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Abstract—Social networks produce an enormous quan-
tity of data. Facebook consists of over 400 million ac-
tive users sharing over 5 billion pieces of information
each month. Analyzing this vast quantity of unstructured
data presents challenges for software and hardware. We
present GraphCT, a Graph Characterization Toolkit for
massive graphs representing social network data. On a 128-
processor Cray XMT, GraphCT estimates the betweenness
centrality of an artificially generated (R-MAT) 537 million
vertex, 8.6 billion edge graph in 55 minutes and a real-
world graph (Kwak, et al.) with 61.6 million vertices
and 1.47 billion edges in 105 minutes. We use GraphCT
to analyze public data from Twitter, a microblogging
network. Twitter’s message connections appear primarily
tree-structured as a news dissemination system. Within the
public data, however, are clusters of conversations. Using
GraphCT, we can rank actors within these conversations
and help analysts focus attention on a much smaller data
subset.

I. INTRODUCTION

Since the explosion of the Internet in the 1990s, nu-

merous researchers have focused on identifying unifying

characteristics of online communities. Efforts such as

identifying political factionalism [1] or recommendation

networks [24] have provided unique, simplifying insights

into the behavior of human social groups linked by

electronic networks. Such insights are of intellectual

and practical interest. Underlying this interest is the

hypothesis that relationships and behaviors in virtual

communities re ect similar phenomena in the real world,

such as commercial proclivities, political leanings, and

propensity for violence.

Social media provide tremendous challenges for re-

searchers and analysts trying to gain insight into human

and group dynamics. A central problem is the sheer

amount of data available in social media. For example,

the social media aggregation site Spinn3r [34] advertises

that they provide information on over 20 million blogs,

feeds that stream over 100 thousand posts and an 8 month

archive consisting of 21 TB of data. Facebook currently

involves over 400 million active users with an average of

120 `friendship connections each and sharing 5 billion
references to items each month [11].

One analysis approach treats the interactions as graphs

and applies tools from graph theory, social network

analysis, and scale-free networks [29]. However, the

volume of data that must be processed to apply these

techniques overwhelms current computational capabilities.

Even well-understood analytic methodologies require

advances in both hardware and software to process the

growing corpus of social media.

Social media provides staggering amounts of data.

Extracting knowledge from these volumes requires au-

tomation. Computing quickly over this data is a challenge

for both algorithms and architectures.

We present GraphCT, a Graph Characterization Toolkit

capable of applying complex analysis tools to massive

graphs. We analyze graphs representing Twitter s pub-

lic data stream using GraphCT and demonstrate that

the packaged metrics reveal interesting characteristics

of Twitter users interactions. The graph is rich with

broadcast trees that repeat the same news stories or other

information. We want to identify in uential sources and

not those who only rebroadcast information. Removing

tree-like broadcast networks identifies conversations, and

ranking users focuses on conversations with important or

in uential users. An analyst can focus on a handful of

conversations rather than tens of thousands of interactions.

These graphs are huge with respect to traditional social

network analysis tools but do not present GraphCT s full

capabilities. We also apply GraphCT to massive artificial

networks similar in size to the Facebook friend network.

On a 128-processor Cray XMT, approximating a complex

metric, betweenness centrality, on an artificial graph with

537 million vertices and 8.54 billion edges takes 55

minutes. An estimate on a real-world graph [22], [23]

with 61.6 million vertices and 1.47 billion edges takes

105 minutes. We are unaware of any other package or
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system that applies complex measurements to graphs of

this size. These graphs are 3-4 orders of magnitude larger

than graphs analyzed by packages with similar features.

The Cray XMT is an architecture designed for analysis of

large data sets. The cost even of approximating a metric

on massive graphs is worth noting. Approximations on

Section III s real data demonstrate large variability and

significant errors; more work on approximation quality

is needed.

The remainder of this introduction provides further

background on graph representations for social networks.

Section II brie y summarizes the algorithms we apply to

the Twitter network. The analysis results are discussed

in Section III. Details of GraphCT, our tool for massive

social network analysis, appear in Section IV. Section V

summarizes GraphCT s application to the Twitter data

and presents future directions for massive social network

analysis.

A. Graph Analysis for Social Networks

We treat social network interactions as a graph and use

graph metrics to ascribe importance within the network.

There are two common representation approaches. One

is to represent the actors by vertices and connect two

actors whenever they share an interaction. Another forms

a bipartite graph considering both actors and interactions

as vertices and connecting actors with interactions. We

use the former representation connecting actors to actors

in the remainder of this paper.

For social media sites like Twitter, user names (@foo)

are vertices, and we add an edge from @foo to @bar
whenever @foo posts a message mentioning @bar. For

most metrics, we treat the graph as undirected, so an edge

from @foo to @bar also connects @bar back to @foo.

This representation aggregates interactions and focuses

on the relationships between actors. A directed model

connecting only @foo to @bar could model directed

ow and is of future interest.

Various measures of the vertices and connectivity

within a graph identify critical portions. A simple measure

like the degree distribution re ects the relative volume of

messages related to individual actors. Another measure,

betweenness centrality [14], can identify critical vertices

in a network. High centrality scores indicate that a

vertex lies on a considerable fraction of shortest paths

connecting pairs of vertices and may play an important

role in the network. Betweenness centrality has been

applied extensively to the study of various networks

including biological networks [19], sexual networks and

the transmission of the AIDS virus [25], identifying key

actors in terrorist networks [8], organizational behavior,

and transportation networks [16].

Betweenness centrality measures the fraction of short-

est paths passing through a vertex. Considering short
paths within a length k of the shortest paths pro-

duces k-betweenness centrality [20], a measure intended

to be more robust against changes within the graph.

Section II-A summarizes the k-betweenness centrality

algorithm.

B. Social Network Graph Characteristics

The graphs representing social networks often share

common characteristics [28] useful for tuning software.

The degree distribution tends towards a heavy tail; a

few vertices have high degree while most have very

low degrees. Natural clusters form, but the clusters

do not partition the graph. The clusters overlap where

communities share members, and some actors may not

join any larger communities. Characteristics change over

time. This paper considers only a snapshot, but ongoing

work examines the data s temporal aspects.

II. ALGORITHMS FOR MASSIVE SOCIAL NETWORK

ANALYSIS

GraphCT supplies multithreaded implementations of

known algorithms for the Cray XMT. We review the

algorithms and their implications for multithreaded im-

plementation.

A. Algorithm Summary

The analysis in Section III considers degree distribu-

tions, connected components, and betweenness centrality

along with a few graph manipulations. GraphCT provides

routines for the former but assumes all manipulations

occur before being given the data or can be expressed as

colorings. GraphCT collects highly parallel algorithms for

betweenness centrality [26], [20], connected components

(similar to [5]), and others. We brie y describe these

algorithms.

Computing degree distributions and histograms is

straight-forward. Our static, undirected graph data struc-

ture uses the compressed sparse row format and con-

tains the degrees implicitly. The degree statistics are

summarized by their mean and variance. A histogram

produces a general characterization of the graph; a few

high degree vertices with many low degree vertices

indicates a similarity to scale-free social networks.

GraphCT extracts connected components from the

graph though a technique similar to Kahan s algorithm [5].

In the first phase searches breadth-first simultaneously

from every vertex of the graph to greedily color neighbors

with integers. These parallel searches track which colors
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collide. The next phase repeatedly absorbs higher labeled

colors into lower labeled neighbors. Relabeling the colors

downward occurs as another parallel breadth-first search.

This effectively combines the second and third steps in

Kahan s method. Once there are no more collisions, the

remaining colors determine the components.

Betweenness centrality is a more complex metric for

ranking vertices. Betweenness centrality counts along

how many shortest paths a particular vertex lies. More

precisely,

BC(v) =
∑

s �=v �=t∈V

σst(v)

σst
,

where V is the set of vertices, σst(v) is the number of

shortest paths from s to t passing through v, and σst is the

total number of shortest paths from s to t. Approximating

this metric by randomly sampling a small number of

source vertices s improves the running times and allows

computation of approximate betweenness centrality on

massive graphs. Sampling does not degrade the score

quality significantly on artificial networks [3]. Section III

investigates the sampling trade-off on real data.

Betweenness centrality is not robust against noise.

Adding or removing a single edge may drastically alter

many vertices betweenness centrality scores. Considering

not only the shortest paths but also all paths within length

k of the shortest paths introduces robustness against

small changes and produces k-betweenness centrality [26].

k-Betweenness centrality considers alternate paths that

may become important should the shortest path change.

When k = 0, this produces the traditional betweenness

centrality.

The algorithm GraphCT uses to compute k-

betweenness centrality runs across every source vertex s.

The contributions by each source vertex can be computed

independently and in parallel, given sufficient memory

(O(S(m+n)), where S is the number of parallel source

vertices). A parallel breadth-first search finds the shortest

paths from s to all other vertices. The breadth-first search

also follows links within the same level, one level back,

and so on up to k − 1 levels back to accumulate paths

of length at most k longer than the shortest.

A recurrence generalizing Brandes s betweenness

centrality recurrence [6] computes the k-betweenness

centrality path counts. The value for a vertex v depends on

its predecessors values. Another parallel sweep following

the breadth-first search levels evaluates the recurrence.

B. Software and Hardware Needs for Massive SNA

Path-based metrics like betweenness centrality contain

opportunities for fine-grained parallelism beyond running

multiple searches simultaneously. Unlike that coarse level

of parallelism, the fine-grained parallelism within each

search does not require O(m+ n) data storage per task.

Exposing the fine-grained parallelism permits pipelining

of memory accesses for latency tolerance, but exploiting

the parallelism requires a few programming environment

and hardware features. The irregular memory access

patterns also dictate a globally addressable memory space.

Such common programming environments as

OpenMP [31] and Cray [32] compilers expose the

fine-grained parallelism through looping constructs

and compiler directives. The only synchronization

operation required by Section II-A s analysis algorithms

is an atomic fetch-and-add operation. This operation is

available through standard environments like OpenMP

and platform-specific compilers like Cray s.

Taking advantage of the fine-grained parallelism re-

quires light-weight thread management. The loops are

not strict vector loops but irregular combinations of

reads, conditionals, operations, and writes. Some current

hardware platforms such as current GPGPUs vector-

ize conditional-laden loops through predicated instruc-

tions [36]. All threads read all instructions for all possible

conditional outcomes, but each thread executes fully only

those instructions that match a particular conditional path.

For our algorithms, the irregular activities within the loops

restrict the active execution to only a few threads at any

time, wasting computational resources.

In contrast, the Cray XMT [21] provides significant

hardware assistance for massive graph analysis. The

architecture tolerates high memory latencies by main-

taining many active thread contexts in hardware. These

threads are fully general and do not rely on pseudo-

vectorization. Synchronization costs are amortized over

the same memory latencies, leading to high processor

efficiency even with many data dependencies. Scaling the

number of available thread contexts directly with memory

size permits.

Each Threadstorm processor within a Cray XMT con-

tains 128 thread contexts in hardware streams. Streams

may be blocked temporarily waiting for memory and are

remapped to new threads when synchronizing memory

accesses retry too often. The processor dispatches one

instruction per cycle, selecting an instruction from each

ready stream in turn. There is no cache in the processors;

all latency is handled by threading. Each processor is

accompanied by 8 GiB of DDR RAM, and processors

are connected through Cray s SeaStar network.

The Cray XMT features a large, globally addressable

memory with hashed addresses breaking locality and

alleviating hot spots. Synchronization takes place at
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TABLE I
COMMON MICROBLOGGING SYMBOLS USED ON TWITTER.

Symbol Interpretation

@ User foo is addressed as @foo within notices.
# A “hashtag” is a user-provided word denoting a topic.

the level of 64-bit words. The Cray XMT supports

atomic fetch-and-add operations along with more exotic

synchronization primitives like full/empty bits. The

cost of synchronization is amortized over the cost of

memory access, and fine-grained synchronization latency

is tolerated through same the massively multithreaded

architecture.

The Cray XMT used for these experiments is located

at Pacific Northwest National Lab and contains 128

Threadstorm processors running at 500 MHz. These 128

processors support over 12 thousand user thread contexts.

The globally addressable shared memory totals 1 TiB

and can hold graph data structures containing more than

4 billion vertices and 34 billion edges.

III. APPLYING MASSIVE SNA TO REAL DATA

A. Micro-Blogging: Twitter

As an example of the power and utility of GraphCT

for projecting complex network data into analytically

tractable information, we consider networks derived from

real-world social media, Twitter. Twitter is a social

network in which short 140-character messages, known

as “tweets”, are transmitted via cell phones and personal

computers onto a central server where they can be viewed

by the entire community. Analyses reported here are

evaluated on Twitter updates aggregated by Spinn3r [34],

a web and social media indexing service which conducts

real-time indexing of all blogs. From the Spinn3r corpus

several representative Twitter data sets are extracted

motivated by two crises occurring in September 2009.

1) In uenza H1N1 Tweets in September 2009: While

the impact of the 2009 global in uenza H1N1/A pan-

demic was milder than expected, concern persists due

to the severity of previous pandemics. In particular the

1918 Spanish Flu infected 500 million individuals and

caused 50 million deaths worldwide between March

1918 and June 1920 [27]. The correlation between open

communications and public health information is clear in

the abrupt explosion of social media articles published

in the 17th week of April 2009. Table II reports the

number of English non-spam social media articles (not

including micro-blogs), with keywords h1n1 or swine
flu, posted during the first eight weeks of the pandemic

TABLE II
NOVEL INFLUENZA H1N1/A ENGLISH, NON-SPAM ARTICLES (NOT

INCLUDING MICRO-BLOGS) POSTED PER WEEK IN 2009

Week in 2009 # Articles

17th 5 591
18th 108 038
19th 61 341
20th 26 256
21th 19 224
22th 37 938
23th 14 393
24th 27 502

in 2009 [9]. Informed by the previous statement, a harvest

of all public tweets published during an arbitrary time-

frame, September 2009, containing the keywords flu,

h1n1, influenza and swine flu is aggregated into

one data set. An example H1N1 topic Twitter stream is

provided in Fig. 1.

2) Atlanta Flood Tweets in September 2009
#atlflood: A second crisis motivating a Twitter data

set is the dramatic ooding of Atlanta, Georgia in late

September 2009. The following is a quote from the

federal agency that tracks ooding in the United States:

the U.S. Geological Survey cannot accurately

characterize the probability due to its extreme

rarity [...] Nationwide, given that our old-

est streamgauging records span about 100

years, the USGS does not cite probabilities for

oods that are beyond a 0.2 percent (500-year)

ood [35].

Twitter users ocked to this medium to share photographs,

news updates, weather conditions and the location of

• jaketapper: every yr 36,000 Ams (on avg) die from
regular u. this COULD be higher. + the big diff is the
reg u kills older Ams, H1N1 kills the young

• jaketapper: @EdMorrissey Asserting that all thats
being done to prevent the spread of H1N1 is offering
that hand-washing advice is just not true.

• jaketapper: @dancharles as someone with a pregnant
wife i will clearly take issue with that craziness. they are
more vulnerable to H1N1,as are toddlers

• dancharles: RT @jaketapper @Slate: Sanjay Gupta
has swine u http://bit.ly/B9IFe <= Glad I listened to
his “stay u free ” tips

Fig. 1. Example of a Twitter conversation between Jake Tapper and
Dan Charles in the H1N1 data set.
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current ood points throughout the metroplex by con-

catenating the hashtag #atlflood to their tweets. We

created a data set of all public tweets during a five day

window between the 20th and 25th of September 2009

containing the hashtag #atlflood.
3) All public tweets September 1st, 2009: A third

data set is compiled from all public tweets posted on

September 1st, 2009. We leverage the larger size of this

data to evaluate performance (runtime and accuracy) of

GraphCT s algorithms.

B. Tweet Graphs
User interaction graphs are created by adding an

edge into the graph for every mention (denoted by the

prefix @) of a user by the tweet author. Duplicate user

interactions are thrown out so that only unique user-

interactions are represented in the graph. Selected tweet

graph characteristics are listed in Table III of both the full

graph and of the largest weakly connected component

(LWCC).

TABLE III
TWITTER USER-TO-USER GRAPH CHARACTERISTICS

Tweet Graph Data Users
Unique user
interactions

Tweets with
responses

Sep 2009 H1N1 46,457 36,886 3,444
(LWCC) 13,200 16,541 1,772

20-25 Sep 2009 #atlflood 2,283 2,774 279
(LWCC) 1,488 2,267 247

1 Sep 2009 all 735,465 1,020,671 171,512
(LWCC) 512,010 879,621 148,708

C. Degree (Power Law) Distribution of Data
A criterion in many complex systems is that properties

are often distributed as power laws, also known as 80/20

rules or Pareto rules where 80% of the effects come from

20% of the causes. The numbers 80 and 20 are not special,

one observes power laws with different breakdowns. The

key fact is the disproportionate in uence of relatively few

elements. For our purposes, power laws are important

since they imply that by characterizing the in uential

elements in a community, we can characterize the com-

munity as a whole. In network theory, a key distribution

of interest is the degree distribution. So called scale-free 1

1The term “scale-free” is a technical characterization of power
law distributions. They are so named because changing the scale
of measurement (e.g. going from imperial to metric units) leaves
the mathematical structure of the distribution unchanged; there is no
preferred scale in the distribution. In contrast, the normal distribution,
can be transformed to a simpler mathematical form by choosing a
length scale equal to the standard deviation.

TABLE IV
TOP 15 USERS BY BETWEENNESS CENTRALITY

Rank Data Set
H1N1 atl ood

1 @CDCFlu @ajc
2 @addthis @driveafastercar
3 @Official_PAX @ATLCheap
4 @FluGov @TWCi
5 @nytimes @HelloNorthGA
6 @tweetmeme @11AliveNews
7 @mercola @WSB_TV
8 @CNN @shaunking
9 @backstreetboys @Carl

10 @EllieSmith_x @SpaceyG
11 @TIME @ATLINtownPaper
12 @CDCemergency @TJsDJs
13 @CDC_eHealth @ATLien
14 @perezhilton @MarshallRamsey
15 @billmaher @Kanye

Fig. 2. Degree distribution of the Twitter user-user graph.

networks exhibit power-law distributions in their degree

distributions most connections are concentrated in a

small fraction of the vertices (e.g. 80 of the connections

involve 20% of the vertices or 90/10 or 99/1) [30].

Power laws have been observed in broad variety of social

networks [30], [13], [25]. Scale-free tweet mention graphs

would imply that a few Twitter users and “mentioners”

are responsible for a disproportionately high fraction of

a community s discourse.

An observation in all three datasets is that there

are relatively few high-degree vertices (see Fig. 2).

Twitter users tend to refer to relatively few “broadcast”

vertices. Empirically examining some of the top vertices

(Table. IV) in the twitter datasets reveals that these high-

degree vertices are dominated by major media outlets
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and government organizations2.

One interpretation of Twitter s user network structure is

in news dissemination. Users track topics of interest from

major sources and occasionally re-broadcast (retweet)
that information. Information ows one way, from the

broadcast hub out to the users. In incidental communi-

cation, the user will refer to the broadcast source. This

leads to the question about the nature of these “second

order” communications. Is Twitter used simply as a one-

to-many broadcast medium, or are there many-to-many

communication patterns hidden in the data?

To examine this question, we looked for subgraphs in

the data that exhibited many-to-many attributes. We used

a straight-forward approach to identify subgraphs. We

retained only pairs of vertices that referred to one-another

through `@ tags (see Table III). This lead to dramatic

reductions in the size of the networks. We present the

results graphically in Fig. 3 for each of the data sets and

an example Twitter stream with conversation from ABC

news correspondent Jake Tapper in Fig. 1.

Our analyses of sub-communities in Twitter data

informed the following conclusions. Sub-communities are

relatively small fractions of the overall data. Qualitative

measurements assist identification of scaling behavior.

We observed reduction factors, due to filtering non-

conversation interactions, as high as two orders of magni-

tude (see Table III). Inspection of the high ranking users

derived from the GraphCT betweenness centrality scores

on the smaller datasets show the content is on-topic (i.e.

relevant to keyword search) and uncluttered with noise

(e.g. spam, off-topic conversations). We also observe

some groups within the subcommunities using Twitter as

a text messaging service, engaging in direct conversations

regarding the topic of interest. An interesting artifact in

the tweet graphs show numerous “self-referring” vertices,

Tweeters whose updates reference themselves, informing

evidence that Twitter mimics an echo chamber in addition

to a broadcast messaging service.

D. Runtime Characteristics

In social media analysis, many times we are interested

in only the most information rich sources, or those

actors that have the greatest ability to broker information

between parties. The betweenness centrality metric is

used to assign varying scores related to the latter of

the previous statement. To evaluate the effectiveness of

2For the H1N1 data, the authors were able to identify the high-
referenced vertices as media and government outlets. For the Atlanta
Flood data, the authors from the Atlanta area examined the data and
identified most of the top vertices as Atlanta based newspapers, TV
and radio personalities.

GraphCT on real-world data we compare performance,

both in accuracy and runtime, on the task of identifying

top ranked actors, across evaluation settings. Exact

betweenness centrality is compared against approximate

centrality. The value in this comparison is the identifi-

cation of trade-offs between run-time performance and

accuracy. Even on medium sized graphs, on the order

of 107 vertices and edges, exact centrality measurements

become intractable (bounded by memory capacity and

processor speeds) on commodity machines. Because

of this the GraphCT betweenness algorithm allows for

varying levels of approximation (see Section II-A). In

addition to understanding the trade-offs through varying

levels of approximation, an analyst or user may require a

task to identify a set of the top N% actors in a given social

network. Moreover, to compare accuracy of approximate

BC vs. exact we use normalized set Hamming distance

as a metric to compare the top N% ranked actors across

evaluations [17], [12].

E. Analysis and Conclusions

Let us first consider the runtime performance of

GraphCT executed on real-world graphs. Due to the

many-component property of the Twitter data, we allocate

several evaluation settings by varying the percentage of

randomly sampled nodes (see Section II-A). Specifically

we randomly sample 10%, 25% and 50% of the nodes

in each tweet graph, achieving 90% confidence with

the runtime averaged over 10 realizations for each

evaluation setting and data set. Exact centrality, 100%

node sampling, is the control for these calculations. The

runtime characteristics are graphed on a log-linear scale in

Fig. 4; the x-axis is the percentage of all vertices randomly

sampled in the approximate betweenness centrality calcu-

lations and the y-axis measures the runtime in seconds.

Inspecting the figure, there is a clear and dramatic runtime

performance difference of 10% sampling compared to

exact calculations, 30 seconds compared to nearly 49

minutes respectively.

Analysts incorporating GraphCT algorithms into their

work ows may have explicit requirements on the accuracy

of results, acknowledging the trade-off between runtime

speed and accuracy of the approximate betweenness

centrality. In analyzing social networks, the analyst is

most interested in the actors with the highest score. To

inform these decisions we evaluate accuracy of simple

betweenness centrality when 10%, 25% and 50% of the

nodes in each real-world tweet graph are sampled. The

chosen metric, described in the previous section, is the

normalized top k set Hamming distance. The top 1%,
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Original Largest Component Subcommunity

1164 vertices 37 vertices

17k vertices 1184 vertices

Atlanta Flood

H1N1

Fig. 3. Subcommunity filtering on Twitter data sets

5%, 10% and 20% users by approximate betweenness

centrality score are compared to the top N% exact

centrality ranked users, achieving 90% confidence with

the accuracies averaged over 10 realizations for each

evaluation setting and data set. The accuracy trade-

off results are plotted in Fig. 5; the y-axis is labeled

with the percent of top k actors present in both exact

and approximate BC rankings and the x-axis labels

the percentage of all vertices randomly sampled in the

approximate betweenness centrality calculations. The

accuracy remains above 80% comparing the top 1% and

5% users when sampling 10% of the real-world tweet

graphs. The accuracy climbs to over 90% comparing the

top 1% and 5% ranked users and sampling 25% and 50%

of the vertices.

IV. GRAPHCT: SNA ALGORITHMS FOR MASSIVE

GRAPHS

The literature contains a number of different social

network analysis software packages developed for se-

quential workstations and high performance, parallel

machines [33], [4], [15]. Workstation implementations

are limited in the size of graphs they analyze by the size

of main memory and the inability of the cache hierarchy

to accelerate irregular memory accesses. A representative

software package is typically limited to several hundred

thousand or several million vertices.

GraphCT is a multithreaded Graph Characterization

Toolkit implemented on the massively multithreaded Cray

XMT. It is designed from the ground up to expose fine-

grained parallelism and profitably use tens of thousands

of hardware threads. Loading massive datasets into
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Fig. 4. Runtime performance of GraphCT Simple Betweenness
Centrality. x axis: The percentage of the total vertices that were randomly
sampled in the simple betweenness centrality calculations. y-axis: Kernel
runtime performance, in seconds (log scale), on the 128 node Cray
XMT

Fig. 5. Accuracy trade-off between exact and approximate BC. x
axis: The percentage of the total vertices that were randomly sampled
in the approximate BC calculations. y-axis: The percent of top k
actors present in both exact and approximate BC rankings. Legend:
k = 1(�), 5(♦), 10(�), 20(̄ )

memory and unloading results often occupies a majority

of computation time. GraphCT contains a small scripting

interface to amortize I/O time over multiple analysis

passes within a dataset. GraphCT also runs sequentially

on POSIX-like platforms.

A. Kernels

Running multiple analytic kernels over one in-memory

graph requires each kernel to use a common graph data

structure. Some social network analysis software packages

require the user to choose a data representation according

to the structure of the graph and the analysis to be

performed. GraphCT makes no assumptions about the

type or structure being analyzed. The graph is stored

in compressed-sparse row (CSR) format, a common

representation for sparse matrices. The number of vertices

and edges is known when ingesting the data, so the size

of the allocated graph is fixed.

Implemented top-level kernels include marking con-

nected components, calculating statistical distributions

of out-degree and component sizes, extracting k-cores,

marking a breadth-first search from a given vertex of a

given length, finding the per-vertex clustering coefficients,

and ranking vertices according to their k-betweenness

centrality. Provided utility functions convert a directed

graph to an undirected graph or extract a subgraph

induced by a coloring function. Implementing additional

graph kernels is straightforward due to the common data

structure and interface.

After loading the graph into memory and before

running any kernel, the diameter of the graph is estimated

by performing a breadth-first search from 256 randomly

selected source vertices. The diameter is estimated by

four times the longest path distance found in those

searches. The diameter estimate is stored globally for use

in determining the length of queues to allocate in traversal-

based kernels. Users do not need to supply topology

information but may specify an alternate multiplier or

number of samples. Overestimates waste some memory,

while underestimates cause later routines to run out of

space and fail. This determines the lengths of queues and

does not affect accuracy of the kernels.

Graph kernels accumulate results in structures acces-

sible by later kernel functions. Finding all connected

components, extracting components according to their

size, and analyzing those components is a common

sequence. The connected components function returns

the number of components and the coloring, and utility

functions produce the relevant subgraphs to analyze.

B. Scripting Interface

Not every analyst is a C language application developer.

To make GraphCT usable by domain scientists interested

in studying their graphs, GraphCT contains a prototype

scripting interface to the various analytics.

The script is executed sequentially with the first line

reading in a graph data file from disk and the following

lines calling one kernel function each. Kernels that

produce per-vertex data can write the outputs to files

as specified in the command. All other kernels will print

their results to the screen.

The language employs a stack-based “memory” func-

tion, similar to that of a basic calculator. At any time,

the graph that is currently being operated on can be

pushed onto the stack. Another graph, or a subgraph of

the original, can then be analyzed. When ready to discard
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this graph and return to the previous, the graph can be

recalled.

An example script follows:

read dimacs patents.txt
print diameter 10
save graph
extract component 1 => comp1.bin
print degrees
kcentrality 1 256 => k1scores.txt
kcentrality 2 256 => k2scores.txt
restore graph
extract component 2
print degrees

The script reads a DIMACS-formatted file called

patents.txt into memory. The diameter of the graph is ex-

plicitly estimated using breadth first searches originating

from a random selection of 10 percent of the vertices.

The full graph is stored, and then the largest component

is extracted. At the same time, this component is stored

to disk in a binary format called comp1.bin. The degree

distribution statistics from this component are printed

to the screen. k-Betweenness centrality is estimated for

k = 1 on this component using 256 random source

vertices and the resulting scores are written to disk in a

per-vertex manner as k1scores.txt. This is repeated for

k = 2. The full graph is restored in memory and the

second largest component is then extracted. The degree

distribution statistics are produced for this component.

The current implementation contains no loop constructs

or feedback mechanisms. GraphCT reads the script line-

by-line; an external process can monitor the results and

control execution. Simple loop structures are a topic for

future consideration.

C. Performance and Scalability Characteristics

The software implementation of GraphCT was de-

signed from the ground up to take advantage of the

massively multithreaded Cray XMT architecture and

leverage the fine-grained multithreading and low-cost

synchronization primitives in order to achieve high

performance on a variety of sparse graphs. Previously

published experiments establish GraphCT s scalability on

the Cray XMT for social networks [26], [20], [10]. Fig. 6

shows performance of betweenness centrality estimation

on our data sets (Table III) and the much larger follower

graph from Kwak, et al. [22], [23]. The follower graph

from Kwak, et al. contains 61.6 million and 1.47 billion
edges. GraphCT required 105 minutes on 128 processor

Cray XMT to estimate betweenness centrality using 256

source vertices. Estimation on an artificial, scale-29 R-

Size = vertices ⋅ edges

T
im

e 
(s

)

1

10

100

1000

10000

●

4.9s 5.0s

16.6s

33.9s

66.0s

6303.0s

106 108 1010 1012 1014 1016 1018

● #atlflood tweets September 2009
H1N1 tweets September 2009
All tweets 1 September 2009
All tweets 1−9 September 2009
All tweets September 2009
Twitter follower graph from Kwak, et al.

Fig. 6. Time in seconds for GraphCT to estimate betweenness centrality
using 256 source vertices on a 128-processor Cray XMT. Table III
gives sizes for the first three data sets. The user interaction graph of
tweets from 1-9 Sept. 2009 consists of 4.1 million vertices, 7.1 million
edges; the graph for all of Sept. 2009 consist of 7.2 million vertices
and 18.2 million edges. The follower graph from [22], [23] contains
61.6 million and 1.47 billion edges.

MAT [7] graph of 537 million vertices and 8.6 billion

edges3 requires 55 minutes, emphasizing a difference

between real-world and artificial data.

A large number of graph datasets consist of plain

text files. One simple example is a DIMACS formatted

graph [2], which is made up of an edge list and an

integer weight for each edge. A single file with millions

of lines of edge list could overwhelm the main memory

on a service node, so GraphCT parses large text files on

the Cray XMT. We copy the file from disk to the main

memory of the Cray XMT and parse the file in parallel

into the internal binary compressed sparse row format. A

1 TiB main memory enables efficient loading and parsing

of much larger text input than does relying on the service

node and out-of-core algorithms.

V. CONCLUSIONS

Analyzing the social interaction graph induced by

public Twitter messages exposes Twitter s use in news

dissemination. Many relationships fall into tree-like

broadcast patterns. A few users are repeated by many.

3R-MAT parameters: A = 0.55, B = C = 0.1, D = 0.25, scale
29, edge factor 16
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Considering direction, bidirectional links are good indi-

cators of conversations even ignoring the time of each

message.

The moderate quality of approximations in Section III

show that more work on sampling is needed. We cur-

rently conjecture that the unguided random sampling in

GraphCT may miss components when the graph is not

connected. Another interesting problem is in quantifying

significance and confidence of approximations over noisy

graph data.

The September 2009 Twitter data also is relatively

small compared to GraphCT s capabilities. The data from

September 2009 has 735 thousand vertices and 1 million

edges, requiring only around 30 MiB of memory in

our na¨ve storage format. The Facebook friend network

consists of over 400 million users. A scale-29 R-MAT [7]

graph of 537 million vertices and 8.6 billion edges

emulates such a network and requires at least 7 GiB

for the basic graph connectivity data without weights

or other generally useful information. Approximating

the centrality on this graph using the 1 TiB Cray XMT

requires 55 minutes using 256 samples. Approximating

centrality similarly on the real-world Kwak, et al. Twitter

data set [22], [23] of 61.6 million vertices and 1.47 billion

edges requires 105 minutes. We are unaware of other

tools for evaluating complex metrics on such large graphs.

The combination of GraphCT and the Cray XMT s

massive multithreading permits exploration of graph data

sets previously considered too massive. GraphCT is freely

available as open source software from our web site and

runs both on the Cray XMT and on POSIX platforms.

During the publishing of this paper, we discovered

(via a re-send of a Twitter message) independent research

also analyzing public Twitter streams [22], [23]. We have

applied GraphCT on the Cray XMT to their data set

to gather performance data and still are analyzing the

graph metric results. Java, et al. [18] in 2007 present

an early work analyzing Twitter that applies relatively

simple analysis to a smaller data set and hypothesizes

more varied use than appears in our research.
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