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Abstract We introduce a novel method to predict pedestrian trajectories using
agent-based velocity-space reasoning for improved human-robot interaction. This
formulation models the trajectory of each moving pedestrian in a robot’s environ-
ment using velocity obstacles and learns the simulation parameters based on tracked
data. The resulting motion model for each agent is computed using statistical in-
ferencing techniques from noisy data. This includes the combination of Ensemble
Kalman filters and maximum likelihood estimation algorithm to learn individual
motion parameters at interactive rates. We highlight the performance of our motion
model in real-world crowded scenarios. We also compare its performance with prior
techniques and demonstrate improved accuracy in the predicted trajectories.

1 Introduction

Robots are increasingly used in everyday life. As more robots are introduced into
human surroundings, it becomes imperative to develop reliable and safe human-
robot interaction. The robots should be able to successfully navigate in a dynamic
environment with multiple moving humans to reach their goal positions. In order to
develop such systems, the robots should have a good understanding of its environ-
ment and the ability to sense, track, and predict the position of all moving humans
in its workspace to perform collision-free navigation.

Sensing and tracking moving humans is a topic that has been studied in both
robotics and computer vision, e.g. [18, 25, 15]. A key part of these methods is of-
ten to use a prior motion model fitted for the scenario in question. However, these
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motion priors are usually generalized motions and not specific to individual’s move-
ment, therefore they do not perform well in tracking unusual (abnormal) behaviors
or in capturing person-to-person differences. These behaviors, such as some people
moving against the flow or quick movements to avoid collisions with other people,
are common even in moderately crowded scenarios.

In this work, we introduce a novel motion model built on agent-based, velocity-
space reasoning, combined with Bayesian statistical inference to provide a per-
person motion model for each individual in a robot’s environment. Unlike previous
methods that use general motion priors or simple motion models, our method is
able to reproduce an individual’s motions with its own characteristics, also capable
of dynamically adjusting the motion model for each individual in the presence of
sensor noise and model uncertainty.

More specifically our approach works as follows. We assume at any given time, a
robot has past observations on each person (represented as an agent) in the environ-
ment and wants to make some predictions about motion for each agent in the next
timestep. We apply Ensemble Kalman Filtering (EnKF) to estimate the parameters
for the human motion model based on reciprocal velocity obstacle (RVO) [2, 29]
in a crowded scene that optimally matches the data observed thus far. Then, us-
ing these RVO parameters adaptively computed, we can simulate the crowd motion
to estimate the future trajectory of all individuals in the scene and estimate factors,
such as their current goal. We demonstrate that our per-agent learning method gener-
ates more accurate motion predictions than previous models, especially for complex
scenarios, such as those with occlusions, low-resolution sensors, and missing data.

The rest of our paper is organized as follows. Section 2 reviews related work.
Section 3 gives a brief overview of the RVO-based, per-agent motion model for
a crowd. Section 4 describes our approach on incorporating an adaptive machine-
learning framework with RVO-based multi-agent simulation, and Section 5 presents
some results on observed (video recorded) data.

2 Related Work

In this section, we give an overview of prior work on motion models in robotics and
crowd simulation and their application to pedestrian or people tracking.

2.1 Motion Models

There is an extensive body of work in robotics, multi-agent systems, crowd simu-
lation, and computer vision on modeling pedestrians’ motion in crowded environ-
ments. Here we provide a brief review of some recent work in modeling pedestrians’
motion. In the fields of pedestrian dynamics and crowd simulation, many models
have been proposed [26, 21]. These works could be broadly classified into a few
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main categories: potential-based works which models virtual agents in crowd as par-
ticles with potentials and forces [12], boid-like approaches which create simple rules
to steer agents [24], geometric model which computes collision-free velocity[3, 29],
and field-based works which generate fields based on continuum theory or fluid
models [28]. Among these works, velocity-based motion models [13, 14, 3, 29, 23]
have been successfully applied in the analysis and simulation of crowd behaviors,
and been shown to have efficient implementations [11].

2.2 People Tracking with Motion Model

Most related works in tracking people include [8, 27, 7] that make simple assump-
tions on the pedestrian motion model, in order to improve the tracking quality. In
recent years, better pedestrian motion models have been deployed in robotics and
computer vision literature for tracking people. For example, long-term motion plan-
ning models have been proposed to combine with tracking. Bruce, et al. [5] and
Gong et al. [9] estimate people’s destinations and in turn predict the pedestrian mo-
tion along the path from the current position towards the estimated goal position.
Ziebart et al. [31] considers conditioned action as well as the trajectory of people
for the prediction. Liao et al. [17] extracts a Voronoi graph from environment and
predicts people’s motion along the edges following the topological shape of the envi-
ronment. In contrast to these methods, people tracking techniques using short-term
motion models have also been studied as well. Bennewitz et al. [1] apply Expec-
tation Maximization clustering to learn typical motion patterns from trajectories of
people and employs Hidden Markov Models to predict the motion of people for a
mobile robot. Luber et al. [18] apply Helbing’s social force model to track people
based on a Kalman-filter based tracker. Mehran et al. [20] also apply social force
model to detect people’s abnormal behaviors from video. Pellegrini et al. [22] use
an energy function to build up a goal-directed short-term collision avoidance mo-
tion model and Linear Trajectory Avoidance to improve their people tracking quality
from video. [29].

3 Background and Overview

In this section, we briefly discuss the crowd simulation method we use, and provide
overview of our method for training this motion model based on observations. We
first provide some definitions of important terms used in this section.

A pedestrian is a human entity that shares an environment with the robot. We
treat pedestrians as autonomous entities that seek to avoid collisions with each other.
We denote n as the number of pedestrians in the environment. We assume a robot’s
sensor produces a noisy estimate of the position of pedestrians. Furthermore, we
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assume the amount of sensor noise is known. We also assume the robot has an
estimate of the environment represented as a series of connected line segments.

3.1 RVO Crowd Simulations

As part of our approach, we need to use an underlying crowd simulation technique
to model individual goals and the interactions between people. For this model, we
choose a velocity-space reasoning technique based on Reciprocal Velocity Obsta-
cles (RVO) [29]. RVO-based collision avoidance has previously been shown to re-
produce important pedestrian behaviors such as lane formation, speed-density de-
pendencies, and variations in human motion styles [11, 10].

Our implementation of RVO is based on the publicly available RVO2-Library
(http://gamma.cs.unc.edu/RVO2). This library implements an efficient variation of
RVO that uses a set of linear collision avoidance constraints on an agents veloc-
ities known as Optimal Reciprocal Collision Avoidance (ORCA) constraints [29].
Each agent is assumed to have a position, velocity, and a preferred velocity. If an
agent’s preferred velocity is forbidden by the ORCA constraints, that agent choses
the closest velocity which is not forbidden. Formally:

vnew = argmin
v/∈OCRA

‖v−vpre f ‖. (1)

This process is illustrated in Fig. 1a.
An agents position is updated by integration of the new velocity computed in

Eqn. 1. An agent’s preferred velocity is assumed to change slowly, and is modeled
by a small amount of noise each timestep. More details of the mathematical formu-
lation is given in Sec 4. A through derivation of the ORCA constraints are given in
[29].

We use the RVO2-Library to represent the state of each sensed pedestrian in a
robot’s environment. The state of pedestrian at timestep k is represented as a 6D
vector xk which consists of an agent’s 2D position, 2D velocity, and 2D preferred
velocity as defined by RVO2-Library. Our human motion model, called Bayesian-
RVO or BRVO, seeks to adaptively find the RVO state that best represents all the
previously observed motion data (with sensing uncertainty) for each pedestrian in
the robot’s environment.

3.2 Problem Definition

As discussed above, we define the computation of the BRVO motion model as a state
estimation problem. Formally, the problem we seek to solve is as follows. Given a
set of observations, denoted z0 · · ·zt , for each pedestrian, what is the RVO state xt
that best reproduces the motion seen so far. Given this estimate we predict the future
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Fig. 1: (a) Overview of RVO Simulation illustrating an agent’s position (p), pre-
ferred velocity (vpre f ) and actual velocity (v). If the ORCA collision-avoidance
constraints prevent an agent from taking their preferred velocity, as shown here,
the actual velocity will be the closest allowable velocity. These elements combine
to form the RVO state x. (b) As new data is observed (blue dot) BRVO refines its
estimate of a distribution of likely values of the RVO states (dashed ellipse). These
parameters are then used with RVO to predict likely paths (as indicated by arrow).

motion of each agent (person) by using the RVO simulation model to determine the
likely future path of each pedestrian.

We propose an iterative solution to this problem. We assume a robot working
under a sense-plan-act loop. During the sensing step, the robot measures new (noisy)
positions of each pedestrian, updates its estimate of each person’s state, and creates
a new plan taking into account the expected motion of nearby pedestrians.

4 Bayesian-RVO

In this section, we provide the mathematical formulation of our Bayesian-RVO mo-
tion model, or BRVO. This model combines an Ensemble Kalman Filtering ap-
proach with the Expectation-Maximization algorithm to estimate the best approxi-
mated RVO state of each agent, as well as the uncertainty in the model.

4.1 Model Overview

Our model performs Bayesian learning for each agent. We assume each agent can
be represented with their own RVO state vector x. Given an agent’s RVO state xk
at timestep k, we use the RVO collision-avoidance motion model, denoted here as
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f , to predict the agent’s next state xk+1. We denote the error f has in predicting the
RVO state at each timestep as q. This leads to our motion model of:

xk+1 = f (xk)+q (2)

Additionally, we assume the sensing of the robot can be represented by a function
h that projects the predicted state xk to an observed state which we will denote as
zk. In general, sensing devices produce noisy readings leading to an error between
the observed state and the ground truth, we denote this error as r. This assumption
leads to our sensing model as:

zk = h(xk)+ r (3)

An overview of this adaptive motion prediction model is given in Figure 2.

Sensor EnKF 

RVO Simulator 

Maximum 
Likelihood 
Estimation 

Noisy 
observation 

z

x

Q

)f(x

Estimated state 

Error 
distribution 

Predicted states 

Fig. 2: Overview of the Adaptive Motion Model. We estimate current state x via an
iterative process. Given noisy data observed by the sensor, RVO as a motion model,
and the error distribution matrix Q, we estimate current state. The error distribution
matrix Q is recomputed based on the difference between the observed state and the
prediction f (x) and used to refine current estimation of x.

Simplifying Assumptions The model given by Eqns. 2 and 3 is very general. In
order to efficiently estimate the state xk from the observations zk we must make some
simplifying assumptions, which allow us to develop a suitable learning approach for
our adaptive model. First we assume that the error terms q and r are independent at
each timestep, and follow a zero-meaned Gaussian distribution with covariances Q
and R respectively. That is:
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q∼ N(0,Q) (4)
r∼ N(0,R) (5)

We make a further assumption that the sensor error r is known or can be well
estimated. This is typically possible by making repeated measurements of known
data points to establish an average error. In many cases, this error will be provided
by the manufacture of the sensing device. This error will fully specify the matrix R.

To summarize, the h function is specified by the robot’s sensors, and the matrix
R characterizes the estimated accuracy of these sensors. The f function is a motion
model will be used to predict the motion of each agent and Q is the accuracy of this
model.

Our BRVO framework uses the RVO-based simulation model to represent the
function f and Ensemble Kalman Filtering to estimate the simulation parameters
which best fit the observed data. In addition, we adapt the EM-algorithm to estimate
the model error Q for each agent. Better estimating Q improves the Kalman Filtering
process, which in turn improves the predictions given by BRVO. This process is used
iteratively to predict the next state and refine the state estimation for each agent,
as depicted in Fig 1b. More specifically, we perform EnKF and EM step for each
agent, separately, but taking account all the agents in the motion model f(x). It gives
more flexibility in cases like dynamically changing scenes, such as agents entering
and leaving the scene in the middle of the sequences, because the computations are
done with fixed size per-agent matrix.

4.2 State Estimation

Optimal estimation of the simulation state xk is possible when f and h are linear
functions by using Kalman Filtering. However, our BRVO approach uses RVO for
the simulation model f and allows an arbitrary sensing model h which creates a
non-linear system with no known method of finding an optimal estimate.

The BRVO motion model uses an extension to Kalman Filtering known as En-
semble Kalman Filter (EnKF) as a model for state estimation. The motivation for
this algorithmic choice is two-fold. First, EnKF makes the same assumptions we
laid forth in Sec 4.1. That is, a (potentially) non-linear f and h combined with a
Gaussian representation of error. Secondly, as compared to methods such as particle
filters, EnKF is very computationally efficient, providing more accuracy for a given
number of samples. This is an important consideration for low-to-medium power
onboard computers commonly found on a mobile robot.

At a high level, EnKF works by representing the potential state of an agent at each
timestep as an ensemble or collection of discrete samples. Each sample is updated
according to the motion model f . A mean and standard deviation of the samples is
computed at every timestep for use in the predictor-correction equations. For a more
detailed explanation of EnKF, we refer readers to a standard textbook in statistical
inference such as [6].
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State Representation We represent the state of each agent as the set of RVO pa-
rameters as discussed Sec 3.1. Therefore the state of an agent, x, is six dimensional:

x =

 p
v

vpre f

 , (6)

where p is the agent’s position, v the velocity, and vpre f the preferred velocity. To
summarize the crowd dynamics model f :

f (

 p
v

vpre f

) =
 p+v∆ t

argminv∈OCRA ‖v−vpre f ‖
vpre f

 . (7)

For the experiments in this paper, we assume that the robot has the ability to sense
the relative positions of pedestrians. This assumption leads to a simple h function of

h(

 p
v

vpre f

) = p. (8)

In general, our BRVO framework makes no assumption about the linearity of the
sensing model. More complex sensing functions can be represented (for example,
integrating multiple sensors) by modifying the function h in accordance with the
new sensing model.

4.3 Maximum Likelihood Estimation

The accuracy of the states estimated by the EnKF algorithm is a function of the pa-
rameters defined in Eqns 2-5: f , Q, h, and R. While the sensing function h and the
error distribution R are determined by the sensor’s specifications, f is determined
by the motion model chosen. However, the choice of motion prediction error distri-
bution Q is still a free parameter. We propose a method of estimating the optimal
value for Q based on the Expectation Maximization or EM-algorithm [19].

The EM-algorithm is a generic framework for learning (locally) optimal parame-
ters by following a gradient decent approach. The algorithm alternates between two
steps: an E-step which computes expected values and an M-step which computes
the parameters which maximize the likelihood of the values computed during the
E-step.

In our case, the E-step is exactly the EnKF algorithm. This step estimates the
most likely state given the parameters Q. For the M-step, we need to compute the
Q which maximizes the likelihood of values estimated from EnKF. This probability
will be maximized with a Q that best matches the observed error between the pre-
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dicted state and the estimated state. We can compute this value simply by finding
the average error for each sample in the ensemble at each timestep for each agent.

By iteratively performing the E and M steps we will continuously improve our
estimate of Q which will in turn improve the quality of the learning and the predic-
tiveness of the method. In theory, one should iterate over the E and M steps until
convergence. In practice, the process converges fairly rapidly. Due to the online pro-
cess nature of our approach, we limit the number of iterations to three, which we
found to be empirically sufficient. We analyze the resulting improvement produced
by the EM algorithm in Section 5.1.

4.4 Implementation

A pseudo code for our BRVO algorithm is given in Algorithm 2. We represent the
distribution of likely RVO states as an ensemble of m samples. We set m = 1000,
for the results shown in section 5. Lines 2 through 6 preform a stochastic prediction
of the likely next state. Lines 7 through 10 correct this predicted value based on
the observed data from the robot’s sensor. Lines 11 through 14 preform a maximum
likelihood estimation of the uncertainly in the prediction.

Algorithm 1: Bayesian-RVO
Input: Observed positions over time z1...zt , crowd motion simulator f , estimated initial

error variance Q, sensor function h, sensor noise R
1, and the number of samples m. Output: Estimated agent’s state distributions x1...xt
2foreach k ∈ 1 . . . t do

// EnKF Predict Step
3foreach i ∈ 1 . . .m do
4Draw q(i)

k−1 from Q, x̂(i)k = f (x̂(i)k−1)+q(i)
k−1 ;

5Draw r(i)k from R, ẑ(i)k = h(x̂(i)k )+ r(i)k ;

6z̄k =
1
m ∑

m
i=1 ẑ(i)k ;

7Zk =
1
m ∑

m
i=1(ẑ

(i)
k − z̄k)(ẑ

(i)
k − z̄k)

T ;

// EnKF Correct Step

8x̄k =
1
m ∑

m
i=1 x̂(i)k ;

9Σk =
1
m ∑

m
i=1(x̂

(i)
k − x̄k)(x̂

(i)
k − x̄k)

T ;
10foreach i ∈ 1 . . .m do
11x̂(i)k = x̂(i)k +ΣkZ−1

k (zk− ẑ(i)k );

// Maximum Likelihood Estimation
12Qk−1 = Q;
13foreach i ∈ 1 . . .m do
14Qk+= (x̂(i)k − f (x̂(i)k−1))(x̂

(i)
k − f (x̂(i)k−1))

T ;

15Q = k−1
k Qk−1 +

1
k Qk
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5 Results

In this section, we show some comparisons and results that show the advantage of
our BRVO model.

We analyze various attributes of our model across a verity of datasets. First, we
isolate the effect of the EM loop for estimating the prediction uncertainty Q. Next,
we demonstrate the ability of our approach to cope with sensor noise. Additionally,
we analyze how varying density and varying sampling rates each affect the results.
Finally, we provide a quantitative comparison to two recent techniques.

We focus our analysis on three different datasets, illustrated in Fig. 3.
Campus Video data of students on campus recorded from the top of the ETH main
building in Zurich was extracted by manual notation every 0.4 second [22]. We ex-
tract three sequences from this data, each containing about 10 seconds of pedestrian
interaction: Campus-1 (7 pedestrians), Campus-2 (18 pedestrians), Campus-3 (11
pedestrians).

Bottleneck Optical tracking equipment capture the motion of participant in a
lab-environment [4]. Participants moved through a bottleneck opening into a nar-
row passage. Data was collect with a passage width of 1.0 meter and 2.5 meter,
denoted Bottleneck-100 and Bottleneck-250 respectively. Both studies have about
170 participants, and we use the data subsampled at a rate of 0.4 second.

Street This video is recorded from a street view, of low density pedestrian traffic,
with manual motion tracking [16]. The dataset contains motion of 148 pedestrians
over a period of roughly 5 minutes.

(a) Campus (b) Bottleneck (c) Street

Fig. 3: Benchmarks used for our experiments (a) In the Campus dataset, a sparse
set of students walk pass a fixed camera. (b) In the Bottleneck dataset, multiple
cameras track participants walking into a narrow hallway. (c) In the Street dataset, a
fixed camera tracks pedestrian motion on a street.

We include comparison with Constant Velocity and Constant Acceleration mod-
els as they are simple to implement, and provide a common benchmark to recent
approaches with similar comparisons. For constant motion models, we used the
last observed velocity and acceleration, respectively, for prediction. In other words,
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states are updated using the last observed velocity for Constant Velocity model, and
the last observed acceleration for Constant Acceleration model.

5.1 Learning maximum likelihood (EM)

We show that our method can refine itself by using the EM algorithm. As discussed
in Section 4.3, EM step reduces the difference between the observed state and the
prediction based on our motion model. Figure 4a visually illustrate the effect of the
EM algorithm; as new data is presented and pedestrians interact with each other,
the estimated uncertainty, Q, decreases. Without EM step, the same, initially given
estimated uncertainty is used as Q without refining its values.

We can analyze the effect of estimating Q (as discussed in Section 4.3) by re-
moving this step from our approach. We compare the performance of BRVO on the
Campus sequences with and without this EM feedback loop.

Similar to the above experiments, BRVO learns for the first 5 frames, and predicts
position of later frames. We test the improvement on varying level of noise. The
same initial estimated error Q is used for all cases. We use Gaussian noise with
standard deviation 0.05m, 0.1m, 0.15m to the ground truth data. Figure 4b show
the measured improvement in term of reduced prediction error. As the chart shows,
using the EM loop to estimate the uncertainty leads to more accurate predictions.
We also observe that the improvement increases under larger amounts of noise.

(a) Estimation Refinement
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Fig. 4: The effect of EM algorithm. (a) This figure shows the trajectory of each
agent and the estimated error distribution (ellipse) for the first five frames of
Campus-3 data. The estimated error distributions gradually reduces as agents in-
teract. (b) The improvement provided by the EM feedback loop for various amounts
of noise. As the noise increases, this feedback becomes more important.
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5.2 Noisy Data

Sensor noise is an important concern in many robotic systems. To analyze how
BRVO responds to noise in the data, we compare its performance across varying
levels of synthetic noise. Again, BRVO learns for first 5 frames, and predicts posi-
tions on later frames. Figure 5 shows average prediction error across all the Campus
sequences for BRVO, Constant Acceleration, and Constant Velocity models. In all
cases, adding noise increases the prediction error. However, BRVO is minimally
imprecated compared to other methods.
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Fig. 5: Mean prediction error (lower is better). Prediction error after 7 frames
(2.8s) on Campus dataset. As compared to constant velocity and constant accelera-
tion models, BRVO can better cope with varying amount of noises in the data.

Figure 6 shows the percentage of correctly predicted path within varying accu-
racy threshold. At an accuracy threshold of 0.5m, BRVO far outperforms ContAcc
and ConstVel models (44% vs 8% and 11% respectively) even with little noise. With
larger amounts of noise, these difference is magnified further.

5.3 Varying Density Scenario

We use the Bottleneck scenarios to analyze the effect of varying densities. This
scenario shows a variety of densities: before the passage, there is a high density of
crowd from people backing up and waiting, as people pass through the entrance, the
density drops to a more medium level, only a few people at a time enter the hallway
resulting in a low density. We compute the error of BRVO for each of these regions
of the scenario, for both the 1m and 2.5m hallway.
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(b) 0.1m
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Fig. 6: Prediction Accuracy (higher is better) (a-c) Shows prediction accuracy
across various accuracy thresholds. The analysis is repeated at three noise levels.
For all accuracy thresholds, for all noise levels BRVO produces more accurate pre-
dictions than constant velocity of acceleration models. The advantage is most sig-
nificant for large amounts of noise in the sensor data as in (c).

Figure 7 compares our error to Constant Velocity and Acceleration models. Both
Constant Velocity and Constant Acceleration model have large variations in error
for different density, but BRVO performs about equally well across all the densities
as it dynamically adapts the parameters each frame.
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(a) Bottleneck-100
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Fig. 7: Error at Various Densities (lower is better). In high-density scenarios there
is little motion and simple models such as constant velocity perform about as well as
BRVO. However, in low and medium densities where there is more motion BRVO
provides more accurate motion prediction than the other models. In general, BRVO
performs consistently well across various densities.
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5.4 Varying Sampling Rates

Our method also works well with vey large timesteps. To demonstate this aspect, we
show the results on the Street dataset with varying sampling intervals to sub-sample
the data. We chose Street scenario,the highest framerate at 0.04s per frame. Figure 8
shows the graph of the mean error verses sampling interval. From the result, we can
see that our method performs very well compared to Constant Velocity and Constant
Acceleration model in every sampling interval.
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Fig. 8: Error vs Sampling Interval As the sampling interval increases the error of
Constant Velocity and Constant Acceleration estimations grows much larger than
that of BRVO.

6 Conclusion

We have presented a method to predict pedestrian trajectories using agent-based
velocity-space reasoning. The BRVO model we introduced is an online motion pre-
diction method, which learns per-agent parameters even without prior knowledge
about the environment. We demonstrated the ability of this approach to perform
well on several different datasets, with varying amounts of sensor noise, interaction
levels, and density. Specifically, we showed our approach performs very well with
noisy data and low framerate scenarios. We also showed that we can handle dynamic
scenarios with temporal and spatial variance in density and speed. BRVO assumes
no prior knowledge of the scenario to which the model is applied to. As such, it is
well suited for a mobile robot that may frequently encounter new obstacles.
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In the future, we would like to integrate our BRVO motion model for on-
line/offline tracking. The improved motion model should increase tracking perfor-
mance in typical environments but also in challenging scenarios, such as occluded
scenes, low-resolution input, and data with missing frames, where the predictions
from BRVO can help cope with these challenging issues. Additionally, we would
like to incorporate our motion prediction model with an online planner for robots
navigating in crowded scenes.
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