapter 4 (Performance-Derived Behavior Vocabularies) describes the application of

our approach to spatio-temporal dimension reduction, described in Chapter 3, to human

motion data to derive capabilities for humanoid agents in the form of behavior vocab-

ularies. Our behavior derivation methodology is called Performance-Derived Behavior

Vocabularies (PDBV).

Chapter 5 (Evaluation) describes our results from deriving behavior vocabularies from

input motions containing performances of multiple activities. Advantages and shortcom-

ings of our methodology are discussed with respect to these results.

Chapter 6 (Movement Imitation with Behavior Vocabularies) describes applications

of derived skill behaviors as perceptual-motor primitives for humanoid motion synthesis,

classification, and imitation.

Chapter 7 (Conclusion) concludes this dissertation with a summary of the work and

avenues for further research.
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Appendix Chapter A (Collecting Natural Human Performance) describes complimen-

tary approaches we developed to our behavior derivation methodology aimed towards

collecting motion of humans in natural situations.

Appendix Chapter B (Applying Spatio-temporal Isomap to Robonaut Sensory Data)

describes the application of our approach to spatio-temporal dimension reduction for

finding structure in sensory data in grasping motions collected from teleoperation of

Robonaut [1], a humanoid torso robot developed by NASA.
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Chapter 2

Background

As stated previously, the aim of this dissertation is the acquisition of skills for a hu-

manoid agent toward applications such as autonomous control. This objective is related

to and/or motivated by previous work spanning several research areas, including au-

tonomous humanoid control, motion (or trajectory) formation, machine learning and

neural computation, and neuroscience. We survey related work in these areas in relation

to our approach to endow a humanoid agent with skills. This discussion places our work i)

within approaches to autonomous humanoid control, ii) in relation to other approaches

to expressing humanoid motion, iii) in relation to approaches to modularization from

unsupervised learning, and finally iv) with respect to inspirations from neuroscience.

2.1 Modularity for Autonomous Humanoid Control

As described by Matarić [92] and Arkin [3], the four dominant approaches to control for

autonomous robotic agents are deliberative, reactive, hybrid, and behavior-based control.

Behavior-based, hybrid, and (typically) reactive systems are inherently modularized into

behaviors. However, none of these approaches to autonomous control indicate how to
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choose or implement behaviors, humanoid or otherwise. For humanoid agents, methods

for automatically deriving behaviors aptly compliment these approaches to autonomous

control by providing human-demonstrated behaviors. As examples, derived behaviors

could be used to provide skills assumed in several proposed task-level control techniques,

such as hybrid systems proposed by Huber and Grupen [59], Bentivegna and Atkeson

[7], and Faloutsos et al. [42, 43] and behavior-based systems proposed by Nicolescu and

Matarić [105] and Rosenstein and Barto [117]. At a minimum, automatically derived

behaviors can serve as a baseline for manual refinement or as a blueprint for manual

development.

Deliberative control is the most traditional approach to humanoid control and is

typically infeasible for autonomous control. The infeasibility of deliberative control is

due to the necessity of search of an exponentially large space of actions. Deliberative

techniques for humanoid agents are typically restricted to off-line procedures such as

path planning [80, 74] and humanoid animation through constraint-based optimization

[142, 29, 109]. By deriving a repertoire of skills, the space of action is modularized based

on behaviors demonstrated by a human. These behaviors serve as a means for symbol

grounding [51], abstracting assumed capabilities as symbols. Symbol grounding through

primitive modules eliminates the need for exhaustive search by separating the vastness

of possible control commands from task-level control. The resulting system is a hybrid

system, a deliberative planner hierarchically interfaced with reactive behavior modules.

Described in depth by Schaal [120] and Schaal et al. [121], imitation learning is a

means for endowing humanoid agent with autonomous control from human demonstra-

tion. Imitation learning can take several forms, such as direct control policy learning,
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learning from demonstrated trajectories, and model-based imitation. One approach to im-

itation learning is to use demonstrated motion trajectories as constraints for optimization-

based search, as in spline-based via-points proposed by Miyamoto et al. [97, 98]. Similar

to deliberative systems, imitation using via-points is requires search of possible trajec-

tories and is sensitive to spatial and temporal perturbations. Instead, the work in this

dissertation primarily emphasizes learning from demonstration to build capabilities with

a secondary interest in model-based imitation. For learning from demonstrated trajecto-

ries, our aim is to learn a repertoire of skill level behaviors from human demonstration,

instead of using demonstration as a constraint. These behaviors in the repertoire can

then be used as forward models for multiple-model competition for imitating previously

unobserved movement. Our approach to imitation learning shares common objectives

as the methodologies proposed by Demiris and Hayes [37] and Wolpert and Kawato

[143]. Discussed in more detail in Section 2.2.2, these methods construct behaviors in-

crementally on-line using classification and sensory context in a greedy manner. Trading

on-line learning for a global view of training data, our methodology is a batch procedure

placing greater emphasis on extracting behaviors, with potentially large intra-behavior

variations,.

Zordan and Hodgins [148] present an interaction-based variation on imitation learning.

Unlike most of the methods discussed in this dissertation, their approach to autonomous

control assumes a humanoid agent will be subject to strong dynamical interaction with

its environment. Such dynamical interactions can be irresistible to the agent, such as

being punched while boxing. Thus, a tradeoff arises between following a demonstrated

trajectory containing the desired motion to be imitated and adjusting to the interaction
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dynamics of the environment. For upper body motion, Zordan and Hodgins approach this

tradeoff by incorporating contact and task constraints into tracking controllers. These

controllers autonomously follow a demonstrated trajectory while attempting to maintain

contact and task constraints in the face of strong dynamic disturbances. Along a similar

line, Faloutsos et al. [42, 43] address the problem of autonomous control with strong

dynamical interactions through supervised coordination of composable controllers. How-

ever, little insight is provided into how composable controllers should be designed or

implemented.

2.2 Representing Motion Capabilities

For humanoid agents, we consider the primary form of expression to be articulated rigid-

body kinematic motion, although, other modalities of expression are plausible and valid,

such as speech, facial expression, and non-rigid deformation. Given this disposition, we

classify methods for representing motion capabilities into three categories:

• motion graphs (e.g., probabilistic road maps) [79, 80]

• motion modules (e.g., behaviors) [72, 87, 63]

• motion mappings (e.g. inverse kinematics) [31]

Each motion representation is described in turn.

2.2.1 Motion Graphs

In a motion graph representation, a graph is constructed in an agent’s configuration

space (or a corresponding space) to represent possible valid motion trajectories. The
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nodes of this graph are a set of valid agent configurations. These nodes are connected

by edges, with each edge specifying the ability to perform a valid transition between two

configurations. Once a motion graph is constructed, motion trajectories are specified as

connected paths in the graphs. Traversing a path in a motion graph produces a motion

trajectory consisting of valid configurations.

Motion graphs can be constructed using a variety of techniques. Tabula raza ap-

proaches to motion graph construction produce probabilistic road maps [75] or rapidly-

exploring random trees [84]. These methods have no a priori knowledge of the config-

uration space and produce the motion graph through exploration. Exploration begins

from an initial location in configuration space, from which nearby points and transitions

are tested for validity. Points with valid transitions to the initial location are connected

to the initial location with an edge. Exploration iteratively continues for added points

with validity testing and edge connection to other valid configurations. Tabula raza mo-

tion graph construction is subject to the curse of dimensionality, exponential growth in

the number of nodes with additional dimensionality, requiring clever graph pruning and

exploration techniques.

Avoiding the curse of dimensionality, computer animation approaches to motion graph

construction [79, 2] assume a set of nodes provided from previously acquired human mo-

tion. Based in methods for video texturing [124], we term this set of methods as motion

capture graph construction. Methods for motion capture graph construction start from

a database of previously collected kinematic motion. Configurations across all motions

in the database provide the set of nodes for the motion graph without tabula raza explo-

ration. An initial set of edges are provided to the motion graph by connecting sequentially
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adjacent configurations from the individual motions of the database. The motion graph

is completed by creating additional edges between unconnected configurations judged to

be similar according to a given metric. Typically, such metrics determine if a smooth

transition can be made by “splicing” two motions together at two potentially similar

configurations. A cluster forest, proposed by Lee et al. [86], varies from a motion graph

by introducing hierarchy for fast indexing. A cluster forest is comprised of a low-level

motion model based on a first-order Markov process and a high-level cluster tree formed

by a mixture model. Similar to [44], clusters formed by mixture models tend to provide

spatial discretization than modularization.

From a utility perspective, motion graphs can be a useful representation for generating

motion trajectories, but have some inherent limitations. First, motion graph structures

typically require search in order to form desired trajectories. Searching is usually per-

formed to connect starting and ending configurations or find an optimal path with respect

to user constraints. The responsiveness of search on a motion graph is inversely related to

the size and complexity of the graph. Second, non-tabula raza motion graphs generalize

existing motion through transitions, placing edges through similar configurations. Gen-

eralization through transitions alone restricts our ability to incorporate new variations

on existing motion without adding additional complexity to searching procedures. An

alternative would be to initialize a tabula raza-based exploration procedure with a mo-

tion capture graph construction. Third and most important, motion graphs are typically

constructed as a single monolithic structure in configuration space. Thus, they lack mod-

ularity. Skill-level behaviors derived through our methodology could be expressed as a
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modular set of motion graphs. However, we prefer to express such behaviors as predictive

modules that can be used for more functions than only motion formation.

2.2.2 Motion Modules

In contrast to monolithic structuring of motion graphs, the motion capabilities of a hu-

manoid agent could be represented as a set of motion modules. Analogous to comparing

deliberation and reaction, motion graphs are suited for top-down search and motion mod-

ules are suited for bottom-up coordination.

Several approaches have been proposed to modularizing the capabilities of an agent.

We highlight a representative set of these approaches to humanoid agents in Tables 2.1

and 2.2. Each approach in the table is summarized by six characterizations (modularity

scope, module form, inter-module interaction, repertoire design, repertoire construction,

repertoire functionality). These characterizations are complimented by a brief comparison

with our proposed approach to modularization, Performance-Derived Behavior Vocabu-

laries (PDBV). While PDBV appears similar to other approaches, there are important

differences that make PDBV advantageous for certain situations. We compare the dif-

ferences between PDBV and other approaches to modularization based on the follow-

ing characteristics: input feature specificity, coarse modularization, overmodularization,

model specificity, automation limited to a single class, heavy user supervision requirement,

limited ability to correspond variations of a module, limited module interpretation.

Input feature specificity. Several efforts in the computer vision community have

sought to find modular mechanisms capable of explaining events occurring in a video

stream. Extracting structure from video is currently an open area of research with sev-
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Modularization Sco.a Form Int.b Des.c Con.d Fun.e Comparison

Autoregressive Pro-
cesses [114, 113]

R autoregressive
processes

A D
(con-
tours)

B
(MLE)

P feature dependent

Triangulated Graphs
[145]

M point
graphs

A D
(points)

B
(EM)

P feature dependent

Movemes [18] M link LDS C D
(video)

B
(MLE)

P over modulariza-
tion

Postural Primitives
[140]

D key pos-
tures

F Mo M C coarse modular-
ization

Torque-Fields
[104, 94]

D step and
pulse
functions

F Mo M C coarse modular-
ization

Oscillators [141, 33] R oscillators F Mo M P or
C

coarse modular-
ization

Programmable Pat-
tern Generators
[122]

D, R pattern
generators

F Mo M C coarse modular-
ization

EMOTE [25] M shape
and effort
params

C Mo M C model specificity

Fourier Emotion
Models [134]

R Fourier
models

A, F Ma M C user heavy

Demonstrated Primi-
tives [70]

M trajectories A Ma B (mo-
tion)

P, C user heavy

Verbs and Adverbs
[116]

M exemplars A Ma M C user heavy

Control Basis [50] M policies A Ma M C user heavy

aScope: M=multiple behaviors;S=single behavior;D=single discrete behavior;R=multiple rhythmic
behaviors

bInteraction: A=arbitration,sequencing; F=fusion, superposition; C=coordination
cDesign: D=data-driven; Mo=model-based; Ma=manually-decided
dConstruction: I=incremental; B=batch; M=manual
eFunction: P=perception; C=control

Table 2.1: (Part 1) A comparison of approaches to modularization of motion capabilities
in relation to our proposed methodology, Performance Derived Behavior Vocabularies
(PDBV).
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Modularization Sco.a Form Int.b Des.c Con.d Fun.e Comparison

Style Machines [17] S Gaussian
SHMM

A D (mo-
tion)

B
(HMM)

C single class au-
tomation

Parameterized Tra-
jectories [9, 8]

M trajectories F Ma B
(neural
net)

P, C single class au-
tomation

Autonomous Attrac-
tor [63, 64]

D, R trajectory
NLDS

F Mo B
(RBF)

P,C single class au-
tomation

Coupled HMMs [16] M Gaussian
CHMM

A D
(points)

B
(dyn.
prog.)

P variation corre-
spondence

PCA-based Cluster-
ing [44, 100]

M exemplars
or graphs

A D (mo-
tion)

B
(PCA,K-
means)

P, C variation corre-
spondence

Generalized Motor
Schemas [62]

M exemplars A, F D (mo-
tion)

I
(class)

P, C variation corre-
spondence

Paired Forward-
inverse Models [143]

M predictor-
controllers

F D I
(clas.)

P, C variation corre-
spondence

Forward Models [37] M predictive
models

A D (mo-
tion)

I
(clas.)

P, C variation corre-
spondence

Motion Textons [87] M LDS A D (mo-
tion)

B
(MLE)

C limited interpre-
tation

PDBV [72] M exemplars A D (mo-
tion)

B (ST-
Isomap)

P, C spatio-
temporal cor-
respondences

aScope: M=multiple behaviors;S=single behavior;D=single discrete behavior;R=multiple rhythmic
behaviors

bInteraction: A=arbitration,sequencing; F=fusion, superposition; C=coordination
cDesign: D=data-driven; Mo=model-based; Ma=manually-decided
dConstruction: I=incremental; B=batch; M=manual
eFunction: P=perception; C=control

Table 2.2: (Part 2) A comparison of approaches to modularization of motion capabilities
in relation to our proposed methodology, Performance Derived Behavior Vocabularies
(PDBV).

26



eral difficult subproblems, such as image segmentation and feature extraction, in addition

to kinematic motion modularization. Consequently, several of these approaches to modu-

larization utilize data representations specific to features that are practically extractable

from images, such as points from corner detection [145], contours [114, 113], and color

blobs [18]. Such features are not always amenable to usage with kinematic structures and

typically ignore the control aspects of modularization. However, unsupervised methods

for learning modular models from this area of research could potentially be applied to

kinematic motion. Many of these techniques, however, emphasize motion classification

rather than automated motion modularization.

Overmodularization. The concept of a moveme, introduced by Bregler [18], pro-

vides a means to modularize the motion of a single rigid body into a set of linear dynamical

systems (LDS). These LDS moveme modules discretize movement for coordination across

a set of rigid bodies with a Hidden Markov Model (HMM). An HMM in this context is a

high-level module that represents some class of whole-body movement. While movemes

may be sufficient for gesture recognition, movemes are overmodularized for control pur-

poses because modularization at such a fine kinematic level results in an exponential space

of possible actions. The high-level HMM moveme coordinators could provide a usable

modularization of skills. Underlying these coordinators are movemes that are ignorant of

couplings between rigid bodies imposed by joints. As a result, such coordination modules

may encode motion that violates the kinematic constraints of an agent.

Coarse modularization. All movement of a humanoid agent can be described by

either discrete movement (i.e., reaching from one point to another) or rhythmic movement

(i.e., continuously oscillatory motion) [122]. Taking these different perspectives, several

27



approaches to humanoid control have been centered around discrete key-posture con-

trol, such as postural primitives [140] and torque-field control [95], or rhythmic oscillators

[141, 33]. Combining both approaches, Schaal and Sternad have proposed programmable

pattern generators [122] that fuse together commands from discrete and rhythmic con-

trol systems. This modularization is supported by biological findings [123] from fMRI

experimentation that human brains activate different structures to produce discrete and

rhythmic motion. Ijspeert et al. [63, 64] have used discrete and rhythmic modularization

to create nonlinear dynamical behaviors for movement imitation. Modularization into

discrete and/or rhythmic components is suitable for movement imitation because the

modules can describe the entire range of humanoid motion. Consequently, considering

only discrete and rhythmic classes of motion produces a small number of modules with

broad parameter spaces.

For behaviors other than reaching, using small numbers of broad modules places

more burden on task-level controllers to perform trajectory planning and indexing into

each module. Discrete and rhythmic modules provide good coarse categorizations of

behaviors; however, skill level behaviors should provide a finer degree of modularization.

Our approach to avoiding the problems of coarse modularization is to design our models

based on capabilities demonstrated by humans in a data-driven fashion. By making this

decision, we must be able to apply or develop unsupervised learning techniques able to

estimate underlying behaviors from multi-activity demonstrations.

Model specificity. An alternative to data-driven modularization is to design and

implement behaviors based on a hypothesized model of human movement. One such

model-based approach to movement is the EMOTE system, proposed by Chi et al. [25].
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EMOTE separates modular gestures from general movement using Laban Movement

Analysis, which indicates gesture must have observable effort and shape. The proper-

ties of effort and shape are claimed to allow modular gesture behaviors to be created and

parameterized without interpolation. However, these gesture behaviors must be manually

observed and implemented based on a developer’s interpretation of movement.

Heavy user supervision. Our focus is to modularize for multiple behaviors, with

each behavior realizing a capability of the agent. One approach for creating such a

repertoire is through manual design and implementation. As discussed in Chapter 1, fully

manual development of a behavior repertoire is subject to many potential shortcomings in

design and implementation. Previous techniques are suited to aid in manual development

by providing a framework for developing modules, such as frameworks proposed by Unuma

et al. [134] and Chi et al. [25], or automated procedures to help with implementation, as in

Jenkins et al. [70] and Rose et al. [116]. However, such approaches to manual development

serve to help only in creating controllers based on manual design, yielding similar problems

of slightly less magnitude. From one perspective, issues related to manual design imply

freedom for a developer to make custom decisions.

From our perspective, however, manual design alone is a potential source of prob-

lems that could be aided by automated initialization. In particular, we have found the

Verbs and Adverbs (V-A) proposed by Rose et al. [116] a worthy approach to manually

modularization into a “motion vocabulary”. V-A vocabularies are comprised by a set of

“verb” modules and a verb transition graph. Each verb represents an infinite family of

trajectories in the joint angle space of a humanoid agent. A verb is defined by a set of

exemplar trajectories in joint angle space with corresponding points in an “adverb space”.
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A new motion variation of a verb can be generated by selecting a non-exemplar point

in the adverb space and interpolating. Exemplars are manually placed in the adverb

space such that the axes of this space have an intuitive meaning. Verb exemplars can be

modified in joint angle space or repositioned in adverb space to easily refine the family of

trajectories represented by the behavior. Using a verb graph, motion can be generated

autonomously at run-time by transitioning between verbs and smoothly connecting mo-

tion produced by two verbs at a transition. In Chapter 4, we describe how PDBV can

derive V-A vocabularies automatically from human demonstration.

Single class automation. Depending on how modules are represented, data-driven

learning of a capability repertoire may be limited to a single class of motion. For single

class approaches, a developer must decide which behaviors to include, acquire demon-

stration for those behaviors, and derive modules for each behavior separately.

One such approach, proposed by Ijspeert et al. [63, 64], considers a primitive module

as an nonlinear attractor encoding a demonstrated trajectory. Trajectory attractors are

expressed so as to be spatially and temporally invariant and robust to perturbations.

Combinations of attractor primitives can be weighted to produce complex movement.

However, the emphasis in that work is not modularization but the encoding of primi-

tive attractors from trajectories. Although Ijspeert et al. have demonstrated attractors

can be created for discrete and rhythmic behaviors, modularization from multi-activity

demonstration has not been addressed. A possible line of research could combine our

methodology for modularization with their approach to building attractors. The em-

phasis of our methodology is grouping demonstration motion into exemplars. Nonlinear

dynamical behaviors can be formed from clustered exemplars; however, we do not attempt
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to provide the guarantees of formal dynamical systems. Instead, clustered trajectories

could be used as the input for forming attractors grounded in the formalism of dynamical

systems.

Another single class method, presented by Billard and Matarić [9] and Billard and

Schaal [8], focuses on generalizing demonstration motion using associative memory. The

method uses abstract versions of biological models of the brain to provide a hierarchy

of neural networks for an associative memory. This associative memory is capable of

imitating a large variety of movement with small error. The approach can work well for

generalizing a single class of motion, but does not attempt to modularize demonstration

into a capability repertoire. Instead, modularization is encoded into models comprising

the associative memory.

Brand and Hertzmann [17] and Brand et al. [16] have approached the problem of

endowing humanoid agent with capabilities using Hidden Markov Models (HMMs). The

style machines method of Brand and Hertzmann [17] explicitly aim to generalize a single

class of motion. Style machines work by looking for a single general description and

multiple specific descriptions in a database of motion. In the formalism of HMMs, stylistic

HMMs (SHMMs) are proposed to represent a class of HMMs with a single structurally-

general HMM and a set of style-specific HMMs. A style variable is created to allow a

user to model a specific mixture of styles while retaining the general structure of the

class. By restricting input data to a single class of motion, SHMMs separately learn style

as specific HMMs and structure as a general HMM with a style variable. In addition

to SHMMs, Brand et al. [16] have proposed coupled HMMs (CHMMs) for classifying

motion with multiple underlying processes. While an interesting idea, CHMMs require
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significant manual supervision and do not modularize training data. Instead, CHMMs

are trained separately for each module to provide likelihoods for motion classification.

All of these approaches place their emphasis on generalization and not modulariza-

tion. Modularization for single class approaches must occur externally by manual design

or through a separate modularization procedure. Additionally, single class methods could

potentially use our modularization method as a preprocessing step for behavior general-

ization.

In general, topics of modularization and single class generalization raise the issue of

front-end versus back-end motion processing. Using our analogy of “compiling” behaviors

from motion, modularization serves as a front-end system to process source demonstration

motion into intermediate groupings of exemplar motions. Generalization mechanisms

serve as back-end systems that transform on exemplars of an individual group to produce

target behaviors for a humanoid agent. In considering potential back-end systems to

pair with our method for modularization, we note in particular the registration curves

approach of Kovar and Gleicher [78]. The registration curves approach focuses only on

back-end problems for automatically generalizing a set of motion exemplars for general

motion blending operations. Another potential back-end technique, proposed by Ramesh

and Matarić [112], performs uses a hierarchical structure to perform on-line learning and

representation of extended movement sequences.

Limited correspondence ability. In order to modularize appropriately, a data-

driven method must be able to identify and correspond two motions that are variations

on the same behavior. However, this correspondence can be difficult to establish for two

motions that are spatially distal. For instance, consider two reaching arm motions that
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begin from the same initial posture but reach two different Cartesian end locations. For

simplicity, one reach is high (above the head) and one reach is low (below waist level).

Although these two motions are structurally similar, their Euclidean distance is relatively

large. Our methodology for modularization is geared to find spatio-temporal correspon-

dences between pairs of motion in an off-line batch procedure. By using a batch procedure,

all demonstration trajectories are analyzed together to find such correspondences. In the

ideal scenario, modularization would occur incrementally on-line to incorporate modules

as needed. Incremental approaches to modularization, such as those proposed by Iba [62],

Demiris and Hayes [37], and Wolpert and Kawato [143], use classification to determine

when new modules should be created. Without external information, however, these in-

cremental approaches are less able to correspond structurally similar and spatially distal

motions. Establishing spatio-temporal correspondence with incremental modularization

would require a merging procedure to identify modules representing corresponding mo-

tion.

Fod, Matarić, and Jenkins [44] performed clustering of motions into behaviors using

principal components analysis (PCA) for dimension reduction and K-means clustering.

Other clustering based approaches have also been proposed, such as [100, 146]. Clustering

motion in this manner led to modules that are little more than spatial decompositions of

motion data. Additionally, modules from clustering in this manner provide little insight

about the common theme of the grouped motions. This circumstance is problematic for

controller design. Our methodology for modularization follows the same general approach

of Fod, Matarić, and Jenkins by using dimension reduction and clustering while addressing

the shortcomings of: i) using linear dimension reduction for data with nonlinear structure,
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ii) ignoring the temporal dependencies that exist in sequentially ordered data for spatio-

temporal correspondences, and iii) eliminating the need for the number of clusters to be

specified a priori.

Modules with limited interpretation. Li et al. [87] have proposed motion textons

as a basic unit for structuring motion capabilities. A capability repertoire for motion tex-

tures is represented as a set of motion textons, as linear dynamical systems (LDSs), and a

texton distribution for inter-texton transitioning. Based on work by Schödl [124], motion

textons are primarily used to capture the basic elements for synthesizing motion based

on texturing these basic elements. Motion textons are learned with a batch procedure by

an initial segmentation routine to find an appropriate number of textons and a maximum

likelihood estimation (MLE) procedure to fit the textons. Our modularization method

and texton learning both use a segmentation procedure as a starting point for processing.

In texton learning, segmentation is performed based on an LDS error threshold for an

initial division of an input motion and to find the module cardinality. In using an error

threshold, segmentation and the entire learning procedure can be performed without bi-

asing the modularization with heuristic procedures. Using LDS error, however, requires

careful tuning to avoid overfitting with a small threshold or overgeneralization with a

large threshold. Additionally, the linear limitation of textons may not encapsulate local

structures in the motion such that each module has an observable meaning. To avoid

problems in module interpretation in our methodology, we separate procedures for seg-

mentation and motion grouping. Segmentation is performed heuristically to divide the

input motion as a preprocessing step for modularization with dimension reduction and

clustering. Unlike the LDS of textons, our segmentation and motion grouping proce-
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dures can use completely different models for processing motion. More specifically, our

segmentation procedures implicitly encode some model of motion and our motion group-

ing procedure is model-free by making pairwise correspondences between motions. In

addition, decoupling segmentation and grouping allows for motion segments to remain

nonlinear trajectories and, consequently, produce modules encoding nonlinear dynamics

in joint angle space.

2.2.3 Motion Mappings

Complimentary to motion graphs and motion modules, motion mappings construct con-

trol spaces with correspondences to the joint angle space of a humanoid robot. The

driving idea for control spaces is that desired motion can be easily and intuitively spec-

ified in control space and mapped back into joint angle space to produce control. The

most popular motion mapping is inverse kinematics (IK) in which control is specified in

operational space, Cartesian space of an end-effector. However, many motion mappings

have been proposed, including principal component spaces [44, 100, 69], style variable

spaces [17], and adverb spaces [116].

Motion mappings serve a complimentary purpose to motion graphs and motion mod-

ules. With respect to motion graphs, motion mappings can potentially provide more

compact interpretations of joint angle space, allowing for feasible exploration and search.

For purposes like motion graphs and IK, an assumption is made that a single transfor-

mation can be made to coordinates amenable for control and reconstruction. Instead,

multiple motion mappings from joint angle space can be created, one mapping for each
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module, to provide both modularity and accessibility. One example of modular motion

mappings are Verbs and Adverbs motion vocabularies [116].

2.3 Unsupervised Learning

One of the goals of this dissertation is to provide a modularization of human motion data

acquired from demonstration. In the context of unsupervised learning [10], this goal is

the extraction of features from an unlabeled data set. Features, in this sense, represent

some commonality in a subset of the data. More specifically, a feature is an underlying

representation responsible for generating a subset of data. Input data to an unsupervised

learning procedure are generated by one or more of these underlying features. Bishop

[10] discusses several techniques for feature extraction, including clustering, discriminant

analysis, topographic maps, mixture models, and dimension reduction. In this disserta-

tion, we center our attention on dimension reduction techniques for easily distinguishable

clusters for feature extraction.

Our use of feature extraction begs the question of what a “good” feature is. The

“goodness” of a feature is dependent on what properties make different data points com-

mon. Several of the feature extraction methods provided by Bishop [10] assume that

spatial proximity, relatively close distances between points, indicates commonality. Other

feature extraction methods assume that the data are temporally dependent, i.e., that the

sequential order of the data contributes to the meaning of the data. Points occurring

close in time have a dependency that could indicate commonality. Motion data that we

want to extract features from have both spatial and temporal dependencies. In other
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words, if two motions appear to be similar or occur in sequence, they potentially belong

to the same feature. More specifically, our aim is to find data that are spatially similar

across a local temporal interval and correspond data points with common spatio-temporal

characteristics across a potentially large volume in an input space.

2.3.1 Clustering

Clustering is the partitioning of a data set into groups (or clusters). Data members of a

single cluster are assumed to represent or have been produced by a common underlying

feature. We consider three basic types of clustering: agglomerative [68], K-means [10], and

mixture models [10]. Agglomerative clustering works in a bottom-up fashion by iteratively

merging data points into clusters. Such methods typically consider each data point to

initially have its own cluster. These clusters are merged until a stopping condition is

reached. In contrast, K-means is more top-down procedure that iteratively associates

each data point with one of K clusters. Each cluster is initialized with a location in

input space and updated with an Expectation-Maximization-like procedure consisting of

two steps. The first step performs hard assignments to associate each data point with a

single cluster based on proximity. The second step updates the location of the cluster to

be the centroid of its associated data points. Iterations of these two steps are performed

until convergence. Mixture models work in a similar fashion as K-means. The primary

difference between these two methods is that soft assignments are used to associate data

points and clusters. Soft assignments allow for a data point to have partial assignments

to multiple clusters. Mixture models provide a more flexible framework for clustering

than K-means.
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Clustering using these methods may not yield representative features for modular-

ization. This shortcoming is not necessarily a problem of the clustering mechanism, but

rather the input space in which it is being applied. Clustering mechanisms typically

assume spatial proximity indicates structural similarity. However, this proximity-equals-

similarity assumption may not hold for motion modularization. To resolve this problem,

dimension reduction can be used to transform an input space into an embedding space

where clustering based on proximity is structurally appropriate. In addition to similar-

ity issues, the aforementioned clustering techniques require the number of clusters to be

known priori or estimated in some fashion. For modularization, however, we may not

know how many clusters are appropriate or want to avoid cluster cardinality estima-

tion. Although, if a dimension reduction mechanism produces separable clusters in an

embedding space, cluster cardinality can be estimated automatically.

Along a similar line of though, Ben-Hur et al. [6] have proposed support vector clus-

tering (SVC). SVC is a support vector machine that performs clustering in a higher

dimensional feature space. Clustering is performed in this feature space using optimiza-

tion on an implicit embedding of the data from kernel functions centered at each point.

Unlike SVC, our approach to modularization separates the process of embedding and

clustering, partially to better visualize the procedure.

2.3.2 Hidden Markov Models

In the process for finding spatio-temporal structure, we are looking to model time-series

data, data with both spatial and temporal dependencies. A natural choice for this problem

are Hidden Markov Models (HMMs) [111]. HMMs provide a probabilistic framework for
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learning and modeling the sequential structure of observed time-series data. However, the

foundation of the HMM framework is suited for discrete data. In order to use continuous

data, a mechanism must be included for discretizing the data into a finite number of states,

i.e., for spatial feature extraction. This discretization is typically performed by some

spatial clustering mechanism. In practice, however, discretizing using spatial clustering

can be very sensitive to initialization and can provide non-intuitive clusters. Additionally,

explicitly hidden states are not necessarily amenable modules for grounding a capability

repertoire. In our method for feature extraction, we strive to transform the data so

that spatio-temporal features can be clearly established through spatial clustering. In

this respect, our methodology and HMMs are complimentary for discretizing and then

sequencing. However, HMMs are not a necessary component in our derivation of action

and behaviors, but allow for a probabilistic interpretation to be used instead of our

largely geometric interpretation. We note that our goal is providing useful modules from

a time-series, not necessarily time-series prediction, smoothing, or filtering.

2.3.3 Linear Dimension Reduction

Dimension reduction can be a useful preprocessing step in which data from different

features can be discriminated more easily. By performing dimension reduction on a data

set, we are finding a subspace embedded in our original data space. Data used to find this

embedding are transformed into this subspace and are referred to as embedded data. There

is a one-to-one correspondence between the original and embedded data. One common

set of techniques performs dimension reduction through embedding a linear subspace.

Examples of linear embedding techniques include Principal Component Analysis (PCA)
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[10], Factor Analysis (FA) [49], and Independent Component Analysis (ICA) [60]. These

techniques are not useful for modularization in general because they are unable to find

nonlinear spatial structure, in particular spatio-temporal structure we are seeking. ICA

could be of potential interest because of its properties for blind source separation, the

separation of underlying sources from observed mixtures of these sources. At an abstract

level, if we consider observed motion to be mixture of underlying source motions, then

independent components should provide a useful set of basis behaviors.

2.3.4 Nonlinear Dimension Reduction

The popularity of linear PCA suggests the use of nonlinear PCA. However, several dif-

ferent methods exist for performing PCA-like embeddings in a nonlinear manner. One

of these methods, autoencoders [40, 35], extends a linear PCA neural network with non-

linear hidden layers. Another technique, Principle Curves [54, 76], is a generalization

of linear PCA in which principal components are curves instead of lines. The nonlinear

embedding approach that we use in this thesis assumes that the data have an underlying

spatial surface, or manifold.

Manifold-based dimension reduction can be performed in several ways. One popular

method is the self-organizing topographic map [10] in which a set of vertices connected

to form an manifold compete to represent a certain region of the data. The underlying

manifold is specified by the placement of the vertices and their connections. Another

approach, used by [136, 19], is to use locally linear models to directly fit subsets of the

data and, thus, approximate the underlying manifold in a piece-wise fashion. While most

topographic maps and piece-wise approaches use spatial distances, some spatio-temporal
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approaches to topographic maps have been proposed by Chappell and Taylor [22] and

Varsta et al. [135].

Another set of methods for performing manifold-based dimension reduction uses in-

formation from the perspective of each data point. These methods include Locally Linear

Embedding (LLE) [118], Manifold Charting [15], Kernel PCA [125], and Isomap [131] As

we discuss further in Chapter 3, these techniques maintain pairwise relationships between

N data points, so that each column of a N ×N represents a view of the data set from a

single point. PCA is performed on this matrix to yield a nonlinear embedding.

The previously described methods are intended for data that are spatial in nature.

Thus, the data are assumed to be independent and identically distributed (IID), the data

occur in no specific order but were drawn from the same underlying distribution. Because

of this limitation, we are particularly interested in Isomap, in order to allow for the

inclusion of pairwise temporal dependencies.

2.4 Motivation from Neuroscience

To help guide our thinking on modularization and on constructing perceptual-motor

methods, we draw on evidence from neuroscience about the organization of the brain.

As stated in [61] and elsewhere, neuroscience evidence suggests that a certain area of

the human (and monkey) brain contain so-called mirror neurons. Such neurons become

active when the human observes, performs, or visualizes a particular movement. Mirror

neurons are thought to serve as an important mapping mechanism between functions for

perception and control. They have served as inspiration and motivation for several ap-
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proaches in humanoid robot control, including paired forward-inverse models [53], parallel

forward models [36], connectionist [9], and dimension reduction [44] approaches, as well

as in describing superposition of movement primitives [119, 132].

Motivated by mirror neurons, we aim toward deriving motion modules that should be

usable in multiple contexts, namely perception and control. Furthermore, the modules

should serve as an intermediate representation that can be encoded from one context,

such as perception, and mapped into another context, such as motor control. Imitation

is the most natural example of such a mapping, in which perceptual observations are

mapped into control commands [93].

2.5 Acquisition of Human Motion

A critical point of our methodology is to endow a humanoid agent with human capabil-

ities through demonstration. For this we need motion data to serve as input, in order

to enable the derivation in data-driven manner. Therefore, our approach depends on a

means for accurate capture of kinematic motion from humans performing various activi-

ties. A variety of systems for motion capture exist, including commercial systems based

on optical [130], electromagnetic [67], exoskeletal [102], and fiberoptic [66] technologies.

However, these technologies typically restrict the motion of a subject to a constrained

environment or require the subject to wear heavy instrumentation. Instead, we are in-

terested in acquiring motion of people engaged in natural everyday situations as a basis

for deriving behaviors for natural activities. Thus, work related to motion capture of

markerless [47, 38, 27, 23], or unobtrusively instrumented kinematic subjects is of par-
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ticular relevance. We highlight two of these techniques in Appendix A and describe a

method we developed to further enable this work. These approaches to motion capture

will be especially useful for leveraging the ongoing “sensor explosion” currently occurring

in commercial and consumer electronics, and extending well beyond the focus of this

dissertation.

2.6 Summary

In this chapter, we placed our methodology for automatically deriving movement mod-

ules in the context of related previous work. We have described the need for data-driven

extraction of spatio-temporal behaviors from demonstration in the context of unsuper-

vised learning. The need for automatic derivation methods serves to provide a vocabulary

of modular skill level behaviors for structuring a variety of functions. We also presented

the biological motivation underlying the constructing perceptual-motor mechanisms from

derived modules.
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Chapter 3

Spatio-temporal Isomap

In this chapter, we discuss current techniques for dimension reduction and their appli-

cability for finding spatio-temporal structure in data. We discuss the potential of using

or extending current dimension reduction techniques for spatio-temporal feature extrac-

tion. We propose an extension of Isomap nonlinear dimension reduction [131] for spatio-

temporal data. Our method for spatio-temporal dimension reduction will help uncover

structure in kinematic motion, which is a focus of this dissertation.

Central to our methodology for deriving behaviors from motion is the ability to es-

timate the underlying structure of unlabeled spatio-temporal data. Kinematic motion is

inherently spatio-temporal. A set of R joint angle values define the static posture of a

kinematic structure at a particular instant of time. Because each joint angle value is a

scalar, this posture is spatially defined by a point in a R-dimensional space, or joint angle

space. Motion of a kinematic model is described by changing joint angle values over time,

or a trajectory in joint angle space. We assume trajectories formed by kinematic motion

from humans are indicative of an underlying structure that can be used to automatically
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derive skill level capabilities for an autonomous humanoid agent. The detailed description

our approach to automatic derivation of skills appears in Chapter 4.

Deriving skills in this data-driven manner is dependent on having an unsupervised

procedure capable of modularizing spatio-temporal data. As discussed in Section 2.3.1,

clustering techniques provide the most straightforward means for modularizing a data

set, but are susceptible to problems when spatial proximity is not indicative of structural

similarity. In such cases, we can use dimension reduction techniques to transform, or

embed, a data set into an new coordinate system, or embedding space. With an appro-

priate technique for dimension reduction, proximity in the embedding space will indicate

structural similarity, providing a coordinate space appropriate for clustering.

For clustering spatio-temporal data, a dimension reduction technique must uncover

spatio-temporal structure by:

• proximal disambiguation of spatially proximal data points in the input space that

are structurally different

• distal correspondence of spatially distal data points in the input space that share

common structure

To illustrate our concepts of proximal disambiguation and distal correspondence, we

revisit our reaching example described in Section 2.2.2. Restating this example, two arm

reaching motions beginning from the same initial zero posture to different Cartesian end

locations, one above the head and one below the waist. These two motions are distal in

joint angle space and share common structure, united by the behavior of reaching. For

disambiguation, the lower reaching motion and a retraction motion to the zero posture
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may be proximal in joint angle space. However, these two motions are structurally differ-

ent being particular instances of different behaviors, reaching and retraction. Thus, these

two motions should be disambiguated into separate clusters, i.e., distal in the embedding

space. In contrast, the two reaching motions are distal in joint angle space, but should

be corresponded into the same cluster, i.e., proximal in the embedding space.

In the following sections, we discuss several existing approaches to dimension reduction

with respect to their ability to estimate underlying structure in spatio-temporal data. We

pay particular attention disambiguating proximal and corresponding distal data points

with i) potentially high input dimensionality R, ii) spatial nonlinearity, and iii) temporal

ordering. Additionally, we propose an extension of one nonlinear dimension reduction

technique, Isomap [131], for spatio-temporal data. As a note, we assume the absence of

significant amounts of noise in the motion data that are not indicative of is underlying

structure.

3.1 Linear Dimension Reduction

3.1.1 Principal Components Analysis

Arguably the most well-known and widespread method for dimension reduction is Prin-

cipal Components Analysis (PCA), described in [10]. PCA is performed by applying an

eigenvalue decomposition on the covariance matrix of a given set of data points. A sub-

set of resulting eigenvectors, called principal components (PCs), span some percentage

of variance in the data. The PCs form a new linear subspace for representing the data

set in a parsimonious manner. Equivalently, PCA could be thought of as fitting a R-
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dimensional ellipsoid to the data and selecting its RPC << R major axes to serve as the

new coordinate system.

PCA clearly introduces parsimony and provides reconstructability for a data set,

but is not necessarily suitable for finding spatio-temporal structure for several reasons.

First, PCA assumes that the intrinsic spatial structure of the data are linear. Unless a

data set happens to be structured linearly, PCA embeddings tend to overestimate the

dimensionality of the underlying structure, yielding PCs that are not indicative of how the

data are structured. More specifically, each PCs does not provide enough insight toward

the nonlinear process that produced the data set. Interpretation of embeddings produced

by PCA for nonlinear data can be a fruitless undertaking. Additionally, methods such as

PCA also assume that the elements of the input data are independent samples from an

identical distribution, i.e., have no temporal or sequential ordering. Motion data, however,

are temporally dependent via their sequentially ordering. Also, because we assume noise-

free motion as input, we do not consider the methods such as factor analysis [49] that

have an explicit noise model.

In our early joint work with Fod and Matarić [44], we encountered several of these

shortcomings in applying PCA to motion trajectories captured from human arm move-

ment. Similar to the aims of this dissertation, the purpose of this work was to extract

features from the motion data representative of basic behaviors. However, we encoun-

tered an impasse in deciding what features in the embedding should be used to construct

parameterized basis behaviors.

On one hand, we could use each PC axis as a feature. Clearly, each PC has a lin-

ear parameterization. Because PCs are spatially orthogonal, the PCs can superimposed
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through vector summation. However, understanding the underlying meaning of each PC

and superposition of PCs is extremely difficult. Even if we could create behavior modules

for each PC, accessing or indexing into the resulting modules would be non-intuitive.

On the other hand, we could cluster the data in the PCA embedding into features.

Clusters will typically provide features with a more intuitive meaning. However, the

meaning provided by the clusters is little more than a spatial partitioning of motion. By

performing PCA, we have changed the distances between data points, but not their rela-

tive placement. Two motions may be spatially similar and not representative of the same

underlying movement. Consequently, the clusters provide a good spatial partitioning, but

not necessarily better features.

Additionally, clustering methods, such as K-means [68], require the number of clusters

to be found in the data to be specified a priori. In many useful situations, a priori cluster

cardinality cannot be specified in a reliable manner. This ambiguity can be addressed

through manual intervention or methods for cluster cardinality estimation. However, if a

dimension reduction method can introduce feature separability or structurally significant

spatial relationships, reliable cluster cardinality estimates could be produced automati-

cally.

PCA provides little means for incorporating the ability to disambiguate and corre-

spond spatio-temporal data. Disambiguation could be performed by temporal windowing,

using an interval about each data point rather than the data point itself. Disambigua-

tion without correspondence, however, limits our ability to modularize spatio-temporal

data. Given the problems of PCA, our aim has been to provide a dimension reduction

technique that yields clusterable features, with each cluster having an accessible meaning
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with respect to its temporal and nonlinear spatial structuring. Later in the chapter, we

address these problems by using nonlinear dimension reduction methods as a guide for

extracting useful features.

3.1.2 Independent Components Analysis

Independent Components Analysis (ICA) [5, 60] is a method for finding structure in data

as statistically independent features. Similar to PCA, ICA constructs a new coordinate

system consisting of linear independent components (ICs). In contrast to PCA, the ICs

are statistically independent, while PCs are decorrelated (i.e., statistically independent up

to the second order). Consequently, ICs will not necessarily be orthogonal if higher-order

statistical dependencies are present within the data.

In further contrast to PCA, ICA is a method for blind source separation, providing

an inherent meaning of the ICs with respect to the data. In the ICA formulation, each

data point x is an observation of some linear combination of a set of underlying source

components s. The weighting of each source component for each observed data point is

specified in matrix A, giving the data generation model:

x = As (3.1)

Assuming that the source components are statistically independent, finding ICs cor-

responds to estimating the underlying source components responsible for generating the

data.
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In applying the ICA concept to motion data, each observed motion is assumed to

be a mixture of underlying source ICs. As with PCA, each IC feature could be used

as a parameterized linear source behavior in joint angle space or all ICs can be used as

an embedding space for clustering. Using individual ICs as behaviors can be useful for

superposition in joint angle space through weighted vector summation. Because the ICs

are independent rather than orthogonal, reconstruction of data from IC projections are

not as accurate as using PCs, but are likely to provide more observable meaning.

The standard formulation of ICA, originally proposed by Bell and Sejnowski [5], has

several problems when applied to motion data. As with PCA, underlying features in

motion data are most likely nonlinear and will not be captured faithfully by linear com-

ponents. Unlike PCA, ICA transforms data such that each new coordinate axis is in-

dependent. The IC coordinate axes are useful as a preprocessing step for clustering or

features themselves. However, determining independent components is a procedure whose

outcome is subject to several factors, such as initialization and mutual information met-

rics. Whereas PCA reliably produces similar components for the same data set through

eigendecomposition, ICA is an iterative process that is subject to producing different

components for the same data set at different times. The ambiguity in ICA is due to

its sensitivity to initial estimates for the cardinality of the source components and the

mutual information metric.

For temporal dependencies, ICA can consider intra-data point temporal properties.

Given a set of audio recordings containing different mixtures of the same auditory event,

for example, ICA can separate these mixtures into their component source signals. How-

ever, given audio samples of different events with inter-sample dependencies, ICA cannot

50



guarantee structural components because the samples are not IID (i.e., independent sam-

ples from an identical distribution) and are not necessarily mixtures of common underlying

sources.

In summary, linear ICA does not aid in the proximal disambiguation and distal corre-

spondence of spatio-temporal data. Additionally, nonlinear methods for ICA are typically

restricted to classes of nonlinearity. Kernel methods for ICA, such as those by Bach and

Jordan [4], may hold promise for modularizing spatio-temporal data, but that research

avenue is outside the scope of this dissertation.

3.2 Nonlinear Dimension Reduction

Several methods exist for extending the capabilities of PCA and ICA to produce non-

linear decorrelated or independent components. However, nonlinear dimension reduction

may not lead to the extraction of useful features in nonlinear data. Factors that may

prohibit useful feature extraction include restrictions to classes of nonlinearity, unknown

component ordering, and coordinating component models.

3.2.1 Autoencoders

From a neural networks perspective, dimension reduction is performed by an autoen-

coder [40, 57], a multi-layer neural network with hidden layers that optimizes for network

weights towards an output layer to minimize a reconstruction cost metric. Using only

linear neurons, an autoencoders provides embeddings equivalent to PCA. Demers and

Cottrell [35] describe one type of autoencoder for nonlinear data. Like other methods

for dimension reduction, autoencoders do not consider temporal dependencies that may
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exist in data. However, a means for incorporating temporal dependencies into an autoen-

coder is not readily apparent. Time delay neural networks [83] have been proposed, but

are suited for classification with temporal windowing. Thus, TDNNs provide proximal

disambiguation, without making distal correspondences.

3.2.2 Principal Curves and Piecewise PCA

Two variations on PCA that address spatial nonlinearity are principal curves, originally

proposed by Hastie and Stuetzle [54], and piecewise procedures, such as [19, 136, 133]. The

principal curves approach is the geometric extension of a principal component from a line

to a curve. In contrast, piecewise approaches represent the global nonlinearity in a data

set through locally linear models. Locally linear models could be learned incrementally

on-line [136], using a manifold assumption [19], or through applying PCA to partitioned

data [133].

The principal curves methodology defines components as parameterized curves that

pass through the “middle” of data point distribution, similar to the axis of a generalized

cylinder [52]. The projection of a data point onto a principal curve is defined by the

parameter value along the curve with the smallest Euclidean distance to the data point.

Learning of principal curves in data are typically performed by two levels of iteration.

The first level learns one component per iteration until convergence, i.e., all of the sig-

nificant variability in the data has been spanned by the components. The second level

occurs at each first level by iteratively fitting a new component to the null space of the

existing components. Kegl et al. [76] have proposed a one-level method for learning

principal curves through initialization and optimization of a topographic map structure.
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In joint work with Chu and Matarić [27], we recently proposed a noniterative method for

approximating principle curves, described in Chapter A, using Isomap to reduce point

volumes into easily skeletonizable configurations.

As is the case with PCA, proximal disambiguation is possible for these approaches

through temporal windowing. However, distal correspondence remains difficult to incor-

porate, mainly due to geometrical assumptions used in these approaches for local linearity

and global structure.

3.2.3 Topographic Maps

Generative topograpic maps [10, 77] provide a unique combination of both clustering and

dimension reduction. Topographic maps assume an embedding space is defined by a set

of nodes connected in a fixed topology. Using these nodes as cluster centers in the input

space, the input data are both assigned into clusters and mapped into an embedding

space of a priori topology. Methods, such as Varsta et al. [135], have incorporated tem-

poral dependencies into topological maps through leaky integrators, allowing for proximal

disambiguation. The ability to perform distal correspondence could potentially be incor-

porated into temporal topograpic maps; however, such methods will remain sensitive to

initialization and a priori topology specification.

3.2.4 Local Spectral Dimension Reduction

Avoiding many of the limitations of previous approaches, local spectral dimension re-

duction (LSDR) methods, such as Locally Linear Embedding (LLE) [118] and Manifold

Charting [15], globally coordinate local representations that distributed over a data set.
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LSDR methods are similar to piecewise PCA and topographic maps in that locally linear

models are used to represent globally nonlinear spatial structure. However, LSDR meth-

ods perform global coordination based on the underlying structure of a data set, unlike

topographic maps that coordinate based on an a priori structure and piecewise models

that perform no explicit global coordination.

LSDR techniques work by distributing a set of local models across a data set, either

at each data point or by cluster assignments, and coordinating these models through

eigendecomposion or optimization. In contrast to techniques for global spectral dimension

reduction (GSDR), LSDR methods have explicit local models. These models provide an

intermediate representation of the data, which allows for the definition of the forward

and inverse mappings between the input and embedding spaces. GSDR methods lack

this representation and, hence, lack the ability to produce defined mappings, using direct

distances (or dissimilarity measurements) between all data pairs. While LSDR methods

provide representation explicitly, commonly utilized local models are inherently spatial

and leave room for incorporating temporal dependencies and the ability to correspond.

3.2.5 Multidimensional Scaling and Global Spectral

Dimension Reduction

Multidimensional scaling (MDS) [30, 13] is an approach to dimension reduction that

uncovers hidden structure in data by preserving pairwise distances or dissimilarities.

More specifically, given an N ×N matrix D of pairwise distances between N points that

could be generated from point coordinates in RP , one can produce coordinates for the
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points in an RR embedding, R << P , such that pairwise distances are proportionally

preserved.

MDS can be performed with a variety of distance metrics and computation techniques.

We will focus on deterministic metric MDS techniques that compute embeddings through

eigendecomposition. Steyvers [129] provides a summary of MDS techniques and a survey

of variations on the basic MDS approach. Metric MDS uses continuously valued distances

between points and nonmetric MDS uses rankings of dissimilarity with respect to a given

point. Metric MDS provides more accurate embeddings, while nonmetric MDS is inde-

pendent of a specific distance metric. Deterministic MDS treats each point independently

and pairwise distances are considered undistorted. In contrast, probabilistic MDS [89]

assumes pairwise distances are subject to distortion and abstracts distributions of points

into probability distributions. Deterministic MDS is a more straightforward technique

that does not require additional distribution information, but lacks the flexibility of prob-

abilistic MDS to include information about priors. MDS is typically computed through

iterative optimization from an initialized configuration towards a configuration reflective

of an input D matrix. Instead, MDS can be performed noniteratively through eigende-

composition on the D matrix. Being noniterative, MDS through eigendecomposition is

not susceptible to problems with local extrema and explicit initialization, but typically

provides a close approximation to an optimal embedding. If local extrema are avoided,

MDS through optimization will typically provide more optimal embedding with respect

to D.

Methods for GSDR use MDS at their core to transform pairwise relationships into new

(potentially lower dimensional) coordinate spaces reflective of the underlying structure
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in a data set. In order to enable such a transformation, pairwise distances that are

indicative of the underlying structure must be created from the input space. Given such

pairwise distances, a MDS procedure can realize an embedding space indicative of the

underlying structure. GSDR methods can utilize MDS via optimization, however, we

primarily consider GSDR methods that perform MDS through eigendecomposition, such

as Kernel PCA [125] and Isomap [131].

3.2.5.1 Kernel PCA

As Williams explains [139], metric deterministic MDS is related to Kernel PCA (KPCA)

[125], which is a kernel-based nonlinear extension of PCA proposed by Schölkopf et al.

KPCA is similar to MDS in that embedding is performed through eigendecomposition

on a similarity matrix computed from input point coordinates. However, the intuition

for understanding the KPCA mechanism is quite different. This intuition is to transform

data into a higher-dimensional feature space such that linear PCA in the feature space

corresponds to nonlinear PCA in the input space. This rationale is conceptually useful

because it can be described as well-understood linear PCA with a nonlinear preprocessing

mapping. The caveat to KPCA is that the nonlinear mapping to feature space does not

exist explicitly and, thus, feature space coordinates are unknown.

By using the kernel trick, KPCA can be performed with explicit feature space coordi-

nates by using pairwise similarities between points. The kernel trick basically allows for

an algorithm to implicitly construct a nonlinear mapping function by using kernel-based

inter-point dot products, as commonly used for support vector machines [103]. KPCA

modifies the linear PCA mechanism using the kernel trick to eliminate the need for ex-
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plicit feature space coordinates. Instead, feature space dot products between pairs of

points are constructed based on a chosen kernel function centered at each point. The dot

product between two points in feature space is computed as the scalar value of a point x

with respect to a kernel centered at point y in input space. Based on the choice of kernel,

a nonlinear mapping intrinsic to the data are implicitly created.

At an intuitive level, the kernel trick is making a similar assumption as MDS. The

core of the kernel trick assumes that dot products between points in input space are

proportional to their dot products in feature space. In the context of MDS, the kernel

trick builds similarity values as kernel dot products that are independent of a specific

coordinate system or configuration. Consequently, the problem of choosing an appropriate

kernel is another perspective of choosing an appropriate distance metric for MDS.

3.2.5.2 Isomap

One problem with KPCA is that distances for distal points are typically based on a

global Euclidean distance metric. While Euclidean-based measurements work well for

proximal data pairs, structural distances between distal points may not be based on a

Euclidean measurement due to properties of the underlying structure. Isomap, proposed

by Tenenbaum et al. [131], addresses this problem by globally coordinating proximal

pairwise distances using all-pairs shortest paths distances. Isomap works using a three-

step procedure, shown below.

Isomap assumes underlying structure is manifested as a bordered manifold. This un-

derlying manifold can be uncovered by Isomap, given the input data set is dense enough

to i) cover the entire manifold and ii) form single connected component. A single con-
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nected component covering this manifold approximates all-pairs geodesic distances on the

underlying manifold. By applying MDS to a matrix of geodesic distances, nonlinearities

in the data due to the manifold are removed to produce a coordinate space intrinsic to

the underlying manifold.

As with KPCA, a desirable property of Isomap is that no explicit model is used to

measure pairwise distances. Isomap and KPCA use distance metrics based on an under-

lying manifold, however, different underlying structures can be uncovered by “simply”

using a different distance metric. In contrast to KPCA, Isomap relies only on measur-

ing distances between proximal points and uses shortest-paths coordination for distances

between distal points. The utilization of coordination for distal points typically pro-

vides better uncovering of structure, given sufficient data density. In addition, pairwise

coordination provides a means to perform distal correspondence, as we describe in the

remainder of this chapter.

The three main steps in Isomap:

1. compute local neighborhoods based on proximal spatial neighbors;

2. globally coordinate local neighborhoods into a full distance matrix
D by computing all-pairs shortest paths;

3. embed D using MDS.

3.3 Spatio-Temporal Isomap

We developed an extension of Isomap for data with both spatial and temporal dependen-

cies, called Spatio-temporal Isomap (ST-Isomap). ST-Isomap retains the general frame-

work of spatial Isomap for constructing a distance matrix that is embedded through
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eigendecomposition. Recapping, Isomap computes distance matrices by i) constructing

neighborhoods of points local to each data point based on spatial distance and ii) com-

puting shortest-path distances between all data pairs starting from distance-weighted

edges from local neighborhoods. Within this framework, ST-Isomap includes temporal

dependencies between sequentially adjacent points by i) proximal disambiguation through

temporal windowing (including spatial distances between temporally-extended windows

of data points) and ii) distal correspondence through common temporal neighbors to re-

duce distances between similar points with respect to the underlying spatio-temporal

structure. The second of these adjustments highlights the essential difference between

spatial and spatio-temporal Isomap, in that certain points may be spatially distal but

spatio-temporally proximal. More specifically, these points are corresponding points in

the same spatio-temporal process.

To illustrate further, consider again our example of two arm reaching motions, one

reaching high and the other reaching low. Postures occurring half-way through each of

these motions are spatially distal and yet are equivalent positions along the underlying

reaching spatio-temporal process. The aspect that separates these postures is the space

of variation within the reaching process.

We describe two methods of spatio-temporal Isomap for sequentially continuous and

segmented data. Sequentially continuous ST-Isomap works directly on the input data

without abstraction into higher-level features. However, this version of ST-Isomap is not

always computationally feasible due to storing and performing eigendecomposition on an

N × N matrix, where N is the number of input data points. In contrast, sequentially

segmented ST-Isomap first abstracts the data into segment intervals to provide a more
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compact representation. This method is less computationally intense than its continuous

counterpart, but its accuracy is highly dependent on the ability to faithfully segment

input data. The basic procedure of ST-Isomap is outlined in the following.

The four main steps in ST-Isomap:

1. compute local neighborhoods: based on proximal spatial neighbors
and adjacent temporal neighbors;

2. identify common temporal neighbors (CTN): to identify data pairs
with hard spatio-temporal correspondences:

(a) reduce their distances by some scalar cctn,

(b) reduce distances between adjacent temporal neighbors (ATN)
by some scalar catn;

3. globally coordinate local distances into a full distance matrix D
by computing all-pairs shortest paths;

4. embed D using MDS.

3.3.1 The Extendability of Isomap

Our decision to use Isomap as the basis for uncovering structure in spatio-temporal data

stems from its flexibility for various distance metrics. Isomap is a combination of global

coordination of proximal distances and multidimensional scaling to produce embeddings

that uncover the underlying topology in a data set. Spatial Isomap constructs local

neighborhoods and their edge weights based solely on Euclidean distance. Euclidean

distances can be used because the underlying structure of input data are assumed to be

a continuous nonlinear manifold. This manifold assumption allows Euclidean distances

to be structurally valid for spatially proximal data points, but requires distal points to

be coordinated globally through computing shortest-paths distances. Through shortest-

paths global coordination, the distances formed between distal points are representative
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of geodesic distances intrinsic to the subspace of the manifold. The MDS embedding

of this matrix simply provides a new coordinate system that preserves these intrinsic

distances.

The manifold assumption, however, may not hold for, or be completely representative,

of the data with different types of underlying structure. For spatio-temporal data, the

point was illustrated by our arm motion example at the beginning of this section. Fortu-

nately, the manifold assumption is specific to using Euclidean distances for determining

and weighting local neighborhoods. Data structured by different underlying representa-

tions can be found in the Isomap framework with appropriate mechanisms for determining

and weighting local neighborhoods.

The values in a distance matrix used by Isomap are flexible to modification because

there is no explicit representation for pairwise relationships. In contrast, methods like

LLE have explicit linear models placed at each data point. Pairwise relationships are

based on the weights of neighbors toward the fitting of a linear model at a data point.

Explicit local models would be difficult to adjust for structures violating the manifold

assumptions. Local models provide an explicit representation of the mapping between

input and embedding spaces, while for Isomap mapping between spaces has to occur

through another mechanism.

3.3.2 Issues in Applying and Extending Isomap

Isomap is a simple, accurate, and flexible approach to dimension reduction, but it has

several shortcomings that must be addressed in its application. These shortcomings are

related to the size and density of the input data, forming connected components, and
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topologically closed underlying structures. We discuss these aspects of Isomap and how

they are addressed for spatio-temporal Isomap.

Regardless of the distance metric used, the basic Isomap framework is computationally

sensitive to the size of the input data, but not its dimensionality. Methods like PCA are

sensitive to input data dimensionality in building and performing eigendecomposition

on an R × R covariance matrix (for the basic technique). In contrast, the MDS step in

Isomap requires computation and eigendecomposition of an N×N distance matrix. As R

grows large for PCA and N grows large for Isomap, embedding becomes intractable due

to memory and computational limitations. As a note, Isomap does not use the input data

once the distance matrix is computed and, thus, is not dependent on the dimensionality

of the input data. In short, Isomap is computationally appropriate for a relatively small

number of points with high dimensionality, whereas methods like PCA are suited for large

numbers of lower dimensional points.

In order to reduce the sensitivity of Isomap to input size, de Silva and Tenenbaum [34]

introduced landmarks into Isomap. The reasoning for this modification, called Landmark

MDS, is to reduce the size of the distance matrix to N × M , where M is the number

of landmarks. The distance matrix in Landmark MDS is computed between an M < N

subset of points from the input data and all of the other N input points. MDS is then

performed on this matrix to provide a singular-value decomposition-like alternative for

Isomap. By using landmarks, the diminished accuracy of the embedding is exchanged for

a lighter computational burden.

In addition to being sensitive to input size, Isomap expects the distance matrix to

be representative of a single connected component. More specifically, once local neigh-
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borhoods are formed, all pairs in the input should have a connecting path through local

neighborhoods. If all data pairs are connected, a single connected component will be

found through shortest paths computation. If not, then the input data and resulting

distance matrix will be split into at least two subsets of connected components. Multiple

connected components causes two problems for spatial Isomap. First, distance matri-

ces with multiple connected components are singular. Consequently, a single embedding

including all of these components cannot be produced through eigendecomposition. Sec-

ond, in order to avoid disconnected components, Isomap assumes the input data contain

a dense sampling of the underlying manifold. This assumption is problematic because it

requires a dense sampling of an unknown structure and can drastically increase the input

size.

ST-Isomap avoids the problems of multiple connected components by not applying

the manifold assumption and by including temporal dependencies. For sequentially seg-

mented spatio-temporal Isomap, the purpose of the embedding is to uncover clusters.

Disconnected components are not necessarily a problem for clustering (but are somewhat

of a nuisance) because the disconnection between components is a coarse partitioning of

the points. Each connected component can be embedded separately to find clusters in

each of the partitions, providing an overall clustering of the data. However, if all of the

input data are temporally related (i.e., occurring in a single sequence), a single connected

component is guaranteed for ST-Isomap. This single connected component occurs because

ST-Isomap includes temporally-related points (i.e., points adjacent in the sequence, or

adjacent temporal neighbors (ATNs)) in the same local neighborhood. Thus, all data

pairs will have a connecting path through temporal neighbors in local neighborhoods.
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Another considerable shortcoming of Isomap is its limitation to bordered spatial man-

ifolds. Consider input data sampled from a circle in 2D. Even though this data are in 2D,

they are intrinsically structured by a closed 1D manifold. Spatial Isomap would not be

able to uncover the underlying structure of this data because the loop of the circle would

have to be broken to produce a 1D embedding.

For closed manifolds without self-intersections, ST-Isomap will not be able to perform

any better than spatial Isomap. For self-intersecting manifolds, however, spatio-temporal

Isomap has the potential to disambiguate points proximal to intersections of these mani-

folds. Spatio-temporal Isomap uses the spatio-temporal signature of the input by using a

temporal window around each data point and its sequential neighbors. If this window is

large enough, the spatio-temporal signature between non-spatio-temporally correspond-

ing points with proximal spatial distance will be distinguishable. As with spatial neigh-

borhoods, the size of the temporal window should be large enough to reflect the local

spatio-temporal properties of a data point, but small enough to not be obfuscated by the

global properties of the motion.

3.3.3 Incorporating Temporal Dependencies

The basic idea in spatio-temporal Isomap is to assume temporally adjacent points are

locally related and incorporate these relationships into the distance matrix. Tenenbaum

et al. [131] allude to the incorporation of temporal dependencies in their original Isomap

paper, discussing the topic only as a side issue. The most straightforward means for

temporal incorporation would be to work in phase-space (i.e., input data concatenated
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with velocity information) or through temporal windowing. Such approaches will help

with proximal disambiguation, but not distal correspondence.

Incorporating temporal dependencies by only modifying the representation of the

input data, however, may lead to problems in interpreting the resulting embedding due

to soft spatio-temporal correspondences. More specifically, there is no means for points

that are spatio-temporally corresponding but spatially distal to be placed into proximity

in the embedding. Because spatio-temporal structure is our objective, it is beneficial for

large spatial variations to be removed from spatio-temporal corresponding points. Hard

spatio-temporal correspondences embed corresponding points such that they are relatively

proximal to each other than rest of the input data. In contrast, soft correspondences retain

the spatial variation of the augmented input data. By removing the spatial variation

of correspondences, hard correspondences allow for the separation of spatio-temporal

structure and input space variation.

Considering the example of low and high arm reaching motion from earlier in this

chapter, soft correspondences could produce an embedding such that the distance be-

tween two postures occurring half-way and 2/3-way through the same reach is smaller

than two halfway postures in different reaches. In contrast, hard correspondences will

embed the two halfway postures into proximity, closer than a 2/3-way posture. Because

corresponding points are in relative proximity, the embedding provides a relative struc-

tural sequencing or timing description that compliments the spatial variations of the input

space.
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3.3.3.1 Common Temporal Neighbors

For our approach to ST-Isomap, we identify points with hard spatio-temporal correspon-

dences as common temporal neighbors (CTNs). More specifically, a data point tx has a

hard spatio-temporal correspondence with another point ty if ty ∈ CTN(tx). The specifics

of how a datapair are corresponded as CTNs can vary. These differences will be described

later in this section for segmented CTN and K-nearest nontrivial neighbors for sequentially

segmented and sequentially continuous ST-Isomap. CTNs are assumed to be symmetric,

ty ∈ CTN(tx) ⇔ ty ∈ CTN(tx), and transitive, ty ∈ CTN(tz) and tz ∈ CTN(tx) ⇔

ty ∈ CTN(tx). CTN transitivity allows hard correspondences between data pairs to be

propagated, forming a distinguishable connected component, or a CTN component.

By reducing the distances between CTNs once found, CTN transitivity can be trans-

parently propagated by a shortest-paths procedure within Isomap to be realized in the

resulting embedding. After shortest-paths, members of a given CTN component will have

significantly smaller distances between any other intracomponent members than any ex-

tracomponent data point. Consequently, in the embedding produced through MDS, all

members of a CTN component will be relatively proximal to each other and all external

points will be relatively distal. Thus, the CTN component will be separable, or cluster-

ably proximal, in the embedding, allowing for decisive interpretability of the uncovered

spatio-temproral structure.

In addition to using CTNs, spatio-temporal Isomap incorporates a few other features

to leverage the temporal relationship among the input data. Particularly useful for finding

higher-levels of spatio-temporal structure, distances between adjacent temporal neighbors
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can be reduced by a chosen scalar cATN . ATN distance reduction effectively serves to

collapse sequentially adjacent points towards proximity. The utility of ATN distance

reduction can be further enhanced when applied only to ATNs sharing CTNs to collapse

only points indicative of hard spatio-temporal correspondences. Also, spatio-temporal

structure can be further accentuated by increasing distances between local neighbors

that are not spatio-temporal correspondences. One method of non-CTN accentuation is

to offset all pairwise distances by some spacing distance before CTN determination. A

more precise method for non-CTN accentuation is to increase distances between non-CTN

pairs. These pairwise distances may also be set to some large constant value to remove

the spatial relationship between non-CTNs.

3.3.4 Sequentially Continuous Spatio-temporal Isomap

We present two techniques for applying ST-Isomap to data. The more straightforward of

these techniques applies ST-Isomap directly to the data and assumes temporal coherence.

This technique is called sequentially continuous spatio-temporal Isomap and consists of

the following steps (with items specific to this technique in bold):

1. compute local neighborhoods: nearest points based on Euclidean distances
between temporal windows about each point;

2. identify common temporal neighbors: as nontrivial matches within a local
neighborhood;

(a) reduce their distances by some scalar cctn

(b) reduce distances between ATNs by some scalar catn

3. globally coordinate local distances into a full distance matrix D by computing all-
pairs shortest paths;

4. embed D using MDS.
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The first step in this procedure builds distances that are spatio-temporal through tem-

poral windowing. A temporal window is a local observation of the spatio-temporal pro-

cess through a given data point and its ATNs (within some interval). Euclidean distance

provides a similarity measure between pairs of these local spatio-temporal observations.

Local neighborhoods are constructed based on points with the highest similarity measure-

ments. As stated previously, neighborhood construction in this manner can proximally

disambiguate, but not distally correspond.

To determine hard correspondences for this technique, we eliminate trivial matches

from local neighborhoods. In other words, we determine CTNs as the K-nearest nontrivial

neighbors (KNTN). Our notion of KNTN was inspired by Chiu et al. [26], who define

the concept of trivial matches in univariate time-series data for data mining purposes.

Diverging slightly from their definition, we consider a point ty to be a nontrivial match

within the local neighborhood of a point tx if x = y, ty ∈ ATN(tx), or D(tx, ty) < D(tx, tz)

for all z within a temporal vicinity (i.e., ∀z|x− z| < εtv). The KNTN of tx are its K most

similar nontrivial matches. Given K, a data point ty ∈ KNTN(tx,K) ⇒ ty ∈ CTN(tx)

for sequentially continuous ST-Isomap.

Once CTNs are found as KNTNs and their distances are reduced, spatio-temporal

Isomap proceeds to perform shortest-paths and MDS just as in spatial Isomap.

3.3.5 Sequentially Segmented Spatio-temporal Isomap

The second technique, Sequentially segmented spatio-temporal Isomap, addresses the input

size problem of its sequentially continuous counterpart by trading embedding precision for

lighter computation. A problem in using sequentially continuous Spatio-temporal Isomap
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is its sensitivity to the size of the input data. As stated previously, this technique requires

the storage and eigendecomposition of an N × N matrix, which can be an infeasible

memory and/or computation load as N gets significantly large. For the sequentially

segmented technique, a segment preprocessing step is introduced into spatio-temporal

Isomap to permit its usage on larger data sets:

1. segment preprocessing: partition input data into intervals, replacing in-
put data with Ns higher dimensional segments;

2. compute local neighborhoods: K-nearest neighbors using Euclidean distance;

3. identify common temporal neighbors: detect similar neighborhood hops as
segmented common temporal neighbors;

(a) reduce their distances by some scalar cctn

(b) reduce distances between ATNs by some scalar catn

4. globally coordinate local distances into a full distance matrix D by computing all-
pairs shortest paths;

5. embed D using MDS.

The initial step in this procedure is the abstraction of the sample-atomic input data

into segment-atomic intervals. Because the Isomap framework is relatively insensitive to

high-dimensional data, ST-Isomap is better equipped to handle the input data as a smaller

number of higher dimensional segments rather than a large number of lower dimensional

samples. In abstracting the input data as segments, however, the quality of the produced

embeddings for structure is directly dependent on the segmentation and preprocessing of

the input samples. In addition, segmentation presents a particularly challenging problem

as there is no definitive ground-truth domain-independent models or mechanisms to guide

the abstraction of the input samples. If such models or mechanisms existed, we could
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simply analyze those models and/or mechanism to determine the underlying structuring

of the data.

This “chicken-and-egg” situation for segmentation between segment generation and

known underlying models leads us to segment the data heuristically. In our approach to

segmentation, we scan the input data samples for events that indicate the boundaries of

meaningful segments. Our framework for spatio-temporal Isomap is not specific to any

particular segmentation mechanism and boundary event definition. In order to produce a

structurally appropriate embedding, however, the segments produced from the input sam-

ples must be consistent (i.e., similar input intervals produce similar segments) and atomic

(i.e., the user considers each segment to contain a conceptually and/or meaningfully in-

divisible performance/subsequence of the input data). The segments do not necessarily

need to be mutually exclusive (i.e., not overlapping in time), but non-overlapping seg-

ments are recommended. We discuss segmentation methods specific to kinematic motion

in Section 4.2.

Once segments are found, additional preprocessing is applied to normalize the seg-

ments into a common representation. Because each segment is given to be atomic, we

consider each segment to represent a point in a R× li dimensional space, where R is the

dimensionality of the input data and li is the number of samples in a segment. However,

the segments produced from the input data are likely to be variable in length. This

variation in dimensionality prohibits the usage of dimension reduction techniques to this

segment data. In order to eliminate dimension variability, the segments are normalized

to a fixed length l by fitting a cubic spline to each segment and sampling the spline for l

uniformly spaced samples.
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After preprocessing the input data, hard spatio-temporal correspondences are found

between segments as segmented common temporal neighbors (SCTN). SCTN are found as

local neighbors that temporally transition to the same neighborhood. The idea driving

SCTN is that two segments that share a common structuring A will always be followed

by segments with a common structure B. By corresponding SCTN locally, components of

SCTNs with distal correspondences can be found from shortests paths. Because members

of a component for A are found implicitly using the members of B, the consequence of this

grouping is a spatio-temporal structure like A → B → C, indicating spatial variations

within each structure and temporal transitions across structures.

For estimating SCTNs, local neighborhoods are found as in spatial Isomap, potentially

through K-nearest neighbors using Euclidean distance. From these neighborhoods, we de-

fine a data point ty ∈ SCTN(tx) if ty ∈ nbhd(tx) and ty+1 ∈ nbhdx + 1. The intuition

for SCTN is that a pair of points are spatio-temporally similar if they are spatially similar

and the points they transition to are also spatially similar. Spatial similarity for this def-

inition is determined proximally by local neighborhoods. In a loose analogy, sequentially

segmented ST-Isomap provides a “kernelized HMM”-type structure where clusters found

as common structures serves as latent variables that are transitioned between.

3.4 Summary

We have developed spatio-temporal Isomap as a dimension reduction method for extract-

ing structure from spatio-temporal data. Unlike other techniques for dimension reduction,

spatio-temporal Isomap attempts to correspond structurally similar data points that are
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spatially distal, as well as disambiguating spatially proximal data points. Two variations

of spatio-temporal Isomap were described for continuous and segmented input data.
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Chapter 4

Performance-Derived Behavior Vocabularies

In this chapter, we use sequentially segmented spatio-temporal Isomap, described in the

previous chapter, to derive a vocabulary of perceptual-motor action primitives and be-

havior modules from human motion data. The derived behavior vocabulary contains the

basic primitive skills and the compound meta-level behaviors that constitute a repertoire

of capabilities for a humanoid agent. These capabilities form a “vocabulary” of behaviors

that can serve as the foundation for autonomous control of the agent.

We present Performance-Derived Behavior Vocabularies (PDBV) as an approach to

automatically derive modular capabilities, for an autonomous humanoid agent, from kine-

matic motion data of humans. PDBV takes as input a single continuous time-series of

kinematic configurations collected from humanoids, preferably from real-world human

performances. As output, PDBV produces clusters of motion that modularize the input

motion into primitive and meta-level behaviors. Each primitive behavior represents a

basic capability as a family of motions with a common theme and can be realized as a

nonlinear dynamical system in the joint angle space of the agent.
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PDBV assumes the input motion data are structured by an underlying spatio-temporal

process. This underlying structure is an essential step in estimating the behaviors un-

derlying an input motion. The use of sequentially segmented spatio-temporal Isomap to

uncover this structure is the driving theme in the four main steps of PDBV.

The four steps in PDBV:

1. Preprocessing: producing time normalized motion segments from
the input motion data

2. Exemplar grouping: grouping motion segments into behaviors
based on common spatio-temporal signatures

3. Behavior generalization: forming nonlinear dynamical systems for
behaviors from grouped exemplars

4. Meta-level behavior grouping: grouping exemplars of lower-level
behavior based on higher-level spatio-temporal signatures

Behavior vocabularies derived by PDBV serve as a substrate of skill-level capabilities

for an autonomous humanoid agent. By expressing behaviors as dynamical systems, be-

haviors have the ability to predict future kinematic configurations from a current configu-

ration. As described in Chapter 6, providing a humanoid agent with predictive behaviors

endows the agent with the ability to produce control desireds from behavior predictions

and to classify previously unobserved motion by matching behavior predictions to ob-

served outcomes.

PDBV works with free-space motion data regardless of the method of collection (e.g.,

motion capture, robot actuation, computer animation, etc.). The quality of motion from

any source is clearly critical, with respect to factors such as noise, sampling frequency,

and expressiveness. However, we recommend using motion captured from humans as
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Figure 4.1: Performance-Derived Behavior Vocabularies consist of four main steps: pre-
processing, exemplar grouping, behavior generalization, and meta-level behavior group-
ing. Preprocessing produces a data set of motion segments from real-world human perfor-
mance. Exemplar grouping uses spatio-temporal Isomap to cluster motion variations of
the same underlying behavior. Exemplars of a behavior are generalized through interpo-
lation and eager evaluation. Compositions of primitive behaviors are found as meta-level
behaviors by iteratively using spatio-temporal Isomap.
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input for PDBV. We assume motion produced by humans is structured (consciously or

unconsciously) by an underlying set of behaviors. It is most likely that behaviors captured

from human performance will be specific to demonstrated activities and not general across

all possible activities. However, by estimating underlying behaviors, we can endow an

autonomous humanoid agent with human-like skill capabilities without extensive manual

intuition, biasing, or implementation.

4.1 What is a Behavior Vocabulary?

Motivated by Verbs and Adverbs motion vocabularies [116], our definition of a behavior

vocabulary includes two types of behaviors, primitive and meta-level behaviors. The set

of primitive behaviors is the substrate of basic skills for the humanoid agent.

Each primitive is a parameterized family of motion trajectories in the joint angle space

of the humanoid agent. All motions within a primitive have a common spatio-temporal

structure, with each motion providing a variation on the underlying structure of the prim-

itive. A primitive is defined by a set of exemplar motion trajectories. An interpolation

mechanism generalizes these exemplars to encompass the span of variations for a primi-

tive. Interpolation also provides the mapping mechanism between the input space (joint

angle trajectories) and the parameterization space (adverb space in V-A terminology) of

the exemplars. More specifically, non-exemplar points in the lower-dimensional param-

eterization space are interpolated to new non-exemplar motion trajectories in the input

space. Meta-level behaviors represent behaviors with structure at higher levels than a

single primitive.
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Meta-level behaviors capture these higher-level structures as compositions of the ba-

sic primitives. We currently limit primitive compositions to sequential compositions for

simplicity, but superposition of primitives is not necessarily excluded. Meta-level behav-

iors consist of a subset of the primitives and the transition probabilities between them.

Because meta-level behaviors are sequential, a single member primitive is active (produc-

ing motion) at a given time. Given the currently active primitive, a meta-level behavior

provides the probability of transitioning to another primitive.

Our behavior vocabularies are not the only means for defining the basic capabilities for

an autonomous humanoid agent, as described in Chapter 2. However, our definition of a

behavior vocabulary has several advantageous properties that arise from being exemplar-

based. First, behaviors in such vocabularies can be easily modified by adding or removing

exemplars, editing existing exemplars, or repositioning exemplars in parameter space.

Second, behavior vocabularies can be created manually, as in Verbs and Adverbs, or

derived automatically from human motion, as described in this chapter. Furthermore, the

representation of a behavior vocabulary is amenable to manual or automatic refinement.

Our perspective towards creating behavior vocabularies is to combine the benefits

of automated processing and human intuition. As stated previously, our viewpoint is

that “target” behaviors are “compiled” automatically using motion as “source” as an

initialization for manual refinement. For the remainder of this chapter, we define the fol-

lowing structures for behavior vocabularies and coordinate spaces for representing motion

segment data:
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Definitions of structures used for the automated derivation of
behavior vocabularies:

• A behavior instance or exemplar is a motion trajectory in the joint
angle space of the humanoid agent that is a specific variation on
an underlying behavior.

• A primitive feature group is a group of exemplars defining a prim-
itive behavior.

• A primitive behavior is a family of trajectories in joint angle space
defined by a configuration of a primitive feature group in a param-
eterization space.

• A primitive forward model is a realization of a primitive behavior
as a nonlinear dynamical system. More specifically, as flowfield in
joint angle space.

• A meta-level feature group is a union of exemplars from one or
more primitive feature groups indicative a higher-level composite
behavior.

• In general, a meta-level behavior is a mechanism for composing
primitive behaviors through sequencing and/or superposition rep-
resentative of a higher-level behavior. For this dissertation, meta-
level behaviors are restricted to sequencing and realized as transi-
tion probabilities between member primitives.
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Specification of spaces used to represent data in PDBV

• Joint angle space is the space of possible kinematic posture con-
figurations for the humanoid agent. Each axis of the joint angle
space is a degree-of-freedom (DOF) for the agent.

• Input space or segment input space is the space of possible trajec-
tories in joint angle space with l frames.

• An embedding space is a nonlinear subspace of the input space
produced through dimension reduction, ST-Isomap in particular.

• A primary embedding space or primitive-level embedding space or
1st-level embedding space is produced directly from the input space.
Without further specification, an embedding space is assumed to
be a primitive embedding space.

• An exemplar space or adverb space is specific to a cluster in an
embedding space, defining the mapping of the cluster between the
embedding and input spaces.

• A sampling space is a subspace of an exemplar space from which
samples are produced for evaluating the cluster mapping of the
exemplar space.

• Secondary embedding spaces or meta-level embedding spaces are
iteratively produced from lower-level embedding spaces. More
specifically, an mth-level embedding space is produced from the
(m− 1)th-level embedding space.

4.2 Motion Performance Preprocessing

The first step in PDBV is the preprocessing of an input motion to produce a data set

of motion segments with constant dimensionality. Motion preprocessing consists of seg-

menting the input motion followed by time normalization. Motion segmentation can

be performed manually or automatically. We present z-function segmentation [44] and

Kinematic Centroid Segmentation [72] as heuristic methods for automatically segmenting

free-space motion (i.e., without external object or environment interactions).
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The result from any segmentation method is a set of Ns segments of various lengths

li. The dimensionality of the ith segment is di = li × Ndof , where li is the length of

the segment i and Ndof is the number of regarded performer DOF. Dimension reduction

techniques considered for this work require data points of equal dimensionality. Thus,

we normalize these segments to a constant length l. Time normalization is performed

by constructing a cubic spline for each segment and interpolating for l uniformly spaced

samples.

4.2.1 Manual Segmentation

In manual segmentation, a human user segments the input motion manually through

visual inspection. This method usually provides the best segmentation due to human

common sense and judgment. However, this human intervention introduces human in-

consistency into the segmentation and requires significant time and effort. Thus, manual

segmentation was used only for comparing the performance of the ST-Isomap in estimat-

ing underlying structure.

4.2.2 Z-function Segmentation

Z-function Segmentation is an automatic segmentation mechanism for detecting strokes

[120] in an input motion. Intuitively, z-function segmentation serves as a “stop detector”,

identifying frames indicating transitions from periods of motion to periods of inactivity

and vice versa. As described by Fod et al. [44], the z-function is the sum of squares of

the velocities of the kinematic degrees of freedom (DOF),
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z =
∑

θ̇2
i (4.1)

After computing the z-function for a motion, a threshold is applied to approximate

when the motion of the performer has stopped. This thresholding is beneficial for finding

segments of discrete “point-to-point” motion. For example, Peters and Campbell [107]

have successfully applied z-function segmentation to motion data collected from the NASA

Robonaut actuated through teleoperation. For motion that does not stop or slow down

significantly, however, the z-function is not capable of detecting any segments.
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Figure 4.2: Z-function segmentation of a motion stream. The value of the z-function is
plotted over time. Horizontal lines are various thresholds considered based on proportions
of the maximum, mean, and median value of the function. The thick line, representing
2 times the mean of the function, was used as the threshold. Dots indicate segment
boundaries based on this threshold.

4.2.3 Kinematic Centroid Segmentation

Jenkins and Matarić [72] propose Kinematic Centroid Segmentation (KCS) as an auto-

matic segmentation method suited to detecting significant movements of a limb. Based on

assumptions similar to those of Cutting and Profitt [32], KCS performs “swing detection”
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by treating a kinematic substructure of a performer as a pendulum and placing segment

boundaries at the beginning and end of pendulum swings. A kinematic substructure is

a set of DOF that are coordinated for a common purpose. Two substructures can be

working in coordination or independently, but DOF of a single substructure are always

in coordination. For instance, the upper body could be separated into three kinematics

substructures: left arm, right arm, and torso/head.

Because the DOF in each kinematic substructure are in coordination, we abstract the

motion of the substructure into meaningful marker features. For segmentation, we use

marker features for a base marker, the Cartesian location of a base joint, and a centroid

feature, the centroid of the Cartesian joint locations in the substructure. For instance, an

arm substructure could have a base marker as the location of the shoulder and a centroid

feature as the average position of the shoulder, elbow, wrist, and hand.

KCS segments one kinematic substructure at a time in a greedy fashion. In segmenting

for a single substructure, we first subtract the position of the base from the centroid for

each frame, providing a rough configuration of the substructure in the coordinates of the

substructure. Starting from the first frame, we compute the distance between centroid

locations at the current frame and all subsequent frames. Using the centroid distance

function, we start at the current frame and traverse forward in time until a minimum

threshold distance is reached. At this point, we continue traversing forward until a

local maximum is reached. At this local maximum, we place a segment boundary, set

the current frame at the boundary, and repeat the procedure. Once segmentation is

performed for a single substructure, segmentation for the next substructure is performed
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on each individual segment. Additional substructure iterations perform segmentation

individually on the existing set of segments.

The rationale for segmenting in this manner is that the revolute joints and joint limits

of a human restrict the reachable space of the substructure. Due to these constraints on

the substructure, the distance it can achieve from its initial position is bounded. Thus, a

substructure that moves away from its initial position must eventually move back toward

its initial position. The end of a “swing” is detected when the substructure reaches a

locally extreme distance from its initial position. As we will discuss in Chapter 5, this

segmentation method is not perfect, but is sufficient for use with ST-Isomap towards

uncovering structure in our motion data.

Summary of Procedure for Kinematic Centroid Segmentation:

1. Set current segment to the first frame

2. Compute distance between centroid at current segment and the
centroid at every subsequent frame

3. Find first local maximum in centroid distance function

(a) Traverse frames until the distance exceeds a threshold

(b) Traverse frames with a moving window until the current
frame is the maximum value in the window

4. Place new segment at the found local maximum, go to step 2

The kinematic centroid distance function is specified as:

md(t) = Dm(mcentroid(t)−mbase(t),mcentroid(ta)−mbase(ta)) (4.2)
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Figure 4.3: Kinematic centroid segmentation for one segment of a motion stream. (a) A
visualization of the motion being segmented with the spheres indicating the trajectories
of the shoulders (blue), kinematic centroids (red), and end-effectors (magenta) of the
right and left arms. (b-d) Plots of the offset distance for the kinematic centroid of the
right arm for three motion segments. The points on these plots indicate the beginning of
the current segment, passing of the “large motion” threshold, and placement of the next
segment boundary, respectively.
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where md(t) is the value of the centroid distance function at time t, ta is the time

index of the current segment boundary, Dm is the metric for computing distances between

centroids, mcentroid and mbase are the Cartesian positions of the centroid and base for the

kinematic substructure at a given time.

We can express the placement of the next segment boundary using the current segment

boundary by finding the next local maximum in md:

si+1 = tb | tb > ta;md(tb)−md(ta) ≥ τ ;md(tb) ≥ md(ts),∀tb − ε ≤ ts ≤ tb + ε (4.3)

4.3 Grouping Primitive Behavior Exemplars

For deriving primitive behaviors, we use ST-Isomap to transform a data set of motion

segments into clusterable feature groups that are representative of modules of a common

theme. We consider each motion segment as a point in a NDOF × l dimensional segment

input space, where NDOF is the number of DOF and l is the number of frames in a motion

segment. For instance, a motion segment of 20 DOF containing 50 frames is a point in a

1000-dimensional input space.

By applying sequentially segmented spatio-temporal Isomap, points in a high-dimensional

segment input space should be transformed into a low-dimensional embedding space re-

flecting the underlying spatio-temporal structure of the segments. From the discussion of

spatio-temporal Isomap in Section 3.3, we expect points with hard spatio-temporal corre-

spondences to be placed in clusterable proximity within an embedding. More specifically,
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we expect motion segments that exemplify an underlying behavior B to be in clusterable

proximity, as well as temporally adjacent exemplars of behaviors A and C, such that

the embedding reflect the A → B → C spatio-temporal structure of the input motion.

Such embeddings are produced by setting cCTN to some significantly large value, adjusted

through manual tuning, and cATN to 1.

Several techniques exist for clustering data, including K-means [10], mixture models

[10], or hierarchical agglomeration [68]. Many of such techniques require the cluster

cardinality to be specified a priori (i.e., the number of clusters to be known). However,

the number of clusters present in set of motion data or reflected in the embedding is likely

to be unknown. Other clustering techniques have also been developed to estimate the

number of clusters in a data set.

Because spatio-temporal Isomap embeds points belonging to the same cluster into

proximity, these clustering techniques are not necessary because intra-cluster points are

separable in the embedding. Instead, “sweep-and-prune” clustering is used to find clus-

ters separable by axis-aligned bounding boxes. Originally proposed by Cohen et al. [28]

for detecting approximate collisions between geometries, sweep-and-prune clustering it-

eratively projects the data onto each axis of the embedding. The data points at each

axis are sorted and partitioned based on a threshold separation distance εSAP . Using

an assumed separation distance instead of an assumed cluster cardinality, the number of

clusters can be estimated automatically. The procedure for sweep-and-prune cluster is as

follows:

86



Procedure for One-Dimensional Sweep-and-Prune:

1. begin with one list of all points and p = 1

2. for all lists

(a) sort the list by the pth dimension

(b) for all elements of the list

i. place a marker between the jth and (j + 1)th elements if
their difference exceeds a threshold

3. construct a new set of lists based on the markers

Once clustering is performed, the points of a single cluster are identified as a primi-

tive feature group. The purpose of the dimension reduction and clustering is to extract

features from the segment data indicative of behaviors. The features extracted by this

process are groups of motion segments, or primitive feature groups. Because of their

spatio-temporal correspondence, motion segments in each group are assumed to be a spe-

cific instantiation or exemplar of an underlying primitive behavior. The spatial signature

of exemplars in a group may vary significantly in the segment input space. Together,

however, the exemplars of a group are indicative of an infinite span of variations that are

structurally common to a single behavior.

In addition to the feature extraction, a variation of the manifold assumption can be

introduced into the resulting embedding. Temporally adjacent points may be separated

into different clusters in the embedding, however these data pairs retain a connecting

temporal relationship. Structurally, temporal relationships can be seen as a temporal

connection between two primitive behaviors. By placing these connections between data

pairs, the embedding takes on the form of a 1-manifold indicative of relative timing

between primitives. Taking a kernelized HMM perspective, described in Section 3.3,
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temporal relationships are structure-indicative transitions from one primitive to another.

From this view point, primitive feature groups are hard latent variables discretizing the

motion segments into states. A HMM without observation probabilities can be built

from transition probabilities produced from normalized transition counts and initial state

probabilities as fractions of cluster populations over the greater population. A spatio-

temporal manifold in the embedded space from the HMM perspective can be viewed as

a set of nodes connected into a 1-manifold by transition-weighted edges. The temporal

relationships between primitive feature groups is further leveraged in Section 4.5 for

uncovering meta-level feature groups.

4.4 Generalizing Primitive Feature Groups

Primitive behaviors in PDBV are similar to and motivated by verb behaviors proposed

by Rose et al. for Verbs and Adverbs motion vocabularies [116]. Similar to primitive

behaviors, verb behaviors are defined by a set of exemplar motion trajectories and are

generalized through interpolation. As paraphrased from [85], interpolation is defined

as finding a function F that maps from one space G to another space H given an equal

number of corresponding points in the two spaces. For both primitive and verb behaviors,

points in a lower dimensional exemplar space or adverb space are constructed with 1-

1 correspondences to motion segments in the input space. The specific interpolation

mechanism mapping between the input and exemplar is methodologically irrelevant.

Structurally similar motions that are not explicitly represented can be constructed

in the input space by selecting and interpolating a non-exemplar point in the exemplar

88



space. Thus, an infinite number of motion variations can be produced for a given behavior.

The span of these variations, or support volume, however, is dependent on the particular

mechanism used for interpolation. For example, Shepards interpolation [127], used in

our implementation, is restricted to interpolating samples within the convex hull of the

points in exemplar space.

Unlike primitive behaviors, verb behaviors enjoy a manually defined and human in-

tuitive parameterization. For a verb behavior, exemplars are manually positioned in

exemplar space such that the parameterization of the behavior is intuitive to humans.

Consequently, a human user will have an intuition about motion that will result from the

selection of points in various regions of a verb behavior’s exemplar space. This intuitive

parameterization serves as a means for indexing into the behavior and avoiding compli-

cated or exhaustive searches for desired motion. As Rose et al. have shown [116], desired

motion can be returned from verb behaviors through lazy evaluation at run-time. Lazy

evaluation, in the context of behaviors, means that mapping from the exemplar to the

input space is not required to be explicitly known, but rather evaluated when needed.

Due to their automated derivation, primitive behaviors are not guaranteed to have

exemplar space parameterizations that correspond to meaningful human semantics. The

basic exemplar space, assumed for this dissertation, is to use the locations of exemplars

from a primitive feature group in the spatio-temporal Isomap embedding, although ex-

emplars can be repositioned manually or automatically by some other technique. Our

speculation is that exemplar placement in primitive feature groups may have some spatial

meaning because their relative distances have been preserved, only scaled by a constant

factor to form CTN components. Even with this speculation, however, primitive behav-
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iors will not necessarily have an intuitive parameterization. To uncover useful parame-

terizations, we employ eager evaluation to approximate an explicit mapping between the

exemplar space of a primitive behavior and resulting motion trajectories in joint angle

space. For eager evaluation, we assume that motion trajectories produced by a primitive

behavior actually lie within a low-dimensional manifold in joint angle space, or primitive

motion manifold. Eager evaluation without this assumption is likely to be infeasible. This

infeasibility, in its worst case, stems from the number of samples required to represent

such a mapping increasing exponentially with manifold dimensionality.

In our approach to eager evaluation, the exemplar space of a primitive behavior is

densely sampled and interpolated to produce a dense sampling of its primitive motion

manifold. For sampling an exemplar space, we experimented with sampling within bound-

ing axis-aligned shapes (e.g. spheres and boxes) and kernels about each exemplar. How-

ever, these methods were susceptible to sampling in regions outside the support volume,

as for axis-aligned shapes, or not placing samples in areas of interest, as for sampling

kernels. Our best results for sampling were within a hyperellipsoid fit to exemplars us-

ing PCA. The orthonormal PC axes of the ellipsoid form a sampling space within an

exemplar space. Using the sampling space, a primitive behavior is eagerly evaluated

by i) generating NSAM random samples within the sampling space, ii) reconstructing

samples in the exemplar space, and iii) interpolating the samples into the input space.

The mapping produced through eager evaluation is not completely explicit, but a span

of variations should have sufficient representation by the samples to provide meaningful

indexing. As a note, eager evaluation mappings are specific to a given configuration of
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exemplars. In modifying an exemplar space, a current mapping would be invalidated and

eager evaluation would be required to reestablish the mapping.

An explicit mapping of a primitive behavior between exemplar and input spaces allows

for the behavior to be quickly “looked up” or indexed at run-time for an appropriate or

desired motion. Because the span of variations for a primitive has been densely sampled,

a primitive is likely to have already interpolated a motion variation that approximates a

motion with desired properties. Using primitives and eager evaluation mappings derived

by PDBV, Erol et al. [41] augment samples from primitive behavior mappings to be

indexed with ending Cartesian coordinates of the hand. With this indexing structure,

reaching behaviors for a humanoid robot can be automatically derived and quickly indexed

for motion that will result in the robot reaching to a given location.

Figure 4.4: A primitive flowfield for a horizonal arm waving behavior. The flowfield
moves forward from black to red, with exemplars in blue. Motion for selected exemplars
of this primitive are shown.

91



While “lookup” is a useful feature for primitive behaviors, the explicit mapping of

the exemplar space allows for the nonlinear dynamics of the behavior to be uncovered in

joint angle space. By densely evaluating a primitive behavior, we have densely sampled

the span of motion trajectories for the behavior in input space and a primitive motion

manifold in joint angle space. The primitive motion manifold is a set of points in joint

angle space, with some points connected by the sequential ordering of their respective

trajectories. Given their sequential ordering, each point on the manifold provides a gradi-

ent or direction of displacement from its location. This gradient is not only an expression

of the temporal behavior of a trajectory at a certain location but also the primitive mo-

tion manifold and its underlying primitive behavior. With trajectory gradients at each

point, the primitive motion manifold forms a flowfield in joint angle space describing the

nonlinear dynamics of the primitive behavior. The ability to describe its dynamics allows

a primitive behavior to predict its future location in joint angle space.

We utilize a primitive flowfield for prediction in the context of dynamical systems.

Using Jordan’s description [73], a dynamical system is described by a next-state equation

and an output equation:

x[n + 1] = f(x[n], u[n])y[n] = g(x[n]) (4.4)

where x[n] is the kinematic posture or state at time n, u[n] is the control input given

at time n, f is a function producing the updated kinematic state at the next instance

of time x[n + 1]. Because observations occur in joint angle space, the output equation,
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mapping the current state x[n] to a current observation y[n], uses an identity function

for g.

A primitive flowfield provides a means to evaluate the function f for a given primitive.

For dynamical evaluation, the closest neighbors in the flowfield to x[n] are determined.

Weighted by distance from the current state, the gradients of flowfield neighbors are

summed and normalized to evaluate the linear direction for the gradient of x[n]. x[n + 1]

is determined by stepping from x[n] along its gradient by a length given by u[n]. In

practice, the step speed will not change drastically between steps and is computed as the

magnitude of the difference between the two previous kinematic states.

4.5 Deriving Meta-level Behaviors

Given the primitive behaviors found by PDBV in the preceding sections, we form meta-

level behaviors. These are collections of primitive behaviors that are indicative of higher-

level behaviors. Previously mentioned in Section 4.3, points and primitive feature groups

found in the embedding space have a spatial and temporal relationship that forms an

A → B → C structure of modules. These temporal relationships allow the spatio-

temporal structure of the motion to be viewed as a 1-manifold of behavior nodes with

edges weighted by transition probabilities. In deriving meta-level behaviors, our intention

is to collapse primitive behaviors with strong transitional connections A → B → C into

a single higher-level behavior ABC.

Similar to primitive behaviors, meta-level behaviors are derived through extract-

ing features as meta-level feature groups using sequentially segmented spatio-temporal
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Isomap. Meta-level feature groups are found within a mth-level embedding space, where

m > 1. We focus on feature extraction for the second-level embedding; however, the same

approach can be used for higher level embeddings.

The second-level embedding is produced by applying spatio-temporal Isomap to the

data in the first-level embedding. One slight difference for the second-level embedding

is in determining local neighborhoods such that first-level feature groups are preserved.

Once a feature group is clustered at any level, this feature is considered an indivisible

unit for higher-level features. Thus, higher-level embeddings must i) preserve the integrity

of lower-level features by retaining their clusterable proximity and ii) merge lower-level

features with strong spatio-temporal relationships indicated by transitioning. Although

irrelevant to the larger goals of PDBV, we expect lower-level features to have a finer degree

of clusterable proximity than higher-level features. More specifically, a smaller clustering

thresholding distance will find lower-level features in a higher-level embedding, whereas

a larger clustering threshold will find higher-level features in the same embedding.

Lower-level feature groups are preserved in higher-level embeddings by constructing

local neighborhoods to include only data points from a single feature group. These

neighborhoods are constructed using an epsilon radius about each point based on the

radius of the bounding sphere of their corresponding feature group. Because all data pairs

in a neighborhood are CTNs, each neighborhood will preserve feature group integrity by

forming a CTN component. The distances between points in this component will be

reduced by cCTN , forming a single unit that remains clusterably proximal.

With the integrity of lower-level feature groups addressed through local neighbor-

hoods, lower-levels feature groups with strong temporal relationships can be collapsed
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into higher-level feature groups. CTNs of one neighborhood will have ATNs in another

neighborhood that are CTNs. By setting cATN to an appropriate value, data points

in these neighborhoods can be placed in clusterable proximity. Consequently, the lower-

level feature groups represented by these two neighborhoods will be placed into clusterable

proximity in the embedding. Higher-level feature groups are then uncovered by sweep-

and-prune clustering.

Feature group integrity and merging provides a means for meta-level embeddings to

eventually converge. Feature group integrity ensures that sets of data points can split

once associated through clustering. Thus, higher-level embeddings cannot devolve the

features found at lower-levels. Feature group merging ensures that lower-level features

are merged towards a more concentrated representation of the underlying spatio-temporal

structure and behaviors. Eventually, connections between feature groups will be equally

strong, no longer amenable to feature group merging at a higher-level, and unable to be

split. At this level, the meta-level embeddings have converged.

A meta-level behavior is produced from a meta-level feature group by determining

transition and initial state probabilities of its component primitives. For implementation

purposes of this dissertation, a meta-level behavior is a composition mechanism of its

component primitives indicative of higher-level sequential structure found in the input

motion. The first step in constructing such a behavior is to determine its component

primitives. A meta-level behavior can determine its component primitives by examining

the primitives associated with members of its meta-level feature group. Once compo-

nent primitives are found, the meta-level behavior recomputes initial state and transition

probabilities with respect to its component primitives.
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4.6 Summary

In this chapter, we presented Performance-Derived Behavior Vocabularies as our method-

ology for automatically deriving a capability repertoire for a humanoid agent. PDBV

takes as input a single extended time-series of human motion and produces clustered

exemplars and nonlinear dynamical systems for each uncovered behavior. The procedure

for PDBV consists of a heuristic segmentation followed by sequentially segmented ST-

Isomap. As described in Chapter 6, behavior vocabularies derived by PDBV can be used

for functions such as motion synthesis, classification, and imitation.
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Chapter 5

Evaluation

We evaluate our methodology to deriving behavior vocabularies through an implemen-

tation of PDBV. The PDBV system is empirically evaluated through the application of

three multi-activity input motions. These motions contain a variety of activities, includ-

ing dancing, reaching, and punching. Results from deriving behavior vocabularies from

these input motions in various contexts are presented. We discuss the appropriateness of

these results from manual observation, given a priori knowledge about the input motions.

An analysis of the PDBV methodology is presented, discussing the issues, advantages,

and shortcomings of our approach.

5.1 Implementation Description

The PDBV system used for this work is centered around a main PDBV function imple-

mented in Matlab. The main PDBV function serves to i) read in an input motion, ii)

perform motion preprocessing, iii) embed the data in spaces up to a given number m

iterations, iv) extract feature groups in each embedding, and v) sample each primitive

behavior for an explicit mapping of its motion manifold in joint angle space.
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Input motion for the main PDBV function is read from two files assumed to have

originated from a single Biovision BVH motion capture file. As described in [82], kine-

matic motion stored in the Biovision BVH format contains two sections. The first section,

HIERARCHY, is a recursive specification of the kinematic hierarchy of the subject. The

second section, MOTION, contains the data describing the motion of the kinematic sub-

ject. This information includes the number of frames, sampling frequency, and matrix of

DOF values at each frame. For use with the PDBV system, a single bvh file is split into

.hdr and .mot files for the HIERARCHY and MOTION sections, respectively. The PDBV

system reads in the .mot file as input. The .hdr file is not used for input, rather it is used

to create BVH files from motion trajectories produced by PDBV through concatenation.

Input motion, read as motion matrices from .mot files, is preprocessed through seg-

mentation and time normalization. The main PDBV function looks for a .seg file speci-

fying the intervals of the segments in the input motion. If it is not present, the .seg file

can be created manually using a text editor or with automatic procedure. For automatic

segmentation, the main PDBV function calls another Matlab function to perform segmen-

tation and produce a .seg file. Two automatic segmentation functions were implemented

for z-function segmentation and Kinematic Centroid Segmentation, described in Section

4.2. The main PDBV function partitions the input motion into Ns separate segment

matrices based on the intervals read from the .seg file. Splines are constructed for each

DOF in each segment matrix using Matlab’s spline function. l (typically l = 100) uniform

samples are extracted from each of these splines. The l samples from each DOF of a single

segment are concatenated into a l×NDOF vector. All segments are concatenated into an

Ns × (l ×NDOF ) matrix.
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Given m from a user, the PDBV main function applies m iterations of sequentially seg-

mented spatio-temporal Isomap to the segment matrix. The result from these iterations

is m sets of Ns data points. Each set is a Ns × jDIM matrix specifying the configuration

of the motion data at the jth-level embedding, where jDIM is the selected dimensional-

ity for the jth-level embedding. Although not applicable in general, we have found that

overestimating the dimensionality of the embedding spaces, 15 dimensions for primitive

level and 5 dimensions for meta-levels tend to provide enough information for separable

clustering. In addition to these parameters, we typically set cCTN to 10 (primitive) and

30 (meta-level), cATN to 1 (primitive) and 500 (meta-level), primitive local neighbors to

be the 5 nearest neighbors. The parameters are passed to our modified version of the

standard Isomap Matlab function, provided by Tenenbaum et al. [131], to perform the

embeddings.

The main PDBV function calls another Matlab function we have implemented to per-

form sweep-and-prune clustering on the data for embeddings at each level. The threshold

cluster separation distance is selected as a small fraction (typically .01) of the diagonal

of the bounding box of the embedded data. A separate structure is used to store the

association of each data point to its feature group in each embedding space. Using these

feature group associations, transition and initial state probabilities are computed for all

feature groups and stored in a separate structure.

The final step taken by the main PDBV routine is to sample the exemplar space

of each primitive behavior for motion trajectories in joint angle space. Sample spaces

are constructed for each exemplar space as the three major PC of the exemplars found

by Matlab’s svd function. Nsam random samples are generated using Matlab’s rand
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function within a unit sphere about the origin. After their reconstruction in exemplar

space, these samples are interpolated into the input space using our implementation of

Shepards interpolation [127]. The Nsam motion trajectories produced from sampling are

stored in a database file for each primitive behavior.

In addition to the Matlab routines, a animation viewer was implemented in Microsoft

Visual C++ to view motion trajectories produced by PDBV vocabularies. Routines

related to motion synthesis, classification, and imitation are described in Chapter 6.

5.2 Empirical Evaluation

We empirically evaluate our PDBV implementation in several contexts with respect to

three sets of input motion. PDBV is applied to each input motion in the following

contexts: behavior vocabulary derivation, comparison with PCA and spatial Isomap,

individual activity isolation, synthesized motion feedback, segmentation variation, and

humanoid agent control.

5.2.1 Input Motion Descriptions

Each input motion1, individually refered to as Input Motion I, was collected from a human

subject performing a series of scripted activities centered around upper-body movement.

The input motions were collected using a Vicon optical motion capture system. Input

Motions 1 and 2 were scripted to contain multiple activities, including punching, dancing,

and arm waving. Input Motion 3 was scripted to contain a single two-arm reaching

1Motion data used in this dissertation was graciously acquired and provided by Jessica Hodgins and
her motion capture group at Carnegie Mellon University.
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activity between a zero-posture and various Cartesian locations in the subject’s reachable

space. Input Motions 1, 2, and 3 consist of 22,549, 9,145, and 9,394 frames, respectively.

The kinematics of the input motion consisted of 42 kinematic DOF, sometimes 48 DOF are

used to include the global position and orientation of the subject with respect to the world.

The original performer motion contained 69 DOF, but less relevent DOF were removed to

avoid DOF weighting issues and minimize kinematic mismatches with a humanoid robot.

The streams are available from http://www-robotics.usc.edu/∼cjenkins/motionmodules/.

(a) (b)

Figure 5.1: (a) A snapshot of the human performer instrumented with reflective markers
during the execution of a demonstration motion stream. (b) A visualization of the hu-
man performer’s kinematics at the time of the snapshot using the post-processed motion
stream.

The input motions were segmented using three different methods, described in detail

in Section 4.2. Each segment was normalized to 100 frames. The number of segments

produced by each method is shown in Table 5.2. Using Input Motion 1 as our primary
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example for discussion, we specify the scripting of behaviors (Table 5.1) performed in

this input motion. The PDBV system has no direct effect on the segments produced, but

instead uncovers motion groupings with respect to the underlying process.

Stream 1
Behavior Name Frame Interval Number of Segments

Circles 1-3350 23
Spider 3350-4390 10

Horizontal Waving 4390-5600 18
Semaphores 5600-7170 19

Vertical Waving 7170-9580 23
Horizontal Waving 9580-11150 16

The Egyptian 11150-12380 16
The Scuba 12380-12970 7
The Twist 12970-13690 16

The Cabbage Patch 13690-14770 11
The Robocop 14770-15340 11
The Monkey 15340-16750 25

Jab Punch 16750-18160 15
Uppercut 18160-19100 12

Roundhouse 19100-20730 12
Knockout Punch 20730-22549 13

Table 5.1: Script of performed activities for Input Motion 1. This scripts lists manually
assigned descriptions of activities, interval of performance, and number of segments from
manual segmentation.

5.2.2 Behavior Vocabulary Derivation Results

5.2.2.1 Grouping Exemplars into Features

In this section, we present results from deriving behavior vocabularies for each input

motion. Through manual observation, the appropriateness of each behavior vocabulary

is manually estimated with respect to scripting of activities for its corresponding input

motion. Unless stated otherwise, KCS is used for input motion segmentation.
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Results at the various stages in the PDBV procedure for Input Motion 1 are shown

in Figure 5.2. Datapairs (of motion segments) within the same CTN component are

visualized in the pre-embedding distance matrix as dark blue entries. Square submatrix

blocks of CTN components can be visualized along the diagonal of the distance matrix.

For activities with temporal relationships between two or more primitives, these blocks

visualized as checkerboard-like patterns indicating the structural transitioning between

CTN components. For example, the activity with alternating primitives visualize as an

block checkerboard, as Figures 5.6 and 5.14. This checkerboard pattern results from

the activity performing alternating transitions between “waving outward” and “waving

inward” primitives.

As shown in Figure 4.4, spatial Isomap yields submatrix blocks similar to spatio-

temporal Isomap. However, disconnected components form in spatial Isomap distance

matrices due to disconnections between CTN components of different activities and spatial

distances between CTN components of the same activity. These disconnected components

prevent spatial Isomap from providing a single embedding global to all of the data points.

Shown in the distance matrices of Figure 5.2, distinct clusters are present in the

primitive-level embedding based on the CTN components formed in the spatio-temporal

Isomap distance matrix. Even though the primitive-level embedding is 15-dimensional,

these clusters are visually distinguishable in the first two or three dimensions of the

embedding. However, some of the clusters require more than three dimensions for sep-

arability to be visually apparent. From the partitioning by sweep-and-prune clustering,

78 primitive feature groups are found. Each feature group in the primitive-level embed-

ding is color coded and shown with a bounding sphere in 3 dimensions. Lines are drawn
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Figure 5.2: Results of first (left column) and second (right column) level exemplar group-
ing for Input Motion 1. (a,b) Distance matrices produced by ST-Isomap. (c,d) Em-
beddings produced (blue line) and feature groups (color coded spheres) found by ST-
Isomap. (e,f) Transition probabilities between pairs feature groups. (g,h) Feature groups
connected by black lines (width indicating the number of transitions between a pair of
feature groups).
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Figure 5.3: Results of first (left column) and second (right column) level exemplar group-
ing for Input Motion 2. (a,b) Distance matrices produced by ST-Isomap. (c,d) Em-
beddings produced (blue line) and feature groups (color coded spheres) found by ST-
Isomap. (e,f) Transition probabilities between pairs feature groups. (g,h) Feature groups
connected by black lines (width indicating the number of transitions between a pair of
feature groups).
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Figure 5.4: Results of first (left column) and second (right column) level exemplar group-
ing for Input Motion 3. (a,b) Distance matrices produced by ST-Isomap. (c,d) Em-
beddings produced (blue line) and feature groups (color coded spheres) found by ST-
Isomap. (e,f) Transition probabilities between pairs feature groups. (g,h) Feature groups
connected by black lines (width indicating the number of transitions between a pair of
feature groups).
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Figure 5.5: 3D embeddings of Input Motion 1 and 3 using (a,b) PCA, (c,d) spatial
Isomap, and (e,f) spatio-temporal Isomap. Distances matrices for (g,h) the disconnected
components of spatial Isomap and (i,j) the single connected component of spatio-temporal
Isomap.
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between pairs of primitives that transition between each other, with thicker lines indi-

cating a greater number of transitions between a pair. We interpret subsets of primitives

connected by strong transitional relationships to be indicative of structurally significant

behaviors. Primitives with weak inter-primitive transitions are considered to be spurious,

but could be structurally significant behaviors that are underrepresented in the input

motion.

We observed that the feature groups found at the primitive-level for all of the motion

groups typically have a common theme. For example, Figure 5.6 highlights a primitive

from an arm waving activity in Input Motion 1 that appropriately clusters 12 variations

that are consistent with an underlying waving behavior. However, a number of primitive

feature groups were observed to contain transitional or merging artifacts, highlighted in

Figure 5.7. As described in Discussion section of this chapter, transitional artifacts are

due to sparse numbers of transitions between performed activities and merging artifacts

are due to inaccurate local neighborhood construction.

Similar to the primitive-level, meta-level feature groups form separable clusters in a

second-level embedding. For Input Motion 1, these clusters are readily visualized in the

second-level distance matrices and second-level embedding shown in Figure 5.2. Unlike

the primitive-level, second-level feature groups were not subject to artifacts of improperly

merged primitive-level feature groups; however, they inherit the inappropriate groups

occurring at the primitive level.

In contrast to Input Motion 1, Input Motion 3 has an intuitively simple structure

consisting of a single activity for reaching. The segmentation of Input Motion 3 produces

segments that successively alternate between underlying behaviors for “reach to location”
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(a) (b)

(c) (d)

Figure 5.6: Examples of meta-level behaviors consisting of two alternating primitives
within Input Motion 1. (a) A “checkerboard” block of the distance matrix isolating
horizontal arm waving and (c) two feature groups identified in the resulting embedding.
(b) Checkerboard blocks of the distance matrix corresponding to dancing performances
of “The Twist”, “The Cabbage Patch”, and “The Robocop” and (d) feature groups for
these dances in the resulting embedding.

and “return to zero posture”. Structurally, these segments form two clusters with con-

tinual transitions alternating between these clusters. These clusters are separable in the

input space and can be easily identified visually from the first 3 principal components

produced by PCA, as in Figure 5.4. Even though clustering (with or without PCA)

is sufficient for this input motion, it is notable that spatio-temporal Isomap provides

PDBV with the ability to provide the same clustering result without a priori clustering
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cardinality, shown in Figure 5.5. Furthermore, feature groups found in the second-level

embedding show convergence, described in Section 4.5. Thus, the behavior vocabulary for

Input Motion 1 consists of two primitive behaviors and one “root” meta-level behavior.

5.2.2.2 Primitive Eager Evaulation

For PDBV, we assume that a family of motion variations is a low dimensional manifold in

the joint angle space of the capture subject. We are able to visualize these primitive mo-

tion manifolds by applying PCA and viewing its projection onto the first 3 PCs. Figures

5.7 and 5.12 illustrate primitive motion manifolds derived from Input Motions 1 and 3.

These manifolds required no more than 3 PCs for accurate viewing and typically formed

as bordered 2-manifolds in joint angle space. From these visualizations, we observed that

eager evaluation through sampling provides a representative realization of a primitive’s

span of variation, even when using basic Shepards interpolation.

5.2.2.3 Meta-level Convergence

A convenient, but not essential, component of PDBV is convergence of feature groups at

some meta-level. Convergence of feature groups is intuitively shown for Input Motion 3

in Figure 5.4. For this motion, two alternating primitive feature groups are found. The

same two feature groups are also found at the second-level. More generally, all meta-levels

will yield the same feature groups. This result indicates that the primitive-level contains

the highest level of abstraction in the motion data, assuming an “abstract root” behavior.

For input with more complex underlying structure, such as Input Motion 1, feature

group convergence becomes more difficult. PDBV continually collapses the 1-manifolds
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Figure 5.7: Primitive flowfields 1 to 15 produced by PDBV for Input Motion 1. Each
flowfield is shown as trajectories (moving from black to red) of kinematic configurations
with respect to its first 3 principal components. Exemplar trajectories are highlighted
with larger circular markers moving from black to magenta.
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Figure 5.8: Primitive flowfields 16 to 30 produced by PDBV for Input Motion 1. Each
flowfield is shown as trajectories (moving from black to red) of kinematic configurations
with respect to its first 3 principal components. Exemplar trajectories are highlighted
with larger circular markers moving from black to magenta.
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Figure 5.9: Primitive flowfields 31 to 45 produced by PDBV for Input Motion 1. Each
flowfield is shown as trajectories (moving from black to red) of kinematic configurations
with respect to its first 3 principal components. Exemplar trajectories are highlighted
with larger circular markers moving from black to magenta.
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Figure 5.10: Primitive flowfields 46 to 60 produced by PDBV for Input Motion 1. Each
flowfield is shown as trajectories (moving from black to red) of kinematic configurations
with respect to its first 3 principal components. Exemplar trajectories are highlighted
with larger circular markers moving from black to magenta.
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Figure 5.11: Primitive flowfields 61 to 78 produced by PDBV for Input Motion 1. Each
flowfield is shown as trajectories (moving from black to red) of kinematic configurations
with respect to its first 3 principal components. Exemplar trajectories are highlighted
with larger circular markers moving from black to magenta.
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Figure 5.12: Primitive flowfields produced by PDBV for Input Motion 3. Each flowfield is
shown as trajectories (moving from black to red) of kinematic configurations with respect
to its first 3 principal components. Exemplar trajectories are highlighted with larger
circular markers moving from black to magenta.

found in each embedding and, qualitatively, the cluster assignments for Input Motion

1 converge for practical purposes, as shown in the last subfigure of Figure 5.13. The

problem for these motions, however, is ensuring members of a feature group from the

previous embedding remain in same local neighborhoods for the next embedding. An

epsilon radius or k-nearest neighbors could be estimated to retain these groups. Such

globally applied settings are not likely to maintain feature group integrity due to varying

amounts of space spanned by different clusters. In our implementation, directly specifying
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Figure 5.13: (a-f) Feature groups clusters (as color coded spheres) from the first through
sixth level embeddings of Input Motion 1 with global position and orientation information.
Blue lines are placed between feature groups that are sequentially adjacent in the input
motion. (g) Assignments of the segments from the input motion (on the x-axis) at each
embedding level (on the y-axis) indicated by the color of each element.
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neighborhoods based on previous feature groups also proved to not guaranteed feature

group integrity. Thus, meta-level convergence cannot be guaranteed by PDBV, at least

through our current implementation. This fact is likely to be an artifact resulting from

grouping oscillation of spurious motions and parameter tuning of catn and cctn.

5.2.3 Individual Activity Isolation

In applying PDBV, we expect multi-activity input motions to form structurally signif-

icant feature groups. Furthermore, motion of an individual activity in isolation should

form feature groups consistent with behaviors derived for the same activity within the

complete input motion. More generally, arbitrary truncation of the input motion should

produce feature groups consistent with the input motion. Isolated activity consistency is

dependent primarily on i) consistent segmentation of the input and isolated motions, ii)

adequate density of motion segments for each underlying behavior, and iii) construction

of appropriate local neighborhoods. Issues related to motion density and local neighbor-

hoods are avoided for activities in isolation, but will arise for arbitrary truncation. These

issues are discussed in detail within the Discussion section of this chapter.

We applied PDBV to various isolated activities from Input Motion 1 for comparison

to feature groups from complete input motion. Intervals isolating individual activities

in the input motion were manually specified. Activities for punching, arm waving, and

hand circling were isolated. Feature groups resulting from the isolated activities for the

“cabbage patch”, “the twist”, vertical waving, jabbing, and punching. These activities are

structured by two alternating primitives, except for the punching motion. The punching

motion is structured by five primitives, two for the jab and three for the uppercut punch.
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As shown in Figure 5.14, PDBV was able to uncover these underlying primitives and not

include spurious motions into the main feature groups.

5.2.4 Humanoid Agent Control

PDBV can be complimented with a task-level control mechanism for motion synthesis,

as described in Section 6.1. For humanoid robot control, a behavior vocabulary can be

synthesized off-line, as a trajectory of desired kinematic postures, or on-line, by resetting

a desired posture based on continual prediction of primitives. Synthesized desireds are

input into a chosen low-level control mechanism, such as a PD-Servo [31], for producing

joint torques that actuate the motion.

Control of robots is one of the more obvious applications of a behavior vocabulary.

We evaluated this potential application using a basic arbitration mechanism for setting

agent desireds, described in Section 6.1. This mechanism performs a “random walk”-like

traversal over the primitives, using the derived transition probabilities for arbitration.

An active primitive produces control updates until nearing completion, at which time the

arbitrator randomly transitions the activation to another primitive. Using this arbitrator,

motion was synthesized in an incremental fashion for several derived vocabularies. The

synthesis procedure came to completion to specified number of frames for horizontal

arm waving (3000 frames), jabbing (5000 frames), and “cabbage patch” (20000 frames)

vocabularies, shown in Figure 5.15. The synthesis process for these vocabularies were

manually stopped, but could continue for a much longer duration. However, the punching

vocabulary, for jab and and uppercut punches, the synthesis procedure was prone to
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Figure 5.14: Distance matrices (left column) and feature group clusters (right column
displayed color coded spheres) with transitionally weighted connections for activities iso-
lated from Input Motion 1: (a,b) the “cabbage patch” dance, (c,d) the “twist” dance, (e,f)
vertical waving of a single arm, (g,h) jab punching, and (i,j) combined jab and uppercut
punching.
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premature termination. The issues regarding premature conclusions of motion synthesis

are discussed in Section 5.3.5.2.

Selected motions synthesized from our input motions was actuated by a dynamical

humanoid simulation, Adonis [91]. Adonis is a 20 DOF humanoid torso containing joints

for the waist, neck, shoulders, elbows, and wrists. Applicable DOF from the synthesized

motion were used to drive Adonis by setting moving desired postures for low-level PD-

servos. Synthesized motion were output as Biovision BVH files [82] and read into Adonis

for desired trajectories to actuate. The purpose of actuating Adonis is to demonstrate

a humanoid robot can be controlled by derived primitives, not to evaluate performance

of purposeful motion. In fact, the kinematic mismatch between Adonis and our input

motions produces awkward looking motion when actuated by Adonis.

5.2.5 Synthesized Motion Feedback

Conceptually, motion synthesized in the previous section should be structurally similar to

an original input motion. Consequently, a behavior vocabulary derived from synthesized

motion should be similar to the originally derived vocabulary. To evaluate the validity

of this feedback property, motion synthesized from the previous section can be used as

input motion into PDBV. As discussed in Section 5.3.5.2, however, motion synthesized

with simple, unstructured, and undirected high-level controllers may not hold to this

property. Instead, vocabularies from isolated activities, such as the jab punching, were

used to synthesize motion to test the feedback property.

In particular, we focus on the jab activity when evaluating the feedback property,

as this activity is one of the simplest. Figure 5.17 shows feature groups and cluster
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(a) (b)

(c) (d)

Figure 5.15: Postures sampled from motion synthesized by derived vocabularies. Global
position and orientation information was included for (a) the “cabbage patch”, (b) hor-
izontal arm waving, and (c) jab punching and not included for (d) combined jab and
uppercut punching.

assignments from using the synthesized jab motion as input into PDBV. As illustrated

in Figure 5.15, motion synthesized from the jab vocabulary is structurally similar to its

original input motion. However, this motion begins to diverge towards a “downward

punch”, partially due to the inclusion of global position and orientation information.

PDBV uncovers this motion as two main meta-level behaviors, one for the original jab

and one for the downward punch. Included with these behaviors was an additional meta-
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Figure 5.16: Snapshots from Adonis performing punching motion synthesized from a
behavior vocabulary.

level behavior consisting of “small” high frequency motions that were inappropriately

segmented.

5.2.6 Segmentation Variation

Because sequentially segmented ST-Isomap is used, PDBV is highly dependent on the

features extracted by a chosen segmentation mechanism. Behavior vocabularies for Input

Motions 1-3 were derived using manual, z-function, and kinematic centroid segmentation.

Primitive feature groups found for these vocabularies are shown in Figure 5.18. Although

none of these methods were without flaws, each of them yielded structurally indicative

feature groups based on the type of segmentation heuristic used.

From manual inspection of the segmentation and extracted feature groups, manual

and kinematic centroid consistently provided more plausible results than z-function seg-

mentation. This statement is illustrated for Input Motion 3. This input motion was

structured to consist of two main primitives, “reach out” and ”return”, with occasional

intervals of being idle in the zero posture. Using manual segmentation, PDBV cleanly

finds these two primitives exactly, with idle intervals divided into two primitives for “enter

idle” and “return to reaching”. The only segment that slightly varies from this struc-

ture is the beginning of the input motion. This segment is placed in proximity to the
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Figure 5.17: Results from using synthesized motion from the vocabulary derived for the
isolated jab activity, including: (a) the distance matrix produced by ST-Isomap, (b)
feature groups and transition weighted connections, and (c) cluster assignments at the
first and second levels.

124



−15000 −10000 −5000 0 5000

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

12000
modules: embedding 1, substructure 1, thresh 184.304035

Student Version of MATLAB

(a)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

x 104

−1.5

−1

−0.5

0

0.5

1

1.5

x 104 modules: embedding 1, substructure 1, thresh 256.210423

Student Version of MATLAB

(b)

−6000 −4000 −2000 0 2000 4000 6000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

modules: embedding 1, substructure 1, thresh 90.206348

Student Version of MATLAB

(c)

−2000 −1000 0 1000 2000 3000 4000 5000

−3000

−2000

−1000

0

1000

2000

modules: embedding 1, substructure 1, thresh 53.687033

Student Version of MATLAB

(d)

−4000 −3000 −2000 −1000 0 1000 2000 3000

−1000

0

1000

2000

3000

4000

modules: embedding 1, substructure 1, thresh 61.452364

Student Version of MATLAB

(e)

−2000 −1000 0 1000 2000 3000 4000

−2000

−1000

0

1000

2000

3000

modules: embedding 1, substructure 1, thresh 46.640420

Student Version of MATLAB

(f)

−1000 −500 0 500 1000

−1000

−800

−600

−400

−200

0

200

400

600

800

modules: embedding 1, substructure 1, thresh 14.267264

Student Version of MATLAB

(g)

−500 0 500 1000 1500 2000

−1000

−500

0

500

1000
modules: embedding 1, substructure 1, thresh 17.569318

Student Version of MATLAB

(h)

−1500 −1000 −500 0 500 1000 1500 2000 2500

−2000

−1500

−1000

−500

0

500

1000

modules: embedding 1, substructure 1, thresh 27.367642

Student Version of MATLAB

(i)

Figure 5.18: Initial spatio-temporal embeddings clustered into actions for Streams 1, 2,
and 3 (from top to bottom) clustered for actions. The rows of subplots are for manual,
kinematic centroid, and z-function segmentation (left to right).
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Num. Segments Mean St. Dev. Min. Max.
Input Motion 1 (Manual) 250 90.19 113.72 15 970

Input Motion 1 (Centroid) 226 99.30 127.93 17 1017
Input Motion 1 (Z-function) 62 329.85 539.02 6 2778

Input Motion 2 (Manual) 210 44.73 20.95 10 194
Input Motion 2 (Centroid) 148 62.05 23.95 20 153

Input Motion 2 (Z-function) 64 141.55 127.30 25 950
Input Motion 3 (Manual) 73 125.12 41.88 6 200

Input Motion 3 (Centroid) 64 142.45 40.44 7 261
Input Motion 3 (Z-function) 84 104.52 48.02 5 259

Table 5.2: Statistics about the segments produced by each segmentation method for each
input motion without global position and orientation. The statistics for each segmentation
specify the number of segments produced, mean segment length, standard deviation of
the segment lengths, minimum segment length, and maximum segment length.

Manual Centroid Z-Function
Input Motion 1 84 78 32
Input Motion 2 62 37 20
Input Motion 3 7 5 10

Table 5.3: Number of primitives derived for each input motion and each segmentation
procedure.

appropriate feature, but has no preceding common temporal neighbor to bring it into

greater proximity. PDBV with KCS estimated the structure of Input Motion 3 as two

reaching primitives and several spurious clusters. These spurious clusters are actually

segments of idle motion that should have been corresponded into proximity. In contrast

to the consistent output of manual and kinematic centroid segmentation, z-function did

not provide a consistent segmentation. For instance, it yielded 2 reaching primitives over

some intervals and 3 reaching primitives over other intervals. The resulting embedding

and feature groups are mainly indicative of 3-primitive punching motion that is erratically

spliced with spurious, but structurally relevant, 2-primitive reaching and idle segments.
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We attribute this problem to the inability to find an appropriate global threshold

value for the z-function due to local properties in the motion, as shown in Figure 5.19.

The z-function for Input Motion 3 has varying minimum and maximum extrema values

over different intervals of the motion. The variance in local maximum values across the

motion is due to greater movement speed for reaching higher than lower reaching motions.

The variance in minimum extrema is a combination of the subject stopping for too short

of a duration between reaches and the low pass filter deteriorating the stops to reduce

noise.
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Figure 5.19: Z-function values over Input Motion 3 shown by the blue line. Segment
placements are specified by red dots. The thick magenta line was used as the global
threshold.

5.3 Discussion

In our methodology for deriving behavior vocabularies, the quality of the resulting struc-

tures is heavily dependent on the preprocessing mechanism and the appropriateness of

the parameters used in spatio-temporal Isomap. The preprocessing of the input motion
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stream prepares the motion data for dimension reduction mostly through segmentation.

If the segmentation is not sufficient, the subsequent data are useless regardless of the

capability of dimension reduction for discovering spatio-temporal structure. Given that

the preprocessing is sufficient, the user parameters for spatio-temporal Isomap define the

type of structure we are looking for in the data. If the parameters are not reflective of

the spatio-temporal structure, the resulting action and behaviors will not provide a useful

substrate for perceptual-motor algorithms.

5.3.1 Consistency and Sensibility in Motion Preprocessing

In preprocessing an input motion, our aim is to provide an ordered set of motion seg-

ments amenable to discovering underlying structure in the motion. The heuristic used

for segmentation should provide a division of the motion that is both consistent and sen-

sible. Consistency, in this context, means similar intervals of motion yield similar motion

segments. By sensible, we mean that each segment is i) a significant expression motion

that can be intuitively labeled by a human user and ii) considered by a human user to

consist of an indivisible, atomic performance of some behavior. To illustrate our concept

of sensible segmentation, segments that are too short in duration may not express any

useful behavior. Together, a set of “short segments” may express an intuitive behavior,

but not individually, and would be similar to overfitting using motion textures [87]. Seg-

ments that are too long in duration may contain behaviors that are specific to a sequence

of sub-behaviors, which would provide of more modular description of the motion. “Long

segments” may be difficult to place into clusterable proximity because to their spatial

signatures may be distal and common temporal neighbors will be more sparse. Sensible
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segments are in the middle ground between short and long segments, large enough to

describe meaningful motion but small enough to provide modularization.

The obvious means for ensuring a segmentation with both of these properties is to

use human judgment. An automatic method, however, requires much less time and ef-

fort and yields a potentially reasonable segmentation. The z-function method provides

a reasonable segmentation if the stream contains discrete movements, movements from

one configuration to another described by peaked velocity profiles. If we believe these

configurations are keyframes underlying the motion, we would expect to see peaks and

valleys in the z-function indicating transitions between and achievement of the keyframe

configurations. The differences in transition and achievement intervals are distinguished

by thresholding. In practice, however, segmentation is very sensitive to the setting of

a global threshold and produces several intervals of erratic segments. Low thresholds

produce many spurious segments. High thresholds produce several merged segments.

Z-function segmentation might work well if an optimal threshold can be found, locally

estimated, or the actual segment peaks can be further accentuated. Furthermore, if

movement in the DOF does not stop when a keyframe is achieved or there are no specific

keyframes to signal accomplishment, the z-function cannot detect segment boundaries.

Thus, z-function segmentation provides a somewhat consistent, but not sensible segmen-

tation for motion that is not clearly point-to-point movement.

Kinematic Centroid Segmentation proved to be a much more sensible method for our

test data with a small cost in consistency. Motion segmentation in this manner has three

problems. The first is that motions in each limb must make the centroid move past a

threshold distance from its previous position at the current segment boundary. Thus, the

129



motion must be large enough to be detected. All of our test motion can be segmented

sensibly with this assumption, except for the synthesized jab motion. Second, the seg-

mentation is performed in a greedy fashion, the frames preceding the current segment

boundary are considered optimally segmented. This assumption causes problems if seg-

ment boundary is placed badly. Such an errant boundary could propagate through the

segmentation and yield inconsistencies. In practice, we found that bad placements were

typically localized to intervals when a transition between scripted high-level activities oc-

curs. Thus, a behavior may begin with an awkward segment, but the rest of the behavior

is consistent. The third problem occurs when two reasonable segments are detected as a

single segment. This situation happens when one segment moves the centroid some dis-

tance away from the previous placement and the second segment continues the increase

in displacement away from the previous placement. An example of this circumstance is

the motion of an arm beginning at the side of the performer, brought to a fighting pos-

ture, and smoothly extended to a punch. While undesirable, the same ambiguity could

result from human judgment. Is the motion a single punch segment or two segments for

a “ready action” followed by a punch? Even though this type of motion is infrequent in

the data, it is handled in a sensible, but not perfect, manner.

The current implementation of kinematic centroid segmentation handles intervals of

idle motion less elegantly than the z-function, but could be modified to include a final pass

to detect idle motion. The two pass approach, which segmented the right arm followed

by the left arm, worked well. However, it is not clear how well such a method would scale

to full body motion, in which additional levels of substructure coordination occur in the
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kinematic hierarchy. There also exists the possibility for combining the two automatic

methods by using the z-function as one pass in the segmentation process.

In order to apply the segments to our embedding procedure, we must normalize them

to an equal number of samples. This normalization removes the timing elements of the

segments. While the normalization produces no side effects on the embedding, the feature

groups that result from the embedding do not have the same timing as the segments from

the motion stream. Motion trajectories interpolated from a primitives are of the same

temporal length. If we wanted to somehow retain segment timing, a scaling variable

could be added to the segment matrix before embedding. However, we may prefer to

leave timing as a step length parameter for a primitive flowfield.

5.3.2 Parameter Tuning for ST-Isomap and Exemplar Grouping

Parameter tuning is a significant issue for ST-Isomap and clustering in grouping mo-

tion segments with a common spatio-temporal structuring. ST-Isomap parameters are

particularly important because they define the local neighborhood of each point. Local

spatial neighborhoods are the foundation for determining common temporal neighbors,

and consequently for performing distal correspondences. Distal correspondence is the

primary criterion for whether two segments will be in clusterable proximity in the em-

bedding space. Ideally, we would prefer for the local neighborhood of each point to

consist only of exemplars with the same underlying behavior. Modularization in this

case would be simpler because exemplars of another behavior will never be CTNs with

this point. Consequently, merging artifacts would not occur in feature groups because

inter-behavior data pairs would never be included in the same CTN component. Instead,
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local neighborhoods are selected by k nearest neighbors, potentially producing a motley

mixture of exemplars from different behaviors in a given neighborhood. The potential for

such nonrepresentative local spatial neighborhoods is at the root of both merging artifacts,

but also plays a role in splitting artifacts. Splitting artifacts occur when exemplars of a

single underlying behavior are placed into multiple CTN components. Splitting artifacts

are structurally due to underrepresentation and sparseness of exemplars for a particular

underlying behavior. More specifically, splitting occurs when a data point has no other

exemplars of the same behavior in proximity or there is a large gap between subsets of

exemplars of the same behavior. As stated in Chapter 3, splitting is typically the result

of exemplar sparsity, exemplars of an underlying behavior are underrepresented and/or

not distributed across a behavior’s span of variations. However, local neighborhoods that

are too small in volume or scope magnify the problems of splitting.

The construction of local neighborhoods is determined by the criteria for selecting

nearest neighbors and the distance metric used for spatial Isomap. In order to improve

the quality of the local neighborhood, one or both of these mechanisms must be im-

proved. While such an undertaking may prove difficult in general, domain knowledge

may be applied for particular types of motion data to improve the distance metric for the

neighborhood selection mechanism. In the absence of domain knowledge, we currently

use a estimate of local neighborhood cardinality or volume that is applied globally based

on Euclidean distance. Globally application of a local criteria has proved useful for us,

but presents problems when different subsets of the data warrant different local param-

eters. For the distance metric, a data-driven approach to DOF weighting, such as [137],

can be used to scale a metric to produce more appropriate distance. Our current feature
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distance metric is the straightforward Euclidean distance for all the DOF over all the

samples in a segment. Using this metric, two movements following the same trajectory

in different directions may be relatively equal to distance the of one of those movements

and a slightly offset version of itself. Intuitively, motion following the same direction is

weighted more heavily together than motion opposite directions.

5.3.3 Splitting and Merging of Feature Groups

As alluded to in the previous section, splitting and merging artifacts are a problem for

appropriately modularizing motion. Ideally, a feature group should group exactly those

motions that are exemplars of an underlying behavior. However, this ideal result may not

occur as a consequence of nonrepresentative local neighborhoods and exemplar sparseness.

These problems occur due to exemplar merging and exemplar splitting. Exemplar merging

is the inclusion of instances of different underlying behavior into the same derived action.

Exemplar spitting is separation of instances of the same underlying behavior into different

derived behaviors. Local neighborhoods that are too inclusive could potentially allow

instances of different behaviors to have common temporal neighbors. Consequently, these

instances will be included in the same feature group. This resulting action will not be

representative of a single underlying behavior, but rather an unstructured amalgamation

of multiple behaviors. This situation prevents a clear modularization of input data. In

practice, behavior merging is likely to occur in the presence of spurious motion segments,

typically resulting from transitioning between higher-level behaviors or an idle posture.

These segments can usually be disregarded after manual inspection.
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Behavior splitting occurs in two forms: split instances and split behavior contexts.

In the case of split instances, the instances of an underlying behavior require multiple

CTN components. More simply, there exists a pair of instances that are not connected

to each other through the neighborhoods of the other instances in the CTN component.

As stated previously, the cause of this splitting is exemplar sparseness. For instance,

the performance of a high waving motion and low waving motion will be derived as two

separate behaviors if there are not other waving exemplars in middle to connect these

instances. Behavior splitting alone is not overly problematic because if not grossly over-

split, the modularization is still clear. Splitting in conjunction with merging, however,

is a problem because the effects of merging become magnified and the modularization is

weakened.

The problem of split behavior contexts occurs when instances of the same behavior

appear in the temporal context of two different behaviors. For example, exemplars of

behavior C may appear in temporal contexts such as A → C → D, A → C → E, or

B → C → F . In this situation, PDBV will appropriately separate exemplars into feature

groups based on these different temporal contexts. This separation is a direct application

of the definition of common temporal neighbors. In order to form one cluster for the

exemplars of C, A and B would become a merged behavior, as would D, E, and F .

These context-dependent behaviors of C may be related through local neighborhoods,

but will not have common temporal neighbors. Context-dependent feature groups provide

more information that may or may not be desired. If the modularization is required to

be concise as well as clear, these extra modules will be undesirable. However, these extra
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action modules provide information as to which actions are more appropriate in certain

contexts.

Behavior splitting and merging is partly an artifact of local neighborhood construc-

tion. Better construction of these neighborhoods can partially address these artifacts.

Clustering of exemplars in embedding spaces, however, can be just as responsible for

producing artifacts. ST-Isomap may be able to appropriately bring exemplars of an un-

derlying behavior into clusterable proximity, but this does not ensure that such clusters

are appropriately found. We have proposed the use of sweep-and-prune clustering as an

alternative for separable clusters that does not require initialization or a priori specifi-

cation of the number of clusters. Instead, embedded data are partitioned based on a

threshold distance for separating points projected onto an axis. Setting this threshold

distance, however, can be problematic. We currently set the threshold distance as frac-

tion csap of the length of the embedded data bounding box diagonal. Using csap = 0.01

for most of our input motions worked well for extracting the greater majority of fea-

ture groups. Minor artifacts occurred for input motions containing more structure, such

as Input Motion 1. For these input motions, the embedding bounding box was more

densely packed with clusters and, thus, was more susceptible to making clustering errors.

Similar to problems with z-function segmentation and local neighborhood construction,

these errors are partially due to locally applying a global decision setting. Feature group

clustering errors at level propagate to higher-level feature groups. This propagation is

due to local neighborhoods at one level being defined by the feature groups at the pre-

vious level. We partially attribute the inability to guarantee meta-level convergence to

clustering errors.
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Between high-level activities were an additional artifact observed in the derived feature

groups, spurious transitions. These transitions were not intrinsic to the derived behavior

structure. In some cases, these transitions are actually intrinsic to the behavior and

a result of behavior splitting. In other cases, they were simply performance transitions

between activities in the input motion. These transitions are considered spurious because

they are not necessary to the behavior, but are possibly useful for transitioning between

behaviors. The problem of spurious transitions suggests the use of HMMs for sequencing

primitives as states. While such an idea is useful, it is outside the scope of the dissertation.

One possibility for avoiding splitting and merging artifacts is to post-process the

derived feature groups. The post-process provides a better modularization and removes

spurious segments by splitting and/or merging behaviors. The merging post-process could

analyze a pair of behaviors and decide whether to merge them based on some similarity

criteria. The splitting post-process could analyze a behavior for instances that do not

belong based on criteria specific to the module or a more specific distance measure. Our

inclination is that procedures for eager evaluation and pre/post-condition determination

could aid in post-processing.

The issues regarding splitting and merging are rather subjective. Our vocabulary

derivation methodology does not seek to provide a definitive derivation, but rather a

reasonable one. Rabiner made a similar statement in the context of HMMs [111]. We

should only expect our derivation to be as good as the appropriateness of our parameters,

distance metrics, clustering, etc. Subjective judgment can always be incorporated through

manual refinement, post-processing, and domain knowledge.
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5.3.4 Temporal Neighbors vs. Phase Space

We developed sequentially segmented ST-Isomap with two approaches to incorporating

the temporal characteristics of an input motion [71]. One method is to adjust pairwise

distances between spatial and temporal neighbors, as described in Chapter 3. Another

approach is to work with the data in phase space by concatenating each data point with

velocity information. In the phase space view, we assume that spatial Isomap can be

performed for spatio-temporal structure by concatenating velocity information to each

data point.

This information alone will not provide a clear modularization because it is suited for

proximal disambiguation and not distal correspondence. Even with a general weighted

distance in the form of xT Wx, phase space pairwise distances would be unable to perform

distal correspondences. Additionally, the mechanisms used for phase space distances

are significantly different than in adjusting temporal neighbors. Most significantly, the

phase space distance is a continuous measure as opposed to the step function imposed by

common temporal neighbors.

For modularization purposes, the step function of common temporal neighbors is

preferred to continuous phase space distances. This preference stems from the desire to

provide a clear distinction as to whether two points will be in the clusterable proximity

or not. However, considering problems in local neighborhood construction, phase space

may serve as an appropriate representation of the input data for finding constructing

local neighborhoods and estimating CTN components.
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5.3.5 Primitive Behavior Generalization

Primitive feature groups, providing the lowest level of modularization, are generalized

via eager evaluation into primitive behaviors. Interpolation of a dense sampling with a

primitive is performed for generalization. Shepards interpolation was used in our cur-

rent implementation, providing a relatively simple and intuitive means for estimating

unobserved motions of a primitive. However, interpolation in this manner is far from

perfect and yields several undesirable artifacts. First, Shepards interpolation is essen-

tially radial-basis interpolation and is not suited for precisely accurate reconstruction

mappings. Consequently, sampling of an exemplar space may still result in significant

gaps in a primitive manifold. These gaps are small, inaccessible areas of the primitive

manifold that are unaccounted for but representative of significant areas of motion. These

pockets are especially problematic near the boundary of the support volume of the ex-

emplar space.

One good property of Shepards interpolation is that it can work for dense scattered

data sets. If we instead assume our feature group to be a sparse set of examples, we

could apply an exemplar based interpolation method, such as in [116] and [128]. These

methods has been applied to articulated motion by fitting hyperplanes and radial-basis

functions to ensure that the interpolation reconstructs each example accurately.

A potential contributor to the problems of Shepards interpolation is using exemplar

spaces produced directly by ST-Isomap. Once feature groups have been formed, manually

setting up an “adverb” space as in [116] may not require large amounts of human effort.

For an automatic alternative, we could perform another unsupervised learning mechanism
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to the exemplar space, to reembed in a possibly more meaningful space, or perform

supervised learning to estimate the mapping between joint angle and exemplar spaces.

Other alternatives are probably available as well.

Meta-level behaviors in our current implementation are not parameterized, but the

primitive components of each meta-level behavior are. The meta-level behavior specifies

how primitives can be performed in sequence, similar to the verb graph of [116]. However,

our behaviors are meta-level structures that cannot be interpolated. Instead, behaviors

index into interpolable and predictive primitives. We could create this interpolation space

to truly make the behavior a primitive. Such an interpolation space could be in a similar

form to a style machine [17].

5.3.5.1 Support Volume Coverage for Primitive Flowfields

In the presentation of PDBV, we use and construct primitive forward models in a very

basic manner, as flowfields. We have focused on such flowfields as a means for combin-

ing the flexibility of exemplar-based behaviors with the ability to express the nonlinear

dynamics of kinematic behaviors. However, there are several unaddressed issues in using

flowfields for primitive forward models. One such issue relates to volume of support for

each primitive forward model in joint angle space. We currently consider that each for-

ward model provides valid predictions only with the volume spanned a flowfield. Primitive

forward models produce no prediction when outside the span of its flowfield. Addition-

ally, primitive forward models currently incorporate no explicit information about skill

level objectives (e.g., “reach to this point”), preconditions, or postconditions. A primitive

forward model can provide information about the temporal progression of a location in
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joint angle space. For example, a given kinematic configuration indicates 2/3 temporal

progress through a primitive when located near elements of the flowfield representative

of 2/3 completion. Precondition and postcondition volumes could be built around points

at the beginning and end of a flowfield’s temporal progression.

These issues for primitive support volumes raise two questions: i) how much space

should the support volume of a primitive forward model cover and ii) how much precon-

dition and postcondition information is required for task-level controllers? We do not

have exact answers to these questions, but we will provide some alternatives for support

volume coverage. We could restate the first question to ask: should a primitive forward

model span the entire joint angle space? The answer to this question depends on the

approach to covering the joint angle space. Covering the joint angle space with flowfield

nodes is infeasible and subject to the curse of dimensionality. However, an exploration

procedure that retains a sparse number of exemplars while exploring new areas of the

joint angle space may be feasible. Another more straightforward approach is to add an

attraction component that draws kinematic configurations towards the support volume.

Our inclination is to avoid “attraction into validity” because motion produced during the

attraction would not necessarily be representative of the underlying behavior.

5.3.5.2 Motion Synthesis

One application where the issues of support volume coverage become more clear is motion

synthesis. Our basic motion synthesis mechanism, described in Chapter 6, was limited

in its ability to produce motion due to these issues. One problem we encountered were

dead-ends that abruptly terminated the synthesis procedure. A dead-end is encountered
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when the current kinematic configuration is not within the support volume of the currently

active primitive without completing the temporal progression of this primitive. Deadends

illustrate the problems of our current synthesis mechanism use of the primitive support

volumes. First, dead-ends would never be encountered if the primitives supported all of

the joint angle space. Second, the high-level arbitrator cannot simply switch activation

to another primitive without knowledge about that primitive’s preconditions. We briefly

experimented with allowing the arbitrator to switch activation during the progression of a

primitive, which resulted in erratic movement from constant switching between primitives.

5.3.6 Kinematic Substructures

As stated previously, kinematic substructures are limbs that could be acting in coordina-

tion or independently. Thus, it may make sense to treat these structures independently,

using separate embeddings and feature groups for each substructure to help accentuate

their independence. The result would be multiple behavior vocabularies, each specific

to a particular substructure with limb level primitives. However, these behavior vocabu-

laries would then require coordination across limbs through some mechanism, similar to

Bregler’s movemes [18].

5.3.7 When is PCA or Spatial Isomap Appropriate For Motion Data?

We do not propose ST-Isomap as a replacement for other dimension reduction techniques

when the input data are spatio-temporal or kinematic motion. Every dimension reduction

method has its strengths and weaknesses for analyzing and visualizing motion. We have

emphasized the limitation of PCA to linear PCs throughout this dissertation. Unlike spa-
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tial and spatio-temporal Isomap, however, PCA is not as sensitive to the size and density

of the input data set and does not require parameter tuning. PCA can reveal cluster-

able structure for several types of data sets. For situations where the linear structure of

PCA is too limiting, spatial Isomap provides a flexible model-free means for extracting

structure. For both PCA and spatial Isomap, however, the emphasis is on estimating

embeddings that provide greater parsimony, not uncovering clusters. Sequentially seg-

mented ST-Isomap is geared for modularizing input data into clusters. This focus is what

drives the derivation of behaviors by PDBV. Given this difference, we find that methods

like PCA and spatial Isomap are more suited for visualizing than modularizing motion

data.

5.4 Summary

We have presented an evaluation of our methodology for deriving behavior vocabularies

for humanoid agents. Empirical evaluation was performed through an implementation

of our methodology. This implementation was applied to multiple multi-activity input

motions. Results from this empirical evaluation were discussed in detail.
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Figure 5.20: Results from interpolating selected feature groups. Each plot shows tra-
jectories for right and left hands in Cartesian coordinates. Trajectories displayed with
crosses are instances from the feature groups, trajectories displayed with dots were gen-
erated through interpolation. The start of each trajectory is marked with a large circle.
(Top Left) Horizontal arm waving, (Top Right) an feature group from “The Monkey”
dance, (Bottom Left) follow through from a punch, (Bottom Right) a merged feature
group containing exemplars for vertical and horizontal arm waving.
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Chapter 6

Applying Behavior Vocabularies to Movement Imitation

In this chapter, we describe the use of a derived behavior vocabulary for imitating pre-

viously unseen motion. This approach to imitation uses a vocabulary to classify and

synthesize a new motion performance.

A behavior vocabulary derived using PDBV provides no explicit means for humanoid

agent control. Instead, a behavior vocabulary is a modular and generalized representa-

tion of the input motion. Implicit in this representation are the structurally significant

components of the input motion, which are useful for explicit applications.

One such application of behavior vocabularies is the synthesis of motion. Rose et al.

[116] have demonstrated the use of on-line motion synthesis using Verbs and Adverbs

vocabularies for driving a kinematically animated humanoid agent. This approach to

motion synthesis produces a single motion trajectories via lazy evaluation with explicit

“frame-to-frame” timing. Consequently, resulting motion has limited applicability for

agents subject to physical dynamics due to the uncertainty of the dynamics. This limi-

tation is due to two factors: i) a desired posture given to an agent with dynamics is not

guaranteed to be achievable in a single time-step from its current state and ii) continually
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indexing a behavior for updated desireds for deviations due to dynamics would require

searching, hence defeating the purpose of lazy evaluation.

Ijspeert et al. [63] have proposed a motion synthesis (or trajectory formation) tech-

nique that represents a behavior such that an agent’s desireds are robust to environmen-

tal perturbations. A primitive behavior in this context is represented as an attractor

encoding a joint space trajectory as a nonlinear dynamical system. Desired motion is

through a weighted combination of the primitives. This representation provides flexibility

and robustness because desireds are expressed without an explicit temporal dependency.

However, this representation lacks the modularity of Verbs and Adverbs, which allow an

agent’s capabilities to be divided into individual units. Behaviors produced by PDBV

aim to incorporate the modularity of Verbs and Adverbs with the flexibility of nonlinear

dynamical systems. As discussed in Chapter 4, behaviors resulting from PDBV are clus-

tered for modularity and sampled into nonlinear dynamical systems. Thus, each behavior

expresses its own nonlinear dynamics with respect to its underlying structure.

Modularity and flexibility are particularly important when considering biological mech-

anisms of motor primitives [11] and mirror neurons [115]. Although PDBV behaviors are

not models of biology, the conceptual purpose of functional transparency remains the

same: The use of the same mechanisms for representing capabilities regardless of the spe-

cific function being performed. Functions in this context include mechanisms for control,

perception, or internal planning.

For PDBV primitives, functional transparency is achieved by treating each behavior

as a forward model predictor, similar to [37]. A primitive from this perspective speci-

fies a predicted future state of an agent based on its current state and the dynamics of
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the primitive. Primitive prediction models can be transparently used for motion synthe-

sis, treating predictions as desireds, or for motion classification, using predictions within

match operators, without modification. Given these abilities for synthesis and classi-

fication, we endow an agent with the ability to imitate. We describe and discuss the

application of predictors for synthesis, classification, and imitation in the remainder of

this chapter.

6.1 Motion Synthesis from a Vocabulary

Our approach to motion synthesis is top-down sequential indexing into primitive behav-

iors using a user-defined control mechanism. This approach requires two components:

primitive behaviors for producing motion desireds and a high-level control mechanism

for arbitrating control among primitives. At a given instant, the high-level controller

activates a single primitive, giving this primitive the responsibility for setting desireds.

The activated primitive then performs prediction to produce desireds for the agent until

deactivated. This arbitration-prediction cycle is continually repeated until a user-defined

stopping condition is reached or a “dead-end” is encountered by the high-level controller.

Similar to methods for video texturing [124], dead ends are encountered when no primitive

can be viably activated.

The high-level controller is not necessarily limited to using primitive arbitration. The

controller could perform fusion for primitive superposition by activating multiple primi-

tives and summing their gradients for resetting the desireds. However, primitive super-

position is outside the scope of this dissertation.
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In its most basic form, this approach to motion synthesis is realized as concatenation

motion synthesis, as we describe in [72]. In this form, the high-level controller is a user

selected meta-level behavior, and primitive behaviors are eagerly evaluated, but are not

used as dynamical systems. The high-level controller activates primitives based on derived

initial state and transition probabilities. An initially active primitive is selected based

on initial state probabilities. This primitive selects a variation produced from eager

evaluation to initialize the synthesized motion. The current state becomes the ending

posture of the synthesized motion. The high-level control mechanism then determines

the next active primitive from transition probabilities and transition validity. The next

active primitive selects an applicable motion trajectory variation to append from the

current state. Transition validity ensures that the initial posture of the trajectory is

within a certain distance of the current state, such that no large instantaneous “hops”

occur in the synthesized motion.

Synthesis through concatenation suffers from several shortcomings. Similar to verb

behaviors, arbitration decisions occur so infrequently that the synthesized motion is in-

flexible to perturbations. Furthermore, points of concatenation typically appear visually

as invalid transitions. Transitions between verb behaviors are managed by an explicit

transition smoothing mechanism, which may not be viable for dynamical agents. Eager

evaluation produces a dense enough sampling of primitives such that this transition mech-

anism should not be required. However, concatenation mechanisms are typically faced

with tradeoffs for adjusting the transition validity threshold. These tradeoffs exchange

visually invalid transitions for increased likelihood for encountering dead-ends.
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Primitive
Behavior
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High-level
Arbitrator

Primitive selection

Reset current configuration at end of trajectory

Figure 6.1: Flowchart for concatenated motion synthesis from behavior vocabulary.

To avoid the problems of concatenation, we use forward model motion synthesis. Here,

each eagerly evaluated primitive is treated as a nonlinear dynamical system, shortening

the time-scale of the arbitration-prediction cycle. At a given instant, the high-level con-

troller activates a single primitive, giving this primitive the responsibility for setting

desireds only for the next time-step, not until deactivation. Joint angle desireds are then

reset as the predicted state returned from predictor of the currently active primitive. This

arbitration-prediction cycle occurs at every time-step, unless specified by a user. Desireds

produced from the prediction do not require achievement by the agents, but are requests

that guide the motion along the behavior from its current state. Because desireds are

updated in each time-step, invalid transitions do not occur and so smooth motion re-
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sults from the synthesis. A newly activated primitive simply updates the desireds and

time-steps occur from the current state. Forward model motion synthesis is susceptible

to synthesizing motion with high jerk when transitions produce a new gradient that is

directionally opposite to the previous gradient and when instability occurs due to large

step lengths.

Behavior Vocabulary

Primitive
Forward Model

Primitive
Forward Model

Primitive
Forward Model

. . .

Current
configuration

Set desireds based
on prediction

High-level
Arbitrator

Primitive selection

Reset current configuration at every time-step

Figure 6.2: Flowchart for forward model motion synthesis from behavior vocabulary.

In addition to using forward models, high-level controllers can be constructed that ex-

press more complex behavior than meta-level behaviors. A variety of high-level controllers

can be created to arbitrate or fuse for complex or situationally appropriate control. One

possible avenue for research is to combine PDBV behaviors with the approach of Nicolescu

and Matarić [105] for building task-level controllers learned from from examples.
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6.2 Classification of Motion into a Vocabulary

Through classification, we encode previously unobserved subject movement into a mod-

ular description with respect to a derived behavior vocabulary. Classification could be

performed top-down, starting with meta-level behaviors, or bottom-up, starting with

primitive predictors. However, we present bottom-up classification procedures because

they are conceptually complimentary with our top-down motion synthesis procedure. Fur-

thermore, a high-level description of an unobserved input motion may not be represented

by any meta-level behavior in a vocabulary. The methods we present for classification

are not the only means for classification. A number of other classification methods, such

as the one proposed by Drumwright and Matarić [39], could be used towards encoding

unobserved motion into a vocabulary.

We discuss two methods for classification. The first method, trajectory encoding, pro-

duces a joint space trajectory imitating the input motion. The second method, controller

encoding, encodes an input motion as a high-level controller that performs imitation by

activating primitive behaviors. At their core, classification for both trajectory and con-

troller encoding uses the same fundamental procedure and predictive primitive models.

However, trajectory encoding performs imitation in a single pass to produce a frame-by-

frame trajectory, whereas controller encoding separates the procedures of classification

and execution by encoding demonstrated motion as a more general controller. We discuss

both trajectory and controller encoding in this section, although only trajectory encoding

will be demonstrated for this dissertation.
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6.2.1 Imitation through Trajectory Encoding

A trajectory encoding classifier works by continually comparing predictions from each

primitive with observed future states from the input movement. The current state in this

context is the posture at the instance of time after the last classification decision was

made. Each primitive produces a predicted trajectory from the current state over a user

specified duration horizon. Classification decisions are made using a matching operator

at intervals defined by the user. The matching operator provides a scalar value indicating

the similarity between a primitive’s prediction and the observed future state of the input

movement. Motion within the decision interval is classified into the primitive with the

greatest similarity value produced from the matching operator. These classifications are

“hard” (winner-take-all) and do not account for motion that is not a good match to any

primitive. The encoded trajectory is formed by concatenating the predicted trajectory of

the classified primitive with the previously encoded motion.

A variety of match operators can be used for classification in this manner. The most

straightforward is the Euclidean distance between observed and predicted postures in

joint angle space. Yet, directly working in joint angle space does not consider percep-

tually relevant weightings of individual joints. For example, differences about the wrist

and shoulder are equally weighted in joint angle space, but have different perceptual

or affective weights. Wang and Bodenheimer [137] have recently proposed methods for

DOF weighting. The match operator we use is Euclidean distance between Cartesian

end-effector features (e.g., hands). Endeffector features abstract away DOF weighting

problems but also introduce (managable) ambiguity.
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Figure 6.3: Flowchart for imitation through trajectory encoding using a behavior vocab-
ulary.
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Figure 6.4: An input motion used for the testing of trajectory encoding, the “Standing
Yo-Yo” motion taken from the Mega Mocap V2 collection [65].

6.2.2 Imitation through Controller Encoding

For controller encoding, classification serves to encode an input motion into a behavior

vocabulary for constructing a high-level controller. Imitation, in this context, is per-

formed by i) constructing a high-level controller representative of the input motion and

ii) synthesizing new motion using this high-level controller to perform an imitation. In-

tegral to this approach to imitation is that the same primitive predictors are used for

both classification and synthesis procedures, grounding the process of imitation in the

primitives.

Controller encoded motion is represented as a string of identifiers, indicating a se-

quencing of primitive behaviors. This string representation contains the basic structure

for motion encoding. Executing a controller using the encoding string alone is not aimed

at accurate reproduction of an input motion. Other movement-specific information, such
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.5: Results of trajectory encoding of the “Standing Yo-Yo” motion. This motion
was encoded into vocabularies for (b-d) vertical waving, (e-g) the “cabbage patch”, (h-j)
punching, (k-m) the “twist”. The columns of encoding show a kinematic visualization
and two views of the end-effectors classification. For the end-effector classification, the
observed trajectory is shown in green (light for right hand, dark for left hand) and the
encoded trajectory is color coded based on the classified primitive over a decision interval.
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as intra- and inter- primitive timing and specific primitive parameters are needed to aug-

ment elements of the string encoding to provide more precise reconstructions. In other

words, encoding additional information changes the properties of the imitation motion

from structurally general to movement specific.

Similar to trajectory encoding, a controller encoding classifier also works by continu-

ally comparing predictions from each primitive with observed future states from the input

movement. The resulting encoding string is produced by merging equivalent classifica-

tion decisions that are temporally adjacent. This merging assumes all transitions occur

between two different primitives and ignores structural self-transitions between the same

primitive.

Classification for controller encoding uses the same decision mechanism as in tra-

jectory encoding. However, controller encoding does not simply concatenate predicted

trajectories. Instead, classification results are used to encode the input motion as a string

describing its execution. The encoding string is produced by merging equivalent classi-

fication decisions that are temporally adjacent. This merging assumes all transitions

occur between two different primitives and ignores structural transitions between a single

primitive.

For imitation, motion is synthesized from a high-level controller built from the string

encoding the input motion. The imitation high-level controller is built to execute primi-

tives specified by the sequence of the encoding string. We currently consider a controller

as a limited instance of our imitation approach. Such imitation controllers are constrained

to imitate the basic structure of input motion specified by the encoding string. Conse-

quently, the high-level controller is specified to allow activated primitives to completely
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Figure 6.6: Flowchart for imitation through controller encoding using a behavior vocab-
ulary.
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execute (i.e., reach the end of its flowfield) before deactivation. Given an initial posture,

the high-level controller sequentially executes each primitive in the string and stops after

executing the final element.

Also not within the scope of this dissertation, high-level controllers can be constructed

to include more functionality for more faithful imitation or more specific variations on

the structure of the input motion. The structure encoded via classification is the basic

template for the input motion. Given appropriate parameters, a specific instance of this

template can produce an approximate reconstruction of input motion, whose faithfulness

is bounded by the primitives in the vocabulary. However, other parameters can be used

to adjust or create motions that are structurally similar variations of the input motion.

Modifying motion in this manner is similar to work in motion editing, such as [109], for

computer animation. The flexibility of a high-level controller to vary from the basic struc-

ture of an input motion is dependent on information used to augment the controller. This

information includes timing parameters for inter-primitive transitioning, indexing param-

eters for accessing and extrapolating primitives, and applicability information describing

pre- and post-conditions for primitives.

6.3 Summary

In this chapter, we illustrated the potential for applying automatically derived behavior

vocabularies as basic capability modules for imitation by a humanoid agent. By using

behaviors as predictors, primitive capabilities can provide a transparent substrate for a

variety of other agent functions.
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Chapter 7

Conclusion

In this dissertation, we have presented Performance-Derived Behavior Vocabularies (PDBV)

as a methodology for automatically deriving a repertoire of skill capabilities for au-

tonomous humanoid agents. Our methodology derives these skills from motion data

of human performance, leveraging the structure underlying this motion in a data-driven

manner. Behaviors underlying human motion data are uncovered through unsupervised

learning, partially through our extension of Isomap for spatio-temporal data dependen-

cies. Behaviors derived through unsupervised learning are realized as a modular set of

exemplar-based behaviors that encode the nonlinear dynamics in the joint angle space of

the agent. Modular behavior vocabularies derived by our methodology serve as a sub-

strate to endow a humanoid agent with autonomy for a variety of functions, such as those

used by constructing perceptual-motor algorithms.

Our contributions arising from this dissertation are summarized as follows:

1. automated grouping of free-space motion data into exemplars of underlying behav-

iors,
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2. extension of geodesic-based multidimensional scaling for clustering behavior exem-

plars with spatio-temporal structure,

3. expression of exemplar-based behaviors as flowfields encapsulating nonlinear dy-

namics of an underlying skill, and

4. using the dynamics of skill behaviors for motion synthesis, classification, and imi-

tation.

7.1 Avenues for Further Research

The PDBV methodology we have presented provides an automated data-driven means for

modularizing motion into behaviors. For this dissertation, however, we have limited the

scope of PDBV to free-space motion. This limitation has allowed us to disregard issues

of i) incorporating sensory information and ii) handling potential physical interactions

between the agent and its environment.

In order for a humanoid agent to be truly autonomous, it must be able to rely only

on local sensing provided by its embodiment. In this dissertation, we have assumed that

the agent is provided with a complete kinematic configurations from sensing. However,

local sensing on a humanoid agent may provide more, less, or different information than

described by kinematic configurations. This potential issue can be addressed through

sensory-motor coordination, where sensory information and motor actuation are linked in

some fashion. Sensory-motor questions for PDBV include: can sensory-motor primitives,

similar to those described by Matarić [93], be automatically derived and what types of

sensory data are required to derive these primitives in a data-driven fashion?
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In addition to using local sensing, an autonomous humanoid agent is likely to be sub-

ject to external interactions with objects and structures in its environment. Primitive

forward models derived by PDBV can provide control commands when the agent is subject

to external interactions. However, these forward models encode free-space behavior and,

thus, are likely to perform poorly in situations that include object interactions (e.g., tool

manipulation, ball throwing), inter-agent interactions (e.g., competitive athletics, collab-

orative dancing), and static and dynamic balancing interactions (e.g., standing, walking,

running, jumping). Similar to dealing with the problems of local sensing, dynamic inter-

action questions for PDBV include: can primitive behaviors be derived automatically and

what information must be incorporated into the input data and/or derivation process?
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Appendix A

Collecting Natural Human Performance

A significant problem encountered during the course of this dissertation is the substantial
lack of available and usable motion data. Motion data serve as input into PDBV and, thus,
is a critical component for endowing a humanoid agent with basic capabilities. However,
such data have not been readily available for general use. In addition, motion from
human performance is typically limited to scripted behaviors and structured situations
and is not typical of naturally occurring behaviors. In this chapter, we present two
approaches we developed aimed at collecting motion from naturally occurring human
performance. These approaches strive for uninstrumented subjects that are model-free,
making no assumptions about the structure of the subject.

The author is the primary developer of these approaches to motion capture; Chi-Wei
Chu was the primary implementer and secondary developer.

A.1 Kinematic Model and Motion Capture

The ability to collect human motion data are invaluable for applications such as computer
animation, activity recognition, human-computer interfaces, and humanoid robot control
and teleoperation. This fact is evidenced by the increasing amount of research geared
towards developing and utilizing motion capture technologies. Typical motion capture
mechanisms require that the subject be instrumented with several beacons or markers.
The motion of the subject is then reconciled from the sensed positions and/or orientations
of the markers. However, such systems can:

1. be prohibitively expensive;

2. require subjects to be instrumented with cumbersome markers;

3. greatly restrict the volume of capture;

4. have difficulty assigning consistent labels to occluding markers;

5. have difficulty converting marker data into kinematic motion.

An emerging area of research suited to address these problems involves uninstru-
mented capture of motion, or markerless motion capture. For markerless motion capture,
subject data are acquired through some passive sensing mechanism and then reconciled
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into kinematic motion. Several model-based markerless capture approaches [38, 96, 20,
47, 24, 88, 144, 56] have been proposed that assume an a priori kinematic or body model.
However, it would be preferable to eliminate this model dependence to capture both the
subject’s motion and kinematic model and, thus, perform model and motion capture.

We developed a solution for model-free vision-based markerless motion capture of
subjects with tree-structured kinematics from multiple calibrated cameras. Using the
functional structure of a motion capture system described by Moeslund and Granum
[99], we summarize our approach for markerless motion capture. Moeslund and Granum
describe a motion capture system as consisting of four components: initialization, track-
ing, pose estimation, and recognition. For initialization, a set of cameras is calibrated,
using a method such as Bouguet’s [14]. Because we assume no a priori kinematic model,
no model initialization is necessary. We assume for the tracking component a system
capable of capturing an individual subject’s movement over time as a volume sequence,
such as [106, 126]. The pose estimation component we developed is more than pure pose
estimation because it performs model and motion capture. In this component, we per-
form automatic model and posture estimation for each frame in the volume sequence.
The models and postures produced from each frame are aligned in a second pass to de-
termine a common kinematic model across the volume sequence. The common kinematic
model is then applied to each frame in the volume sequence to perform pose estimation
with respect to a consistent model. Our current methodology for capture does not in-
clude a recognition component. However, we envision our capture system providing vast
amounts of motion data for other uses. For instance, Jenkins and Matarić [72] require
long streams of motion data as demonstrations for automatically deriving vocabularies of
behaviors and controllers for humanoid robot control.

Central to our model and motion capture approach is the ability to estimate a kine-
matic model and its posture from a subject’s volume in a single frame. Towards this end,
we developed a model-free method, called nonlinear spherical shells (NSS), for extracting
skeleton point features that are linked into a tree-structured skeleton curve for a partic-
ular frame within a motion. A skeleton curve is an approximation of the “underlying
axes” of a subject, similar to principal curves [54], the axis of a generalized cylinder, or
the wire spine of a posable puppet. NSS works by accentuating the underlying axes of
a volume through Isomap nonlinear dimension reduction [131] and traversing the result-
ing “Da Vinci”-like posture. Isomap essentially eliminates the nonlinearities caused by
joint rotations. Using skeleton curve provided via NSS, we automatically estimate the
tree-structured kinematics and posture of the volume.

Several advantages arise in using our approach for markerless motion capture. First,
our method is fast and accurate enough to be tractably applied to all frames in a motion.
Our method can be used alone or as an initialization step for model-based capture ap-
proaches. Second, our dependence on modeling human bodies is eliminated. Automated
model derivation is especially useful when the subject’s kinematics differ from standard
human kinematics due to missing limbs or objects the subject is manipulating. Third,
the posture of the human subject is automatically determined without complicated label
assignments.

174



(a)

3540455055 4050

0

5

10

15

20

25

30

35

Student Version of MATLAB

(b)

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

Student Version of MATLAB

(c)

−20 −15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

Student Version of MATLAB

(d)

3540455055 4050

0

5

10

15

20

25

30

35

Student Version of MATLAB

(e)

20

40

60

30354045505560

0

5

10

15

20

25

30

35

(f)

(g) (h)

Figure A.1: An illustrated outline of our approach. (a) A subject viewed in multiple cam-
eras over time is used to build (b) a Euclidean space point volume sequence. Postures in
each frame are estimated by: transforming the subject volume (c) to an intrinsic space
pose-invariant volume, finding its (d) principle curves, project the principal curves to a
(e) skeleton curve, and breaking the skeleton curve into a kinematic model. (f) Kine-
matic models for all frames are (g) aligned to find the joints for a normalized kinematic
model. The normalized kinematic model is applied to all frames in the volume sequence
to estimate its (h) motion, shown from an animation viewing program.
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A.1.1 Volume Sequence Capture

The volume sequence data used for this work came from two sources. One source of
captured volume data are from real-world subjects (humans) viewed by multiple cameras.
The other source was from synthetically generated volume data using an articulated 3D
geometry with arbitrary kinematics.

For real-world volume capture, we used an existing volume capture technique for
multiple calibrated cameras. While not the focus of our work, this implementation does
provide an adequate means for collecting volume sequences. The implementation is de-
rived from the work of Penny et. al. [106] for real-time volume capture; however, several
other approaches are readily available (e.g., [126, 24]). The capture approach is a basic
brute-force method that checks each element of a voxel grid for inclusion in the point
volume. In our capture setup, we place multiple cameras around three sides of a hypo-
thetical rectangular volume, such that each camera can view roughly all of the volume.
This rectangular volume is a voxel grid that divides the space in which moving objects
can be captured.

The intrinsic and extrinsic calibration parameters for the cameras are extracted using
a camera calibration toolbox designed by [14]. The parameters from calibration allow
us to precompute a look-up table for mapping a voxel to pixel locations in each camera.
For each frame in the motion, silhouettes of foreground objects in the capture space
are segmented within the image of each camera and used to carve the voxel grid. A
background subtraction method proposed in [46] was used. It can then be determined
if each voxel in the grid is part of a foreground object by counting and thresholding the
number of camera images in which it is part of a silhouette. One set of volume data are
collected for each frame (i.e., set of synchronized camera images) and stored for off-line
processing.

For synthetic data, we artificially created motion sequences from a synthetic artic-
ulated object with arbitrary tree-structured kinematics. We used this data to test our
approach for objects readily available or controllable in the real world. In creating this
data, we manually specified the kinematic model, rigid body geometries (cylinders), and
joint angle trajectories. The motion of the object was converted into a volume sequence
by scan converting each frame according to a voxel grid.

A.1.2 Nonlinear Spherical Shells

Nonlinear spherical shells (NSS) is our model-free approach for extracting a skeleton curve
feature from a Euclidean-space volume of points. For NSS, we assume that nonlinearity of
rigid-body kinematic motion is introduced by rotations about the joint axes. By removing
these joint nonlinearities, we can trivially extract skeleton curves.

Recent work on manifold learning techniques, summarized in Chapter 2, has pro-
duced methods capable of uncovering nonlinear structure from spatial data that can also
be applied for this problem. Isomap, in particular, has been demonstrated to extract
meaningful nonlinear representations for high dimensional data such as images of hand-
written digits, natural hand movements, and a pose-varying human head.

The procedure for (NSS) works in three main steps:
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Figure A.2: (a) A captured human volume in Euclidean space and (b) its pose-invariant
intrinsic space representation.

1. removal of pose-dependent nonlinearities from the volume by transforming the vol-
ume into an intrinsic space using Isomap;

2. dividing and clustering the pose-independent volume such that principal curves are
found in intrinsic space;

3. project points defining the intrinsic space principal curve into the original Euclidean
space to produce a skeleton curve for the volume.

We applied Isomap in the first step of the NSS procedure to remove pose nonlinearities
from a set of points compromising the captured human in Euclidean space. We used the
implementation provided by the authors of Isomap (available at http://isomap.stanford.edu/)
and applied it directly to the volume data. Isomap requires the user to specify only the
number of dimensions for the intrinsic space and how to construct local neighborhoods
for each data point. Because dimension reduction is not our aim, the intrinsic space is set
to have 3 dimensions. Each point determines other points within its local neighborhood
using k-nearest neighbors or an epsilon sphere with a chosen radius.

Our application of Isomap transforms the volume points into a pose-independent
arrangement in the intrinsic space. The pose-independent arrangement is similar to a
“Da Vinci” pose in 3 dimensions (Figure A.2). Isomap can produce the Da Vinci point
arrangement for any point volume with distinguishable limbs.

The next step in the NSS procedure is processing intrinsic space volume for principal
curves. The definition of principal curves can be found in [54] or [76] as “self-consistent”
smooth curves that pass through the “middle” of a d-dimensional data cloud, or nonlinear
principal components. While smoothness is not our primary concern, we are interested in
placing a curve through the “middle” of our Euclidean space volume. Depending on the
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posture of the human, this task can be difficult in Euclidean space. However, the pose-
invariant volume provided by Isomap makes the extraction of principal curves simple, due
to properties of the intrinsic space volume. Isomap provides an intrinsic space volume
that is mean-centered at the origin and has limb points that extend away from the origin.

Points on the principle curves in intrinsic space be found by the following subprocedure
(Figure A.4):

1. partitioning the intrinsic space volume points into concentric spherical shells;

2. clustering the points in each partition;

3. averaging the points of each cluster to produce a principal curve point;

4. linking principal curve points with overlapping clusters in adjacent spherical shells.

Clustering used for each partition was developed from the one-dimensional “sweep-
and-prune” technique, described by Cohen et al. [28], for finding clusters bounded by
axis-aligned boxes. This clustering method requires specification of a separating distance
threshold for each axis rather than the expected number of clusters. The result from
the principal curves procedure is a set of points defining the principal curves linked in
a hierarchical tree-structure. These include three types of indicator nodes: a root node
located at the mean of the volume, branching nodes that separate into articulations, and
leaf nodes at terminal points of the body.

The final step in the NSS procedure projects the intrinsic space principal curve points
onto a skeleton curve in the original Euclidean space. We used Shepards interpolation
[127] to map principal curve points onto the Euclidean space volume, producing skeleton
curve points. The skeleton curve is formed by reapplying the tree-structured linkages of
the intrinsic space principal curves to the skeleton curve points.

Other methods for volume skeletonization are available. These approaches include
the distance coding [147], boundary peeling [147], and self-organizing feature maps [10].
For our purposes, it is important to ensure that the skeletonization produces a bordered
1-manifold, not necessarily a medial axis that is potentially a 2-manifold.

The skeleton curve found by the NSS procedure will be indicative of the underlying
spatial structure of the Euclidean space volume, but may contain a few undesirable ar-
tifacts. We handled these artifacts using a skeleton curve refinement procedure. The
refinement procedure first eliminates noise branches in the skeleton curve that typically
occur in areas of small articulation, such as the hands and feet. Noise branches are
detected as branches with depth under some threshold. A noise branch is eliminated
through merging its skeleton curve points with a non-noise branch.

The refinement procedure then eliminates noise for the root of the skeleton curve.
Shell partitions around the mean of the body volume will be encompassed by the volume
(i.e., contain a single cluster spread across the shell). The skeleton curve points for such
partitions will be roughly located near the volume mean. These skeleton curve points are
merged to yield a new root to the skeleton curve. The result is a skeleton curve having a
root and two or more immediate descendants.

The minor variations in the topology of the skeleton curve are then eliminated by
merging adjacent branching nodes. These are two skeleton points on adjacent spherical
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shells with adjacent clusters that both introduce a branching of the skeleton curve. The
branches at these nodes are assumed to represent the same branching node. Thus, the
two skeleton points are merged into a single branching node.

A.1.3 Model and Motion Capture

In this section, we describe the application of NSS within the context of our approach for
markerless model and motion capture. The model and motion capture (MMC) procedure
automatically determines a common kinematic model and joint angle motion from a
volume sequence in a three-pass process. In the first pass, the procedure applies NSS
independently to each frame in the volume sequence. From the skeleton curve and volume
of each frame, a kinematic model and posture is produced that is specific to the frame.
A second pass across the specific kinematic models of each frame is used to produce a
single normalized kinematic model with respect to the frames in the volume sequence.
Finally, the third pass applies the normalized model to each volume and skeleton curve
in the sequence to produce estimated posture parameters.

The described NSS procedure is capable of producing skeleton curve features in a
model-free fashion. The skeleton curve is used to derive a kinematic model for the volume
in each frame. First, we consider each branch (occurring between two indicator nodes)
as a kinematic link. The root node and all branching nodes are classified as joints.
Each branch is then segmented into smaller kinematic links based on the curvature of
the skeleton curve. This division is performed by starting at the parent indicator node
and iteratively including skeleton points until the corresponding volume points become
nonlinear. Nonlinearity is tested by applying a threshold to the skewness of the volume
points with respect to the line between the first and last included skeleton point. When the
nonlinearity occurs, a segment, representing a joint placement, is set at the last included
skeleton point. The segment then becomes the first node in the determination of the
next link and the process iterates until the next indicator node is reached. The length of
these segments, relative to the length of the whole branch, is recorded in the branch. The
specific kinematic models derived from the volume sequence may have different branch
lengths and each branch may be divided into a different number of links.

In the second pass, a normalization procedure is used across all frame-specific models
to produce a common model for the sequence. For normalization, we aim to align all spe-
cific models in the sequence and look for groupings of joints. The alignment method we
used iteratively collapsed two models in subsequent frames using a matching procedure
to find correspondences. The matching procedure uses summed error values of minimum
squared distance between branch parents, the difference between angles of branches, and
the difference between branch lengths. The normalization procedure finds the mapping
that minimizes the total error value. We have also begun to experiment with a simpler
alternative alignment procedure. This procedure uses Isomap to align by constructing
neighborhoods for each skeleton point that considers its intra-frame skeleton curve neigh-
bors and corresponding points on the skeleton curve in adjacent frames.

Once the specific kinematic models are aligned, clustering on each branch is performed
to identify joint positions. Each branch is normalized by averaging the length of the
branch and number of links in the branch. The location of the aligned joint locations
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(a) (b)

Figure A.3: (a) Aligned segmentation points (as stars) and joints clusters (as circles) of
one of the branches in the synthetic data. (b) The normalized kinematic model (circles
as joints) with respect to the aligned skeleton curve sequence.

along the branch forms a 1D data sequence. An example is shown (Figure A.3) for
a branch with an average number of joints rounded to three. In this figure, the joint
positions roughly form three sparse clusters of joint points along the branch, with some
outliers. To identify the joint clusters, we used a clustering method that estimates density
of all joint locations and places a joint cluster where peaks in the density are found.

In the third pass, the common kinematic model is applied to the skeleton curve in
each frame to find the motion of the model (Figure A.3). The coordinate system of the
root node of the model is always aligned to the world coordinate system. For every joint,
the direction of the link is the Z axis of the joint’s coordinate system. The Y axis of
the joint is derived by the cross product of its Z axis and its parent’s X axis. The cross
product of the Y and Z axis is the X axis of the joint. The world space coordinate system
for each joint is converted to a local coordinate system by determining its 3D rotational
transformation from its parent. The set of these 3D rotations provides the joint angle
configuration for the current posture of the derived model.

A.1.4 Results and Observations

In this section, we describe the implementation of our markerless model and motion cap-
ture approach and the results from its application to both captured human volume data
and synthetic data. The human volume data contain two different motion sequences:
waving and jumping jacks. Our approach was implemented in Matlab, with our volume
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Figure A.4: (a) Partitioning of the pose-invariant volume, (b) its tree-structured princi-
pal curves, (c) and project back into Euclidean space.

capture implementation in Microsoft Visual C++. The execution of the entire implemen-
tation was performed on a 350 MHz Pentium with 128 MB of memory.

For each human motion sequence, a volume sequence was captured and stored for
off-line processing by the model and motion capture procedure. Using the Intel Image
Processing Library, we were able to capture volumes within a 80× 80× 50 grid of cubic
50mm3 voxels at 10 Hz. Each volume sequence consisted of roughly 50 frames. Due to
our frugal choices for camera and framegrabber options, our ability to capture human
volumes was significantly restricted. Our image technology allowed for 320 × 240 image
data from each camera, which produced several artifacts such as incorrectly activated
voxels from shadows, occlusion ghosting, and image noise. This limitation restricted our
capture motions to exaggerated, but usable, motion, where the limbs were very distinct
from each other. Improving our proof-of-concept volume capture system, with more and
better cameras, lighting, and computer vision techniques, will vastly improve our capture
system, without having to adjust the model and motion capture procedure.

Using the captured volume sequences, our model and motion capture mechanism was
able to accurately determine appropriate postures for each volume without fail. We used
the same user parameters for each motion, consisting of an Isomap epsilon-ball neigh-
borhood of radius (50mm3)1/2 and 25 for the number of concentric sphere partitions. In
addition to accurate postures, the derived kinematic model parameters for each sequence
appropriately matched the kinematics of the capture subject. However, for camera cap-
tured volume data, a significant amount of noise occurred between subsequent frames in
the produced motion sequence. Noise is typical for many instrumented motion capture
systems and should be expected when independently processing frames for temporally
dependent motion. We were able to clean up this noise to produce aesthetically viable
motion using standard low pass filtering.
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Figure A.5: Results from producing kinematic motion for human waving, jumping jacks
and synthetic object motion (rows). The results are shown as a snapshot of the performing
human or object, the capture or generated point volume data, the pose-invariant volume,
and the derived kinematic posture (columns).
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When applied to synthetic data, our method can reconstruct its original kinematic
model with reasonable accuracy. This data were subject to the problem of over-segmentation,
i.e., joints are placed where there is in fact only one straight link. There are three causes
for this problem. First, a joint will always be placed at branching nodes in the skeleton
curves. A link will be segmented if another link is branching from its side. Second, the
root node of the skeleton curve is always classified as a joint, even if it is placed in the
middle of an actual link. Third, noise in the volume data may add fluctuation of the
skeleton curves and cause unwanted segments.

Motions were output to files in the Biovision BVH motion capture format. Figure
A.5 shows the kinematic posture output for each motion.

In observing the performance of our markerless model and motion capture system,
several benefits of our approach became evident. First, the relative speed of our capture
procedure made the processing of each frame of a motion tractable. Depending on the
number of volume points, the elapsed time for producing a posture from a volume by
our Matlab implementation ranged between 60 and 90 seconds, with approximately 90
percent of this time spent for Isomap processing. Further improvements can be made to
our implementation to speed up the procedure and process volumes with increasingly finer
resolution. Second, our implementation required no explicit model of human kinematics,
no initialization procedure, and no optimization of parameters with respect to a volume.
Our model-free NSS procedure produced a representative skeleton curve description of a
human posture based on the geometry of the volume. Lastly, the skeleton curve may be
a useful representation of posture in and of itself. Rigid-body motion is often represented
through typically model-specific kinematics. Instead, the skeleton curve may allow for an
expression of motion that can be shared between kinematic models, for purposes such as
robot imitation.

A.1.5 Extensions for Continuing Work

Using our current work as a platform, we aim to improve our ability to collect human
motion data in various scenarios. Motion data are critically important for other related
projects, such as the derivation of behavior vocabularies [72]. Areas for further improve-
ments to our capture approach include: i) more consistent mechanism for segmenting
skeleton curve branches, ii) different mechanisms for aligning and clustering joints from
specific kinematic models in a sequence, iii) automatically deriving kinematic models
and motion for kinematic topologies containing cycles (i.e., “bridges”, volumes of genus
greater than zero), iv) and exploring connections between model-free methods for robust
model creation and initialization and model-based methods for robust temporal track-
ing, v) extensions to Isomap for volumes of greater resolutions and faster processing of
data, vi) using better computer vision techniques for volume capture to extend the types
subject motion that can be converted into kinematic motion.

A.2 Embedded Motion Capture from Sensor Networks

Sensor networks is a rapidly emerging area of research for distributed sensing in a variety
of environments subject to vast amounts of uncertainty. Sensor networks typically consist
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of a set of self-sufficient nodes containing wireless networking devices, a set of sensors,
and a power source. Each nodes senses the world and relays sensing information across
dynamic ad-hoc networks formed over wirelss communication. These networks appear a
obvious match to natural motion capture given their aims for distributed, fault-tolerant,
and dynamic acquistion of sensory information using small and subtle sensors. We dis-
cuss one approach to processing sensor information from such a network to provide 3D
instrument locations similar to markers in an optical motion capture system. However,
instead of localizing markers from external sensors, we relatively localize all sensors from
their local measurements. By placing sensors on various locations on a subject’s body,
relative localization finds the global positions of the sensors from information local to the
sensors.

Relative localization from pairwise proximities is an active topic of research in a
variety of domains, such as multi-robot coordination [81], context aware computing [110],
and sensor networks [138]. Relative localization is the placement of a set a points in
a common coordinate frame such that a set of given pairwise distances are preserved.
Common examples of relative localization include map building from inter-city distances
and finding the configuration of a group of autonomous robots [58]. We are particularly
interested in such domains where only local sensing may be available or appropriate.

Deterministic MDS techniques, like global SDR, are well suited to the problem of
relative localization. However, their feasibility is based on the assumption that sensing
can provide all-pairs proximity measurements indicative of distances that are not subject
to significant amounts of noise or distortion. While local sensing in the real world may
not hold to these assumptions, the application of global SDR is an attractively simple
and efficient means for relative sensor localization, without the additional machinery of
probabilistic MDS [89]. The appeal of such localization techniques is further enhanced
when considering the current “sensor explosion” that could lead to more ubiquitous usage
of current sensing devices and the development of new sensing modalities, such as the use
the received signal strength readings provided by wireless RF Ethernet devices [81]. This
sensing modality is particularly interesting when considering emerging sensor network
technologies, such as SmartDust motes [55]. These devices may provide only limited local
sensing capabilities, but will be small (approx. 1cm) and numerous. If they can provide
signal strength measurements indicative of pairwise distances, relative localization can
be performed for applications such as on-line capture of geometries for a moving subject,
where each node provides a vertex of the subject’s surface.

We experimented with localizing a set of Crossbow motes using Isomap on their
pairwise signal strength measurements. A set of seven motes were placed in a static
planar hexagon configuration with manually measured ground truth coordinates, as shown
in Figure A.6. Signal strength measurements were collected over the course of 3783
seconds with no significant variance in the signal strength measurements. We used a
single snapshot of these pairwise measurements. Ideally, received signal strength will
decrease monotonically with distance. Assuming this is true, nondiagonal elements of
a signal strength matrix can be made to form a distance matrix D based on a given
maximum signal strength Dmax:
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Dij =

{
0, if i = j

D max −Dij , if i 6= j
(A.1)

We applied Isomap to D using nearest neighbors of K = 3 (shortest paths) and
K = N −1 (Euclidean distance), where N = the number of motes. In our initial applica-
tion of Isomap, the produced localizations are observably similar to the hexagon ground
truth, but are not accurate 2D localizations. We attributed this inaccuracy to two types
of artifacts due to the varied quality of radio communications on the motes. The first
artifact is asymmetry in the distance matrix. This asymmetry is caused by the different
transmission and reception capabilities between the motes. Symmetries between mote
pairs indicate equivalent capabilities, while asymmetries indicate dissimilar capabilities.
The second artifact is that the embedding preserves pairwise distances and is reflective
of the ground truth, but the localization occurs in 3D. The 3D localization reflects the
2D ground truth only when viewed from a certain orientation. We attribute this artifact
to signal strength measurements not reflective of relative distance, which produce ma-
trix asymmetries. Additionally, the viewing orientation needed for the appropriate 2D
localization is not readily extractable.

By addressing the problems with distance matrix asymmetries, a relative localization
can be approximated for the appropriate dimensionality. Assuming inaccurate signal
strength readings produce larger distances, mote pairs with asymmetric distances are
arbitrated into symmetry by taking the minimum measured distance between the pair,
forming a new matrix Ds = min(D,DT ). A mote pair is considered symmetric if |Dij −
Dji| < Dε. A mote is significantly symmetric if it is symmetric with at least Ns other
motes. We use motes that exhibit significant symmetry as landmarks in Isomap. By
using these landmarks, we reduce the artifacts produced by bad radio communicators
and focus on motes with more reliable distance measurements.

With these adjustments, Isomap produces a 2D localization that preserves the topol-
ogy of the motes and visually approximates the hexagon ground truth. For localizing
the hexagon (Figure A.6), we use Dmax = 300, Dε = 15, and Ns = d((N − 1)/2)e for a
hexagon signal strength matrix with nonzero elements ranging between 69-196. The naive
application of Isomap produced view-dependent localizations in 3D that were sensitive to
varying K. From manual inspection, Isomap with symmetry and landmark adjustments
produced 2D localizations for both K = 3 and K = N − 1 that approximate the under-
lying hexagon structure. The simplicity and relative accuracy of deterministic MDS via
Isomap is attractive; however, probabilistic MDS offers several advantages for robustness
to noisy and incomplete pairwise distance.
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Figure A.6: Group-relative mote localization: (a,e) ground truth hexagon plot and pic-
ture of hexagon motes on a graveled roof. (b,f) pairwise ground truth distance and
asymmetric signal strength distances (c,g) naive Isomap localization in 3D from best
viewing orientation and residual variance. (d,h) adjusted Isomap localization in 2D and
residual variance.
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Appendix B

Applying Spatio-temporal Isomap to Robonaut Sensory
Data

One drawback to our PDBV methodology is that heuristic segmentation must be per-
formed before dimension reduction due to the computational limitations of Isomap. Unde-
sirable artifacts may arise from segmenting motion in this manner and weaken the ability
of ST-Isomap for exemplar grouping. Thus, the restriction to working with motion seg-
ments is not as desirable as working on the time-series of posture directly. Given this
desire to avoid segmentation, we have begun to explore methods for applying sequentially
continuous ST-Isomap directly to time-series of human postures.

As part of this effort, we describe joint work with Alan Peters at Vanderbilt Uni-
versity to apply sequentially continuous ST-Isomap to sensory data collected from the
NASA Robonaut [1], a humanoid torso robot at the Johnson Space Center. For this joint
work, Robonaut was teleoperated to grasp a horizonal wrench at nine different locations
within its workspace. Robonaut continuously publishes its sensory and motor informa-
tion to programs that record this information for further use. We applied sequentially
continuous ST-Isomap on sensory data from five of the teleoperated grasps in an attempt
to uncover the spatio-temporal structure of the grasp behavior. Data vectors recorded
from Robonaut consist of 110 variables for both motor and sensory data. Motor data,
including motor actuation forces and joint position and velocity, were zeroed out. The
remaining 80 non-zeroed variables contain sensory data, consisting of tactile sensors on
the fingers and force sensors on various positions of the robot. Each of these variables
were normalized to a common range across all variables.

The embedding of this sensory data by ST-Isomap is shown in Figure B.1 with a
comparison to embedding by PCA. The structure of the grasps can be vaguely interpreted
in the PCA embedding. In contrast, the structure of the grasps are apparent in the ST-
Isomap embedding as two loops. The smaller loop is indicative of reaching from and
returning to the zero posture of the robot. The larger loop is indicative of grasp closure
and release around the wrench. The points occurring during the grasp are within the
smaller cluster.

The structure uncovered for the grasp provides a model that is a description of sensor
values during a grasp. This model can also serve to describe sensory data of grasps
not included for producing the embedding. To test this hypothesis, we selected and
normalized data from a grasp not used for training. Given sensory data for the test
grasp, training grasps, and embedded training grasps, interpolation can be used to map
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the test grasp on the structure found in the embedding space. For this purpose, Shepards
interpolation [127] was used to perform this mapping. The mapped test grasp from
interpolation is shown in Figure B.1.
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Figure B.1: (a,b) Two views of the PCA embedding for the grasp data from Robonaut
teleoperation. (c,d) Two views of the same data embedded by sequentially continuous
ST-Isomap. (e) Distance matrix for the ST-Isomap embedding. (f,g) A test grasp mapped
via Shepards interpolation onto the grasp structure in the ST-Isomap embedding.
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Figure B.2: Gratuitious picture of the author with the NASA Robonaut. Thanks for
reading my dissertation.
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Appendix C

Glossary

agglomerative clustering [68]: iteratively forming new clusters one at a time from the
existing clusters.

adjacent temporal neighbors (ATN): data points that are sequentially adjacent within
a time-series.

autoencoder [40]: a neural network trained using back-propagation of error, so that
the network extracts the principal components of the input.

autonomous humanoid agent: an agent with the embodiment characteristics of a hu-
man and the ability to act without external supervision.

back-end motion processing: a process for generalizing motion examples of a module
into a behavior.

behavior instance: see motion exemplar.

behavior vocabulary: a capability repertoire of exemplar-based behaviors, with each
behavior defined by a generalization of motion exemplars.

blind source separation [60]: the decomposition of a signal or signals into underlying
source signals with no prior knowledge of the sources.

capability abstraction: the use of capabilities for a humanoid agent that parsimo-
niously express the functionalities of the agent without requiring specific values for
its degrees of freedom.

capability design: the specification of a modular set of behaviors for a humanoid agent.

capability grounding: the use of a repertoire of capabilities as a common vocabulary
for structuring interactions between a humanoid agent and humans or other agents.

capability implementation: the realization of a capability design in the form of con-
trollers for a humanoid agent.

capability repertoire: a set of modular behaviors designed and implemented for a hu-
manoid agent.
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capability scalability: the ease and practicality of modifying a capability repertoire.

clusterable proximity: the placement of data points such that distances between intra-
cluster points is significantly smaller than inter-cluster points.

common temporal neighbors (CTN): a data point is a common temporal neighbor
of given data point if it is within the local neighborhood and shares the same spatio-
temporal signature of the given data point or is related through CTN transitivity.

concatenation motion synthesis: the generation of motion from a behavior vocab-
ulary through concatenation of complete motion trajectories produced from a se-
quence of primitives.

controller encoding: a method for classifying motion into a string-like expression that
captures the structure of an observed motion.

CTN component: a subset of data points in which all pairs are common temporal
neighbors.

CTN transitivity: the ability to relate two data points as common temporal neighbors
given that both share a third point as a common temporal neighbor.

distal correspondence: the correspondence of structurally similar data points that are
potentially distal in the input space.

eager evaluation (or speculative evaluation): any evaluation strategy where eval-
uation of some or all function arguments is started before their value is required.
More specific to this dissertation, an evaluation strategy that attempts to precom-
pute the output of a model.

embedding: one instance of some mathematical object contained within another in-
stance.

embedding space: a coordinate system produced as an embedding of an input space.

exemplar merging: the grouping of data points in the same feature group that are
exemplars of multiple underlying behaviors.

exemplar space (or parameter space): a low dimensional space containing points
corresponding to motion exemplars whose interpolation defines a primitive behavior.

factor analysis [49]: any of several techniques for deriving from a number of given
variables a smaller number of different, more useful, variables.

feature group: see primitive feature group or meta-level feature group.

feedback property: motion synthesized from a derived behavior vocabulary will result
in similar behaviors as its original input motion.

forward model motion synthesis: the generation of motion from a behavior vocabu-
lary by continually updating desired kinematic postures based on the prediction of
an active primitive.
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forward model predictor: the use of a primitive behavior as a nonlinear dynamical
system in joint angle space to provide predictions independent of a specific function.

front-end motion processing: a process for extracting descriptions of a set of modular
behaviors from input motion data.

global spectral dimension reduction [34]: embedding through eigenvalue decompo-
sition on a full matrix of scalar relationships between pairs of data points.

gradient [12]: the rate of increase or decrease of a variable magnitude, or the curve
which represents it.

Hidden Markov Model (HMMs) [111]: a variant of a finite state machine with an
unobservable current state having a set of states, Q, an output alphabet, O, tran-
sition probabilities, A, output probabilities, B, and initial state probabilities, P.

humanoid agent: an agent with the embodiment characteristics of a human.

imitation learning [120]: the acquisition of skills and/or tasks through observation.

independent and identically distributed (IID) [10]: a data set consisting of inde-
pendent samples from the same underlying distribution.

Independent Components Analysis (ICA) [60]: blind source separation assuming
the underlying source signals are statistically independent.

input space: coordinate system in which a set of input data resides.

interpolation [12]: calculation of the value of a function between already known values.

inverse kinematics (IK) [31]: the determination of a kinematic posture from end-
effector positions.

Isomap [131]: a method for global spectral dimension reduction using shortest path
distances to determine pairwise similarity.

joint angle space: the coordinate space formed by the agent’s joint angles.

kernel PCA (KPCA) [125]: a method for global spectral dimension reduction using
kernel functions centered on each data point to determine pairwise similarity.

kernel trick [125]: the implicit definition of a nonlinear mapping of data points through
pairwise similarity scalars.

Kinematic Centroid Segmentation (KCS): motion segmentation based on treating
each limb as a pendulum and segmenting motion based on its swings.

lazy evaluation: An evaluation strategy that evaluates an expression only when its
value is needed and remembers this result for subsequent requests.

local neighborhood: a subset of points that are considered to be proximal to a given
point.
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local sensing: the limitation of an agent to sensing mechanisms provided within the
embodiment of a humanoid agent.

local spectral dimension reduction (LSDR) [118]: embedding through eigenvalue
decomposition on a sparse matrix of scalar relationships between proximal pairs of
data points.

Locally Linear Embedding (LLE) [118]: a method for local spectral dimension re-
duction using weights from locally linear models centered at each data point to
determine pairwise relationships.

K-nearest nontrivial neighbors (KNTN): the k best nontrivial neighbors in a local
neighborhood.

marker features: perceptual features that drive the attention of a motion segmentation
mechanism.

markerless motion capture: motion capture without instrumentation of the source.

memory model [101]: a model of explicitly remembered experiences from which pre-
dictions and generalization can be performed in real time.

merging artifacts: see exemplar merging.

meta-level behavior: a behavior that is sequential combination of primitive behaviors.

meta-level embedding spaces: coordinate systems produced by embeddings beyond
the initial embedding.

meta-level feature group: clustering of motion exemplars in a meta-level embedding
space representative of sequential combination of primitive behaviors.

mirror neurons [115]: neurons in the motor cortex that activate when performing or
observing a certain class of movement.

motion capture: a process by which external devices can be used to capture movement
data from various live sources in the world.

motion editing [48]: the modification of previously created or captured motion for new
situations.

motion exemplar: a motion that is an example (or instance) of a particular behavior.

motion graph [79]: a graph of static kinematic posture nodes with directed edge tran-
sitions between postures.

motion mapping: the production of motion through mapping from a control space to
joint angle space.

motion module: a modular description of a single capability in joint angle space.

motion textons [87]: a capability repertoire comprised of linear dynamical systems.
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motor level: sensing and actuation mechanisms for achieving desired static configura-
tions.

motor program [93]: a prestructured set of motor commands uninfluenced by feed-
back.

motor primitives [11]: a proposed biological model for the structure of the motor sys-
tem as a biological or synthetic repertoire of primitives.

moveme [18]: a primitive building block for structuring motion, analogous to a phoneme
for speech.

multidimensional scaling (MDS) [13]: a set of data analysis techniques that display
the structure of data, from pairwise relationships, as a geometric picture.

nonlinear spherical shells (NSS) [27]: a method for extracting principal curves for
a set of points through nonlinear dimension reduction and clustering on concentric
spherical shell partitions.

nonparametric statistics [40]: the branch of statistics dealing with variables without
making assumptions about the parameters of their distribution.

Performance-Derived Behavior Vocabularies (PDBV): a method for deriving a
behavior vocabulary from kinematic time-series of human motion.

phase space: a 6R dimensional space of R variables described by 3R position and 3R
momentum coordinates.

physical embodiment [21]: the realization of an agent in a body that is subject to the
physical properties of the real world.

plant level: an agent’s embodied interface to the world.

primitive: module that cannot be further subdivided and can be combined using defined
operations with other primitives to create more intricate modules.

primitive behavior: a family of trajectories defined by a configuration of a primitive
feature group in an exemplar space.

primitive feature group: a group of exemplars defining a primitive behavior

primitive feature group: clustering of motion exemplars with a common spatio-temporal
signature in a primitive-level embedding space that is representative of a primitive
behavior.

primitive forward model: a primitive behavior with the ability to predict future kine-
matic states from a current kinematic state.

primitive-level embedding space: the coordinate space produced by the first embed-
ding of an input motion.
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primitive support volume: the volume of coordinates in joint angle space for which a
primitive forward model can be applied.

principal components analysis (PCA) [12]: a mathematical framework of determin-
ing that linear transformation of a sample of points in R-dimensional space which
exhibits the properties of the sample most clearly along the coordinate axes.

principal curves [54]: self-consistent smooth curves which pass through the middle of
a d-dimensional probability distribution or data cloud.

probabilistic roadmap [75]: a dynamic graph of configurations in the free space of an
agent with transition edges between configuration.

proximal disambiguation: the separation of structurally different data points that are
proximal in the input space.

proximity-equals-similarity assumption: the assumption that data points that are
proximal in the input space are also structurally similar.

sample-atomic (or posture atomic): treating samples of a time series as indivisible
units of data.

sampling space: a subspace of an exemplar space used to densely sample a primitive
behavior.

segment-atomic: treating features extracted from a time series as indivisible units of
data.

segment consistency: a property of segmentation that similar intervals of motion will
yield similar segments of motion.

segmented common temporal neighbors (SCTN): determination of common tem-
poral neighbors for segment-atomic data.

segment input space: an input space of segment-atomic motion trajectories of equal
length.

segment sensibility: a property of segmentation that motion segments are sensible to
a user.

self-organizing topographic map [77]: an unsupervised procedure for embedding us-
ing a defined, predetermined topology.

skill level: capabilities that drive motor level mechanisms according to motor program.

spatio-temporal correspondences: distal correspondences for underlying spatio-temporal
structure.

spatio-temporal Isomap (ST-Isomap): a spatio-temporal extension of Isomap, with
different methods for sample-atomic and segment-atomic data.
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split behavior contexts: motion exemplars of a single behavior that are performed in
the context of multiple sets of preceding and following behaviors.

spurious transitions: motion segments that are underrepresented transitions between
activities performed in an input motion.

stroke: a single complete movement.

support vector clustering (SVC) [6]: a method for clustering data points mapped
from an input space to a high dimensional feature space, where the smallest sphere
that encloses the feature space data is mapped back into a set of contours in the
input space.

task level: control policies for directing skill level capabilities to achieve the objectives
of a higher-level task of the agent.

temporal windowing: accounting for temporal properties in time-series data by con-
sidering a window of data points about each data point.

time-series data [10]: a series of values of a variable at successive times.

tracking controller [148]: a controller for a humanoid agent that tracks an input mo-
tion while potentially being subject to the dynamics of the environment.

trajectory encoding: a method for classifying motion by concatenating the predictions
of primitives that provide the best match over different intervals of motion.

trivial matches [26]: points in a local neighborhood that are superseded by a more
representative neighbor.

unsupervised learning [40]: learning in which the system parameters are adapted us-
ing only the information of the input and are constrained by prespecified internal
rules.

Verbs and Adverbs (V-A) [116]: a manually driven method for constructing exemplar-
based behavior vocabularies.

video texturing [124]: the process of creating a graph of image nodes with directed
edge transitions between images from a video sequence.

zero-posture: the default or resting kinematic posture of a humanoid agent.

z-function segmentation [44]: motion segmentation based on thresholding the sum of
squares of the velocity of the degrees of freedom.
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