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Preface

Acoustics was originally the study of small pressure wawesiii which can be detected by the human
ear:sound The scope of acoustics has been extended to higher andfiegaencies: ultrasound and
infrasound. Structural vibrations are now often includedcoustics. Also the perception of sound
is an area of acoustical research. In our present intramtuetie will limit ourselves to the original
definition and to the propagation in fluids like air and waketsuch a case acoustics is a partloid
dynamics

A major problem of fluid dynamics is that the equations of m&re non-linear. This implies that an
exact general solution of these equations is not avail#ueustics is a first order approximation in
which non-linear effects are neglected. In classical aomthe generation of sound is considered to
be a boundary condition problem. The sound generated bydspeaker or any unsteady movement
of a solid boundary are examples of the sound generation anesh in classical acoustics. In the
present course we will also include somero-acoustigorocesses of sound generation: heat transfer
and turbulence. Turbulence is a chaotic motion dominateddrylinear convective forces. An ac-
curate deterministic description of turbulent flows is nediitable. The key of the famous Lighthill
theory of sound generation by turbulence is the use of agraltequation which is much more suit-
able to introducing approximations than a differential &gun. We therefore discuss in some detalil
the use of Green'’s functions to derive integral equations.

Next to Lighthill’'s approach which leads to order of magdiuestimate of sound production by
complex flows we also describe briefly the theory of vortexnsbwhich can be used when a simple
deterministic description is available for a flow at low Maalmbers (for velocities small compared
to the speed of sound).

In contrast to most textbooks we have put more emphasis dnadoastics, both in relation to its
generation by pipe flows, and with respect to more advanaaatyton modal expansions and approx-
imation methods. This is particular choice is motivatedrmuistrial applications like aircraft engines
and gas transport systems.

This course is inspired by the book of Dowling and Ffowcs Mfilis: “Sound and Sources of Sound”
[52]. We also used the lecture notes of the course on aerohwmghacoustics given by Crighton,
Dowling, Ffowcs Williams, Heckl and Leppington [42].

Among the literature on acoustics the book of Pierce [17&higxcellent introduction available for a
low price from the Acoustical Society of America.

In the preparation of the lecture notes we consulted valoags which cover different aspects of the
problem [14, 16, 18, 37, 48, 70, 87, 93, 99, 113, 122, 145,168, 171, 217, 231].



1 Some fluid dynamics

1.1 Conservation laws and constitutive equations

In fluid dynamics we consider gas and liquids as a continuuenassume that we can define a “fluid
particle” which is large compared to molecular scales builsoompared to the other length scales
in our problem. We can describe the fluid motion by using theslaf mass, momentum and energy
conservation applied to an elementary fluid particle. Thegral form of the equations of conservation
are given in Appendix A. Applying these laws to an infinitealmolume element yields the equations
in differential form, which assumes that the fluid propertige continuous and that derivatives exist.
In some cases we will therefore use the more general intlgval A conservation law in differential
form may be written as the time derivative of the density of@pprty plus the divergence of the flux
of this property being equal to the source per unit voluméisfproperty in the particle [14, 168, 175,
217, 231].

In differential formt we have for the mass conservation:

op op 0

m + V-(pv) =m, or a7 + a—xi(pvi) =m, (1.2)
wherep is the fluid density and = (v;) is the flow velocity at positiorx = (x;) and timet. In
principle we will consider situations where mass is consérand so in generah = 0. The mass
source termm can, however, be used as a representation for a complexsgradgch we do not want
to describe in detail. For example, the action of a pulsasipigere or of heat injection may be well
approximated by such a mass source term.

The momentum conservation lawf:s
0 0 0
a(l)v) + V- (P+pvv)=f +mv, or a(ﬂvi) + a(Pji + pojvi) = fi + mo;, (1.2)
j

where f = (f;) is an external force density (like the gravitational forcé) = (P;) is minus the
fluid stress tensor, and the issuing mass adds momentum by@méaofmu. In some cases one can
represent the effect of an object like a propeller by a fommsity f acting on the fluid as a source of
momentum.

When we apply equation (1.1) we obtifor (1.2)

ov ovi  OPji v
— 4+ V-(P)+pv-Vv=f, or — + —+poj— = fj. 1.3
P (P)+p Por T ax TG (1.3)
1For convenience later we present the basic conservationhane both in the Gibbs notation and the Cartesian tensor
notation. In the latter, the summation over the values is2®derstood with respect to all suffixes which appear tiviee
given term. See also the appendix of [14].
2The dyadic product of two vectotsandw is the tensoww = (vj wj).

3(pv)t + V- (pvv) = ptv + pvt + V- (pv)v+ p(v-V)v = [pt + V- (pv)]v + p[vt + (v-V)V].



2 1 Some fluid dynamics

The fluid stress tensor is related to the presum@nd the viscous stress tensor= (z;j) by the
relationship:

P=pl -1, or Pij = péij — Tjj (1.4)

wherel = () is the unit tensor, and; the Kronecket delta. In most of the applications which
we consider in the sequel, we can neglect the viscous sstégéeen this is not the case one usually
assumes a relationship betweeand the deformation rate of the fluid element, expresseceinate-
of-strain tensoWv + (Vv)". It should be noted that a characteristic of a fluid is thapjtases a rate
of deformation, rather than the deformation itself, as sn¢hse of a solid. When this relation is linear
the fluid is described as Newtonian and the resulting monmmemtonservation equation is referred to
as the Navier-Stokes equation. Even with such a drasticli§icagion, for compressible fluids as we
consider in acoustics, the equations are quite complicétexnsiderable simplification is obtained
when we assume Stokes’ hypothesis, that the fluid is in |beahtodynamic equilibrium, so that the
pressurep and the thermodynamic pressure are equivalent. In suchreanebave:

= q(Vo + (Vo)) — Z(V-m)l, or @ =1 (2—; i Z%) -2 (23) 5 (L5)
wherey is the dynamic viscosity. Equation (1.5) is what we call astibative equation. The viscosity
n is determined experimentally and depends in general onetimpdraturel and the pressure.
At high frequencies the assumption of thermodynamic dayililim may partially fail resulting in a
dissipation related to volume chandeésv which is described with a volume viscosity parameter not
simply related tay [241, 175]. These effects are also significant in the prof@gaf sound in dusty
gases or in air over large distances [231].

In general (n = 0) the energy conservation law is given by ([14, 168, 231]):

0
at,o(e—k %02) + V. (pv(e+ %02)) =-V.-q—-V-(pv)+ V- (z-v)+ f-v (1.6)
or
O (pp(etript)) = 29 0
8'[ (e+ 20)+8_)(i(p0|(e+ 50 ))— o%; 8Xl(p )+ (T|101)+f0|

wherev = |v|, eis the internal energy per unit of masadq is the heat flux due to heat conduction.
A commonly used linear constitutive equation &prs Fourier’s law:

whereK is the heat conductivity which depends on the pressuend temperaturd. Using the
fundamental law of thermodynamics for a reversible pracess

Tds=de+ pd(p~?) (1.8)

and the equation for mechanical energy, obtained by takiagnner product of the momentum con-
servation law (equation 1.2) withy we obtain the equation for the entrépy

83) oG . al)j

oS
T( vVS)_—V- 7:Vv, or T( — | —
P + a+ P to U ox ox Mok,

(1.9)
(5,1_1|f|_] dij =0 if i #j.
5We call thisthe specific internal energgnd simplythe energywhen there is no amblguny

6r:Vy =V- (r-v) — v+ (V- 1) sincer is symmetric. Note the conven'[lc(rw)IJ —mnj



1.1 Conservation laws and constitutive equations 3

wheres is the specific entropy or entropy per unit of mass. When headectionV-q and viscous
dissipationt : Vv may be neglected, the flow isentropid. This means that the entropyof a fluid
particle remains constant:

oS

Except for regions near walls this approximation will appeabe quite reasonable for most of the
applications considered. If initially the entropy is eqt@h constant valug, throughout the fluid, it
retains this value, and we have simply a flow of uniform andstamt entropys = 5. Note that some
authors define this type of flow isentropic.

Equations (1.1-1.10) still contain more unknowns than ggus As closure condition we introduce
an additional constitutive equation, for example: e(p, s), which implies with equation (1.8):

b= )7 (@) (1.11a)
op Js
oe
T = (a_s),, (1.11b)

In many cases we will specify an equation of state: p(p, s) rather thare = e(p, s). In differential
form this becomes:

dp = c?dp + (8—'0) ds (1.12)
P

0S
where

2_ (P
c = (ap)s (1.13)

is the square of the isentropic speed of soard/hile equation (1.13) is a definition of the thermody-
namic variablec(p, s), we will see that indeed is a measure for the speed of sound. When the same
equation of state(p, s) is valid for the entire flow we say that the fluid i®mogeneousihen the
density depends only on the pressure we call the Baittropic When the fluid is homogeneous and
the entropy uniform (gl = 0) we call the flonhomentropic

In the following chapters we will use the heat capacity atstant volumeC,, which is defined for a
reversible process by

oe
Cv=|=—=) . 1.14
Y (aT )V (1.14)
For anideal gas the energg s a function of the temperature only
T
e(T) = / Cy dT. (1.15)
0
For an ideal gas with constant heat capacities we will ofenthe simplified relation
e=CyT. (1.16)

We call this aperfect gasExpressions for the pressupeand the speed of sour@will be given in
section 2.3. A justification for some of the simplificationgroduced will be given in chapter 2 where
we will consider the order of magnitude of various effectd darive the wave equation. Before going
further we consider some useful approximations and sonfierelift notations for the basic equations
given above.

"When heat transfer is negligible, the flowneidiabatic It is isentropic when it is adiabatienD reversible.



4 1 Some fluid dynamics

1.2 Approximations and alternative forms of the conservain laws for
ideal fluids

Using the definition of convective (or total) derivathv@ /Dt :

D 0

. .V 1.17

Dt ot tv ( )
we can write the mass conservation law (1.1) in the absenasofircam = 0) in the form:

1D

__p =—V-v (118)

p Dt

which clearly shows that the divergence of the velodityv is a measure for the relative change
in density of a fluid particle. Indeed, the divergence cquoesis to the dilatation rateof the fluid
particle which vanishes when the density is constant. Hah@ee can neglect density changes, the
mass conservation law reduces to:

V-v=0. (1.19)

This is the continuity equation fancompressibldluids. The mass conservation law (1.18) simply
expresses the fact that a fluid particle has a constant mass.

We can write the momentum conservation law for a frictionlégid (V- T negligible) as:

Dv
PO = Vp+ f. (1.20)
This is Euler’s equation, which corresponds to the secowdofaNewton (force = mass accelera-
tion) applied to a specific fluid element with a constant méke. mass remains constant because we
consider a specific material element. In the absence ofdni¢there are no tangential stresses acting
on the surface of the fluid particle. The motion is inducedhgyriormal stresses (pressure foredjp
and the bulk forced . The corresponding energy equation for a gas is

Ds
Dt
which states that the entropy of a particle remains constédnis is a consequence of the fact that heat
conduction is negligible in a frictionless gas flow. The haad momentum transfer are governed by

the same processes of molecular collisions. The equatistatef commonly used in an isentropic flow
is

0 (1.10)

D D
Pp_ 2P (1.21)
Dt Dt

wherec = c(p, s), a function ofp ands, is measured or derived theoretically. Note that in this

equation

2_ (P
c = (ap)s (1.13)

8The total derivative O/Dt of a functionf = f(x;,t) and velocity fieldv; denotes just the ordinary time derivative
df/dt of f(x(t),1t) for a pathx; = xj (t) defined byx; = vj, i.e. moving with a particle alongj = x; (t).
9Dilatation rate = rate of relative volume change.
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is not necessarily a constant.

Under reasonably general conditions [144, p.53] the vslacilike any vector field, can be split into
an irrotational part and a solenoidal part:

o9 oW 0V

v=Vp+VxV¥, V.¥ =0, or Vi = — + €jk—,
¢ ! OXi ik an 8Xj

-0, (1.22)

whereg is a scalar velocity potentialt = (¥;) a vectorial velocity potential or vector stream func-
tion, andejjx the permutation symbtfl. A flow described by the scalar potential only £ Vg) is
called a potential flow. This is an important concept bec#élus@coustic aspects of the flow are linked
to ¢. This is seen from the fact that- (VxW¥) = 0 so that the compressibility of the flow is described
by the scalar potentiad. We have from (1.18):

1D
—ZP 2. (1.23)
p Dt

From this it is obvious that the flow related to the acoustitdfie an irrotational flow. A useful
definition of the acoustic field is therefore: the unsteadyjgonent of the irrotational flow fiel&¢.
The vector stream function describes the vorticity= V x v in the flow, becaus& x Vg = 0. Hence
we havél:

w=Vx(VxW¥)=—-V2W¥, (1.24)

It can be shown that the vorticity corresponds to twice the angular velocfyof a fluid particle.
Whenp = p(p) is a function ofp only, like in a homentropic flow (uniform constant entrogsy/-d 0),
and in the absence of tangential forces due to the viscasity Q), we can eliminate the pressure and
density from Euler’s equation by taking the curl of this etipra?, to obtain

Lo+v-Vo=0-Vv—oV-v+ Vx(f/p). (1.25a)

If we apply the mass conservation equation (1.1) we get

p (i + v-V) (9) SR L Vx(i) . (1.25b)
ot p p p

We see that vorticity of the particle is changed either bgtehing?, by a mass source in the presence
of vorticity, or by a non-conservative external force fieR80, 110]. In a two-dimensional incom-
pressible flow ¥-v = 0), with velocityv = (vy, vy, 0), the vorticityw = (0, 0, w,) is not affected
by stretching because there is no flow component in the @recf . Apart from the source terms
—mw/p andV x (f /p), the momentum conservation law reduces to a purely kinenet. Hence
we can say tha¥ (andw) is linked to the kinematic aspects of the flow.

+1 if ijk =123 231 or 312
10 €Gjk = 1—1 if ijk =321,132 or 213 Note thatv x w = (¢jjkvj wk)-
0 ifany two indices are alike
11 For any vector fieldA: Vx(VxA) = V(V- A) — V2A.
12 (Vo) =0V-v—0-Vo+1-Vo, Vx(p~1Ivp) = —p~2(VpxVp) = —p~1p'(p)(VpxVp) = 0.
13 The stretching of an incompressible particle of fluid impl®y conservation of angular momentum an increase of
rotation, because the particle’s lateral dimension isceduln a viscous flow tangential forces due to the viscoesstio
change the fluid particle angular momentum, because theyai@rque on the fluid particle.



6 1 Some fluid dynamics

Using the definition of the specific enthalpy

i—es P (1.26)
P
and the fundamental law of thermodynamics (1.8) we find farrmdntropic flow (homogeneous fluid

with ds = 0):
dp

d =—. (1.27)
p
Hence we can write Euler’'s equation (1.20) as:
D 1
P T (1.28)
Dt p
We define the total specific enthalBy(Bernoulli constant) of the flow by:
B=i+ 502 (1.29)

The total enthalpyB corresponds to the enthalpy which is reached in a hypotidtitly reversible
process when the fluid particle is decelerated down to a zdoeity (reservoir state). Using the vector
identity'4:

(v-V)v = %Vuz + wxv (2.30)
we can write Euler’s equation (1.20) in Crocco’s form:

0 1

—vz—VB—a)xv—i——f (1.31)

ot p

which will be used when we consider the sound production bicity. The acceleratiom x v cor-
responds to the acceleration of Coriolis experienced bybarrwer moving with the particle which is
rotating at an angular velocity & = 3

When the flow is irrotational in the absence of external faffe= 0), with v = V¢ and hence
® = VxVgp = 0, we can rewrite (1.28) into:

oV
— +VB=0,
ot +

which may be integrated to Bernoulli’'s equation:

0

AN — g(t), (1.32a)
or at

p
o + 1 / —g(t) (1.32b)

Whereg(t) is a function determined by boundary conditions. As onlydhedient ofp is important
(v = V) we can, without loss of generality, absaglt) into ¢ and useg(t) = 0. In acoustics the
Bernoulli equation will appear to be very useful. We will aesection 2.7 that for a homentropic
flow we can write the energy conservation law (1.10) in thenfor

i(pB— p)+ V-(pvB)=f-v, (1.33a)
or

jt (et 207) +V-(ooB) = f 0. (1.33b)

Y- V)vli = 3 vj g 0i
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Exercises

a) Derive Euler’'s equation (1.20) from the conservationsl@u1) and (1.2).

b) Derive the entropy conservation law (1.10) from the epeanservation law (1.6) and the second law
of thermodynamics (1.8).

c) Derive Bernoulli’'s equation (1.32b) from Crocco’s eqaat(1.31).
d) Isthe trace% Pi of the stress tensd®; always equal to the thermodynamic presspre (0e/op~1)s?

e) Consider, as a model for a water pistol, a piston pushitiyawonstant acceleratianwater from a tube
1 with surface ared\; and length¢; through a tube 2 of surfack, and length¥,. Calculate the force
necessary to move the piston if the water compressibilitylma neglected and the water forms a free
jet at the exit of tube 2. Neglect the non-uniformity of thexflm the transition region between the two
tubes. What is the ratio of the pressure drop over the twostatte= 0?



2 Wave equation, speed of sound, and acoustic energy

2.1 Order of magnitude estimates

Starting from the conservation laws and the constitutiugaiiqns given in section 1.2 we will obtain
after linearization a wave equation in the next sectionsTimiplies that we can justify the approx-
imation introduced in section 1.2, (homentropic flow), ahdttwe can show that in general, sound
is a small perturbation of a steady state, so that second efféets can be neglected. We there-
fore consider here some order of magnitude estimates ofaheus phenomena involved in sound
propagation.

We have defined sound as a pressure perturbatiomhich propagates as a wave and which is de-
tectable by the human ear. We limit ourselves to air and whtedry air at 20C the speed of sound
cis 344 nys, while in water a typical value of 1500/®is found. In section 2.3 we will discuss the
dependence of the speed of sound on various parametersgsuemperaturegtc). For harmonic
pressure fluctuations, the typical range of frequency ohtirean ear is:

20Hz< f < 20kHz 2.1)

The maximum sensitivity of the ear is around 3 kHz, (whichresponds to a policeman’s whistle!).
Sound involves a large range of power levels:

— when whispering we produce about 0 Watts,
— when shouting we produce about-PONatts,
— ajet airplane at take off produces about Yatts.

In view of this large range of power levels and because ouhasroughly a logarithmic sensitivity
we commonly use the decibel scale to measure sound levadsSaitind Power Level (PWL) is given
in decibel (dB) by:

PWL = 10log,,(Powey10-12W). (2.2)
The Sound Pressure Level (SPL) is given by:
SPL = 2010¢,¢(P/ms/ Pref) (2.3)

wherep/,,sis the root mean square of the acoustic pressure fluctugtipaad whereprs = 2-10-°Pa
in air and pe = 1076 Pa in other media. The sound intensitys defined as the energy flux (power
per surface area) corresponding to sound propagation.ntéesity Level (IL) is given by:

IL = 10log,o(1 /1072 W/m?). (2.4)

The reference pressure level in pjg = 2-10~°Pa corresponds to the threshold of hearing at 1 kHz for
atypical human ear. The reference intensity ldygk= 10-12W/m? is related to thi/,, = 2-10°Pa
in air by the relationship valid for progressive plane waves

| = P/ poCo (2.5)
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wherepgCy = 4- 107 kg/m?s for air under atmospheric conditions. Equation (2.5) bellderived later.

The threshold of path(140 dB) corresponds in air to pressure fluctuationg/pf = 200 Pa. The
corresponding relative density fluctuation's pg are given at atmospheric pressyige= 10° Pa by:

p'/po=p/ypo <107 (2.6)

wherey = Cp/Cy is the ratio of specific heats at constant pressure and vohespectively. In
general, by defining the speed of sound following equatid3,lthe relative density fluctuations are
given by:

1,1 fop\
P_:_zp:_(_P)p, @.7)
po  poCH po \9P Js

The factor ¥ poc3 is the adiabatic bulk compressibility modulus of the mediimce for watepo =

10° kg/m® andcy = 1.5 - 10° m/s we see thapecs ~ 2.2 - 10° Pa, so that a compression wave of
10 bar corresponds to relative density fluctuations of ot@e? in water. Linear theory will therefore
apply to such compression waves. When large expansion weagaeseated in water the pressure can
decrease below the saturation pressure of the liquid arithtem bubbles may appear, which results
in strongly non-linear behaviour. On the other hand, howesiace the formation of bubbles in pure
water is a slow process, strong expansion waves (negaegsyes of the order of 1®@ar!) can be
sustained in water before cavitation appears.

For acoustic waves in a stagnant medium, a progressive plaue involves displacement of fluid
particles with a velocityy’ which is given by (as we will see in equations 2.20a, 2.20b):

u" = p'/poCo. (2.8)

The factorpgcy is called the characteristic impedance of the fluid. By dingd(2.8) bycy we see by
using (1.13) in the fornp’ = c2p’ that the acoustic Mach numbef/c, is a measure for the relative
density variatiorp’/pg. In the absence of mean flojup = 0) this implies that a convective term such
asp(v-V)v in the momentum conservation (1.20) is of second order andeaneglected in a linear
approximation.

The amplitude of the fluid particle displacementorresponding to harmonic wave propagation at a
circular frequencyy = 2z f is given by:

o= |Uu|/w. (2.9)

Hence, forf = 1 kHz we have in air:

SPL=140dB, pj,=2-10 Pa, u=5-101m/s, §=8-10"° m,
SPL= 0dB, p/,=2-10°Pa, u=5-10%m/s, ¢=1-101m.

In order to justify a linearization of the equations of matidhe acoustic displacemedfitshould be
small compared to the characteristic length sdale the geometry considered. In other words, the
acoustical Strouhal numb&r, = L/J should be large. In particular, éis larger than the radius of
curvatureR of the wall at edges the flow will separate from the wall réagltinto vortex shedding.
So a small acoustical Strouhal numbefo implies that non-linear effects due to vortex shedding are
important. This is a strongly non-linear effect which beesnimportant with decreasing frequency,
because increases whew decreases.

1The SPL which we can only endure for a very short period of tivitaout the risk of permanent ear damage.
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We see from the data given above that the particle displaceshean be significantly smaller than
the molecular mean free pathwhich in air at atmospheric pressure is about1® 8 m. It should
be noted that a continuum hypothesis as assumed in chapteslagply to sound even at such low
amplitudes becausgis not the relevant length scale. The continuum hypothesis isl vhlive can
define an air particle which is small compared to the dimerssiaf ourmeasuring devicéeardrum,
diameterD = 5mm) or to thevave length., but large compared to the mean free pata 5-10-8m.

It is obvious that we can satisfy this condition since fo= 20 kHz the wave length:

) = co/f (2.10)

is still large (1 ~ 1.7 cm) compared tof. In terms of our ear drum we can say that although a
displacement 06 = 10~'' m of an individual molecule cannot be measured, the saméadapent
averaged over a large amount of molecules at the ear drumechedrd as sound.

It appears that for harmonic signals of frequerfcy: 1kHz the threshold of hearing; = 2-10°Pa
corresponds to the thermal fluctuatiopls of the atmospheric pressugg detected by our ear. This
result is obtained by calculating the number of moleciNesolliding within half an oscillation period
with our eardrur: N ~ nD?cy/2f, wheren is the air molecular number densityAs N ~ 10?° and
Pl > Po/~/N we find thatp), ~ 107° Pa.

In gases the continuum hypothesis is directly coupled tcasimption that the wave is isentropic
and frictionless. Both the kinematic viscosity= #/p and the heat diffusivita = K /pCp of a gas
are typically of the order o€, the product of sound speedand mean free path This is related
to the fact that is in a gas a measure for the random (thermal) molecular tiglethat we know
macroscopically as heat and momentum diffusion. Therefargases the absence of friction goes
together with isentropy. Note that this is not the case imlfluHere, isothermal rather than isentropic
wave propagation is common for normal frequencies.

As a _result from this relation ~ c¢, the ratio between the acoustic wave lengthind the mean free
path¢, which is an acoustic Knudsen number, can also be integpest@n acoustic Fourier number:
L Ac A%
- == (2.11)
£ v v

This relates the diffusion lengitv/f )/2 for viscous effects to the acoustic wave lengtiMoreover,
this ratio can also be considered as an unsteady Reynoldsanirg :

ou

ot
o2u’

pol e

Re; ,
V

(2.12)

which is for a plane acoustic wave just the ratio betweertimeand viscous forces in the momentum
conservation law. For air = 1.5-107°m?/s so that forf = 1kHz we haveRe, = 4-10’. We therefore
expect viscosity to play a significant réle only if the sounrdgagates over distances of’1@ave
lengths or more (310° km for f = 1 kHz). In practice the kinematic viscosity appears to betfzera
unimportant effect in the attenuation of waves in free spabe main dissipation mechanism is the

2The thermal velocity of molecules may be estimated to beldqua.
3n is calculated for an ideal gas with molar madsfrom: n = AMa p/M = My p/MRT = p/RT (see section 2.3)
whereM) is the Avogadro number
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departure from thermodynamic equilibrium, due to the nadfit long relaxation times of molecular
motion associated to the internal degrees of freedom {patatibration). This effect is related to the
so-called bulk or volume viscosity which we quoted in chafite

In general the attenuation of sound waves increases witjuérecy. This explains why we hear the
lower frequencies of an airplane more and more accentuatiédlias from near the observation point
(e.g.the airport) away to large distances (10 km).

In the presence of walls the viscous dissipation and thecoadiuction will result into a significant
attenuation of the waves over quite short distances. Thditaip of a plane wave travelling along a
tube of cross-sectional surface arkand perimetel , will decrease with the distancealong the

tube following an exponential facter“*, where the damping coefficieatis given at reasonably high

frequencies A/L p > /v/o butwv/A/cy < 1) by [175]:

= — fv(l . 2.13
@ = pacy/a T ( +¢v/—a) (2.13)

(This equation will be derived in section 4.5.) For air= Cp/Cy = 1.4 whilev/a = 0.72. For a
musical instrument at 400 Hz, such as the clarimet 0.05n so that a frictionless approximation is
not a very accurate but still a fair first approximation. Assaeral rule, at low amplitudes the viscous
dissipation is dominant in woodwind instruments at the Aamedntal (lowest) playing frequency. At
higher frequencies the radiation losses which we will disclater (chapter 6) become dominant.
Similar arguments hold for water, except that because thpdeature fluctuations due to compression
are negligible, the heat conduction is not significant evethé presence of wallg (= 1).

A small ratio p’/ pg of acoustic density fluctuations to the mean density, implies that over dis-
tances of the order of a few wave lengths non-linear effeetagligible. When dissipation is very
small acoustic waves can propagate over such large distdinaenon-linear effects always become
significant (we will discuss this in section 4.2).

2.2 Wave equation for a uniform stagnant fluid and compactnes

2.2.1 Linearization and wave equation

In the previous section we have seen that in what we call éicqusenomena the density fluctuations
p'/po are very small. We also have seen that the fluid velocity fatain»’ associated with the wave
propagation, of the order @p’/po)Co, are also small. This justifies the use of a linear approxonat
of the equations describing the fluid motion which we presein chapter 1.

Even with the additional assumption that the flow is frictass, the equations one obtains may still be
complex if we assume a non-uniform mean flow or a non-unifoemsdy distributiorpg. A derivation
of general linearized wave equations is discussed by Pj&r&d and Goldstein [70].

We first limit ourselves to the case of acoustic perturbatign, p’, s, v'...) of a stagnantup = 0)
uniform fluid (pg, po, S0, - - .)- Such conditions are also described in the literaturecagescentluid.



12 2 Wave equation, speed of sound, and acoustic energy

In a quiescent fluid the equations of motion given in chapteniplify to:

a /
a_"; + poV-v' =0 (2.14a)
a /
poﬁ—: +Vp =0 (2.14b)
Z_? ~0 (2.14c)

where second order terms in the perturbations have beeaated! The constitutive equation (1.13)
becomes:

P =cp. (2.15)

By subtracting the time derivative of the mass conservatmn (2.14a) from the divergence of the
momentum conservation law (2.14b) we eliminatéo obtain:
aZp/ )
— —V°p' =0. 2.16
P (2.16)

Using the constitutive equatiopi = c2p’ (2.15) to eliminate eithep’ or p’ yields the wave equations:

azp/ )

75;; —-COVQIY ::0 (2.17a)
or

o%p’ :

=5 - vy =0, (2.17b)

Using thelinearizedBernoulli equation:

o' P

— =0 2.18
s p (2.18)
which should be valid because the acoustic field is irrotaiffip we can derive from (2.17a) a wave
equation foroe’/ot. We find therefore thap’ satisfies the same wave equation as the pressure and the
density:

52¢/

7 " caV3p' = 0. (2.19)

Taking the gradient of (2.19) we obtain a wave equation feniélocityv’ = V¢'. Although a rather
abstract quantity, the potential is convenient for many calculations in acoustics. The lized
Bernoulli equation (2.18) is used to translate the resuitained fory’ into less abstract quantities
such as the pressure fluctuatigpis

4 In the case considered this property follows from the faat thx (po% v +Vp) = po% (Vxv") = 0. In general this
property is imposed by the definition of the acoustic field.
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2.2.2 Simple solutions

Two of the most simple and therefore most important solstimthe wave equation are d’Alembert’s
solution in one and three dimensions. In 1-D we have the gérelution

p'= f(X —cot) +g(X + Cot), (2.20a)

o
V= ( f (X — cot) — g(X + cot)), (2.20b)

where f andg are determined by boundary and initial conditions, but wtige they are arbitrary.
The velocityv’ is obtained from the pressuge by using the linearized momentum equation (2.14b).
As is seen from the respective argumexts cot, the “f"-part corresponds to a right-running wave
(in positive x-direction) and the §”-part to a left-running wave. This solution is especialletul to
describe low frequency sound waves in hard-walled duct frae field plane waves. To allow for a
general orientation of the coordinate system, a free fieldglwave is in general written as

n

pP=f(n-x—cot), v =—Ff(n-x—Cpt), (2.21)

PoCo
where the direction of propagation is given by the unit vectoRather than only left- and right-
running waves as in the 1-D case, in free field any sum (or iategver directionsn may be taken.
A time harmonic plane wave of frequenayis usually written in complex forfas
o k o
p/ — Aelwtflk'x’ v = _Aelwtflkﬂ(’ CS|k|2 — 602, (2'22)
pow

where the wave-number vector, or wave veckos nk = n%, indicates the direction of propagation
of the wave (at least, in the present uniform and stagnantumgd

In 3-D we have a general solution for spherically symmetraves {.e. depending only on radial
distancer). They are rather similar to the 1-D solution, because tmabioationrp(r, t) happens to
satisfy the 1-D wave equation (see section 6.2). Since theand radiated wave energy spreads out
over the surface of a sphere, the inheremt-tlecay is necessary from energy conservation arguments.

It should be noted, however, that unlike in the 1-D case, tlieesponding radial velocity; is rather
more complicated. The velocity should be determined froenfdressure by time-integration of the
momentum equation (2.14b), written in radial coordinates.

We have for pressure and radial velocity

1 1

p= - —cob) +-g(r +cob), (2.23a)
1,1 1 1,1 1

f= = (S0 —cot) = ZF(r —cot)) — —(= - =G t 2.23b

o PoCo(r (F =) r2 ¢ CO)) pOCO(rg(r+CO) r2 (r+C°))’ ( )

whereF(z) = [ f(z)dzandG(z) = [ g(z)dz. Usually we have only outgoing waves, which means
for any physical solution that the field vanishes before sbmety (causality). Hencef (z) = 0 for
Z=r —Cot >r — Cotp > —Cptg because > 0, andg(z) = 0 foranyz =r + cot < r + coto. Sincer

is not restricted from above, this implies that

g(zy =0 forallz

5The physical quantity considered is described by the real pa



14 2 Wave equation, speed of sound, and acoustic energy

This solution (2.23a,2.23b) is especially useful to déscithe field of small symmetric sources
(monopoles), modelled in a point. Furthermore, by difféision® to the source position other solu-
tlon; of the wave equation can be generated (of dipole-tppehagher). For example, smcggr =%,
we have

. X/, 1
p' = r_2(f (r —cot)—r—f(r —cot)), (2.24a)
1 x 2 2
= ——=|f'(r —cot) — =f(r —cot) + 5 F(r — cot 2.24b
Oy poCol’Z( (1= Got) — = F(r — Got) + 5 F(r Co)), ( )

where f’ denotes the derivative df to its argument.

Since the r6le of andt is symmetric inf and anti-symmetric irg, we may formulate the causality
condition int also as a boundary condition in A causal wave vanishes outside a large sphere, of
which the radius grows linearly in time with velocity. This remains true for any field in free space
from a source of finite size, because far away the field sireplifio that of a point source (although
not necessarily spherically symmetric).

In the case of the idealization of a time-harmonic field wencairapply this causality condition di-
rectly, but we can use a slightly modified form of the boundampdition inr, calledSommerfeld's
radiation condition

. op' op’
lim r =0. 2.25
r—00 ( ot + G or ) ( )
A more general discussion on causality for a time-harmoeid fill be given in section C.1.1. The
general solution of sound radiation from spheres may bedaufil45, ch7.2].

2.2.3 Compactness

In regions —for example at boundaries— where the acoustanpal ¢’ varies significantly over dis-
tancesL which are short compared to the wave lengtithe acoustic flow can locally be approx-
imated as an incompressible potential flow. Such a regiomlledccompact and a source of size,
much smaller thai, is acompact source~or a more precise definition we should assume that we can
distinguish a typical time scake or frequencyw and length scal& in the problem. In dimensionless
form the wave equation is then:

3 2,1 2.7
0%y 20 L oL 27L

> = (He)*—= He=—=—=——=kL 2.26
oX? He)r Ze Ct  Co A (2.26)

i=1

wheret =t/r = wt andX; = x;/L . The dimensionless numbkle is called the Helmholtz number.
Whent andL are well choseng?p’/6t? anda?p’/o%? are of the same order of magnitude, and the
character of the wave motion is completely describedHbyIn a compact region we have:

He « 1. (2.27)

This may occur, as suggested above, near a singularity vépatéal gradients become large, or at
low frequencies when time derivatives become small. Withexcompact region the time derivatives,

Swe may freely differentiate the pressure but not the vejbdibe unit vectors in spherical coordinates are not pasitio
invariant. However, we conveniently obtain the velocityrfrv’ = kmVp’. In particulary; = m %—?
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being multiplied by the smalHe, may be ignored and the potential satisfies to leading oifuer t
Laplace equation:

VZp' =0 (2.28)

which describes an incompressible potential figw« = 0). This allows us to use incompressible
potential flow theory to derive the local behaviour of an atmufield in a compact region. If the
compact region is embedded in a larger acoustic region gflsmmature, it acts on the scale of the
larger region as a point source, usually allowing a reldtiggmple acoustic field. By matching the
local incompressible approximation to this “far field” stodun (spherical waves, plane waves), the
solutions may be determined. The matching procedure idlystzried out almost intuitively in the
first order approximation. Higher order approximationsa@tained by using the method of Matched
Asymptotic Expansions (section 8.8, [42]).

2.3 Speed of sound

2.3.1 Ideal gas

In the previous section we have assumed that the speed af sg)l.:nzﬂ(ap/é’p)S is constant. However,
in many interesting casesg is non-uniform in space and this affects the propagation afes. We
therefore give here a short review of the dependence of #edspf sound in gas and water on some
parameters like temperature.

Air at atmospheric pressure behaves as an ideal gas. Theoggobstate for an ideal gas is:
p=pRT, (2.29)

where p is the pressurep is the density and is the absolute temperatur® is the specific gas
constant which is related to the Boltzmann constdat = 1.38066- 1022 J/K and the Avogadro
numberAa = 6.022- 10?3 mol~! by:

R = kg Na/M, (2.30)

whereM is the molar mass of the gas (in kg/mol). For Rir= 28673 Jkg K. For an ideal gas we
have further the relationship:

R=Cp —Cy, (2.31)

whereCp andCy are the specific heats at constant pressure and volumecgtigsfye For an ideal
gas the internal energydepends only on the temperature [168], with (1.15) leadinget= Cy dT,
so that by using the second law of thermodynamics, we findrfasentropic procesg&ls = 0):

dT Rd
CvdT = —pd(pY or — = —~2 (2.32)
T Cvop
By using (2.29) and (2.31) we find for an isentropic process:
dp dT dp dp
p T P p

"The universal gas constant i&: = kg.Ax = 8.31431 JK mol.

: (2.33)
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where:

is the specific-heat ratio. Comparison of (2.33) with therdtdin of the speed of soured = (9p/dp)s
yields:

c=(yp/p)"? or c=(yRTY2 (2.35)

We see from this equation that the speed of sound of an ideabfygiven chemical composition
depends only on the temperature. For a mixture of ideal gagksnole fractionX; of component
the molar mas#$/ is given by:

M=> MX (2.36)

whereM; is the molar mass of componénfThe specific-heat ratip of the mixture can be calculated
by:
) = 2. Xiyi/(i =1
2 Xi/(i =1
because;/(yi — 1) = M;Cpi/R andy; = C,;/Cy,;. For airy = 1.402, whilst the speed of sound

atT = 27315 K isc = 33145 nys. Moisture in air will only slightly affect the speed of salbut
will drastically affect the damping, due to departure frdrartnodynamic equilibrium [231].

(2.37)

The temperature dependence of the speed of sound is reslediasispectacular differences in sound
propagation in the atmosphere. For example, the vertiogbéeature stratification of the atmosphere
(from colder near the ground to warmer at higher levels) tlcatirs on a winter day with fresh fallen
snow refracts the sound back to the ground level, in a waywahear traffic over much larger
distances than on a hot summer afternoon. These refradtenisewill be discussed in section 8.6.

2.3.2 Water

For pure water, the speed of sound in the temperature rargj #7293 K and in the pressure range
10° to 10 Pa can be calculated from the empirical formula [175]:

c=co+a(T —Ty) +bp (2.38)
wherecy = 1447 nys,a = 4.0 m/sK, Tp = 28316 K andb = 1.6 - 10-® m/sPa. The presence of salt

in sea water does significantly affect the speed of sound.

2.3.3 Bubbly liquid at low frequencies

Also the presence of air bubbles in water can have a dranfégit en the speed of sound ([114, 42]).
The speed of sound is by definition determined by the “massgsitiep and the isentropic bulk
modulus:

Ks = p (Z—E) (2.39)
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which is a measure for the “stiffness” of the fluid. The speksbaindc, given by:
c= (Ks/p)? (2.40)

increases with increasing stiffness, and decreases watteasing inertia (density). In a one-
dimensional model consisting of a discrete mdssonnected by a spring of constafit, we can
understand this behaviour intuitively. This mass-spriraget was used by Newton to derive equation
(2.40), except for the fact that he used the isothermal bulutus Xt rather thanXs. This resulted

in an error ofy /2 in the predicted speed of sound in air which was correcteddpfdce [231].

A small fraction of air bubbles present in water considerabtiuces the bulk moduluks, while at the
same time the density is not strongly affected. As th&s of the mixture can approach that for pure
air, one observes in such mixtures velocities of sound muwebki than in air (or water). The behaviour
of air bubbles at high frequencies involves a possible rasom which we will discuss in chapter 4
and chapter 6. We now assume that the bubbles are in mechegigkbrium with the water, which
allows a low frequency approximation. Combining this asgtiom with (2.40), following Crighton
[42], we derive an expression for the soundspeefithe mixture as a function of the volume fraction
S of gas in the water. The densityof the mixture is given by:

p == Bpc+ Bp. (2.41)

wherep, and pq are the liquid and gas densities. If we consider a small ahamgressure g we
obtain:
dp dpe  ,dpg
L —(1=pL= -9
dp 1-5 dp + 5 dp
where we assume both the gas and the liquid to compressiigathe [42]. If no gas dissolves in the
liquid, so that the mass fractidifpy/p) of gas remains constant, we have:

dp
Pgd_p

d
+%—m£ (2.42)

dog _ fredr _ (2.43)
dp p dp

Using the notatiore? = dp/dp, ¢ = dp/dpy andc; = dp/dp,, we find by elimination of #/dp
from (2.42) and (2.43):

L=l (2.44)

pe?  pC; pgCl

+5

It is interesting to see that for small valuesfbthe speed of souncidrops drastically front, atf = 0
towards a value lower thary. The minimum speed of sound occurspat= 0.5, and at 1 bar we find
for example in a water/air mixture >~ 24 my/s! In the case of not being close to zero or unity, we
can use the fact thaycd < p,c7 andpy < p¢, to approximate (2.44) by:

2 chﬁ
2y Te ey

The gas fraction determines the bulk modbwdsg/ﬁ of the mixture, while the water determines the
density(1 — f)p,. Hence, we see that the presence of bubbles around a shipraragtitally affect
the sound propagation near the surface. Air bubbles ardrdtenluced in sea water near the surface
by surface waves. The dynamics of bubbles involving odimle (see chapter 4 and chapter 6) appear
to induce spectacular dispersion effects [42], which weshigiored here.

2
2 ngg

pC =~ (2.45)
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2.4 Influence of temperature gradient

In section 2.2 we derived a wave equation (2.17a) for an hemegus stagnant medium. We have
seen in section 2.3 that the speed of sound in the atmospherpécted to vary considerably as a
result of temperature gradients. In many cases, when thesticavave length is small compared to
the temperature gradient length (distance over which dfi&ignt temperature variation occurs) we
can still use the wave equation (2.17a). It is however istérg to derive a wave equation in the more
general case: for a stagnant ideal gas with an arbitrarydestyre distribution.

We start from the linearized equations for the conservatibmass, momentum and energy for a
stagnant gas:

a /
a_"; V- (pov') =0 (2.46a)
a /
poa—': +Vp =0 (2.46b)
os
N + ’v/.V&) e o, (2.460)
ot
wherepg ands, vary in space. The constitutive equation for isentropic fids/Dt = 0):
Pp _ 2Dr
Dt Dt
can be written &5
o +v-Vpy = Cg(a_p’ + v’-Vpo). (2.47)
ot ot

Combining (2.47) with the continuity equation (2.46a) welfin

a /
( ;t’ o v’~Vp0) + pociV-v' = 0. (2.48)

If we consider temperature gradients over a small heigtd finrizontal tube for example) so that the
variation inpp can be neglectefV pg/ po < VTy/Tp), we can approximate (2.48) by:

1 op

Voo = -5
PoCqy ot

Taking the divergence of the momentum conservation law6(®.sields:
0 1
2 (Vv + V- (—v p’) —o0.
ot Po

By elimination of V- v’ we obtain:

82 p/
ot2

1
—CpoV-(—=Vp) =0 2.49
chpov- (VP (2.49)
For an ideal gas3 = y po/po, and since we assumgg to be uniform, we have thatc3, given by:

PoC(z) =7 Po

8Why do we not use (2.15)?
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is a constant so that equation (2.49) can be written in tha:for

82 p/ ) )
This is a rather complex wave equation, sirggels non-uniform. We will in section 8.6 consider
approximate solutions for this equation in the cé8ey,/w) « 1 and for large propagation distances.

This approximation is called geometrical or ray acoustics.

It is interesting to note that, unlike in quiescene(uniform and stagnant) fluids, the wave equation
(2.50) for the pressure fluctuatigei in a stagnant non-uniform ideal gas is not valid for the dgnsi
fluctuations. This is because here the density fluctuaonst only relate to pressure fluctuations but
also to convective effects (2.47). Which acoustic variablgelected to work with is only indifferent
in a quiescent fluid. This will be elaborated further in thecdission on the sources of sound in section
2.6.

2.5 Influence of mean flow

See also Appendix F. In the presence of a mean flow that satisfie
V-povo =0, povo-Vvg=—Vpo, v9-VS =0, vg-Vpo=Civo-Vpo,

the linearized conservation laws, and constitutive equafor isentropic flow, become (without
sources):

a /
a—/i +v9-Vp' 4+ v -Vpg+ poV-v' + p'V-v5 =0 (2.51a)
a /

po(a—z 4+ vo-Vv' + v/-Vvo) + p'vg-Vog = —-Vp' (2.51b)
os L,
Il +v9-VS +v'-Vg = 0. (2.51c)

/

a /
P + v9-V p’ + v’ono = CS(i + vo°Vp/ + v/'Vpo) + Cg(vo'Vpo) (B - p—)
ot ot Po  po

(2.51d)

/ !/

A wave equation can only be obtained from these equatiomsfigying assumptions are introduced.
For a uniform medium with uniform flow velocity, # 0 we obtain

0
(5 + vo-V)’p — 2v2p =0 (2.52)

Where% + vo-V denotes a time derivative moving with the mean flow.

2.6 Sources of sound

2.6.1 Inverse problem and uniqueness of sources

Until now we have focused our attention on the propagaticsoahd. As starting point for the deriva-
tion of wave equations we have used the linearized equatiom®tion and we have assumed that the
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mass source termm and the external force densifyin (1.1) and (1.2) were absent. Without these re-
strictions we still can (under specific conditions) deriveave equation. The wave equation will now
be non-homogeneouse. it will contain a source termy. For example, we may find in the absence of
mean flow:
82 p/
ot?
Often we will consider situations where the sourcés concentrated in a limited region of space
embedded in a stagnant uniform fluid. As we will see later theustic field p’ can formally be
determined for a given source distributigivy means of a Green'’s function. This solutiphis unigue.
It should be noted that the so-called inverse problem ofrdeténg g from the measurement qf
outside the source region does not have a unique solutitrowtitit least some additional information
on the structure of the source. This statement is easiljiegrby the construction of another sound
field, for example [64]:p’ + F, for any smooth functiorF that vanishes outside the source region
(i.e. F = 0 wherever = 0), for exampleF o q itself! This field is outside the source region exactly
equal to the original fieldy’. On the other hand, it inot the solution of equation (2.53), because it
satisfies a wave equation with another source:

_2v?p —q. (2.53)

02 . 02
(ﬁ — V) (P +F)=q+ (W — §VA)F. (2.54)

In general this source is not equalgoThis proves that the measurement of the acoustic fielddmitsi
the source region is not sufficient to determine the souraguety [52].
2.6.2 Mass and momentum injection

As a first example of a non-homogeneous wave equation wedmmtie effect of the mass source
termm on a uniform stagnant fluid. We further assume that a linepragmation is valid. Consider
the inhomogeneous equation of mass conservation

0
S V() =m (2.55)

and a linearized form of the equation of momentum consemati

0 ,
() +Vp =1, (2.56)

The sourcen consists of mass of densipy, of volume fractiong = f(x, t) injected at a rate

0
m = = (Bpm). (2.57)

The source region is whefe# 0. Since the injected mass displaces the original mass the same
(but negative) amount of volume, the total fluid density is

p = Ppm+ A —B)p+ (2.58)

where the injected matter does not mix with the original fl@dbstitute (2.58) in (2.55) and eliminate
Bpm

0 0
priding V-(pv) = E(ﬂﬂf)- (2.59)
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Eliminate pv from (2.56) and (2.59)

2 atZ

P (Bps) — V- 1. (2.60)

If we assume, for simplicity, thagt’ = c3p; everywhere, wherg}; is the fluctuating part o+ which
corresponds to the sound field outside the source regiom, the

162
c3 ot?

82

/__VQ I
p p 12

(Bpi) = V- f (2.61)
which shows that mass injection is a source of sound, priynaeicause of the displacement of a vol-
ume fractiong of the original fluidp ¢ . Hence injecting mass with a large densityis not necessarily
an effective source of sound.

We see from (2.61) that eontinuous injection of mas# constant density does not produce sound,
because?fp ¢ /0t? vanishes. In addition, it can be shown in an analogous wayrtHmear approxi-
mation the presence ofumiform force fielda uniform gravitational field, for example) does not affect
the sound field in a uniform stagnant fluid.

2.6.3 Lighthill's analogy

We now indicate how a wave equation with aerodynamic sowoad can be derived. The most
famous wave equation of this type is the equation of Lighthil

The notion of “analogy” refers here to the idea of represgnt complex fluid mechanical process
that acts as an acoustic source by an acoustically equivsdernce term. For example, one may model
a clarinet as an idealized resonator formed by a closed piite the effect of the flow through the
mouth piece represented by a mass source at one end. Intthatlpacase we express by this analogy
the fact that the internal acoustic field of the clarinet imittated by a standing wave corresponding
to a resonance of the (ideal) resonator.

While Lighthill's equation is formally exacti.e. derived without approximation from the Navier-
Stokes equations), it is only useful when we consider the ofa limited source region embedded in
a uniform stagnant fluid. At least we assume that the listetnch detects the acoustic field at a point
x at timet is surrounded by a uniform stagnant fluid characterized lpead of sound,. Hence the
acoustic field at the listener should accurately be destiilyehe wave equation:

62p/
ot2

— V%' =0 (2.17b)

where we have chosen’ as the acoustic variable as this will appear to be the mostecoent
choice for problems like the prediction of sound producedurpulence. The key idea of the so-
called “aero-acoustic analogy” of Lighthill is that we nowritve from the exact equations of motion
a non-homogeneous wave equation with the propagation pgivan by (2.17b). Hence the uniform
stagnant fluid with sound speegl densitypg and pressuregy at the listener’s location is assumed
to extend into the entire space, and any departure from tteal'i acoustic behaviour predicted by
(2.17b) is equivalent to a source of sound for the obsen#8,[119, 178, 81].
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By taking the time derivative of the mass conservation la)(and eliminatinggm/aot as in (2.59)
we find:

0? om 2% %pr  9%Bps

= — =— 2.62
otox atox P = ot ot2 ot2 ot2 (2.62)
By taking the divergence of the momentum conservation la@) (de find:
02 02 af
P — 2.63
5t8X,(p vi) = 8 X J( IJ+pDIDJ)+ X, ( )
Hence we find from (2.62) and (2.63) the exact relation:
o%ps 02 o*ppr  of;
_ P. — -t 2.64
B awax, 0 TP T e T o (2.64)

Becausep: = po + p’ where onlyp’ varies in time we can construct a wave equation foby
subtracting from both sides of (2.63) a ten§(02p’/0x?) where in order to be meaningfaj is not
the local speed of sound but that at tis¢ener’s location

In this way we have obtained the famous equation of Lighthill

o%p’ o%p' 0%Ty; o2 ofi
P g /)2 _ ij Bpt _oh (2.65)
ot2 OX; 0X; OX; ot2 OXi
where Lighthill's stress tensdk; is defined by:
Tij = Pj + poivj — (¢5p" + Po)dij. (2.66)
We used
82/)/ 82(02/)/5")
=2 (2.67)
OXi 9% O]
which is exact becausg is a constant. Making use of definition (1.4) we can also write
T = poivj — 5j + (P — c3p))d; (2.68)

which is the usual form in the literatteln equation (2.68) we distinguish three basic aero-atust
processes which result in sources of sound:

— the non-linear convective forces described by the Reyrsildss tensopo;vj,
— the viscous forces;;,
— the deviation from a uniform sound velocity or the deviation from an isentropic behaviour

(p' —c2p).

9The perturbations are defined as the deviation from the umifeference statég, pg): p’ = p — po, andp’ = p— pop.
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As no approximations have been made, equation (2.65) ig ardmot easier to solve than the orig-
inal equations of motion. In fact, we have used four equatidine mass conservation and the three
components of the momentum conservation to derive a simgiat®n. We are therefore certainly not
closer to a solution unless we introduce some additiongbl#iying assumptions.

The usefulness of (2.65) is that we can introduce some cling@iBcations which yield an order of
magnitude estimate fgy’. Such estimation procedure is based on the physical irtyn of the
source term. However, a key step of Lighthill's analysisasiélay this physical interpretation until
an integral equation formulation of (2.65) has been obthifis is an efficient approach because an
order of magnitude estimate 6fT;; /ox;dX; involves the estimation of spatial derivatives which is
very difficult, while, as we will see, in an integral formuta we will need only an estimate for an
average value ofj; in order to obtain some relevant information on the acougld.

This crucial step was not recognized before the originaepapf Lighthill [118, 119]. For a given
experimental or numerical set of data on the flow field in there® region, the integral formulation
of Lighthill's analogy often provides a maximum amount didmation about the generated acoustic
field.

Unlike in the propagation in a uniform fluid the choice of treastic variable appeared already in
the presence of a temperature gradient (section 2.4) tctdiffe character of the wave equation. If we
derive a wave equation fqy instead ofp’, the structure of the source terms will be different. In some
cases it appears to be more convenient to pisastead ofp’. This is the case when unsteady heat
release occurs such as in combustion problems. Startingdguation (2.64) in the form:

’p  %p 02

op _o%p — oob
2 = o T axax, i T i)

where we assumed that = 0 and f = 0, we find by subtraction afgz(az/atz) p’ on both sides:

1 8%p 2 2 2 2 /

— = ViV —Tij))+—= t+ =S\ —
2 T o owax, PV Tt oz s

where the tern®? po/9x? vanishes becauga is a constant.

Comparing (2.65) with (2.69) shows that the deviation framsgntropic behaviour leads to a source
term of the type(62/ax?)(p’ — c3p’) when we choosg’ as the acoustic variable, while we find
a term(62/at?)(p’/c2 — p’) when we choose' as the acoustic variable. Henpéis more appro-
priate to describe the sound generation due to non-unifgras for example the so-called acoustic
“Bremsstrahlung” produced by the acceleration of a fluidipker with an entropy different from the
main flow. The sound production by unsteady heat transfesmbaistion is easier to describe in terms
of p’ (Howe [81)]).

We see thata/at)(p’/c3 — p’) acts as a mass source tenm which is intuitively more easily un-
derstood (Crightoret al. [42]) when using the thermodynamic relation (1.12) applied moving
particle:

Dp cz% N (ap) Ds

= — ) - 1.12
Dt Dt os/, Dt ( )

We find from (1.12) that:

D /p c? Dp’ 2 (6T Ds
5(E)- (9% 5()
Dt \ ¢j (o3 Dt  c§ \dp /s Dt
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where we made use of the thermodynamic relation:

(2)-(:) o
s ), ap ) '

derived from the fundamental law of thermodynamics (1.8hanform:
de=Tds— pd(p™?. (1.8)

As a final result, using the mass conservation law, we find

%pe 0 [(c? pe\Dp’  p? (6T Ds
_O%e _ OIS _ 1 Pe LY Ly, 2.72
otz ot [(cg ) ot Tal\s Lo Ve (.72)

where the “excess densityy is defined as:

N
Pe=Pp _C_S-

In a free jet the first term in-92p,/t? vanishes for an ideal gas with constant heat capacity (lsecau
c2/cc2, — 1+ pe/p = 0). We see that sound is produced both by spatial densitsti@isV- (vpe) and
as a result of non-isentropic procesge$/c3) (0T /dp)s(Ds'/Dt), like combustion.

2.6.4 \ortex sound

While Lighthill’'s analogy is very convenient for obtainirayder of magnitude estimates of the sound
produced by various processes, this formulation is not genyenient when one considers the sound
production by a flow which is, on its turn, influenced by thewste field. In Lighthill's procedure
the flow is assumeéd to be known, with any feedback from the acoustic field to thes omehow
already included. When such a feedback is significant, argemeral for homentropic low Mach
number flow, the aerodynamic formulation of Powell [178]wW#0[81] and Doak [50] based on the
concept of vortex sound is most appropriate. This is dueddaht that the vorticityy = Vxv is a
very convenient quantity to describe a low Mach number flow.

Considering a homentropic non-conductive frictionlesglflwe start our derivation of a wave equa-
tion from Euler’s equation in Crocco’s form:

0
a—:+v5=—wxv (1.31)

whereB =i + %vz, and the continuity equation:

1Dp

o v N 1.18
Dt v (1.18)

Taking the divergence of (1.31) and the time derivative af&) we obtain by subtraction:

0 (1Dp 2
—(—)-VB=V. . 2.73
a (p Dt) (0xv) (2.73)

10 This is not a necessary condition for the use of Lighthilfgimgy. It is the commonly used procedure in which we
derive information on the acoustic field from data on the flowhie source region.
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As the entropy is constantgd= 0) we have, with (1.12) and (1.27):

& (1Di
~ |35 ) -VB=V : 2.74
G (e01) @) @74

This can be rewritten as

1 D3B’
c?> Dt

1D2B o (1Di
- V2B =V. 2 == 2.75
@)+ 2D " (cth) (2.75)

whereB’ = B — By and% = 0% + Ug-V. For the reference flow o we choose a potential flow with
stagnation enthalpig,.
At low Mach numberM = o /¢y we have the inhomogeneous wave equation:

1 D3B’

— — V2B =V. 2.76
AT (@x) (2.76)

which explicitly stresses the fact that the vorticityis responsible for the generation of sound. (Note:
i”=p'/poandB’ =i’ 4+ vp-v'.) Some of the implications of (2.76) will be considered inrsndetall

in the next section. The use of a vortex sound formulatioraitigularly powerful when a simplified
vortex model is available for the flow considered. Exampfesioh flows are discussed by Howe [81],
Disselhorst & van Wijngaarden [49], Peters & Hirschbergjl and Howe [86].

In free space for a compact source region Powell [177] haiveatkrthis analogy directly from
Lighthill's analogy. The result is that the Coriolis forde, = po(w x v) appears to act as an ex-
ternal force on the acoustic field. Considering Crocco’saign (1.31) with this interpretation Howe
[82, 85] realized that the natural reference of the analegypotential flow rather than the quiescent
fluid of Lighthill's analogy. There is then no need to assunee field conditions nor a compact source
region. Howe [81] therefore proposes to define the acousid dis the unsteady scalar potential flow
component of the flow:

Ua = Vw/

wherep’ = ¢ — pg andegy is the steady scalar potential.

At high Mach numbers, when the source is not compact, boththilfs and Howe’s analogy become
less convenient. Alternative formulations have been pgegand are still being studied [150].

2.7 Acoustic energy

2.7.1 Introduction

Acoustic energy is a difficult concept because it involvesosd order terms in the perturbations like
the kinetic energy densit%rpov/z. Historically an energy conservation law was first derivgKirch-
hoff for stagnant uniform fluids. He started from the lingead conservation laws (2.51a—2.51d). Such
a procedure is ad-hoc, and the result, an energy expreskitie approximation, is not an approx-
imation of the total energy, since a small perturbation aespmn of the full non-linear fluid energy
conservation law (1.6) will contain zeroth and first ordemnte and potentially relevant second order
terms O((p’/po)?) which are dropped with the linearization of the mass and nmbume equations.
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However, it appears that for a quiescent fluid these zeratt, dnd neglected second order terms
are (in a sense) not important and an acoustic energy catgarequation may be derived which is
indeed the same as found by Kirchhoff [175].

This approach may be extended to non-uniform flows as longegsare homentropic and irrotational.
Things become much less obvious in the presence of a noaromiinean flow including entropy
variations and vorticity. If required, the zeroth, first arejlected second order terms of the expansion
may still be ignored, as Myers showed [152], but now at theeagp of a resulting energy equation
which is not a conservation law any more. The only way to ebsme kind of acoustic energy
conservation equation (implying definitions for acoustiergy density and flux) is to redirect certain
parts to the “right hand side” to become source or sink tehmsuch a case the question of definition,
in particular which part of the field is to be called acous@ssential and until now it remains subject
of discussion.

As stated before, we will consider as acoustical only that @iethe field which is related to density
variations and an unsteady (irrotational) potential floses8ure fluctuations related to vorticity, which
do not propagate, are often referred to in the literaturgpasudo sound”. In contrast to this approach
Jenvey [96] calls any pressure fluctuations “acoustic” clwtaf course results in a different definition
of acoustic energy.

The foregoing approach of generalized expressions forsticoenergy for homentropic [152] and
more general nonuniform flows [153, 154] by expanding thegnequation for small perturbations
is due to Myers. We will start our analysis with Kirchhoff'guation for an inviscid non-conducting
fluid, and extend the results to those obtained by Myers.lligimae will consider a relationship be-
tween vorticity and sound generation in a homentropic umfowiscid non-conducting fluid at low
Mach numbers, derived by Howe [82].

2.7.2 Kirchhoff’s equation for quiescent fluids

We start from the linearized mass and momentum conservédiss for a quiescent inviscid and
non-conducting fluid:
op’

- + poV-v' =m, (2.77a)

0
po e 4 vp = f/, (2.77b)
ot
where we assumed theft’ andm’ are of acoustic order. Since we assumed the mean flow to be

quiescent and uniform there is no mean mass sounge<0) or force (f , = 0). From the assumption
of homentropy (d = 0) we havé!

p=cp. (2.15)

After multiplying (2.77a) byp’'/po and (2.77b) byw’, adding the two equations, and utilizing the
foregoing relation (2.15) between density and pressureybtesn the equation
1 op? 1 ov? p'm’

L p— + V- (PV)= — + V- 2.78

1INote that in order to keep equation (2.15) valid we have icithfiassumed that the injected mass corresponding to
has the same thermodynamic properties as the original fltnid.flow would otherwise not be homentropic! In this case
m’/ pg corresponds to the injected volume fractjpf equation (2.57).
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which can be interpreted as a conservation law for the aicoeisérgy

oE
—~ tVi=-2 (2.79)

if we DEFINE the acoustic energy densiFy, the energy flux or intensity | and the dissipatiotD as:

p/2 poD/Z
E= + , 2.80a
2poCS 2 ( )
| = p'v, (2.80b)
/m/
o=—P"_ ¢ (2.80¢)
Po

In integral form this conservation law (2.79) can be writtena fixed control volumé/ enclosed by
a surfaceS with outer normah as

%/\//de+/8/|.nda:_/v/ Dax, (2.81)

where we have used the theorem of Gauss to transfofffriv- | dx into a surface integral. For a
periodic acoustic field the averagg) of the acoustic energy over a period is constant. Hence we find

o ffum = [

where is the acoustic power flow across the volume surf8c&he left-hand side of (2.82) simply
corresponds with the mechanical work performed by the velimiection (m'/pg) and the external
force field f' on the acoustic field. This formula is useful because we casider the effect of the
movement of solid boundaries like a piston or a propelleresgnted by source termns and f'.
We will at the end of this chapter use formula (2.82) to caltaithe acoustic power generated by a
compact vorticity field.

We will now derive the acoustic energy equation startingrfithe original nonlinear energy conser-
vation law (1.6). We consider the perturbation of a uniforaiegcent fluid without mass source term
(vo = 0,m = 0, fog = 0, pp and pg constant). We start with equation (1.6) in standard cormsenv
form:

0 1 1,
5 (pe+ PV ) + V. (v(pe+ PV + p)) =-V.-q+V-(r-v)+ f-v, (2.83)
where we note that the total fluid energy density is
15
Eiwt = pe+ épv , (2.84a)

and the total fluid energy flux is

1
ot = v(pe+ EPUZ + p). (2.84b)

12There is no uniformity in the nomenclature. Some authorsndetie acoustic intensity as the acoustic energy flux,
others as the time-averaged acoustic energy flux.
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We have dropped here the mass source tarbecause, in contrast to the force dendityit does not
correspond to any physical process.

For future reference we state here some related forms edated to the entropy variation of the fluid.
Using the continuity equation we obtain

2

D v
pﬁ(e—i-?):—V-(pv)—V-q—i—V-(r-v)—i—f-v, (2.85)

which by using the fundamental law of thermodynamics (1.8yyield an equation for the change
in entropys of the fluid:

T L = V(pp)—V-q+V-(z-0)+ f 0. (2.86)

By subtraction of the inner product of the momentum cong&mraequation with the velocity, this
may be further recast into

D
pTD—f =-V-q+1:Vu. (2.87)

In the absence of frictionz(= 0) and heat conductiorg(= 0) we have the following equations for
energy and entropy:

D 1
pﬁ(e—i- 51)2) — _V-(pv)+ f-v (2.88)
D
D_f _o (2.89)

We return to the energy equation in standard conservation, feithout friction and heat conduction:

%(pe-i- %pvz) + V- (v(pe+ %pvz + p)) =v.f. (2.90)

From the fundamental law of thermodynamics (1.8):

Tds=de+ pd(p?) (1.8)
. . . [oe p
we have for isentropic perturbatloné:—) = —, and so
or)s P
ope d%pe 1/0 c?
()i (G- E)-5
op Js p opc)s p\op)s p

wherei is the enthalpy (1.26) or heat function. We can now expanddtad energy density, energy
flux and source for acoustit.€. isentropic) perturbations up to second order, to find=£ 0):

'\ 2
pe+ 3pv? = poeo +iop’ + %POCOZ(%) + 2pov’?, (2.91a)
v(pe+ 3pv’+ p) = v'(iopo +iop’ + P), (2.91b)
v-f =01, (2.91c)

Noting that the steady state is constant, and using theieguzitmass conservation

op’

—¢ 1V (pov +p) =0
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in (2.90), with (2.91a—2.91c) substituted in it, we find tha zeroth and first order terms jri/ pg
vanish so that (2.90) becomes within an accurac@fp’/ po)°):

12

o p? | pov
9 V. (pv)=v-f' 2.92
at(zpocg 2 )+ (po)=v-T, (2.92)

which demonstrates that Kirchhoff's acoustic energy coraion law (2.79) is not only an energy-
like relation of the approximate equations, but indeed #igoconsistent acoustic approximation of
the energy equation of the full fluid mechanical problem.

2.7.3 Acoustic energy in a non-uniform flow

The method of Myers [152] to develop a more general acoustizgy conservation law follows
similar lines as the discussion of the previous section. @esider a homentropic flow ¢d= 0, so
that ce = (p/p?)dp) with vg # 0. In this case the total enthal@® = e+ p/p + %1)2 appears to be a
convenient variable. In terms & the energy conservation law (2.90) becomes:

%(pB—p)-ﬁ-V-(va):v-f. (2.93)

The momentum conservation law in Crocco’s form (1.31) atsolvesB:

0
a—?-i—VB—i—wxv: f/p. (2.94)

By subtractingpgvg times the momentum conservation law (2.94) pgggimes the continuity equa-
tion (1.18) from the energy conservation law (2.93), stibttig the steady state momentum conser-
vation law:

VBo + woxvo = fo/po, (2.95)

subtracting the steady state limit of the resulting equai@md using the vector identity: (wxv) = 0,
Myers obtained the following energy corollary:

0
a Eexact+ V-l exact — _Joexact (2-96)

whereEgyacy | exactaNd Dexacrare defined by:

Eexact= p(B — Bo) — (P — Po) — povo- (v — vo) (2.97a)
| exact= (pv — povo)(B — Bop) (2.97b)

Dexact= (pv — povo) - (@XxV — woxvg) — (v — o) - (f — f()
— (L= po/p)vo- T — (A —p/po)v- f. (2.97¢)

These auxiliary quantitieBEexacy | exactaNdDexacthave the important property, as Myers showed, that
their zeroth and first order terms in the acoustic pertuobagixpansion ir(p’/pg) vanish, while the
quadratic terms arenly a function of the mean flow and acoustic (first order) quaditAs a result,
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the second order approximation of the exact quantligge; | exactaNd Dexactyield (for homentropic
flow) a general acoustic energy definitién

2 /2 2
_ %P pov

E = "vg- v’ 2.98a
20 Ty vy ( )
C2 1
| = (pov’—i—p’vo)( 0P +v0-v’) (2.98b)
Po
D = —povo- (@' xv") — p'v"- (@oxv0) — (v 4 p'vo/po) - (" — p"To/po). (2.98c)

This equation is identical to the acoustic energy consienvdaw derived by Goldstein [70] starting
from the linearized equations of motion (withy, = 0). It is important to note that, on the one hand,
we have indeed obtained expressions entirely in first ordantiies; on the other hand, however,
these expressions represent only an acoustic energy gatiserlaw if we adopt the definition that
vorticity is non-acoustic and embodies possible acousiticces or sinks. The present expressions for
homentropic flow are further generalized by Myers in recemtars [153] and [154].

2.7.4 Acoustic energy and vortex sound

Averaging (2.96) over one period for a periodic acoustiadf@hd integrating over space yields, if
f =0:

P = //(I ‘n)do = —///(povo-(w’xv’) + p'v’ - (woxvg)) dx (2.99)
S \Y

where# is the acoustic power generated by the flow. It is interedtingpmpare this expression with
the one derived by Howe [82] for a low Mach number compactisitytdistribution w in free space
in the presence of compact solid surfaces:

P = —/// po{(wxv)-Uuy) dx (2.100)
\Y

whereu, is the acoustic velocity defined as the part of the unsteathcitg field v' which is the
gradient of a potential (irrotation& xu, = 0). While (2.99) is not restricted to low Mach numbers it
only allows small time dependent perturbatiesif the time average vorticity, and in this sense is
more restrictive than Howe’s formula. Furthermore, (2.89]ifficult to interpret physically because
v’ includes the solenoidal velocity perturbatians= V xv’'.

Howe’s equation (2.100) has a simple physical interpmtatvhich in the same way as Lighthill’s
theory can be called an aero-acoustic analogy (vortex §oimthe absence of vorticity the flow of
an inviscid and non-conducting fluid is described by Berlisidquation (1.32b):

op

— +B=0. 1.32b

i ( )
If in the same way as in Lighthill's analoéywe extend the potential flow = V¢ in a region where
vorticity is present® # 0) then we can think of the vorticity terim x v) in Crocco’s equation:

0
a—:—i—VB:—wxv (1.28)

13yse the vector identitg- (bxc) = —c- (bx a).
141 Lighthill's analogy the uniform quiescent fluid at thetéiser is extended into the source region.
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equivalent to an external force fiefldacting on the potential flow (acoustic field). Hence we have:
f =—p(wxv) (2.101)

which is the density of the Coriolis force acting on the flugtrcle as a result of the fluid rotation. For
a compact region at low Mach numbers we can neglect dengitytican and use the approximation:

f = —po(wxv). (2.102)

In the absence of mean flow outside the source region we seppligation of the integral form of
Kirchhoff’'s energy equation (2.82) that we recover Howesrula (2.100):

P = ///(f - Ug) dX. (2.103)
Vv

This could also have been deduced from a comparison of the waguation (2.76) in which we

introduced the approximatioB’ =i’ = p’/pg becausay = O:
1 82 /
S atg — V2P = poV- (@xv) (2.104)
0

and the wave equation (2.61) (without mass injections 0):

1 aZp/ )
= —V?p =-V.f. 2.105
cZ ot? P ( )

This corresponds to Powell's approximation of the vortexrgbtheory in which we neglect terms of
orderM both in the wave region and in the source regiBh£ p'/po).

In the presence of a uniform flow outside the source regiotd<kein [70] finds the wave equation:
1 D3p/ 2

— = -V. f 2.106
Zor VP (2.106)

where

The energy equation corresponding to (2.106) isffgr= 0:

fz///<(ua+,';)—;vo)- f)dx (2.107)
v

which suggests a generalization of Howe’s equation Witk pg(wxv):

P = —po///<(a)xv)- (ua-i— Z—;vo)>dx, (2.108)
V

which corresponds with the use Bf = p’/po+ U, - vo as acoustical variable, and= B'(pv)’ as the
intensity with(pv)’ = poua + p’vo the fluctuation of mass flux.
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This generalization of Howe’s equation is indeed deriveddyey [96]. Although the above discus-
sion provides an intuitive interpretation of Jenvey’s testiis not obvious that Jenvey’s definition of

acoustic field agrees with Howe's definition. The range ofdityl of this energy corollary is therefore

not obvious.

In practice Howe’s energy corollary is convenient becauseformulated by an integral. Similar to
Lighthill’'s analogy in integral form, it is not sensitive toandom errors” in the model. Integration
over the volume and averaging over a period of oscillationatits out such errors.

Exercises

a) Calculate the minimum speed of sound of air/water mitata depth of 100 m below sea surface.
Assume a temperatufig = 300 K. Is it true that this speed of sound is independent of#fseas long as
y = Cp/Cy is the same?

b) Derive (2.93) from (2.90).
c) Is the choice o€y in the analogy of Lighthill arbitrary?

d) Does the acoustic sourgé(p’/cg — p) vanish for isentropic flows?

e) Is the acoustic variablg’ the most convenient choice to describe the sound produbtiamnsteady
combustion at low Mach numbers?

f) Is the definition of acoustic intensity = p’v’ valid in the presence of a mean flow?

g) Isit correct that when usinB’ as acoustic variable instead pf, one obtains a more accurate prediction
of vortex sound in a compact region with locally a high Macinner?

h) Is the equatiop’ = cgp’ always valid in a stagnant fluid?
i) Is it correct that the acoustic impedaneeof an ideal gas depends only on the presqfte

i) Show that the surface of constant phage- k- x = constant, of plane wave solution (2.22), is planar,
even ifw is complex.

k) Show that Kirchhoff’s energy definition (2.80) remaindigddor the conditions pertaining to (2.49).
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3.1 Green’s functions

3.1.1 Integral representations

Using Green’s theorem we can construct an integral equatiooh combines the effect of sources,
propagation, boundary conditions and initial conditionsaisimple formula. The Green’s function
G(x,t]y, ) is the pulse response of the wave equation:

?°G  ,0°G

7 G = (X — y)o(t — 7). (3.1)

Note that the Green’s function is a generalized functioee(8ppendix C.) The puls&gXx — y)d(t —7)
is released at the source poinat timer andG is measured at the observation poirat timet. The
definition of G is further completed by specifying suitable boundary ctiods at a surfacé with
outer normah enclosing the volum& in which x andy are localized:

N-VG +bG = 0. (3.2)

Furthermore, one usually assumes a causality conditiofsfirat there is no field other than due to
thed-source:

Gx,tly,z) =0 and %G(x, tly,7) =0 (3.3)

fort < z. When the boundary conditions defining the Green’s functioimcide with those of the
physical problem considered the Green'’s function is calléilored” Green’s function. The integral
eguation is in such a case a convolution of the sog(ge z) with the pulse respongg(x, t|y, 7). Of
course, if the sourcq is known (and not dependent on the field) this integral equdt at the same
time just the solution of the problem. A tailored Green’sdiiion is, in general, not easy to find. It
will, therefore, appear that sometimes, for certain spepifoblems, the choice of a Green’s function
which is not tailored is more convenient.

Before we can discuss this, we have to consider some geneparties of Green’s functions, such as
the important reciprocity relation:

G(x, tly, ) = G(y, —1|x, —t). (3.4)

For the free field this relation follows immediately from syretry and causality. In general [144],
this property can be derived by starting from the definitidntte two Green’s function$s; =
G(Xa t|yla Tl) andG2 = G(Xa _tlyZ’ _T2):

?°Gy  ,0%Gy

iz 9 =X Y)olt— ) (3.5a)
[
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and
0°Gy  ,0°G;

ot? ox?

=d(X = ¥p)o(t — 72). (3.5b)

i
Multiplying (3.5a) byG, and subtracting (3.5b) multiplied &y yields after integration over andt
inV fromt = —oo until a timet’ larger thanr; andz,:

azel aZGZ o ~ 0%G1 0°Gy
—C5|Gr—5 -G dx dit
Lo -2 - dlen - e o

= G(yla _T1|y29 _T2) - G(yZJ T2|y19 Tl)' (36)

Partial integration of the left-hand side yields:

oG, an =t Gy oGy
G, G d G——G— ndodt =0 (3.7
///[26t Xt__oo C"/ // 2 ox 1ax.]'” 3.7)
v

where the first integral vanishes because fer —oo both G; and G, vanish because of the causality
condition (3.3). Att = t’ the first integral vanishes becaus¢’ is earlier than—z, (t' > ) and
therefore bothG, = G(x, —t'|y,, —72) = 0 andoG,/adt|;— = 0 because of causality. The second
integral vanishes becau§y andG, satisfy the same boundary conditions on boundargeplacing

y, andz; by y andz andy, andz, by x andt in the right-hand side of (3.6) yields (3.4).

We now will prove that the Green'’s functida(x, t|y, ) also satisfies the equation:

°G  ,0°G

2 coa—yi2 =0(X — Y)o(t — 7). (3.8)

We first note that because of the symmetry@f — 7) the time-reversed functio®(x, —t|y, —7)
satisfies (3.1):

2 82
2
52C 06 Y, —1) = G5 G (X, ~tly, —7) = d(x — Y)i(t — 7). (3.9)

i
Using now the reciprocity relation (3.4) and interchangihg notationx < y andt < z we find
(3.8).
We have now all that is necessary to obtain a formal solutiche wave equation:
82p/ B C262p/
o2 oy?

=q(Yy, 7). (3.10)

After subtracting equation 3.8, multiplied by(y, ), from equation (3.10), multiplied b§(x, t|y, 7),
and then integration ty overV and tor betweentty andt, we obtain:

p'(X,1) —/H///q(y,r)G(x tly,r)dydr+/t+/// p (Y, 7) azz—Gﬁzp/(y’T)]dyd
—cg/:/// p’(y,r);y(; — Gﬁzp;:;”)]dydr. (3.11)
Y%
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Partial integration over the time of the second integral awvet the space of the third integral in the
right-hand side of (3.11) yields:

px) =/tt ///q(y,r)G(x,tw,r)dydr—cé[ //[ﬁ(y,r)g—i—e%zf”]ni dods
Y, °°8 | |

- ///[mm%-e%]dy (3.12)
V

T=tp

where the second integral vanishes for a tailored Greentifon and the third integral represents the
effect of the initial conditions at = t;. For a tailored Green’s function, andtif= —oo, we have the
superposition principle over elementary sources whichxpeet intuitively:

t
p'(X,1) =/_ // q(y, 1)G(x, t|y, ) dydr. (3.13)
V

In chapter 4 and 6 we will again reconsider the Green’s fonstin more detail. For the present time
we should remember that (3.12) or (3.13) is only an explaifition of the wave equation ¢ is given.
When the sound souraedepends on the acoustic figddthese equations are integral equations rather
than an explicit solution.

Even in such a case the integral representation is usefalusecwe have split up the problem into
a purely linear problem of finding a Green’s function and aosecproblem of solving an integral
equation. Also as stated earlier the integral equation & ganvenient for introducing approximations
because integration tends to smooth out the errors of th@sppations.

The treatment given here is taken from the textbook of MorgkReshbach [144]. An integral for-
mula for the convective wave equation (2.52) and the coomdipg Green’s function and integral
formulation are found in Goldstein [70].

3.1.2 Remarks on finding Green’s functions

In general, a (tailored) Green’s function is only margipaasier to find than the full solution of

an inhomogeneous linear partial differential equationer€fore, it is not possible to give a general
recipe how to find a Green'’s function for a given problem. Simmes an expansion in eigenfunction
or modes (like in duct acoustics; see chapter 7) is possible.

It is, however, important to note that very often we can sifp@ problem already, for example by
integral representations as above, by using free field Grdanctions,i.e. the Green’s function of
the problem without the usually complicating boundariéshé medium is uniform in all directions,
the only independent variables are the distance to the sgure y| and time lag — 7. Furthermore,
the delta-function source may be rendered into a more easiyed form by spatial Fourier transfor-
mation. Examples are given in Appendix C.2.7 and sectionwifile a table is given in Appendix
E.



36 3 Green's functions, impedance, and evanescent waves

3.2 Acoustic impedance

A useful quantity in acoustics is impedance. It is a meastteecamount by which the motion induced
by a pressure applied to a surface is impeded. Or in othersvardheasure of the lumpiness of the
surface. Since frictional forces are, by and large, propoal to velocity, a natural choice for this
measure is the ratio between pressure and vefodktyuantity, however, that would vary with time,
and depend on the initial values of the signal is not veryr@dng. Therefore, impedance is defined
via the Fourier transformed signal as:

P(X; w)

206 @) = S o) -ns()

(3.14)

at a pointx on a surfaceS with unit normal vectons pointing int& the surface. The impedance is a
complex number and a function @fand position. The real part is called tfesistancethe imaginary
part is called theeactance and its inverse AZ is called theadmittance

In the most general situation the ratib = H/(2-ng) is just a number, with a limited relevance.
We cannot consider the impedangeas a property of the surfac® becauseZ dependslsoon the
acoustic field. However, this is not the case for the clas®afadledlocally reactinglinear surfaces.
The response of such a surface to an acoustic wave is lindapantwise, with the result that the
impedance is indeed the same for any solution, and therafpreperty of the surface alone.

Mathematically it is important to note that an impedancenrutauy condition is of “mixed type”. Via
the general Green'’s function representation

b= //(ﬁVG n ikpocoae) ‘g do (3.15a)
S

the Helmholtz equation reduces to an integral equatighifrsurface S has an impedancg:

f)=//(VG-ns+ ikpZOCOG)f)do. (3.15b)
S

Sometimes it is instructive to describe the coupling betwtes adjacent regions of an acoustic field
by means of an equivalent impedance. Suppose we place bethese regions (say, region 1 and
region 2) a fictitious interface, with an impedance such,itpresence of the surface would generate
the same sound field in region 1 as there exists without surfathat case we could say that the effect
of region 2 onto region 1 is described by this impedance.

For example, a free field plane wag&' kX, with k = w/cq and satisfying pov + V p = 0, would
not be reflected by a screen, positioned parallel toytheplane, if this screen has the impedance
Z = poCo. So for plane waves and in the far field (where the waves be@mpeximately plane) the
fluid may be said to have the impedangg,. This inherent impedance of the fluid is used to make
dimensionless leading to tlspecific impedance /2Co.

1in mechanics, impedance denotes originally the ratio betwea force amplitude and a velocity amplitude. In some
texts, the ratio acoustic pressure/velocity is therefaléed “impedance per area” or specific impedance. We resdbeve
nomenclature “specific impedance” to the (dimensionlest®) of the impedance and the fluid impedapgeg.

2Note that usually the normal vector of a surface is definedbtlte surface.



3.2 Acoustic impedance 37

Many other examples are found in 1-dimensional (pipe-) nsodeacoustic systems where local 3-
dimensional behaviour is “packed” in an effective impedarit may be worthwhile to note that for
such models many authors find it convenient to divitiby the surfacesS of the pipe cross section.
In such a case the impedance is the ratio of the acousticyseepsand the volume flux(-n)S
leaving the control volume. The one-dimensional approaeim @llows the use of all mathematical
tools developed for electrical circuits if we assuppdo be the equivalent of the electric voltage,
(G-n)Sthe equivalent of the electric current, and a tube to comedfio a transmission line. Further,
a compact volume is the equivalent of a capacity, and a conopiéice is a self induction. The pressure
difference is in linear approximation due to the inertiakaf fir in the orifice and hence proportional
to the acceleratioo/ot)(0 - n) (section 4.4.3).

3.2.1 Impedance and acoustic energy

For a quiescent fluid the acoustic power flow (2.82) ac®&w a time-harmonic field- €t is

2w

_ 2 A Alot 5. it
JP_//ZE / Re(pe )Re((v Ng) € )dtdo
S 0
1 .. a
:// Z(pv + p*v)-nsdo (3.16a)
S
1 o
=//§Re(p*v-ns)do, (3.16b)
S

wherez* denotes the complex conjugatezif the surface has an impedangethe power becomes

1
P = // ERe(Z)|f;-nS|2c>|a. (3.17)
S

Hence, the real part of the impedance (the resistance)aeceto the energy flow: if R&) > 0 (for
o € R), the surface ipassiveand absorbs energy; if R8) < 0, it is activeand produces energy.

3.2.2 Impedance and reflection coefficient

If we consider the acoustic field for < 0 in a tube at low frequencies, we can write
p(X, t) — rj(X) eiwt — p+ eiwtfikx _{_pf eiwt+ikx (318)

wherek = w/cy, p* is the amplitude of the wave incidentxat= 0 fromx < 0 andp~ is the ampli-
tude of the wave reflected at= 0 by an impedanc&. Using the linearized momentum conservation
law po(dv /0t) = —op/ox we find:

(X) ptei_p-¢ kX). (3.19)

B PoCo(
If we define the reflection coefficielR atx = 0 as:

R=p /p* (3.20)
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we see that becauge= p(0)/5(0) :

_Z = poCo

= : (3.21)
Z + poCo

In two dimensions we have a similar result. Consider a plaameeviamplitudep™), propagating in the
direction (cosd, siny) whered is the angle with the positive-axis (.f. Fig. 3.6), and approaching
fromy < 0 an impedance wall at = 0. Here it reflects into a wave (amplituge’) propagating in

the direction(cosy, — sind). The pressure field is given by

B, y) = e ikxeos? (p* e ikysind |- eikysinﬂ)‘ (3.22)

They-component of the velocity is
sin

ﬁ(X, y) — e—ikxcosﬂ (p+ e—ikysinﬂ —p- ei kysinz?) , (3_23)
PoCo

so we have for the impedance

~ P(X,0)  poCo pT+ P~ poo 1+ R

= = = 3.24
(x,00 sing pt—p- sindl-R’ (3.24)
and for the reflection coefficient
Zsing —
_ S! PoCO' (3.25)
ZsinY + poCo

The impedance with no reflection (of a plane surface) is this poCoy/ Sine.

3.2.3 Impedance and causality

In order to obtain a causal solution of a problem defined byndaty conditions expressed in terms
of an impedance, the impedance should have a particular form.

Consider an arbitrary plane way® = f(t — X/¢p) incident fromx < 0, and reflecting intqp, =
g(t + x/co) by an impedance wall at¢ = 0, with impedanceZ (w). The total acoustic field is given
for x < 0 by:

p(x,t) = f(t —x/co) + g(t + X/Co), (3.26a)
1
o(x, 1) = —((t = x/Co) — gt +X/co)). (3.26b)
PoCo
The reflected wavg is determined via the impedance condition, and therefaehg Fourier trans-

forms of thep andv. As we have seen above (equation 3.21), we have for the Fdraresformsf
andg:

_ Z(w) — poCo »

0(w) = Z(@) T poo f(w). (3.27)
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More information can be obtained, however, if we transfanethoundary condition back to the time
domain

p(0, 1) = / " 50, 0) € do (3.282)
_ / " 2()5(0, ) € do (3.28b)

leading to the convolution product:

p(0,t) = % /OO z(t — 7)o(0, 7) dr (3.29)
where
z(t) :/Oo Z(w) €t do. (3.30)

Since p(0, t) should only depend on the valueswaD, t) of the past(z < t), the Fourier transform
z(t) of the impedancé& (w) has to satisfy theausality condition

zt)=0 for t<0O. (3.31)

Of course, the same applies to the admittan¢é (), when we express(0, t) in p(0,t). This re-
quires, under conditions as given in theorem (C.1) (p.232),

Z(w) and 1/ Z(w) are analytic in Infw) < 0. (3.32)

Furthermore, since botp ando are real,z has to be real, which implies tha has to satisfy the
reality condition

Z*(w) = Z(—w) for w € R. (3.33)
Indeed, the mass-spring-damper system, given by
Z(w)=R+iom—-iK/w, (3.34)

satisfies the reality condition if all parameters are reat,id only causal, with zeros and poles in the
upper complex half plane, if all parameters are positiveeno z

Equation (3.29) yields an integral equation &pif we use equations (3.26a) and (3.26b) to eliminate
p ando:

f(t) +9) =

—— /_Oo Z(t — r)(f(r) — g(r)) dz. (3.35)

For any incident wave starting at some finite tithe= 0) we havef (t) = 0 fort < 0, so that all in
all the infinite integral reduces to an integration over titenval[0, t]:

t
f(t) +g(t) = / 2(t — 7)(f (z) — g(2)) dr. (3.36)

2m poCo Jo
For any timet, g(t) is built up from f (t) and the history off andg along[O0, t].
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As an example, consider an impedance wall of Helmholtz rsorype which is widely used in turbo
fan aircraft engine inlets [193]. Such a wall is describesk(sext chapter) by:

Z(w) = poCO(R+ iom — | cot(%)). (3.37)
whereR, m, L > 0. Note that indeed*(w) = Z(—w). If we write % =¢ —inand®™ = g, then

1+ cot(&)?
cot(¢)? + coth(y)?
for > 0, soZ is free from zeros in Irfw) < 0. From the causality condition it follows that the poles

of cotg(%) belong to the upper half of the complexplane. Hence, we can Fourier transfornback
to the time domain (C.34) to find:

Re(poiCo) = R+ an + coth(y)

z(t)

_ / S _ oL
St = RI(t) + md'(t) + () + 2D d(t ) (3.38)

Co
n=1

whered'(t) denotes the derivative @f(t). Substitution of (3.38) in (3.36) shows thgtcan be ex-
pressed as a finite sum.

For certain parameter ranges the effect of viscous frigtiaihe resonator neclc(f. 2.13, 4.77) may
be included by a term like/i wv; for example [201]

Z(w) = poco(bm +R+iom—i cot(”—L)). (3.39)

whereb > 0. Since the complex square root function is subtle, it hdetemphasised that the square
root, in the form as used here, should beakdinary (principal value) square root. With a branch cut
along the negative real axis fQr-, the branch cut of/iw is then along the the positive imaginary
w-axis, yielding a function analytic in Itw) < 0. In particular,+/iw shouldnot be simplified to
2V2(1 + i)/, unless the branch cut @fw is rotated to the positive imaginary axis, which is of
course in actual practice an intricate operation and promerors and confusidn

Moreover, with(viw)* = +/—iw (for € R) also the reality condition is satisfied, whiiis still
free from zeros in Infw) < 0, since RéViw) ~ Re(y/ +1&) > 0 for 4 > 0 (see above). Fourier
transformed back into time domain we have the causal (giseatafunction

| et =2y (U,

3.2.4 Impedance and surface waves

Part of sound that is scattered by an impedance wall may binednto a thin layer near the wall,
and behave like a surface wave [23, 248, 51, 159, 7, 184, 4,223, 198, 4], similar to the type of
evanescent waves discussed in section 3.3. Examples eftiys of solutions are found as irregular
modes in lined ducts (section 7.4), or as sound that propagaith less than the usuafrf-decay
along an acoustically coated surface.

3In [201] it was too hastily concluded thatw is not admissible in a physically possible impedance remtagion. If
(1+i)4/wis interpreted as/2iw with branch cut as described, it is possible.
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Figure 3.1 Trajectories af for varyingZ = R+ i X (no flow).
FixedR& X =0:—-0.1:—00o —— . FixedX & R=0:010c0 —— ——— .
Consider in(x, y)-spacey > 0, a harmonic pressure fiefa(x, y) €', satisfying
2 24 _ ; : _ >3
Vp+kip=0, with ik p(x,0) = Za—yp(x,O)

whereZ denotes the specific impedance (scaleghgm) of the wally = 0, andk = w/cy. Suitable
solutions are

pix, y) = Ae Ny (@) = V1=

whereq is to be determined. The solutions we are interested in renesiricted to the wall, which
means that- Im(y ) < 0. The sign ofy depends of course on our definition of the square root. Inrorde
to have one and the same expression foralle. x e (kx+kry) it js therefore most convenient to
select the branch and branch cutgdaduch that Infy ) < 0 everywhere (see equation 3.52 and figure
3.5). From the boundary condition it follows that the onljusions that can occur have to satisfy

y(a)=—-271
It follows that the only impedances that may bear a surfaceewave to satisfy
Im(Z) < 0.
The complex values of scaled wave numbecorresponding to these solutions, are given by
o =+y1- 22, (3.40)

Trajectories of these wave numbers, as functiod adire plotted in figure 3.1. To include all complex
values ofZ, we have drawn two fan-shaped families of curves: one fodfiRe(Z) and one for
fixed Im(Z). Note that un-attenuated waves occur for purely imagirzaryhe thickness of the layer
occupied by the wave is of the ordgr= O(1| Im(2)]), wherel = 2z /k, the free field wave length.
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3.2.5 Acoustic boundary condition in the presence of mean flo

The boundary condition to describe a vibrating impermealalk is that the fluid particles follow the
wall motion. In linearized form it is applied at the wall's areor unperturbed position. Without mean
flow, the linearized condition simply says that acoustic aatl’s normal velocity match.

With mean flow the situation is more subtle. Both the actuatab vector and the mean flow velocity

at the actual position differ from the mean values by an armobtiacoustic order, which has to be

taken into account. This was recognized by several autloorgafious special cases. Myers gave in
[151] the most general formulation, which we will summairieze.

Consider the unsteady surfa&ét), which is a perturbation, scaling on a small parametesf the
steady surfacé&,. Associate t0S, an orthogonal curvilinear co-ordinate systém S, y ) such that
a = 0 corresponds t&. The mean flow is tangent to the steady surface (section A.3), so

19-Va =0 ata =0.
Let S(t) be described, to leading order, by

a=¢eg(B,y,t)+ 0(82).

The condition of fluid particles following the surfa&ét) becomes
0
5@ =29 + (vo+ev) V(@ —eg) = O(e?)  ata=eg,

whereev’ is the acoustic velocity. The linearization we seek is theuatic order,j.e. O(¢) when
¢ — 0. This appears to be [151]

T g _
v-n= (a 4+ UO‘V — n.(novvo))ﬁ at a = O, (341)

wheren is the normal ofS,, directed away frong, into the fluid.

An important application of this result is an impedance wsdiction 3.2) with inviscid mean flow.
This can be found, for example, in the lined inlet duct of dtufan aircraft jet engine. The steady
surfaceS, coincides with the impedance wall; the unsteady surfa(tgis the position of a (fictitious)
vortex sheet, modelling the boundary layer.

Since a vortex sheet cannot support a pressure differeme@réssure at the wall is the same as near
the wall in the flow. If the wall has an impedanZe# 0 for harmonic perturbations €t (see 3.14),
the velocity and therefore the positigrof S(t) is known in terms of the pressure:

9= _%(Wam)a:o'

In the mean flow, the impedance wall is now felt as

v'-ns = (io+ oV - ns.(ns.wo)).i at S (3.42)
lwZ

As is usual, the normal vectors of § is now selected to be directadto the wall. If Z = 0, the

boundary condition is jugb = 0. For uniform mean flow along a plane wall (3.42) simplifies to

v.ng = (ia)+ vo-V)%, (3.43)
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a result, obtained earlier by Ingard [92]. An applicatiortto$ generalized boundary condition (3.42)
may be found in [194, 196].

Of practical interest are the following observations. Assiiean flow field is tangential to the wall, so
vo-Ns = 0, the following simplification may be derived

—Ns-(Ns-Vvg) = vg-(Ns-Vng),

i.e. the expression does not really involve derivativev@f(Incidentally, the vectons-Vng is tan-
gential to the surface.) Furthermore, sinée(povg) = 0, we may multiply left and right hand side of
(3.42) bypg and obtain the form

poP

va/‘ Ns = 7 + (V + ns'vns) . (povop).

iwZ

(3.44)

The last part between brackets may be further simplifiedg¢dalowing two forms €.f.[139, 58])

(V4 ns-ng) - (B222) = ns- Vx (nsx 222), (3.45a)
_ 10 . povop
“ s ) 6450

whereng = |vg| and a local orthogonal coordinate systéme, v) is introduced associated to the wall.
Coordinatev is related to the wall normal vector, coordinater is the arclength along a streamline of
vo, and is orthogonal tar in the wall surfaceh, is a scale factor of, defined byh? = (Zx)? +
(8% )%+ (5—02)2. Note that (3.45b) involves no more than a derivative insstre@ise direction.

3.2.6 Surface waves along an impedance wall with mean flow

Consider in(x, y)-space,y > 0, a uniform mean flow irx-direction with Mach numbeM, and a
harmonic field~ € satisfying (see equation 2.52)

: 0 \2 0% = 0?
(kM P = (Ga )P =0
. 0

wherek = w/co. Pressureg is made dimensionless gnc3 and velocityv oncy. At y = 0 we have
an impedance boundary condition given by (see equatior) 3.42

0
ikzo = —(i k+ M —)
v + ox p
whereZ denotes the constant specific wall impedance:atiek vertical velocity.
Solutions that decay foy — oo are of the type discussed in section 3.3
p(x, y) — Ae—ikaX—ikFy .
From the equations and boundary condition it follows that

1-—aM)>’+TZ=0, 0>+ T%=1-aM)?
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For further analysis it is convenient to introduce the Lézeor Prandtl-Glauert type transformation
(see 7.42 and section 9.1.1),

f=V1I-M2, g=M+p%, y=pT, y=y1-02 (3.46)

with the branch and branch cuts pts) selected such that In) < 0 (see equation 3.52 and figure
3.5).

As a result (see [192, 198]) we have the equation for the extlagial complex wave numberas a
function of Z

1-Mo)+p3(0)2=0 (3.47)

By squaring we obtain a 4-th order polynomial equation witbofnplex roots. So in our problem
we have at most 4 solutions. To investigate the occurrendbese solutions, we analyse in detail
the behaviour of possible solutiomsalong the branch cuts of, because it is there where possible
solutions may appear from or disappear to the second Riestagt ofy . From a careful analysis
(see [192, 198]) it appears that in tAeplane there are 5 distinct regions with 0, 1, 2, 3, and 4 &wiat
o, while in thes -plane we can identify an egg-shaped area, of radiug 1, inside and outside of
which we have 4 regions where solutionsnay occur. See the figures 3.2, 3.3, and figure 3.4.

Inside the egg we have acoustic surface waves (a rightmgrnyr and a left-runningss,). Outside
the egg we have hydrodynamic modes (they disappear to infiith vanishing Mach numbegys
andoy, probably both right-running, such that, s is decaying (stable) angly, is increasing (un-
stable). This unstable behaviour depends on the frequaésggndence of, and can be proven for an
impedance of mass-spring-damper type (3.34) in the incessjisle limit [192, 198, 202].

2Mi

3 1
(1-M2)2(1+M2)2

0
4V2(1+V1+8M2)2 |
(3+\/1+8M2)%

[

3
~iivamE+Virem2)2

3 1
(1-M2)2 (1+V1+8M2)2

Figure 3.2 Complex impedanc&plane, with regions of different numbers of surface waves.
No solutions inl, oy €1l...V, ogrelll...V, g €IV...V, 6HS E V.
Thick lines map to the branch cuts in figure 3.3. In the figure= 0.5 is taken.
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Figure 3.3 Complex reduced wave numbeplane, with regions of existence of surface waves. Thickdi
map to the imaginary-axis in figure 3.2 (except for the part in regibwhere no solutions exist).
In the figure,M = 0.5 is taken.

5

Figure 3.4 Trajectories af for varyingZ = R+ i X andM = 0.5.
FixedR& X = —00:0.2200 —— . FixedX & R=0:0.200 ——— —— .

In the limit for hard walls,i.e. for |Z| — oo while ImZ < 0, the hydrodynamic surface waves
on) andoys disappear to infinity while the acoustic surface wawgg andos, approacht1 in the
following way
3 1F M)
'B @ (3_48)

O-HI,O-HS::HWz, osp OsL >~ +1F 222/;6
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3.2.7 Instability, ill-posedness, and a regularization

Although the Ingard-Myers limit of a vanishing mean flow bdary layer is very reasonable for a
fixed frequency, with all pertaining wavelengths being miactger than the boundary layer thickness,
it is totally useless [22, 20] in time domain [201].

The problem is that if we gradually reduce the boundary laymee of the above hydrodynamic surface
waves changes from a convective instability (a positivewiinaate for at least part of the wave number
spectrum but always with a group velocity directed dowrstreto an absolute instability (positive,
0, and negative group velocities yielding unstable behavewerywhere) [202]. At the same time the
growth rate increases until it becomes infinite in the Ingdsaers limit of a vanishing boundary layer.
This implies that in time domain, any perturbation excitegero time an infinitely large instability.
A model or mathematical problem with this property is cailegosed

The (presumably) convective instability has been obseexgérimentally [8], but the absolute insta-
bility probably only numerically [31]. The reason appeardé [202] that the critical boundary layer
thickness, where the instability of the system changes fronvective to absolute, is in any practical
situation so small (several microns) that is has never beglised.

One way to cure this problem of the Ingard-Myers model is tularise the boundary condition by
including the effect of a boundary layer of very thin but reereo thicknes$. For example like in
[202] for a flat lined wall of uniform dimensional impedangZéw) and a mean flowg = U,

(ia) + U°°aa_x) p— hpoiw(giw + guoo;—x)(v’.ns)
2 .

Z(w) =
io(-ng) + —a—p/ - lhlwi(v’ ns)
Po OX2 3 ong

(3.49)

which is to be compared with (3.43). By selecting a boundaygt thicker than the critical thickness
(this depends on the assumed liner model), we can guaramtel-posed model. For a mass-spring-
damper liner (3.34) this was found to be

1 pOUoo 2 m
he ~ = Uy /T 3.50
c 4( R ) K (3.50)

Another form, for circumferential modes in circular dudigs been proposed by Brambley [21], but
without estimate for a sufficient thickness of the boundaget.

3.3 Evanescent waves and related behaviour

3.3.1 Animportant complex square root

The wave equation in 2-D has the very important propertydrgisturbance of (positive) frequenaey
and (real) wave number in (say)x-direction is only radiating sound if frequency and wave bem
satisfy the inequality

la] < /Co

(a similar inequality holds in 3-D). Outside this regime tenerated disturbances are exponentially
decaying (evanescent) inwithout an associated sound field. This is seen as follows.



3.3 Evanescent waves and related behaviour

Consider in the 2-D half spacg > 0 the harmonic sound fielg(x, y, w) € satisfying the
Helmholtz equation

V2p+k?p=0.

wherek = w/cy. If p, generated by (say) the surfage= 0, is given aty = 0 as the Fourier integral

Px.0) = o) = [ Alw) &7
it is easily verified that the field ig > 0 may be written as
p(X, y) = / A(a) €17 dg (3.51)

with the important square root (with branch cuts along thagimary axis, and the real intenal| <
k; see figure 3.5)

y(@)=+vkZI—a2 Im(y)<0, y(0) =k (3.52)

Im(y) =0

S

y(0) =k
Re(y) <0 / Re(y) =0
_ R 0
ealads K wow |/ REDZ0 ko |
Re(y) S O i branch cut
Re(y) =0 ! Re(y) <0
: Im =0
Im(;) <0 : »
everywhere :
imaginary

axisi

Figure 3.5 Branch cuts and signs of= v/k2 — a2 in complex a-plane.
The definition of y (¢) adopted here is the branch of the multi-valued complex squar
root that corresponds to Ifp) < 0 foralla. Im(y) = 0 along the branch cuts.
y (o) >~ —ia sign(Rea) if |a] > K,

The complex square root is here defined such that for any @mapthe wavee '**~17Y radiates
or decays in positivegy-direction. This is not necessary (we could always invole dther solution
~ et'7Y), but very convenient if complex’s are essential in the problem.

a7

If we consider solutions of the Fourier-integral type (3,%hbe onlya’s to be considered are real.

We see that only that part gip(x) is radiated intoy > 0 which corresponds to real positiye i.e.
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with |a| < k. The rest decays exponentially wiyh and is undetectable for — oo. This near field
with |a| > kis essentially of hydrodynamic nature, and becomes justi@mipressible flow field for
la| > k. If this is true for alla, including the largest—, which scales on the size of the object, it
is equivalent to the condition of compactness (2.27), amavstihat compact sources are acoustically
inefficient.

This distinction between radiating acoustic and non-tadianear field has far reaching implications.
We give some examples.

3.3.2 The Walkman

The low frequencies of a small Walkman headphone are naitextias sound. We do, however, detect
the pressure when our ear is in the hydrodynamic near field.

3.3.3 lll-posed inverse problem

Infinitely many boundary conditions are equivalent in theffald. The above boundary condition
p(x, 0) = po(x) and any other with the samespectrum ori—k, k], for example

k

p(X, 0) = Po(X) = / A &

produce the same far field. Therefore, itneerseproblem of determiningp, from a measured far field
is very difficult (ill-posed). Fine details, with a spatidfiecture described byx| > k, are essentially
not radiating. Indeed, waves are in general more scattgréamrdpe than by small objects.

3.3.4 Typical plate pitch

If a metal plate is hit by a hammer, bending waves are exciiddtimne- and space-spectra depending
on, say, frequency) and wave numbew( respectively. However, not all frequencies will be radiat
as sound. As seen above, for angnly the frequencies larger thatty are radiated. Now, the smallest
a occurring is by and large determined by the size of the plateg(ignore fluid-plate coupling), say
1/L. Therefore, the smallest frequency that is radiated isgewmin = aminCo = Co/L.

3.3.5 Snell's law

Also the transmission of sound waves across an interfageebattwo media is most directly described
via this notion of sub- and supersonic wave crests. If a pleae is incident onto the interface, the
point of reflection in medium 1 generates a disturbance inime@ (Fig. 3.6).

With soundspeed; in medium 1 and directidnof incidence(cosd,, sinv,) the disturbance velocity,
measured along the interface, (the phase spe@d) 0s,. Depending on}; and the ratio of sound
speedsc; /¢, this disturbance moves with respect to medium 2 either sopéarally, resulting into
transmission of the wave, or subsonically, resulting irtecalled total reflection (the transmitted

4Traditionally, the angle used is between the propagaticection and the normal vector of the interface.
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transmitted wave

medium 2

interface

A\
reflecte incident
wave

medium 1

Figure 3.6 Reflection and transmission at a discontinuity.

wave is exponentially small). In case of transmission theesptspeeds of the incident and transmitted
wave has to match (tHeace-velocity matching principlg175]).

C1 C2

= . 3.53
cosyy  costs ( )

This is equivalent to Snell's law ([52, 175]), from which warcdetermine the angt® of the trans-
mitted wave with the interface.

For the amplitudes (the reflection and transmission coeffts) we have to do a bit more. See for
example the next problem.

Snellius along an air-bulk interface

If the interface is between air and a dissipative bulk absorovered with a top plate, the idea is the
same, but we need a more precise calculation.

Suppose we have in the air< 0
lwp_ + poV-v_ =0,
iwpov_ + Vp_ =0, (3.54)
P = cop-,
while the bulkabsorber iy > 0 is described by the model
[wQp. + poV-vy =0,
(iwpe+o)vy +Vpy =0, (3.55)
Py = Copy-

At the interfacey = 0 we have a pressure jump due to the top plate and continurtyasé

Z 0
P-(X,0) — p;(X,0) = _F@ p-(x,0),
Po , (3.56)
0

pe—ic/o

0 0
a_yp*(xao):z:@_yp+(xao)a C:
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Eliminatev to get

VZp+k’p =0, k:%, y <0
oot 2 o o ; (3.57)
+ =V, = — —, >
p+up u o\ 7 y

Assume incident a plane wave of unit amplitudeyir: 0, propagation ifcos¢, sin¢)-direction, and
a reflected wave, together given by

p_(x, y) — efikxcos.yﬁfikysinqb +Re7ikxcos¢+ikysin¢ (3.58)

Assume the following transmitted wave yn> 0, which is caused by the incident wave and therefore
has the samgr-dependence (the trace-velocity matching principle)

P (X, y) = f(y)ekxcos? (3.59)

From the equation foip,. it follows that f(y) = Te 7Y with y2 = u? — k?cog ¢. Since the
transmitted wave is decaying fgr— oo, we choose the branch of the square root witliiin< 0.

pr(X,y) =T e o=y -y = /42 —k2co2g, Imy <O. (3.60)
The direction of the transmitted wave is thus
kco Re
(kcosg, Rey) (3.61)

JK2co2 ¢ + (Rey)?
From the interface conditions we have

1+ R) g ikxcosp _ T g-ikxcosp _ (Z/POCO)(]- -R sin¢ @ ikxcosp

with solution
z k 1 k
poto " Ty sing o
_ po y _ y
R=Z—— 1> T=7 % 1 (3.62)
— t —+ = — t — =
poCo  {y  sing poCo  (y  sing

This solution includes the previous problem of a simple gean sound speec.

3.3.6 Silent vorticity

The field of a moving point source may be entirely acoustiedth essentially no other than convec-
tion effects. It is, however, possible, and physically idi@isual, that a fluctuating moving line force
generates a surface or sheet of trailing vorticity. Thigiuity is generated in addition of the acoustic
field and is itself also of acoustic order, but, apart from s@oupling effects, silent. Typical examples
are (the trailing edge of) a fluctuating wing, a propellerdelaor a flag pole in the wind. The amount
of generated vorticity is not a priori known but depends adtaitieof the vortex shedding processd.

described by the Kutta condition), usually not included imaaoustic model. Indeed, this vorticity
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solution comes into the problem as an eigensolution as seoardinuity of the potential along mean
flow streamlines is released as condition. A potential disnaity corresponds to a vortex sheet.

Although convected vorticity is silent (it exists withoutggsure fluctuations) its presence may still
be acoustically important. Near a solid surface (typictily surface from which the vorticity is shed)
the velocity corresponding to the free vorticity cannotsexas the field has to satisfy the vanishing
normal velocity condition. This induces a fluctuating pteesalong the surface which radiates out as
sound, apparently from the surface but of course really drgcity is the source. Examples are the
whistling sound produced by a thin pipe or wire in the windofa sound), and the trailing edge
noise — as far as it is due to shed-vorticity — from a blunteetigirfoil. See for example [189].

We will not consider the generation process here in detailphly indicate the presence of the eigen-
solution for a distinct source far upstream.

Consider in a 2D medium a uniform mean flgw, 0) with velocity perturbations/¢ and pressure
perturbationgp small enough for linearization. Bernoulli’s equation ahd thass conservation equa-
tion become then

09 09
— Uu— =0 3.63a
Po P + po X +p , ( )
op op 252
—+U— c5Vep =0 3.63b
ot Toox TPoVe=0 (3.63b)
o — 0 for |yl — oo. (3.63¢c)

This may be combined to a wave equation, although the hydiardic field is more easily recognized
in the present form Possible eigensolutions (solutions without source)Herftee field problem (no
solid objects) are given by

p(x,y,t) =0 (3.64a)
p(X,y,t) = f(x —Ut,y) (3.64b)
V2f(x,y) = 0. (3.64c)

for suitable functionsf (x, y). A non-trivial solution f decaying both fory - oo andy — —oo
is not possible iff is continuous, but if we allowf to be discontinuous along, say,= 0 (any
surface parallel to the mean flow is possible), of course wtite additional conditions af = 0
of a continuous pressune and continuous vertical velocit§y /oy, then we may find with Fourier
transformation

p(x,t) = /OO F(a) sign(y) e *YI=1#&x=Ub g, (3.65)

o
5 Equations (3.63a,3.63b) may be combined to the convected eguation
C(Z)V2€0 — (ptt + Upxt + U2pxx) =0

which reduces under the Prandtl-Glauert transformatier &42)p (X, y,t) = w(X,y, T) with X = x/8, T = pt +
Mx/cgB, M = U/cg, B = /(1 — M2) to the ordinary wave equation far, and a pressure given by = —po(wT +
U wx)/B. In this way we may obtain from any no-flow solutigna solution to the problem with flow. However, care should
be taken.

An integrable singularity iV y, as would occur at a sharp edge, corresponds without flow tota firessure. With flow
it corresponds to a singular pressure (from the-term). If this is physically unacceptable, for examplehiétedge is a
trailing edge and the sound field induces the shedding ofcityrta Kutta condition of finite pressure is required and th
solution is to be modified to include the field of the shed \aitti(a discontinuous).
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This discontinuity relates to a concentrated layer of edsti(vortex sheet), and is a typical (hydrody-
namic) phenomenon of acoustics with mean flow. The sheddimgrticity (on the scale of the linear
acoustics) would not occur without mean flow.

For a harmonic force (for example, a Von Karman vortex streetlelled by an undulating vortex
sheet) with frequency we have only one wave number= «/U in the problem:

(X, 1) = Fosign(y) exp(ia)t — i%x — 8|y|). (3.66)

This important parametes/U is called the “hydrodynamic wave number”. Together with giadle
length scald_ it yields the dimensionless numbset /U called “Strouhal number”.

It may be noted that this hydrodynamic field has an averagedsity, directed irx-direction, equal
to (note thatp = 0)
1

dp 12  w? o
“Upo| 2| = o5 IFol2e 26,
Po| 5 gz Fol

(l 'ex> = 2

The total power output in flow direction is then

o w
/ (1 -e)dy = U|F0|2. (3.67)
In the case of an acoustic field (for example the field thagaigd the vortices associated to the
hydrodynamic field) the intensity has a non-zero component-direction, and in addition to the
purely hydrodynamic power (3.67) some acoustic energypgisars into, or appears from, the vortex
sheety = 0. See section 9.1.3 and [116, 189, 85, 191, 72].

Exercises

a) Consider the sound produced by thunder, modelled as aiténfne source, fired impulsively. Explain
the typical long decay after the initial crack.

b) Consider in X, y, z)-space the plane = 0, covered uniformly with point sources which are all fired
instantaneously dt= t:
It —1)0(X—X0)d(Y — Y0)d(2) (zo = 0). Calculate the sound field at some distance away from tHreepl

c) Consider an infinite equidistant row of harmonically dating line sources
>, 6(x — nd)é(y) €, placed in thex, z-plane a distance from each other. Show that constructive
interference in the far field will only occur in directionstivian angle such that

kdcost = 2z m; m=0,12,...
wherek = w/cp.

d) The same question for a row of alternating line sources.
e) What is the dimension @f(x) if x denotes a physical coordinate with dimension “length”?
f) Prove the identities (C.36a) and (C.36b).

g) Consider a finite volum®& with surface$ and outward surface normal On 'V is defined a smooth
vector fieldv. Prove, by using surface distributions, Gauss’ theorem

/V-vdx:/v-nda.
§Y 3

h) Work out the expression (3.36) for the reflected wgwe the case of formula (3.38) witlm = O.
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i) We define an ideal open end as a position at whick 0 in a tube. Calculate reflection coefficigRt
and impedancé for such an open end.

j) The same question for an ideal closed end defined &y0.

k) Given a uniform duct betweex = —oco andx = 0, with impedance& of the planex = 0 seen from
thex < 0 side. Calculat& , the impedance of the plaxe= —L, seen fronx < 0.

[) Prove causality of the impedan@éw) = R+ iwm — i K /w. Find the inverse Fourier transform of both
ZandY =1/Z.

m) Determine the reflection coefficieRtof a harmonic plane wave

[ ik k : k .
p(x) = ek x LRe kX px) = e ikx LR gikex
P0oL2 poL2

with k = k(cosd, sin), k = k(cosd, — sin®), k = ||k]|, cok = Q, Q = w — upk cos?, incident from

y < 0in a mean flonwg = (ug, 0) against a wall ay = 0 with impedanceZ. What is the impedance
with R = 0?
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4.1 Plane waves

Plane waves are waves in which the acoustic field only dependse spatial coordinate (say) in

the direction of propagationp(x, t), p(x,t), v(X, 1), .... Such waves may emerge, for example, as
approximations for spheric waves at large distance fromiat gource, or as waves propagating at a
frequency lower than a critical frequendy called the cut-off frequency in a hard-walled pipe. As we
will see from the discussion in section 6.4 and section 7eZcthi-off frequencyf. is of the order of
Co/2d whered is the pipe width (or diameter). The exact valuefgfiepends on the shape of the pipe
cross section.

If we can neglect friction, then below the cut-off frequenitye (propagating part of the) acoustic field
in a pipe consists only of plane waves. The condition for thiglity of a frictionless approximation
yields a lower bound for the frequency we can consider. Al liigquencies, the effect of viscosity is
confined to boundary layers of thickneks= (2v/w)Y? (wherev = 5/ p is the kinematic viscosity of
the fluid) near the walls. In order to make a plane wave appration reasonable we should have thin
viscous boundary layersa/d <« 1. Hence the frequency range in which a plane wave approxkimat
is valid in a pipe is given by:

2v Co

w2 < <o
For airv = 1.5 x 10->m?/s while for water a typical value is = 10-®m?/s. Hence we see that
a plane wave approximation will in air be valid over the thdegades of the audio range for a pipe
with a diameterd = O(107?m). (Check what happens for larger pipes.) This implies shah an
approximation should be interesting when studying pudsatiin pipe systems, musical acoustics,
speech production, etc.

We therefore focus our attention in this chaptetiom one-dimensional approximation of duct acous-
tics. For simplicity we will also assume that any mean floyv= ug(x) is also one dimensional. We
will consider simple models for the boundary conditions. Wikkassume that the side walls are rigid.
This implies that there is no transmission of sound throlngiseé walls. This is a drastic assumption
which excludes any application of our theory to the predittof environmental noise induced by
pipe flows. In such cases the transmission of the sound frermtarnal flow to the environment is a
crucial factor. A large amplitude in the pipe may be harmlé#ise acoustic energy stays inside the
pipe! Extensive treatment of this transmission problemivergby Norton [160] and Reethof [187].
In general the transmission of sound through elastic strastis described in detail by Cremer and
Heckl [36], and Junger and Feit [100]. We further ignore thiscial problem.

In principle the approximation we will use is limited to pg®ith uniform cross section& or, as we
will see in section 8.4, to pipes with slowly varying crosstgms (dA/dx <« +/A < 1). The most
interesting applications of our approximation will contesound generated in compact regions as a
result of sudden changes in cross section or localized fhjgttion. As we consider low frequencies
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(f < co/2d) a region with a length of the order of the pipe widthwill be by definition compact.
We will treat these regions separately, taking possibleettdimensional effects into account. The
(inner-) solution in the compact region is approximatedhst bf an incompressible flow or a region
of uniform pressure

The boundary conditions for this compact region are relébethe plane wave regions by means of
integral conservation laws (Appendix A). In this way we vadinsider a large variety of phenomena
(temperature discontinuities, jumps in cross sectiondtiphel junctions, air bubbles, turbulence...).
In the present chapter we will assume an infinitely long orisafmite pipe. This is a pipe which
is so long that as a result of friction the waves travellingaods the pipe end do not induce signif-
icant reflections. This will in fact exclude the accumulatiof acoustic energy and phenomena like
resonance. This effect is discussed in the next chapter.

A conseguence of this assumption is that the acoustic fidlchet have a large amplitude and that
we can usually neglect the influence of the acoustic field couace. The flow is calculated locally
with our previously discussed compact region approxinmaigmoring any acoustical feedback. This
excludes fascinating effects such as whistling. Thesesfigill be discussed in chapter 5.

If the end of the pipe is part of the problem, we will includéstend by a linear boundary condition of
impedance type. The acoustic impedance is a general liaksion in the frequency domain between
velocity and pressurd,e. a convolution product in the time domain (section 3.2). 8ipcessure
cannot depend on the future of the velocity yare versa the discussion of such a linear boundary
condition involves the concept of causality (section 3.2).

We will show how the Green’s function formalism can be usecdlain information on aero-
acoustic sound generation by turbulence and to estimatsddutering of sound by a temperature
non-uniformity. These problems will be reconsidered l&defree field conditions in chapter 6. It will
then be interesting to see how strong the effect of the camtemé is by a comparison of the results
obtained in this chapter and chapter 5 with those obtainetiapter 6.

Convective effects on the wave propagation will be disaligsehapter 9. We restrict ourselves now
to very low mean flow Mach numbers outside the source regions.

4.2 Basic equations and method of characteristics

4.2.1 The wave equation

We consider a one-dimensional flow in a pipe with uniform sreection. If we neglect friction the
conservation laws of mass and momentum are for a one dimrexiglow given by:

op , op  ou  9(ph)

" u--t PR 4.1a
ot T TP = at (4.13)
ou  ouy  op

p<at + ax) tox T (4.1b)

wherepf corresponds to an external mass injection in the flow §nid an external force per unit
volume.

1For example, the air density fluctuations in an oscillatioguestically compact air bubble in water cannot be neglected
but we can assume that they are uniform within the bubble.
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We assume now that the field consists of a uniform stegep, Uo), plus a perturbationy(, p’, u’)
small enough to allow linearization:

p=potp, (4.2a)
P=po+p, (4.2b)

o0p /ot and fy, being the cause of the perturbation, must therefore byitiefirbe small. We substitute
(4.2a—4.2c) in (4.1a) and (4.1b). Neglecting second ankenigrder terms we obtain the linearized
equations:

op’ op’ ou’ op
i -z = po— 4.3a
ot Yooy T P0G = 0% (4.33)
ou’ ou op
PO +p006x+ax X ( )
We can eliminate’ by using the constitutive equation:
P =cp’ (4.4)

which implies that we assume a homentropic flow.

A one-dimensional wave equation is obtained by subtradtiegdivergence of the momentum con-
servation law (4.3b) from the convected time derivafi@e+ uodx) of mass conservation law (4.3a)
(to eliminateu’):

0 0N\2 ,  L0%p L0 0°f  ofy
(5 +o5x) P~ S5 =Sl — o) (4.5)

4.2.2 Characteristics

As an alternative we now show the wave equation in charatiteform. This allows a simple geo-
metrical interpretation of the solution of initial conditi and boundary condition problems with the
help of a so-calledx, t) diagram. In acoustics this procedure is just equivalert wather procedures.
However, when considering high amplitude wave propagaimm-linear acoustics or gas dynam-
ics) the method of characteristic will still allow an anadg@l solution to many interesting problems
[231, 113, 168]. Also the characteristics play a cruciag lidl numerical solutions as they determine
optimal discretization schemes, and in particular theirditions of stability.

Using the constitutive equation

PP ()

L Uu— =
ot + 0X ot oX

we can write the mass conservation law (4.1a) as:

(P )t cobh)

pc\ ot oX ox  p ot
by addition, respectively subtraction, of the momentumseovation law (4.1b) divided by, we find
the non-linear wave equation in characteristic form:

(G sop)lo= [ 3= =57
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In the absence of source terms this simply states that ahenghiaracteristics® the Riemann invariant
I'* is conserved:

d d
r-=u +/ —E = constant alongc™ = {(x, t)‘ d_)t( =u+ c} (4.6a)
p
_ , dp _ dx
I'=u _/E = constant alongc™ = {(x,t)‘ T u-— c} (4.6b)
In the presence of source terms we have:
op
+  pt_ 20P
I*—TE= /C ) (poCO = :I:cofx)dt (4.7)

where the integration is along the respective charadterfsbr an ideal gas with constant specific heat
we find by using the fact that the flow is isentropic:

/dp_ 2c
pc oy —1

In linear approximation in the absence of sources we have

/ d
r—u+ - along the lines defined by : ¥ Uo = Co.
PoCo dt

4.2.3 Linear behaviour

In the absence of source terms (the homogeneous problemgrwasrie the linear perturbatiop’ as
the sum of two wave§ andg travelling in opposite directions (along thé andc™ characteristics):

p' = F (X — (Co+ Uo)t) + (X + (Co — Uo)t), (4.8a)
1
W= — (}‘(x — (Co+ Uo)t) — §(X + (co — UO)t))- (4.8b)
PoCo

This solution can be readily verified by substitution inte tomogeneous wave equation. The func-
tions £ and§ are determined by the initial and boundary conditions. Aexample we consider two
simple problems for the particular case of a quiescent figig- 0.

Let us first consider a semi-infinite pipe closed by a rigidgsisnoving with a velocityu,(t) starting
att = 0andx = 0. If up/co <« 1 we can use an acoustic approximation to solve the problenguU
the method of characteristics we first observe {®,d) diagram (figure 4.1) that there are two regions
forx > 0:

region | below the linex = cgt
and
region Il above the lin& = cot.

Region | is a region in which perturbations induced by the emognt of the piston cannot be present.
The characteristic] : x = cot corresponds to the path of the first disturbance generated-ad

by the starting piston. Hence the fluid in region | is undisagr and we can write by consideringa
characteristicd; ') leaving this region:

p’ — poCou’ = 0. 4.9
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Xp(t) Il

Figure 4.1 Solution by means of characteristics.

Thisc; characteristic will meet the piston pat(t) = fg updt’ where we have:
u = up (4.10a)

because we assume the fluid to stick to the piston<k ¢p). Hence from (4.9) and (4.10a) we have
the pressure at the piston for any time:

P’ = poCoUp. (4.10b)

Now starting from a poinkp(t) on the piston, we can drawd characteristicd}) along which we
have:

P’ + poCoU’ = (P' + poCoU’) p = 2poCoUp(te) (4.11)

wheret, is the retarded or emission time, implicitly given by

t_ X — Xp(te)'
Co

(4.12)

te:

This is the time at which the disturbance travelling al@jgand reaching an observer @, t) has
been generated by the piston. At any pdixtt) alongc; we can find &, characteristic originating
from the undisturbed region for which (4.9) is valid. Conib@(4.9) and (4.11) we see that alocyy
we have:

u" = up(te) (4.13a)
P’ = poCoUp(te). (4.13b)

We could have obtained this solution directly simply by gsf#.8a,4.8b), the general solution of the
homogeneous equation. Because the tube is semi-infinit¢harmiston is the only source of sound,
we have only waves travelling in the positixedirection so that (withug = 0):

p' = F (X — Cot) (4.14a)
u = F (X — cot)/poCo. (4.14b)
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Figure 4.2 (x, t) diagram for the initial value problem.

Using the boundary condition’ = u, at the pistorx = x, we find the retarded (or emission) time
equation (4.12) and so the solution (4.13a,4.13b).

We now consider an initial value problem in a semi-infinitpegi Suppose that the pipe is closed at
x = 0 by a fixed rigid wall (/ (x = 0) = 0) and that in the region & x < L the fluid is undisturbed
while for x > L there is originally a uniform disturbanagy, ug) of the uniform quiescent fluid
state valid forx > 0 (p;, uy = 0) (figure 4.2). We can easily delimit the uniform regions ¢ dhin
which the initial state will prevail by drawing thgf andc; characteristics emanating from the point
(x,t) = (L, 0).

The state in region 1V at the closed pipe end is the next damiesto determine. We draw the charac-
teristicc, emanating from region Il along which we have:

C, : P — poCol’ = Py — poColly. (4.15)
At the closed pipe end’ = 0 so that fort > L /cg:
Py (X = 0) = Py — poCoy (4.16)

In region 11l we obtain the solution by considering the istction of the waves|” andc; emanating
from regions | and Il respectively:

¢ P+ pocou’ =0 (4.17a)

C; 1 P — poCol’ = Py — poColg. (4.17b)
Hence:

Pl = 3(Po — poCollp) (4.18a)

Uy, = —3(Pp — poColip)/poCo. (4.18b)

Finally for any point in the region IV above the line= co(t — L /cp) we have:

c§ : P+ pocol’ = Py — poColy (4.19a)
C3 @ P — poCol’ = Py — poColy (4.19b)
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so that we have:

u, =0 (4.20a)
Py = Py — PoColy (4.20b)
as we already found at the closed pipe erd= 0). Of course we could have solved this problem
without an(x, t) diagram, but this requires quite an intellectual effort.

From the previous two examples simple rules are obtainedgacan(x, t) diagram in combination
with the method of characteristics:

a) Indicate on the andt axis the initial and boundary conditions.

b) Draw the characteristics delimiting the undisturbedaeg in which the initial conditions pre-
vail.

c) Consider reflection of these boundary characteristid®andary conditions. (Contact surface
delimiting regions of different uniform stai@, po, Co, ... Will be discussed in section 4.4.) This
yields a further subdivision of thg, t) plane in uniform regions.

d) Determine the state at the boundaries at the moment thensssage from the initial conditions
arrives.

e) Determine the state in regions where two characterisficgpposite familiec™ andc™ ema-
nating from regions where the solution is known meet.

While for initial value problems the method of charactécstis most efficient, we will use Fourier
analysis when we consider boundary condition problemsaBteady harmonic perturbation equation
(4.8a,4.8b) becomes:

p = pteet-ikx g gtk (4.21a)
U = po_co(p+ glot—ikx _ P ela)t-HkX)' (4.21b)

wherep* are amplitudes which are functions®f andk is the wave numbetk = w/cy).

4.2.4 Non-linear simple waves and shock waves

A general solution of the non-linear one dimensional homugit flow equations can only be obtained
by numerical methods. In the particular case of a wave patpaginto a uniform region the solution

is considerably simplified by the fact that the charactessemanating from the uniform region all
carry a uniform message. We will show that as a consequeniteésahe other characteristics in this
wave are straight lines in th& (t)-plane. Such a wave is called a simple wave.

Let us for example consider a wave propagating alohgharacteristics which meets -waves em-
anating from a uniform region. The message carried bytheharacteristics is:

Ir=u- / @ =TI, forallc™. (4.22)
pC
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If we now consider a*-characteristic in the simple wave, we have in addition fhatis equal to
another constant, specific to that particudar

d
r=ut [ 2P (4.23)
pC

Addition and subtraction of (4.22) and (4.23) yields, aldimgc™, the result

u=3(T*+Ty), (4.24a)
d

Hence, the velocity is constant along the™ considered. As in addition to the thermodynamic quan-
tity [(dp/pc) also the entropys is constant along the* (because the flow is homentropic), we
conclude that all thermodynamic variadlese constant along the. In particular the speed of sound
c = /(dp/dp)s is constant along a* in the simple wave. Therefore, the sloe+ c) of the ct
characteristic is constant, and the characteristic isaggétr line in an(x, t)-diagram.

As an example of an application we consider the simple wamnerg¢ed fox > 0 by a given boundary
condition p(0, t) atx = 0, assuming a uniform quiescent fluigy(= 0) with a speed of sount= cy
fort < 0. The sound speerl0, t) atx = 0 is calculated by using the equation of state

p y
w0

which implies
c_(P\Z
o= (@)

The message from the -characteristics implies

g
= B ()= B2 )

We can now easily construct the simple wave by drawing at gaht the c™-characteristic emanat-
ing from x = 0. We see from these equations that a compres%ipto, t) > O implies an increase
of bothc(0, t) andu(0, t), and of course the opposite for a decompression or expanssoa result,
characteristics at the peak of a compression wave have arrggkeed| + c) than those just in front
of it. This results into a gradual steepening of the comjiwassave. This non-linear deformation of
the wave will in the end result into a breakdown of the the@yduse neighbouring-characteristics
in a compression intersect for travelling times larger thaor distances larger thag given by

-1

= — [(W)tzo] , (4.25a)
Xg = —t2 |:(5(Ua——t|-c))xzo:| . (4.25b)

2For a homogeneous fluid the thermodynamic state is fullyrdeteed by two thermodynamic variables.
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For weak compressions we find the approximation for an idaahgth constant :

1

.+ 2ypoCo [ 0P -
X = Gols = y +1 [(at)x=0:| ' (4.26)

Fort > ts or X > Xs the solution found by integration of the differential edaas becomes multiple
valued and loses its physical meaning.

The approximation on which the equations are based wilkdlyefail before this occurs because
the wave steepening involves large gradients so that healuction and friction cannot be ignored
anymore. This limits the process of wave deformation. Fgdaressure differences across the wave
the final gradients are so large that the wave thicknessysadielv times the molecular mean free path,
so that a continuum theory fails. The wave structure is irctr@ginuum approximation a discontinuity
with jump conditions determined by integral conservatand. We call this a shock wave. Apart from
discontinuous, the solution is also dissipative, as threpgaduction of entropy in the shock wave.

If the wave is initiated by a harmonic perturbatipf(0, t) = pcoqwt), the shock formation distance
corresponding to the largest value—gcgb’ is given by

o ﬂ horn exit pressure,
o (+Dp 2 <
— ff
< 1f
In a pipe segment, closed on both sides by a rigid Wa@ 05!
a wave travels easily hundreds of wave lengths beforedt
is attenuated significantly by friction. Therefore, even :
m

at apparently modest amplitudes pfpo = O(102) = 1}
shock waves can appear in a closed tube driven b)@ 05!
piston at its resonance frequency. Recent papers dis- o~ o~
cussing such effects are the review of Crighton ([42]) ‘ ‘ ‘

and the work of Ockendoet al. ([163]). When the 7 1}
pipe segment is open at one end, the wave is invert@ 05!
each time it reflects at the open end. The non-lineag
wave distortion due to the wave propagation during
half an oscillation period is compensated, at least in

0 0001 0002 0003 0.004

first approximation, in the following half period. Under t(s)

S_UCh conditions nc_m_lmear_eﬁ?(:ts du,e to flow Separr?féure 4.3 The pressure signal measured at the exit of
tion at the open pipe termination (Disselhorst & Van the horn for three playing levels: piano (p),
Wijngaarden [49]) or even turbulence in the acoustical mezzo-forte (mf), and fortissimo (ff).

boundary layer ([135], [240], [3], [55]) can appear befommdinear wave distortion becomes domi-
nant.

However, when the pipe is driven by a strongly non-harmonésgure signgb’(0, t), the wave steep-
ening may lead to a shock wave formation before the open eadéan reached. This may, for
example, occur in a trombone where the pressure at the ettiedfiorn shows very sharp peaks, as
shown in figure (4.3). The increase of the wave distortiomlie amplitude explains in such a mu-
sical instrument the increase of brightness (the highanbaics) of the sound with increasing sound
level (Hirschberg [77]). In open-air loudspeaker horns evaxopagate in non-linear way. In mufflers
of combustion engines shock waves are also common.
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When the non-linear deformation is small, the generatiotheffirst harmonicd, at 2w, by a signal
p, originally harmonic with frequencyy, is given by [175]:
P1 X
=_ 2 4.27
P 2Xs ( )

4.3 Source terms

While f is a source term in (4.1b) which can be realized by non-umifgravitational or electro-
magnetic forces, the source ted®(pf)/ot? in (4.1a) does not correspond to the creation of mass
(because we consider non-relativistic conditions). Heheee introduce a source ter@?(pp)/ot?

this term will be a representation of a complex process whiehinclude in the 1-D inviscid flow
model as a source term. For example the effect of fluid igadtirough a porous side wall in the pipe
can be considered by assuming a source term in a uniforrey filipe with rigid impermeable walls.

In the case offy, we may also find useful to summarize the effect of a complex 8aeh as the
flow around a ventilation fan by assuming a localized mommargaurce in a one dimensional model.
This is called an actuator disk model. Of course, this kindepiresentation of a complex process
by a simple source is only possible if we can find a model toutale this source. This is only
attractive if a simplified model or an order of magnituderastie can be used. When the source region
is compact we will be able to find such simple relationshipsvben a simplified local flow model
and the corresponding 1-D sources by applying integral emeaion laws over the source region
and neglecting variations in emission time over the sougg®n. The general treatment of the aero-
acoustic sources has already been given in section 2.6. Yus feere on some additional features
which we will use in our applications of the theory.

In a compact region of length and fixed volumeV enclosed by a surfacg we will use the conser-
vation laws for mass and momentum in integral form (App. A):

%///pdx+//pv-ndo=0 (4.28a)
Y S
%///pvdX-l—//(P—i—pvv)-nda=// f dx (4.28b)
Y S Y

whereP is the stress tensoPy ).

Within the volumeV we describe the flow here in full three dimensional detail(4@8a) has no
source term. However, the source te?fip/)/ot? in the one dimensional representation of the mass
conservation law is supposed to include the effect of themel integral(d/dt) [/ p dx. In order

to understand this we compare the actual source region witldienmensional representation of this
source region (figure 4.4). Integration of (4.1a) over therse region yields for a uniform pipe cross
section:

Lo NP
/0 P dx+ (o, — (o = /0 20 . (4.29)

If we assumel to be small compared to the acoustic wave length (compadttas source term
8%(pp)/ot? to be uniform we can write in linearized form :
op

o = AUS(X — y) (4.30)
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Figure 4.4 One dimensional representation of source region

for a small source region around= y. The value ofAu’ = (U, — u}) to be used in (4.30) is found
by application of (4.28a) to the actual situation. If we assuhe flow to be uniform at the planes 1
and 2 of cross-sectioA, where it enters and leaves the voluigwe obtain:

M(pu)s — (puyl = —= / / / p AX + g (4.31)

wheregpe is the externally injected mass flux intbthrough the side walls. For identical fluids at both
sides and in linearized approximation for a compact sowegen we have:

d
Apo AU = _E/// 2 X + pox. (4.32)
Y,

Since typical wavelengths are much larger than the compacts region, density and pressure gra-
dients are negligible and we can replace the volume intdyr#he averaged value. We can write for
a homentropic flow

vV dp Pex
S X
Apocy dt Apg

In a similar way, if we can neglect the volume contributi@tidt) [/ pv dx to the integral conserva-
tion law, we obtain in linear approximation (neglectipgs,? and pou;?):

AU = —

fy = AP'd(Xx —y). (4.33)

This source term for the 1-dimensional wave equation canskd as a representation of a complex
flow such as that around a ventilation fan.

As an example of a sound source we consider now the effeceafdhvection of a small fluid particle
with a densityp and speed of souncl(different from pg andcy) passing through a sudden change in
pipe cross section in which we assume a steady isentropiswrgbnic flomug(x) (figure 4.5). We
will first consider the problem by using the linearized forfritee integral conservation laws for small
differences in density and speed of sou@ £ po)/po <« 1 and(c — ¢p)/Co < 1). A more formal
discussion of this effect is given by Morfey in [141].
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Figure 4.5 Particle convected with the main flag(x) through a nozzle.

If the volumeV,, of the fluid particle is much smaller than the nozzle voluvhand if the properties
of the fluid particle do not differ much from that of the restlod fluid, we can assume that the particle
is convected with the undisturbed steady flow veloaggx). As the particle is small the pressure over
the particle will be uniform and in first approximation eqt@the main flow pressurpy(x). po(X) is
given by Bernoulli's equation:

Po(X) + 5pou3(X) = constant (4.34)

The variation in pressurpg(x) will induce a volume variation of the particle, additionalthat of the
mean flow, which is related to the variation in the fluid conggibility

1/0p 1
XK = ;($)S = 3 (4.35)
by:
, d
AAU = — (K — JCO)Vpa Po(Xp(t)) (4.36)

which implies a source term:

o _ _K-Jo, d _
A Vg Potp)Ix —y) (4.37)

where:
Up =Xp= Uo(Xp). (4.38)

because we assume that the particle is convected with tha fitsa velocity ug. Furthermore the
particle will exert an additional force on the fluid due to tensity differenced — po) which implies
a force source term:

fx = Ap'o(x —y) = -

p — po,, Du, p — po duo
Vp—0(X —y) = — VplUp—3(X — Y). 4.39
A Vo 0(X — ¥) = === Vplo-d(X — ) (4.39)
This force is due to the difference in inertia between theéiglarand its environment. Note that for an
ideal gas the compressibiliti is given by:

1

K=—. (4.40)

7P
Hence for a small particle in this linear approximation tlwume source term (4.37) is due to a
difference iny . This term vanishes if we consider the convection of a hotpgaticle (not chemically
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different from the environment) which we call an entropytspo that case sound production will be
due to the difference of inertia between the entropy spotthadgurrounding fluid. Howe [81] refers
to this as acoustical “Bremsstrahlung”.

In a similar way we can describe the effect of a slow variatibithe tube cross section aréaon
sound waves of low frequency.€. %A <« +/A < 1). With some care we can derive a suitable one-
dimensional approximation, called Webster's horn equatio describe the wave propagation (see
section 8.5). To leading order the momentum conservatianidanot affected by the cross section
variation. The mass conservation law, however, becomes:

/ Au/
aa% p_,:aax =0 @4y

This can be interpreted as the linearized continuity eqona#.3a) with a volume source term

o U oA
— = 4.42
ot A ox ( )

4.4 Reflection at discontinuities and abrupt changes

The procedure described in the previous section to incatp@ources in a compact region into a one
dimensional model can also be applied to determine jumpitions over rapid changes in a pipe. It
should be noted that a mathematically more sound derivaditowing also higher order corrections,
is obtained by using the method of Matched Asymptotic Exenss This will be worked out in more
detail in chapter 8.

4.4.1 Jump in characteristic impedancepc

p1C1 p2C2

X—>

N S
—>

x
Il
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Figure 4.6 Jump in acoustic impedance.

We first consider an abrupt change at about y in speed of sound and densityp between two
media, 1 and 2, in a hard-walled pipe with uniform cross seatif sizeL? (figure 4.6). If the waves
are exactly plane and the interface is exactly straightjuimg conditions across the interface (contin-
uous velocity and pressure) may follow from continuity aeaimlines and normal stress. In general,
however, it is more subtle. As an illustrative example, wi gwe the derivation here in detalil.

Assume that the typical frequenciesare low such that the Helmholtz numbers = wL /c; and

g2 = wlL /c, are small. In that case the acoustic field is 3D only in the inliate neighbourhood of
the jump. At about a diametdr away it is practically plane and only dependentofsee page 154:
all modes are evanescent except for the plane wave). D@fimgual to the volume between the (not
necessarily straight and steady) interfég¢) nearx = y and the fixed plang = y_ = y — L.
Similarly, we defineQ, the volume betweeSandx =y, =y + L.
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Integrate the mass conservation equations in the form 28]verQ; andQ, to obtain

/// [i%—i-Vvl]dx—i—/// [i%-ﬁ-v ]dx:O
Q Lp1 dt o, Lp2 dt

After applying Gauss’ divergence theorem

1d
/// —ﬂ —// UldA+/ (vl-nl)dA
o, p1 Ot x s
1dﬂ2
+/// dX+// U2dA+/ (v2-nx)dA =0
o, p2 dt

and using the fact that at interfaBghe normal velocity components are continuous an¢gon;) =
—(v2-ny), we obtain

/// VTV /// iﬂdx+u2(y+)L —0
Q P1 dt szzd

After linearisation and estimating the volume integrald.3p; /p ~ L3wp’/po ~ L3wv’/Co = L2%ev’,
we find that

Up(y+) — Ui (y-) = O(ervy, €203)

In a similar way we integrate the axial momentum equation

[ I e e I [ ] oo

After integrating tox

///lel—dx // pldA+//pldA-f—///szz—dX—}—//X:yPZdA_/szdAz0.

and using the fact that &the pressure is continuous, we find

///lel—dx—p(y IL®+ ///szz—dXJr P2(ys)L2 = 0.

Linearisation and estimating the volume integral& 3pu; ~ L3wpou’ ~ L3wpoCol’/Co ~ L3wp'/Co =
L2ep’ lead to
Po(y+) — PL(y-) = O(e1py, e2)
Altogether we have thus approximately the following jumpditions atx = y
AU =uU, —u; =0, (4.43a)
Ap = p,—p,=0. (4.43b)

By using the general solution (4.8a,4.8b) of the homogesi@mve equation, we have xat= y for
the jump conditions in the pressure and velocity, respelgtiv

Fi(y — c1t) + Ga(y + cut) = Fa(y — Cot) + G2(y + Cot), (4.44a)
F1(y — Cit) — G1(y + cat) _ Fo(y — Cot) — Ga(y + Cat)
P1C1 p2C2 .

(4.44b)

67
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If, for example, we have a sourcexak y generating an incident wavg, in a tube of infinite length
so thatg, = 0, we obtain

gix+ct) = R}‘l(Zy —(xX+ Clt)), (4.45a)
Fo(x —cot) = T?l((l — E—;)y + g—;(X — Czt)), (4.45b)
C2 — paC 2psC
WhereR=M’ T=L
p2Cr + p1Cy p2Cr + p1Cy

The factorR betweerg, and#; is called the reflection coefficient and the factobetween#, and ¥
the transmission coefficient. We observe thaiif; = p,C, the acoustic wave is not reflected at the
contact discontinuity. Inspection of (4.44a,4.44b) fgc; = p,C, also shows that the only solution is
F1 = F> and§g1 = $». This corresponds to results obtained already in secti®rvBen considering
harmonic waves.

4.4.2 Smooth change in pipe cross section

We now consider a compact transition in pipe cross sectiared fromA; to A,. If the flow is

2

1

L
Figure 4.7 Abrupt cross sectional area change.

homentropic and there is no flow separation (vorticity isoyéne pressure differencep’ = p, — p;
across the discontinuity can be calculated by using thenipeessible unsteady Bernoulli equation
(1.32b):

AP’ = 3po(Uy® — U5%) — pof Ao, (4.46)
whereAgp = ¢, — @1 is the potential difference. In linear approximation:

Ap' = —po5 Ag. (4.47)

For a compact smooth change in cross section as in figure & Tave continuity of fluxAu) =
AX)U'(X), while the potential difference can be estimated\as= ff u dx >~ uj flz(Al/ A(x))dx ~
u;L. The pressure differenckp’ is of the order ofpowu) L, which is negligible wheho/cy « 1. We
then have a pressure uniform over the entire region. Notenthide this is a very crude approximation,
this is a stronger result than just a continuity conditioee(section 4.4.4). This conditiohp’ = 0
can be combined with the linearized mass conservation ldtheihow frequency approximation

poALU] = poAol; (4.48)

to calculate the reflection at a pipe discontinuity.
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4.4.3 Orifice and high amplitude behaviour

Instead of a smooth variation of the pipe akave consider an orifice placed in the pipe with an
opening aredy and a thicknesk (figure 4.8). We start with the problem of acoustic wave pgap@n
through a stagnant fluidi§g = 0). In principle, if we use the approximations (4.47) and®& and if we

A ] tAd

Figure 4.8 Oirifice.

neglect the potential jumpg, we see that the orifice will be completely “transparent’he &coustic
waves. However, ifAy < A we find experimentally a significant effect of such an orifideich is
due to the inertia of the air in the opening. Assuming a unifeelocity and an incompressible flow
without friction we have from (4.47):

, A ou
Aq ot
whereu’ is the acoustic velocity in the pipe. We could also simplyéhabtained this result by con-
sidering the pressure differenagy’ necessary to accelerate the mass of flpgyL) in the orifice
and noticing that the particle velocity in the orifice is givay:

(4.49)

A
u/ — _u/' (450)
T Ag
In practice (4.49) yields a lower bound for the pressure @moss the orifice because we neglected
the inertia of the air in the region outside the orifice. THfe@& can be taken into account by intro-
ducing an “end correctiond on both sides:

Le= L +20 (4.51)

whered appears to be of the order @Ay /7 )*?. Typically (8/3x)(Aq /7 )/? for a circular orifice and
a larger value for a slit [91]. This explains why a thin orifide — 0) also affects the propagation of
acoustic waves in a pipe. For a circular orifice of radiuis a thin plate we havé s = wa/2 (see
[175]).

If we consider a narrow orifice the local velocity; in the orifice may become quite large. When the
acoustic particle displacemenjt/w becomes comparable to the radius of curvature of the edgjes at
entrance and the exit of the orifice non-linear effects aintidn will result into acoustically induced
vortex shedding [94, 95, 49, 44]. When the fluid particle Bispment becomes comparable to the
diameter of the orificé Ay /7 )2u} /o = O(1) the vortex shedding can be described in terms of the
formation of a free jet, by assuming that there is no presdifference across the boundaries of the
jet. The shear layers enclosing the jet are not capable tHisuwy a pressure difference. Furthermore,
if Ag/A <« 1 we assume that the kinetic energy in the flgmuaz is lost upon deceleration of the
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jet by turbulent mixing with the air in the pipe. This impli#isat in addition to the linear terms in
Bernoulli we should add the non-linear effects:

(4.52)

Ap' = —poA LY 3P (AU/)Z-
As ot Ad

A typical feature of this effect is that the pressurp’ has now a componeéi;ou;j2 which is in phase

with the acoustic velocity, and therefore will involve (astic) energy losses that were absent in the

situations discussed until now. These losses are due tathtahat the kinetic energy in the jet is

dissipated by turbulence.

The model proposed here appears quite reasonable but in cagag the surface area of the jet is
smaller thanAy which implies additional losses[44]. This effect can be aglmas a factor 2. The jet
contraction by a factor 2 corresponds to the so called ventrama at an unflanged pipe entrance.
For a thin orifice with sharp edges the jet cross section istaffa’ narrower than the orifice. When
the edges are rounded off the contraction effect disappeapidly.

It is interesting to consider now how a mean flow affects theuatic properties of an orifice. We
assume that the mean flow velocily in the pipe is so small compared to the speed of sawnd
that we can neglect all convective effects on the wave prati@g Ug/co < 1). As the orifice has
a small aperturéAy/A), the mean flow velocity in the orifice is significant. We assiwarsationary
frictionless and incompressible flow. The assumption ofdcidémless flow fails, however, to describe
the flow at the exit of the orifice where as a result of frictibe flow separates from the wall and a
free jet of surface areéy is formed.

Assuming further no pressure difference between the jettamehvironment we can write for the total
pressure differenca po:

Apo = —%p(%uo)z. (4.53)

For acoustic velocity fluctuations we have, neglecting the higher order termsiin

4 2
Ap = —pogLaal: - po(g) UoUl. (4.54)
We see from this equation that even in the linear approxonathergy is transferre@d(A/ Ag)2ugu’?)
from the acoustic field to the flow (where it is dissipated byptlence). This effect is of course a
result of the forcepg(w x v) in Howe’s analogy (section 2.6). The vorticity responsifde this is
located in the shear layer that confines the free jet. We \eilicdbe the formation of a free jet in
section 5.1. The consequence of this effect is that an ofpfi@eed in a tube with a mean flow is a
very efficient damping mechanism. This device is indeed wegehstream of a compressor in order
to avoid the low frequency pulsations that may be inducedbycompressor into the pipe system. As
explained by Bechert [10], for any orifice placed at the end pipe one can find a Mach number at
which the reflection coefficient for long acoustic waves shas. Such an orifice acts thus an anechoic
termination for low frequencies!

A beautiful property of this damping mechanism is that it & frequency dependent as long as
the frequency is low enough. This is not the case with thecefiéfriction and heat transfer which
are strongly frequency dependent (equation 3.13), in a Walydt low frequencies friction is quite
inefficient.
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Ug ——p»

b)

a)

Figure 4.9 Vortex shedding at an orifice.

It is interesting, however, to note that under special flowditions an orifice can produce sound as a
result of vortex shedding. This occurs in particular if tmfice has sharp edges at the entrance where
the vortices are shed [6] (figure 4.9a) or when the edges arelenl at the downstream side [251, 76]
(figure 4.9b).

The frequency of the sound produced by the vortex sheddisgdh that the period of oscillation
roughly corresponds to the travel time of a vortex through dhifice (a Strouhal numbesr =
fL/(Aug/Ag) = O(1)). When this sound source couples with a resonator (see hagtear) large
amplitudes may be generated. This is an explanation for humastling [251, 219]. Flow instabil-
ities of this type also occur around pipe arrays such as usbdat exchangers [18]. Whistling cor-
responds to self-sustained flow instabilities. In the cdssnaexternally imposed acoustic wave, the
periodic vortex shedding is a nhon-linear phenomenon whiihgenerate higher harmonics. Hence,
suppressing low frequency-pulsations (being mechagidalhgerous) with an orifice may be paid by
the generation of high frequency noise which is an envirartaigoroblem.

A generalization of the procedure which we introduced tivtelly for the orifice can be obtained for
an arbitrary compact discontinuity in a pipe system. Theuatical effect of this discontinuity can
be represented in an acoustical model by a pressure disaiint{ A p)source Which is calculated by
subtracting from the actual pressure differedgethe pressure differend@\p)pot, corresponding to
a potential flow with the same velocity boundary conditions:

(ApP)source= AP — (AP)pot-

The actual pressure differen2gp can be measured or calculated as a function of the main flow ve-
locity up and the acoustical velocity fluctuation The potential flow differenceéA p),q is calculated.
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This procedure is in particular powerful when we can use aiggstationary flow model. We then
use the incompressible continuity equation and Berno8li= constant ang + %pou2 = constant,

to calculate(Ap)po, While Ap is measured in the formp = CD%pu2 as a function of various pa-
rameters. When convective effects are taken into accouthiteiwvave propagation, it appears to be
important to define the aeroacoustic source in terms of adiswity (A B)sourcein the total enthalpy
rather than in the pressure.

4.4.4 Multiple junction

In the previous sections we used the equation of Bernoullietive pressure jump conditions for a
discontinuous change in pipe diameter. We could also hatarsa a similar expression by consid-
ering the law of energy conservation. The use of Bernouli gfronger procedure. To illustrate this
statement we consider the reflection of waves at a multipietijon. As an example considerTa
shaped junction between three pipes of cross-sectiontdcguf;, A, and Ag, respectively (figure
4.10).
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Figure 4.10 Multiple junction.

We define along each pipexacoordinate with a positive direction outwards from theguon. The
conservation of mass for a compact junction yields:

Alu/l + Azu/z + A3U/3 =0 (4.55)

while from the equation of Bernoulli we find:

Pi =P =P (4.56)
Note that closed side branches are very popular as refldotprevent the propagation of compressor
induced pulsations. It is interesting to note that flow mapalrastically affect the acoustic properties
of a multiple junction and make the use of this device quiteggaous. In particular if we consider
junctions with closed side branches, the shear layer sipgithe main flow from the stagnant fluid in
the pipe is unstable. Coupling of this instability with ageant acoustic field may result into pulsation
levels of the order of’ >~ O(pcoug) ([25, 108, 254]). Again, the amplitude of these pulsations
depends crucially on the shape of the edges of the junctidhgisame way as the shape of the edges
was crucial in the orifice problem. More about this will be kexped in the next chapter.

For a T-shaped junction of a main pipe with a closed side ltran@ grazing flow along an orifice in
the wall the quasi-steady theory for a main flayindicates that the shear layer can be represented
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by an acoustical pressure discontinuif¥xp)source= — KpoUuoU', whereK is unity for a uniform main
flow. For an orifice small compared to the boundary layer théds of the main flow is of the order
of 0.7 because of the velocity defect in the boundary layer r&ldat the main flow velocityly. This
effect is discussed by Ronneberger [208], Tijdeman [238]@ammings [45].

4.4.5 Reflection at a small air bubble in a pipe

Air bubbles in the water circuit of the central heating of aib® are responsible for a very charac-
teristic, high-frequency sound. As a first step to the uridasng of this effect we now consider the
reflection of a harmonic wave on a small air bubble of radiy¥olume V, = (4r /3)a%) placed in

a pipe filled with water at a static pressupg. If the bubble is small compared to the characteristic
acoustic wave length we can assume that the pregguirethe bubble will be uniform. We neglect
surface tension effects and assume that the bubble pregsigequal to the surrounding water pres-
sure.

In the low frequency limit, when the inertial forces in theWlaround the bubble can be neglected, the
pressure induced by a passing acoustic plane wave in the aratend the bubble will be practically
uniform: Ap’ = 0. The bubble will react quasi-statically to the imposedustic pressure variatiopy'.
Since the air-filled bubble is much more compressible thaervthe presence of the bubble results
into a volume source term, giving rise to a jump in acoustloaity across a control volume including
the bubble:

Vp dp’

— (4.57)

AU ~ —
Aypo dt

where we neglected the water compressibility comparedaaithcompressibilit Kair = 1/y Po)
and we assume an adiabatic compression (taking 1 would imply an isothermal compression as
we expect for very low frequencies). The reflection coeffiti®r a wave#; incident to the bubble
can now be calculated from the jump conditions Aqy’ and Au’. Assumingg, = 0 we find from the
continuity of pressure:

Fi+G1—F>=0 (4.58)
and from (4.57):

PuwCuwVp d
F1— — Fo = —(F . 4.59
1—G1— %2 A7 o dt( 1+ G1) (4.59)

By subtraction of (4.58) from (4.59) we can elimingtg and find:

IUCIDV d
LT 2 (7 4 ga) (4.60)

91= = Sa o

The inertia of the water around the bubble will dramaticafifluence the interaction between the
bubble and acoustic waves at higher frequencies. If we assiah the acoustic wave lengths in both
air and water are very large compared to the bubble radiustilvea assume a uniform pressure
in the bubble. This implies also that the bubble will remagdherical. The oscillations of the bubble
radius:

a=a,+ae (4.61)
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around the equilibrium valuay will induce a radial flow of the water around the bubble if wewase
that the bubble is small compared to the pipe diameter. Itothérequency approximation considered
here, this flow is incompressible. Hence we have for the fadiacity o, :

_(a\%oay . r80\2,
Uy = (I’_) (E) = |C{)(r—) ae (462)
where we have assuméday « 1. The pressure variation in the bubble:

Po = Po+ Pp€” (4.63)

can be related to the incompressible far field (still neartthieble compared to the pipe radius) by
applying the linearized Bernoulli equation:

op Opp
— = 2. 4.64
p+p pr Po + po pn (4.64)

Using (4.62) we can calculate — ¢p):
® — @p =/ o dr >~ iwaga e (4.65)
a
so that:

P— Po = pupw’ad e, (4.66)

Assuming the air in the bubble to be an ideal gas vpi§h~ p/ and neglecting the dissolution of air
in water so that®py, = constant, we find:

1apb_ 1 apb_ 30a

= — M= (4.67)
pp Ot ypp ot aot
or in linear approximation:
Po a
— =-3y—. 4.68
oo ’ % (4.68)
Combining (4.66) with (4.68) and assuming tipe& po + P’ € we have:
b = puach(e’ — wj) (4.69)
where the resonance frequengy (Minnaert frequency) is defined by:
3
0 =2 (4.70)
8P w

The reflection coefficienR = G,/ %; can now be calculated in a similar way as from (4.58) and (4.59
with the modified source termu’ = 4ziwa3a A1 €“*. SinceAp’ = 0, we have:

Fi+G1—F>=0 (4.71a)
and _
Ariwag(F1+ G1)

F1— —Fo= wCu
1— 41 2=p oo (@? — )

(4.71b)
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or
A 2 2y, -1
R:&:_(HM) , (4.72)
F1 2riwC,ag
We see that at resonanee= wg the wave is fully reflected by the bubble, and the reflecticffanent
is R = —1. We have of course obtained such a dramatic result becagideve neglected all the

dissipation mechanisms which can limit the amplitude oftibibble oscillation. The compressibility
of the water flow around the bubble yields already such a mestmawhich limits the amplitude of the
oscillation at the resonance frequengy: This is, however, only one of the many amplitude-limiting
mechanisms.

For small bubbles, when the diffusion length for heat trangfto the bubble is comparable to the bub-
ble radius, heat transfer is a significant energy loss [TBAF occurs fora = O((Kair/@pairCp)Y?).

For larger bubbles heat transfer is negligible. For smalidables the compression occurs isothermally
and one should put = 1 in the theory. However, the changejoffrom 1.4 to 1 does not introduce
damping. It is only in the intermediate range that the heat fsults in a significant rate of vol-
ume change in phase with the acoustic pressure. (As itistieW = [ p'dV = fOT p’(dV /dt)dt
which determines the losses, a voluMeoroportional top’ implies for a periodic oscillatioW ~

3 p/(dp//dtydt = 0.)

Another limitation of the amplitude of the oscillation isethighly non-linear behaviour of the pres-
sure for oscillation amplitude& comparable t@,. If a — 0 the pressure in the bubble increases
dramatically(p, ~ a~%). Linear theory fails and the bubble may start showing clkaaghaviour
(referred to as acoustical chaos) [114].

As an isolated air bubble already has a strong effect on thestsics of a water filled tube, a large
amount of bubbles will have a dramatic effect. In sectiorv@3already considered the low frequency
limit for the speed of sound in a bubbly liquid. We have seext ¢hsmall volume fraction of bubbles
can considerably reduce the speed of sound. This is due tartieecompressibility of the air in the
bubbles. Asw reachesug this effect will become dramatic resulting in a full reflectiof the waves
(speed of sound zero) [42, 100]. In the frequency range: w < weC, /Cair NO Wave propagation is
possible in an ideal bubbly liquid. Above the anti-resomaftequencyogc,, /Cair the bubble movement

is in opposition to the applied pressure fluctuations. Theusincreases when the pressure increases.
This is just opposite to the low frequency behaviour (figufell As a result the bubbly mixture will

be stiffer than water, and > ¢, ! Sound speeds of up to 2500 m/s were indeed observed in bubbly
water withfp = 2 x 104!

Another fascinating effect of bubble resonance is its roléhie very specific, universal, sound that
rain is known to generate when it hits a water surface [18itt it should be noted that bubble

oscillation is such an efficient source of sound that anyiraact sound is dominated by it. Now, in

spite of the wide range of velocities and sizes of rain drbps dccurs, the universality of the sound
of rain is due to the fact that only bubbles are formed of jus# garticular size. This is a result

of the following coincidence. On the one hand, not any comutam of drop size and drop velocity

occurs: rain drops fall at terminal velocity (balance ofdairg and drop weight) which is an increasing
function of the droplet radius. On the other hand, not anylmoation of drop size and drop velocity

generates bubbles upon impact on water. At each drop siee iene drop velocity where bubbles
are formed. This bubble formation velocity is a decreasung:fion of the droplet radius. Combining

these increasing and decreasing functions, we see thaintieesect just at one combination of radius
and velocity, with just one bubble size.

3j.e.a narrow range
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Figure 4.11 Idealized frequency dependence of the speaaliatisn a bubbly liquid.
The low-frequency limitg, slightly lower tharc,,, is given in equation (2.44) or (2.45).

4.5 Attenuation of an acoustic wave by thermal and viscous dsipation

4.5.1 Reflection of a plane wave at a rigid wall

Consider a pipe-oco < x < 0, closed atx = 0 by a rigid wall. Inside the pipe a plane wave
pt(x,t) = F(t — x/cy) travels in positive direction and reflects into a left-rummiwavep~ (x, t).
Without visco-thermal losses, the boundary condition afislaing velocity becomes

p+(09 t) - p_ (09 t)

u(o,t) = e =0

This implies a reflected wavp™ (X, t) = F(t + X/Cp), equal in amplitude and shape to the incident
wave, and therefore a reflection coefficient of unity

_p Oy
- prOY

In reality unsteady heat transfer at the wall will act as & sihsound, slightly reducing the reflection
coefficient. This heat transfer is a result from the diffeebetween the wall temperatufg, which
remains practically constant, and the bulk temperaluaf the gas, which varies with the adiabatic
pressure fluctuationp’ = p* + p~. We will limit our analysis to small temperature differesce
(T — T,) and small departures from the quiescent reference staiteallbws a linearized theory, so
that we can consider the reflection of a harmonic wave, ddrinteomplex form as

p(x,t) = p(x)e '

with amplitude p outside the neighbourhood of the wall being givenfifx) = p* e 4p— ekx,
(Likewise, in the following the hatted quantities with~™ will denote their correspondingx-
dependent, complex amplitudes.)
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We define(see also section 8.8) the thermal boundary layer thickéiess the width of the region
near the wall in which the rate of increase of internal enasgpust balancing the net rate of heat
conduction (in this region the wave equation is not valid):

o 02 T
Cp,—T ~ CoT') =~ | Ko—T ~ Ko=) .
(po pat wpoLp ) ( 08X2 05—%)

Hence, the characteristic length scale for the thermal daynlayer is

| 2K
o = o (4.73)
wpoCyp

We will now calculate the temperature profile within the that boundary layer. This will allow us to
calculate the deviatiope = p — p/c3 between the density fluctuations in the boundary layer aed th
density fluctuationsf)/cg corresponding to adiabatic compression of an ideal aafletv as found
outside the boundary layer. This excess dengithas to be supplied by a fluid flow towards the
wall at the edge of the boundary layer. This velodity can be interpreted by an observer, outside
the boundary layer, as due to a displacentinof the rigid wall in a hypothetical fluid without heat
conduction. The work performed by this “virtual” wall digigement on the acoustic field corresponds
to the sound dissipation by the thermal conduction in thenaty layer.

This approximation is based on the key assumption that thesic wave length is much larger than
the thicknessr of the thermal boundary layetidr /co < 1. In such a case we can assume at the edge
of the boundary layer a uniform adiabatic floi@i/dx)., = 0, of a uniform fluid Q,, o). The non-
uniformity associated with the acoustic wave propagasaregligible on the length scale we consider.
The boundary layer flow is described by the one-dimensiooabervation laws (1.1,1.2,1.6,1.7) in
linearized form:

N da
lwp = —pO&, (4.74a)
A dp 4 dx
lwpoU = —& + §7’]0W, (4.74b)
_ . da T
1wCy poT = —p0& + KOW (4.74¢)

Since in a liquid acoustic wave propagation is isothermatarelimit our analysis to a gas. We assume
an ideal gas with:

p 5 T

p_s_ T

Po po To

The boundary conditions are given by:

- Zay -,I;oo - 1 Aoo

TO =T, ao=0 ==L""P=
0 7 Po

P(X) = Poo = PT+ P~ (X/dT — —00),

where we have introduced, for generality, the fluctuatiothefwall temperaturd,,. After the study
of the reflection of a wave at an isothermal wdll,(= 0) we can use the same theory to calculate the
sound generated by fluctuations of the wall temperafiife4 0).
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After eliminating d from the energy equation by using the mass conservationalagveliminatingp
by means of an ideal gas law, we obtain

Ty —1p & T
io|l=—————)=a—(=
w<To ¥ po) e (To)
whereay = Ko/poCy is the heat diffusivity coefficient. In terms of the excesasity, with

pe 1<A ﬁ)zﬁ p _r—-1p T
po 7 Po y po To

po po\ @
this equation becomes
P _ aoi(&) _ V_-li(_f’),
Po dx2 \ po y  dx®\po
Combining the momentum and mass conservation laws we have
24 3]
w?p = —:72 + 3”0%'

Assuming that viscosity is not dominant — which we can checkfthe solution to be obtained — we
see that

Po

dz(lﬁ)N w’p 0% p
 Po C(z)/)o.

dx2 2 po

The relative pressure variation across the boundary lay@B) is of the order of

A ver A
p pop ch?(i)

while pe/po is of the same order of magnitude @gpo, because — 1 = O(1). This implies that if
we neglect terms of the order @fs2 /c3, we have

This equation has the solution

pe _ [p_} exp((1+ )x/or) (4.75)
Po pPoly,
where [&:| — V__lpﬁ _ E

Po 1. 7 Po To

Using the equation of mass conservation, the velogitydr) at the edge of the boundary layer is
given by the integral of the density across the boundaryrlagdollows. (Note that we have chosen
the positivex-direction towards the wall.)

0

0(0) — (—d7) = —ia)/ 2 .

—or Po
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The difference between this velocity and the velocit( b,/ po)or that would occur in the absence
of heat conduction, can be interpreted as a fictitious wadloiy Gt given by

0 ~_ A 0 A
OT:ia)T:ia)/ P p°°dx=iw/ Pe ux,
-or PO —o00 PO

wheredr is the fictitious wall displacement amplitude. Substitntaf solution (4.75) yields

A

dr = %(1—i)5T[@] , (4.763)
po-w

— 1P . .
U % if T, =0 (an isothermal wall) (4.76b)
4 o

= 11— i)or

For an isothermal waII'IA(w = 0) these wall effects, leading to the effective velodity, have the
same effect to the incident acoustic wave as an impedandeeofall. This equivalent impedance
Z+, defined as the ratio of the acoustic pressure fluctuatignat the wall and the flow velocitgr
directed towards the walt(f. Eq. 3.14), is then given by

ﬁoo f)oo = po (l - |)CO
Ur  iwdr (7 — Dwor
The corresponding time averaged acoustic intensity isddare

() = (PU) = 1Re(1/Zr) | pol® = 1(y — D2 | Poc |
OC()
which indicates an energy flux from the acoustic field towdhgswall and therefore an absorption of
energy.

4.5.2 Viscous laminar boundary layer

The viscous attenuation of a plane acoustic wave propapationg a pipe can often be described
in a similar way as the thermal attenuation by means of aalisphent thickness, of the wall. We
consider first the simple case of a laminar boundary laydrércase of wave propagation in a stagnant
and uniform fluid. The wave propagates in thelirection and induces an acoustic velocity parallel to
the wall which has an amplitudg,, in the bulk of the flow. The no-slip condition at the wal|, = 0,
induces a viscous boundary layer of thickness

Sy = /2vo/w = StV/Pr. (4.77)

wherePr = vgpoCp/Kg is Prandtl’s number. This viscous boundary layer is usuallgrred to as the
Stokes layer. Neglecting terms of the ordel@by /cy)? and using Euler’s equation we can write the
X-momentum conservation law in the boundary layer as

iwpol = dp + il = iwpols + il

w, = —— w, s

Po dx Mo7— dy? Poloo T 07— dy?

wherey is the direction normal to and towards the wall {se< 0). The y-momentum conservation
law reduces to the pressure being uniform across the visimusdary layer. The boundary conditions
are

a(0) =0, =0, G(y) — Oy if y/oy — —o0.
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The solution is then

0 =104 [1— exp((1+ i)y)} .

\%

(4.78)

The displacement thickned is defined as the fictitious wall position for which the acaatmass
flux of a uniform flow with the velocityl,, is equal to the actual mass flow. This implies:

dy = —/0 (1— 00 )dy = —3a—i)dv. (4.79)

—0Q oo

4.5.3 Damping in ducts with isothermal walls.

In section 4.5.1 we have considered the attenuation of amsticavave that reflects normally to a wall.

This attenuation was due to the heat conduction in the tHdraumdary layer. In the previous section

4.5.2 we have described the laminar viscous boundary |sgercéated to a plane wave propagating
along a duct (parallel to the wall). In a gas such a propagatidl also induce a thermal boundary

layer, determined by the pressure fluctuatigjs in the bulk of the flow. The expression for the

displacement thicknesd derived in section 4.5.1 can be applied.

Using the concept of displacement thickness we will cateullae attenuation of a plane wave travel-
ling in x-direction along a pipe of cross-sectional afeand cross-sectional perimetep. We assume
that the boundary layers are thin compared to the pipe dexmet

The bulk of the flow is described by the following plane wavegj$ying Euler’s equation in linear
approximation:

Pl = o€, apolly, = ik,

wherek is a complex wave number (the imaginary part will descrileedtienuation). Incorporating
the displacement thickness to the mass conservation lagrated over the pipe cross section yields
(Lighthill [122])

0 0
[ pe(A+ Lot | = | poctinc(A+ Ly
In linear approximation for a harmonic wave this becomes

iw('i—%"AJr polL ot ) = iKpotiac (A -+ Lpdy)

where we made use of the isentropic relationship = c3/... After substitution of the expressions
for the displacement thicknesls (4.76b) anddy (4.79)

? = 1P

dr = 3@ —i)s
TT2 T 14 Po

and av = —%(l— i)év,

and elimination ofli,, by means of the Euler’s equation, we find a homogeneous lemaation for
Pso, Which yields the dispersion relation

K2 _A+30-D( —DLlpdr
k2 A—Z(1—i)Lpdy

>
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whereky = w/co. Expanding this expression for sméaf anddy, (using the fact thady /o = vPr =
0O(2)) and retaining the first order term, we obtain the result aEKhoff

L 5
k—ko = %(1—|)Kp5\,ko(1+(y —1)%), (4.80)

which corresponds to equation (2.13). More accurate egjmes at low frequencies, when the acous-
tical boundary layers are not thin, are discussed by Tijdef282] and Kergomard [104]. At high
frequencies the viscosity becomes significant also in tiedfithe flow (Pierce [175]).

At high amplitudes {0y /v > 400) the acoustical boundary layer becomes turbulent (M&35],
Eckmann [55], Akhavan [3], Verzicco [240]). In such a case damping becomes essentially non-
linear. Akhavan [3] presents results indicating that a gstdionary turbulent flow model provides a
fair first guess of the wall shear stress.

For an isothermal (liquid) flow the quasi-steady approxiorayields
k2 2 __ 1: L p A
—k§ = —Z|k0KCfUOO
where the friction coefficient; is defined (and determined) by

c 4A  dpo
f=—"—T "3
which relates the mean pressure pressure gradignt/dd) to the stagnation pressu%&poug of a
mean flow through the pipe. Note that singe— ky) depends on the amplitudg, of the acoustical
velocity this model implies a non-linear damping. The tiams from laminar to turbulent damping
can therefore be a mechanism for saturation of self-swestaoscillations (see chapter 5).

For smooth pipes, Prandtl proposed a correlation formul@ fas a function of the Reynolds num-
ber of the flow. The influence of wall roughness is describethinMoody diagram. Such data are
discussed by Schlichting [217]. In the case of a turbulesst fg@av the thermal dissipation is rather
complex. This makes a low frequency limit difficult to esiabl In the presence of a mean flow var-
ious approximations describing the interaction betweenatoustic waves and the turbulent main
flow have been discussed by Ronneberger [209] and Peterk I8 formula of Kirchhoff derived
above appears to be valid at low Mach numbéls/€y <« 1) as long as the Stokes viscous boundary
layer thicknesgy remains less than the laminar sublager~ 15v/,/7,, po of the turbulent main flow
(where the wall shear stress = c¢ % poug).

Whend, « dy, we can use a quasi-stationary approximation. The transitom the high frequency
limit to the quasi-stationary limit is discussed in detailRonneberger [209] and Peters [172].These
references also provide information about the Mach numepeddence of the wave number.

4.6 One dimensional Green'’s function

4.6.1 Infinite uniform tube

We consider a one dimensional approximation for the prop@agaf waves in a pipe. This approxi-
mation will be valid only if the frequencies generated by soeirces of sound in the pipe are lower
than the cut-off frequency. As the acoustic field observambaitionx far from a source placed atis
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induced by a plane wave, the observer position in the cragsseof the pipe is indifferent. Apply-
ing the reciprocity principle (section 3.1) we see that ia kbw frequency approximation the signal
observed ak should also be indifferent for the position of the sourcehia ¢ross section of the tube
at y. Hence as the source position within a cross section isfardifit we can consider the source to
be smeared out over this cross section resulting in a 1-difmeal source. We therefore look for the
corresponding one-dimensional Green’s funciigr, t|y, r) defined by:

9 _ 200

o2 px2
Comparison of this wave equation with the wave equation {4.the presence of source tepgp /ot
and forcesf,:

= 3(t — 1)d(X — y). (4.81)

62 p/ 282 p/ ) aZﬂ afx
— —C— =G — - — 4.5
oz Oox2 O(poatZ ax) (4.5)
indicates that we can assume that (4.81) is a particularafqde5) for f, = 0 and:
0 1
—’8 = ——SH({ —1)dx—yY). (4.82)
ot poGy
For an infinitely long tube the solution is:
1 —
ZH(t—r—k%) for x <,
g1y, 1) =1 4 X—y (4.83)
—H(t—7 — for x .
2Co ( ¢ Co ) =Y

This result is obtained intuitively by using (4.30) whichghes thatg is the pressure wave generated
by a piston moving with a velocity’ = (2p0c§)*1H (t — ) for x = y + ¢ and a second piston with

a velocityu’ = —(2poc3) *H (t — 1) for x = y — ¢. Equations (4.83) are then obtained by using the
method of characteristics (section 4.2).

Of course, the above result (4.83) is more efficiently wniths:

1 IX =yl
X, t = —H(t—7— . 4.84
90ty 1) = 5o H (-7 == =) (4.84)
The combinatiort — |X — y|/Cg is the time at which the sighal observedatt) has been emitted by
the source ay. This time is called the retarded or emission tityie

te=1t— X =yl (4.85)
Co

4.6.2 Finite uniform tube

We can also fairly easily construct a Green’s function foemkinfinite pipe & < L) terminated
atx = L by an ideal open end at which by definitigiiL, t|y, ) = 0. By constructing the wave
reflecting at this ideal open end with the method of charaties we find:

g(x’t|y"[)=%[H(t_f'f’%)-f—H(t—r—X;Oy)

—H(t—r-i—

X+y—-2L
T)} (4.86)
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which we can also write fox < L as:

g(X,t|y,r)=%{H(t—r—|Xc_oy|)—H(t—r—|X+y—CO_2L|)}. (4.87)

This solution could also have been obtained by assuming iffeetp be part of an infinitely long
pipe, in which at the poink = 2L — y a second point source is placed with opposite sign of and
synchronous with the original point sourcexat= y. This second source, calléshage sourcgis
constructed such that it generates the field due to reflebiidhe boundary ax = L in the original
problem, and therefore brings into effect the boundary tmmdatx = L. Thismethod of imagesan

be generalized to the case of a finite pipe segmert 0< L). In such a case we will have to consider
the contribution of an infinite number of images correspngdb the reflections of the original waves
at the boundaries. For example, the field in a finite pipe waidiwalled ends is equivalent with the
field in an infinite pipe with equal sourcesxn= —y, £2L + vy, +4L + vy, .... This comes down to

a right-hand-side of equation 4.81 of

e¢]

> s —r)(é(x—y—2nL)+(3(x+y—2nL))

N=—00

and a solution

B |x—y—2nL|)

+H(t_,_|X+y——2“Ll)}.

1 00
g(x’”y’T)ZEnZZOO[H(t_T o

(4.88)

The Green’s function is clearly more complex now. Furthaemnthe addition of mass by the source
in the finite volume results into a (roughly) linear growthgpin t. (Verify this forx =y = %L and

7 = 0.) This is of particular interest in the time-harmonic casten the end conditions are such that
multiple reflections are physically relevant they implyttbhanstructive and destructive interferences
will select waves corresponding to standing wave patternmgspnances of the tube. This problem
will be discussed further in the next chapter.

4.7 Aero-acoustical applications

4.7.1 Sound produced by turbulence

We consider a turbulent jet in an infinitely extended pipeaufiegs.12). We suppose that the jet diameter

: k- ak

Figure 4.12 Turbulent jet in a pipe.
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d and the jet velocityug are such that the characteristic frequengyd of the sound produced in the
pipe is low enough to use a one dimensional approximationwilfeuse the integral formulation
of Lighthill to obtain an order of magnitude estimate for gmund pressure level produced by this
flow, assuming that the mean flow in the pipe is negligible. \&le assume that the jet temperature and
density is the same as that of the environment (homogenadgdsfid homentropic flow). If Reynolds
numberRe = upgd/v > 1 and Mach numbeM = ug/co <« 1 we can use Lighthill's analogy in the
form®:

0%’ ,0%p"  %(poviv))

—G = : 4.89
otz Oox? T ox0x (4.89)

As we use a tailored Green’s function (we neglect the effethe flow injection device) the density
p’ can be estimated by:

(%, 1) —/to ///6;5?;'T‘)G(x,t|y,r)dydr. (4.90)

Using the approximate Green’s function derived in the mesisection (Eq. 4.84) we have:

p'(X, 1) —/ ///aa(poa'JJ)g(x,Hy,r)S1dydr. (4.91)

After two partial integrations, assuming the source to tmtéid in space, we obtain:

t 2
X, 1) = / / / / j—yzgm tly, )S L pou? dydr. (4.92)
to
V

We moved the differentiation from the unknown source tenwatals the known, and explicitly avail-
able, Green'’s function (4.84). We now note that:

0 1 — o|X —
a9 =——25(t—‘[ _ X yl) X yl, (4.93)
oy 2¢5 Co ay
so that from:
ox—yl _ _olx -yl
—sign(x — 4.94
=y ign(x —y) = ——— (4.94)
we have the following important symmetry in the Green'’s fimrt of an infinite pipe:
0 0
9__99 (4.95)
oy  ox’

We substitute this result in (4.92). Since the integrattoithe source positiog, we can now remove
one of the differentiations te from the integral, resulting in the expression:

p(x,t) = /to /// 28(gé(te 7) sign(x — y) dydr. (4.96)

4While the assumption that friction is a negligible sourcesofind was already formulated by Lighthill, a reasonable
confirmation of its validity was only provided thirty yeaegér by the work of Morfey [142] and Obermeier [162]. The d@xac
range of validity is still subject of research.
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withte =t — |[X — y|/Co. The time integration can now be carried out:

oty =2 ([ oo, signix —
P00 =2 [[] Feglonieawsigntx - y)ay 497)
\Y

where we used the property (C.26) of théunction. At sufficiently large distances the only length
scale in the solution is the characteristic wave lergytlyuy corresponding to the characteristic fre-
quency ug/d of the turbulence in the jet. Hence we can estimate:

(4.98)

Because the sound production by turbulence decreasesastnyith decreasing mean flow velocity,
the volume of the free jet contributing to the sound produrcis limited to a region of the order of
d3. In this region the turbulent velocity fluctuations are of thrder ofuy. Hence we find at large
distances:

2
. Mo potf g

070 4.99
implying:

S 1 2

072 ~ (EpOMSdZ/S) . (4.100)

This is the result obtained by Ffowcs Williams [63]. This Mawumber dependence has indeed been
observed in a pipe downstream of an orifice for sufficientghtiiach numbers. At low Mach numbers
the sound production is dominated by the dipole contributbO(M#) due to the interaction of the
flow with the orifice [136].

A discussion of the sound production by confined circulas jetprovided by Reethof [187] for ar-
bitrary jet Mach numbers. Reethof finds for subsonic jéfls (< 1) a ratio of the radiated power
to the flow powery,e = 3 x 1U4MS. For supersonic jetsMp > 1) typical values arej,c =
1.6 x 1073(M2 — 1)¥2, In that case the Mach number is taken frivi§ = yi_l[(pl/ po) 7 /7 1),
wherep;/ p; is the ratio of the pressure across the orifice.

The dependence of the sound production on the jet geometdjsisissed by Verge [239] and
Hirschberg [78]. For planar jets issued from a slit of heighthe typical frequencies are of the
order of Q03up/ h (Bjgrng [15], Sato [216]). This implies that correlationsvdloped for subsonic
circular jets are useless for planar jets.

4.7.2 Anisolated bubble in a turbulent pipe flow

Consider an isolated bubble of radiagsmall compared to the pipe diamefer Assume a turbulent
pipe flow. The sound produced by the turbulence will, locabg enhanced by the presence of the
bubble. If we assume that the frequencies in the turbuletypigally O(up/D), are much smaller
than the bubble resonance frequemrgy we can calculate the sound produced by the interaction of
the bubble with the turbulence.

SWe assume a jet with circular cross section.
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The Green’s function is calculated by using the recipropityiciple. We consider the acoustic re-
sponse of the bubble for a plane wave emitted from the obispngtion x towards the bubble. For
the sake of simplicity we consider this incident wave to betamic pi, = i, €“~'¥*. The bubble
pressure respong® is, as is shown in 5.4.5 (use (4.72) with, = #; andp’ = %), given by:
()
Po=— ————— Din- (4.101)
1 (@)2 B 2miagc,
w Sw

Using Bernoulli and the continuity equation we can cal@ultite pressure distribution around the
bubble:

P—Pb=—puiow(@ — pp) (4.102)
where;
r; é_ 2
¢_¢b:/ R dr = ivda(1- ). (4.103)
o T r
Furthermore, we have:
a_ _ﬂ, (4.104)
ag 3y Po
so thatp(r) is given by:
®o\2 Qg
1—(=) - =
. . W \?2 dp ( w ) r .
b= pb(l_ (CU_O) (1_ T)) o L (a)o)Z 2riagc, Fin- (4.105)
w Sw

Taking for pi, the Fourier transform of2c,S)~*H(t — ¢ — |x — y|/co) we obtain asp the Fourier

transformG(x|y) of the Green’s functioi(x, t|y, 7):

®o\2 &

e—iwr—ikix-y| 1- (;) -

2iwc,S wo\2 2miagC,
1= (E) T Sw

Using Lighthill's analogy we now can compare the respongh@fpipe to turbulence, with and with-
out bubble. We obtain by partial integration:

t 0%G
"= viv; ——— dydr. 4.107
P /to/\///)m gy @ (4.107)

If we consider a small turbulent spot in the direct neighbood of the bubble the ratio of the re-
sponses is given by:

G(xly) =

(4.106)

82613 82Gb ciao
or2 or? 2r3
_ _ @ _ , (4.108)
82G0 52G0 1— (@)2 . 2miagC,
oy? ox2 w Sw
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At the resonance frequenayy this yields a factor(ayS/4xr3)(p,Cc2 /3y po)z while for low fre-
quencies we findao/r)3(p.,c2 /3y po). If r = O(ap) we see that the sound produced by turbulence in
the neighbourhood of the bubble will be dramatically enleainc

The major contribution of the bubble turbulence interattidgll be at low frequencies. An important
reason for this is that for typical conditions in water flohe tlength scale of vortices corresponding
to pressure fluctuations at the bubble resonance frequeg&x is much smaller than the bubble
radius [43]. In such a case these pressure fluctuations aragad out at the bubble surface and do
not have any significant contribution to the spherical ¢etiins of the bubble. An example of sound
production by bubbles in a pipe flow is the typical sound of ati@# heating system when air is
present in the pipes. Also the romantic sound of water stsesard fountains is dominated by bubbles.
In those cases, however, we have a three-dimensional anwanat.

4.7.3 Reflection of a wave at a temperature inhomogeneity

As a last example of the use of the integral equation basetheiGteen’s function formalism we
consider the interaction of a wave with a limited region inieththe gas temperaturg(x) is non-
uniform (0 < X < L). We assume the pipe to be horizontal and that gravity isigibtg. Hence, at
rest the pressure is uniform. The gas density is given by:

p/po=T/To (4.109)
and the speed of sournds given by:
c/co = (T/To)? (4.110)

where pg, To and ¢y are the properties of the uniform region. We now further assuhat|T —
Tol/ To < 1 so that we can use a linear approximation in which we assbatehe scattered sound
wave p” is weak compared to the amplituge of the incident wave. In such a case we can write
p' = p}, + p’, so that the linearized 1-D wave equation (2.50):

aaztg ox (C2 aaz) =0

can be approximated by:

aZp// 282p// 2 ap
otz Oax2 (( )a;(n)' (4.111)

The source term has been linearized by assuming that theupesfuctuations are equal to the (undis-
turbed) incident wave amplitude. It is the source term atersid by Powell [178] for the description
of sound scattering at entropy spots.

Using the integral formulation (3.13) and the one dimerali@reen’s functiorg we find:

_ 2P
b’ //ay 2y

Partial integration yields

/ /(2 o)ap'”—dd (4.113)

(4.112)
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From equation (4.84) we have

99 _ 1 signx — _
@ = 22 sign(x — y)o(te — 7) (4.114)

(withte =t — |x — y|/Cp) and hence

P= 0 | " signix - y)(@ - &) | ste—nPoaray
222 Jo o0y
_ 1 Lsi n(x — y)(c? 2)[j ' (y,to) d (4.115)
= ZCS . g y Co 2y Pin (Y, o) QY. .
If we take for example
Py = PinH (X — Cot) (4.116)
and use the relatioc? /c3 = T/ To, then we have for (say) < 0
LT - To X + Cot
7o 1ln _
P =3 [ oy -2 ) oy (4.117)
TEx+cot)) —1
%f)in (G(x + Gb)) if 0 <x4cot <2L
= To
0 otherwise.
Exercises

a) Show that for an acoustic wave travelling in the negatidéection we have:
u' = —p'/poco.

b) Consider a rigid piston aix = 0) separating the fluid | fox < O from the fluid Il atx > 0 in an
infinitely long pipe of 10> m? cross section. Assume that the piston oscillates with aiaqyw and
an amplitudea. Calculate the force necessary to move the piston as a furnatitime (po, = 1.2 kg/mq,
Co, = 344 nys, po, = 1.8 kg/m® andcg,, = 279 nys,w = 10° rad/s,a = 10~3 m). Use linear theory
and verify if it is indeed valid.

c) Water hammer effect
Consider a steady flow of water in a rigid horizontal pipe vahige stop suddenly by closing a valve.
Calculate the pressure on both sides of the valve for flowciids of 0.01 m/s and 1 m/s. What is the
force on the valve for a pipe cross section surface ofIé?.

S

Figure 4.13 Exercise d)
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The same problem as c) but with a slowly closing valve inrdimitely long pipe (figure 4.13). Assume
the area of the valve opening to be a given function of time:

A= A().
Suppose further that the flow separates at the exit of the¥atming a free jet into the pipe downstream
of the valve. IfA « Swe can neglect the recovery of dynamic press{%pﬁ)jz) upon declaration of the

fluid by turbulent mixing of the jet with the fluid in the pipe.eHce the pressure drapp across the
valve isAp = %pnjz if we neglect inertial effects in the valve (we assu&r@(aoj /ot) K njz).

Sow that, in the absence of aero-acoustic sources, tlse@tion of acoustic energy implies a continuity
of pressure Ap’ = 0) across a compact discontinuity in a pipe, like a suddenghin diameter.

Calculate the reflection coefficief® and the transmission coefficieftfor a contact surface between
water and air. Consider both the cases of a wave incident fhenair and water sides in the direction
normal to the surface.

Same question as f) for a discontinuity in temperatureCK 3n air at atmospheric pressure (corre-
sponding to the temperature difference from inside our imtabutside in the winter).

Calculate the reflected and transmitted acoustic irtiessifor questions f) and g).

Consider a semi-infinite tube closed»at= 0 by a harmonically moving pistoruf = Opei‘"t). The
tube is filled with air. At a distanck from the piston there is a temperature jump ofG0Calculate the
amplitude of the waves in steady state conditions.

Calculate the reflection coefficie®® and the transmission coefficiemtfor a low frequency wavef;
incident from the left to a stepwise area change frdfrto A in an infinitely long pipe. Assume linear
behaviour and no mean flow.

Same exercise as j) for a combined stepwise change in sext®n and specific acoustic impedance
jump Apc of the fluid.

A closed pipe end can be considered as a change of areatsatAp/A; — 0, while an open end can
be approximated by a change wig»/A; — oo. Calculate in both cases the reflection coefficiBnt
using the result of exercise j).

Calculate the reflection coefficient for a harmonic wavarabrifice, assuming linear behaviour and no
mean flow.

What are the conditions for which we can neglect frictiothe orifice?

Consider an orifice ofl = 1 mm diameter, without sharp edges, in a pipe, of diamBterl cm, filled
with air at room conditions. At which amplitude (in dB) one wid expect non-linear losses due to
acoustical flow separation for a harmonic wave (with a freqyef 10 Hz, 100 Hz and 1000 Hz) if there
is no mean flow. Such orifices are used in hearing-aid devargwrbtection.

When flow separation occurs as a result of mean flow, the@méationo is affected. At low frequencies
by about a factor 3 compared to high frequencies or the libehaviour without flow separation. Explain
qualitatively this effect. (Why can we expect a decreas#df

Consider a wav§1(t + x1/Cp) incident on a junction of three semi-infinite tubes (withsssections
A1,A2, andAz). Assuming no other incident wavg{ = 43 = 0) calculate the reflection and transmis-
sion coefficients.

Consider a pipe of cross sectional arka(A; = Az) with a closed side branch of sectidyp and of
lengthL (figure 4.14). Calculate the reflection and transmissiofffictents R = #1/41 andT = £3/$1
for an incident harmonic wave

g, = eot+ika

if we assume thagz = 0. The wave numbekis defined a& = w/co. What are the conditions for which
R = 0 ? What are the conditions for whidh= 1 ? What are the conditions for whidh= —1?



90 4 One dimensional acoustics

w)

X)
y)
z)
A)

B)

C)

D)

E)

F)

G)

-— Xl X3—>—

A

Figure 4.14 Tube with closed side branch.

Calculate the low frequency limit of the reflection coeéiit R = #1/41 for an air bubble of 1 mm in a
pipe of 1 cm diameter for a harmonic wave of frequeacyssumeppy = 1 bar.

Calculate the pressurpy in an air bubble of mean radiug in water for an incident wavep, =
pin €“'=kX in a pipe of cross sectioAp > a3.

In the model described above (section 4.4.5) the pregstine bubble is assumed to be uniform. Is this
a reasonable approximation for an air bubble of 1 mm radiwgaiter up to the resonance frequerngy
for po = 1 bar?

In the above model the acoustic pressure imposed on thadhip the incident acoustic field is assumed
to be uniform across the pipe diameter. Is this a reasongpl®aimation for a bubble with a radiag =

1 mm placed in a pipe of diamet&= 1 cm filled with water at ambient pressure? Assume a frequenc
W = wQ.

In the above model we assumed the bubble to be small cochpathe pipe diameter, and far from the
walls. Estimateog for a bubble placed at the wall.

Is the model valid for a bubble which is large compared tofipe diameter? Why?
Determine the physical dimensions of the Green’s fumdbip substitution in the wave equation (4.81).
Verify (4.84) by Fourier transformation of (4.81) andhesing section C.1.

Construct the Fourier transformed Green'’s function feemi-infinite k < L) tube terminated at = L
by an impedancé, .

Construct the Fourier transformed Green'’s function feparce placed left from a small bubble placed
in an infinite tube.

Show that for low frequencieB(x, t|y, ) = g(x, tly, 7)/Sfor |x — y| > +/Sin a tube of uniform
Cross sectiors.

Explain (4.95) in terms of the effect of displacement af 8ource or observer on the Green’s function
for an infinite tube.

Calculate using (4.99) the sound pressure level in a tfik® om diameter due to the inflow of a air jet
of 1 cm diameter with a velocity of 10 m/s. Assume atmosphaoinditions and room temperature. Are
the assumptions valid in this case? Are the assumptiors ifalp = 10° m/s ?

Same question as E) for a jet placed at the end of a semiténfiiipe closed by a rigid wall, as indicated
in figure 4.15.

Calculate the amplification factor for turbulence noiSeesonaanS/aS)(pwcfu/CSy po)%, and at low

frequenciesp,, c2 /3y po for an air bubble of diametersd = 1 mm in a pipe oD = 1 cm diameter filled
with water at atmospheric pressure.
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Figure 4.15 Exercise F)

In principle the turbulent pressure fluctuations in a gipge a broad spectrum with a maximum around
a characteristic frequenay,/D. Consider a flow velocity of 1 m/s. Do you expect the charastier
frequency of turbulence to be large or small compared to éserrance frequeneyo/2z of an air
bubble with 29 = 1 mm as in question G)?

For a small bubble the surface tensiogontributes significantly to the internal presspgeof the bubble.
For a spherical bubble we have:

2
Pb = Pwater(@) + Ea.

In equilibrium pwated@) = po. If we consider the oscillation of such a bubble we find a rasce
frequency:

o0 — (m N 4_0)%
pwag pwag

Derive this formula. Given the surface tensierof water is 7x 10~2 N/m, calculate the bubble radius
for which the surface tension becomes important.

The sound in bubbly liquid is often due to the oscillatiohbubbles caused by a rapid local acceleration
or to oscillations induced by the coalescence or collapdribbles. This yields the typical “bubbling”
noise of a fountain or brook. As an example consider the iiffee in volumeAV between the sum of
the volumes of two bubbles of equal radii= 10~*m and a single bubble containing the same gas (after
coalescence). This difference in volume is due to surfatsgde effects (see previous question). Assume
that the new bubble is released with a radiusorresponding to the original volume of the two smaller
bubbles. The bubble will oscillate around its new equilibniradius. The movement will be damped out
by radiation. Calculate the amplitude of the acoustic preswaves generated in a pipe of 1 cm diameter
filled with water as a function of time.



5 Resonators and self-sustained oscillations

5.1 Self-sustained oscillations, shear layers and jets

When using Lighthill's analogy to estimate the intensitytiodé sound produced by a turbulent flow
in section 4.7.1 we have assumed that the sound source igeindent of the acoustic field. This
assumption was not justified but it seems reasonable if tbaestic velocities in the flow are “small
enough”. In fact this hypothesis breaks down in a large nunobeery interesting cases. In many
of these cases the acoustic feedback (influence of the saelddbfi the sound source) results in the
occurrence of a sharply defined harmonic oscillation, duthéoinstability of the flow. Whistling,
jet-screech and reheat-buzz are examples of such osmilatin general the maintenance of such
oscillations implies the existence of a feedback loop asvatio figure 5.1.

edge i i
9 - hydrodynamlc acoustic |
instability resonator
A
hydrodynamic feedback Y
acoustic feedback

Figure 5.1 Flow-acoustic oscillator.

In most cases the acoustic field interacts with an intriflgicanstable hydrodynamic flow (jet, shear
layer) at a sharp edge where the flow separates from the wadl.sEparation point appears to be a
localized region where the acoustic flow and the hydrodynéioiv are strongly coupled. We will
now consider this interaction in some detail.

In principle, if the flow were frictionless and is describectarately
by a potential flow, the velocity at an edge would be infinitielsge. pv2
This can be understood by considering the flow in a pipe at a ben
(figure5.2). )

The fluid particles passing the bend feel a centrifugal ferag/r per
unit volume. If the flow is stationary it is obvious that theteould be

a centripetal force compensating the centrifugal force. fictionless p
flow the only force available is the pressure gradieap/or. Hence, o
we see that the pressure at the outer wall in the bend shouédder or

than at the inner wall. Using the equation of Bernoulli fotaisnary
incompressible flow(p + %pv2 = constant we conclude that theFigure 5.2 Flow in a bend.
velocity is larger at the inner wall than at the outer wallééSigure 5.3.)
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We could also have found this result kinematically by naticthat if

a particle in anirrotational flow follows a curved path there should be

a gradientov/or which “compensates” the rotation which the particle
N undergoes by following a curved path.

The fact that the pressure is larger at the outer wall canbssmderstood
f as a consequence of the inertia of the flow which is trying tmfoa

straight path and “hits” the wall. The pressure built up & wall yields

the force necessary to bend the streamlines.

A particle in the flow close to the inner wall is just like a balling into a
well (figure 5.4). The Bernoulli equation, which represéntthis case the
law of conservation of mechanical energy, tells that theguee decrease
implies a decrease of potential enefgwhich is compensated by an increase of kinetic enéygf.
When leaving the well (bend) the kinetic energy is again etied into pressure as the particle climbs
again (the adverse pressure gradient).

Figure 5.3 Frictionless flow
in a bend.

A frictionless flow is only possible far from the wall.
Even at high Reynolds numbers there is always a thin
region at the wall where friction forces are of the same
order of magnitude as the inertial forces. We call this
thin region of thicknesg a viscous boundary layer.

It can be shown that because the flow is quasi-parallel
the pressure in the boundary layer is uniform and eqg@jure 5.4 Ball passing along a well.

to the local pressure of the frictionless flow just outside

the boundary layer. More accurately: this implies that tbemal pressure gradient-V p at the wall

is negligible in the boundary layer. In the boundary layerfiiction decelerates the flow to satisfy the
“no-slip boundary condition” at the wallt = 0 (for a fixed wall; figure 5.5). As is clear from figure
5.5 the flow in the boundary layer is not irrotational. The haary layer is a region of concentrated
vorticity.

If we consider now a sharp bend the velocities following pete
tial flow theory should now become infinitely large at the inne
edge (figure 5.6). (This can be verified by integration of tdial
momentum conservation law.) The assumptions used to diwgve
flow pattern break down: the viscous tesv?v which we have
neglected in the equation of motion becomes dominant near th
edge. This results into a flow separation. The flow separaton

X be understood qualitatively when we think of the ball in fegbr4
in the case of a very deep well and in presence of frictionubhs
a case the ball never succeeds in climbing up the strongyseess
gradient just behind the edge.

Figure 5.5 Boundary layer
velocity profile.

The separation of the boundary layer at the edge impliesjaation of vorticity in the main stream.
This vorticity is concentrated in the shear layer sepagative mean flow from a dead water region
(figure 5.6) just behind the bend. Taking the circulatiomgl@ path enclosing part of such a shear
layer clearly shows that the circulation per unit lengdl' /d¢) in the shear layer is just equal to the
velocity jump across the layerTddé = Ao (figure 5.7).

This complex process of separation can be described wiki@nframe of a frictionless theory by
stating that the velocity at a sharp edge should remain fifilies so-called “Kutta condition” implies
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N

Figure 5.6 Sharp bend. a) potential flow; b) actual flow.

v = Upex

Figure 5.7 Circulation in the shear layer

that a thin shear layer should be shed at the edge. The slyearctantains a distribution of vorticity
such that the velocity induced at the edge by the vorticigt gompensates the singularity of the
potential flow (which would exist in absence of shear layer).

It can be shown that this condition also implies that the skeger is shed tangentially to the wall
at the side of the edge where the flow velocity is the largelsé Validity of a Kutta condition for
an unsteady flow has been the subject of quite a long conipvAt this moment for a sharp edge
this is an accepted principle. Hence if next to a stationamy five impose an unsteady potential flow
(acoustic perturbation) the amount of vorticity shed atetige will be modulated because we modify
the singular potential flow at the edge.

We see therefore that within a potential flow theory the slealges play a crucial réle because they
are locations at which a potential flow can generate voyticlt is not surprising therefore that in
nature the feedback from the acoustic field on a flow will ofterconcentrated at an edge.

Self-sustained oscillations imply an amplification of tremastic perturbations of the main flow by
flow instability (this is the energy supply in the feedbackp® The instability of a thin shear layer
can be understood by considering as a model an infinitely tomgof line vortices in a 2-D flow
(figure 5.8).

The velocity induced by a line vortex of strendthis calculated using Biot-Savart’s law:
r

2rr’

wherer is the distance between the point at which we consider tleeigland the vortex. As we see

in figure 5.8a a row of vortices is (meta)stable because theiae induced on a given vortex by the

Uy = (51)

1in a two dimensional frictionless incompressible flow Dt = 0 so that there is no interaction between the vortical
and potential flow which can changewithin the flow.
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Figure 5.8 Instability of a vortex row induced by a non-unifity of dI"/d¢.

vortices left of the point are just compensated by the via&sinduced by the vortices at the right (by
symmetry). This is, however, a metastable situation as anybation will induce a growing flow
instability. For example a lateral displacement of one efvbrtices out of the row is sufficient. Hence
we understand (figure 5.8b) that a modulation of the voytibit acoustic perturbations can induce a
roll up of the shear layer into a vortex structure as showrguré 5.9.

Figure 5.9 Shear layer instability.

The most unstable type of flows is the flow between two shearsagf opposite vorticity: jets and
wakes (figure 5.10). A wake appears to be so unstable that fsilaan forces are sufficiently small
(above a certain Reynolds number) it is absolutely unst@3E Hence, any perturbation will result
in a break up of the wake structure shown in figure 5.10. A lpiesult of this is the occurrence of
vortices, periodically shed from a cylinder fBe > 50, which is known as the Von Karman vortex
street [18]. This periodic vortex shedding is responsibletiie typical whistle of an empty luggage
grid on a car. A jet left alone (free jet) will also exhibit serspecific oscillations at moderate Reynolds
numbers Re = O(10%)) [16]. Turbulence will, however, kill any clear structurehigher Reynolds
numbers. A jet needs a little help to start whistling. Howetleere are many ways to persuade him to
whistle!
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Extensive reviews of these jet oscillations are given byk8land Powell [17], Rockwell [205, 207],
and Verge [236]. We consider here only two examples:

— the edge tone;

— the jet screech.

In the first case the jet oscillations are controlled by plga
sharp edge in the jet. The interaction of the jet with the edge
induces a complex time dependent flow. At low Mach num-
bers the flow can be described locally as an incompressib
flow (compact) and a description of the jet oscillation can
be obtained without considering sound propagation or radi-
ation [40]. As the phase condition in the feedback loop i
determined by the travel time of perturbations along the jet
the oscillation frequency will be roughly proportional teet
main flow velocityV; in the jet. Self-sustained oscillations
occur for those frequencies for which the phase of the signal
changes by a multiple of2as the signal travels around the
feedback loop. We assume an instantaneous feedback from
the jet-edge interaction towards the separation point from
which the shear layers bounding the jet emerge. The phase
shift is therefore determined by the jet.

As a rough first order estimate the perturbations travel in
the shear layer with a compromise between the velocities at
both sides of the shear layer (abc%)lo). A more accurate
estimate can be obtained by considering the propagation of
infinitesimal perturbations on an infinite jet as proposed bigure 5.10 Jet and wake.
Rayleigh [16, 186]. In spite of the apparent simplicity oé th

geometry an exact analytical theory of edge tone instadsilis not available yet.

Like in the case of many other familiar phenomena there doesxist any simple “exact” theory for
jet oscillations. Actually, the crudest models such as psed by Holger [79] are not less realistic
than apparently more accurate models.

The most reasonable linear theory until now is the one prxgbby Crighton [40]. A major problem of
such a linear theory is that it only predicts the conditionder which the system is stable or unstable.
It is not able to predict the amplitude of self-sustainedliagions. At the end of this chapter we will
discuss the model of Nelson [158] for a shear-layer whiclery gimilar to the model of Holger [79]
for an oscillating free jet. Both models do predict an anlé for sound production by the oscillating
flow.

Placing such an edge tone configuration near an acoustioatesowill dramatically influence its
behaviour. A resonator is a limited region of space in whiohustic energy can accumulate, just like
mechanical energy can accumulate in the oscillations ofssrapring system. The sound radiated by
the edge-jet interaction results now in a second feedbatkipeough the oscillations of the resonator.
In such a case the resonator often imposes its resonaneef®gto the system. The phase change
that a signal undergoes as it travels around the feedbagpkisomow not only determined by the jet
but also by the delay in the acoustic response of the paatioip resonator. The oscillation condition
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is still that the total phase change should be a multiplexof &hen the frequency is close to the
resonance frequency of the resonator, a small variatioreguency results into a large phase shift
and this easily compensates the change in travel time alenget. An example of such a system is
the flute or the recorder.

In many textbooks the flute oscillation is described as amustézally driven edge-tone system. It
is rather tragi-comic that one describes a system which wddnlike to understand in terms of the
behaviour of a system which we hardly understand. As stat€tbtiman [32] this is “a rather circular
procedure in view of the fact that there are many gaps in ther#iical basis for both”. Simplified
models of the recorder are proposed by Fabre [59] and Ve EB6, 237, 239]. It indeed appears
that a recorder is not simply an “edge tone” coupled to a r&son

We do not always need an edge for jet oscillations. In thegetexh we have a supersonic jet which
has a cell structure due to the formation of shocks and eigrangvhen the jet pressure at the exit is
not equal to that of the environment (figure 5.11). The irtéoa of acoustic perturbations with the
edges at the pipe exit results into the formation of periltlicshed vortices. The vortex interaction

" -
s § £

T

Figure 5.11 Under-expanded supersonic jet with typicdlsteicture. We observe acoustic waves generated by thadmte
tion of a vortex with the shock. The vortex is shed periodycat the nozzle lip. Acoustical feedback has been
reinforced in this experiment of Poldervaart and WijnanbddE) by placing reflectors around the jet nozzle.
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with a shock wave appears to generate strong acoustic putsparticular the interaction with the
third cell appears to result into a localized periodic seuwr€sound. The acoustic wave travels back
towards the pipe exit via the quiescent environment of theTjkis feedback loop can be blocked
by placing a wall of absorbing material around the jet [L78/]2 This reduces the jet oscillations,
demonstrating that the feedback loop described is the oi@hwhbntrols the jet oscillations. A review
of some related supersonic flow oscillations is given by dwrsdgi [101].

Many of the features observed in a jet oscillation can alsoliszrved in a shear layer separating a
uniform main flow from a dead water region in a cavity [206p&&d side branch in a pipe system or
open roof of a car). We will discuss these types of osciltegiafter we have discussed the acoustics
of some elementary type of acoustic resonators.

5.2 Some resonators

5.2.1 Introduction

Before considering other types of acoustically controfled instabilities we will focus our attention
on the acoustic resonator. This is an essential step bedaosany applications the identification of
the resonator is sufficient to find a cure to self-sustaineidllasons. Furthermore resonators are also
used to impede the propagation of sound or to enhance almsorin example of this behaviour is
the reflection of acoustic waves by an air bubble in a pipedfiieth water (section 4.4.5). We start
our discussion with explaining the occurrence of resonam@educt segment. We then will discuss
the behaviour of the Helmholtz resonator.

5.2.2 Resonance in duct segment

We will first discuss the behaviour of a pipe segment excitedrboscillating piston. The most effi-
cient way to do this is to consider this behaviour in linegrragimation for a harmonically oscillating
piston. We will see at the end of this section that at critfcatjuencies the theory does not provide
a solution if we neglect friction. In the time domain we carderstand this so-called resonance be-
haviour more easily. For this reason we will start our disaus by considering the problem in the
time domain.

Consider a pipe segment9 x < L closed atx = L by a rigid wall (1-n = 0) and atx = 0 by an
oscillating piston with a velocity,(t):
up=0,E(t) at x=0 (5.2)

where, in order to simplify the notation, we introduced irstbubsection the auxiliary function

E(t) = H(t) e . (5.3)

We assume thdl,/cy <« 1 so that an acoustic approximation is valid. We considey plane waves
(wAY?/cy « 1) and we neglect friction and heat transfér/(oA)Y? « 1). The piston starts oscil-
lating att = 0 and we assume that initially the fluid in the pipe is quiesegd uniform (g = 0). In
such a case at least for short times the linear (acoustigpaippation is valid. We can now calculate
the acoustic field by using the method of characteristicseasribed in section 4.2. We will describe
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Figure 5.12 Wave pattern induced by a moving pistoxr &t 0, starting at = 0.

the calculation in detail. However, a reader only intemstethe final result can jump to the final
result, equation (5.16). The, t) diagram is shown in figure 5.12.

In region | we have a quiescent fluid:

p=0 and u =0. (5.4)
In region Il we have thet waves generated at the piston:
X
Py = p;:_ (t - a) (5-5)
Using the boundary conditiom, = up, for x = 0 we find:
Py (1) = poCoUp(t) = poColpE(1). (5.6)

In region Il we have a superposition of tleg waves emanating from region Il and the waves
generated at the wall = L:

X _ X—L

P = p.T (t — g) + P (t + T) (5.7)
p,, can be determined by application of the boundary conditipr= 0 atx = L:

. L 1

BE(t - )~ P =0 (5.8)
Hence we have:

. X X —2L
pur = pocollp [ E(t - 5) +E(t+ = ) (5.9)

In region IV we have a superposition of the waves from region Ill and thet waves generated at
the pistonx = 0:

pw = P (t + %) + ol (t- %) (5.10)
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Py, is determined by applying the boundary condition = up atx = 0:
N 2L 1
upE(t — E) — p—COp,V(t) = 0,E(1) (5.11)

and so we find:
P = pocollp { E(t - %) +E(t+* _COZL) +E(t- XEOZL)}. (5.12)

In region V we have the* waves from region IV superimposed on ttiewaves generated at the wall
X = L:

P = Pt (t CO) +p; (t + TL) (5.13)

As before,p; is determined by applying the boundary condition= 0 atx = L. We find:
. X X —2L X+ 2L X — 4L
pv_pocoup{E(t—a)+E(t+ 5 )+E(t— ~ )+E(t+ ~ )} (5.14)

If we now limit ourselves to the position = 0 we see that after each period of time/2, a new
wave is added to the original waves reflected at the wall asibipi These original waves have now
an additional phase ok2., wherek = w/cy.

Substitutingx = 0 in (5.13) and generalizing the structure of the formula wd for 2NL/cy <t <
2(N + 1)L /co:

N
. . 2nL 1
— 2 ~ ela)t e—2|knL H t _ — . 515
Pan PoCoUp LZZO ( Co ) 2 ( )

This structure could also have been obtained by using thieadeif images described in section 4.6.2.
We consider the piston as a volume source placed-atO*. Placing image sources in an infinitely
extended tube at = +2nL /¢y and summing up all the waves generated yields:

o= s (1 ) oty 2 (- P2 4 e (1 KR s

Note that this series contains always only a finite numberoofzero terms, because for langehe
argument of the Heaviside function Exbecomes negative. So we have (for 0)

pA 7th |kxze 2|knL_{_e|kae 2|knL
PoCoUp

Ny = LCOt2|_ J N = L%tzixj’

where|q] denotes the integer part gf It may be verified that after substitution »f= 0 in (5.16)
we find (5.15), withN = |cot /2L |. The geometric series may be sumrhesb we obtain:

o 1— e 2ik(Ni+D)L ookl 1— e 2ikNoL
. et — — pekx2kl—__— __—if KL # x¢,
pocr:a g iot _ 1 — e2KkL 1 — e—2ikL (5.17)
’ e KX (Ny + 1) + € N, it KL = 70,
N 1—aN+t N 1_aN
ZNotethat: > a" =1 1-a ital, >a= Y if a1,

n=0 N+1 if a=1, n=1 N if a=1.
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wheret¢ = 1,2,3.... ForkL # =¢, and allowing for a small amount of damping by givinga
small negative imaginary pamb, converges towards a finite value. We call this the steadyg btait. If

kL ==¢forany¢ = 1,2, 3..., the pressure increases without limit, at least as longhastditheory
is valid. We call this a resonance of the tube, with the resoadrequencies given b%/fco/L. The
resulting equations are

kx — kL
| —icos(_xikL) it KL # 7,

_pa et s S'”t (5.18)

potollp cos(kx)% if KL = 7¢.

When resonance occurs the linearized wave equation is afityduring the initial phase of the build
up and if there are no losses at the walls. As a result of thpe¢esture dependence of the speed of
sound the compression waves tend to steepen up and shock araviermed. Shock waves are very
thin regions with large velocity and temperature gradiemt&/hich viscous force and heat transfer
induce a significant dissipation [5, 30]. This extreme bahavwill, however, only occur in closed
tubes at high pressures or at high amplitude (section 4.2).

In an open tube at high amplitudes vortex shedding at the grigewill limit the amplitude [46]. If
we assume an acoustic particle displacement at the operipipehich is large compared to the tube
diameterd we can use a quasi-stationary model to describe (localéy/jltiw. This is a model similar
to the one discussed for an orifice in section 4.4.3.

Let's assume that the tube is terminated by a horn as showgurefb.13. In such a case flow sepa-

Figure 5.13 Flow at an open pipe termination at high acouastiplitudes.

ration will occur only while the acoustic flow is outgoing (fige 5.13a). Assuming a dominant fun-
damental harmonié sinwt, the poweM, corresponding to the energy losses due to the formation of
the jet can be calculated from:

S T

We = —/ u'Apdt (5.19)
T Jo

whereAp = —%pou’2 forO<t < %T andu’ > 0 because a free jet is formed which cannot sustain

a pressure differenéeln terms of the Vortex Sound theory of Howe we would say thaémthe jet

SWe assume that due to turbulence all the kinetic energy injethis dissipated further downstream. We assume also
that flow separation occurs at the junction between the pigettae horn. This is quite pessimistic, since the separagion
expected to be delayed considerably by the gentle diveegehitie horn.
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is formed during the outflow there is a deviation from potanfiow resulting intop” = p,, while
potential flow theory would predicp’ = pg, — %pou’Z. This is due to the vorticity in the jet which
results into a source of sound, that we can represent by syseesource\p = —% pou’?.

ForiT <t < T andu’ < O we have:
because we have a potential inflow into the pipe. Hence:

B 2pol®S
=

iT

RN 1 .3
We >~ / sinPwt dt = ——peU°S. (5.22)
0 3z

The amplitude of the acoustic field in the tube can now be estichby assuming that the losadfs
at the open end balance the acoustic powgrdelivered by the piston:

S T
W, = ?/0 upp'(x = 0) dt. (5.22)

Assuming that friction losses at the pipe wall are negligilvke have:
W, =~ 1 Su,pacol, (5.23)

wherel is measured at the open pipe exit. Hence we find fiign+ W, = O:

1] 37 up
u_ 3 5.24
o 2 % (5.24)

The model proposed here is valid when the Strouhal numbedoasthe diameter and the acoustical
velocity is smaller than l,e. wd < Q.

The non-linear behaviour of resonators, occurring for eplanwith flow separation, makes such de-
vices efficient sound absorbers. Sound is “caught” by ther&®r and dissipated by vortex shedding.

In many cases the most significant losses are friction lcage wall. We will discuss the influence of
radiation from an open pipe end in section 6.7. When a planve @wpproximation is valid a harmonic
acoustic field in a pipe with uniform cross section can in theemce of mean flow still be described

by:
p/ — p+ eiwtfikx _{_pf eiwt+ikx ) (525)
The wave numbek, however, is now complex and is in first order approximatieig by:
k=ko+1—-i)a (5.26)

whereky = w/cy anda is the damping coefficient given by equation (2.13), derivedection 4.5.
(In a liquid one should assume~ 1.)
Damping also affects the impedangg of an infinite tube. To leading order approximation one finds
[122]:
p' ko
Zo=— =+7Zp— 5.27
c u 0 Kk ( )



5.2 Some resonators 103

where the sign indicates the direction of the wave propagdtx or —x) andZy = poCo. We further
see that wave speads affected:
Re(k)
C=C——— (5.28)
ko

While friction is relatively easily taken into account foatmonic waves, in the time domain friction
involves a convolution integral which makes the solutiorpafblems more difficult to analyse [30].
We will now further limit our discussion to the case of harntowaves. Hence we seek only for a
steady state solution and we assume that linear acoustiads

As an example we consider a piston with a velocity= G, g atx = 0 exciting a tube of cross
sectionS closed atx = L by a rigid wall. We neglect the radiation lossesxat L (which we will
discuss further in section 6.7). The boundary conditions &t0 andx = L can be written in terms
of equation (5.25) as:

(p= (5.29)
and
0= p+ efikL - pf eikL (530)

so that we find:

Z:0
+ c-p
In contrast to our earlier examplg" does not become infinitely large with resonance becéuse
complex. The impedancg, seen by the piston at= 0 is given by:

_pt+p

Z
P
Up

— —i Z. cotg(kL). (5.32)

Upon resonance, Rle) = nz /L withn = 1,2, 3, ..., we find for the caseL « 1:

Z;
Ly >~ —. 5.33
P~ al ( )
When the dampinda L) predicted by laminar boundary layer theory is small the llzgmin am-
plitudes may become so large that the acoustical boundgeyddecome turbulent. This implies a

non-linear energy dissipation as discussed in sectio.4.5.

5.2.3 The Helmholtz resonator (quiescent fluid)

The resonance conditions for a duct segment (5.25) imphyttigatube length should be of the order
of magnitude of the acoustic wave lengiti(= O(1)). In many technical applications this would
imply that resonators used to absorb sound should be langesfaensive). A solution to this problem
is to use a non-uniform pipe in the shape of a bottle. When dfiéelis small compared to the acoustic
wave length (for low frequencies), the body of the bottlesaast an acoustic spring while the neck of
the bottle is an acoustic mass (figure 5.14).
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K

Figure 5.14 Helmholtz resonator as mass-spring system.

If the cross-sectional are®, of the bottle is large compared to the cross sectional Sred the neck,
the acoustic velocities in the bottle will be small compatedhose in the neck. Hence we may in
first order approximation assume that the pressure andtggresturbationsp;, and p;, in the bottle
are uniform. Furthermore, as we have assumed the bottle(letakh{) to be acoustically compact,
i.e. short compared to the wave lengltf, « 1, we can neglect compressibility and integrate the
line integral of the momentum equation along a streamlioenfa point inside to a point outside as
follows. Use identity (1.30) and the fact thak v is orthogonal to a streamline to obtain

ex

ex v/ 1 ) ) ) ) /
po/ ~*ds+ SpolUed = Uir) + (Pex— Plo) =/ uV?'-ds (5.34)
|

n n

Assuming that the streamline does not change in time (fampl@the center streamline) we have

EXav/ d ex
ds=2 [ v 5.35
A ot T w ) U (5.35)

The velocity line integral evidently scales on a typicalgintimes a typical velocity. If friction effects
are minor and the velocity is reasonably uniform, we canls@&éck velocity;, with a corresponding
length being the neck length added by a small end correctiérf4.51) to take into account the inertia
of the acoustic flow at both ends just outside the neck (insideoutside the resonator); see section
5.2.3.1. Then we have:

ex
/ v'-ds= (£ + 20)u,. (5.36)
in

The stress term line integral is far more difficult to ass@gart fromuy, itself, it will depend on flow
profile, Reynolds number, wall heat exchange, turbulenggarsition from sharp edges, and maybe
more. Following Melling [133], we will take these effectgther in a resistance factB; which will

a priori be assumed to be relatively small, to have resonandea small decay per period in the first
place.

ex
/ V' -ds~ —RU, (5.37)
in

Due to separation from the outer exit, we have with outflgyw~ 0 with uex = uj, jetting out, while
similarly during inflow,uex 2 0 with ui, = uj, jetting into the cavity. The pressure in the jets, however,
has to remain equal to the surrounding presspfgand p;, respectively) because the boundary of the
jet cannot support a pressure difference. Therefore, we alwgether

d / l / / / /
po(f + 25)aun + Epoun|un| + RL(\ = Pin — Pex (538)



5.2 Some resonators 105

In order to have a second equation betw@erandu;,, we apply the integral mass conservation law
on the volumeV of the bottle. The change of mass must be equal to the fluxghrthe bottle neck,
which is in linearised form for the density perturbatio:

dp i/n
dt

VD = pu S, = —pou Sh. (5.39)

Assuming an adiabatic compression of the fluid in the bot#ecan eliminate;, by using the consti-
tutive equation:

P = Copin- (5.40)
Elimination of p;, andu;, from (5.38) by using (5.39) and (5.40) yields:

(L + 20)V &py, V2 dp, RV dp,
S  dt2  2pocR dt poCsS, dt

When the damping is small, there exist solutions withougel forcingpy,, i.e.resonance solutions.

dpi,
dt

+ Pin = Pex (5.41)

C+2Velp, o
32S,  dt? Pin =5

Hence we see that the Helmholtz resonator reacts as a masg-sgstem with a resonance frequency
o given by:

2
ShCo

P (5.42)

] =
When the amplitude is small, the damping will in general hedir. For larger amplitudes the damping
will be nonlinear, which among other things generates otf@monics than the frequency of the
driving force; see section 5.2.4. A spectacular effect afittwhal damping occurs when the flow in

the neck is superimposed on a mean flow, forcing vortex shgdddm the exit even without nonlinear

terms; see section 5.2.5.

5.2.3.1 Intermezzo: End correction

If, as is the case in many technical applications, an oriBagsed instead of bottle neck £ 0), the
use of a reasonable estimate fois important. For an orifice with a circular aperture we havéhie
limit of small k

S\ 2
5= 0.85(—) . (5.43)
T
For an unflanged thin-walled open-pipe end we can use forl sntia¢ approximation:
1
5= 0.61(3) 2 (5.44)
T

See also section 6.7. Valuesdfor various other geometries are given by Ingard [91].
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5.2.4 Non-linear losses in a Helmholtz resonator

The theory described in the previous section assumes thia th no-flow separation. Flow separa-
tion will certainly occur when the acoustic particle disgenent has an amplitude comparable to the
diameter of the neck. The Strouhal numiSr = w(S,/7)%2/u], yields a measure for this effect.
WhenSr « 1 flow separation will only occur locally at sharp edges of tleek (or orifice). When
Sr = 0O(1) flow separation will occur even if these edges are roundedrofirinciple the effect of
flow separation can under these circumstances be descrjbagshming the formation of a quasi-
stationary jet as for the pipe end (section 5.2.2). A mudtiptales solution for this problem may be
found in section 8.3.

In the case of an orifice with sharp edges, one should takeazdount the fact that the jet diameter
tends to be smaller than the orifice diameter by a fagtoalled the vena contracta factor. For a thin
orifice # ~ 0.6 [44]. Using a quasi-stationary Bernoulli equation thiplies an enhancement of the
pressure losa p by a factors—2. Furthermore losses occur for an orifice in both flow direwiovhile

in a pipe with horn we assumed losses to occur only upon aqugaeoustic flow.

5.2.5 The Helmholtz resonator in the presence of a mean flow

We consider a Helmholtz resonator of voluwieneck lengtlY and neck surfac&, in which we inject
a continuous volume floMDy = U S, (figure 5.15). Neglecting the viscous dissipation, but ntlise

Figure 5.15 Helmholtz resonator with a mean flow.

using the same equation as before we now find

du/ / / /
po(t + 25)d—t” + 2po(Uo + Up)? + Pl = Po + Py (5.45)

where we used the fact thag, = u;, because the total flow is always an outflow. Further, we asdume
that the pressure in the jet is uniform and equaptg the fluctuations due to an external acoustic
source. (This is a reasonable assumptiorufgic < 1 andw(S,/7)Y?/uy <« 1). Separating the zero
and first order terms in the acoustic perturbations and otgéesecond order terms we find

Po = 3/U5 (5.46)

and

po(t + 20)

du/ / / /
dtn + poloUy, + Pay = Piy- (5.47)
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Using the linearized mass conservation law we have negtetérms of ordefug/co)?:

dp, L
VR = —(pouiy + piytio) . (5.48)

Eliminating p{, by using the constitutive equatignj, = c2p/, and eliminatingp;, from (5.47) and
(5.48) we find:
d?u/, Uop duj,

A 4 w2y = —

+ wSMO / 1 dpt/ex
dt? ¢+ 20 dt

poCo Pec™ po(f +20) dt -

wo is defined by equation (5.42) amdy = Uo/Co. For a harmonic excitatiopl,, = Pex€'®! we find:

pO(EOLAJn _ Mo + Ia)la)/a)cz] i (549)
Pex 1 — (w/wo)? + i Mow1/w§

wherew; = ¢q/ (£ 4 20). We see that the mean flow induces a damping factor which whetraigriori
not have expected because we did not assume friction lossé®at transfer.

The key assumption which has introduced damping is that we &ssumed that the pressure pertur-
bation at the pipe exit is equal to the environment pressertigbationpey. This is true, because the
flow leaves the exit as a fetwhich implies separation of the flow at the pipe exit and a#&aondition

to be added to an inviscid model (section 5.1)! This implre & varying exit velocity, modulates
the vorticity shed at the edges of the pipe exit, which is,tertdrn, a loss of kinetic energy for the
acoustic field. This confirms that the Kutta condition is ied& quite significant assumption [39].

5.3 Green’s function of a finite duct

Formally, the Green’s function of a finite duct can be obtdiifave neglect friction and losses at the
pipe terminations by using the method of images (sectior246d section 5.2.2). For a pipe segment
0 < x < L closed by rigid walls a source at= y in the pipe segment is represented by a row of
sources (in an infinitely long pipe) at positions given by(fig5.16)

Xo=4+@n+1LEy; n=0123,.. (5.50)

The Green’s function is the sum of all the contributions @fsth sources:

4A very interesting proof of the fact that a quasi-stationsuipsonic free jet cannot sustain any pressure differente wi
the environment is provided by Shapiro [220].

X
X
X
X

X
X
X

Figure 5.16 Images of sourcexat=y.
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o]

1
g(x,tly,r)=EZ

n=0

x+(2n+1)L—

e
T

x—(2n+1)L—

’)
x+(2n+1)L+y)
’)

- x—(2n+1)L+y)}.

+H(t— =

(5.51)

It is clear that such a formal solution has no simple physidakpretation.

Another representation for the 1-D Green’s function[0L] that might be useful in some applica-
tions is found by a series expansion of the Fourier transfpohg:

o0

§= > Anflx) (5.52)

n=0

in a suitable basi§f,}. In this case we wilhot start from elementary solutions of the wave equation.
The functionsf,, we will consider will (only) satisfy the boundary condit®atx = 0 andx = L, so
that their sum will automatically satisfy these conditioghthis sum converges uniformly. Hence we
will construct now aailored Green'’s function (section 3.1). Furthermore, itis evitienecessary that
the basig fn} is complete, and convenient that it is orthogonal to somelsig inner product. Let's
now for simplicity assume that the pipe segment is limitecghbigid wall atx = 0 and an impedance
Z, atx = L. Consider:

fn = sin(Kyx) (5.53)

with K, determined by the equation

tan(Y) ZL
5.54
Y kL ( )
with K,L =Y. Note that fom — oo (Z # 0)
ikL
KaiL>(n+YHr + ———— + ... 5.55
n ( 2)7[ (n + %)EZL ( )

so that for largen, f, approaches the Fourier-sine series basis. The numbemubioss between 0 and
(n+ %)n (for n — o0) is not always exactly. Depending orZ, /KL it may differ by 1. For example,
if Z_ /kL =iC andC is real, there is no purely imaginary soluti¥n= i¢ with tanh(c)/oc = —C if
C > 0orC < —1, and exactly one solution #1 < C < 0, which disappears to infinity it — 0.
Finally, we note that f,,} is orthogonal to thé., inner product:

L
(s f) = [ 200 0 (5.56)
0
(Note:not.. f(x)..), which is easily seen by direct integration:
If n#=m:
L _ sin(KnL — KpL)  sin(KyL 4+ KpyL)
sin(K,x) sin(Kx) dx = — =0 5.57
J, sk sinticn) 2Ke—Km) 20K+ Kn) 557
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after application of (5.54).

Ifn=m:
L in(2K,L
/ SiP(Knx) dx = 3L — sin2Kal) _ An. (5.58)
0 4K,
We now seek an expression for the Green'’s function, defined by
d29 _dx—y)
—~ 1K= 5.59

in the form (5.52). Substitution of the series, multiplioatleft- and right-hand side by, and inte-
grating overfO, L] yields (because of orthogonality):

(K — K2)AmAn = — fm(y)/C3. (5.60)
Hence we have:
o fa(X) f(y)
4(x,y) = 2 % KE_TO A, (5.61)

We see explicitly that:

i) the Green’s function is indeed symmetricxrandy (source and observation points) as stated
earlier in section 3.1 (reciprocity), and

ii) any source with a frequency = K, ¢y (so thatK, = k) yields an infinite field, in other
words: resonance. Note that in gengfalis complex, so that such a source strength increases
exponentially in time.

When the frequency of the source is close to a resonance frequency this resemdldominate the
response of the pipe segment and we can use a single modeiamion of the Green’s function.
This is the approximation which we will use when discussing thermo-acoustic oscillations in a
pipe segment (Rijke tube, section 5.5).

5.4 Self-sustained oscillations of a clarinet

5.4.1 Introduction

The coupling of acoustic oscillations to mechanical vilad is a technically important problem
[245]. In some case such a coupling can cause the failure efarisy valve. Instead of looking at
a technical application we are going to consider a musictiument. The model used is very crude
and only aims at illustrating the principles of two methofiamalysis:

— the stability analysis;
— the temporal simulation.

In the first case we consider a linear model and deduce themalrblowing pressure necessary to
obtain self-sustained oscillations. In the second caseomsider a simplified non-linear model de-
veloped by Mcintyreet al. [130] which can be used for time domain simulation. The ainthef
simplification is to allow for a real time simulation of a dlaet! We will restrict our discussion to the
principle of the solution of the problem. The results of tiaéalations can be found in the literature.
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5.4.2 Linear stability analysis

A simplified model of a reed instrument like a clarinet is amgtical pipe fed by a pressure reservoir
P, (the mouth) through a valve (reed). The reed has a masmd is maintained at a rest positibp

by a spring of constark,. The aperturéh of the valve is assumed to be controlled by the pressure
differenceAp = Py — p’ between the mouth pressuifg and the acoustic pressupéin the pipe just
behind the reed (figure 5.17). The equation of motion of tieel is:

3 :
u
hl ug— - S
mr p/ —_—
Ke %I, . =0
— L
Figure 5.17 Simplified clarinet.
®h  dh )
M + g tKi(h—h) = —§(Po— p) =S Ap. (5.62)

y; is the damping coefficient of the reed, is the surface of the reed ahds the aperture of the reed
channel through which the air flows from the mouth to the pie.assume that the flow in the reed
channel is quasi-stationary and that at the end of the readnet a free jet is formed. Neglecting
pressure recovery by mixing of the jet with the air in the pymassume the pressupeto be uniform

in the jet and equal to the pressure at the pipe inlet.

The flow volumeQ; of air into the pipe is given in this approximation (if we negt friction) by the
equation of Bernoulli:

Q: = ushw = hw(2|Ap|/p)? sign(Ap) (5.63)

wherew is the width of the reed channel ang the (Bernoulli) velocity of the air in the jet. The
acoustic velocityu” at the entrance of the pip& & 0) is given by:

&
~ s

whereSis the pipe cross sectional area. If we consider a small goextion of the rest positiong( «
Po) we can linearize the equations and consider the behavf@harmonic perturbatiop’ = pe'“t.

u (5.64)

The steady state values lofand Q, are given by:

Sh
K b
The linear perturbations are governed by the equations:

ho=h, — Qo = Uohow, Up = (ZPO/IJO)%-

(—®m +iwy + K)h=Sp (5.65a)
N Uop

=—— 5.65b
Up 2P ( )

Qr = w(hug + holig). (5.65¢)
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We further assume that the acoustical behaviour of the giplescribed by an impedangg(w) so
that:
p=12,0/S (5.65d)

Since the system of equations 5.65a—5.65d is homogene¢acas, dnly be satisfied if the determinant
vanishes. This condition yields an equation from which we aculatew for a givenPy:

—?m; +ioy + K, . ( S houo)*l
SUO N pr ZPO '

If Im (w) > 0 the perturbations are damped, and ifdh < O the perturbations grow in time. Itis clear
that the steady state amplitude in a clarinet can only béneshby non-linear saturation of the system
because linear theory predicts a monotonically growingeawragting amplitude. When Iw) = 0
the perturbations are neutral, they do not change in andglitif we assume liw) = 0 equation
(5.66) becomes an equation for @@ and P,. This allows to determine the threshold of pressure
above which oscillations occur and the frequency of the manstable mode which starts oscillating.
A discussion of the solution of this clarinet model, incluglinon-linear effects, is given by Gazengel
[68] and Kergomard in [76].

It is interesting to note that in some cases the inertia offlthwe in the reed which we neglected is
the main driving force for instability. This is for exampleet case in harmonium reeds [225] and for
valves in water like river gates [107]. A discussion of thenflthrough double reeds and the vocal
folds is given by Hirschberg [76].

(5.66)

5.4.3 Rayleigh’s Criterion

An interesting analysis of the problem of clarinet osditlatis already obtained by considering the
very simple quasi-stationary reed model:

A 21A
h:hr—¥ and Q = hu, | 22P!

sign(Ap).
Po

WhenAp = 0 there is obviously no flow because= /2| Ap[/po Sign(Ap) vanishes. Whemp >
h,K/S = Apmax the reed closes anld = 0. Between these two zero's @, it is obvious that
Qr > 0 and should be a maximum at a pressure difference which wertaal Apgir >~ %Apmax.
The acoustical power

1 1 /7 dv 1 /7
W=_ ‘dv = = —_dt = = 'Q! dt
T?{p T/O Pt T/O P

produced by the fluctuating volume flo@; = %—\t’ should at least be positive. We consider here an
oscillation periodT in order to sustain oscillations. Fluctuatio@ = (dQ;/dp’)p’ in Q, induced

by pressure fluctuations in the pipe are negativeNpr < Apqir and positive forAp > Apgit. This
explains the presence of a blowing pressure threshold bedoieh the clarinet does not play. The
criterion § p'Q, dt > 0 is called the Rayleigh criterion for acoustical instakiliVe will use it again

in the analysis of thermo-acoustical oscillations.
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5.4.4 Time domain simulation

Early attempts to describe the non-linearity of a clarineravbased on a modal expansion of the
acoustic field in the pipe. This implies that the Green’s fiomc was approximated by taking the
contribution of a few (one to three) modesto account (equation (5.61)). The typical procedure is
further to assume a weak non-linearity which implies thaeaysbation method like the method of
averaging can be used to calculate the time dependence widties [67]. A full solution is obtained
by the method of harmonic balance discussed by Gilbert [69].

As stated by Mcintyre [130] the non-linearity in a claringtriot weak. In fact the most spectacular
non-linearity is due to the limited movement of the reed uglosing. The collision of the reed against
the wall of the mouthpiece can result in a chaotic behavié8}.[The key feature of a clarinet mouth-

piece is that this abrupt non-linearity is replaced by aesafbn-linearity because upon touching the
wall the reed gradually closes as it is bent on the curved @fathe mouthpiece (called the lay) and

its stiffness increases because the oscillating part isrbewy shorter.

However, the high resonance frequency of the regd= K;/m, suggests that a quasi-stationary
model of the reed could be a fair first approximation. Hencdntyce [130] proposes to use the
steady approximation of (5.62):

Kih—h)=-S§(Po—p)=-SAp (5.67)

combined with (5.63), (5.64) and (5.65d). The numericatpdure is further based on the knowledge
that the acoustic pressupe at the reed is composed of an outgoing w@veand an incoming wave
p~ (result of the reflection of earligp™ wave at the pipe end):

pP=p"+p. (5.68)
The pipe has a characteristic impedadge= poCy When friction is neglected) so that:

’ p+_p_

u = 5.69
> (5.69)

If we now define the reflection function(t) as the acoustic wavp~ induced by a pressure pulse
pt = 4(t), we find:

p- =rxp’ (5.70)
wherex indicates a convolution (equation C.10). Eliminationpdfand p~ from (5.68)—(5.70) yields:
Pl = ZU +r*(Zu + p) (5.71)

whereu’ is calculated at each time step by using (5.63), (5.66), arG¥{:

o =5 (h - S22 (222) signiap), 5.72)

The solution is obtained by integrating (5.71) step by stising the previous value qf to calculate
u’ in the convolution of the right-hand side (5.71).

5Standing waves in the pipe closed at the reed end.
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The interesting point in Mcintyre’s approach is that he usesflection functiorr (t) (which is the
Fourier transform oR(w) = (Z,—pc)/(Z,+ pc)) rather tharey, the Fourier transform of ,. Using
z, would have given the integral equation:

p = zpxU (5.73)

which can be combined with (5.72) to find a solution. It appehowever, that (5.73) is a numerically
slowly converging integral becaugg has an oscillatory character corresponding to the respphse
of a close tube to a pula€ = (1) (tube closed at pipe inlet).

/
u=0ot) ——»
a) P=2 A
y=0 y=L
_______ /
pr=0(t) < P
-—r A

by P
Figure 5.18 Difference betweeap andr.

The reflection functiorr is in fact calculated in a semi-infinite tube and therefors hat such an
oscillatory character (figure 5.18). So it appears that a&fBsefunction which is not tailored may be
more appropriate than a tailored one.

5.5 Some thermo-acoustics

5.5.1 Introduction

We have focused our attention until now on wave propagatmmhiateraction of acoustic fields with
isentropic flows. In section 2.6 we have seen that variat®ns entropy should act as a volume
sound source (if we usp’ as acoustic variable). We will now discuss such effects astanesting
example of self-sustained oscillations in resonatorso#tNMach numbers in gases, entropy variations
due to dissipation are negligible (order 0.2)MEntropy fluctuations occur mainly as a result of
combustion (or vapour condensation) in the bulk of the flova®ra result of heat conduction at the
wall. Mixing of hot and cold gases results into fluctuatiorighe entropy caused by the unsteady
heat conduction (equation 2.87). For ideal gases one careveo, show that this sound source has
a vanishing monopole strength (Morfey [141], Obermeiell[L6Convection of entropy spots during
the mixing of a hot jet with the environment dominates the Mach number behaviour (Crighton
[42], Morfey [141]). This sound source has the characterdipale.

Combustion instability is often triggered by the strong elegence of combustion processes on tem-
perature. The reaction rates depend exponentiallyl oRlence temperature fluctuations associated
with pressure fluctuations will induce variation in comboistrate. This implies a source of sound
which, if it is in phase with the acoustic field, can lead tadtdity. Even in free space this implies
a strong increase in sound production. We experience tféstaffhen we ignite the flame of a gas
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burner. Placed in a closed tube a flame can couple with stawdaves. This type of instability is
known in aircraft engine as a re-heat buzz (Keller [103]x8Idgeet al.[19]). The “singing flame”
has already been discussed extensively by Rayleigh [186ie Mecent information on the interaction
of combustion with acoustic is found in Crightehal.[42], Candel & Poinsot [27], McIntosh [129],
and Putnam [182].

We will now focus our attention on the effect of unsteady tatsfer at walls. This type of interaction
has already attracted the attention of Rayleigh [186] inftlie of the Rijke tube oscillation. This
experiment was carried our first by De Rijke around 1848 [2B&]found that placing an electrically
heated gauze in the lower part of a vertical tube open at budls @/ould induce strong acoustical
oscillations. De Rijke considered the use of such a devicanagrgan pipe. The subject has been
studied as a model for combustion instability by many s@&n)tamong which Merk [134], Kwon
and Lee [111], Bayly [9], Heckl [74], Gervais [174], and Rd85].

Closely related phenomena of acoustical oscillations éaduby a temperature gradient in a tube
is used by scientists to detect the level of liquid Helium ireservoir. This phenomenon has been
extensively studied by Rott [147, 210, 211, 212, 213, 25b§ very systematic series of papers. The
fascinating aspect of this phenomenon is that it can betileacoustic waves interacting with a wall
induce a transfer of heat which can be used to design an &lystriven cooling machine. Such
engines have been studied by Wheatley [249], Radebaugh §b83Swift [228]; see also [169]. The
ultimate engine consists of two thermo-acoustic coupliesr(ents with a a temperature gradient): one
at the hot side which induces a strong acoustic field and andeatothe cold side which is driven by
the first (figure 5.19) [229]. This is a cooling machine withmoving parts!

driver cooler

) ‘ ‘ j

very hot cold very cold cold
Figure 5.19 Heat driven acoustical cooling engine.

We will limit our discussion to a simple analysis of the Rifkdve oscillation.

5.5.2 Modulated heat transfer by acoustic flow and Rijke tube

We consider a thin strip of metal of temperatiifgand widthw aligned along the mean flow direction
in a uniform flowu,,. Along the strip viscous and thermal boundary lay&y$x) and ot (x) will
develop. We assume thé&} /w anddt /w are small and thabw /u., <« 1, whiledy /ér = O(1). For
small fluctuationss of u,, around an average valug the fluctuations in the heat transfer coefficient
can be calculated as described by Schlichting [217] for amgmflow of the typeaiy ~ x" (wedge
flow). We now limit ourselves to the flat plate & 0) and we use a low frequency limit from which the
memory effect will become more obvious than from Schliap8rsolution. We further approximate
the velocity and temperature profiles in the boundary lalgrs

u(y) = %’y (5.74)

Tw—To o7 '
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Such an approximation is only valid for low frequencies anthb perturbation amplitudes, corre-
sponding taww /U, < 1 andu’/ug <« 1. Outside the boundary layers the flow is uniform. In this
approximation the viscous stregs at the wall is given by:

Uco

w = H— 5.76
iy (5.76)
and the heat transfeyat the wall by:
oT To — T
=—-K(— =-K——. 5.77
g (8y)y=0 5T ( )

Using an integral formulation of the conservation law in bdary layer approximation we find [217]:

6 1 07 262 ou
— o SUp— |02 =4y - L2 5.78a
[at U VT T T (5.782)
0 2 6\ 0 - 1 /6730
[E + §u°°(£)8_x-5$ —da+ §u°°(£) o5 for o <dy (5.78b)
o ST\ O 1 2 5\ 0
[a + Ugo (l — (%) )&ﬁ =4a — uoo(é — %) &5\2, for or > oy (5.78c)

wherea is the thermal diffusivity of the gas:

K

Note that we have used the assumptidp — T.)/Teo < 1 in order to keep the equations simple.
This is certainly a very crude approximation in a Rijke tublee boundary conditions are:

o0 =5r(0)=0 atx=0. (5.80)

In air we havePr < 1 and hence in generd, < Jr. We will, however, use further the assumption
Pr = 1 because we do not expect an essentially different phylsedaviour.

The stationary solution of (5.78a) is:

Sy = (f”—ox)% (5.81)

while o7 can be calculated from (5.78b):
or = dv. (5.82)

Using the notatiody = dr = dy for the stationary solution we find in linear approximation:

0 1 0 , Jp oU’ 1 5{, u’\ 0dg

4 S|y = = S (X ) 5.83a
[at *3 Oax] VT Tu ot 3 0(50 uo) ox ( )
8 2 8 1 88, 1 /8, —d  U~\dk

— 4 ZUp— |0 = +-Up—~ + ZUp( +—TF — —)— 5.83b
[8t *3 Oax] T= gt T3 0( % uo) ox’ ( )
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whereu,, = Ug + U'. These equations can be solved by integration along the
characteristics(x = %uot) for (5.83a) andx = %uot) for (5.83b). We see  *=t
that the perturbations i move along the strip with a phase veloc§y|0

which implies a “memory” of the heat transfgrfor perturbationau’ of the

mean flow. This memory is crucial for the understanding of e tube
instability.

The Rijke tube is an open pipe of length Zfigure 5.20). In the pipe we
place a row of hot strips (or a hot gauze). When the tube iscadid flowug x=0|
will be induced by free convection (the tube is a chimney).eWthe tube is
horizontal we impose by blowing.

It appears that the tube starts oscillating at its fundaatdrequencyfo = | hot grid
¢/4L when the heating element is placeckat —% L, at a quarter of the tube
length in the upstream direction (at the lower part of theettdr a vertical
tube). We will now explain this. Note that some excitatiorhafher modes
can be obtained but these are weak because of increasetioradiisses at
high frequencies. Hence we will assume that only the fundaahenode can Figure 5.20 Rijke tube.
be excited. This corresponds to a single mode expansiore@then’s func-

tion (5.61). As proposed by Rayleigh [186] we start our asialypy placing

the warming element at the center of the tuke<0).

=—L Up

As shown in figure 5.21 the acoustic velocityat x = 0 will vanish for the fundamental mode. The
variation of heat transfeg is only due to the temperature fluctuatiohs= (y — 1)y ~p’ of the gas
in the main flow. If we neglect the “memory” effect of the heapacity of the boundary layers the
heat fluxq decreases whep increases becaudg, — T is reduced.

The acoustic effect of the unsteady heat trangfés given in a quantitative way by the linearized
equation 2.69 in which (2.70) has been substituted:

10%p V2 ,Nﬂ(GT) 0

- ap/sat

— ~ 2 5.84
c2 ot? c2To a (5.:84)

which corresponds to a volume source terf8p 1 )/at? in (2.65) or in linearized fornd(m/ po)/ét.

x=0
+dp sinwt
(i dx pow

X=-—L Ug

Figure 5.21 Pressung’ and acoustic velocity’ distribution for the fundamental mode.
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As derived in section 2.7 the pow®/ produced by the source is (2.82):

W = /\///(p’p—”;)dv. (5.85)

This equation can also be derived from the equation for thek wroperformed by volume variation
dv:

A= 7( pdv (5.86)

which can be written as:

A= /OT D (‘jj—\t/) it (5.87)

where d//dt = [m/podV andT = 2z /w is the oscillation period. The rate of volume injection
dV/dt corresponds to the volume integrf) V-qdx = [;q-ndo which is the integral of the heat

transfer from the heating element. Furthermore, as thefieanf heat from the wall to the gas implies
an expansion of the gas we can also understand (5.84) in t#rfh87).

We now easily understand that@ss opposite in phase with’ the presence of a hot elemenixat 0
will damp oscillations of the fundamental mode of the pipenkke we understand that the Rijke tube
oscillation is due to modulation a@f by the acoustic velocity fluctuations. An optimal amplitude of

g is obtained just at the end of the pipexat —L whereu’ has the largest amplitude. However, at this
placep’ is close to zero so that we see from (5.85) that the sourceffestive at this position. We
therefore see that the positian= —% L is a compromise between an optimum fidrand an optimum
for g. We still have to understand why it should ke= —%L and notx = %L. The key of this is that
for x < 0 the pressurg’ increases when the acoustic velodityenters the pipeu > 0) upwards
while for x > 0 the velocity is downwards at that time. If the heat trangfeuld react instantaneously
onu’ thenq would vary as sitwt) while p’ varies as cast). As a consequencd/ integrated over

a period of oscillation would vanish. Hence the occurrenicesgillations is due to a delay in the
reaction ofg onu’. As the delay is due to the “memory” of the boundary layer we expect that O,
since the boundary layer integrates, and cannot anticgraperturbations ofi’.

u(x > 0,t) q(x, t)

Figure 5.22 Sketch of time dependencepbfindy’ in the upper x > 0) and lower X < 0) part of the tube. A memory
effect of %n will shift the phase of the heat transfgrfrom that ofu’ (the quasi-steady approximation)
toward that ofp’. It is the part ofg which is in phase withp’ that produces the sound in a Rijke tube.

As we see from the diagram of figure 5.22 tor = %7[, the delayed heat flug is in phase withp’ if
X < 0. Pulsations induced by a hot grid placedat 0 would involve a larger delaysr = %n. As
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we will explain such a condition implies a very low flow velycand hence much weaker oscillations.
In practice this oscillation mode at low velocities is nosetved. The time delay is determined by
the time that a perturbation & remains along the strip. When we blow very hard the residénce

v of a perturbationy; in the boundary layer on the strip will be very short becauseewpect from
(5.83b) that:

3w
r = O(z_uo) (5.88)
wherew denotes the length of the heated strip in flow direction. Wierdo not blow hard enough
the boundary layerg, will be very thick. The hot gas remains around the warmingnelet blocking
the heat transfer. Also when < wtr < 27 we expect that the oscillations will be damped out. Hence,
an optimum of pulsations may be expecteddar= %n:

ww T

— = . 5.89

0 3 (5.89)
This behaviour is indeed verified by experiments. Of counsarder to obtain a stable oscillation the
temperatureTl,, should reach a critical limit. For a horizontal tube at a fixgdimposed by blowing
through the pipe, this is less criti€ahan in a vertical pipe where the temperature element algesir
the main flowug. In experiments with a horizontal pipe it is quite easily etved that blowing too
hard reduces such, that pulsations disappear.

While we have seen that certain conditions are favourabi@riooscillation we did not yet discuss
the non-linear effects leading to saturation. The mostais/ieffect is that when the acoustic particle
displacement becomes comparable to the width of the strip:

Y _ o, (5.90)
w

back flow will occur from the wake towards the strip. The stsiphen surrounded by pre-heated gas
and this blocks the heat transfer. Note that at very largeliardps (//ww > 1) there is a wake
upstream of the strip during part of the oscillation perigée now understand, by combination of
(5.89) and (5.90), why in the experiment one finds typical léomgbes of the order off = O(ug). The
proposed saturation model has first been used by Heckl [7#.ilteresting to note that Rayleigh
[186] describes this non-linear effect of saturation asrivitty” mechanism.

A comprehensive theory of the Rijke tube oscillation, imithg non-linear effects and the influence of
large temperature differences, has not yet been presaitedee that such a theory is not necessary
to predict the order of magnitude of the oscillation ampl&uOn the contrary, it is sufficient to isolate
the essential limiting non-linearity.

5.6 Flow induced oscillations of a Helmholtz resonator

In view of the large amount of applications in which they agdlow induced pulsations of a
Helmholtz resonator or wall cavity have received considlerattention in the literature [11, 26,

Bsince the design of a vertical Rijke tube driven by naturalveation is not easy we provide here the dimensions of a
simple tube. For a glass pipe of 230 cm length and an inner diametercb£2.5 cm, one should use a metal gaze made of
wires of 0.2 mm to 0.5 mm diameter, the wires being separateddistance in the order of 1 mm. This gaze can be cutin a
square of 2.52.5cnf. The bended corners can be used to fix the gaze at its pos'(ti@n—(% L). A small candle is a very
suitable heat source. The pipe will produce its sound dfecaindle is drawn back.



5.6 Flow induced oscillations of a Helmholtz resonator 119

46, 206, 53, 73, 83, 84, 89, 132, 157, 158, 208]. In principke flow instability has already been
described qualitatively in section 5.1. We will now more@peally consider a grazing uniform flow.

We will now discuss models which can be used to predict theroofl magnitude of the pulsations.
The configuration which we consider is shown in figure 5.23f-S8estained oscillations with a fre-
guencyw close to the resonance frequenay of the resonator occur when the phase condition for a
perturbation in the feedback loop (shear layer/resona&atisfied and the gain is sufficiently large.
Whenw = wg we find a maximum of the pulsation amplitude and the phaseittionds entirely
determined by the shear layer. In principle we should adtiéccbnvection time of the perturbation
along the shear layer a phase shift at the “receptivity” popstream and another at the “excitation”
point downstream. These corrections are either due to “eneations” or to the transition from a
pressure perturbatiop’ in the resonator to a velocity or displacement perturbatioime shear layer.
We now ignore these effects for the sake of simplicity anchbiee we do not have available any theory
that predicts these corrections.

In both configurations of figure 5.23 in first order approxiimafperturbations of the shear layer (at the
opening of the resonator) propagate with a veloaityf the order of%uo. It appears from experiment
that when the travel time of a perturbation across the ogenidth w roughly matches the oscillation
period 2t /g Of the resonator (or a multiple ofi2 wg) pulsations occur. Typically one finds a velocity
Uc =~ 0.4uq. Hence the phase condition for instability is [76]:

—2zn; n=123, ... (5.91)

More complex phase condition depending on the geometryteniliach number has been reported by
[16, 206, 208]. The first hydrodynamic mode £ 1) is usually the strongest because it corresponds
with the highest velocity at which pulsations occur. Fumthere when the hydrodynamic wave length
(w/n) becomes comparable to the gradient lengih the grazing velocity profile (boundary layer

Up ——>»

Figure 5.23 Helmholtz resonator in a wall with grazing flow.
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thickness at the wall) the flow becomes stable and the peaitiaris are damped. Typically for:

5&)0

2 5.92
0.4U0 ~ ( )

the flow is linearly stable. A currently used cure for pulsas is to place a device called “spoiler”

which increases just upstream of the cavity [25, 206]. Equation (5.92) camded to choose a rea-

sonable spoiler height. However, we found in some experisnigat this is no guarantee for stability
[25]. Equation (5.92) imposes an upper bound to the hydradya mode instability. In most exper-

iments mode numbers higher thar= 5 are not observed. A remarkable exception is the osciflatio
found inside solid propellant rockets for which<tn < 12 [242].

It is often assumed that the perturbations along the shgar txow according to a linear theory. It
appears that a linear theory is only valid for low pulsatiompéitudes, in the range af /ug < 1073,

In the experiments one observes in most cases for a grazifagrmarflow a spectacular non-linear
behaviour of the shear layer [25]. The vorticity of the sHager is concentrated into discrete vortices.
At moderate acoustic amplitudé/u, = O(10°1) one can assume that the acoustic field only triggers
the flow instability but does not modify drastically the ambwf vorticity I' shed at the upstream
edge of the slot. This leads to the model of Nelson [25, 76, 158] in which one assumes a vortex
of strengthI” given by:

%:%'%:”0'%”0 (5.93)
travelling at a velocityu, = 0.4ug across the slot (see figure 5.7). A new vortex is generatéaifiig
Nelson’s experimental observations at the moment thatdhesdic velocityw’ is zero and is increasing
(directed into the resonatop; in the resonator is at a minimum).

Using Howe's analogy as described in section 2.6 and 2.7 anecalculate the acoustic pulsation
amplitude. As the source strengih (wxv) is independent af’ we find a finite amplitude by balancing
the friction, radiation and heat transfer losses with thevgyogenerated by the vortices. As friction
and radiation losses scale 0ff, we would expect from this theory to find pressure amplitustesing
with the dynamical pressure of the flguww = O(%pug). This occurs indeed when the edges of the slot
are sharp. Typically, the acoustic pow&'rgenerated by vortices due to instability of the grazing flow
along an orifice of areéw x B) is given by

W = O(5- 10 ?)3 poujw BU

whereu’ is the amplitude of the acoustic velocity fluctuations thylothe orifice.

—(wxv) W _
A production
@ > g
T
v absorption
u

Figure 5.24 Absorption of acoustic energy by vortex shegldin
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The amplitude of the pulsations depends critically on thepsiof the edge at which vortex shedding
occurs. This effect can be understood as follows. Upon foamaf a new vortex the acoustic field
is directed towards the interior of the resonator. Using Eleviormula:

W = —po///((a)xv)-u’) dv, (2.100)
Y

we see that the vortex is initially absorbing energy fromabeustic field (figure 5.24) becauséwxv)
is opposite tar'. At a sharp edge’ is large because the potential (acoustic) flow is singuldrelan
edge is rounded offi’ is not singular (figure 5.25) and the initial absorption Wil modest.

U —p

A Y
el vortex

Figure 5.25 Rounded upstream edge.

The net sign oV over a periodl = 27z /wg of oscillation depends of course also on the amount of
energy produced by the vortex in the second half of the aimopstiod when the acoustic velocity
u’ is directed outwards from the resonator [25, 108]. Of coaurdeenug is so large that the travel
time (w/0.4up) of the vortex across the slot is shorter than half a period(4u, < %T), then only
absorption occurs. Self-sustained oscillations are igiptssin this case. This effect can easily be
experienced by whistling with our lips. If we increase theviihg velocity the sound disappears.

The main amplitude limitation mechanism at high amplitydéal, > 0.2, is the shedding of vorticity
by the acoustic flow. At the upstream edge this implies areeme of the shed vorticity with U’
and a dependence of the initial damping @A. Howe [85] observes that at high amplitudes the
vortex sound absorption scales off whereas the sound production scalesutwg. Hence, when
those effects balance each other, the amplitwidecales orug. This behaviour is indeed observed
[25, 108]. A typical amplitude observed in Helmholtz resiongisu’/uy = O(1071). This amplitude

is also typical of a recorder flute or a whistle [76, 237].

In [108] it is observed that at very high amplitudes/(lp, = O(1)) in a resonator formed by side
branches along a pipe, non-linear wave propagation raguitito the generation of non-resonant
cavity modes was a major amplitude limiting mechanism. Aaopossible mechanism at high am-
plitudes is the transition of acoustical flow from laminatoiturbulent (section 4.5.3).

The discussion given here provides some qualitative itidics for various basic phenomena of cav-
ity oscillation. Models as the one of Nelson [157, 158] pdavinsight but are not able to predict
accurately the amplitude of the oscillations. In many eegiing applications insight is sufficient for
taking remedial measures. However, when a prediction ofthplitude is required a more detailed
flow model is needed. Such models are not yet available.
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Exercises

a) Calculate the impedance seen by a piston placed at the& ead of a tube closed at = L by an

b)

c

~—

d)

impedance (L). Neglect friction in the tube. F&£ (L) = oo (closed wall) calculate the power generated
by the piston. Calculate the amplitude of the acoustic fietdZf(L) # co.

When the impedancg(L) at a pipe end is smallZ(L)| <« poCo, One can consider the pipe being
terminated at virtual positiorn = L + J by a purely resistive impedan@yL)’ = ReZ(L). J is called
the end correction of the pipe. Derive a relationship betwieand Z (L).

el
_____ ; e
B S e
Xx=0 X=1L

Figure 5.26 Two pistons along a pipe.

Consider two identical pistons of surfaBg placed at a distance from each other along an infinitely
extended pipe (figure 5.26) of cross sectional surfadessume that the two pistons move harmonically
with the same velocityip e'“t. Show that under specific conditions the acoustic field vesisorx > L
andx < 0. How large is the amplitude of the acoustic field under tlig®eimstances for & x < L ?

4
'S
,,,,, v_ ___
N
L
| U
v
Figure 5.27 T-junction. Si

Consider a piston placed at the end of a closed side bradnmioss sectional surfacg along a main
pipe with a cross sectional surfage (figure 5.27). The side branch has a lengthThe edges of the
junction at the main pipe are rounded off. Calculate the @&oge p of the acoustic field at the piston
following linear theory forwS2/c < 1 as a function of5;/S andL. Estimate the largest amplitudes
that may be reached before linear theory fails.

What is the impedancg of the piston for the configurations of figure 5.28a, b and cuhse that
radiation losses at the open ends are negligible. Neglietibfn in the pipe. Are these configurations at
certain critical frequencies equivalent to closed resms&t

Consider a clarinet as a cylindrical pipe segment of 2 camditer and 1 m long driven by a piston with
a velocityup = Upei“". Assume thatl, = 1 m/s which is a typical order of magnitude. Assume that
the pipe is driven at the first (lowest) resonance frequedaiculate the pressure at the piston assuming
an ideal open end behaviour without radiation losses or feEpasation. Calculate the amplitude of the
fluid particle displacement at the pipe end. Calculate tineesquantities if a quasi-stationary model is
used at the pipe end to describe flow separation of the owggaioustic flow while friction is neglected.

Is a quasi-stationary model reasonable?



5.6 Flow induced oscillations of a Helmholtz resonator 123
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Figure 5.28 Coupled T-junctions.

g) A pipe segment with a different cross sectional eg#han the cross sectid® of the rest of the pipe
can be used as a filter to prevent the propagation of wavesaedeby a piston. Two solutions can be
considered» > S andS < S (figure 5.29a and b). Assuming an ideal openendatlL;+ L2+ L3,
provide a set of equations from which we can calculate thdiandp of the acoustic velocit§i engat the
pipe end for a given velocit§i, of the piston.

h) Introduction
A possible 3-D model for a kettle drum consists of a cavityrigefspace, with acoustic perturbations

Up
= S S Sli p'~0
T# L2 <L—3>
u
Y g isz s o =0
L, ) L, ] Ls

Figure 5.29 Resonators in a pipe.
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p = pe'“tin- and outside the cavity:
V2p+Kk2p=0, iwpoli+VPp=0

for k = w/co. The cavity is hard-walled on all sideé {n = 0) except one, which is closed by an
elastic membrane (tensidn mass density ). The membrane displacement 7 €'t is driven by (and
drives...) the pressure difference across the membrane:

TVZ’? + wzaﬁ = Pupper— Plower

The normal velocity( - n at both sides of the membrane is equad{got = iwi €%, as the air follows

the membrane.

A basic musical question is: what is the spectrum of thisesyste. for which (discrete) sefwn} does
there exist a solution without forcing? Note that since tlaes radiate away into free space any solution
will decrease and die out (called “radiation damping”), éndyeneral) the possible,’s will be complex

with Im(wp) > 0.

Problem

A 1-D variant of the kettle drum problem is a semi-infinite@i{® < x < oo) of typical radiusa, closed

atx = 0, and a piston-like elementat= L (modelling the membrane) driven by the pressure difference
acrossx = L, and kept in position by a spring.

Pxx +kZ2p=0 for x € (0, L) U (L, 00)

—8Ta?j+wsh=pL+)—p(L—) at x=L

px =0 at x=0
Bx = w2poi at x=1L
outgoing waves forx — oo.

Determine the equation fas, solve this for some simple cases, and try to indicate themgésolution
graphically in the complex-plane for dimensionless groups of parameters. Are thdrgisos with
Im(w) = 0? How are these to be interpreted physically?

Consider the Helmholtz resonator as an acoustic magsgsgystem. What are the acoustic masand
the spring constar of this mass-spring system.

Assuming thatp;, = 0, how would the Helmholtz resonator react to a periodic r@tnjectionQ =
O €t into the bottle €.g.a piston moving in the bottom wall).

<

Figure 5.30 Helmholtz resonator driven by a piston.

Consider a Helmholtz resonator in a semi-infinite pipeehiby a piston ak = 0 (figure 5.30). Cal-
culate the transmitted acoustic field following linear thedVhat is the condition for which there is no
transmission.

Consider the volum& between two orifices of equal aperture surfégex S, in a pipe of surface
(figure 5.31). Calculate the transmission coefficient afiéegon coefficient following linear theory for
an acoustic wave@™ e“'— kX incident from the left.
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Figure 5.31 Two orifices

\% air
4
- water
i
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Figure 5.32 Exercise m

Consider a volum#& filled with air connected by a short pipe of lengtho a pipe filled with water
(figure 5.32). Calculate the reflection and transmissiorfficoent following linear theory for a wave
pt eet—kXincident from the left.

AssumingpowlQ > %poaz, estimate the maximum acoustic velodityvhich can be reached for given

volume injectionQ et in a Helmholtz resonator if friction and heat transfer argleeted. Compare
this with the maximum pressure which can be reached%ivh pipe resonator (with one open end).

Calculate the value obin/ Pex at resonance for a Helmholtz resonator in the presence of ftma of
velocity ug through the neck.

Using the integral formulation (3.12) df, L] using the Green'’s functiog, corresponding to the ge-
ometry of figure 5.18a (witlidga/dy)y—0 = 0 and(ga)y—L corresponding to the impedance of the pipe
seen from the positiog = 0) we find:

p' = —poch /too [(%)u’(y, T)]y:O dr.

Derive this equation starting from (3.12). This equatioadsiivalent to (5.73).

Calculate the expected acoustiptimal amplitude in a vertical Rijke tube of 1 m length and 5 cm
diameter in which a gauze with a strip of widih= 1 mm has been placed at= —0.25 m. Do you
expect that at this amplitude vortex shedding at the pipevalide a significant acoustic energy loss
mechanism?

Consider a Helmholtz resonator with a voluiMeand a slot aperture x B placed in a wall with a
grazing flow (figure 5.23). Given that the maximum power igiby

W = 0.053 pou3iiw B
estimate the amplitude of the acoustic pressuie the resonator for air if:
V=3m, w=03m B=05m

(A car with open roofl). Assume that the effective neck lénigtt ~ w.

Give an order of magnitude of the acoustical pressuradtiticins in a clarinet.



6  Spherical waves

6.1 Introduction

In the previous chapter we have considered the low frequappyoximation of the acoustics of
pipes and resonators. Radiation of sound from such systeamsassumed to be a small effect for
the internal acoustic field, and therefore could be negleict®ur analysis. However, if sound would
not escape we would not hear it. Hence, for the calculatioensfronmental noise the radiation is
crucial. Furthermore, as sound often is transferred throuails, the vibration of elastic structures is
an essential part of the radiation path. To keep things nesidg we will assume that the vibrating
objects are small compared to the wave length (compact §pdrel that we radiate sound into an
unbounded homogeneous quiescent fluid (free space).

Starting from an exact solution of the acoustic field induogthe pulsation and translation of a sphere
(section 6.2) we will derive an expression for the free field&h'’s functionG, (6.36,6.37). Taylor's
series expansion dby will be used to introduce the concepts of monopole, dipaledgupole, etc,
and multipole expansion (section 6.3). The method of imagksppear to be a very powerful tool
to get insight into the effect of boundaries on radiatiorcijea 6.4). After a summary of the classical
application of Lighthill'’s analogy to free jets (sectiorbpwe will consider the radiation of a compact
body by using Curle’s formalism (section 6.6). This will teed to get insight into the sound generated
by a ventilator. Finally the radiation from an open pipe teration will be discussed (section 6.7).

Note. Two-dimensional acoustic waves have a complex structumasbe seen from the Green'’s
functions given in Appendix E (see the discussion by Dowéngl. [52]).

6.2 Pulsating and translating sphere

The wave equation in 3-D allows quite complex solutions. Ewesy, for the particular case of a spher-
ically symmetric acoustic field the wave equation reduces to

10%p 10/ ,0p
= 2 _ _2_(r2_p) —0 (6.1)
cz otz r2or\ or

wherer is the distance between the observation point and the ofidfie key for solving (6.1) is that
we can formulate a 1-D wave equation fop/):

1a%p) %) _

6.2
¢z ot? or? 62)

This result can easily be understood because acousticyeswatps withp'? (equation 2.80a). Hence,
as the surface of a spherical wave increases withe amplitudep’(r) should decrease as* to keep
energy constant as the wave propagates.
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Compared to 1-D waves the relationship between presguend acoustic velocity’ now shows

a drastically new behaviour which depends on the ratio ahd the acoustic wave length. In three
dimensions we have a region with « 1 called “near field” in which we find a behaviour @fwhich

is close to that of an incompressible flow, while far >> 1 we find a “far field” region in which the
waves behave locally as plane waves. The radius of curvafute wave front is large compared to
the wave length.

These features may be derived from the radial componentdfittearized) momentum conservation
law:

ov’ op'
— = 6.3a
Po ot or ( )
and the linearized mass conservation law:
a(p'r?) a('r?)
= — . 6.3b
ot Po or ( )

The mass in a volume shelk42dr changes as a result of the difference betweer?d’ and 4z (r +
dr)?v’(r + dr) in flux. We eliminatep’ by using the constitutive equatiqui = c3p’, and eliminate)’
by subtracting the time derivative of times the momentum equation (6.3a) from the spatial dévvat
of the mass equation (6.3b). This yields the wave equatidt).(6

The general, formal solution of (6.2) is:
Y (L r
=7t CO)+9(t+60), (6.4)

combining an outgoing wav& and an incoming wavg. Far away there is no incoming wave, so we
definethe “free field” as the region for whicé = 0. This result of a vanishing incoming wave in free
space may also be formulated as a boundary conditior-atoo (2.23a,2.23b,2.25).

As already stated, the acoustic velocityhas a rather complex behaviour, in contrast with the 1-D
situation. This behaviour is found by substitution of (G the momentum conservation law (6.3a):

ov’ op 1 r 1 r
=——==F(t— — —F(t——). 6.5
POt or  re ( co)+c0r ( co) (6.5)
We now observe that the first term of (6.5) corresponds, fog much smaller than the typical inherent
time scale, to an incompressible flow behaviain( = constant) while the second term corresponds
to wave-like phenomena. Only the second term does corgritiuthe acoustic energy flujt) =
(p'v’). This may be verified by substitution of a harmonic solutiotoi(6.5):

. A .
f_ peet — 7 giot—ikr 6.6
P P Ay ©9
we find
. p p p i
iwpol  poCo poCo( kr ) e

The first term i is %n’ out of phase withp and therefore does not contribute(to = (p’v’). Hence:
PP~ 6.8)

(p') = 3(0P" +07p) =
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A very systematic discussion of this fundamental solutsgiven by Lighthill [122].

Using (6.5) we can now determine the acoustic field genelatedpulsating sphere of radiast). If
(0a/ot)/co « 1, we can use linear acoustics, while the movement of theregmindary yields the
equation derived from (6.5):

0%a l( a

== t——)—i—%}"(t—i). (6.9)

Po % %

For a compact sphere the first term is dominatﬁa@za/atz)/cg <« 1). We find exactly the result
which we could anticipate from (2.61), the second derieatiy time of the volume of the sphere is
the source of sound.

A steady expansion of the sphef@afot = constant) does not (in this approximation) generate sound.
The second term of (6.9) is dominating for large sphere K@dii’a/ot?)/c3 > 1). In such a case the
action of the wall movement is that of a piston which generptane waves. For harmonic oscillations
of the spherga = ap+ae€'“!), the amplitudeA of the radiated field is found from (6.6) by substitution
of b =iwain (6.7) atr = ag.

A , w?poaoa
D = ek — _ .
P(@0) 4 ag 1+ikay
Hence
kZaS e—ik(r—ao)
N 21, A
= — k 6.10
P(r) = —poco a1+ikiao kr (6.10)
We can also determine the acoustic impedasce
P(a) _ P(ao)
Z(w)= —~ = —— 6.11
@) = S = Toa (6.11)
Using (6.7) we find:
i i 2
Z ikap  ikap + (kap) (6.12)

poCo  1+ikay 1+ (ka2

We see that the real part of the radiation impedance of a conspaere Kay <« 1) is very small:

Re(i) ~ (kap)? (6.13)
PoCo

Hence (see (3.17)) a compact vibrating object in free spéditbena very ineffective source of sound.
This effect becomes even more dramatic when we consideathation of a compact vibrating ob-
ject of constant volume. The most simple example of this tela is a translating sphere of constant
radiusag. This is what we call a dipole radiation source, in contrasthie monopole source corre-
sponding to a compact pulsating sphere.

The solution of the problem is easily obtained since we caregee from the spherically symmetric
solution (6.4) non-spherically symmetric solutions byitgka spatial derivative (see equation 2.24b).
If ¢ is a (spherically symmetric) solution of the wave equation:

1 6% 9

2% v -0 6.14
c2 ot? v (6.14)
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then any derivative ap, such agop/0x;) or (6¢/ot), is also a solution:
102 o9 »( 00
-—|—)—-V{—)=0 6.15
c2 ot2 (axi ) (axi ) ’ (6.15)
in particular, any derivative of Eq. (6.6) is a solution. $ave try to find the field of a translating

sphere with velocity (in x-direction), where at its surface the radial flow velocitgigen by:

Vo- Tl
ag

= 0o COSY. (6.16)
Ir|=a0

v'(ap, V) =

we can use the derivative in tkedirection. For a harmonic oscillatian = 9 €t with (do/wag) < 1

the pressure fielgy is given by:
. a e*ikr a e*ikr
p_Aa—X( , )_Acosﬁa—r(

) (6.17)

r

becaus% = cos?. This pressure is related to the acoustic veloeitlyy the momentum conservation
law (6.3a):

2 e—ikr
iwpod = —Acosy —(
L0 or2

). (6.18)

r

Using the boundary condition (6.16) for= ag we can now calculate the amplitudefor givenoo:

2 + 2ikay — (kap)? o ikao

iwpoﬁo =-A (619)
%
so that the pressure field (6.17) can be written as:
) —iwpogdoad cosy o se k-2
p = — “Polod 5= ) (6.20)
2+ 2ikag — (kag)? or r
In the limit of (kay) <« 1 we see that:
. . apcosy i y
b ~ —1(kao)?poCoto (1-)e™. (6.21)

Again we observe a near field behaviour with a pressure dsiogeasr —2 and for whichp is %n
out of phase withiy. This pressure field simply corresponds to the inertia ofthempressible flow
induced by the movement of the fluid from the front towardstihek of the moving sphere. From
(6.21) forr = ap with (kag) <« 1 we see that:

P(a0) = 2 poCodocost (2ikag +i(kap)® + (kag)* +---). (6.22)

Hence, as the drag on the sphere, which is in phasedyitecales as3 Re[p(ap)], we see that the
acoustic power generated by the sphere scalgegasas(kag)*. This is a factorkag)? weaker than
the already weak radiation power of a compact pulsatingrepl&o we now understand the need of
a body in string instruments or of a sound board in a piano.&\the string is a compact oscillating
cylinder (row of oscillating spheres), which does not prmaany significant sound directly, it induces
vibrations of a plate which has dimensions comparable vighacoustic wave length and hence is
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radiating with an acoustic impedanggc, which is a factorkag)* more efficient than direct radiation
by the string.

Note. In order to provide a stable sound one should avoid in strisgriments elastic resonances of
the body which are close to that of the string. If this is n@ thse the two oscillators start a complex
interaction, which is called for a violin a “wolf tone”, bagse it has a chaotic behaviour [130].

Having discussed aspects of bubble acoustics in a pipe troset4.5, we will now consider some
specific free field effects. Consider the oscillation of a paot air bubble in water as a response to
an incident plane wave, = Pi, €“~'** in free space (deep under water). We can locally assume
the pressurey, in the bubble to be uniform and we assume a spherical osoillaff the bubble of
equilibrium radiusag:

a=ay+ae, (6.23)
The pressure in the bubble is given by:
Po = Pin + Pt (20) (6.24)

wherep/ (ap) is the acoustic pressure due to the spherical waves getdnathe bubble oscillation.
We have neglected surface tension. Furthermore, we assuidea gas behaviour in the bubble:

Po a
2= 3= 6.25
0o ’ % (6.25)

wherey = 1 forisothermal compression apd= Cp/Cy forisentropic compression (a) is related
to & by the impedance condition:

br(a) = iwaZ (6.26)

andZ(w) is given by equation (6.12). Hence combining (6.24) witl2%.and (6.26) we find:

" 4= pn+inaz (6.27)
or:

b (a0) = iwaZ = —— P (6.28)

f A '

Z

and @80

AN S

b = pr(ag)— e, (6.29)

r

Using (6.12) we can write (6.28) as:

A

A Pin
pr (80) = — (6.30)
1— (%)Z(H ikao)

wherewyq is the Minnaert frequency defined by:

3
w2 =0 (6.31)

£od;
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It is interesting to note that at resonaneg £ wg) under typical conditions a bubble is compact
because:

2 _ (©020)2 _ 3yPo
(koo)? = o ) = o (6.32)

is small as long apo < poCa.

For waterpoc? = 2 x 10* bar, hence up t@, = 100 bar one can still assume bubble oscillations
at resonance to be compact. Equation (6.30) has many ititeyésrther applications [52, 114]. For
example, sonar detection of fishes by using a sweeping imcgtind frequency yields information
about the size of fishes because the resonance frequgnaiythe swim bladder yields information
on the sizegg of the fish. Furthermore, at resonance sound is scattergal efticiently:

P i —ao)
B = kor . (6.33)
Hence the fish scatters sound with an effective cross seatitire order of the acoustic wave length
at wp (an effective increase of the cross section by a fatitesy) ™). As we knowag from wp the
intensity of the scattered field yields information on theoammt of fish. Another fascinating effect of
bubble resonance is the very specific sound of rain impactaianjl81].

6.3 Multipole expansion and far field approximation

The free field Green’s functio®, defined by equation (3.1)
%Gy
ot?

and the Sommerfeld radiation condition (2.25), may be fomnéppendix E, but can be derived as
follows. We start with considering the Fourier transfoBn of Gg, with

Go =/ éo gt dw

o]

> = 0(X — y)o(t — 1) (3.1)

and satisfying

82Gy .
k?Gy = —
Z o2 + 0

y) e, (6.34)

wherek = w/co. From symmetry argument&, can only be a function of distance= |x — Y|, so
the solution of (6.34) has the form (see equation (6.6))

A )
= ¢k (6.35)
471' r

where A is to be determined. Integration of (6.34) over a small spliraroundy, given by, say,
r = ¢, yields by application of Gauss’ theorem

e

oG 0Go 1
// E —Ol‘lI do +/// K2Godx = dre?=—— + O(e?) = —A+ O(e) = _%e lot
0

Go =
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wheren; denotes the ou'gward normal Bf, and we used the fact thatis small. If we lete — 0 we
find thatA = (2zc3)~te'**. So we have:

e—iwr—ikr e—iw(r+r/Co)

éo = =
8r 2c3r 8 2¢3r

(6.36)

(note the factor—1/2x difference with the Green’s function of a regular Helmhaguation) and,
using equation (C.33),
ot—17—
Go= 2= 1/ (6.37)

47rI’CO
In order to derive the general multipole expansion we wiitfaonsider the field at a single frequency.
By using the free-field Green’s function (Appendix E) we fim tacoustic field for a given time-
harmonic source distributio§(x) €t in a finite volumeV to be given by

anGoxiydy = [[[ 4 (6.38)
i I o

Suppose the origin is chosen insideWe are interested in the far fielce. | x| is large, and a compact
source,i.e. KL is small whereL is the typical diameter oV. This double limit can be taken in
several ways. As we are interested in the radiation pragsedf the source, which corresponds with
kIx] > O(1), we will keepkx fixed. In that case the limit of smallis the same as smajl, and we
can expand in a Taylor series aroupd= 0

1/2 . 2 < y)2
r= (%P =200 y) + 1) = Xl (1 A P - S )

= |x|(l— Y cosh + LYE sir?g 4 . )

] 2|xp

(whered is the angle betweex andy) and

gk e—ikix| 1 3
= 1+ (1+ik|x])— XiVi +...
r x| (+(+ | |)I><|21-Z=;JyJJr )
B i yIlyzmyg |: a|+m+n eikr:| (6 39)
= | . .
= I'min! [ oy,0y53'0ys 1 Vi=Ya=ya

Asr is a symmetric function ix andy, this is equivalent to

e—ikr S (_l)l+m+n 6I+m+n e—ik|x\

I'\/m
= - . 6.40
r I'm!n! ylyzysaxlﬁx ox3 Ix| (6.40)
I,m,n=0

The acoustic field is then given by

nr 1 Oo (- 1)'“"4rn // ol+men  grikix|
. 6.41
p = P P 0 Timinl Yiys'y3d(y)d y@x'lﬁxg"axg x| ( )

As each term in the expansion is by itself a solution of theiced wave equation, this series yields
a representation in which the source is replaced by a suneofagitary sources (monopole, dipoles,
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quadrupoles, in other words, multipoles) placed at theimiiyg = 0). Expression (6.41) is the mul-
tipole expansion of a field from a finite source in Fourier dom&rom this result we can obtain the
corresponding expansion in time domain as follows.

With Green'’s function (6.37) we have the acoustic field frosoarceq(x, t)

p,:/:/v/ 4. 7) é(t —4;r;0r/00) dyds // Q(y;;-:C:/CO) y (6.42)

If the dominating frequencies in the spectrunggk, t) are low, such thabL /cq is small, we obtain
by Fourier synthesis of (6.41) the multipole expansionnmetidomain (see Goldstein [70])

(_1)I+m+n al+m+n

2 Z | AyMAyn
dncy —~, I'min!  9x;0%35'0%3

, 1
p = m// y1Y5'Y3 a(y, t — [x|/co) dy
Y,

00 8I+m+n (_1)I+m+n
i 6.43
.mn=0 8X|18X£“axg|: 47T|X|C§ imn(t — | |/CO):| ( )

whereumn(t) is defined by:

() = / / VS 0 dy. (6.44)

m!n!

The (Imn)-th term of the expansion (6.43) is called a multipole of ordé™". Since each term
is a function of|x| only, the partial derivatives t® can be rewritten into expressions containing
derivatives to|x|. In general, these expressions are rather complicated,eswillvnot try to give
the general formulas here. It is, however, instructive tosoder the lowest orders in more detail as
follows.

The first term corresponds to the monopole:

#o(t — |X|/Co)

6.45
A7 c3|X| (6-49)

po =
where we wrote for brevity:g = ugoo. We have concentrated the source at the origin and

Ho(t) = / / a(y. t) dy. (6.46)
V

The next term is the dipole term:

3

Xi 0 (ﬂl,i(t - IXI/Co))

N X (6.47)
— || 8|x| Az c3|X|

where we wrote for brevityu11 = p100, 41,2 = pooanduiz = peor. If q is a point source this
dipole term is easily visualized as shown in figure 6.1.

The dipole of strengtix 4 ;, which we should place at the origiy & 0):

pi () = / / Yy, t) dy, (6.48)
V
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Figure 6.1 First step in the multipole expansion of a poinirse.

is obtained by bringing the (point) sourgeowards the origin while increasing its strength and that
of the opposite (point) sourceq at the origin in such a way that we kepygq constant.

A dipole field is not isotropic because in a direction nornwalhte vectory the two sources forming
the dipole just compensate each other, while in the othectiims due to a difference in emission
time there is a net acoustic field. This effect of the diffeeem retarded time (figure 6.2) between the

Figure 6.2 Retarded or emission time differencéyisx/|x|)/co = (|y| cos#)/cg.

sources in the dipole simplifies in the far field as follows.itilg (6.47) as:

= IXI///47TCO{_WEq(y’ — IX]/Co) — X lzq(y, |x|/co)}dy (6.49)

we see that for large distancdgX| >> 1) the acoustic field due to the dipole contribution is givgn b

p1= 7rC0|X|28t // yia(y,t — [X]/co) dy = 24 %|X|2[dt ﬂll(e)]te:t_‘x‘/%

(6.50)

where x4 (t) is the dipole strength. If the source has a particular foonekample it represents a
force densityf; like in (2.65):

3

ofi
qiy. ) =—-> —, (6.51)

= Y
we observe that the surface integral of the monopole ternslhas because we assumed a finite
source region, outside which = 0. We see that the force fielf] is equivalent to an acoustic dipole
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of strength:

wai = [[[ tiay (6.52)
V

which corresponds simply to the total foreen V. In a similar way it is clear that the Lighthill stress
tensorT;; induces a quadrupole field because from (2.65) we have:

3 2
0°Tj;
q= > —.
= 0Yi0Y;]
=
By partial integration it follows that the strength of theagloupole is:

U2jj = /// T;j dx, (6.53)
\%

where we wrote for brevityu 11 = w200, #212 = K110 #213 = K101, €tC. . In the far field ap-
proximation, where the retarded (or emission) time effect lse estimated by replacirig/o|x|) by
—cgl(a/at), we find for a quadrupole field

3 Xin 1 d2
'~ | B ] , 6.54
P ijZ=:1 471'C(2)|X|3 Cg[dtez'uz’”(e) te=t—|x|/Co ( )

6.4 Method of images and influence of walls on radiation

Using Gy we can build the Green'’s function in presence of walls by gisie method of images as
discussed in section 4.6. The method of images is simple fitaree rigid wall and for a free surface.
In the first case the boundary conditioit n = 0 is obtained by placing an image of equal strength
g at the image point of the source position (figure 6.3). Forea Burface, defined by the condition
p’ = O (air/water interface seen from the water side), we placepmosite source-q at the image
point.

For a rigid wall atx; = 0 we simply have the Green'’s function:

(t—7—r/C) n ot —7 —1"/Co)

0
G, tly, 7)) =

(6.55)

where

r=v(x1— y1)2+ (X2 — ¥2)2 + (X3 — ¥3)2,
r* = (Xt + y1)? + (X2 — ¥2)2 + (X3 — y3)2.

We easily see from figure 6.3 that a source placed close tochwigll will radiate as a source of
double strength|{:1|k <« 1) while a source close to a free surface will radiate as aelipo

When more than a wall is present the method of images can biebyssuccessive reflections against
the walls. This is illustrated in figure 6.4. When a harmorarse is placed half way between two
rigid walls separated by a distanbgaty = %h) the radiated field is equivalent to that of an infinite
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a) hard wall
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b) free surface

Figure 6.3 Images of sources in plane surfaces

a) corner

b) duct

Figure 6.4 Application of the method of images.

array of sources placed at a distahdeom each other (figure 6.4b). We immediately see from tras th
there are directiong in which the sources in the array interfere positively. Titeiiference condition
is simply:

hsing =ni; n=0,12, .. (6.56)

where/ is the acoustic wave length. For this symmetrically placad®e only symmetric modes can
occur. When the source is placed at one of the walls-(0 or h) we find the interference condition



6.5 Lighthill's theory of jet noise 137

given by
hsing =3ni; n=0,1,2, .. (6.57)

since the source and its images form an array of sourcestpd@edistancel2from each other.

The conditionn = 0 corresponds to plane waves in a tube. The conditions 0 correspond to
higher order mode propagation in the “duct” formed by the tvedis. This can also be seen for a duct
of square cross section for which the image source arraynbesdawo-dimensional. We clearly see
from this construction that higher order modes will not @gate at low frequencies because when
(h < %/1), there are no other solutions thé&n= 0 to equation (6.57). This justifies the plane wave
approximation used in chapter 4 (see further chapter 7).a&@kso that at low frequencies (for plane
waves) the radial position of a source does not affect thatiad efficiency. For a higher mode, on the
other hand, the sound field is not uniform in the duct cross@eand the source radiation impedance
is position dependent. The first non-planar mode has a peessdle on the duct axis and cannot be
excited by a volume source placed on the &fig’'Q dt = 0). This explains the difference between
condition (6.56) and (6.57) for the excitation of a higherd@oA more comprehensive treatment of
pipe modes is given in chapter 7.

Figure 6.5 Image of a line source in a compact cylinder.

The method of images can also be used for a line source clasedmpact cylinder of radiuR or
a point source near a compact sphere of radi{37]. For a line source near a cylinder we should
place an identical line source at the inverse poindefined by:

r* =r (R/|r|)? (6.58)

and an opposite line sourceg a sink) atr = 0 on the cylinder axis (figure 6.5). For a sphere we
should place a sourag atr* defined by:

a* =qa/r| (6.59)
and
r*=r(a/|r|)? (6.60)

while in order to keep the mass balance we place a line of imifospaced sinks of total strengtti
stretching fronr * to the center of the sphere £ 0) [137].

6.5 Lighthill's theory of jet noise

Consider a free turbulent jet formed at the exit of a circpipe of diameteD. The mean flow velocity
in the pipe isug. We assume thaty <« ¢p and that the entropy is uniform (air jet in air with uniform
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temperature). The key idea of Lighthill was that the sour@tipced by the turbulence was originated
from a volume of ordeiD?® and that the influence of the pipe walls on the sound radiatirid be
neglected.

In such a case combining (2.65) with (3.13) and using the $paee Green’s functioGg given by
(6.37) we find:

p(x,t) = ////a aI;/J Go(x, ty, 7) dydz. (6.61)

Partial integration (twice) yields:

px1) = / /// Sy, T ) del (6.62)

Becausés, is only a function of = |x — y| we have:

0Gq _ 0Gy or _ (Xi — yi)ﬁGo _ 0Gg
oY or oy r

=— . 6.63
or OXi ( )
Approaching the source towards the observation point rasdme effect as approaching the obser-
vation point towards the source. Hence we can write (6.62) as

t
82
"X, t) = G t Tij dydz. 6.64
p (Xa ) aXian //// O(Xa |y’ T) 1] (ya T) y T ( )
—00 V
The integration variablg; does not interfere with;. Using now (6.37) we can carry out the time
integration:
Tij (y, t —r/co) r/Co)
X, 1) = . 6.65
A ax.axJ /// 47[00 dy ( )

In the far field the only length scale is the wave length, hemeehave replaced the problem of the
estimate of a space derivati@/oy;) at the source by the problem of the estimate of the charatiteri
frequency of the produced sound. In the far field approxiomatie have:

/ Xi Xj /// T”(y, |X|/CO)
t) ~ 6.66
px) = 47rc0|x|20(2,at2 (6.66)

For high Reynolds number we can neglect the effect of visg@$it were not small turbulence would
not occur!). If we assume a homentropic compact flow we haa8j2

Tij =~ povivj. (6.67)

The first estimates of Lighthill for a circulafree jet are:

1See Bjarng [15] for planar jets.
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— the characteristic time scale for large eddy’s in the flonDg ).
— the Reynolds stress scalesag.
— the relevant volum# is of orderD?3.

Hence we should replagé/ot) by ug/D in (6.66) and we find:

1 Ug ZPOUSDS
(X, t) ~ — 6.68
p(x. 1) 4mg(D) o (6.68)

or in terms of intensity’2 and Mach numbeMg = Uo/Co:

77~ (222 ) ye 6.69
(47r|X|) o (6.69)

This is the celebrated 8-th power law of Lighthill which "epresents a triumph of theory over ex-
periment; before the publication &ff, most reports of measured jet noise data gaue aariation,
which was then quickly recognized, pas$t, as associated with noise souregthin the engine itself,
rather than with the jet exhaust turbulent mixing downstred the engine. In fact, variation of in-
tensity withU® is now generally accepted agfiningjet mixing noise .." (Crighton, I.c.); see figure
6.6. Equation (6.69) tells us that turbulence in free spa@eviery ineffective source of sound. When
a more detailed description of the flow is used to estinfgtene can also find the directivity pattern
of the radiation field [70, 16, 188]. This directivity patteresults from Doppler effects and refraction
of the sound waves by the shear layer surrounding the jet.
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Figure 6.6 Sound power generated by a jet.

As the Mach number approaches unity the character of thedsproduction changes drastically
because the flow is not compact any mdpe/{ ~ Mg) and because at higher Mach numbers shock
waves appear if the jet is not properly expanded. These shgeRkerate noise by interaction with
turbulence (random vorticity) and vortices (coherentctices) [66].

Moreover, it is obvious that the generated power cannot gnalgfinitely with a powerM®. There
is a natural maximum corresponding to the kinetic energy iftuthe jet%pug- %Dz. This natural
upper bound prevails abowd > 1 and the sound intensity scales abde> 1 asM3. The typical
fraction of flow power transferred to the acoustic field athhidach number by a properly expanded
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supersonic jet is 1@ (M > 1). Following Goldstein [70] the acoustic pow& generated by a
subsonic homentropic jet is given by

% =8 x 10°Mg. (6.70)

§p0u07l' D
Hence at MachM, = 0.1 we can estimate that only a fraction20of the hydrodynamic power is
transferred to the acoustic field. This is the key of the pbbf calculating the acoustic field from
a numerical calculation of the flow pattern at low Mach nursbém order to achieve this we have
to calculate the flow field within an accuracy which is far addive typical score (5%) of turbulence
modelling nowadays. However, the simple scaling law of thghalready tells us that in order to
reduce turbulence noise we should reduce the Mach numbeamyAuseful result as we will see from
exercise k) below.

Lighthill's analogy in the form of equation (6.66) is oftesad to obtain acoustical information from
numerical calculations of turbulent flow. Such calculasi@man be based on an incompressible model
which by itself does not include any acoustic component.

When the jet has a different entropy than the environment jéiwr different fluid) the sound pro-
duction at low Mach numbers is dominated by either Morfeyijsote source term(d/ay;)((c* —
cS)/cS)(@p’/ayi) or by a volume source term due to diffusion and heat transfargpy fluctuations).
When a hot gas with constant caloric properties is mixed wighcold environment the monopole
sound source is negligible compared to the dipole due toemtive effects ([141]). One finds then a
sound power which at low Mach numbers scaIeMét Upon increasing the Mach number the tur-
bulent Reynolds stress can become dominant and a trangititre cold jet behaviou(Mg) can be
observed in some cases.

In hot jets with combustion, vapour condensation or strptginperature dependent caloric gas prop-
erties the monopole source dominates ([42]), and a typittpscaling law is found fop'2.

The influence of the viscosity on the sound generation byeajéthas been studied by Morfey [142],
Obermeier [162] and lafrati [90].

6.6 Sound radiation by compact bodies in free space

6.6.1 Introduction

In principle, when a compact body is present in a flow we hawe assible methods to calculate
the sound radiation when using Lighthill's theory (sect@®). In the first case we usetailored
Green's function which is often easy to calculate in the fldfapproximation by using the reciprocity
principle (3.4). In the second case we can useftitbe fieldGreen’s functionGo which implies that
we should take surface contributions in equation (3.123) adcount. This second method is called
Curle’s method [70, 16]. The advantage of the method of Gartbat we still can use the symmetry
properties ofGg like:

0Gy Gy

5= o (6.71)

Furthermore, we will see that the surface terms have for emmpgid bodies quite simple physical
meaning. We will see that the pulsation of the volume of tha@ytie a volume source while the force
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on the body is an aero-acoustic dipole. In this way we candnday that if we know the aerodynamic
(lift and drag) force on a small propeller we can represeatstfstem by the reaction force acting on
the fluid as an aero-acoustic source, ignoring further thegarce of the body in the calculation of the
radiation.

6.6.2 Tailored Green’s function

The method of tailored Green’s function has of course the féature of a simple integral equation
(3.13). We will, however, in general not have a simple symmyneglation allowing to move the space
derivative outside the integral. The construction of thtad Green’s function in the far field ap-
proximation is in fact equivalent to considering the acmusgsponse of the body to a plane incident
wave. In applications like the effect of a bubble on turbakenoise we already did this for a bubble
in a duct (section 4.7).

The method of images discussed in section 6.4 is an efficienedure to construct a Green’s function
for simple geometries. This is obvious when we consider aeplégid wall. Using the reciprocity
principle we send a plane way®, and look at the resulting acoustic field in the source pygirithe
acoustic field iny is built out of the incident wave;, and the wave reflected at the surfgge In the
method of images we simply assume tpacomes from an image source, as shown in figure 6.7.

y source

~
~
~
~

a) b) “e image
Figure 6.7 a) Acoustic response to a plane wave. b) Soundeghtiy the source in the same observers direction.

When calculating the Green'’s function we should take in &ce as amplitude of the incident wave
pi, the amplitude calculated from (6.37). For compact bodiesonrrces close to a surface we can
neglect the variation in travel time @, over the source region and we find:

,_ O(=t+7—IxX|/c)

I 6.72
n Az |x|c2 ( )

where the signs dfandz have been changed because of reciprocity relation (3.4enkbnsidering
harmonic waves we have from (6.36) that:
e—ikr
A — 6.73
pln 871'2CSr ( )
where in the far field approximation >~ |x|. The Green’s function is found by adding the system
responsep; (or ) to the incident wavep,. Once a tailored Green’s function has been obtained we
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find by using (3.13):
t
poxt = [ [[[a.osety. o aye (3.13)
-0\

By partial integration and assuming that the sources argdhgne source@zTij /0x;0X; as defined
in (2.65) which are limited to a small region of space we find:

p(X,t) = / /// aazaGJ T;j dyder. (6.74)

Comparison of the space derivative of the tailored Greemistion with that of the free space Green’s
function Gq yields an amplification factoA of the radiated field:

| 0%G

_ 1 azGo‘
IRENEY

— 6.75
¢z ot? (6.75)

/]
where we made use of the approximatihiGo/ox; 0x; =~ (8°Go/at?)/c3 in the far field, and assumed
that the flow is not influenced by the foreign body; (= constant).

Using this procedure one can show [16, 52, 70] that turbelex@ar the edge of a semi-infinite plane
produces a sound field for whigh?2 scales asv; which implies forMy < 1 a dramatic increase
(by a factorMO‘?’) compared to free field conditions. This contribution tdliing edge noise is very
important in aircraft noise and wind turbine noise.

6.6.3 Curle’s method

When we place a cylinder of diametgiin a turbulent jet with a main flow velocityig, the cylinder
will not only enhance the radiation by the already preseruience. A cylinder will affect the flow.
Behind the cylinder at high Reynolds numbers we have an biiesteake. Above a Reynolds number
of Re = upd/v = 40 the wake structure is dominated by periodic vortex shmegddi40 < Re <
3 x 10° and forRe > 3.5 x 10° [16, 18, 75]. The frequencyy of the vortex shedding is roughly
given by:

M =0.2 (6.76)

Uo

Hence the sound produced by vortex shedding has in contiisttwvbulence a well-defined fre-
quency. The periodic shedding of vorticity causes an @drily lift force on the cylinder, with an
amplitudeL per unit length given by

L = —pol'up, (677)

wherel is the circulation of the flow around the cylinder. By defimitithe lift force is perpendicular
to the mean flow directiokug). In dimensionless form the lift is expressed as a lift coeffitC, :

CL= -t (6.78)

2puod
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The lift coefficient of a cylinder is in a laminar flow of ordenity. However,C, is strongly affected
by small disturbances and the lift force is not always caheaéong the cylinder. This results inGy
for a rigid stationary cylinder ranging

from (Cp)ms ~ 0.1 for Re< 2 x 10°
to (CL)ms ~ 0.3 for Re> 5 x 10°,

while (Ci)peak> 1.0 for Re< 2 x 10°
and (Cp)peak= (CL)ms for Re> 2 x 1CP.

The drag force has a fluctuating component correspondin@#0ms >~ 0.03. Elastic suspension of

a cylinder enhance considerably the coherence of vorteddsig resulting into a typical value of

CL ~ 1. The calculation of the sound production by vortex shegldwhen using a tailored Green'’s
function is possible but is not the easiest procedure. Weneilv see that Curle’s method relates
directly the data on the lift and drag to the sound production

Consider a body which, for generality, is allowed to pulsate

and is enclosed by a control surfagéfigure 6.8). We want

to calculate the fielgh’ in the fluid and hence we define the

control volumeV at the fluid side ofS. The outer normal

n on Sis directed towards the body enclosed 8y(Note S
that we use here the convention opposite from Dowéng

al. [52]") Using equation (3.12) combined with Lighthill’s

analogy (2.65), ignoring external mass sources and fofi‘l:gurees Control volume/ and surfaceS
fields and takingy = —oo yields and outer normat.

= G t dydr — p'— — Gop— dod 6.79
p _/ /\// Yoy, o(X, tly, ) dydr —c3 6y. 0 y]nl o dr. (6.79)

Applying partial integration twice yields:

t
aZGO @T.J 0Gy
' = Tij —— dyd i — Tij—n;
o [l iy [ oG

,0Go
G—n— —n;|;dodz. (6.80
+&[GoLn, — ]}ar (6.80)
Using the definition (2.66) of;; and its symmetryT; = T;;):
Tij = Pj + poivj — c§p'd; (2.66)
we find:
t
8260 6pu +pUIUJ
"= Ti dyd G n; dod
/AL Ty G

-V S

0Go
/// I] +pU|UJ y n| dO'dT (681)
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Using the momentum conservation law (1.2) in the absencetefreal forces i = 0):

0

o Pj + pvivj) =0

(om0) + 5 (

and the symmetry oB (6.70), we obtain:

t
G
o= | ] d,_/// e doe
0% OX;
—00 V
0Go
/ // I] + pU|UJ n| dO'dT (682)

The spatial partial derivative®/dx;) do not refer toy and can be taken outside the integral. In the
far field they can be approximated by the time derivatinxj/|x|)cgl(a/at). Furthermore, in the
second integral in (6.82) we can make use of the general symimethe time coordinate of any
Green'’s function:

oG oG
ot ot

(6.83)

(The effect of listening later is the same as shooting a&ylie order to use (6.83) we therefore first
move the time derivativéd/o7) from po; towardsGg by partial integration. We finally obtain:

o Xi Xi
= |XI|2(J:S 8t2/ /// T'J GOdydT - _/ // p1)|Gon| dodz

_ma/// Pi +pv.v, Gon.do—dr (6.84)

Using thed-function in Gq of equation (6.37), we can carry out the time integrals antiawe Curle’s
theorem

P XX /// Tu B // pv.nI
P = arxiect o i, 47rCO ot t .

d 6.85
47[|X|C88t // i +pv|1)1 ]t:te o )

wherer = |x — y| and the retarded timig is
te=t—r/co~t—|X|/Co. (6.86)

The first term in (6.85) is simply the turbulence noise as itildaccur in absence of a foreign body
(except for the fact that the control voluriveexcludes the body).

The second term is the result of movement of the body. Forid bigdy at a fixed position we have
vin; = v-n = 0. This term is important when the body is pulsating. For agathbody we have then
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a simple volume source term. This term can be used to dedtwbibow out of a pipe. Note that is
the fluid density just outside the control surface so that eresicler the displacement of fluid around
the body, rather than a mass injection.

The last integral in (6.85) is the momentum flux through thdase and the pressure and viscous
forces. For a fixed rigid bodyovjv; = 0 because = 0 at a surface (“no slip” condition in viscous
flow). In the case of a compact, fixed, and rigid body, we cartewtthe emission time variation along
the body, and we have >~ |x|. The instantaneous forde of the fluidon the body(lift and drag) is
then

Fi (te) ~ //[P,J ]t:tenj do. (687)
S

Hence, for a fixed rigid compact body we have:

oty = X2 ///T--( t — |x|/co) d 5 OF(t—|xl/w). (6.88)
pA% 4 |x|3ch ot2 i @y 4r|x|2c3 ot ‘) '
Vv

6.7 Sound radiation from an open pipe termination

Horns and tubes are used as an impedance matching betweleme \amurce and free space. We use
such a device to speak! Without vocal tract the volume sodueeto the vocal fold oscillation would
be a very inefficient source of sound. We consider now thetiaai of sound from such a tube.

We know the behaviour of sound waves in a duct at low freqesn@hapter 4). We know how sound
propagates from a point source in free space. We are nowabialtthe radiation behaviour of a pipe
end by matching the two solutions in a suitable way. If thgdiency is low enough compared to the
pipe diameter, the flow near the pipe end is incompressibéer@gion large enough to allow the pipe
opening to be considered as a monopole sound source. Thetkti@ this monopole is determined
by the pipe end velocity’. For convenience, we assume that the pipe end is acougtileatribed for
the field inside the pipe by an impedangg. The pressurg’ in the pipe consists of a right-running
incident wave and a left-running reflected wave:

pP=p"+p. (6.89)
The acoustic velocity in the pipe is related to the acousgssure in the pipe by:
: +_p
V=pet =P P (6.90)
PoCo

Assuming a redistribution of the acoustic mass flo&through the pipe end with cross sectiinto
the surface of a compact sphere of radiud surface Ar? (conservation of mass), we can calculate
the radiated power for a harmonic field in- and outside the,day using (6.13):

S N/ S ..
4ﬂ20)(4ﬂ20 )(kzrzpoco)(47rr2). (6.91)

From this conservation of energy relation we find for the gt of the radiation impedance, of
an unflanged pipe:

IS = (pv)S= 16" Re(Z,)S = %(

1
Re(Zp) = —K*SpoCo (6.92)
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which is for a pipe of radiug:
Re&(Zy) = §(ka)*poCo. (6.93)

This result is the low frequency limit of the well-known thigmf Levine and Schwinger [117].

The imaginary part IrfiZ,,) takes into account the inertia of the air flow in the compagtame just
outside the pipe. It appears that(l#y) is equal tokd, whered is the so-called “end correction”. This
seen as follows. Just outside the pipe end, in the near figldeofnonopole, the pressure is a factor
poCokr lower than the acoustic velocity, which is much smaller th@npocy of inside the pipe (see
equation 6.7). Therefore, the outside field forces the epigtssure to vanish at about the pipe end.
Although the exact position of this fictitious poixt= ¢ (the “end correction”), where the wave in the
pipe is assumed to satisfy the conditipn= 0, depends on geometrical detalils, it is a property of the
pipe end and therefor@= O(a). This implies that the end correction amounts to leadingoirka

to nothing but a phase shift of the reflected wave and so toeypimaginary impedancé&,. Up to
order(ka)? this impedance can now be expressed as:

Zp = (ikd + 3(ka)?) poCo (6.94)
where it appears that
0.61a < J < 0.85a (6.95)

for circular pipes [173]. The lower limit corresponds to arilanged pipe while the upper limit corre-
sponds to a pipe end with an infinite baffle (flanged). See &stian 7.9.

Exercises

a) Note that the acoustic field generated by a compact ttamgkphere is a dipole (equation 6.21) we find
the typical co®) = x; ;i /|x||y| directivity. What are the source and the sink forming thetif (Explain
qualitatively.)

b) A vortex ring with time dependent vorticity is a dipole x{i#ain qualitatively.)

c) An electrical dipole radiates perpendicularly to thesafithe dipole. What is the reason for this differ-
ence in directivity of electrical and acoustic dipoles?

d) Why is the boundary conditiop’ = 0 reasonable for acoustic waves reflecting at a water/airfaxte
(on the water side)?

e) We have seen (section 6.2) that a translating sphere esdaidipole field. Moving parts of a rigid
machine also act as dipoles if they are compact. Explain wigdy translating in an oscillatory manner
close to the floor produces more sound when it moves horitpthan vertically.

f) The acoustic pressung generated by a monopole close to a wall increases by a fagtor@nparison
with free field conditions. Hence the radiatedntensity increases by a factor 4. How much does the
power generated by the source increase?

g) The cut-off frequency. above which the first higher mode propagates in a duct withrggeross section
appears to be given b%//l = %cofC = h. figure 6.4 suggests that this would &efc = h for a source
placed in the middle of the duct. Explain the difference.

h) In a water channel with open surface sound does not progpagiow a certain cut-off frequench.
Explain this and calculaté; for a square channel cross sectfos- 3 m.

21 [5°10g211(0K1(0) % = 0.612701085.., 2 [7°H(0Y = £ = 0848826363 ..
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il g,
M

i) Consider a sphere oscillating (translating periodigafi an infinite duct with hard walls and square cross
section. Discuss the radiation as function of the osailtafrequency and the direction of oscillation
(along the duct axis or normal to the axis). Relate the dipokngthyQ to the amplitude of the acoustic
waves forf < f¢in a pipe of cross sectional ar&a

j) Explain by using the method of images why a line quadrugpdéeed near a cylinder, parallel to the
axis of the cylinder (figure 6.9), will radiate as a line dipo{This explains that turbulence near such a
cylinder will radiate quite effectively [131]!)

Figure 6.9 A line quadrupole near a cylinder.

k) Consider two jet engines developing the same thrust widmdtersD; and D, = 2Dj, respectively.
Assuming a low Mach number estimate the ratio of the soundcepgenerated by both engines.

[) Which scaling rule do you expect for the Mach number deperd of the sound produced by a hot
steam in cold air?

m) Which scaling rule do you expect for the Mach number depane of the sound produced by a bubbly
liquid jet in water?

n) Typical entropy fluctuations due to friction at the pipei@m which the jet is leaving correspond to
temperature fluctuatiod’/ Top ~ 0.2M2. At which Mach number do you expect such effect to become
a significant source of sound?

0) A subsonic jet withM « 1 is compact if we consider the sound produced by turbulefngs.?

p) Estimate the amplification of turbulence noise due to tiesgnce of a cylinder of diametgmnear a free
jet of diameterD at a main speedy if we assume that the cylinder does not affect the flow.

g) Same question for a small air bubble of diametengar a free jet of diametd and speedip. Assume
a low frequency response of the bubble.

r) Consider a small ventilator rotating at a radial frequendn a uniform flowug. The fan feels at a certain
distancer from the axis of the ventilator an effective wind velocity which is a combination of the
axial velocityup and the tangential velocitygr (where we neglect the air rotation induced by the fan)
(figure 6.10). Assume thaly = 0.1wR. If we concentrate on the tip of the fan £ R) we have a lift
forceL, per unit length, which is normal to.s. The magnitude oE is given by:

1
L= EpvgﬁDCL
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Figure 6.10 The forces on a fan blade (Exercise r)

whereD is the width of the profile of the blade. Typical_ is O(1) for a well-designed ventilator.
Consider first a ventilator with a single blade. Discuss theticbution of the tangential and axial com-
ponents of the lift foiL on the noise. What is the effect of having a second blade onahtlator? (See
figure 6.11.) A well-designed ventilator has many bladesvidoes this affect sound production?

Figure 6.11 Single and dual bladed ventilator (Exercise r)

How does the presence of duct walls influence the low-agysound production of an axial ventilator
placed in the duct.

Consider an airplane with a rotor placed just behind thegwfigure 6.12). Discuss the sound production
(frequency, directivity . ..).

Figure 6.12 Propeller in pusher position (Exercise t)

Can we consider an aircraft propeller as a compact body?

What is the Mach number dependence of the sound producedsbyall (compact) body placed in a
turbulent flow?

Estimate the low frequency impedangg of a flanged pipe termination.

Assuming a low frequency, calculate the power radiateflda space by a piston placed at the end of a
circular pipe of radiug and lengthL (figure 6.13). What is the ratio between this power at reso@an
koL = (n+ %)n, and the power which would be radiated by the piston withquipa.
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— vp(1) 2a

Figure 6.13 Piston in cylindrical pipe (Exercise x)

S vp(t) S

<
<

v

Figure 6.14 Piston in conical pipe (Exercise y)

Consider a conical pipe driven by a piston of surf&eand with an outlet surfac& (figure 6.14).
Determine the sound field inside the pipnt. Use spherical waves centred at the cone top!

A small transistor radio is not able to produce low frecgies (why?). We hear low frequencies because
our ear is artificially guessing these low frequencies whenswpply a collection of higher harmon-
ics (figure 6.15). On the other hand, when using a Walkman weaetually provided with real, low
frequencies. Why is this possible even though the loudsgrdala miniature device?

1 -
» »

fo 2fq 3fy 4fp fo 2fy, 3fy 4f

Figure 6.15 We hear the missing fundamental! (Exercise z)

Calculate the friction and radiation losses in a claridetsume a tube radius of 1 cm and a length of 1
m. Carry out the calculation for the first three modes of tletrirment. What is the difference between
the radiation losses of a clarinet and of a flute with the saipe gimensions.

How far can we be heard when we scream in quiescent air ifregyze 10° W acoustic power?
Calculate the ratio between the acoustic impedance iexpped by an air bubble of radiag = 1 mm
in water at atmospheric pressure:

— in free space;

— in an infinite duct of cross sectional arSa= 104 m?.

Consider two twin pipes of length and radius, placed along each other in such a way that correspond-
ing ends of either pipe just touch each other. Assume thatiffess are acoustically excited and oscillate
in opposite phase. How does the radiation losses of thersy®tale withL anda.
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In a duct of constant cross section the reduced wave (or H#tmequation may be solved by means
of a series expansion in a particular family of solutionslectmodes. They are related to the eigenso-
lutions of the two-dimensional Laplace operator acting enoas section. Therefore, the terminology
of modes contains many references to the correspondingwailyes.

Modes are interesting mathematically because they formgeireral, a complete basis by which any
solution can be represented. Physically, modes are ititegdsecause they are solutions in their own
right, not just mathematical building blocks, and by theé@e structure the usually complicated
behaviour of the total field is more easily understood.

7.1 General formulation

The time-harmonic sound field in a duct of constant cross@eetith linear boundary conditions

that are independent of the axial coordinate may be desthipean infinite sum of special solutions,
called modes, that retain their shape when travelling ddwenduct. They consist of an exponential
term multiplied by the eigenfunctions of the Laplace oparabrresponding to a duct cross section.

A

v

Figure 7.1 A ductD of cross section.

Consider the two-dimensional areswith a smooth boundargA and an externally directed unit
normaln. For physical relevancet should be simply connected, otherwise we would have several
independent ducts. When we consider, for definitenessatbabe part of thg, z-plane, it describes
the ductD (see Fig. 7.1) given by

D = {(X,Y, 2|y, 2) € A} (7.1)

with axial cross sections being copies«#fand where the normal vectonsare the same for ak. In
the usual complex notation (withi wt—sign convention), the acoustic field

p(x,t) = p(x, w) €,  v(x, 1) = v(X, w)e™ (7.2)
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satisfies in the ductx(e D) the equations
VZp+ w?p =0, (7.3a)
iov+Vp=0. (7.3b)

Solutions of a more general time-dependence may be coteddruia Fourier synthesis in (equation
C.2). At the duct wall we assume the boundary condition

B(p) =0 for x € 0D (7.4)
where is typically of the form €.f. for example Eqs. (3.14) or (3.42))

B(p) =a(y, 2)(n-Vp) + by, 2)p+c(y, 25 p. (7.5)

Self-similar solutions (callednode$ of the form p(x, y, z2) = ¢(X)w (Y, 2) exist for p(x) = e 'k
with particular values ok and associated functions. This leads to general solutions given by

PX, Y, 2) = D Capn(y, 2) & (7.6)

n=0

wherey, are the eigenfunctions of the Laplace operator reducet], ice. solutions of

2 2
—(g—yz + %)l/l = a2y for (y,z) € A,

€ (7.7)
with B(y; a) =0 for (y, 2) € oA,

wherea? is the corresponding eigenvalue and the eigenmode bourdadjtion operatotB is

B(y;a) =a(y,2)(n-Vy) + by, 2y — ik@)e(y, 2)y. (7.8)

The axial wave numbek is given by one of the square rodts= ++/w? — a? (+ for right and—

for left running). Each term in the series expansios, v, (y, z) €%, is called aduct modelf the
duct cross section is circular or rectangular and the baynclandition is uniform everywhere, the
solutions of the eigenvalue problem are relatively simplé may be found by separation of variables.
These eigensolutions consist of combinations of expoalsnéind Bessel functions in the circular
case or combinations of trigonometric functions in thearegular case. Some other geometries, like
ellipses, do also allow explicit solutions, but only in sécases such as with hard walls. For other
geometries one has to fall back on numerical methods forifeealue problem. As a final remark,
we note that the above solution only needs a minor adaptetioope with a uniform mean flow inside
the duct.

By application of Green’s theorem it can easily be shown thatset of eigenfunctiongy,} is bi-
orthogonalto their complex conjugatesy,:}. In other words, the innerproduct

o =0 if n#m,
(wn, ‘//m)—//A WnWmdo [ £0 if n=m. (7.9)

(Some care is required when, due to a symmetric geometrly,gais linked to more than one,,.)
This implies that for realy,, and realx,, which is for example the case for hard-walled ducts where
Z = o0, the set of eigenfunctions is bi-orthogonal to itself: ihetwords iorthogonal This orthog-
onality can be used to obtain the amplitudes of the expanSiea section 7.7.

In the following sections, we will present the modes withitlpgoperties and applications for cylin-
drical ducts with both hard walls and soft walls of impedatygee, as well as for rectangular ducts.
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7.2 Cylindrical ducts

Consider in a duct, with radiws uniform sound speet) and mean density, time-harmonic acous-
tic waves of angular frequeney. We scale our variables as follows

X:=ax, t:=at/cy, p:= pocgp, p = pop, ¥ := Cov, and w := wCp/a,

while intensity scales omocg and power ory)ocgaz. Note thatw, the dimensionless frequency or
dimensionless free field wave numbgs just the Helmholtz number.

In the present polar coordinates

0 0 10
V=e— —-— 7.10a
oy Te o terrog ( )
o2 az 10 1 82
Ve — 4+ —4+-—4+ - — 7.10b
ax2+ar2+rar +r26192’ ( )
and so the reduced wave equation (7.3a) becomes
°p 8%p lop 1é%p
—+ — 4+ —— 0. 7.11
ox2 ' ar2 Tror ' rzoy? to’p= (7.11)
We begin with a hard-walled hollow duct, which has the wallihdary condition
0
P_0 ar=1 (7.12)
or

Solutions of modal type may be found by separation of vaemlile. by assuming the fornp =
FOOw(y,2) = F(X)G(r)H (7))

o?H )
(W)/H —_m (7.133)
®*G 1dG m?
a5 2y M 2 7.13b
(dr2+rdr)/ 2 ¢ ( )
o2F
(W)/F = a2 — &? (7.13¢)

so that

(@ HW)=e"™ m=0,+1, £2,-
Here, use is made of the condltlon of continuity from= 0to ¢ = 2rx.
(b) G(r) = Im(amur), p =1,2,---, where:
Jm denotes the ordinary Bessel function of the first kind (Amipe);
omy = Jm, IS the u-th nonnegative non-trivial zero af;, to satisfy the boundary condition
G'@ =
(c) F(x) = eFkmX with:
km;z = /C{)2 — O‘l%m such that Ré(m#) > O, |m(km/1) < 0

1in dimensional form better known &s.
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Although technically speakingxrzn, .} are the eigenvalues of (minus) the cross-sectional Lagipee
erator, it is common practice to referdg,, as the radial eigenvalue or radial modal wave number, to
m as the circumferential eigenvalue or circumferential waueber, and tdky,, as the axial eigen-
value or axial wave number. The associated solutions alexadlict modes, and they form a complete
set of building blocks suitable for constructing any soumdtfin a duct. At the same time, they are
particular shape-preserving solutions with easily intetgble properties.

Note that allx,, andm are real, while only a finite number &f,, are real; see figure 7.2). The branch

15 T T T T T T T
Ko +
10r —kos I
5 —koajA -
—ko1  —koz
O frs Al LRI MR W -
Koz Ko1
sl ks |
v
-10 + k04 .
v kos
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-8 -6 -4 -2 0 2 4 6 8

Figure 7.2 Complex axial wave numbers & 0, w = 5).

we selected here of the complex square gt is such thae 'k describes a right-running wave
ande'*x g left-running wave. This will be further clarified later.

These modes (hormalized for convenience)

pmy (Xa r’ 19) = Um/x (r) e*im’ﬂ:FikmyX’ (714)
Um/z (r) = Nm/z Jm(am/zr)a P
-1/
N = {3 = m%/a2,) Intam)?}

form (for fixed x) a complete set (irL,-norm over(r, 9)), so by superposition we can write any
solution as the following modal expansion:

p(X, r, 19) = Z Z(Am/l e—ikm,uX +Bm,u eikm"X)Uqu (r) e—imz9 )
A (7.15)

The normalization factoN.,, is chosen such that a modal amplitudg,, scales with the energy
content of the corresponding mode (see below).

A surface of constant phaseg. mJ + Re(km, )X = constant, is a helicoid of pitchzdn/ Re(Km,,);
see figure 7.3.
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— P — | — X-axis

Figure 7.3 Surface of constant phasé + Re(km,)X.

An important special case is the plane wave= 0, x = 1, with
J(/]l = O, a01 = O, k01 = CU, NOl — ,\/E’ p01 — «/ze*iwx .

In fact, this is the only non-trivial eigenvalue equal to@ehll others are greater, the smallest being
given by

jj,=1.84118 .- .

Since the zeros af;, form an ever increasing sequence botmiand ing (with jg, >~ («+ %m— 711)7[
for u — o0) (see Appendix D), there are for aayalways a (finite)u = xo andm = mqy beyond

whichaZ, > »? so thatkm, is purely imaginary, and the mode decays exponentially. in

So we see that there are alwaysnite number of modes witreal k;,,, (see figure 7.2). Since they are
the only modes that propagate (see below), they are calledn The remaining infinite number of

modes, witimaginary k,,,, are evanescent and therefore cattatioff This cut-on and cut-off modes

are essentially similar to the radiating and evanescenesvdiscussed in section 3.3.

For low frequencyji.e. for
w < j;;=184118 -.

all modes are cut-off except for the plane wave. In this cgdarse wave approximatiomn.¢. consider-
ing only the first mode) is applicable if we are far enough afagn any sources, changes in boundary
condition, or other scattering objects, for the generat@thescent modes to become negligible.

From the orthogonality relatidrof equation 7.9 (note that we have here a hard-walled duct)

1 r2z *
/ / Um, (r)e™™ (Unu(r)e*i”ﬂ) r ddr = 27 omndym (7.16)
0 JO
we find by integration of the time-averaged axial intensity

(1 - &) = 3(pu* + p*u) =  Re(pu®)

over a duct cross section= constant the transmitted acoustic power

P =2 3 > [Relkm ) (A = 1B ?) + 2 1M, ) IMA, B ] (7.17)

m=—o0 u=1

2oj=1ifi=j, G =01ifi#]
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The summation over Rk,,) contains only dinite number of non-zero terms: the cut-on modes.
By taking eitherA,, or By, equal to zero, it is clear that a cut-on €xpkm,X)-mode propagates
in positive direction, and a cut-on exiky,X)-mode innegativedirection (for the present-iwt—
sign convention). Indeed, with Itk,,,) < O, the respective cut-off modes decay in the propagation
direction, and we can say that a mode propagates or decagsanially depending on the frequency
being lower or higher than the cut-off or resonance frequenc
JmyCo
fo = o (7.18)

As is clear from the second part of expression (7.17), cutrafdes may transport energy by in-
teraction between right- and left-runnind{, and Bn,,) modes. It should be noted, however, that
(depending on the choice of the origin= 0) usually either the right- or left-running cut-off modes
Am,. Or Bm, are exponentially small, and the produst,, B, is therefore quickly negligible.
The axialphase velocityC.19) of a cut-on mode is equal to

Vph = (7.19)

Ky

The axialgroup velocity(C.21) of a cut-on mode is given by

dkm/l -1 km#
n=(Gr) =78 (720
Note that
vgtph =1,  Wwith vg <1 < vph. (7.21)

The axial group velocity is lower than the soundspeed bectiiesmodal wave fronts do not propagate
parallel to thex-axis, but rather follow a longer path, spiralling around xhaxis, with a right-hand
rotation form > 0 and a left-hand rotation fon < O.

7.3 Rectangular ducts

In a completely analogous way as in the foregoing sectiontiie2general modal solution, similar to
(7.15), of sound propagation in a rectangular hard walled,dan be found as follows.

Separation of variableg(x, y, z) = F (x)G(y)H (z) applied tov?p+w?p = 0inthe duct O< x < a,

0 <y < b, results intoFyx = —a?F, Gyy = —f2G andH,; = —(®® — a? — f?)H, wherea andp
are eigenvalues to be determined from the hard-wall boynoarditions. We obtain

F(X) = coganX), an:%n n=012,...

G(X) = coYfmX), fm = > m=0,1,2,...
H (Z) = eqiikan’ knm = (a)z - arz] - ﬁr%)l/2’

where Rék,m) > 0 and Imk,,) < 0. So the general solution is

P(X, Y, 2) = D D" CoYatnX) COSBmY)(Anm € K™ 4 By 7).
o (7.22)
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7.4 Impedance wall

7.4.1 Behaviour of complex modes

When the duct is lined with sound absorbing material of a tiya¢ allows little or no sound propaga-
tion in the material parallel to the wall, the material isledlocally reactingand may be described by
a wall impedanceZ (w) (scaled orpgcy). This gives in the acoustic problem the following boundary
condition in the frequency domain:

. 9
iop| =2 a—f , (7.23)
- r=1

the impedance being defined p&(v - n) with n a normal pointingnto the surface. A typical practical
example is: the inlet of an aircraft turbojet engine. Thevimes concept of a modal expansion, with
modes again retaining their shape travelling down the dsieliso here applicable. The general solu-
tion has a form similar to (7.14) and (7.15), the hard wallasec Only the eigenvalues,, are now
defined by

Inlom) 12 (7.24)

Amu I (@my) T w
related toky, by the same square root as before:
kmﬂ =,/0? — arzn/z’

but another normalization may be more convenient. A nozatén that preserves the relation
1
/ Um, (NUp,, (Nr dddr =1
0

(note that now the modes amet orthogonal) is

|am,u Jr{n(am,u)|2 Re(Z) }71/2
Im(ag,)o '

N = { (7.25)

Qualitatively, the behaviour of these modes in the comgjgxplane is as follows.

If Im(Z) > 0, all modes may be found not too far from their hard wall valoa the real interval
(—w, w) or the imaginary axis (that is, withy, = jg,,, and Inmkn,) < 0.) More precisely, if we
vary Z from |Z]| = oo to Z = 0, am, varies from its|Z| = oo—valuejr’nﬂ to its Z = O-value jm,,.
(Jmy is the u-th zero of Jy.) Thesejm, and j;, are real and interlaced according to the inequalities
Jmu < Jmu < Jmp+1 < etc., so the correspondirig,, are also interlaced and shift into a direction of
increasing mode number.

However, if IM(Z) < 0 (for +iwt-sign convention), a couple of two modes wander into theartpu

of the complex plane in a more irregular way, and in generdédar away from the others. In figure
7.5 this behaviour is depicted by the trajectories of the esab the impedance varies along lines of
constant real part (figure 7.4). Compare this figure with Bgail of the related 2-D problem, which
may be considered as the high-frequency approximationeotitict problem. (Note the notation!

in the 2-D problem corresponds kg, here.) For small enough [R&) (smaller than, say, 2) we see
the first (x=1) mode being launched into the complex,-plane when InGZ) is negative, and then
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imaginarJ
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real axis
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1

&(Z) =constant

Figure 7.4 Complex impedance plane.

returning as a (for example)=4 or 2 mode when It) is positive. We will call these irregular modes
surface wavegheir maximum is at the wall surface, and away from the wedytdecay exponentially
([192]). This is most purely the case for an imaginary impedeZ = i X. See figure 7.6.

A solution am, = iom,, om, real, may be fountisatisfying

| X
mlmd) X —% <X <0 (7.26)

omulin(omy) @

The modal shape in, described by (am, ) = i™Im(em.r), is exponentially restricted to the imme-
diate neighbourhood a@f = 1 and indeed shows the surface wave character, since théieddglessel
function I ,(X) has exponential behaviour far— oo. It is interesting to note that the corresponding
axial wave numbekn, = (v® + of,,)"/? is now larger thanw. Hence, the modal phase velocity is
smaller than the sound speed, which is indeed to be expeatethbn-radiatingsurface wave. The
group velocity (7.20) depends a(w).

7.4.2 Attenuation

Usually, lining is applied to reduce the sound level by giasbn. It is a simple exercise to verify that
the time-averaged intensity at the wall directed into thd (ize. the dissipated power density) of a
mode is

(I-&) ocIm(ag,). (7.27)

A natural practical question is then: which impedaZcgives the greatest reduction. This question
has, however, many answers. In general, the optimum wiledépn the source of the sound. If
more than one frequency contributes, we have to include theZv= Z(w) depends omw. Also
the geometry may play a role. Although it is strictly spegkitot dissipation, the net reduction may
benefit from reflections at discontinuities in the duct (fsolt walls, varying cross section).

A simple approach would be to look at the reduction per modd,ta maximize the decay rate of
the least attenuated modes. the one with thesmallest| Im(ky,,)|. A further simplification is based
on the observation that the decay ratgkg),) of a mode increases with increasing order, so that a
(relatively) large decay rate is obtained if the first ancosgicmode (of the most relevami) coalesce
(Cremer’s optimum). This is obtained if also the derivativer,, of (7.24) vanishes, yielding the
additional condition

/ m2
Inom)? + (1 aT)Jm(am,,)z —0 (7.28)

mu

3The functionh(z) = z1/,(2)/1m(2) increases monotonically iy with h(0) = m, andh(z) ~ zasz — oo.
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Figure 7.7 Trajectories dfm, (m = 0, » = 5) passing Cremer’s optimum. At = (1.4165, -0.6082) the first two
modes coalesce &§1=kgr=(4.3057,-0.8857). IifZ) varies from—oo to co and R€Z) is fixed at 1.4165 .

(see also exercise 7d). An example is given in figure 7.7. Nateno mode is lost, as the two corre-

sponding modes degenerate into

Jm(am/x r ) Nm,u e—ikmﬂx—imﬂ ,

(am,,me(am,,r) — i Kmgl %(am,,r)) Nin, g ikmux—imd

(7.29a)
(7.29b)
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7.5 Annular hard-walled duct modes in uniform mean flow

With uniform mean flow (see equation 2.52), the modal thetilyapplies. In view of applications,
we consider an annular duct of (scaled) inner ratius

Consider the following linearized equations for small pdsations
(iaH— Mi)p+v-v=o, (7.30a)
0X

. 0
(Iw—i— M&)v-i—Vp:O, (7.30b)

with hard-wall boundary conditions. Eliminabeto obtain the convected wave equation

: 9 \2 )
(Ia)—i- Ma_x) p—Vp=0, (7.31)
Note, however, the possibility of convective incomprelesfiressureless disturbances of the form
v=F(r,0)e ', suchthatv.-v = 0andp = 0.

Fully written out, equation (7.31) becomes
0 \2 2 8% 10 1 o2
i M—) —(— ° 42 ——) ~0. 7.32
(w+ 0X P ax2+ar2+rar+rza192 P (7.32)
The eigenvalue problem can now be solved, and we may expargktieral solution in Fourier-Bessel
modes

p(X, T, 0) = i i(Am,, & KX 4By, €70 ) Upy (1) €™ (7.33)

m=—o00 u=1

where the radial modes and radial and axial wave numbegfysati

1 1 / m2
Uy + =Up, + (@ = =5 )Umi =0 (7.343)
af, = (@ — MK, )? — K2, (7.34b)
. —oM=E Jo? - (1- M)},
K = YE (7.34c)
and solution

The corresponding phase and group velocities for cut-onesade found to be

w?M + a)\/a)z — (11— M?)ag,

:l: a)
- = 7.36a
= gy , (7.362)
dkt | -1 @? — (1 - M?)aZ
v =(gx) =xa-m? / N (7.36b)

0F M, Jo? - (1- M2)aZ,
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Due to the mean flow, the axial modal wave numbers are shiftdgetleft M > 0), or right M < 0),

by a fixed amount of-wM /(1 — M?), while the (dimensionless) cut-off frequency is lowereahir

w = am, for no flow tow = am,+/1 — M? with flow. So with flow more modes are possibly cut-on
than without. Note that (foM > 0) the rightrunning modes that become cut-on in this way (and
only these) have a negative real part of their axial wave rarnihdeed, rightrunning modes with a
frequency along the interval

amuV1—M? <o < amy,

have phase velocities that asppositeto their group velocities, the speed of information. The sam
applies for left-running modes ¥ < 0. Sincevg > 0 andog < 0, this shows that it is not the sign
of km,, but of its radical that corresponds with the direction ofga&gation [140]c.f. equation (7.42).

Eigenvaluesiy, are determined via boundary conditioi, (1) = Uy, (h) =0
I (@)Y (ah) — 3. (ah)Y/(a) =0 (7.37)

The normalization is such thgﬁf U2(ryr dr =1 (c.f.[191]), so

1
Ny = 3v2man, (7.38)
g 1-—m?/a? 1—m?/a? h? :
mu _ mu
[ I (ame)? + Yi(ame)? I (ameh)? + Y (am, )? ]
and
I (@mu)
Tme = arctan 42 1 (7.39)
m Y;n(amﬂ)}
This implies the following choice of signs
. Yo (@my.)
COSTm, = SIGN(Y. (0tmy)) m-_% , (7.40a)
" 3 em) 2 + Yin(my)2
SiNtm, = SIgNCY!,(ctme)) I () , (7.40b)
\/‘]r/n(am,u)2 + Yr/n(am,u)z

with the advantage that it reduces to the expected INpjf Jn(am,r) for h — 0. Other choices, for
example without the factor sig’), are also possible.

The modes are physically interesting because their shapgme the same. Mathematically, they are
interesting because they form a complete and orthonokslasis for the solutions of the convected
wave equation (except for the pressureless convectedpatitons):

2r pl
/ / U (NUn, (1) €™ €7 r dr df = 27 9 (7.41)
0 h

It is convenient to introduce thieorentzor Prandtl-Glauerttype transformation (see 3.46 and section
9.1.1)

F=VIoME X=X 0=pQ, um =,

+Q0m, — QM (7.42)
Ko = m“T Omu = /1= 74,
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where o, is positive real or negative imaginary, then we have for suesp and axial acoustic
velocity v

i
M
M

(A 79X 4 By, &7 X) HX Uy, (1) €717 (7.43a)

m=—o0 u=1
o o0
omy — M igom,x _ Omu + M iQ0 x) iQMX —imo
0= T A, e emX T g glfomX ) @ Un.(r) €
m; 2(1— Mo m A, 1+ Mop, ™ ")

—00

=
I

(7.43b)

This includes the important case of the plane wawve: 0, u = 1, with ag; = 0, kaj =tw/(1£ M)
andUp; = (2/(1 — h?))¥2, such that

2 1/2
) , (7.44a)

1-—h?

o(,1,0) = | Aore” i —301ef‘“ﬁ](1_2h2)1/2. (7.44b)

pX, 1, 0) = [ Aoy & 1 +Bog e | (

If we have at positiorx = 0 a given pressure and axial velocity profiR€0, r, 8) andV (O, r, 9), we
can expand these profiles in the following Fourier-Bessetse

PO..0)= > > PpUn(r)e'™, (7.45a)
m=—o0 /1:1
VOO = D> > VmUn,()e'™, (7.45b)
m=—o00 /1:1
where
1 2r pl )
Py = > / P(0,1,0)Un, (r) €™ r drdo, (7.46a)
7T Jo Jh
1 2r pl )
Vi = > / V(O,r,0)Um, (r) €™ r drdo. (7.46Db)
7T Jo Jh

If these pressure and velocity profiles satisfy the abovpamation model of sound in uniform mean
flow, the corresponding amplitudés,, and By, are found from identifying

Pmu = Amu + By, (7.47a)
Omu — M Omu + M
Viy = ——— —-————B 7.47b
™71~ Mom, Ao =7 Mom, (7.47b)
leading to
B (1—Mom,)(emy + M)Pn, + (1 — MZU,TZW)Vm,, (7.48)
e 20m, (1 — M?) ’ ’

1+ M — M)Pr, — (1= M?62 )V,

. _ ( O-m,u)(o-m,u ) mu ( O-m,u) mu ' (748b)

26m, (1 — M2)
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From the axial intensity in hard-walled flow duct
(1) = 3R (p + Mu)(u* + Mp*)] (7.49)
we obtain the axial power:

© Ko 2 2
| Ay | | By |
P = 4 . U _ U
& Z Zﬂm/ [(1— Mom,)? A+ Mamﬂ)z]—i_

m=—o00 =1

- - |Gl
2n B4 i .
+2zp Z Z 1+ M2|g, )2

M=—00 u=puo+1

[IM(Ar By, ) (L = M0, %) — Re( A B, )2M o, || (7.50)

where ug is the number of cut-on modes. Note the coupling betweenadefl right-running cut-off
modes.

7.6 Behaviour of soft-wall modes and mean flow

Consider a cylindrical duct with soft wall of specific impeda Z and uniform mean flow of Mach
numberM. For this configuration the acoustic field allows again modasilar to the no-flow situa-
tion, although their behaviour with respect to possibldazg waves is more complicated [198].

We start with modes of the same form as for the hard wall caggafens 7.33 with 7.42, and 7.43a)
for pressurep and radial velocity (we drop the exponentials witlwt and imé)

Qo X4 iBy
—@ iQo X+IQM X J Q r —
p m( y )5 v l— MO'

wherey 2 + ¢2 = 1 and the sign of depends (in general) on the direction of propagdti&inom the
boundary condition (see equation 3.42)

e—iQn‘X-HQMX Jr{n(QV r)’

iwZv=(io+MZ)p
we find the equation for reduced axial wave numbdor any givenZ, m, andw
(1—Mo)?In(Qy) —ip3Zy 3, (Qy) =0. (7.51)

A graphical description of their behaviour as a functionmfa (from 400 down to—o0) and fixed
ReZ is given in the series of figures (7.8). For large enough feegy, o, the behaviour of the modes
can be classified as follows. Wheris near a hard-wall value, the mode described is really afistio
nature, extending radially through the whole duct. Howewieno is far enough away from a hard-
wall value, the imaginary part a2y becomes significant. The complex Bessel functigiiQyr)
becomes exponentially decaying away from the wall, and tbdems radially restricted to the duct
wall region. In other words, it has become a surface waveyofdimensional nature, approximately
described by the theory of section 3.2.6 (egn. 3.47).

The “egg” (figure 3.3), indicating the location of possibiegface waves in the 2D limit, is drawn in

the figures by a dotted line. The 2D surface wave solutiongdreated by black lines. The behaviour
of the modes is to a certain extent similar to the no-flow siibma(section 7.4.1, figures 7.5), although
the effect of the mean flow is that we have now 4 rather than gilplessurface waves.

4Note that ife = 1/M, i.e.if y = +i /M, we have to rescale the modal amplitude such fhat 0. In this case the
mode is a pressureless vorticity mode, comparable witl6}3.6
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Figure 7.8 Trajectories of reduced wave numbgy, (m = 1, ® = 5) whereM = 0.5, for Im(Z) varying from—oo
to co and fixed R€Z). The 2D surface wave solutions of egn. (3.47) are includddaak lines.
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For large R&Z, the modes remain near their hard-wall values. For loweresbf ReZ the behaviour
becomes more irregular. The modes change position withglnbeur, and some become temporarily
a surface wave. The two hydrodynamic modes disappear tatyfiim Im Z — —oo like is described

in equation (3.48).

7.7 Source expansion

7.7.1 Modal amplitudes

A source ax = 0, defined by

pOG L 9)| = po(r, )

produces in a hard walled duct a sound field (7.15) with monhgdlidudes given by (irx > 0)

1 2 rl )
An, = —/ / Po(r, ) Up, (r) €™ r dr dv) (7.52a)
2 0 0
Bm, =0 (7.52b)
(use (7.16)), and the samexn< 0 but with A and B interchanged. Note that, similar to the evanes-
cent waves of section 3.3, details of the source (averagetbothe lower modes in the process of

integration), only contribute to higher order modes and dbgenerate sound if these modes are
cut-off.

7.7.2 Rotating fan

Of practical interest, especially in aircraft noise redut{234], is the following model of a propeller
or fan with B identical blades, equally spaceéd} = 2z /B radians apart, rotating with angular speed
Q. If at some timg = 0 at a fixed positiorx the field due to one blade is given by the shape function
g, r), then from periodicity the total field is described by

p(r,d,0) =q@,r)+q@ — A9, r)+---+q@ — (B—-1)AV,r)

=2 a(v - %),
This function, periodic in} with period 2r /B, may be expanded in a Fourier series:

P@,r,.0 = D" d(r)e ™.

N=—00
Since the field is associated to the rotor, it is a functio? of Qt. So at a timé

B-1 oo

pO.r, ) => g —Qt —ZK 1) = > gu(r)enBHn® (7.53)

k=0 n=—00
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(with g_n = g becausep is real). Evidently, the field is built up from harmonics oéthlade passing
frequencyBQ. Note that each frequeney = nBQ is now linked to a circumferential periodicity
m = nB, and we jump with stepB through the modain-spectrum. Since the plane wave & 0) is
generated with frequenay = 0 it is acoustically not interesting, and we may ignore tluisiponent.
An interesting consequence for a rotor in a duct is the obdierv that it is not obvious if there is
(propagating) sound generated at all: the frequency musigiber than the cut-off frequency. For any
harmonic 6 > 0) we have:

mQ  jmCo
fn= — > ML 7.54
m 2 ~ 2ra ( )
which is for the tip Mach numbe¥l;;, the condition
aQ j/
Mip = ke %1 (7.55)

Since the first zero of,, is always (slightly) larger tham (Appendix D), it implies that the tip must
rotatesupersonically My, > 1) for the fan to produce sound.

Of course, in practice a ducted fan with subsonically rotablades will not be entirely silent. For ex-
ample, ingested turbulence and the turbulent wake of ttdeblare not periodic and will therefore not
follow this cut-off reduction mechanism. On the other hahthe perturbations resulting from blade
thickness and lift forces alone are dominating as in aitaagines, the present result is significant,
and indeed the inlet fan noise level of many aircraft turbodagines is greatly enhanced at take off
by the inlet fan rotating supersonically (together withestkffects leading to the so-call&étizzsaw
noise([223])).

7.7.3 Tyler and Sofrin rule for rotor-stator interaction

The most important noise source of an aircraft turbo fanrengt inlet side is the noise due to inter-
action between inlet rotor and neighbouring stator.

Behind the inlet rotor, or fan, a stator is positioned (figti®) to compensate for the rotation, or swirl,
in the flow due to the rotor. The viscous and inviscid wakemftbe rotor blades hit the stator vanes
which results into the generation of sound ([218]). A vemle but at the same time very important
and widely used device to reduce this sound is the “Tyler afdrSselection rule” ([223, 234]). Itis
based on elegant manipulation of Fourier series, and ammdoimothing more than a clever choice of
the rotor blade and stator vane numbers, to link the first)(feavmonics of the sound to duct modes
that are cut-off and therefore do not propagate.

Consider the same rotor as above, vtidentical blades, equally spacad? = 2z /B radians apatrt,
rotating with angular speef, and a stator with/ identical vanes, equally spaced = 2z/V
radians apart. First, we observe that the field generatedtby-stator interaction must have the time
dependence of the rotor, and is therefore built up from harescof the blade passing frequenBy2.
Furthermore, it is periodic i#, so it may be written as

p(r, d,t) = i Qn(r, ﬁ)einBQt = i i Qnm(r)einBQt—imﬂ ‘

n=—00 N=—00 M=—00

However, we can do better than that, because most ofntgemponents are just zero. The field is
periodic ind¥ with the stator periodicity 2/V in such a way that when we travel with the rotor over
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radiation

radiation

1 = far-field inlet 6 = outlet guide vanes 11 = low-pressure compressor 16 = turbine exhaust duct
2 =inlet plane 7 = engine section stator 12 = high-pressure compressor 17 = hot jet nozzle

3 =inlet duct 8 = bypass duct 13 = combustion chamber 18 = far-field hot exit

4 = fan rotor 9 = cold jet nozzle 14 = high-pressure turbine

5 = rotor-stator gap 10 = far-field cold exit 15 = low-pressure turbine

Figure 7.9 Sketch of high by-pass turbo fan engine. Note ahg(dr inlet rotor), which produces with the stator (or
outlet guide vanes) the importamtor-stator interactionnoise. This is to be attenuated by the acoustically
lined walls of the inlet and bypass duct.

an angleA?¥ = 2z /V in atime stepAt = A¢/Q the field must be the same:

p(r’ 19, t) — z z Qnm(r) einBQ(tht)fim(ﬂfAﬁ) )

N=—00 M=—00

This yields for anym the restriction—inBQAt + imA¥ = 2zik, or
m=kV +nB (7.56)

wherek is any integer, and the harmonic of interest. By selectirl andV such that the lowest
|m| possible is high enough for the harmonic of interest to beofiutthis component is effectively
absent for a long enough inlet duct. In practice, only theé fissmonic is reduced in this way. A recent
development is that the second harmonic, which is usualhoouis reduced by selecting the mode
numberm to be of opposite sign af, which means: counter rotating with respect to the rotothis
case the rotor itself acts as a shield obstructing the $ipgahodes to leave the duct ([218]).

In detail: for a cut-offn-th harmonic (we only have to consider positivewe need
nBQ - JaCo
27 2ra

Since typicallyMy, is slightly smaller than 1 angl,, is slightly larger tharim| we get the analogue
of evanescent wave conditidn< |a| (section 3.3)

or NBMp < jim-

nB < |m| = |kV +nBj.
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The only values okV for which this inequality is not satisfied automaticallynghe interval-2nB <
kV < 0. If we make the step si2é big enough so that we avoid this interval foe= —1, we avoid it
for anyk. So we have finally the conditio’ > 2nB.

Consider, as a realistic example, the following configorabf a rotor withB = 22 blades and a stator
with V = 55 vanes. The generatestmodes are for the first two harmonics:

forn=1 m=...,-332277, ---,
forn=2 m=...,-114499, ...,

which indeed corresponds to only cut-off modes of the firstrtwmic (n = 22 and larger) and a
counter rotating cut-on second harmomt£ —11).

7.7.4 Point source in a lined flow duct

Consider a cylindrical duct of non-dimensional radius 1,eamflow of subsonic Mach numbétf,
and harmonic pressure and velocity perturbatipnsf non-dimensional angular frequeney The
pressure is excited by a point sourcexgtand satisfies the equation

0 \2
2 — (i —_— = —_
v2p (Ia) M ax) P = 5(X — Xo), (7.57)
S0 p(x; Xo) represents the Green’s function of the system. Note thatse¢hee'® - convention. The

impedance boundary conditionrat= 1 (3.42), becomes in terms of the pressure

. 0 \?2 ) op
(IaH— Ma—x) p+ioZ3 =0 at r=1 (7.58)

For a hollow duct finiteness gf is assumed at = 0. Finally, we adopt radiation conditions that says
that we only accept solutions that radiate away from thecsopositionx,.

We represent the delta-function by a generalized Fourreessan and Fourier integral ix

or — 1 [ 1 & .
O(X — Xg) = %Z/ g iK(X=X0) > Z g im(@—do) (7.59)

where 0< rq < 1, and write accordingly

po.r9) = > eI por )y = > e“m("9"’90)/ P (r, ) €700 die. (7.60)

m=—0o0 m=—00

Substitution of (7.59) and (7.60) in (7.57) yields f,

02 P 1a|6m+( 2 mZ)A d(r —ro)
[ — o = —
orz ' r or ™ A2y,
with

a’?=0°—Kk%, Q=w-—xM.

This has solution

Pm(r, €) = A() In(ar) + z=H (r —10) (Im(aro) Ym(ar) — Ym(aro) In(ar))
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where use is made of the Wronskian
) , 2
In()Y(0) = Ym() I () = — (7.61)

A prime denotes a derivative to the argumentA(x) is to be determined from the boundary condi-
tions atr = 1, which is (assuming uniform convergence) per mode

iQ%pm +wZp,,=0 at r=1
A prime denotes a derivative to This yields

i1 Q2Y(a) + waZY ()
1Q2Jn(a) + waZ J,(a)

A L [Ym(aro) _ Jm(aro)} ,
8

and thus

IQ?Gn(r-, a) + WZHn(r-, a)
87 Em(x) ’

Pm(r, x) = Jm(ar.)
wherer. = max(, ro), r-. = min(r, ro) and

Em(x) = 1Q%Jn(a) + waZ J, (@)
Gm(r, a) = Im(a)Ym(ar) — Ym(a) In(ar)
Hn(r, o) = a i (@) Ym(ar) — a Yo (a) Im(ar)
By substituting the defining series we find ti@&¢, and H,, are analytic functions o&?, while both

Em and Jy(ar.) can be written asg™ times an analytic function of?. As a result,pn(r, «) is a
meromorphié function of. It has isolated poles = «,, given by

Em(rm,) =0,

which is equivalent to (7.51). The final solution is found byuFer back-transformation: close the
integration contour around the lower half plane for> X, to enclose the complex modal wave
numbers of the right-running modes, and the upper half pfan& < xp to enclose the complex

modal wave numbers of the left-running modes. In figure 7.1¢p&al location of the integration

contour with no-flow modes is shown. See also figures 7.5,d67e8.

We define

m? Q; 2iMQp,
Qmﬂ=i[(xm,,+9mﬂlvl)(1— ) e P

g,  (wam, Z)? wZ
where+/— relates to right/left-running modes. With the result

W = twZ Qm/x Jm(amﬂ)

K=Kmu

the integral is evaluated as a sum over the residues in ties pot = x;,, for x > xo and ate,, for

X < Xg. From eigenvalue equatidﬁm(xﬁ;ﬂ) = 0 and the Wronskian (7.61) we obtain

207

Q2 Gm(r-, dmy, ZHn(r~, om,) = —————
mu m(r> ocm/)—i-a) m(r> OCm/) n_Jm(aqu)

Jm(am/zr>)-

5A meromorphidunction is analytic on the complex plane except for isalgteles.
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Figure 7.10 Contour of integration in tkeplane.

wheream, = a(xm,). We can skip the distinction between andr . and achieve the soft wall modal
expansion

1 < Jm(amur)Jm(amurO) i _

(r,X) = —z— g mu(X—X0) 7.62
it ) = =57 2 Qe J2(0tmy.) (7.62)

n=1

where forx > X the sum pertains to the right-running waves, corresponigiige modal wave num-
berSK$ﬂ found in the lower complex half plane, and for< xg the left-running waves, corresponding
to x,,, found in the upper complex half plane (see [198]).

Only if a mode from the upper half plane is to be interpretech aght-running instability (their
existence is still an unresolved problem), its contributi®to be excluded from the set of modes for
X < Xg and included in the modes far > Xg. The form of the solution remains exactly the same, as
we do no more than deforming the integration contour intouihyger half plane.

It may be noted that expression (7.62) is continuougxiyr), except at(xg, ro) where the series
slowly diverges like a harmonic series. As may be expectah the symmetry of the configuration,
the clockwise and anti-clockwise rotating circumferdnti@mdes are equal.e. pn(r, X) = p_m(r, X).

Solution (7.62) is very general. It includes both the no-fleglution (takeM = 0) and the hard
walled duct (takeZ = o0). Without mean flow the problem becomes symmetrig iand it may be
notationally convenient to writeﬁ;ﬂ = Gy, Ko, = Ky @Ndicy, = —Fimy.

Finding all the eigenvalueﬁﬂ is evidently crucial for the evaluation of the series (7,62 )particular
when surface waves (Section 3.2.6) occur. An exampla@Kk, r) is plotted in figure 7.11.

7.7.5 Point source in a duct wall

A problem, closely related to the previous one, is the fietunfra sourcev-e = —d(X — Xp) in
the duct wallr = 1. Consider for simplicity a hard-walled duct without measwfl We have for the
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K for w=10, m=5, M =0.5, Z=0.1-3i
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Figure 7.11 Eigenvalueeﬁﬁﬂ and Répm), Im(pm) and|pm| is plotted of them = 5-th component of the point source
field in a lined flow duct withw = 10,Z = 0.1 — 3i, xg = 0,rg = 0.7, M = 0.5 atr = 0.7 andd = ép.
Note the presence of 3 surface waves.

pressure
o0
topl _ 1 Ooe—i/c(x—xo) dxi Z e im o) (7.63)
o or|,_; 27 J_ 2r —

We solve equation (7.3a) again via Fourier transformaition end Fourier series expansionidnWe
obtain

po.r,9) = > Mo / N A (1) I (0 (se)r ) €K%0 g (7.64)

m=—o0

wherea (x)?> = w? — k2. From the Fourier transformed boundary condition (7.63pliows that
o AnJi(a) = —w/4n?, S0

O o~ i © Jnlar)y .
X, 1,0) = ——5 e 'mw ﬂo)/ TR g R0 gy,
e m:zoo o ad(@) "

The poles of the meromorpHiintegrand are found at = +xm, (We use the symmetry ir), and
since the waves must be outgoing the integration contourdér4plane must be located as in figure
7.10. Closing the contour via Ifm) — —oo for x > 0 and via Imx) — +oo yields the solution, in
the form of a series over the residue-contributioimsc = +xm, . This yields the modal expansion

0 \]m(am/zr) efikm# |X—Xo|—im(J —do)

(l - mz/a%ﬂ)‘]m(amy)lcm/z

W oo
= — 7.65
p(x. 1, 0) = o m:z_oo (7.65)

n=1
The contribution of then = 0, 4 = 1 plane-wave mode is

i efia)lxl

2

6A meromorphidunction is analytic on the complex plane except for isalgteles.
"Nearx = xkmy. i In(@ (k) = —(c — Kmp)kmu dmas Jn(@mp)-
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7.7.6 Vibrating duct wall

When, instead of a point, a finite part of the wall vibrateg([109]) as
r=1-—n(x,9)e" for —L<x<L (7.66)

then the solution may be found as follows. We write as a Fogtien
1= 3 e ™= 3 e™ [ e de
m=—00 m=—00 —00

Similar to above we find the solutiop(x, r, 1) as a formal Fourier integral, which can be rewritten,
by using result (7.65) and the Convolution Theorem (C.1®3p), as

. J . ot . ,
p(X,r,9) = iw? Z Z— iy (@) o imo / N (X') €7 X=X gy’ (7.67)

1 Kmu a2 —m? Im(omy) L

with the plane-wave contribution
L H !
iw/ no(X') €711 dx’,
—-L

A naive interpretation of this formula might suggest thetcadictory result that the field, built up from
hard-wall modes with vanishing-derivative at the wall, does not satisfy the boundary ciioliof
the moving wall. This is not the case, however, because fitanseries is not uniformly converging
(at least, its radial derivative). Pointwise, the valuehat wall is not equal to the limit to the wall,
while it is only the limit which is physically relevant.

Although in the source region no simple modes can be recednautside this regiomge.for |x| > L,
the remaining integral is just the Fourier transform timegomential, ijm (+xm, ) €Xp(—xm,|X|), and
the solution is again just a modal sum of right- or left-rurgnmodes.

7.8 Reflection and transmission at a discontinuity in diamedr

One single modal representation is only possible in segerarat duct with constant properties (di-
ameter, wall impedance). When two segments of differenpgntees are connected to each other we
can use a modal representation in each segment, but sincethes are different we have to reformu-
late the expansion of the incident field into an expansiorhefttansmitted field in the neighbouring
segment, using conditions of continuity of pressure andoigl. This is calledmode matchingFur-
thermore, these continuity conditions cannot be satisfigd s transmission field only, and a part
of the incident field is reflected. Each mode is scattered antnodal spectrum of transmitted and
reflected modes.

Consider a duct with a discontinuity in diametenxat O (figure 7.12): a radiua alongx < 0 and a
radiusb alongx > 0, with (for definitenessa > b. Because of circumferential symmetry there is no
scattering into othem-modes, so we will consider only a singie@mode.

The field pin, incident fromx = —oo and given by (see equation 7.14)

pin = Z AquUmlu (r) e—ikm,uX—imﬂ’ (768&)

n=1
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Figure 7.12 Duct with discontinuous diameter.
is scattered at = 0 into the reflected wavpyes
S . .
Pref = D B Un, (1) km™, (7.68b)
n=1
o0
Bru = D RuuwAmy, OF B= RA,
v=1
and into the transmitted wavg,
° . .
Pr = D, CnUpmy (r) €7 mx=im?, (7.68c)

u=1

ljmu(r) = Nmﬂ Jm(ﬂmur)a

(.¢]
C = D Trow Amys OF C=T A,
v=1

Um, (r) and Ny, are the obvious generalizations 4, (r) and N, on the interval[0, b]. Suitable
conditions of convergence of the infinite series are assumiede

Omy = jr/nﬂ/aa km/z =4/ w? — arzn/“ Im(km/z

) <0
ﬂmu = Jr/n,u/ba fm/; = ‘/wz - ,Brznlu’ |m(€mﬂ) < O

The matricesr andJ7 are introduced to use the fact that each incident mode refct transmits into
a modal spectrum. When acting on the incident field amplitwetdor A, they produce the reflection

and transmission field amplitude vectd@sand C. Therefore, they are called “reflection matrix” and
“transmission matrix”.

B

At the walls we have the boundary condition of vanishing ralreelocity. At the interfacex = 0, 0 <
r < b we have continuity of pressug, + pret = Py and corresponding axial velocity.

At the edges we have the so-calledge conditior{138]: the energy integral of the field in a neigh-
bourhood of an edge must be finite (no source hidden in the)edihes condition is necessary in a
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geometry with edges because the boundary conditions legentieaning at an edge, whereas the dif-
ferential equation is not valid at the boundary. In the cxindé modal series expansions this condition
is related to the convergence rate of the serie&fédnction type of a spurious edge source generates a
divergent series expansion (to be interpreted as a gexesidlinction; section C.2). Although its réle
remains in the usual engineering practice somewhat in tblegpaund, the edge condition is certainly
important in the present problem.

Since the problem is linear it is sufficient to determine tbattered field of a singl@-mode. It then
follows that the continuity of pressure at the interface

Z(éuy + Rmv,u)Umv = ZvayUmv (769)
v=1

v=1
yields, after multiplication witHJ; (r)r, integration from 0 tdb, and using orthonormality, the fol-
lowing relatior? to expressT,,; « Inthe vectorRy, .

o0

Z(Om/l P Umu>b(6vy + Rmu/t) = Tm/l/za (770)
v=1

where

b
(f.g), :/o f(r)yg(r)r dr.

This integral may be evaluated by using equations (D.58YBr&R). The continuity of axial velocity
at the interface

Z kmu(évy - Rmv;z)Umv = meuvayUmv (771)
v=1

v=1

yields, after multiplication withU,, (r)r, integration from O ta of the left hand side, and from 0 to
b of the right hand side, usingy = 0 onb < r < a, the following relation expressinBm,,, in the
vector T,

o0

kmi(éi/z - Rmi/z) = Z(Umi 5 Umu)bgmvaU/z‘ (772)
v=1

Both equations (7.70) and (7.72) are valid for dngnd «, SO we can write in matrix notation

Ml + R) = T,
K(l —R)=M"LT, (7.73)

for identity matrix|, matrix .M and its transpose( ', and diagonal matrices and¥, given by
My = (Oma, Uni)yr  Kiv = Gkmis €y = Gl
So we have formally the solution

R=(K+MLM) (k= M"LM) (7.74)

8gj=1ifi=j, & =01ifi#]j.
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which can be evaluated by standard techniques for any suffigilarge truncated matrices.

A suitable choice of truncation [126, 127, 195, 252], allegvior a certain balance between the accu-
racy inx < 0 and inx > 0, is to include proportionally more terms in the wider ductruncation

of the series of (7.70) after, saly, terms and of (7.72) afte® terms, withP/a ~ Q/b. This gives
truncated matrices(qxp, MEXQ, Kpxp, £oxq, SO that we obtaimRp.p andToxp.

It should be noted that if we take/Q very much different frona/b, wemayconverge folP, Q — oo

to another solution (7.74) than the physical one. This isamoartefact of the method: the solution is
indeed not unique, because we have not yet explicitly sadisfie edge condition. The behaviour near
the edge depends on the way we IRetand Q tend to infinity, and the edge condition is satisfied if
their ratio remainsP/Q >~ a/b.

7.8.1 The iris problem

When an abrupt contraction of the duct diameter is immelgidtdlowed by an expansion to the
previous diameter (an infinitely thin orifice plate), we ctils an iris. In this case one might be
tempted to solve the problem directly by matching the modahkasions at either side of the iris
plate. This solution will, however, either not or very slgwdonverge to the correct.€. physical)
solution.

The above method of section 7.8, however, is well applicabthis problem too, if we consider the

iris as a duct (albeit of zero length) connecting the two ndhicts at either side of the iris. Each

transition (from duct 1 to the iris, and from the iris to dugti® to be treated as above. Since the
matrices of each transition are similar, the final system affrix equations may be further simplified

[195].

7.9 Reflection at an unflanged open end

The reflection and diffraction at and radiation from an opgre @nd of a modal sound wave depends
on the various problem parameters like Helmholtz numbemode numbersn, ¢ and pipe wall
thickness. A canonical problem amenable to analysis iofreahard-walled, cylindrical, semi-infinite
pipe of vanishing wall thickness. The exact solution (by neaf the Wiener-Hopf technique) was
first found by Levine and Schwinger (fan = 0) in their celebrated paper [117]. Generalizations for
higher modes may be found in [247] and with uniform [191] damean flow [148, 149].

Inside the pipe we have the incident mode with reflected fagglan by p(x, 1, ¥) = pm. (X, 1) g imJ
where

pm/z (X, r) = Um/z (r) eiikmﬂx + Z Rm/wUmu (r) eikmvx . (775)
v=1
Outside the pipe we have in the far field

efiwg

Py (X, T) =~ Dmy ($)

(wog — 00), (7.76)
w0

wherex = gcosé, r = pgsing, and Dy, (¢) is called the directivity function, anfDp,, ()| is the
radiation pattern.
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The reflection matri{Ry,,,} and the directivity function are both described by complategrals,
which have to be evaluated numerically. Some importantgnas are:

. Atresonances = am, We have total reflection in itselR,,, = —1, and no reflection in any other
mode,Ry,, =0.

. Near resonance ~ any, the modulug Ry, (w)| behaves linearly from the left, and like a square
root from the right side; the behaviour of the phase(Bkg., (w)) is similar but reversed: linearly
from the right and like a square root from the left.

« Areciprocity relation between the, v and thev, u-coefficients:

kmv Rm/w = km/z Rmv;z-
« In the forward arc, O< ¢ < %7[, Dm. (&) consists of lobes (maxima interlaced by zeros), while
Do1(0) = 3+/2iw? and Dy, (0) = 0.
« In the rearward ar(%n < ¢ < m, Dmu(¢) is free of zeros, and tends to zero for> 7 if m> 1
and to afinite value ifn = 0.

o If kyy isreal and # u, the zeros oDy, (¢) are found at

¢ = arcsinam, /o).
« If the mode is cut on, the main lobe is located at

Emp = arcsinom, /).

« If @ — 0, the radiation pattern of the plane wavg: = 01 becomes spherically shaped and
small like O(w?), while the reflection coefficient becomé&®,; ~ — exp(—i 20w), whered =
0.6127. The dimensional distanéa is called the end correction, singe= da is a fictitious point
just outside the pipe, at which the wave appears to reflebt pvit 0. See also (6.95,5.44).

Based on the method presented in [191], plotR@f, and|Dn, ()| may be generated, as given in
figures 7.13 and 7.14.

Of the reflection coefficient we have plotted modul&,,., ()| and phasem,, = arg(Rm,.») as a
function ofo = 0...7.,form=0...2andu, v = 1, 2. Note that the resonance (cut-off) frequencies
arew = 3.8317 and 7.0156 fom = 0, » = 1.8412 and 5.3314 fom = 1, andw = 3.0542 and
6.7061 form = 2.

The radiation pattern is plotted, on dB-scale, of the firdtaamode { = 1) form = 0 andm = 1,
andw = 2,4,6. Form = 0 the main lobe is afy; = 0, while the zeros are found fes = 4 at
¢ =733° and forw = 6 até = 39.7°. Form = 1 we have the main lobe &t; = 67.0°, 27.4°, 17.9°
forw = 2,4,6. The zero is found at = 62.7° for v = 6.

Furthermore, the trend is clear that for higher frequenttiesrefraction effects become smaller, and
the sound radiates more and more like rays [29]. It is inftre¢o compare the wave front velocity of
amode (the sound speed, dimensionless 1) and the axial yptlas#y vy, (7.19). As the mode spirals
through the duct, the wave front makes an ariglg with the x-axis such that cdgm,) = 1/vph =

Km, /. Indeed,

Emy = arccogKkm, /) = arcsinam, /o)

is the angle at which the mode radiates out of the openianthe angle of the main lobe.
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Figure 7.13 Modulus and phase of reflection coefficiétyg, form=0...2,u,v = 1,2,asafunctionob =0...7.
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Figure 7.14 Radiation pattern 20 lggDmy | + 717 formu = 01, = 11 andw = 2, 4, 6.

Exercises

a)

b)

c)

d)

Consider a hard-walled duct of radias= 0.1 m with an acoustic medium wittp = 340 nys. A
harmonic source with frequendy = 500 Hz is positioned at = 0 half-way the radius. A microphone
is to be placed an axial distange= D away from the source, such that the plane wave is detected at
least 20 dB louder than the other modes.
— What is the cut-off frequency ?
— Assuming that all excited modes have about the same iaitiglitude, ignoring details like-variation
of higher-order modes: what is the necessary dist@te
— What isD for frequencyf tending to zero ?

Investigate the behaviour &f,, (equation 7.26) forn — oo. Find analytical approximate expressions
of the surface waves.

Find in a similar way as for equation (7.65), by Fouriensfarmation to, the field of a harmonic point
sourceinsidea hard-walled infinite duct. Verify this by an alternativepapach based on representation
(D.57).

Consider a cylindrical duct of radiug, with an acoustic medium of densipy and soundspeed, and
lined with sound absorbing material of uniform impeda&cdnside the duct we have a sound field of
angular frequency and circumferential periodicityn. For definiteness the sound field may be described
in complex form as a linear combination of the modggom,r) €=M/ Fkm =1 .

We define the optimal impedancgpt as the impedance that maximises the modal attenuatin,

[ Im(km, )|, of the least attenuated mode (Cremer’s optimum). You maurae that this optimum is

found at one of the values & where two modes coincide (see also figure 7.7).

— Derive the eigenvalue equatidf(a, Z) = O for radial wave numbesim, . This is a dimensional
version of equation (7.24). Note that coinciding solutiane found wheré(«, Z) and g—aF(a, Z)
vanish simultaneously.

— Show thatZ,p takes the form

Zopt= PO%(%?) Km,

whereKy, is a fixed number to be determined numerically.
— Find numericallyK, form =0, 1, 2.



8  Approximation methods

Mathematical modelling is the art of sorting out the wholeapum of effects that play a role in a
problem, and then making a selection by including what isvaht and excluding what is too small.
This selection is what we call a “model” or “theory”. Modeladatheories, applicable in a certain
situation, are not “isolated islands of knowledge” proddeith a logical flag, labelling it “valid” or
“invalid”. A model is never unique, because it depends ontype, quality and accuracy of answers
we are aiming for, and of course the means (time, money, noalgrower, mathematical skills) that
we have available.

Normally, when the problem is rich enough, this spectrumffgfots does not simply consist of two
classes “important” and “unimportant”, but is a smoothlgtdbuted hierarchy varying from “essen-
tial” effects via “relevant” and “rather relevant” to “unjportant” and “absolutely irrelevant” effects.
As aresult, in practically any model we select there will fieats that are small but not small enough
to be excluded. We can ignore this fact, and just assume lireffexts that constitute our model are
equally important. This is the usual approach when the prolik simple enough for analysis or a
brute force numerical simulation.

There are situations, however, where it could be wise t@satthe smallness of these small but im-
portant effects in such a way that we simplify the problemhaitt reducing the quality of the model.
Usually, an otherwise intractable problem becomes sadvabtl we gain great insight in the problem.

Perturbation methods do this in a systematic manner by alsengharp fillet knife of mathematics in
general, and asymptotic analysis in particular. From thispective, perturbation methods are ways
of modelling with other means and are therefore much moreoitapt for the understanding and
analysis of practical problems than they're usually cestlivith. David Crighton [41] calledAsymp-
totics - an indispensable complement to thought, compmutand experiment in applied mathematical
modelling.

Examples are numerous: simplified geometries reducingphtas dimension, small amplitudes al-
lowing linearization, low velocities and long time scald®wing incompressible description, small
relative viscosity allowing inviscid models, zero or infmiengths rather than finite lengths, etc.

The question is: how can we use this gradual transition Etweodels of different level. Of course,
when a certain aspect or effect, previously absent from aaah) is included in our model, the change
is abrupt and usually the corresponding equations are noon@lex and more difficult to solve. This
is, however, only true if we are merely interested in exaatumerically “exact” solutions. But an
exact solution of an approximate model is not better thanpanoximate solution of an exact model.
Sothere is absolutely no reason to demand the solution tmbe emact than the corresponding model.
If we accept approximate solutions, based on the inhereall smlarge modelling parameters, we do
have the possibilities to gradually increase the compteddita model, and study small but significant
effects in the most efficient way.

The methods utilizing systematically this approach ardéedalperturbations methods”. Usually, a
distinction is made between regular and singular pertiohat A (loose definition of a) regular per-
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turbation is where the solution of the approximate problsmvierywhere close to the solution of the
unperturbed problem.

In acoustics we have as typical examples of modelling ribias: wave propagation in a uniform
medium or with simple boundaries being considerably simfilan in a non-uniform medium or
with complicated boundaries. For a uniform medium and sim@undary conditions, many exact
analytical results are available. For an arbitrary norfarm medium or complex boundary conditions,
we usually have to resort to numerical methods. Analytiparaximations and perturbation methods
come into play for cases in between where the problem diffielg a little from one which allows full
analytical treatment.

We will consider here three methods relevant in acousticadlpms. The first is the problem of Web-
ster’s horn, an example of a regular perturbation metho8][kBown as method of slow variation,
since the typical axial length scale is much greater thatr#imsverse length scale. The others are ex-
amples of singular perturbation methods. The method ofiptelscales (related to the WKB method)
describes problems in which in the problem several lengtlesact in the same direction, for exam-
ple a wave propagating through a slowly varying environm&he method of matched asymptotic
expansions is used to analyse problems in which severabsipmations, valid in spatially distinct
regions, are necessary.

In order to quantify the used small effect in the model, wd alilvays introduce a small positive
dimensionless parameterlts physical meaning depends on the problem. It will ugustém from a
characteristic amplitude, wave number, or medium gradient

8.1 Webster’'s horn equation

Consider the following problem of low frequency sound wapegpagating in a slowly varying duct
or horn [115, 200]. The typical length scale of duct variatis assumed to be much larger than
a diameter, and of the same order of magnitude as the sounel lesagth. We introduce the ratio
between a typical diameter and this length scale as the grasdimeters, and write for the duct
surface and wave numbkr

r=R(X,0), X=ex, k=c¢«k. (8.1)

By writing R as a function of slow variable

X, rather tharx, we have made our formal

assumption of slow variation explicit in a

convenient and simple way, since
oR  0R

— 22 0.
>~ fax 0@

The crucial step will now be the assump- R(X.9)
tion that the propagating sound wave is

. . .. Figure 8.1 Geometry of Webster horn.
only affected by the geometric variation in-
duced byR. Any initial or entrance effects are absent or have disaggeaAs a result the acoustic

field p is a function ofX, rather tharx, and its axial gradient scales enas(;iX p = O(e).
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It is convenient to introduce the following functidhand its gradients

S=r —R(X,0), (8.2)
VS:ngeXJrSremL%%:—ngequer —;ﬁeg, (8.3)
V.S= Se + ?ee = & — ;&ea. (8.4)

At the duct surfaceés = 0 the gradientV S s a vector normal to the surface (see section A.3), while
the transverse gradieRt, S, directed in the plane of a cross secti¥in= const., is normal to the duct
circumferenceS(X =c,r,0) = 0.

Inside the duct we have the reduced wave equation (Helméqliation)
e%Pxx + pr—i—ezzczp =0, (8.5)
at the solid wall the boundary condition of vanishing norwelbcity
Vp-VS=¢e’pxSx+V.p-V.S=0 at S=0. (8.6)

This problem is too difficult in general, so we try to utilizea systematic manner the small parameter
¢. Since the perturbation terms aDds?), we assume the asymptotic expansion

P(X,1,0; &) = po(X,1,0) + e?pr(X,1,0) + O(e?).

After substitution in equation (8.5) and boundary condiit{(8.6), further expansion in powers of
and equating like powers ef we obtain to leading order a Laplace equatiorir®)

VZpp=0  with V. p-V,S=0 at S=0.

An obvious solution igy; = 0. Since the solution of the Laplace equation with boundanddions
in the normal derivative are unique up to a constant (herenetion of X), we have

Po = Po(X).

To obtain an equation fopy in X we continue with theD (¢2)-equation and corresponding boundary
condition

VZpL+ Poxx +x°Po =0, Vi p1-VLS= — pox Sx- (8.7)
The boundary condition can be rewritten as
Pox Rx — Pox RRx

VSl /R2 + R2

wheren, = V, S/|V, S| is the transverse unit normal vector. By integrating equa{B.7) over a
cross sectiont of areaA(X), using Gauss’ theorem, and noting that= foz” %Rz dg, and that a
circumferential line element is given by & (R? + R%)Y/2dg, we obtain

Vipi-n =

//pr1+ Pox x + &2 Po do =/V¢p1-mdé’+A(poxx+x2po)=
A

oA
2

pox/RRxd9+A(p0xx+K2p0) = Ax p0x+A(p0xx+K2p0) = 0.
0
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Finally, we have obtained for the leading order figidthe Webster horn equation [12, 56, 143, 175,
214, 215, 246], which is, for convenience written in the v variablesx andk, given by

1d, d
——(A—pg) + K?pp = 0. 8.8
Adx( dx )+ (8.8)

By introducing A = D2 and¢ = Dpyg, the equation may be transformed into

1

¢" + (k2 — %)45 =0. (8.9)

This can be solved analytically for certain families of @gectional shapes. For example, the term
D”/D becomes a constant if

D=ae™ +be ™
(parameterized bg, b, andm), and the equation (8.8) simplifies to
¢+ (K —mPp =0

which can be solved by elementary methods. In the specialncas 0 such that = %(Ao + A;/m)
andb = %(Ao — A;/m), the shape reduces to the conical hére= (A + A1x)?. Forb = 0 we have
the exponential horn, andlif = a the catenoidal horn.

The parametem is clearly most important since it determines whether theews propagatingn <
k) or cut-off (m > k).

8.2 Multiple scales

Introduction

By means of the method of multiple scales we will considebfanms typically of waves propagating
in a slowly varying but otherwise infinite medium (ray acicsy, or waves propagating in a slowly
varying duct.

In both cases there is a small parameter in the problem whitteicorner stone of the approximation.
This small parameter is the ratio between a typical wavetteagd the length scale over which the
medium or duct varies considerably (say, order 1).

Intuitively, it is clear that over a short distance (a few wdgngths) the wave only sees a constant
medium or geometry, and will propagate approximately afhiéndonstant case, but over larger dis-
tances it will somehow have to change its shape in accordaitldts new environment.

A technique, utilizing this difference between small scahel large scale behaviour is the method of
multiple scales ([155, 13]). As with most approximation heats, this method has grown out of prac-
tice, and works well for certain types of problems. Typigathe multiple scale method is applicable
to problems with on the one hand a certain global quantitgr@n power) which is conserved or
almost conserved and controls the amplitude, and on the lo#mel two rapidly interacting quantities
(kinetic and potential energy) controlling the phase.
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An illustrative example

We will illustrate the method by considering a damped harimoacillator

dy(0)
= > =
S22 +y=0 (>0, YO =0 —

with 0 < ¢ « 1. The exact solution is readily found to be

y(t) =sin(v1—e2t)e ' /\/1—¢2 (8.11)

A naive approximation for small and fixedt would give

P d
y y —1 (8.10)

y(t) = sint — &t sint + O(&?) (8.12)

which appears to be not a good approximation for larfpe the following reasons:

1) if t = O(¢~?1) the second term is of equal importance as the first term arkdnapis left over of
the slow exponential decay;

2) if t = O(¢~?) the phase has an error 6f(1) giving an approximation of which even the sign may
be in error.

In the following we shall demonstrate that this type of emocurs also if we construct a straight-
forward approximate solution directly from equation (8.18owever, knowing the character of the
error, we may then try to avoid them. Suppose we can expand

y(t; &) = yo(t) + eya(t) + eya(t) + - - . (8.13)

Substitute in (8.10) and collect equal powerg of

d?yo , dyo(0)
0y . _
O(&”) : e +vy=0 with yo(0) = 0, o 1,
d?y; dyo . dy1(0)
Ol : —Z=+y=—-2—" th 0)=0 =0
) 57t — With y1(0) =0, = ,

then
Yo(t) = sint, yi(t) = —tsint, etc.

Indeed, the straightforward, Poincaré type, expansiatBj&hat is generated breaks down for large
t, whenet > O(1). As is seen from the structure of the equationsyigrthe quantityy, is excited
(by the “source”-terms-2dy,_,/dt) in its eigenfrequency, resulting in resonance. The akgjeally
growing terms of the typ&” sint andt" cost that are generated are called in this contegculat
terms.

Apart from being of limited validity, the expansion reveatsthing of the real structure of the solution:
a slowly decaying amplitude and a frequency slightly déferfrom 1. For certain classes of problems
it is therefore advantageous to incorporate this struaupdicitly in the approximation.

Introduce the slow time scale

T = et (8.14)

1From astronomical applications where these terms occtioretie first time in this type of perturbation series: secula
A2 occurring once in a century; saeculgageneration, about 100 years.
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and identify the solutiory with a suitably chosen other function that depends on both variables
andT:

y(t;e) = Y(, T;e). (8.15)

The underlying idea is the following. There are, of courséinitely many functionsy (t, T; ¢) that

are equal to/(t, ¢) along the lineT = ¢t in (t, T)-space. So we have now some freedom to prescribe
additional conditions. With the unwelcome appearance afilse terms in mind it is natural to think

of conditions, chosen such that no secular terms occur wiestowstruct an approximation.

Since the time derivatives gfturn into partial derivatives of

dy oY oY
— = —+4e— 8.16
&~ ot T (8.16)
equation (8.10) becomes fur
%Y oY 2%y %Y oY
— Y+ 2 (= (= +2—=) =0 8.17
P 8(at +8t8T)+8 (aT2 aT) ®17)
Assume the expansion
Y(t, T;e) = Yo(t, T) 4+ eYa(t, T) + &Yalt, T) +- - (8.18)
and substitute this into equation (8.17) to obtain to legdirders
%Yo
—+Y=0
Py + Yo ,
%Y, Yo . 0%Yo
4 Yy =2 _92 ~
e th ot~ “atoT’
with initial conditions
0
YO(O, 0) = 05 EYO(OJ 0) = 19
Y1(0,0) =0 aY(OO)— aY(OO)
l b - b at l b - aT 0 b .
The solution forYy is easily found to be
Yo(t, T) = Ag(T) sint with  Ag(0) = 1, (8.19)
which gives a right-hand side for th&-equation of
0Ao
—2(A0 + a_T) cost.
No secular terms occur (no resonance betwgesndY) if this term vanishes:
0
P20 e (8.20)

Note (this is typical), that we determing fully only on the level ofY;, however, without having to
solveY; itself.
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The present approach is by and large the multiple scale itpofiin its simplest form. Variations on
this theme are sometimes necessary. For example, we hazempletely got rid of secular terms. On
a longer time scalet (= O(e~2)) we have inY, again resonance because of the “souree™ sint,
yielding termsO(g°t). We see that a second time sc@ije= ¢t is necessary.

Sometimes, the occurrence of higher order time scales iy sraartefact of the fast variable being
slowly varying due to external effects, like a slowly vanyiproblem parameter. In this case the fast
variable is to be strained locally by a suitable strain fiorcin the following way

. 1 et
t= g/ w(r;e)dr. (8.21)

(The need for the /e-factor is immediately clear if we observe that ¢ lwet = wt for a constant
o = 0O(1).) For linear wave-type problems we may anticipate the siraof the solution and assume
the WKB hypothesis (see [13, 80])

Y(t; ) = A(T; 6) € oo de (8.22)
We have
ay oA igilfdeT
0 (IwA-i—g T) e Jo
azy 2 oA O2A\ 1T
cy _ A 2| “n | —A 2 el!; fowdr
ot2 ( B S AR aTZ)

so that substitution in (8.10) and suppressing the exp@idattor yields
oA %A oA
2 E— E— E— =
(1— a))A+I8(2a) pa A+2a)A)+8 (aT2 28T) 0.

Note that the secular terms are now not explicitly supprkshe necessary additional condition is
here that the solution of the present typgésts(assumption 8.22), and that each higher order correction
is no more secular than its predecessor. With some luck gahinity this is just sufficient to determine

A andw. In general, this is indeed not completely straightforw&d much freedom may be left that
ambiguities can result.

Finally, the solution is found as the following expansion

A(T:e) = Ao(T) + e A(T) + 2 A(T) + - -

2 (8.23)
(T &) = wo(T) + &wa(T) + - -

Note thatw; may be set to zero since the factor eixﬁ)T w1(7) dr) may be incorporated iA. Substi-
tute and collect equal powers af

O(eY : (1—wS)Ao=O —> wg=1,

O(sY) : %JFAO:O — Ag=¢e",

A
O(e2?) - 2|(8—T+A1) = (1+2m)eT —> mp=—-3%, A =0.

The solution that emerges is indeed consistent with thet escdwation.
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8.3 Helmholtz resonator with non-linear dissipation

An interesting application of the multiple scale techniguithe Helmholtz resonator, derived in equa-
tion (5.41). In this way we will be able to investigate the #man-linear terms that will be seen to
represent a small damping. See also [221].

We start with equation (5.41)

v dPp, V2 dp,
C2S, dt?  2pocgSP dt

where we wrote for simplicity := ¢ + 26.

RV dpj,
pocsS, dt

dpi

- + Py = Phx (5.41)

For a proper analysis it is most clarifying to rewrite the &ipn into non-dimensional variables. For
this we need an inherent timescale and pressure. For vagigimplitudes and negligible dissipa-
tion the equation describes a harmonic oscillator, so thignmacal of its angular frequency, =
(c3S,/¢V)Y? is the obvious timescale of the problem. By dividing the ieedr damping term by the
acceleration term we find the pressure Iev,aic%t’%/v at which the nonlinear damping would be
just as large as the other terms. So for a pressure that islefsanoBion ¢ of this level we have a prob-
lem with only little nonlinear damping. In addition we assaithat the linear damping is small and (to
make the problem interesting) of the same order of magnitisdbe nonlinear damping. Anticipating
the fact that we will consider (in the forced problem) theeem&il pressure exciting near resonance,
the driving amplitudep;, will be an order smaller thap,,.

In order to make all this explicit we introduce a small partene (selected, as we just explained, via
the external forcing amplitude), and make dimensionless

1 1
S\ 2 (S ?2
r = oo, wo= (2 , R= &poCo £S5
oV v (8.24)

¢ 4
P = ZSPOCSVSny, Pox = 282poc(2,7Sh F, where 0O<e¢ 1,

to obtain
d’y  dy|dy dy
— — |—= — =¢F. 8.25
dr2+8dr dr’+8rdr+y ¢ (8.25)

The initial value problem

We will start with the response to a stepwise change of eatgessure, so we assurike= 0, and
prescribe &y = 1 att = 0. This yields the problem

d’y dy(0

—+ —’ r—+y 0, with y(0) =1, %:o. (8.26)

T

By comparing the acceleration’ with the dampinge(y'|y’| + ry’) it may be inferred that on a
timescalest the influence of the damping 8(1). So we conjecture a slow timescale, and split up
the time dependence in two by introducing the slow timestadad the dependent variabYe

dy oY oY

T=er, Y@ =YL Te),  —=——+4er,
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and obtain for equation (8.26)

0%Y (2 0%Y oY |aY

6r

oY
—+Y — )+ 0@ =
YT\t +r )+ (%) =

(8.27)

Y(0,0;¢) = 1, ( +ga—T)Y(O 0:¢) =

The error ofO(&?) results from the apprOX|mat|o§rY + s—Y ~ iY, and is of course only valid
outside a small neighbourhood of the points whgné 0. We assume the regular expansion

Y(t, T;e) = Yo(t, T) + eYi(t, T) + O(e?)
and find for the leading order

2Y0
8r
with solution

. o
+Yo=0,  with Yo(0,0) =1, =-¥o(0,0) =0 (8.28)
T

Yo = Ao(T) codt — Oy(T)), where Ag(0) =1, ®g(0) = 0.
For the first order we have the equation

A ()

— ZAO% coqt — Qq) + Aésin(r — Og)|sin(z — Bg)| +rAgsin(z — Bg) (8.29)

with corresponding initial conditions (they are unimpottéor the leading order result). The secular
terms are suppressed if the first harmonics (cos and singafght-hand side cancel. For this we use
the Fourier series expansion (section C.3, eq. C.45e)

. . - sin(2n + 1)z
n = —— 8.30
sinzsint|=-= nzzg 2n—D@n+ )2n + 3) (8.30)
and we obtain the equations
dAg dog
2F+§AO+rAO_O and a7 = (8.31)
with solution®q = 0 and
1
Ao(T) = 2 (8.32)

(3 +3r) e 3
With little linear dissipationr( small) this reduces to an algebraic deoay, Ay(T) = (1+ 3~ 4Ty,

and with little nonlinear dissipatiornr (arge) to the exponential decayy(T) = e 2T, All together
we have

¢ 1 cos _ 2
Pin ™ Zepocgvsn . 21 11‘ . with 7 = ( Sh) . (8.33)
(5 +3r) e —5 v

Comparison with a numerically obtained “exact” solutiormsi that this approximation happens to
be quite good.
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The response to harmonic forcing

Suppose we excite the Helmholtz resonator harmonicallynbgxéernal forcingpg, = C cogwt) of
frequencyw. In the scaled variablesandF this becomes

¢F =¢FgcogQr), with o = Qug.

So we have the forced oscillator

d’y  dy

d d
42 ed il + er—y + VY = eFycogQr) (8.34)
T T

dr dr

where we don't care about initial conditions, because wealginterested in the stationary state.

When we stay away from resonance conditions, in other woraswi— Q2 is not small, the solution
is relatively simple. The internal pressure follows theeemal excitation both in amplitude and in
time dependence. The nonlinear terms hardly play a rolgusecthe driving amplitude is small. So
to leading order irt we have the solution

(1 — Q?) cosQr + erQsinQr

y(r) = ekFg 01— 027 1 2202 = AcosQr - 0), .
A— eFo tang — erQ ( ) )
T /A= Q221 ezr2? —1_0%

We see that near resonance this solution is not valid anyridhen 1— Q2 = O(e), amplitude A
rises to levels 0fO(1), and the assumption that the nonlinear damping is negigsbhot correct. At
the same time, it should be noticed that this corresponds thvit most important situations (with the
most achieved damping). So it is worthwhile to analyse thiblem in more detail. As the physics of
the problem essentially change wh@A = 1+ O(¢), we assume

Q=1+c¢A. (8.36)

To facilitate the analysis we remove thedependence from the driving force, so we make again a
slight shift in the time coordinate and introduce

F=Qr (8.37)
to obtain
d’y dy |dy dy
2 2 .
Q a2 + Q) E E + &Qr E +y= SFO COiT) (838)

To leading order this becomes

d’y dy|d

d
T % +er Y 4y — ¢Focos?) (8.39)

14 26A
(1+2:4) B

When we substitute the assumed expansit ¢) = Yo(7) + ey1(7) + ..., and collect like powers
of ¢, we find foryg

Yo L vo=0 (8.40)
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with general solution
Yo(7) = AgcOST — 6p). (8.41)

Althoughyq is the result of driving forcd-, we don’t have any information yet so we can't determine
the integration constant&; andd, at this level. Therefore we continue with the next orger

&’y . d’yo  dyo [dyo| dyo
. Ty = Focodh) = 2hm — i |6 | T o

dr2
= Focog7) + 2A Agcos7T — o) + Aol Aol Sin(T — 90)|sin(f — 00)\ +rAgsin(z — o).

(8.42)

From the argument that we are only interested in the statjostate it follows that no resonant ex-
citation is allowed in the right-hand-side of the equation ¥;. This is effectively very similar to
the condition of absent secular terms of the previous Initidue problem. So we can use the same
techniques to suppress the cos- and sin-terms, and uséoeq{®80) to obtain

FocoSty = —2A Ay, Fosinbo = (= |Aol +1) A (8.43)
with solution
8
[(Z1A0l +1)*+4A%]A2=FZ,  tandp = e (8.44)

This equation has several solutions, and it may not be imaegliclear which is the correct one. To
solve Ay = Ag(A) is difficult, but it is easy to writeA? as a function ofAy:
1[F¢ 2
2 0 8
A ZZ[E—(§|AO|+F) ]
SinceA? > 0 we see immediately that two solutions exists only for adiniterval inAg, these two
arex+ symmetric (we only need to consider one), wmle—> +oo only whenAgy — 0. In particular,

Fo r r
>~ — tandp~ —— or Gh=~——=——+n
Ao = 21 0="2A 0= 55 ThT
which is in exact agreement with the asymptotic behaviourfo= 1 + ¢ A, A large, of (8.35). In
fact, by tracing the solution parametrically as a functibm\o we can see that if we start witly = O
for A - —o0, we end withdy = 7 for A — oo. See figure 8.2 for an example.
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Figure 8.2 Solutions of amplituded; and phasé, as a function ofA, forr = 1 andFy = 1. See (8.44)
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8.4 Slowly varying ducts

Consider a hard-walled circular cylindrical duct with avely varying diameter ¢.f. [196, 194, 203,
156, 34, 199, 166],), described in polar coordindtes, 6) as

r = a(ex) (8.45)

with ¢ a dimensionless small parameter. In this duct we have arsaconedium with constant mean

X
Il
™
X

S o]

r =a(Xx)
Figure 8.3 Sketch of geometry of slowly varying circular duct.

pressure and a slowly varying sound spegd= cy(ex) (for simplicity no variation inr and@ is
assumed). Sound waves of circular frequencyre described by a variant of the Helmholtz equation

v. (%Vp) +p=0 (8.46)

wherek = k(ex) = w/cy(ex), with boundary condition a vanishing normal velocity comenot at
the wall, so

n-Vp=0 atr = a(ex). (8.47)
Since (section A.3)

n o V(r — a(gx)) =g — ed(ex)ey,
(wherea’(z) = da(z)/dz) this is

0 0
a—f - ga’(gx)a—f: —0 atr —a(ex). (8.48)
We know that for constara and constank the general solution can be built up from modes of the

following type (chapter 7)

P = Adn(om,r) e ™o, (8.49)
am/l = jr/nlu/a,
k2, =K —af,, Rekm,) >0, IM(kn,) <O,

and we assume for the present problem, following the prevémgction, that there are solutions close
to these modes. We introduce the slow variable

X = ¢X
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so thatk = k(X), and we seek a solution of slowly varying modal type:
= AX,r;e)e ™ el oy G

(8.50)
Since

Z—E = (—iVA+e%‘)exp(...)

o?p 2 . 0A . Oy ,02A
we have for (8.46) after multiplication witk?:

. 0A . 9y %A 10k /. oA
L2 on . oy 20 A 5, LOK( on
[ y <A 2|8y8X |88XA+8 %2 2¢ ( IyA+88X)

A 10A m?
S — — —A+KAl|exp(---) =0.
Tt T eEht } p( )
After suppressing the exponential factor, this is up to ofdé&)
. k2o [y A?
L =is—— (L),
(8.51)
oA oa
— +ie—yA=0 atr =a(X
o Tlégx? (X),

where we introduced for short the Bessel-type operatorAppendix D)

o2A  10A m?
£(A)=a—+——+(k2— Z—r—z)A

rz2 ror
and rewrote the right-hand side in a form convenient latepaad
AX, 13 8) = Ag(X, 1) + e A(X, 1) + O(e?)
y (X; ) = yo(X) + O(&?)
substitute in (8.51), and collect like powerszof
O1): L(A)=0 (8.52)
o _g

atr = a(X
ar ( )’

. . kz 0 yoAé
O(e): £(A) = 'EW(V) (8.53)
oA

oa
— == atr = a(X).
P> GXyOAO (X)
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Since variableX plays no other role in (8.52) than that of a parameter, we favé, the “almost-
mode”

Ao(X, 1) = Po(X) In(a(X)r),
a(X) = jm./a(X), (8.54)

pé(X) = K3(X) — a®(X), Re(yo) =0, Im(yo) <

The amplitudeR, is still undetermined, and follows from a solvability cotidin for A;. As before,
amplitudeP, is determined at the level &k, without A; necessarily being known.

Multiply left- and right-hand side of (8.53) withAq/k? and integrate t@ from 0 toa(X). For the
left-hand side we utilize the self-adjointness af.

er

oA oA ?

1 /2 1
£(A1)dr kZ/ rAgL(Ar) —rA1L(A) dr = @ [er—— Al—

yoa oa

k2 oX

For the right-hand side we apply the Leibniz integral rule

a
i/ (yOAO)rdr / rVOAO —i@E 2
s OX\ K2 'ax k2 k2 oX

As a result

2

170”5 m? " 0P, m N2
/O 2 ar = 2k2P0( —E)Jm(ar) o:Wa (1—F)Jm(1mﬂ) = constant

my

or:

Po(X) = const————— k) conStM (8.55)

a(X)+/70(X) A/ 70(X)

It is not accidental that the above integfi(r yoA2/k?) dr is constant. The transmitted power pfs
to leading order

2r a1 T a 5
=/0 /OERe(pu)rdrdazw—po/O Im(pﬁp)rdr

a
— ~_Re(yo) ¥ Mmoo [ a2 . (8.56)
wpo 0

This is for propagating modes( real) constant:
2

T 21, m » yo k2 1
P = —yolPol* 3a%(1 - Jn(jL.)? = const’=——a? = const— = constant
/2 mu 2 2
@Po It Poayo PoCh

sincepocg is, apart from a factor, equal to the constant mean pressure.
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8.5 Reflection at an isolated turning point

An important property of expression (8.55) fBg is that it becomes invalid wheyy = 0. So when
the medium and diameter vary in such a way that at some poiat X, wave numberyg vanishes,
the present method breaks down [197, 164, 165, 167, 222]small interval aroundy the mode
doesnotvary slowly and locally a different approximation is neaays

When yoz changes sign, ang, changes from real into imaginary, the mode is split up intag c
on reflected part and a cut-off transmitted partXy is isolated, such that there are no interfering
neighbouring points of vanishing, it is clear that no power is transmitted beyaXgl(Re(yo) = 0in
(8.56)), and the wave has to reflect&t Therefore, a point where wave numbgrvanishes is called

a “turning point”.
\'(0‘/
NN NN — |
|

Figure 8.4 Turning poinXg, where a mode changes from cut-on to cut-off.

Asymptotically, a turning point region is a boundary lay@dahe appropriate analysis is that of
matched asymptotic analysis (section 8.8), in the contigkicdWWKB method (see [13, 80]). However,
since the physics of the subject is most relevant in this@eon slowly varying ducts, we will present
the pertaining results here

Assume atX = X a transition from cut-on to cut-off, S§>Zy02 <O0or
C(Xo) @' (Xo) -
Co(Xo)  a(Xo) ’

Consider an incident, reflected and transmitted wave of/efound above (equations 8.50,8.54,8.55).
SoinX < Xq, wherey is real positive, we have the incident and reflected waves

or O(/(Xo) — k/(Xo) > 0.

K(X)a (X)
V7o(X)

with reflection coefficienR to be determined. IiX > Xg, whereyg is imaginary negative, we have
the transmitted wave

K(X)a (X)
A/ 70(X)

with transmission coefficient to be determined, whilg/yo = g 37 /|70l will be taken.

. 10X ’ / -1 X / /
p(X, rja) — Jm(a(x)r)e—lme |:e_|g :L./XOVO(X)dX +Re|‘p' :L.[XOVO(X)dX] (857)

PO T 0) =T In(a(X)r) e g1 figox)ax’ (8.58)

2As is explained in section 8.8, the steps in the process efuhning the boundary layer thickness and equations, and
finally the matching, are very much coupled, and usually tomthy to present in detail. Therefore, to keep the present
example concise, we will present the results with a limitesbant of explanation.
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This set of approximate solutions of equation (8.46), valitside the turning point region, constitute
the outer solution. Inside the turning point region thisragpmation breaks down. The approximation
is invalid here, because neglected terms of equation (&#6how dominant, and another approxi-
mate equation is to be used. This will give us the inner or dawnlayer solution. To determine the
unknown constants (her& andT), inner and outer solution are asymptotically matched.

For the matching it is necessary to determine the asympbetiaviour of the outer solution in the
limit X — Xq, and the boundary layer thicknes®(the appropriate local coordinate).

From the limiting behaviour of the outer solution in the tag point region (see below), we can
estimate the order of magnitude of the solution. From a loalaf terms in the differential equation
(8.46) it transpires that the turning point boundary lagesfithicknessX — X = O(¢%3), leading to
a boundary layer variablg given by

X = Xo+ &%

Since fore — 0
7§(X) = 15 (Xo + £27°¢) = =26 ko(ag — k)& + O(e¥°¢?),

whereky = k(Xo), ky = K'(Xo), etc., we have
% /X OX yo(X) dX’ = [:?;f//j:__é :: §j8
where we introduced

¢ = {2ko(ag — kp)}%¢ and ¢ = 3%
The limiting behaviour forX 4+ Xg is now given by

Ko a0
{2eko(arg — k) /81 E1Y

while it is for X | X given by

P~ < Im(or) €7 (eif +Re—if), (8.59)

47” %o |m9
rye"
{Zeko(ao ko)}1/5§1/4 Jm(aor)
Since the boundary layer is relatively thin, also compaoati¢ radial coordinate, the behaviour of the

incident mode remains rather unaffected in radial directand we can assume in the turning point
region

hoT (8.60)

X, T, 0) = In(a ()N p (&) e™.
From the properties of the Bessel equation (D.1), we have

°p 1op 1é%p
2t oo Trzage TKP=10P=06")p.

Hence, equation (8.46) yields

2 1 2. .. .23 ’p 2/3 ima [ 0 /
V- (5 Vp)+K2p e a(:2+y Zp = e In@(X)r) e {552 2o(ag—kp)w | =
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Figure 8.5 Airy functions

which is, written in variable, equivalent to Airy’s equation (D.83)

621// -
—_ = 0.
2z2 97
This has the general solution (see figure 8.5)

v (&) = aAi(g) + bBI(),

where a and b, parallel withR and T, are now determined from matching. Using the asymptotic
expressions (D.84,D.85) for Airy functions, we find that folarge with 1« & « ¢~%/3, equation
(8.60) matches the inner solution if

1 .
a b e1™ kyag

¢ ~
2ﬁ51/4 € +ﬁ51/4 e T {28k0(0!6 _ %)}1/651/4

Sinceet — oo, we can only havéy = 0, and thus

—C

a— ZﬁTk()OC()e%”i
" {2eko(ag — ko)

If —¢& is large with 1« —& <« ¢~%2 we use the asymptotic expression (D.84), and find that esquati
(8.59) matches the inner solution if

1 N ko o
COSE = 2™ ™ il — k) 6 [

a . _
S el +Re™),
VB ( )
or

T e (@-am fe ity — Tel 4 Tie ™ ~ & fRe .
So, finally, we have

T=1 R=i. (8.61)
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8.6 Ray acoustics in temperature gradient

When a sound wave propagates in free space through a medatmatfies on a much larger scale

than the typical wave length (typically: temperature geats, or wind with shear), the same ideas of
multiple scales may be applied. In contrast to the duct, e/kiee wave is confined by the duct walls,

the waves may now freely refract and follow curved paths.s€hgaths are called rays. This means
that rays are not localized “beams” of sound, but only thge¢aits of the intensity vectors of a sound

field.

Consider an infinite 3D medium with varying temperature libeowise with a constant mean pres-
sure, so that we have again equation (8.46), but noxarying more generally as a function &f

V. (CSV p) + w?p =0, Co = Co(eX) (8.62)

for a time harmonic sound fielg « €. The typical lengthscal& of sound speed variations, es-
timated fromL~ ~ ||Vc|/co, is assumed much larger than the typical wave lerigth cy/w. In
order to quantify this, we writey = co(eX) where the small parameteris given bye = A/L. In the
following, we will see that this introduction of is a convenient way of keeping the large and small
terms apart.

Assuming the field to be locally plane we try an approximatatsm having the form of a plane wave
but with slowly varying (real) amplitudé = A(X; &) and phase = 7(X)

p(x) = Ae '7/¢ (8.63)

whereX = ¢x the slow variable. The surface$X) = swt describe the propagating wave front. Note
that the vector field/z is normalto the surfaces = constant (section A.3). Define the operator

T _ ( 0 0 0 )
—\oX’ oY’ oz
so thatV = ¢V. Define the local wave vector

k=Vr, (8.64)

inspired by the fact that if we approximate locatlyX) = 7o + Vz- X + ... (with 7o an unimpor-
tant constant), the wave becomes a plane wav, €<~ X with frequencyw and wave vectok.
Substitute (8.63) in (8.62):

Vp=(VA—iAk)e ', (8.65a)

V2p = (e2V°A—2ieVA-k—i2AV -k — Alk|?) e77/%, (8.65h)
to obtain

(@* — KA —ie ATV - (GAPK) + &°V - (CGVA) = 0. (8.66)
Expand

A(X; &) = Ag(X) + e Ar(X) + O(e?)

31t should be noted that our point of view here is to think of gneblem as a wave in a slowly varying mediuine, to
considerL “large”. Another, equally valid point of view is to think of medium with a high frequency wavee. to scale
the problem orlL and to consider the wave length “short” or the frequencylihig
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and collect like powers in (8.66). We find to leading order
c3lkl? —0? =0 (8.67)

V- (c5A3K) = 0. (8.68)

Equation (8.67) is theikonal equationwhich determines the wave fronts and the ray paths. Equatio
(8.68) is called theransport equatiorand describes theonservation of wave actionvhich is here
equivalent toconservation of energjl21, 250]. It relates the amplitude variation to divergiog
converging rays.

The eikonal equation is a nonlinear first order partial défaial equation, of hyperbolic type, which
can always be reduced to an ordinary differential equationgacharacteristics [35]. This is summa-
rized by the following theorem ([250, p.65]).

Theorem 8.1 (General solution of 1st order PDE)
The solution of the first-order partial differential equatti

H(k,z,x) =0, k=Vr,

with consistent boundary conditions on a surface S, is ghwethe system of ordinary differential
equation$

dr
— =VWH, —=k-WH, —=-k— —-VH
di " da KT ot X"

where the curvex = x (1), with parameter, is called a characteristic.

A characteristic forms a path along which the informationref boundary values on S is transferred to
the point of observation. In general the characteristic &egls on the solution, and both characteristic
and solution are to be determined together. If more than arietf a characteristic is part of S, the
boundary conditions are not independent, and in generainscstent. If more than one characteristic
passes through a point, the solution is not unique.

By starting from other, equivalent, equationglj z, X) = 0, we obtain the same solution but with
other parametrizations.

Sometimes a preferable parametrization is the so-callagalgparametrization, witih equal to the
arclength and & x || = 1.

The characteristics are here identical to the rays. By tegrequation (8.67) a%g(c§|k|2 —0?)/o =
0 and using theorem (8.1) (p.197), the characteristic bk just the time (but notthe arclength),
and we have the expected

T (X(1)) = ot (8.69)

along arayX = X(t) given by

dX k
el (8.70b)

4Vk H denotes the gradient i (%%); similar for Vi H.
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wherelk| = w/cy. Equations (8.70) form a first order system of ordinary dé#feial equations, called:
“ray-tracing equations”. Together with suitable initialwe conditions irk and X, they constitute an
initial value problem that can be solved numerically by dtd integration routines like a Runge-
Kutta method.

Once we know the rays, the transport equation (8.68) canliedsas follows. Consider a small area
S of the surface = C,, and connect the points & via the rays (following the vector fielk) with
the corresponding are® on the surface = C,. Then the volume of rays connectir®j and S; is
called a ray-tube. Sinck is just parallel to the tube’s surface, except rand S, where it is just
/Co and perpendicular to it, we have (with Gauss’ theorem)

/tUbeV-(cSASk)dX=O=/SzcoAéds—/51coASds.

If we associate to a ra)((t) a ray-tube with cross sectid®d= S(X), the amplitude varies according
to the relation

A3(X)Co(X)S(X) = constant along a ray tube. (8.71)

From equation (8.70b) it can be inferred that a ray (withatiom k) bends away from regions with
higher sound speed. This explains why sound is carried daged cold surface like water or snow, and
not at all along for example hot sand. When the surface istbelek is a positive soundspeed gradient
which causes the sound waves to bend downwards to the surfazmembination with reflection at the
surface the sound is trapped and tunnels through the layacead to the surface. When the surface
is hot there is a negative soundspeed gradient which cabhsesotind to bend upwards and so to
disappear into free space.

We can make this more explicit for a sound speed that vamesaily in space. We have then the
remarkable result of exact solutions of rays following @aircles. To show this in detalil, it is neces-
sary that we obtain a parametrization that correspondsamitarclength (in the slow coordina€).
Therefore, we recast the eikonal equation in the form

1 w?
HX, 7, k) == | |k| = 50— 8.72
.10 =5 (1K= ) 872
and obtain from theorem (8.1)
dX 1k 1w ko
ds 7 21kl 2@ kBT k|
dr
— =k-k\H=— =1k
& k K K|
dk oH w? — K| —
— =—k——-WH=0—-—Vcg=—-——V
ds or k| =g e

The ray is given by the curvi¥ = X(s) and launched aK(0) = &x(0) in the directionk(0) with
initial phaser (0). Since we have applied the so-called natural parametizatvith s the arclength,
4 X = t is the unit tangent vector arﬁ—x the curvature vector:

ds 52 :

?X 1d 1k = =

(0]
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The curvature, or reciprocal radius, is then

| = g [IKI?Veol? — (Veo- k)] * (8.74)
Now we use the fact that varies linearly in (say) direction:

Co=0q+a(X-n), Vcg=an. (8.75)
Decompose vectdr in a component im direction and one orthogonal to it

K = kon + kib, with n-b=0, |b =1 (8.76)
Of course kg = (k-n) andk; = (k- b). It follows from

&- _'_C‘Z'VCO _ —%an (8.77)

that k only varies inn-direction, whilek;b is constant, determined by the initial wave veckg0).
Since alsa is fixed, it is onlyky = ko(S) that varies witts. So we go on with the curvature

= |k| [k(Veo-k) — [k[2Veo] = |k| [(kon + kib)ako — (K + KD)an]
(8.78)
Ikl [akZn + akokyb — akdn — ak?n ]_%(k" — kN )—0‘—kl
where vector
kob — kqn
_ 8.79
q (8.79)

is the unit curvature vector (or principal normal unit vegiaf curve X (s). Sincen andb are constant,
¢, and thereforeX, is in one plane. More precisely formulated: the normal eeof the plane ofX
(the so-called osculating plane X is

txc=nxb

or the unit binormal vector oK. Sincen andb are constant, the torsion of
d
—(txc) =
OIS( )

is zero, andX is a plane curve. Furthermore, since the curvature

Otkl

lic| =

is constant, the curve is a circle. The radiusXinoordinates) iR = |w/aki¢|, and depends on the
initial conditionk;. The center of the circle is found at= x(0) + Rc. See [123].
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8.7 Refraction in shear flow

The propagation of sound waves in the atmosphere is grefiflgted by wind. For example, the
communication between two people, one downstream and csteeam, is not symmetric. The one
upstream is easier to understand for the one downstreanthibather way around. Thisitbecause
the wind “carries the waves faster”, but it is due to refmctby the wind gradient (the atmospheric
boundary layer). This is seen as follows ([121]).

Figure 8.6 Refraction in shear flow.

Consider the acoustic wave equations (2.51a-2.51d) farcsouan arbitrary mean flow. We assume
the sound field to be time harmonic with a frequency high ehdogdopt a ray approximation. The
small parameter is now again~ cy/wlL, with L a typical length scale for variations in the mean flow
velocity vg. Similar to the foregoing chapter we introduce the comm@sariableX = ¢x and the
ray approximations

P, p,v,s= P(X;e), R(X; ), V(X; &), S(X; &) x t-itX/e
which are substituted in (2.51a-2.51d), with = K, to obtain to leading order

pOV(a)—vo-k):Pk, R(w—vo-k)poV-k,
S(w—v9-K) =0, P(w—1vp-K) =CSR(@ — vp-k).

This yieldsS= 0, P = c3R and an eikonal equation
kP2 = (0 — vo- k). (8.80)

This equation is similar to (8.67). By rewriting eq. (8.88)5ac3|k|?/(w —vo-K) — 3e(w —vo- k) = 0
and using theorem (8.1) (p.197), the characteristic vhrimjust the time, and we have

7(X) = ewt

along the rayX = X(t), given by

dXx k

E =& (Com + Uo) , (881&)
dk — _

= ¢ (IkIVEo 4+ Vug-k) . (8.81b)

5 (Vu-ky ZZj mkj.

0X;
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A popular, but unnecessary approximation is to write thevatemuations (8.81) in the same form as
(8.70), by introducing an “effective sound speed; as follows.

dX k dk K[ N k
— — — > — = — - vq.
at SCefflk|, at € Ceff, Ceft = Cp K 0

This approximation is correct ify — ‘—I‘:‘(% -00) and|k|(V|—i| -vo) are negligible (for example when
points mainly in the direction afy and varies little spatially). This depends, among otherg$j on the
initial conditions and the trajectory traversed, and sti@llvays be checked afterwards. Moreover, the

numerical solution is not simpler, so there seems to be nd geason to resort to this approximation.
For a simple parallel flow ix-direction, varying only irg, and a uniform sound speed

vo(X) = (Uo(2), 0,0)
equation (8.81b) becomes

dke  dk, dk,
—X =TV =0, =2 = —eUY(Z)ky. 8.82
R S S C (8.82)

So, if we start with for example a vertical wave frdat= kyey, then a positive wind shearlyd/dZ >

0) will decrease the-componenk,. In other words, the rays will bend towards the low wind-spee
regions. Propagating with the wind, the waves bend down anthin near the ground; against the
wind they bend up and disappear in the free space.

8.8 Matched asymptotic expansions

Introduction

Very often it happens that a simplifying limit applied to a m@omprehensive model gives a correct
approximation for the main part of the problem, but not ewdrgre: the limit isnon-uniform This
non-uniformity may be in space, in time, or in any other Valea For the moment we think of non-
uniformity in space. This non-uniformity may be a small mynear a point, say = 0, or it may be
far away,i.e. for x — oo, but this is of course still a small region near the origin gk,1so for the
moment we think of a small region.

If this region of non-uniformity is crucial for the problerfor example because it contains a boundary
condition, or a source, we may not be able to utilize the padimit and have to deal with the full
problem (at least locally). This, however, is usually noetr The local nature of the non-uniformity
itself gives often the possibility of another reduction.sbich a case we call this a couple of limiting
forms, “inner and outer problems”, and are evidence of tloe tfzat we have apparently physically
two connected but different problems as far as the domigatiechanism is concerned. (Depending
on the problem) we now have two simpler problems, servingpasthary conditions to each other via
continuity ormatchingconditions.

Suppose we are interested in the solution of

dy .
— = SinX 0)=1 x>0
for small positivee, and suppose for the moment that we are not able to find an saldion. It is

natural to try to use the fact thatis small. For example, from the structure of the problem, nehe
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both the source and the boundary value @(&), it is very likely to conclude thay = O(1). If also
the derivativey’ is not very large (which is true for the most, but not, as wé sak, everywhere), then
a first approximation is clearly

Yo 2 SinX.
We could substitute this into the original equation, and &rabrrection
y1 2 SiNX — gy, = SiNX — & COSX.

We can continue this indefinitely, and hope for a better arnittbapproximation of the real solution.
However, this can not be true: the approximate solution dotinis way is completely determined
without integration constants, and we cannot apply anyeviiee boundary conditiog(0) = 1. In
fact, the value ax = 0 that appears is something like: . . ., and quite far away from 1.

What's happening here? The cause of this all, is the factithétte neighbourhood of = 0, to be
exact: forx = O(e), the solution changes its character over a very short dist@moundary layer),
such that the derivativg’ is nownot O(1), but very large:O(¢~1). Since equation and solution are
evidently closely related, also the equation becomes tiabgulifferent, and the above approximation
of the equation is not valid anymore.

The remedy to this problem is that we have to stretch the bi@sassuch that the order of magnitude of
the solution is reflected in the rescaling. In general thiaigrom obvious, and certainly part of the
problem. In the present example it goes as follows. We write ¢£ andy(x) = Y (¢), so that

% +Y = sin(ed), Y(0) =1,

Now we may construct another approximation, locally vatidf = O(1)

dYo

— +Yox~0, Yo(0) =1,

e + Yo 0(0)
with solution Yp(¢) = e<. We may continue to construct higher order correctionsnike will see
that for ¢ large, respectivelx small, thisinner solution Y, smoothly changes into the aboweater
solutionyg (matching), and together they form a uniform approximation

General methodology

In the following we will describe some of the mathematicatioelology in more detail ([155, 13, 54,
115, 42, 80, 112, 105]). We are interested in the limitingawébur fore | 0 of a sufficiently smooth
function @ (x; ¢) with, say, 6<x<1, O<e<¢gg. @ has aregular asymptotic approximation on [0, 1]

if there exists a gauge-functiqiy(e) and a shape-functio®y(x) such that

jim | 252

— ®g(X)| =0 uniform inx
M| ooy~ PO

or:

D(x; ) = uo(e)do(X) +0(up) (¢ — 0, uniform inx).
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A regular asymptotic series expansion, with gauge-funstja,(¢) and shape-function®, (x) is de-
fined by induction, and we say

N
D(x;2) = D un(e)@n(X) + 0(un) (¢ — 0O, uniform inx). (8.83)
n=0

Note that neither gauge- nor shape-functions are unigughémmore, the series is only asymptotic in
¢ for fixed N The limit N — oo may be meaningless.

The functions that concern us here ot have a regular asymptotic expansion on the whole inter-
val [0, 1] but say, on any partial intervglA, 1], A> 0, A fixed. We call this expansion thauter-
expansion, valid in the "x = O(1)"-outer region.

N
O(x:e) = D un(E)gn(x) +0(un) &~ 0, x=0(). (8.84)
n=0

The functions do not have a regular expansion on the whaevaltbecause the limit— 0,x — 0 is
non-uniform and may not be exchanged. There is a gaugeidanit), with lim 6(¢) = 0, such that
in the stretched coordinate 0

X

<= o(¢)
the functionW (&;e) = ®(J(¢)S; €) has a non-trivial regular asymptotic series expansion gn an
partial intervall € [0, A], A> 0, Afixed. The adjective non-trivial is essential: the expansist be
“significant”, i.e. different from the outer-expansion ¢n, rewritten in¢. For thelargestd(¢) with this
property we call the expansion f&f the inner-expansion or boundary layer expansion, the region
¢ =0(1) or x= 0O(9) being the boundary layer with thicknegsand¢ the boundary layer variable.
A boundary layer may be nested and may contain more bounaeyd.

Suppose®(x; ¢) has an outer-expansion

D(x: &) = D uk(&)pk(X) + 0(un) (8.85)
k:O

and a boundary layet = O(0) with inner-expansion

V(&) =D k(@) pk(©) + 0(im) (8.86)

k=0

and suppose that both expansions are complementamyere is no other boundary layer in between
x = 0(1) andx = O(9), then the “overlap-hypothesis” says that both expansiepsesent the same
function in an intermediate region of overlap. This oventagion may be described by a stretched
variablex = 7(¢)o, asymptotically in betwee® (1) and O(9), so: dkn<k 1. In the overlap region
both expansionmatch, which means that asymptotically both expansions are etgnvand reduce
to the same expressions. A widely used and relatively simppbeedure is Van Dyke's matchings
rule [235]: the outer-expansion, rewritten in the innenafle, has a regular series expansion, which
is equalto the regular asymptotic expansion of the inner-expansinritten in the outer-variable.
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Suppose that
D uk@p(08) = D ) (&) + 0(im) (8.87a)
k=0 k=0
D @)y (x/8) = D uk(@)6(X) + 0(n) (8.87b)
k=0 k=0

then the expansion af back tox

D k@m(x/9) = D uk()k(X) + 0(un)
k=0 k=0

issuch thaty =6 fork=0,---,n.

The idea of matching is very important because it allows onadve smoothly from one regime into
the other. The method of constructing local, but matchimgaasions is therefore called “Matched
Asymptotic Expansions” (MAE).

The most important application of this concept of inner- autker-expansions is that approximate
solutions of certain differential equations can be comséd for which the limit under a small param-
eter is apparently non-uniform. Typical examples in adossire small Helmholtz number problems
where long waves are scattered by small objects or othecmiseected to a small geometrical size.

The main lines of argument for constructing a MAE solutioratdifferential equationt+ boundary
conditions are as follows. Suppo@eis given by the equation

D(®',®,x;¢) =0 + boundary conditions, (8.88)

where®’ = d®/dx. Then we try to construct an outer solution by looking for firtnivial degenera-
tions” of D undere — 0, that is, findug(e) andvg(e) such that

lim v5(2)D (toh, oo, X; ) = Do(@}, 9o, X) =0 (8.89)

has a non-trivial solutiopg. A seriesp = uopo + 1191+ - -+ is constructed by repeating the process
for D — vy Dy, etc.

Suppose, the approximation is non-uniform (for examplealiboundary conditions can be satisfied),
then we start looking for an inner-expansion if we have reago believe that the non-uniformity
is of boundary-layer type. Presence, location and size efbtbundary layer(s) are now found by
the “correspondence principle”, that is the (heuristidadhat if® behaves somehow differently in
the boundary layer, the defining equation must also be dabemifferent. Therefore, we search for
“significant degenerations” or “distinguished limits” bf. These are degenerations@iundere — 0,
with scaledx and ®, that contain the most information, and without being coetd in other, richer,
degenerations.

The next step is then to select from these distinguisheddithie one(s) allowing a solution that
matches with the outer solution and satisfies any applidadaedary condition.
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Symbolically:

find
Xo, 0(&), A(e), x(e)
with
X=Xo+ 0, DX ¢e)=AE)V(;¢)
such that
Bo(wg, wo, &) = liLnox—lo(a—lw’, AW, Xo + O&; €)

has the “richest” structure, and there exists a solution of

Bo(wg, wo,&) =0

satisfying boundary and matching conditions. Again, amgsptic expansion may be constructed
inductively, by repeating the argument. It is of practicaportance to note that the order estimate
of @ in the boundary layer is often determined a posteriori bynolauy or matching conditions.

Simple example

A simple example to illustrate some of the main arguments is
o? d
do  dp

2 T~ X=0 ¢0@=90)=2 (8.90)

D(,p,X;¢) =¢
The leading order outer-equation is evidently (with= vg = 1)

d
Do= =2 _2x =0
dx

with solutiongy = x? + A. The integration constar can be determined by the boundary condition
po(0) = 2 atx = 0 orgpg(1l) = 2 atx = 1, but not both, so we expect a boundary layer at either end.
By trial and error we find that no solution can be constructeceiassume a boundary layenat 1,

so, inferring a boundary layer &t= 0, we have to use the boundary conditiorxat 1 and find

po = X2+ 1

The structure of the equation suggests a correctio @f), so we try the expansion
9 =po+epr+epat .

This results forp, into the equation

dpr o2
% + d—(”;’ —0, with g1(1) =0 (theO(s)-term of the
X X boundary condition),

which has the solution

(p1=2—2X.
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Higher orders are straightforward:

den
ax

leading to solution®, = 0, and we find for the outer expansion

—0, with gn(1)=0

9 =x2+142:(1—x) + O(M). (8.91)
We continue with the inner expansion, and find wigh= 0,9 = Ay, X = 6¢

eAdPy  Ady

———+-——20¢ =0.

22 Ty ¥
Both from the matchinggouter— 1 for x | 0) and from the boundary conditiop (0) = 2) we have
to conclude thabinner = O(1) and soi = 1. Furthermore, the boundary layer has only a reason for
existence if it comprises new effects, not described by titercsolution. From the correspondence
principle we expect that new effects are only includeffy/d&?) is included. Sa:6~2 must be at
least as large a1, the largest ob~! andd. From the principle that we look for the equation with
the richest structure, it must be exactly as large, implgrmpundary layer thicknegs= ¢. Thus we
havex = ¢~1, and the inner equation

Py dy

—— 4+ = 2% =0

@ T T EE
From this equation it wouldeenthat we have a series expansion without @&)-term, since the
equation for this order would be the same as for the leadidgroHowever, from matching with the
outer solution:

pouter > 1426 + 6% = 20) +--- (x=1e¢, &= 0(1)
we see that an addition&(¢)-term is to be included. So we substitute the series expansio
v=vyoteyr+eyat-. (8.92)

It is a simple matter to find

o? d .
L0 w0 =2 > po=2+A(e -

o? d .
BP0 mO=0 = y= A D

Py | dyy 2 ¢
@JFY:Z{’ p2(0) =0 — yo=C"—20+ Ax(e* —1)

where constantgy, A;, A, - -- are to be determined from the matching condition that outpae-
sion (8.91) forx — O :

14+ x24+2 —2ex+---
must be functionally equal to inner expansion (8.92)fes oo:

2— Ap— AL+ X2 —2ex —e2Pg+ - .
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A full matching is obtained if we choosé&, = 1, A; = —2, A, = 0.

It is important to note that a matching is possible at all!' YOalpart of the terms can be matched
by selection of the undetermined constants. For examptecdkefficients of thex and x? terms are
already equal, without free constants. This is an impokansistency check on the found solution, at
least as long as no real proof is available. If no matchingappto be possible, almost certainly one
of the assumptions made with the construction of the seoiutiave to be reconsidered. Particularly
notorious are logarithmic singularities of the outer fieddf uncommon in 2D acoustical radiation
problems ([115]). Even for such a simple (looking) problestlaat of a plane wave scattered by a
static compact sphere a careful approach is necessary tteegéght results ([38]). On the other hand,
only in rather rare cases, probably related to exceptiomgsipal phenomena, no matching couple of
inner and outer solutions is possible at all.

Summarizing: matching of inner- and outer expansion playisngortant réle in the following ways:
i) it provides information about the sequence of order (g@augnctions{uy} and {1y} of the
expansions;
i) it allows us to determine unknown constants of integnati
iii) it provides a check on the consistency of the solutiaming us confidence in the correctness.

8.9 Duct junction

A very simple problem that can be solved with matched asytigpéxpansions is the reflection and
transmission of low-frequency sound waves through a jonatif two ducts with different diameter.
The problem will appear to be so simple that the apparatus AiE Mould justifiably be considered
as a bit of an overkill. However, the method is completelylegaus in many other duct problems,
allows any extension to higher orders, and is therefore d ghustration.

Consider two straight hard walled ducts with cross secBgfor x < 0, cross sectiom, for x > 0,
in some (here rather irrelevant) way joined togethex at O (figure 8.7). Apart from a region near

Figure 8.7 Duct junction.

this junction, the ducts have a constant cross section witalanormal vectom,,y independent of
the axial position.

A sound wave with potentiap;,, = €<~ js incident fromx = —oo. The wavelength is large
compared to the duct diameter:

kAL = e < 1. (8.93)
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To avoid uninteresting complications, we assume that msesfe the ratioA; /A, is not close to 1 or
0: A;/A; = O(1), A1 # Ao. Introduce dimensionless variabls.= kx, y := y/+/ A1, Z:= 2// A;.
Then for a uniform acoustic medium we have for a time harmeaoattered field

92 92 52

2 ¢ ¢ ¢ 2

— 4+ — 4+ —+% =0 8.94a
“oxz oy2 072 ¢ ( )

Vo -Nya =0 at the wall (8.94b)

In the outer regiorx = (X, y, z2) = O(1) we expand in powers of (not &2 as will be clear in the
end)

0 (X; &) = po(X) + £p1(X) + £%02(X) + - -- (8.95)

and substitute in (8.94a) to find that all terms are functibtine axial coordinateX only:

o) : % % o
oy? oz —> 90 = ¢o(X), (8.96a)
Vo Nyai =0
O(e) : @ @ o
oy? 072 —> @1 = ¢1(X), (8.96b)
V@1 -Nyan =0 |
O(e?) :
82(/)2 62(/)2 82(p0 92 = 92(X),
o2 "oz Toxa Teo=0 — (8.96¢)
V@2 Nyay =0 8—;(02 +¢0=0.

This last result is obtained from integration over a crosdice A def {X = constan} with surface
|Al, and applying Gauss’ theorem

2

%p, %92 | 0%po 9o
ds = V@2 Nyan) d¢ — Al =0.
/A( oy2 t 92 T oxz +(/’0) /M( 92 Nwan) € + (axz +(ﬂo)| |

Evidently, this process can be continued and we obtain

_[e* 4 RyEX (X <0)

0_{m€“ (X > 0) (8.972)
_ [ Ry€E (X <0)

Pn = {Tn e—ix (X - O) (897b)

(wheren > 1). The regionX = O(¢) appears to be a boundary layer, and we introduce

X = X/e,
O =¢(eX, Y,z ¢).



8.9 Ductjunction 209

The equation fo becomes
%D N %D N %D
ox2  oy? = 0z2
VO Ny =0 at the wall (8.99)

+e20=0 (8.98)

but now with matching conditions for — —oco andx — +o0,i.e. X4 0 andX | 0 of the outer
solution (8.97a-8.97h):

X — —00: O 1+ Ry+e(Ry—iX+ixR) +e2(Re+ixR — 3x* — 1x°Ro) + - -,
X —> 400 q)’ZT0+8(T1—iXT0)+82(T2—iXT1_%X2T0)+"' .

Guided by the behaviour under matching we assume the expansi
O =0+ eDy + 2Dy,
then

O(): V20y=0 — dy=constant—> 1+ Ry=Tp (8.100)
O(e): V2®; =0 —> ®; = not necessarily constant

In general, the solutio®, is difficult to obtain. However, if we are for the moment ontyarested in
the global effects on reflection and transmission, we caimagake use of Gauss’ theorem. Consider
alarge volumeV, reaching fromx = x; large negative, tx = x, large positive (large in variable
x but small in variableX, so that we can use the matching conditions)xAt x; the surface oV
consists of a cross sectighy, and atx = X, a cross sectioi,. The size ofV is denoted byV|, the
sizes of A; and A; by |A;| and| A;|. We integrate over this volume to obtain:

o o L .
/V2d>1dx=—/ —1ds+/ ZLlds=—(—i +iRo)| A —iTolAs| =0
Vv A 0X A 0X

so that:

A
1- R =T, 22 (8.101)
[Adl

which, together with equation (8.100), determirfisand Ty fully. We continue with theD(e?) term:
O(e?): V20, = —@,.

Again, to obtain®, is difficult in a general situation, but if we follow the sammgaments as fod;
we find

/ V20,dx = —@g|V| =
\

L) o0d . .
—/ —zds+/ 92 4 — — Ayl Ry — %o — X2 Ro) + Aol (=i Ty — xTo)
A 0X A 0X

—To(X2| Az| — X1| Ar| + 61)
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whered; denotes the difference, due to obvious details of the jandeometry, betweellV | and the
sum of the two duct parts;| Ax| — X1| A1|. The above identity results into

[A1|Ry + | A2| Ty = —i Tob). (8.102)

This process can be continued, at least formally. For @atthstep more and more information of
solution®,,_, is needed. For example, the next stepdgrgives a relation folR; and T, andR, and
T,, in terms of the integral (check yourself!)

0 X2
sz/d)ldx—/ (Rl—ix—i-iRox)dx—/ (T1 — i1 Tox) dx
\Y% X1 0
=i|A1|R +i|Az| To.

Note that the correction®; andT; are imaginary and therefore appear as a phase shift in teetes]
and transmitted (outer-) waves. So the reflection and tressson amplitudesife. absolute value) are
given by Ry and Ty up to O(&?).

8.10 Co-rotating line-vortices

In an inviscid infinite 2D medium a stationary line vortex guzes

a time-independent velocity and pressure field. Two of swnh v T
tices, however, move in each others velocity field. Two dgual
strong and equally orientated vortices rotate around a camuan- °
tre, and produce a fluctuating velocity and pressure field\fixed

observer). R

If the velocities are relatively low, this field will be pracally in- -l
compressible. A small fraction of the energy, however, witiate
away as sound [146, 37]. Figure 8.8 Three co-rotating vortices.

For a physically consistent problem (it is not possible imraiscid

medium to change the total amount of circulation) we pasitibthe common centre a third vortex
with a double but opposite vortex strength. By symmetry toidex will not move but of course will
contribute to the rotating motion of the other two.

Inviscid compressible irrotational flow dependingog=r cosd, y = r sinf andt is described by

0
8—/: +Vo-Vp+pVip =0, (8.103a)
op 4 2 _
pV(E+§|V(/)| )+Vp_o, (8.103b)
d
Po  \po dpp

with density p, pressurep, velocity potentialp, sound speed and gas constant. Introduce the
auxiliary quantity €.f. (1.32b))

0
Q= a_‘f+%|v¢|2 (8.104)
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then
(y —)Q+c*=c5  (constant (8.105)

where under the assumption thet> 0 forr — oo the constant; is the far field sound speed. Hence

2 2
ot p ot p
and so
2 2 0Q
(co (- 1)Q)V p="=5+Vo-VQ. (8.106)

We will consider two vortices with vortex strengtfl”, positioned opposite to each other on the circle
r = a, and a vortex of strengthl2at the originr = 0. Their motion around each other will be
incompressible as follows. Typical induced velocities @iréhe order ofl'/a, and we assume this to
be small enough compared to the sound speed for locally ipoesaible flow:

r
e=— <1 (8.107)
acpy

Introduce dimensionless variables (where we keep for coanee the same notation):
t:=tl/a?, x:=x/a, y:=y/a, ¢:=¢/I, Q:=Qa’/I?2

Equation (8.106) is then in dimensionless form

(1 (- 1)32Q)v2¢ — g(% Vo -VQ). (8.108)

In the inner region r = O(1), we have to leading order the Laplace equation for inconsjiokss
potential flow

V29 =0 (8.109)
with solution the surhof the contributions of the three co-rotating vortices

1 1 — vyt 1 — Yot
Q= — arctanX - — arctany—yl() - = arctany—yZ()

. 8.110
T X 2= X=X () 2n X — Xo(t) ( )

The position vectoky(t) = (x1(t), y1(t)) (and similarlyx,(t)) is determined by the observation that
a vortex is just a property of the flow and therefore the véyogi (t) must be equal to the induced
velocity of the other vortices at = X1 :

dxg 1 Yi— Y2 1

—_— = — - — 8.111a
dt 2r (X1 —X2)2+ (Y1 — Y2 7 X2+ y? ( )
dyl 1 X1 — Xo 1 X1

—_— = + — . 8.111b
dt 2r (X1 —X2)2+ (Y1 —Y2)? 7 xZ+y? ( )

From symmetryx, = —X4, and the solution along the circlg| = 1 is given by

Xy =coj3wt), y1=sin(Got), where o =3/2r, (8.112)

6Equation (8.109) is linear.
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and apart from an irrelevant phase shift. Solution (8.1&0)mow be written as

1 1 r2sin 2 — sinwt
= —f — — arcta . 8.113
Y= 2n I'(r2c0529—005wt) ( )
For matching with the outer field we need the behaviour ofiimodutiong for r — oo:
in(wt — 26
LSN@—) L S o). (8.114)
2rr?

For theouter regionwe first observe that the time scale is dictated by the sosc#jis is the same
everywhere. Then, if we scafe= d(e)r, it follows from matching with equation (8.114) that=
O(d%). A significant degeneration of (8.108) is obtained i= ¢, whenV?p anda?p/6t? balance
each other. Together we have:

r=rf/e, 0 =% (8.115a)
0Q ~ 2 ~
_ 27 1.4 _ .2
Q=¢ (at +1e |V¢|)_g 9 (8.115b)
which gives
(1 (- 1)84(5)6%5 — aa—? +e%5.V0 (8.116)

To leading ordery satisfies the wave equation

-, 0%
V235 — 7 = 0 (8.117)

with outward radiation conditions fdr — oo (no source at infinity), and a condition of matching
with (8.114) forf | 0. This matching condition says that, on the scale of theraa@tion, the inner
solution behaves like a harmonic point sousce®®! atf = 0, with properties to be determined.

Relevant point source solutions are
G = Re{AHn<2>(wr) eiwt—ine} (8.118)

with H? a Hankel function (Appendix D), and ordeiand amplitudeA to be determined. For match-
ing it is necessary that the behaviour fo{ 0 coincides with (8.114):

Re]—A —) € ~—_— 8.119
¢ e{ iT (wf) } 2rr? ( )
(if n > 1). Clearly, there is no other possibility than= 2, and henceA = —%wz. Note that this

order 2 indicates an acoustic field equivalent to that of atiragy lateral quadrupole. In dimensional
variables the acoustic far field is given by

Fhf/z (i)l/zcos(g(t r/co) — 20 + %n). (8.120)

¢ = Tr
where frequency2 and vortex Mach numbe¥l are given by

ol 3r _ Qa
a2 2ra?’ T 2co
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We see that for fixed the waves radiate outwards-{ cot constant), for fixed the waves rotate with
positive orientationq — %Qt constant), and at a fixed timehe wave crests are localized along spirals
(r + 29¢cy/ Q constant). This may be compared with a rotating lawn speinkl

The outward radiating time-averaged energy flux or intgrisifound from equation (8.120) to be

8 a
| = §7z'pOCSM7r—. (8.121)
This functional dependence af in 2D is to be compared with tHé8-law of Lighthill for turbulence

noise (equation 6.69), and forms a confirmation of the eséigi@r turbulence in the Lighthill analogy.

We have now obtained the solution to leading order. Highdeiw may be constructed in a similar
fashion, but we will limit ourselves to the present one. Fghbr orders more and more equivalent
far fields of higher order multipoles will appear.

We finally note that from a simple calculation the outwardagatl 2D power is equal t@nzpocga M7,
Strictly speaking, this amount of energy per time leaks afkay the total energy of the system of
vortices (which scales opoI'?), and we could try to include a small decay in time of the vorte
strengthI’. This is, however, impossible in the present model.

Exercises

a) Determine (using Webster’s horn equation) the rightimig wave p(x), with p(0) = o, in an expo-
nential horn with radiua e™*.

b) In a hot desert, a man is giving a speech to an audience. Biu¢hnof the man and the ears of the
audience are at a height yf= h = 1.5 m above the flat ground, given lyy= 0. The ground is so hot
compared to the air that a vertically stratified uniform temgture profile is established in the air. We
assume for the region relevant here that this profile coomdpto a sound speed which is linearyin
The sound speed profile is given g(y) = q(1 — ¢y), whereq = 360 nys ands = %) m~1. Since
the sound speed gradient is negative the sound waves asetesfrupwards and will disappear into the
air. Under the assumptions that the man speaks loud endwaglg typical wave length is small enough
for ray acoustics to be applicable, and that we only consaes that skim along the ground, what is the
largest distance over which the man can be heard?

c) Determine the suitable modelling assumptions and démve the wave equations (F.22) and (F.27) the
following generalized Webster equations

Als—x</A c?do %) +0’p =0, (8.122)
(poA)*lj—X(Apog—f) —(io+U (;j—x) [c*z(iw iy :—X)qﬁ] —0. (8.123)

d) A large array of acoustically compact equal Helmholtz regors (all openings in upward direction)
is covered by a top plate of negligible thickness. The plaigolid except for holes positioned exactly
at the openings of the resonator, such that the plate has@mni
porositye € (0, 1) (= the open fraction). A time harmonic acous-
tic field (p, v) €“! is scattered by plate and Helmholtz resonators. P
Find an expression for the impedance of the plate surfaceméay A
assume the model given by equation (5.41), without the neali
terms to start withHint: you may assume that the neck velocity
u, = —o (v -n); use (8.35).

e) Derive the results of section 8.4 for a 2D duct giverjydy< h(ex).




9 Effects of flow and motion

Being a fluid mechanical phenomenon itself, an acoustic wasg be greatly affected by mean flow
effects like convection, refraction in shear, couplinghwibrticity, scattering by turbulence, and many
others. We will briefly consider here some of these effects.

9.1 Uniform mean flow, plane waves and edge diffraction

Consider a uniform mean flow ix direction with small irrotational perturbatichdVe have then for
potentialg, pressurep, densityp and velocityv the problem given by
d%p N % % 1 (a

) 2
Z tUp) =0
i Oax)q5 ’

a2 2 2 2
oX oy 07 co ©.1)

0 0
=—po(= +U —) , p=Cp, v=V
P po(atJr 05 ¢, P=Cp, v ¢
whereUg, pg andcy denote the mean flow velocity, density and sound speed,cbaglg. We assume
in the following that|Ugy| < ¢o. The equation fop is known as the convected wave equation.

9.1.1 Lorentz or Prandtl-Glauert transformation

By the following transformation (in aerodynamic contexhmel after Prandtl and Glauert, but qua
form originally due to Lorentz)

M U

the convected wave equation may be associated to a statipraylem with solutionp(x, y, z,t) =
w(X, Y,z T) satisfying

%y %y Py 1%y po 0 d

oxz " dy? T %2 2oT2 0. p= B (aT +anx)w. ©-9
For a time harmonic field ¢ (x, y, z) = €T (X, y, 2) or ¢(x, Y, 2) = e€KMXy (X, y, z), where
Q=w/f, kK=w/cyg and K =Kk/B, we have

Py Py Py o

X2 + oy2 + e + Ky =0. (9.4)
The pressure may be obtained frgmbut sincep satisfies the convected wave equation too, we may
also associate the pressure field directly by the same tranafion with a corresponding stationary
pressure field. The results are not equivalent, howevergapdcially when the field contains singu-
larities some care is in order. The pressure obtained Hirischo more singular than the pressure of
the stationary problem, but the pressure obtained via thenfial is one order more singular due to
the convected derivative. See the example below.

1The assumption of irrotationality may depend on the typeoafee (1.25b), presence of singularities like edgés,
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9.1.2 Plane waves

A plane wave (inx, y-plane) may be given by

X oSO, + Yy siné, coq6 — 6h) )
1+ M cosb, 1+ M cosb,

whereé, is the direction of the normal to the phase plane ang r cosf#, y = r sing. This is
physically not the most natural form, however, becasis due to the mean flow not the direction
of propagation. By comparison with a point source field faagwor from the intensity vectorc(f.
(F.34,F.35))

p = aexp(—i k ) = aexp(—i kr (9.5)

(1) = ((pov + pvo)(P/po + vo-v)) = 3pow[ (87 IM(¢¢}) + kM|g[?)ex + IMm(pg))ey ]

1 2
3 powK|e| .
=-—=——|(cosb, + M)e, + sind,e
1+Mcos<9n[( n+ M€ + sindhey
we can learn thads, the direction of propagation (the direction of any shaddigs 9.1), is given by
M + cosé . iné
cosls = OO ing = SN . 9.6)
V1 + 2M cosh, + M2 V1 + 2M cosh, + M2
By introducing the transformed angte;
Cost, M + cosf,
COS@S = S = + n , (97)
/1— M2sirfg, 1+ Mcosb,
: iné iné
Sin®g = p sinbs _ _psint (9.8)
V1—M2sifgs 1+ Mcosby
and the transformed polar coordinatés= Rcos®, y = Rsin®, we obtain the plane wave
pi = aexp(iKMX — i KRcog® — ©y)). (9.9)

9.1.3 Half-plane diffraction problem

By using the foregoing transformation, we obtain from tresslcal Sommerfeld solution for the half-
plane diffraction problem (see Jones [97]) of a plane wav@)(®hcident on a solid half plane along
y =0, x < 0 (fig. 9.1), the following solution (see Rienstra [189]) émrhs ofpotential

iap?

H(X,y) = oL~ Mcos6y) exp(iKMX — iKR)(F(I's) + F(Ts)) (9.10)
where
AT e - 12 qin 1
F(2) = 7 e i e dt and I, I's=(2KR)7<sin5(0 F Os). (9.112)

An interesting feature of this solution is the following. Afhwe derive the corresponding pressure

p(x,y) = aexp(iKMX —iKR)(F(Is) + F(Ts))
ae*“f/4 M cos30s
J/T 1— McosOg

1/2
+ exp(iKMX—iKR)sin%@(%) . (9.12)
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Figure 9.1 Sketch of scattered plane wave with mean flow

we see immediately that the first part is a solution by itsélfs a multiple of the solution of the
potential. So the second part has to be a solution too. Funtire, the first part isegular like ¢,
while this second part isingularat the scattering edge. As the second part decays foRany oo, it
does not describe the incident plane wave, and it may be dibifpve do not accept the singularity
in p at the edge. So the found solution (9.12) is not unique by xistemce of an eigensolutiop,

sin$®
VKR’
Without p,, the solution is regular, otherwise it is singular. If wedstip, a bit deeper, it transpires
that it has no continuous potential that decays to zero fgely]|. In fact, p, corresponds to the field

of vorticity (in the form of a vortex sheet) that is being stiemin the edge. This may be more clear if
we construct the corresponding potentalfor largex, to be compared with (3.66), which is

Py (X, y) =expiKMX —iKR) (9.13)

. w . @
¢y ~ sign(y) exp(—U—OlyI - 'u_ox)’ p, ~ 0. (9.14)

In conclusion: we obtain the singular solution by transfimgrthe no-flow solution in potential form,
and the regular solution from the no-flow solution in pressur -
form. Their difference is the field of the shed vortex sheet.

0.8

This shedding of vorticity costs acoustic energy, so on the o
hand it is a sink of acoustic energy. On the other hand, the spﬂés
vorticies moving near the solid plate produce also sound, an,,
so the shedding of vorticity is also a source of sound (with th
mean flow as the unlimited source of energy). The net sum df
both can be both negative and positive, dependinil@andd,.
Remarkably, the present model problem allows the following ' K ,

exact expression of the power absorbed by vortex shetiding 19ure 9-2 (poe/1a1)# as function of(M, 6n).

P = (|al*/pow)M cos 36,(1+ M cost,)(2 + 2M cost, — M) (9.15)

The assumption that just as much vorticity is shed that teegure field is not singular anymore, is
known as the unsteady Kutta condition. Physically, the arhofi vortex shedding is controlled by
the viscous boundary layer thickness compared to the dcauave length and the amplitude (and

2This is not only the energy lost into the vortex sheet, butadbusticenergy lost by vortex shedding. For example, it
includes the irrotational hydrodynamic energy (3.67) aiged to the vortex sheet. The energy just lost into theexaheet
would be = (1al?/po@)M coF $6n(1+ M costn)(1 + 2M costy — M). See Howe [85].
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the Mach number for high speed flow). These effects are natded in the present acoustic model,
therefore they have to be included by an additional edgeitondfor example the Kutta condition.
As vorticity can only be shed from a trailing edge, a regulalutson is only possible itM > 0. If

M < 0 the edge is a leading edge and we have to leave the singllavibar as it is.

9.2 Moving point source and Doppler shift
Consider a point (volume) source of stren@lit) (the volume flux), moving subsonically along the
pathx = xg(t) in a uniform acoustic medium. The generated sound field isrdtesd by

10%p _, )
S VP= pOE{Q(t)J(R(t))}, R(t) = X — Xs(1). (9.16)

Using the free field Green’s function (equation (6.37) or Apgix E)

G(x, tly, ) = t—r—|xc_0y|),

1
ezl
4 cglxX — Y|
the solution for potentiap, with p = —po%(o, is given by

* Q(r) R(7) B
B R(f)é(t —re )dr, R=|R|. (9.17)

Using thed-function integral (C.28)

drp(X,t) = —

| atongod =3 FB b =0 (€.28)

this representation is very elegarit[$2] reduced to the Liénard-Wiechert potential ([99, p])27

Qe

drp(X,t) = — 9.18
(X, 1) Re(l— Mocosiy)’ (9.18)

where the subscrig denotes evaluation at tinig given by the equation
Co(t —te) — R(te) = 0. (9.19)

Absolute values are suppressed because we assihed 1. Restriction (9.19) is entirely natural
and to be expected. If we trace the observed acoustic patiinbback to its origin, we will findiit
to be created at tim& by the source at positiors(te) and strengthQ(te). Therefore t. is usually
calledemission timgor retarded timelt is important to note that by its implicit definition (9.19, is

a function of botht andx.

Other convenient notations used here and below are

M = x;/cg, M =|M|, RMcosd = R-M,

3To appreciate the elegance the reader might compare it dtmbre traditional derivation as found in [145, p.721] for
the less general problem of a point source moving with constaeed along a straight line.

4A generalization to supersonic motion of the source invivegeneral a summation, according to (C.28), over more
than one solution of equation (9.19).
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whereM and M are, respectively, the scalar and vectorial Mach numbeh@fsburce, while} is
the angle between the source velocity vector and the ol&epasition, seen from the source. The
combinationM cosy is often also denoted by, .

By applying the chain rule to equation (9.19) we obtain tlenidies

ote 1 O0Re . CoMe CcOSYe
8t o 1 - Me COSﬂe, 8t o l - Me COSﬂe’
0 Re- M. — cgM?2
—(RaMeCOSYe) = ——5—— €

ot (ReMe 2 1 — Mg cosde

After differentiation of equation (9.18) with respect tm#, we finally have

poQ% Re: Mg + coMe(coste — Me)

Arp(x,t) = + poQe (9.20)
The O(R;1)-part dominates the far field, while th@(R;?)-part dominates the near field [124]. A
typical effect of motion is that both the pressure and themtix! fields are increased by the “Doppler
factor” (1 — Me cosde) 2, but not with the same power. Furthermore, more Doppleofacippear for

higher order multipole sources. (See Crighton [38].)
The name “Doppler factor” is due to its appearance in the-wmbwn frequency shift of moving
harmonic sources. Assume
Q(t) = Qe
with frequencywg so high that we cadefinean instantaneous frequeneyfor an observer of (9.20)
at positionx:
o

1 - Me COSﬂe.

This describes th®oppler shiftof frequencywg due to motion. Expression (9.20) is quite general.
The more common forms are for a straight source path withtaohselocityxs(t) = (Vt, 0, 0) in
which caseM is constant anat; = 0.

d
o(t) = a(wote) = (9.21)

Analogous to the above point volume source, or monopole,amededuce the field of a moving point
force, or dipole. For this we return to the original lineadzgas dynamics equations gn v, and p
with external forceF (1)d(x — Xs(t)), and eliminatep andv to obtain:

10%p

2n_ _ .
gow - VP=—" {F(t)é(R(t))}. (9.22)

Following the same lines as in the monopole problem we havsdhution

Fe
4rp(X,t) = —V- ( = Mecosﬂe)) (9.23)

Here we see that a rotating force is not the same as a rot#tirig -field, sincete = te(X, t). By
application of the chain rule to equation (9.19) we derive:

Re

VRe = —CoVie =
Re= ~GoVle = 1= M. cosi)’
Re Re‘M/
V(R:Mg €OSYe) = Mo — € _ M2
(ReMe coste) e Re(l_MeCOSﬁe)( % e),
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so that we have the general expression for a moving poineéforc
Re‘F/e_COMe'Fe Re‘Mé‘}“CO(l_Mg)

CoR2(1 — Mg cOSYe)? CoR3(1 — Mgcosie)®

The O(R;1)-part dominates the far field, while ti@(R;?)-part dominates the near field [124].

It should be noted that the above distinction between a @ointceQ and a point forceF is rather
idealized. In any real situatio® andF are coupled, since in general a real mass source also psduce
a momentum change (see [52]).

Az p(x,t) =

+ (Re- Fe)

(9.24)

9.3 Rotating monopole and dipole with moving observer

An application of the previous section is a model for (suliopropeller noise, due to Succi and
Farassat [61, 227].

Two main sources of sound may be associated to a moving peopédde: the displacement of fluid
by the moving body leading to thickness noise, and the mdifirfgrce distribution leading to loading
noise. See the next section 9.4, equation (9.28). A desmrigf the loading noise is obtained by
representing the propeller blade force by an equivalemtiloligion of point forcesF ;, followed by a
summation ovelj of the respective sound fields given by equation (9.24).

The thickness noise is a bit more involved. It can be showndgon 9.32) that a compact moving
body of fixed volumeV generates a sound field, due to its displacement of fluidnhdoyethetime
derivativeof equation (9.16) whil&) = V, with solution thetime derivativeof equation (9.20).

02 1

012 Re(1 — Mo COSUe)

(Equivalent forms in terms of spatial derivatives are alssgible; see for example [24, 61].) By

discretising the propeller blade volume by an equivalefiection of volumesV;, the thickness noise
is found by a summation ovgrof the respective sound fields.

4n pth(xa t) = pOV

The method is attractive in its relative simplicity, andyepgogramming. The formulas are laborious,
however. Therefore, to illustrate the method, we will workt bere the related problems of the far
field of a subsonically rotating and translating monopQle= ¢, and dipole fo. The position of the
point source, rotating in the, y-plane along a circle of radius with frequencyw, and translating
along thez-axis with constant velocity (figure 9.3), is given by

Xs(t) = (acoswt, asinwt, Ut).

It is practically of most interest to consider an observerimg with the source, with forward speed
Ut. Therefore, we start with the field of the source, given indfagionary medium by equation (9.20),
and substitute for position vectarthe position of a co-moving observgp = (Xo, Yo, Zo), given in
spherical coordinates by

Xo(t) = (r cosg sind, r sing sind, r cosy + Ut).
With R = x,(t) — Xs(te) we obtain the relations
R Mg = Mgr sind sin(¢ — ote) + Mg 1 sind + M2RY,
RO M = coMB(1- rasinﬂ cosp — ate)),
M2 = MZ+ MZ, where Mg = wa/cy, Mg = U/co.
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Figure 9.3 Trajectory of point, moving along helical pait).

The “far field” denotes the asymptotic behaviour §ayr) — 0. Since

C2(t —te)? = (R?)2 =12 — 2ar sin¥ cos¢ — ote) + a2 + 2Ur (t — te) cost + UA(t — te)?

and noting that asymptotically— te = O(r /cp), we have fora/r — 0
te =t r + ésinﬂcos(gﬁ t + ki) +
=l— — — — Q@ .
© Co  Co

wherek = w/co and

Mg cosd + /1 — M2 sir? o) 1
YT , a=a .
—VF V11— M2Zsirty

f=r

With this we find:
R ~ F — &sinv cog¢ — wt + kf)
(1 — M2)Mgsind sin(¢ — wt + ki) + Mg cosy + M2,/1 — M2 sir? 9

Mg cosd + /1 — MZ sir? ¥

Mg COSYe >~

Altogether in equation (9.20):

P0oCo0o (R(O) -M¢ 2
R2(1— M, COS§9)3( < € + Mg COSUe — Me)

_ PoSo%o (1— M2)2MZsin¥ cog¢ — wt + ki)

ar (MF cost +,/1— Mésinzﬂ)z(l— Mecosﬂe)3

Az p(x,t) =

We do have &@(1/r) decay, and in spite of theQlt)/dt = 0, a nearly harmonic signal. Note the
2-lobe radiation patterr,e. 2 maxima perpendicular to the axis of rotation wheredsig= 1, and

minima in the direction of the axis where gin= 0.
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Figure 9.4 Time history of sound pressure generated bylbpgaoint source (left) and point force (right).

The rotating point force will portray a very simple propelleodel. We assume the propeller to be
concentrated in one point (this is a plausible approxinmafiiw the lowest harmonics) by a point force
equal to the blade thrust force (the pressure jump acrosbl#éige integrated over the blade), in a
direction perpendicular to the blade. Furthermore, thddkurface will practically coincide with the
screw plane described by the effective velocity figld= Ue, — waey.

So we have a force

fo
In figure 9.4 plots are made of the time history of the soundsanee generated by the above point
source and point force, for the following parametdds:= 145 m/s,cg = 316 m/s,a = 1.28 m,

w = 17-2xls, fg = 700 N, pg = 1.2 kg/n?, o = 1.8 n/s, for an observer moving with and in the
plane of the source at a distange= 2.5 m. No far-field approximation is made.

F@t) = (U sinwt, —U coswt, wa) (9.26)

9.4 Ffowcs Williams & Hawkings equation for moving bodies

Curle (6.85) showed that the effect of a rigid body can benperated in the aero-acoustical anal-
ogy of Lighthill as additional source and force teriQg, and F. This approach has been generalized
by Ffowcs Williams and Hawkings who derived [65] a very gethdormulation valid for any mov-
ing body, enclosed by a surfaggt). Their derivation by means of generalized functions (safa
distributions, section C.2.8) is an example of eleganceedficiency. Although originally meant to
include the effect of moving closed surfaces into Lighthitheory for aerodynamic sound, it is now
a widely used starting point for theories of noise genenaklip moving bodies like propellers, even
when turbulence noise is of little or no importance.
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There is no unique relation between a source and its soumkl ietause a given field can be created
by infinitely many equivalent but different sources (sett#6.1). Therefore, there is no unique way
to describe the effect of a surfadgt) in terms of an acoustic source distribution, and a simple and
transparent choice is preferable. The choice put forwarfowcs Williams and Hawkings was both
simple and transparent: just force any flow variable to Vaimside the enclosed volume. The resulting
equations are automatically valid everywhere, and use eandule of the free field Green’s function.

Consider a finite volum& = V(t) with sufficiently smooth surfacé = $(t), moving continuously
in space. Introduce a (smooth) functidiix, t) such that

<0 if x e V(),
f(X,t)1=0 if x € (1),
>0 if x gV,

but otherwise arbitrary. If we multiply any physical quaytby the Heaviside functiotd (f) — such
asp’'H(f) — we obtain a new variable which vanishes identically witf¥irbecauseH (f) = 1 in

the fluid, andH (f) = 0 insideV. SinceV f|;_g is directed normal outwards frofi, the outward
normaln of 4 is given by (section A.3).

n(x,t) = vi
Vo

Let the surface$(t) be parametrized in time and space, by coordifatest, x). A surface point
Xs(t) € 4 (considerd and u fixed), moving with velocityU = xs, remains at the surface for all time,
so f(xs(t), t) = 0 for all t, and therefore

of .

— =—Xg:Vf=—U-n)|VT|

p s (U-m|V T
It is important to note that the normal velocity - n) is a property of the surface, and is independent
of the choice off or parametrization. We now start the derivation by muliiplythe exact equations
(1.1,1.2) of motion for the fluid byH (f):

op’
H(D[ % + V()] =0,
H(f)[i(pv) F V(P +pvv)] ~0
ot ’
wherep’ = p — po andpg is the mean level far away from the body. Although the oribgguations
were only valid outside the body, the new equations areathivsatisfied insidé’, and so they are valid

everywhere. By reordering the terms, and using the idelg}ity(f) = —U-VH(f), the equations
can be rewritten as equations for the new variaplé$(f) andpvH () as follows.

0
a[ﬂ’H(f)] + V-[pvH(f)] = [poU + p(v — U)]-VH(F),

0
a[va(f)]-l-V-[(pvv-i- PYH(f)] =[pv(v — U) + P]-VH(f).

SWhen 4(t) is the surface of a solid and undeformable body, it is natioralssume a spatial parametrization which is
materially attached to the surface. This is, however, noesgary. Like the auxiliary functiof, this parametrization is not
unique, but that will appear to be of no importance.
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Using the same procedure (subtracting the time-derivatithe mass equation from the divergence
of the momentum equation) as for Lighthill's analogy (2,68¢ find the Ffowcs Williams-Hawkings
equations [65]:

2

S = BV H() = V- (Vo[ (o — 7 + (0 = ) 1) H(D)]]

+ %[(p(v ~U) +pou) -VH(f)] — V-[(pv(v ~U)+pl— r).VH(f)]' 9.27)

The sources at the right hand side consist of the doublegéinee of the common quadrupole-type
Lighthill stress tensor, and a time derivative and divecgenf sources only present at the surface
f = 0. Of course, the right hand side contains all the unknowms i principle this equation (9.27)
is not simpler to solve than the original Navier-Stokes ¢igna. However, as with Lighthill's analogy,
the source terms are of aerodynamic nature, and can be s#pedately, without including the very
small acoustic back-reaction.

Very often, Lighthill's stress tensgrvv — = + (p’ — c2p’) | and the shear stresses at the surface are
negligible. Moreover, if the surfacé is solid such thab-n = U -n, and we change from density
to pressure as our field variable, and deffile= p'H(f), we have a reduced form of the Ffowcs
Williams-Hawkings equation, which is widely used for subigopropeller and fan noise (no shocks)
[61]
1 6?
2
0

A 2—/_2 _ . /
S50 - VP _m[pou n|Vf|5(f)] v [pn|Vf|5(f)]. (9.28)

The first source term is of purely geometrical nature, andritess the noise generated by the fluid
displaced by the moving body. The associated field is cafietthess noise. The second part depends
on the normal surface stresses due to the pressure digtnpand describes the noise generated by
the moving force distribution. The associated field is ahlading or lift noise.

If we know the pressure distribution along the surface, weiggrinciple solve this equation, in a way
similar to the problem of the moving point source of sectio?. @et us consider first the following
prototype problem

1 52

2. _
C—gﬁgo — V29 = Q(x, )|V f|5(f). (9.29)

By using the free field Green’s function we can write

Adrp(X, 1) = /// %5“ — 17— R/c)|VTlo(f)dydr,

whereR = |x — y(7)], the distance between observer’'s and source’s positiotingNthat|V f |6( f)
is just equivalent to the surface distribution£ft) (equation C.38), we can integraiéf ) (equation
C.37 or C.39) and write

4z p(x, 1) :// Q(é’r)é(t — 7 — R/y) do dr.
A(t)

The integral over can be evaluated by noting that any contributions come flmsblutionr = tg
of the emission-time equation (the zero of the argumentefémaining)-function), given by

Gt —7) - R=0,
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which describes (for giver, t) a surface iny, r)-space, symbolically denoted Bi(ts). Analogous
to the point source field (9.18) we have then

Qe
Adrp(X, 1) = // Rl Mecosﬂe)da‘ (9.30)
$(te)
As before, subscripg denotes evaluation at emission tigeand M cosi is the component of the
vectorial Mach number of the source in the direction of theewsleer (in some literature also denoted
by M;). From this auxiliary solution we can now formulate a sautfor p’ as follows

_ 0 poUe-Ne Pene
P =g // Re(1— Mecosﬁe) / / Re(1— Mecosﬂe) (9:31)
3(te) $(te)
Extreme care should be taken in interpreting this equalienause for any andt the emission time
te varies over the source region, while at the same time theceotaries its position! Other forms
of the solution are available which might be easier to haimdt®rtain applications; semg.Farassat
[60, 61].

It is therefore interesting to consider the compact linmitwvhich case the typical wave length is much
longer than the body size. The emission time does not vanjfsigntly over the source region, and
R. and M, cosi, refer only to a single typical source coordinatg for example the centre of gravity.
The source becomes equivalent to a point source (sectigh.3).2

A particularly interesting form (Farassat [61]) for thedkmess noise component is found by writing
the surface integral as a volume integral. Using

0
poU -V T[o(T) = —po(l — H(T)),

and noting that the function & H () equals unity inside the body and zero elsewhere, we have
for the thickness noise component of equation (9.31)

0 poUe-Ne
E// Re(1— Mecosﬂe) atZ/// Re(1— Mecosﬂe)

8(te) V(te)
Since the volume integral of the constant 1 is jUsthe volume ofVy, and denoting the total force of
the fluid on the body by

F@®) :// p-ndo,

S(t)
we have the compact limit of equation (9.31) (see also se&id)
_ 02 poV Fe
drp'(x,t) ~ — - V. ) 9.32
TP =g ( Ro(1— Mecosﬂe)) (Re(l - Mecosﬂe)) (9.32)

Exercises

a) Evaluate the expressions for the acoustic field of thegll@pof equation 9.26 without forward speed
(U = 0) and find the approximation for the far field. What can yoluablbut the typical lobes in the
radiation pattern?

b) Evaluate the expressions for the acoustic field of a mopoigt volume source (9.20) and point force
(9.24) for the windtunnel situation: a moving sousce= Vtex and a moving observe = a + Vtey.
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A.1 Reynolds’ transport theorem

For an arbitrary single-valued scalar functibn= F(x,t) with continuous derivatives, and an ar-
bitrary control volumeV*(t) with surfaceS*(t), outward-pointing unit-normah, andb the local
velocity of S¥, the following integral relation holds:

%///Fdx:///Z—de-ﬁ-//F(b-n)da. (A1)
V* V* S

This theorem, known as Reynolds’ Transport Theorem (seatiequC.40), is used to translate integral
conservation laws into differential conservation lawsn&grvation laws such as mass conservation
are understood most easily when they are applied to a sedaalhterial volum&/ = V(t) (enclosed

by the surfaceS = S(t)), which is a volume contained in the fluid and with no fluid eimg or
leaving it. The concept arises when considering a fluid g@arivhich is large in number of molecules,
but small compared to the macroscopic scales in the probdfema certain —diffusion controlled—
period of time the particle keeps its identity, and can belleld. In such a case we have for the fluid
velocity v at surfaceS

(b-n) =(v-n).

Hence, for any property of the fluid = F(x,t) with continuous derivatives, Reynold’s theorem
becomes:

%///Fdx=///Z—de+//F(u-n)da, (A.2)
\V \V S

A.2 Conservation laws

The conservation laws (mass, momentum, energy) in intégral are more general than in differ-
ential form because they can be applied to flows with disoootis properties. We will give here a
summary of the basic formulae. A detailed derivation maydaed in [168] or [231]. Consider a
material volumeV with surfaceS.

Mass conservationH = p):

%/_//pdx ~o. (A3)
\%

Momentum conservatiorH = pv;):

%/v//pvidx:/v//fidx—[s/P.jnjda. (A.4)
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Energy conservationH = p(e+ 2), 02 =iv;):

dt///p(e+102)dx_// fuldx—// Pjojni do — /q.n.do (A.5)

Consider now an arbitrary control volumé(t) W|th surfaceS*(t) andb the local velocity ofS*. By
applying (A.3) and (A.1) withF = p we find:

dt///”dx_// _d”é/pbi”id“ (A6)
// _dx— /g/pvinido'- (A7)

At any given instant we may identify * with a given material volum®. Hence (A.7) can be used to
eliminate the first integral on the right-hand side of (A®pbtain:

%///pdx://p(bi — v)n; do. (A.8)
V* S

This can be applied to any volumé&* and in particular to a fixed voluméy(= 0). In a similar way
we have for the momentum:

%///pvidwr//pui(uj —bj)njdaz/// fidx—//p.jnjda (A9)
v 5 Vi 5

and for the energy:

%///p((ﬂ— %vz)dx +//p(e+ %02)(vi — bi)n; do
V* S

=// fivi dX—// Pijl)jni dO‘—/ qi nN; do. (AlO)
V* S S
For the entropys we further find:

%///deX —1—///)8(1); — bj)n; do +/ %qini do >0 (A.11)
A S S

where the equality is valid when the processes in the flowearersible.

A.3 Normal vectors of level surfaces

A convenient way to describe a smooth surfdéces by means of a suitable smooth functig(x),
wherex = (X, Y, z), chosen such that the level surfa8ex) = 0 coincides with8. So S(x) = 0 if
andonly ifx € 4. ThenvSatS = 0 is a normal of§, providedV S # 0. This is seen as follows.

Consider a poinky and a neighbouring pointy + h, both on the surfacé. ExpandS(xy + h) into a
Taylor series irh. We then obtain

S(Xo + h) = S(xg) + h-VS(xg) + O(h?) ~ h-VS(xg) = 0
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Since in the limit forlh| — 0 the vectorV S(xg) is normal to the tangent vectabr, it is normal to the
surfaced. Furthermore, the unit normal vectog = |$_§\ (at S = 0) is directed from the&s < 0-side
to theS > O-side. If we expan®(x) nearxy € § we haveS(x) = (X — Xg)-VS(Xg) + ..., SO, hear
the surfaceS(x) varies, to leading order, only in the coordinate normal ®dhrface.

A.4 Vector identities and theorems

Let v, ¢ anda, b, ¢, d, v denote well-behaved scalar functions and vector fields.

a-(bxc) = b-(cxa) = c-(axh) (A.12a)
ax(bxc) =b(a-c) — c(a-b) (A.12b)
(axb)-(cxd) = (a-c)(b-d) — (a-d)(b-¢) (A.12¢c)
V(a-b) =a-Vb+ b-Va+ ax(Vxb) 4+ bx(Vxa) (A.12d)
a-V(b-c) =b-(a-vVc)+c-(a-Vb) (A.12e)
V-(axb) = b-(Vxa) — a-(Vxbh) (A.12f)
Vx(axb) =a(V-b) —b(V-a) —a-Vb+b-vVa (A.129)
Vx(4a) = (Vo)xa+ ¢(Vxa) (A.12h)
Vx(yVe) = (Vy)x (Vo) (A.12i)
(v-V)v = V(307 + (Vxv)xv (A.12))

Note thatV- (Vxv) = 0 andvx(V¢) = 0.
Let Q denote a three-dimensional volume with volume elem&htahdoQ a closed two-dimensional
surface bounding2 with area element 8 and associated unit outward vector Then we have the

following integral relations.

Gauss’ divergence theorem: / V-vdV :y{ v-ndS (A.13a)
Q 0Q

/ VéadV = 7{ $ndS (A.13D)
Q 0Q

/ VxvdV =y{ nxwvdS (A.13c)
Q 0Q

Green'’s first identity: /(qsv?w +V¢-Vy)dV = 7{ ¢V -ndS (A.13d)
Q 0Q

Green’s second identity: / (¢V?y — yV2p)dV = 7{ (¢Vy — wVp)-ndS  (A.13e)
Q 0Q

Let 8 denote a smooth orientable surface, bounded by the pdgitiveented contourC with line
element d. The normal to 4 is defined according to the right-hand-screw rule applie@ tdhen

Stokes’ theorem: /(va)-ndS:f v-de (A.14a)
3 e

/5 Nx Ve dS = 7{@ Pt (A.14Db)



B  Order of magnitudes: O and o.

In many cases it is necessary to indicate in a compact wayehaviobur of some functiorf (x), of
variable or parametex, asx tends to some limit (finite or infinite). The usual way to dostis by
comparing with a simpler functiog(x). For this we have therder symbols Gando. When f is
comparable with or dominated lgy we have

Definition B.1 f(x) = O(g(x)) as x— a
means, that there is a constant C and an inteitat- h, a + h)
such that for all xe (a—h,a+h): |[f(X)| < C|g(X)|.

Whenx | athe interval is one-sideda, a + h); similarly for x 1 a. For the behaviour at infinity we
have

Definition B.2 f(x) = O(g(x)) as x— oo
means, that there is a constant C and an inteigl oo)
such that for all xe (xp, 0): | f(x)| < Clg(X)|.

Similarly for x — —oo. When f is essentially smaller thagwe have

Definition B.3 f(x) = o(g(x)) as x— a
means, that for every positivethere is an intervala — 5, a + 7)
such that for all xe (a —n,a+#): |f(X)] <dlgX)|.

with obvious generalizations to | a, x — oo, etc.

f
Theorem B.1 If lim % exists, and is finite, then(kX) = O(g(x)).

Theorem B.2 If Iim @ =0, then f(x) = o(g(x)).

9(x)

Note thatf = o(g) implies f = O(Q), in which case the estimat@(g) is only an upper limit, and
not as informative as the “shafp”, defined by

Definition B.4 f(x) = Os(g(x)) means: fx) = O(g(x)) but f(x) # o(g(x).



C Fourier transforms and generalized functions

C.1 Fourier transforms

The linearity of sound waves allows us to build up the acousid as a sum of simpler solutions of
the wave equation. The most important example is the remtuatito time harmonic components, or
Fourier analysis. This is attractive in several respecteth@matically, because the equation simplifies
greatly if the coefficients in the wave equation are timeejpehdent, and physically, because the
Fourier spectrum represents the harmonic perception eidsou

Consider a functiorp(t) with the following (sufficient, not necessary) conditior28] 98, 120, 170,
253].

— p is continuous, except for at most a finite number
of discontinuities wherg(t) = 1[p(t + 0) + p(t — 0)].

—|p(t)] and|p(t)|? are integrable.

Then theFourier transform p(w) of p(t) is defined as the complex function

ef 1 [ L
P(w) = Fp(w) o 5/00 p(t) e dt, (C.1)

while according to Fourier’s inversion theorep}t) is equal to the inverse Fourier transform
def [ i
p(t) = }"ﬁfl(t) :/ P(w) €' dw. (C.2)
—00

The Fourier transform and its inverse are closely relatgzardfrom a sign change and a factar, 2t

is the same operatiorj:.’gl(t) = 21 Fp(—t). Itis important to note that slight differences with respec
to the factor 12z, frequencyw = 2z f, and the sign of the phaset are common in the literature.
Especially the prevailing™“-convention shoul@lwaysbe checked when referring or comparing to
other work.

Some examples of Fourier transforms are:

o 1

el H(t) e *e’ dt = PP (C.3a)
. : P e ot = Zﬁﬁ (C.3b)
% _Z e et gt — \/%_n e 2 (C.3d)
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wherea > 0, the ordinary square root is taken, aHdt) denotes Heaviside’s unit step function
(C.29), whichisH(t) = 1fort > OandH (t) =0 fort < 0.

Although it may seem to be no serious restriction to assuraeatphysically relevant signai(t)
vanishes at = +o0, we deal in practice with simplified models, yielding exmieas forp(t) which
donotdecay at infinity €.g.a constant, sifiwgt)). So we have on the one hand the “replt) which

is Fourier-transformable, and on the other hand the apprabe “model” p(t), which is not always
Fourier-transformable. Is there a way to approximate, teast get an idea of, the real Fourier trans-
form, using the approximatp(t)? One way is to assumg to vanish outside a certain large interval
[—N, N], as for example:

1 M giot g — SN@N

2 J_N Tw

1 N , i /sin(wo+ w)N  sin(wy — )N
— sin(wgt) €'t dt = — —

272:/_N (cot) 27r( wo+ w wo — W )

We see a large maximum~( N/z) depending orN near the dominating frequencies, and for the
other frequencies an oscillatory behaviour, also depgndimN, that is difficult to interpret. This is
too vague and too arbitrary for general use. Therefore, henatically more consistent and satisfying
approach, not depending on the arbitrary choice of thevatesize, will be introduced later in terms
of generalized functions.

Derivative

Since a derivative tb corresponds to a multiplication bwias follows

d % .
O p(t) = / iwp(w) € do, (C.4)

o]

the wave equation reduces to the Helmholtz equation

152(/’ FT 2
2 T, 2 A

——=—=0 =3 Vep +
PP T

| S

6 =0. (C.5)

N

Further reduction is possible by Fourier transformatiospace variables.

More dimensions and Hankel transform

Fourier transforms im space dimensions is usually denoted as

f(x)e**dx, f(x =/ f (k) e k> dk. C.6
[ 00 )= [, f0 (c6)
The Hankel transforn#,(¢; p) of a functiong(r), given by

1 o0
Jm¢m=gl¢m%wyw (C.7)
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arises naturally when the 2D Fourier transform of a functi@r) is re-written in polar coordinates.

o0

R 1 2r
f(k):ﬁ// f (x) e'kx dx_—/ / z f(r) €' @Pr co0=a) ¢ gor
T
1 < [™. - i
= > /0 iM™f(r) Im(pr)e ™ r dr = Z iMe ™ g6 (fm; p) (C.8)
m=—00 m=—o00
wherex = (r cosd, r sin), k = (p cosa, p Sina),
fo)= D fume™™
m=—o00
and use is made of equation (D.63).

Multiplication and convolution

Fourier transformation is basically a linear operation &tk can be said about other than linear
combinations of transformed functions. Only for multiglion with powers ofo we have

/ (i0)"P(w) € do = @p(t) (C.9)

For multiplication with a generdj(w) we find the convolution product gi(t) andq(t), also known
as the Convolution Theorem

1 [ Y
(pra)®) = 5= [ phat-t)dt = [ o)) e do. ©10)
Note that in terms of generalized functions, to be introdugelow, result (C.9) for the product with

" is a special case of the convolution theorem. A particulaeda Parseval's theorem, obtained by
taking' q(t") = p*(—t") andt = 0:

o0 1 o0
/ IB@)do = 5 / IpPdr (C.11)

which is in a suitable context a measure of the total energysignalp(t).

Poisson’s summation formula

Intuitively, it is clear that the high frequencies relatetbhe short time behaviour, and the low fre-
guencies to the long time behaviour. An elegant result diRotsson is making this explicit.

i p(in) = Z (Znn) (C.12)

Sampling with large stepsi (arge) of p yields information about the low part of the spectrum and
vice versa

14 = x — iy denotes the complex conjugatemt x +iy.
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Reality condition

Although p(w) is complex, the corresponding(t) is in any physical context real. Therefore, not any
P(w) can occur. A giverp(w) corresponds to a real signplt) if it satisfies thereality condition

P(—w) = P(w)*. (C.13)

This is just the consequence pft), given by equation (C.2), being identically equal to its qbex
conjugate.

C.1.1 Causality condition

The wave equation and the equation of motion do not imposeeatatin for the time, if dissipation
effects are neglected. The fact that the sound should baupeddbefore we observe it (causality)
is not a property automatically implied by our equations] @rshould be imposed to the solution.
The problem is simple for an initial value problem, whereuitfises to require a zero field before the
switch-on time. However, when we consider a time-harmoolat®n, or in general based on Fourier
analysis, it is not obvious any more because we assume thgosoto be built up from stationary
oscillations. Stationary means that it exists forever aasl dlways existed. In such a case causality,
i.e.the difference between cause and effect, is not readily.dtea therefore of interest to investigate
conditions for the Fourier transform that guarantees aataignal.

No physical process can exist for all time. A procesb) that starts by some cause at some finite time
t = to, while it vanishes beforw, is calledcausal The corresponding Fourier transform
1 o

p@):Et p(t) e dt (C.14)

has the property thgi(w) is analyti@ in the lower complex half-space
Im(w) < 0. (C.15)

So this is a necessary condition @gnfor p to be causal. Examples are the exponentially decaying
functions, switched on at = 0, of equations (C.3a) and (C.3b). The Fourier transfornesnan-
analytic in the upper half-plane (singularitiescat= 1o and a branch cut fronui up to ioco), but are
indeed analytic in the half-plane (@) < «.

A sufficient conditio is the followingcausality conditior{170].

Theorem C.1 (Causality Condition)

If: (i) P(w) is analytic inim(w) < 0O, (i) | P(w)|? is integrable along the real axis, and (iii) there is a
real ty such thate'“ p(w) — 0 uniformly with regard toarg(w) for |w| — oo in the lower complex
half plane, then: &) is causal, and vanishes for< t,.

2Infinitely often differentiable in the complex variahte

3Cauchy’s theorem [106] for analytic functions says that i analytic in the inner-region of a closed cont@uin the
complex plane, the integral df alongC is equal to zeroy f(z)dz = 0. Under the conditions stated in theorem (C.1)
(p-232) the functionp(w) exp(i wt) is analytic in the lower-half complex-plane. So its integral along the closed contour
consisting of the real interv@k R, R] and the semi-circle = Rel —7 <0 <0, is equal to zero.

Let R— oo whilet < 0 (= tg; the case of a genergy is similar).
The factore @t = el Ré(@)t g~ IM(@)t gecays exponentially fast to zero in the lower complepiane because Im(w)t < O.
Hence, the contribution from the large semi-circle becomgmnentially small and vanishes. So the part along theasésl
is also zero. However, this is juglt), the inverse Fourier transform @t
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(Note that thelower complex half-space becomes thpper half-space if the opposite Fourier sign
convention is taken.) Consider as a typical example theseveansform of equation (C.3a). When
t > 0 the exponential fact@®t = e Re@)t g~ Mm@}t decays in the upper half plane, so the contour can
be closed via the upper half plane, resulting i #imes the residueof the pole in ix. Whent < 0

the contour can be closed via the lower half plane, with zesollt because the integrand is analytic
there: causal as it should be.

/°° glet et if t> 0,

——dw = _
oo 27 (0 + 1) 0 if t <O.
It should be noted that in the limit of no damping ( 0) the singularity of (C.3a) and (C.3b) at
o = ia moves taw = 0, which is on the real axis. This is a bit of a problem if we anteiested in the
inverse transfor® because the real-axis is just the contour of integration, and a pole thereldou
make the result of the integral ambiguous. The integral Eetinterpreted via a suitable deformation

of the contour, but this is either over or under the singtyadnd the results are not the same. So,
without further information this would leave us with two gdse but different answers!

We do know, however, that this singularity comes from the gleupper half, so we have to indent
the contourunderthe pole. This is exactly in agreement with the argument ofabty: a causal
signal has a Fourier transform that is analytic in the lowmmplex half-plane, so it is safe to indent
the contour into the lower half-plane. The singularity id®considered to belong to the upper half-
plane.

This example is typical of the more general case of a siga| described via the inverse transform of
its Fourier transform. If it occurs that, due to inherengalligations of the model, this Fourier transform
has singularities along the realaxis, the causality condition tells us how to deal with thigkgpem.
Consider the following example. The transformed harmdkesignal

o 1

D) = o - f

has to be analytic in the lower half plane, so that the integracontour can be closed with zero result
if t < 0. Therefore, the contour must be indented irfdin< 0 aroundw = wo andw = —wy (figure
C.1). The result is then

p(t) = H () sin(wot).

A more subtle example, dealing with complicated manipatetiin two complex planes, is the follow-
ing. Consider the fielgb(x, t), described via a Fourier integral for both tkkeand thet-dependence.

p(x, t) = / / Bk, w) € dkdew.

If p(k, w), the time- and space-Fourier transformgd, t), is given by:

1 1

, C.16
4z 2C(2) k2 — a)z/C(Z) ( )

f)(k, CO) =

4f 2=z is a simple pole off (), then the residue of atzg is: Res (zg) = limz— z,(z — 20) T (2).

5We ignore for the moment the problem that for= 0 the original time signal is only Fourier transformable lire t
context of generalized functions.

5The integral of an analytic function does not change witrodehtion of the integration contowvithin the region of
analyticity.
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Figure C.1 Integration contour in complexplane.

then the time-Fourier transformgi(x, w), given by

o) —ikx
B(X, ) = — / " &

A2c5 | oo K2 — w?/c5

must be analytic in Irfw) < 0. This means that the contour in the compleglane (the real axis)

must be indented up-aroud= w/cy and down-aroundk = —w/Cq (figure C.2). This is seen as
i keC
_w/q,\ |
realaxis _____________ o )‘m _________________
\_/ |
! w/Co
imagina_ry:

Figure C.2 Integration contour in compl&plane. The arrows indicate the path of the pates/cq in the k-plane, when
w moves in its complex-plane from the negative imaginary half onto the real axsdna(w) 1 0.

follows. For any value oftw/cy not on thek-contour, the integral exists and can be differentiated to
w any times, sd(x, w) is analytic inw. However, when a pol& = w/cy or K = —w/Cy Crosses
the contour,p(x, ) jumps discontinuously by an amount of the residue at that, moid therefore

p(X, w) is not analytic for anytw/co onthe contour. So, here, the value of the integral may be either

the limit from above or from below. Since causality requitiest (X, w) is the analytic continuation
from Im(w) < 0, we have to take the limit Ifw) 1 0, i.e. from below for the pol&k = w/co and from
above for the polé& = —w/cy. Since a deformation of the integration contour for an ai@fynction
does not change the integral, these limits are most comviiyniacorporated by a small deformation
of the contour, in a direction opposite to the limit (Fig. IL.Bhe result is

eiolx|/co
X = C.17
P(X, @ P (C.17)
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As before, the pole = 0 belongs to the uppes-half plane, and we have (. (4.84))

1 0o glo(t—|x|/co) 4 1 18
t) = =—H(t - . A
PO = g [ S do = R ) c18)
If we readx — y for x andt — ¢ for t, this is just the one-dimensional Green’s function. (Sse al
below).

C.1.2 Phase and group velocity

The phase velocityf a wave, given bye“—'%* (» andk real), is the velocity for which the phase
wt — kx = constant. This is

w
Uphase= 1 - (C.19)

Since a harmonic wave is an idealization, any wave is regligcket of waves, with frequencies and
wavenumbers related by a dispersion relatiog  (k), and localized within a beginning and an end.
This packet does not necessarily travel with the phase speedith thegroup velocity This should
also be the speed of the energy if an energy is defined.

To determine the group velocity for @mostharmonic wavep, i.e. with a spatial Fourier represen-
tation concentrated near a single wave nunikgewe may approximate

¢(X, t) _ /oo fz(k) eiw(k)t—ikx dk ~ /|<0+8 f(k) eia)(k)t—ikx dk (CZO)
_ £

0 — &

- f (Ko) aioot—ikox /k°+g & -kopopt-ik—kox g — (ko) sine (X — wgt) gloot—ikox
2¢ e e(X — awgt)

with wp = w(Ko), wy = %a)(ko). This shows thap is a wave packet centred arouxd- wyt = 0, and
therefore travelling with the velocityy. In other words,

dw
Dgroup = (&)k—ko . (C.21)

C.2 Generalized functions

C.2.1 Introduction

In reality dissipative effects will cause any discontiguid be smooth and any signal to decaytfor

oo, while any signal can be regarded to be absent fer —oco. So the classical concept of (smooth)
functions is more than adequate to describe any propertyredlesound field. This is, however, not
the case in most of our idealized models. For example, a ponice of vanishing size but finite
source strength cannot be described by any ordinary functiovould be something that is zero
everywhere except in one point, where it is infinitely lar§aother example is a non-decaying signal,
even as common as sint), which (classically) cannot be Fourier transformed: fanedrequencies
the Fourier integral is not defined and for others just indigidarge. Still, the spectrum of diat),
consisting of two isolated peaksatand—aw, is almost a prototype!
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Does that mean that our idealized models are wrong, or ttatesl to be useful? No, not at all. Only
our mathematical apparatus of functions is too restrictieild. therefore convenient, even vital for a
lucid theory, to extend our meaning of function to the sdechfeneralized functions [120, 98, 253,
102, 62].

Technically speakinggeneralized functionsr tempered distributions are not functions with a point-
wise definition. Their meaning is always defined in an integfasense. There are many definitions
and terminology of generalized function spaces, mathematically not edgrivabut all containing
the elements most important in applications (delta fumgtideaviside function, etc.). See for exam-
ple [62].

C.2.2 Formal definition

In the present context we will follow the definition that iduiitively most appealing: the linfitin

a suitable function spacg, such that derivatives and Fourier transforms are alwafigete This
definition is analogous to the definition of real numbers hyeogent sequences of rational numbers.
We start with the space of the real, smooth, and very fastyileggood functions

g & {f ‘R— R| f% e C®(—00, 00) and (C.22)
f© = O(Ix|™) (x| — oo) for anyn, k > 0}.

where f ®(x) = dixk‘z f (x). A sequenced f) C ¢ defines a generalized function if for evemlstfunc-
tion g € g the sequence of real numbers

nIim /oo frn(X)g(x) dx (C.23)

—0oQ
exists as a real number (dependinggmf course).

Care is to be taken: although it is the limit of a sequence dihary functions, a generalized function
is not an ordinary function. In particular, it is not a function tia pointwise and explicit meaning.
It is only defined by the way its corresponding sequefiG@ acts under integration. Furthermore, a
generalized function may be defined by many equivalent eegéquences because it is only the limit
that counts.

On the other hand, generalized functions really extend efinition of ordinary functions. It can be
shown, that any reasonably behaving ordinary function isvatent to a generalized function, and
may be identified to it. Therefore, we retain the symbolismiritegration, and write for a generalized
function f defined by the sequengé,) and anyg € ¢

/oo f (x)g(x) dx det nIi_)moo/OO fa () g(x) dx. (C.24)

]

"For example: generalized functions and tempered distobsitvhen Fourier transformation is guaranteed, weak func-
tions and distributions when derivatives are guaranteed.
8Technically termed: closure of. ..
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C.2.3 The delta function and other examples

A very important generalized function is the delta functigr), defined (for example) by

n sinnx

Sn(X) = (;)1/2 ™, or (X =

e o/ (C.25)
TX

In the limit for n — oo all contributions in the integral except from neake 0 are suppressed, such
that

/ o(x)g(x) dx = g(0). (C.26)
The second expression of (C.25) illustrates that it is naessary for a representation &fx) to
vanish pointwise outside = 0. Highly oscillatory behaviour outside the origin may béisient for
the integral to vanish.

A useful identity is
1
Jo(ax) = Hé(x), (C.27)

which at the same time shows that a delta function is not sacds dimensionless, as it has the
inverse dimension of its argument (or put in another w&y)dx is dimensionless). A generalization
of this identity yields, for a sufficiently smooth functidnwith b’ = % # 0 at any zero oh, the
following result:

/_ 5<h<x))g<x)dx=zlﬁ,((§_))|, h(x) =0 (C.28)

where the summation runs over all the zerok.ofhis result may be derived from the fact théh(x))
is locally, near a zerg;, equivalent ta(h'(x; ) (x — x;)), so thatd(h(x)) = >_d(x — x;)/|h'(%;)].

The sequence
Ha(X) = (% tanh(nx) + %) g X/

defines the Heaviside stepfunctieh(x). If the Heaviside generalized function is used as an orglinar
function it has the pointwise definition

0 x <0)
H(X) = % x=0) (C.29)
1 x>0

Any C*-function f, with algebraic behaviour foix| — oo (for example, polynomials), defines a
generalized function (also calleid) via the sequencé,(x) = f (x) exp(—x2/n?), since for any good

g

nIim /oo fn(X)g(x) dx :/OO f (xX)g(x) dx.

—00 —0o0
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Any C>—functionh with algebraic behaviour faix| — oo multiplied by a good function is a good
function, so that the product of suchhawith a generalized functiori is well-defined. For example,
the equation

xf(x)=0
has a meaning in generalized sense, with the solution
f(x) = Co(x) (C.30)

which is unique, up to the multiplicative consta®it

C.2.4 Derivatives

Every generalized functioh defined by( f,) has a derivativef” defined by( f;), and also satisfying

/ f'(X)g(x) dx = —/ f (x)g'(x) dx. (C.31)
Although generalized functions do not have a pointwise nmggrthey are not arbitrarilwild. We
have the general form given by the following theorem ([984p).

Theorem C.2 (General representation)

A necessary and sufficient condition fofxj to be a generalized function, is that there exist a contin-
uous function lix) and positive numbers r and k such thaixj is a generalized r-th order derivative
of h(x)

dl’
f(X) = &h(X)
while h(x) has the property that

h(x)
T+ )2

is bounded orR.

For example:
sign(x) = 1+ 2H(x) = d [X] o(x) = L& [X]
g = Codx ~2dx2
By differentiation of the equatiord(x) = 0 we obtain for then-th derivatived™ (x) the identity

x"6™(x) = (—=1)"n!s(x).
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C.2.5 Fourier transforms

Every generalized functioh defined by( f,) has a Fourier transforrh defined by( fAn) which is itself
a generalized function. Indeed, since the Fourier transfpof a good functiorg is a good function,
we have using the convolution theorem a well-defined

o R (0.¢] n 1 (.¢]
/ f(®)§(w) do = nIim / fr(w)§(w) do = o nIim / fan(X)g(—x) dx
00 —0 [ o T N—>oo |
1 (0.¢]
= —/ f (X)g(—x) dx. (C.32)
21 J_o
Examples of Fourier transforms are
1 [ - 1
- 5 —lwX d —
2 J_oo ) e X 2z
1 > —imX
> e dx = d(w)
L T (C.33)
> | cos@ox) e ' dx = 25(w — wo) + 35(w + ),
T J-c
1 [ - 1 1
— H X gy = PV, —=—) + L0(0) = ——
2 /OO e X (nia)) +30() 27i(w —i0)

where P.V. denotes “principal value”, which means that urtle integration sign the singularity is
to be excluded in the following symmetric waR:V. (% = lim,,0 "2 + [. The notationn — i0
means that the pole = 0 is assumed to belong to the complex upper half plane, sitoilgC.17).

If —icotg(w) is a causal Fourier transform, the poles= nz belong to the complex upper half
plane. In order to make sure that we approach the poles fremight side, we write

: eﬁZiw : - —2inw—2¢n - —2inw
—|cotg(a))=l+2m=1+2|6![gnz_;e :1+2§e ,

and obtain for the back transform to time domain

]

/ i cotg(w) €9 dw = 225(t) + 4x >t —2n). (C.34)

o0 n=1

C.2.6 Products

Products of generalized functions are in general not defiredexample, depending on the defining
sequences af(x) andH (x), we may get(x)H (x) = Cd(x) for any finiteC. Therefore, integration
along a semi-infinite or finite interval, which is to be intexfed as a multiplication of the integrand
with suitable Heaviside functions, is not always defined.
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Two generalized functions may be multiplied only when eitbiethe two is locally equivalent to an
ordinary function, or as a direct product when they dependifferent variables. Some results are

OX)H(X + 1) = d(x),
K ox) f(x)dx = /OO ox)f(x)dx if xg > 0,

—Xo

‘Km[%awaouxomdx=/ﬁ5uﬂ/ﬁ5mwaNan

/OO ot — 7)d(r)dr = 4(1).

C.2.7 Higher dimensions and Green’s functions

A generalization to several dimensions is possible [207d, many results are fairly straightforward
after an obvious introduction of multi-dimensional gooddtions. For example, we may define a new
generalized functiorf (x)g(y) in R? by the direct product of (x) andg(y). For the delta function in
RR3 this leads to

d(x) = d(x)d(y)d(2)

Care is required near the singular points of a coordinatestoamation. For example, providedr)
is considered to be an odd functionrinthe 2-D delta functiod(x — Xg) may be written in polar
coordinates ([98, p.306]) as

S(r —ro) — .
_ oW —Y%9—2zn) if rg £0,
S(X — Xo) = fo ngé ° ’ (C.35)

_5(” (r >0 if ro=0.
T

Relevant in the theory of 2-D incompressible potential flaw the following identities. The line
source is a delta function source term in the mass equation:

v = %(cos@, sing, 0) satisfies V-v = 2z4d(X, y). (C.36a)

The line vortex is a delta function type vorticity field:
1 _ -
v = F(_ sind, cosd, 0) satisfies Vxv = 2rd(X, y)e,. (C.36b)

A most important application of (more-dimensional) deltadtions in the present context is that they
allow a very direct definition of Green’s functions. Clasgdig, the Green'’s functior is defined in
a rather complicated way, but in the context of generalizetttions it appears to be just the field
resulting from a delta function source. Consider for exantpé one dimensional wave equatiarf.(
(4.81))

?G  ,0°G
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After Fourier transformation tbandx we obtain
- - 1 S
2 21,2 —iwt 4K
—0°G +ck’G=—e e'ky
w + 0 471_2

which yields equation (C.16) (apart from the amplitude) #reh, after the described transformation
back into space and time domain, the Green'’s function giyeexbression (C.18).

See Appendix E for a table of free field Green’s functions if2-1-and 3-D, for the Laplace,
Helmholtz, wave, and heat equations.

C.2.8 Surface distributions

Of particular interest are the so-called surface distidimstoy (x) defined by the surface integral
/ , 9z (X)p(x) dx = / ¢ (X) do (C.37)
R z

whereg¢ is an arbitrary test function, antl denotes a smooth surfacelki with surface elemented
In practice, a surface is often defined by an equaB@rn) = 0 (section A.3). Near a pointg on the
surface,S(x) varies to leading order only in the direction of the surfacemale, = V§/|V S,

S(X) = (X = X0) VS + -+ = [V&lv,

wherev = (X — Xg) -6, and § indicates evaluation a§. Sinceds is locally, after a suitable rotation
and transformation of coordinates, equivalent to a one=daional delta function in, the coordinate
normal to the surface, we have

Iz (X) =0(v) = |[VSIo(IVSv) = [VS|I(S). (C.38)
Note that this result is in fact a generalization of formulaZ8). For sufficiently smooth we have
9(x)
o(h(x)g(x)dx = / C.39
Jesotongoose =3 [ 0 e (39)

where the summation runs over all the surfagedefined by the equatiom(x) =

This concept of surface distributions has numerous impbggplications. For example, integral the-
orems like that of Gauss or Green [102], and Reynolds’ Tramispheorem (section A.1) may be

derived very elegantly and efficiently. We show it for Reyd®ITheorem and leave Gauss’ theorem
as an exercise.

Consider a finite volum& = V(t) with sufficiently smooth surfacé = $(t), moving continuously
in space. Introduce a (smooth) functidiix, t) such that

>0 if x e V(),
f(X, 1)1 =0 if x € (1),
<0 if xgV@),
but otherwise arbitrary. Sinceé f | ;_g is directed normal inwards int¥, the outward normahs of §
is given by (section A.3)

Vi

ns(x,t) = — W
f=0
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Let the surface$(t) be parametrized in time and space, by coordinétes, ). Like the auxiliary
function f, this parametrization is not unique, but that will appeabpécof no importance. A surface
point xs(t) € 8 (considerd and i fixed), moving with velocityb =xs, remains at the surface for all
time, sof (xs(t), t) = 0 for all t, and therefore also its time-derivative, and so

of .
— =—Xg‘Vf =|Vf|b-ns
p s |V T s

The variation of a qualityF (x, t), integrated oveW, is now given by

d d
a/v F(x,t)dx:a/RgH(f)F(x,t)dx

0 of
=/R3 [H(f)&F(x,t)-i—é(f)E F(x,t)]dx

5
:/VEF(x,t)dx +/5(b-ns)F(x,t)da- (C.40)

whereH denotes the Heaviside function, and use is made of equati@8). Note that, although in
generalb is not unique, its normal componehtng is unique, in particular it is independent of the
selected functiorf and parametrization.

C.3 Fourier series

A Fourier series (in complex form) is the following functidi(x), defined by the infinite sequence

{Cn}ﬁo:ﬂ)o-

f)= D e ™/t (C.41)

N=—0o0
If the series converged, is periodic with periodL. For sufficiently well-behaved function§ the
coefficients are given by

1/t .
=t /0 f (x) e 2F 1ML gx. (C.42)

Classically, the Fourier series precedes both the Fouaastorm and generalized functions. The
classic theory is, however, rather complicated. On therdtlaed, Fourier series appear to have a
much simpler structure when they are embedded in the gezetdlinctions, in the following sense.

Fourier series are equivalent to the Fourier transform ofipdic generalized functions.

A generalized functiorf is said to be periodic, with period, if a coordinate shift
f(x)=f(x+1L)
yields the same generalized function.

RienstraHirschberg 8 Aug 2016, 20:00
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We have the following couple of theorems ([120, 253]), bglus when a Fourier series is a general-
ized function, andiice versa

Theorem C.3 (From Fourier series to generalized function)

A Fourier series (C.41) convergeso a generalized function if and only if the coefficientsace of
slow growth. This means, that there is a constant N such that cO(|n|N) for |[n| — oo. The
generalized function it defines is periodic and unique.

Theorem C.4 (From generalized function to Fourier series)

The most general periodic generalized function is just tberiér series: any periodic generalized
function can be written as a Fourier series with Fourier dméénts ¢, while the Fourier transform is
a periodic array of delta functions:

f)= > e ™, (C.43a)
nN=—o0

- —~ 2 1 [ .

f@= " co(w- ”Tn) Cn = E/ f(x)U (%) e 2rinx/L gy (C.43b)
n=—00 —o0

Any Fourier series can be differentiated and integratad &y term.
U e C* is an auxiliary smoothing function with the following pragies:

UXx)=0 for x| >21, UX+UX-1)=1for 0<x<1,

but otherwise arbitraryJ is necessary because a generalized function may not bedhteglong a
finite interval (for example, when singularities coincidghathe end points).

If we are dealing with a generalized function defined bgesiodic absolutely-integrable ordinary
function thenU is not necessary, and the expressiondpsimplifies to the classical form (C.42).
Although in such a case the Fourier series may converge inamdsense, this is not guaranteed, and
the Fourier series is still to be interpreted in a generdlzense.

Examples are the “row of delta’s”

o0 o0

Z d(x —n) = z eI — 1 4 Zicos(hnx), (C.44a)
n=1

N=—00 N=—00

with its Fourier transform
l o0 ) o0
e’ = > o - 21n), (C.44b)

N=—00 N=—00

2z

9As the generalized limit of, for examplégm(x) = exp(—x2/m?) M ¢, e27inx/L,

RienstraHirschberg 8 Aug 2016, 20:00



244 C Fourier transforms and generalized functions

and itsN-th derivative

o0

> oM —m= > @rinNe* ™, (C.44c)

N=—00 N=—00

Furthermore, the sawtooth or N-wave with simple discoriti@si atx = m (m € Z)

o, i 2 sin(2z nx)

1_x| = ' = _ C.44d

[2 ]1 _ZOO 2rin ; n ( )
and a sequence of parabola’s, continuous atm (m € 7Z)
>, erinx >, COY27 NX)

1 2 1 Yy
S[x=xc—z| = =— —_— . C.44
Z[X X 6]1 n;m 27in)? Z 27212 (C.44e)

> denotes a sum excluding = 0, [-], denotes the_-periodic continuation of a functiorf (x)
defined on the intervdD, L]:

[f(x)]L - i B(X —n)f(x —nL),

and B denotes the unit block function

1 if0<x<l,
BX)=HX) -—H(X-1)= .
0 otherwise.

Apart from an additionak and%xz, (C.444d) is the first integral and (C.44e) is the second nalagf
the row of delta’s of (C.44a). In general it is true that anperalized Fourier series, with coefficients
¢ = O(InN)(In| = o0), is the(N + 2)-th derivative of a continuous function. This shows that¢he
is a limit to the seriousness of the singularities that tHesetions can have [120].

Related examples of some interest are:

> 2
—log|2sinzx| = > M, (C.45a)
n=1 n
3 cotgizx) = D sin(2znx), (C.45b)
n=1
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—3tan(zx) = > (~1)"sin(2znx), (C.45¢)
n=1
Isinx| = = — = Z Cos(znx) (C.45d)
n=1

e¢]

sin(2n + 1)x
Z 22— H(n+3)

Until now we have considered only generalized Fourier sdyecause of their more transparent prop-
erties. We have to be very cautious, however, when dealingrantice with divergent series. No
attempt must be made to sum such a series numerically terrrivy Numerical evaluation is only
possible for classically convergent Fourier series. Sohtbeeomost important results are the follow-
ing.

For a given functionf we have the following theorem.

sinx| sinx| = (C.45¢)

Theorem C.5 (Existence of ordinary Fourier series)
If a function f is piecewise smodthon the interval[0, L], such that {x) = %[f(x+) + f(x-)]1,
then the Fourier series of f converges for every x to the Liggiis continuation of f.

For a given Fourier series we have the following theorem.

Theorem C.6 (Continuity of ordinary Fourier series)
If a Fourier series is absolutely convergeng. > |c,| < oo, then it converges absolutely and uni-
formly to a continuous periodic function f, such thataze just f’s Fourier coefficients.

An example of the first theorem is (C.44d). Note that the simldoking (C.45a) just falls outside this
category. Examples of the second are (C.44e) and (C.45d).

C.3.1 The Fast Fourier Transform

The standard numerical implementation of the calculatfamFeourier transform or Fourier coefficient
is the Fast Fourier Transformalgorithm [33]. This algorithm calculates for a given coeplarray
{x;}, ] =0,..., N=1very efficiently (especially iN is a power of 2) the Discrete Fourier Transform

N—1
Xi= D xj exp(—2rijk/N), k=0,...,N—1 (C.46)
j=0
101 js piecewise continuous @, L] if there are a finite number of open subintervals & < xq, ..., XN—1 <X <L

on which f is continuous, while the limitd (0+), f (x1 %), ..., f(L—) exist. f is piecewise smooth if botli and f are
piecewise continuous.
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A Fourier coefficient (C.42) is calculated by discretizihg integral
1t . 1e
Cnh = _/ f(x)e 2Fin/Lgx ~ — Z f(jL/N)exp(—2zi jn/N)
L Jo N =

and identifyingx; = f(jL/N) andc, = X/N.

A Fourier transform (C.1) is determined as follows. Restifie infinite integral to a large enough
finite interval[-3T, $T], and consider only the values = 2zk/T, fork = —IN,...,iN — 1.
Then we have

Nl

A 1 /= —iot 1 T —iot
P(w) = — pt) e’ dt ~ — p(t) e’ dt
2z — o0 27 —%T

1
1 27 i 1 /7 i
= —/2 p(t) et dt + —/ pt —T) e dt.
2r 0 2r %T

If we finally discretize the integrals

orky T
T
p(ZE) ~ S p(iT/N)exp(—2xi jk/N)
( T ) 2N
T N—-1
50 2 PUT/N = T)exp—2ri jk/N).
j=3N

we obtain the required result by identifying

[p(jT/N) if 0
Xj = . "
P(JT/N—=T) if 5N

(ZLk)_ T | Xn if —IN<k=-1,
T 72N %, it o<k<IN-1
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D Bessel functions

The Bessel equation for integer
/! 1 / m2
has two independent solutions [244, 1, 57, 71, 125]. Staliwkd forms are

Jm(X), m-th order ordinary Bessel function of the 1st kind,

Ym(X), m-th order ordinary Bessel function of the 2nd kind.

Jm is regular inx = 0; Yy, is singular inx = 0 with branch cut along < 0; form > O is:

( l) ( X)m+2k
(X )—Z k,(m2+k),

k-1 2

V() = —— Z “”T)(zx)—mﬂk + = 10g(3%) In(x)
k=0 ’

(_1)k(%x)m+2k

1 o0
- ;g{wmm p(m ke D 2

-
~l

)

with w@) =—y, wh)=—y + , 7y = 0.577215664901532

=
[|
.

Jm(_x) = (_1)me(X)’
(—1)m(Ym(x) - 2iJm(x)), O<argx)<x,
(—1)m(Ym(x) 4 2i Jm(x)), _z <arg(x)<O.

me(x) = (_1)me(X)’
Y—m(x) = (_l)mYm(X)‘

Ym(_x) =

(D.1)

(D.2a)
(D.2b)

(D.3)

(D.4)

(D.5)

(D.6)
(D.7)
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Other common independent sets of solutions are the Hankelifuns

HP(X) = In(X) + i Ym(x),
HP(X) = In(X) — i Ym(X).

Related are the modified Bessel functions of the 1st and 2wl ki

Im(X) = 17MJn(ix),

Kon (%) Iri™IHD (%) , —m<argX)<iz,
M Ari™ T HD (X)) — 271 (=)™ I (X) , iz <argx)< =,

B [%n(—i)mﬂH,@(—ix)

1
, —sr<argX)< w,

I (—)™IH@ (—ix) + 271 (D) "Im(x), —7 <argX)<—3m,

satisfying

Im is regular inx = 0, Ky, is singular inx = 0 with branch cut along < 0.

Im(_x) = (_1)m|m(x)
Km(_x) = [

Lm(X) = |m(X),
K m(X) = Km(x)-

(_1)me(X) + i [m(X),
(_1)me(X) — mi [m(X),

O<argx)< «,
—r <arg(x)<0,

Wronskians (with primé denoting derivative):

In(X) Y (X) = Ym(X) I5,(X)

2/ X

HOOHP (x) — HP () HP (x) = —4i /7 x

I (X) Kf (%) = Kn(X) [1,(X)
In(X) Ymg1(X) — Ym(X) Imy1(X)
In(X) Kmy1(X) + Kmn(X) Imy1(X)
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—1/x
-2/ X
1/x

(D.8a)
(D.8b)

(D.9a)

(D.9b)

(D.9¢)

(D.10)

(D.11)
(D.12)

(D.13)
(D.14)

(D.15)
(D.16)

(D.17)
(D.18)
(D.19)
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Jn(x) and J/,(x) have an infinite number of real zeros, all of which are simpiththe possible
exception ofx = 0. Theu-th positive ¢ 0) zeros are denoted bjy,, and j;,, respectively, except
thatx = O is counted as the first zero 8f: j;, = 0. It follows thatj, , = j1,.-1.

Asymptotically the zeros behave like

Joye = (u+3m— P + O™ (u — 00) (D.20a)
Jie = (u+3m—Hr + O(u™Y) (u — 00) (D.20b)
jr =~ m+0.8086m*3 + O(m~*3) (M — o). (D.20c)

Not only asymptotically but in general it is true thigf, > m.
Asymptotic behaviour fox — 0:

In(¥) = 3x)™/m!, (D.21)
Yo(X) >~ 2log(x) /=, (D.22)
Ym(X) >~ —(m— D! (3)"/x, (D.23)
HEM? (x) ~ +2i log(x) /7, (D.24)
H2(x) >~ Fi(m— DIGx) "/, (D.25)
Im(X) > (3x)™/m!, (D.26)
Ko(X) >~ —log(x), (D.27)
Km(X) > 2(m— 1! ()™, (D.28)

Asymptotic behaviour fofx| — oo andm fixed:

Jn(X) ~ (%nx)*% cosx — imr — 37), (D.29)
Yim(X) (%nx)_% sin(x — smz — 37), (D.30)
H2 (x) ~ (%nx)*% expl£i(x — imz — 7)1, (D.31)
Im(X) =~ (27rX)_% e, (largx)| < 3x), (D.32)
Km(X) =~ (2x/n)*% ex, (largx)| < 37). (D.33)
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Asymptotic behaviour fofx| — oo andm?/x fixed:

1
In(X) > (37x) 2 cogx — Fam — 37w + 2(m* — Hx ), (D.34)
1
Ym(X) = (3zx) "2 sin(x — 2zm— 1z + 1(m® — DHx71), (D.35)
1
H&2(x) ~ (32x) 2 expl£i(x — dmz — Iz + 3(m? — Hx )], (D.36)

with absolute accuracy of <1% aloxg> 2+ 2m+ ligml-5 for any 0< m < 100. The corresponding
approximating zero’s od,, and J;, (and similarly forY;,) are easily found to be

e = 3+ 2m— D+ 1/ (u+ Im— H22 —2me 4 4, (D.37)

e = 3+ Im— D+ 1/ (u + Im— 2222 —2m2 + 1, (D.38)

Asymptotic behaviour fom — oo:

1
Jn(X) >~ (2zm)~ 2 (ex/2m)™, (D.39)
1 2 1
Jm(m) =~ 25/(3§F(§)m§), (D.40)
1
Lrme ) 2 codme, — marctary, — ix),
3 (M) ~ [(zﬂ (+) ; gy . — 37) (D.41)
(2rmg_)" 2 exp(mg_ — martanhy_),
1
Ym(X) > —(Gzm)”2(ex/2m) ™™, (D.42)
1 1 1
Ym(m) =~ —25/(3”(%)”15), (D.43)
1
(3rmey) "2 sin(myy — marctary,. — 37),
Yo (mx) ~ [ STMCL) : C+ e — 32 (D.44)
—(3wm¢_)"2 exp(—m¢_ + martanh_),
whereg, = +/x2 — 1, valid forx > 1, and;_ = +/1 — x2, valid for 0 < x < 1.
For any continuoud , such that the integral exists, and> 0, we have
im / M dn(max) f(x)dx =a*f (a7). (D.45)
—> 00 0
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Important recurrence relations are

In100 + Ine1() = 2030 (x), (D.46)
In-10) — Int1(¥) = 23,,(%), (D.47)
Ym-1(X) + Ymi1(X) = 23 Ym(X), (D.48)
Ym-1(X) = Ymia(X) = 2Y(X), (D.49)
Im—1(X) + Imya(X) = 21(X), (D.50)
Im—1(X) — Impa(X) = 2% Im(X%), (D.51)
Km-1(X) + Kmt1(X) = —2K{,(X), (D.52)
K100 = Kms1(X) = =22 Kn(X). (D.53)
In particular:
Jo(X¥) = —A(x), Yo(¥) = —Y1(x),
lo(x) = 11(x), Ko(X) = —K1(x),
(D.54)

(Xn+lJn+1(X))/ = X", (%), (Xn+1|n+1(x))/ = X" (x),
(X" Y01 (0)) = XY (x), (XK p1(00)) = —XK (X).

Some useful relations involving series are

eiXCOS’ﬂ — Z ime(X) eimﬂ, (D55)
m=—o00

HkRy = > €m0 Jp(kr) In(ko), (D.56)
mM=—o0

where: R? =12 4 p? — 2rp cog® — ¢),

> In(if 1) Il
Z . m(Jm/; 0)2 m(Jm/f ) 2 ©<r.ro < 1),
TSR IE - (D.57)
fo Z InCimer0) Im(Jmul) ©<rro<1)

= 33m)?
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Relations involving integrals:

~ X oy -
/x Cm(@X) Em(BX) dX = m{ﬂ Cr(@X) Cr(£X) — & Cpp(@x) Em(BX) | (D.58)
/x Crm(aX) Crn(ax) dx = 2(x% — ) C(ax) Cm(ax) + 2x2C)(ax) Cp(ax) (D.59)
whereCp,, Cn is any linear combination aly, Y, HY andH 2,
~ —X ~7 ~
/x:Dm(ax):Dm(ﬂx) dx = s {ﬁ:Dm(ax):Dm(ﬁx) — aJDr’n(ax):Dm(ﬁx)}, (D.60)
/x:Dm(ax):ém(ax) dx = 2(x* + Z‘—E)ﬁ)m(ax)bm(ax) — 12D/ (aX) Dy (@X), (D.61)
whereDn, D is any linear combination df,, andK,,
/ e’ cogmy) dv = %/ gxeosvHmMI g — 7™ I (X), (D.62)
0 -
% efimﬁ+ixsin'z9 do = Jm(X), (D63)
“a e 'K =vkZ — a2, Im(y)<0
Zeridy do = v o HIRPISE, D.64
/0 y o(ea) do —ir”’ {r:\/m, k>0, (D-64)
/ gix coshy dy = +7i Hél’z)(X), (D.65)
R SN =vk? — a2, Im(y)<0
Zeiex=irlyl go = 7 H® (k 4 BULVEASE D.66
/OO y o T 0 ( r)a r= /X2+y2, k>0, ( )

o P K2 — a2 — 2,
// E @ iax—ifly—iy |z dadﬂ — 27Z'e— Im(y)<0, k>0, (D67)

o ¥ —ir’ |r=y/x2+y2+ 22,

o-i0 . Ht—r1)
2 0] —
/wio H )(wr)e oo = 4lﬁ’ (D.68)
[ran | e -0 069
o XK T | “iaiH@ k) (Im(k) < 0), '

1.3.5..-(2n — 1)

(14 a2
1.3:5.- (-1

(1+ az)n+%

/Oo X"Jh(x) e dx =
0 (a> 0) (D.70)

/ X"J_1(x) e dx =
0
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)

/OooxJn(ax)Jm(ﬂx) dx = NG (a, > 0), (D.71)
/oo XYm(aX) In(fX) dx = E% (é) (Princ. Val.) (D.72)
0 T oc— pc \a
/0 b Jo(aX) sin(Bx) dx = j/(% (a, B > 0) (D.73)
/°° ] _H@@-p)
b(aX) cogfX) dx = , (a, f > 0) (D.74)
0 a?— B2
sin(n arcsin2))
. — (0<p<a),
/ In(@x) Sin(AX) dx = \ V"‘Z(;ﬁ;(lm) (D.75)
0 2 0
cognarcsin£))
~ _— & (O<p<a),
/0 In(@x) coAx) dx = [ V“Z_;f;n(;n”) (D.76)
z 0
2 1
- - arcsin(£) (0<B<a),
/ Yo(ax) Sin(x) dx = 7; \ az_I p? (D.77)
0 -l arcostZ) (O<a<p),
T IBZ — 2 a
* H(B —a)
/0 Yo(aX) cogpx) dx = —\/m, (a, > 0) (D.78)
o ) 1 .
/0 Ko(ax) sin(Ax) dx = N arsinh(2), (a, B > 0) (D.79)
0 1
/O Ko(aX) COAX) dX = \/%ﬁz (a, B > 0) (D.80)
Related to Bessel functions of ord%are the Airy functionsAi andBi [1], given by
. 1 [
Ai(x) = —~ /O cog(3t% + xt) dt (D.81)
Bi(x) = %/OOO [exp(—%t3 + xt) + sin(3t® + xt)] dt (D.82)
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254 D Bessel functions

They are solutions of
y' —xy=0, (D.83)

with the following asymptotic behaviour (introduge= §|x|3/ 2)

[ cos(¢ — )
5 T ) (X = —00),
Aix) = § v (D.84)
PN =00,
[ cos(¢ + )
= Tt (X = —00),
Bi(X) ~ «@'XW“ (D.85)
_ 7ﬁx1/4 (X = 00).

Figure D.1 Bessel functiodn(x) as function of order and argument.
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E Free field Green’s functions

Some relevant Green’s functions for the Laplace equatiom,réduced wave equation (Helmholtz

equation), the wave equation, and the diffusion equatieat(equation) are summarized in the table
below for 1-, 2-, and 3-dimensional infinite space. The baupaonditions applied are (depending
on the equation): symmetry, the function or its derivatia@ighing at infinity, outward radiating (as-

suming a€'! convention) and causality (vanishing before 0).

Equation 1-D 2D 3D
1 1 1
V*G = do(x 51X —logR __=
" 2| | 2 ? Azr
V2G + k%G = 6(x) 1 ik Y @ KR) e
4 40 Az
°G 1 1 H(@t—-R/0)| dt—r/0)
— — C®V2G = J(X)d(t) [ == H (t — |x|/c
2 © (X)) |5 H(t = [x|/c) P e
aG H (t) e—X2/4at H (t) e—R2/4()LI H (t) e—r2/4(lt
— — aV?G = 5()d(t
ot @ ( ) ( ) (47[(1t)l/2 A ot (47rat)3/2

Notation: R=+X2+Vy2, r=x2+y2+2



F  Summary of equations for fluid motion

For general reference we will describe here a large numhaossfible acoustic models, systematically
derived from the compressible Navier-Stokes equationdeuthe assumptions of absence of friction
and thermal conduction, and the fluid being a perfect gasfldtvds described by a steady mean flow
and unsteady perturbations, upon which linearization amdri€r time-analysis is possible. Further
simplifications are considered based on axi-symmetric @dégnand mean flow.

F.1 Conservation laws and constitutive equations

The original laws of mass, momentum and energy conservatiotten in terms of pressurp, density
p, velocity vectorv, scalar velocityy = |v|, viscous stress tenser, internal energye, and heat flux

vectorq, are given by

mass: £p +V-(pv) =0 (F.1)
momentum: Z(pv) + V-(pvv) = -Vp+ V-1 (F.2)
energy: <(pE)+ V-(pEv) = —V-q—V-(pv) 4+ V- (7v) (F.3)

while
E=e+ 3% (F.4)

It is often convenient to introduce enthalpy or heat functio

i—et 2 (F.5)
p

or entropys and temperaturg& via the fundamental law of thermodynamics for a reversibteess

Tds = de+ pdp~t = di — p~tdp. (F.6)



F.1 Conservation laws and constitutive equations 257

With % = % + v -V for the convective derivative, the above conservation laayg be reduced to

mass: dp=—pV-v (F.7a)
momentum: p3v=-Vp+ V-1 (F.7b)
energy: pide=-—V.q— pV-v+17:Vo (F.7¢)
pli=4p—V.q+1:Vv (F.7d)
pTads=—V.q+1:Vv. (F.7e)

Of the energy equations, the entropy form (F.7e) is the nmstenient one for acoustic applications.
For anideal gas we have the following relations

p=pRT, de=CydT, di =CpdT (F.8a,b,c)

whereCy, is the heat capacity or specific heat at constant volWpes the heat capacity or specific
heat at constant pressure [118], = Cy(T) andCp = Cp(T) are in general functions of temper-
ature.R is the specific gas constant apdhe specific-heat ratio, which are practically constant and
given by (the figures refer to air)

C
R=Cp—Cy = 28673 JkgK, 7 = C—P = 1.402 (F.9a,b)
V

From equation (F.6) it then follows for an ideal gas that

ds = CV% — de—p (FlO)
p p

while isentropic perturbations ¢d= 0), like sound, propagate with the sound spegilen by

2 _ (9P _ 7P _
c _(ap)s_ - =7RT. (F.11)

For aperfectgas, the specific heats are constamié¢pendent of ), and we can integrate
e=CyT +ent, | =CpT +iint, S=Cvlogp—Cplogp + Sni. (F.12a,b,c)

The integration “constant®,i, iinit andspi; refer to the initial situation of each particle. So this lesu
is only useful if we start with a fluid of uniform thermodynaral properties, or if we are able to trace
back the pathlines (or streamlines for a steady flow).
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258 F Summary of equations for fluid motion

F.2 Acoustic approximation

F.2.1 Inviscid and isentropic

In the acoustic realm we will consider, the viscous or tuehtistress terms will be assumed to play a
role only in an aerodynamic source region, while any pe#tion is too fast to be affected by thermal
conduction. Therefore, for the applications of acoustappgation we will ignore viscous shear stress
(r) and thermal conductiorgj. In particular, this is obtained as follows. We make dimemniess by
scaling

X:=LX, wv:i=v0v, t:=—1, p:=pop,
0o
) kAT
dp:= poofdp, Ti="2r qi="Tq,
CpAT
T:=ToT, dT:=ATdT, ds:=———ds
To
to get
1
d
1 Ec
d .

whereRe = povol /1 denotes the Reynolds numb&e = poCpogl /k the Peclet number, and

Ec = v3/CpAT the Eckert number. If the Reynolds number tends to infinigyally also the Peclet

number does, becaufe = PrRe and the Prandtl numbélr is for most fluids and gases of order 1.
Then, provided the Eckert number is not large, we obtain

d) = pVev (F.14a)
pIv=-Vp (F.14b)
ds=0 (F.14c)

which means that entropy remains constant, and thus ¢ —'dp, along streamlines.

Furthermore, we will assume the gas to be perfect, with thewing thermodynamical closure rela-
tions
d d
dS=Cv—p—Cp—p, c?
p P

_ P (F.14d)
p
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F.2 Acoustic approximation 259

By substituting equation (F.14d) into equation (F.14c) Ww&am

dp=c2dy. (F.14e)
If the flow is initially homentropic $;; is uniformly constant) then

p o p? €/ (F.14f)
If the flow is homentropicgis uniformly constant) then

p o p’ (F.149)

F.2.2 Perturbations of a mean flow
When we have a steady mean flow with unsteady perturbatioren gy
v=v+v, pP=po+p, p=pot+p, S=%+S (F.15)

and linearize for small amplitude, we obtain for the mean flow

V- (povg) =0 (F16a)
po(vo-V)vg = —V o (F.16b)
(v0-V)$ =0 (F.16c)
while
d d
do=Cy X _cp2, @2_IP (F.16d)
Po Po Po
and the perturbations
Zp + V- (vop' +v'pg) =0 (F.17a)
po(% + vO-V)v’ + po(v’-V)vo + p’(vo-V)vo =-V p/ (F.17b)
(§+v0-V)S +v-Vg=0 (F.17¢)
while, assumingy,; = 0,
/ Cv / Cp / Cv / 2 / 1 p/ p/
S=—p ——p'=—(p —cgp’), C=35C———). F.17d
Po P Pop Po (p Op) 2 (po Po) ( )

The expression for’ usually serves no purpose.
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260 F Summary of equations for fluid motion

From equation (F.14e) we get for the mean flaywVpg = cgvo-Vpo, and for the perturbations an
equation, equivalent to (F.17c) and (F.17d),

Z p'+vo-Vp +v'-Vpy = Cz(ip/ +v9-Vp' + v/°Vpo) + C2<vo'Vpo) (ﬂl — p_’) (F.18)

at 0\ at 0 Po po

If the mean flow is homentropic{ = constant), we hav& py = c2V o while the perturbations are
isentropic along streamlines.

If the perturbations are entirely isentrop& & 0), for example wheng = 0 andsy = constant or
when the flow is homentropic (satisfying equation F.14gg, ghessure and density perturbations are
related by the usual

P =cp. (F.19)

F.2.3 Myers’ Energy Corollary

Myers’ definition of energy [152, 153, 154] for unsteady disances propagating in moving fluid
media is both consistent with the general conservation liafluial energy and with the order of ap-
proximation in the linear model adopted to describe thaudistinces. When the mass and momentum
equations (F.1,F.2) and the general energy conservatier(He8) for fluid motion is expanded to
quadratic order, this 2nd order energy term may be reduceketdollowing conservation law for
perturbation energy densify, energy fluxl , and dissipatiorD

LE+V-l =-D (F.20)

where (for simplicity we neglect viscous stress and heatlgotion)

p/2 1 2 ) ) pOTOS/z
E=—=+35p0°+pvov +—~—, F.21a
2poc T 2P0V TP 2C, ( )
| = (pov’ + p'vo) (pﬁ +90:0') + povoT's, (F.21b)
0
D = —povg- (@' xv') — p'v'+ (woxvg) + S (pov’ + p'vo) -VTo — S pove-VT'. (F.21c)

while the vorticity vector is denoted Byxv = @ = wo+®’. Without mean flow this definition reduces

to the traditional one. Note that, according to this defomtiacoustic energy is entirely conserved in
homentropic, irrotational flow. In vortical flow, the intetéon with the mean flow may constitute a

source or a sink of acoustic energy.
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F.2 Acoustic approximation 261

F.2.4 Zero mean flow

Without mean flow, such thaty = V pg = 0, the equations may be reduced to

&0 —V-(¢vp) =0. (F.22)

F.2.5 Time harmonic

When the perturbations are time-harmonic, given by

v = Re(d€?"), p = Re(pe'™), p' = Re(p €'), s = Re(8e'™), (F.23)

we have in the usual complex notation
iwp + V- (vop + Dpo) =0 (F.24a)
poliow + v0-V)d + po(d-V)vo + p(vo-V)vg = =V (F.24b)
(io+v0-V)§4+19-V5g=0 (F.24c)
§= %(f) —c3p). (F.24d)

F.2.6 Irrotational isentropic flow

When the flow is irrotational and isentropic everywhere (Batropic), we can introduce a potential
for the velocity, wheras = V¢, and expresp as a function op only, such that we can integrate the
momentum equation, and obtain the important simplification

G c?
—¢ + 30> + —— = constant P _ constant. (F.25)
ot y —1 p?

For mean flow with harmonic perturbation, whefe= ¢, + Re(¢ €'), we have then for the mean

flow
C2
2 0 _
vg + 1= constant

NI

7= o (F.26a)
V- (povg) =0, —5 = constant
Po

and for the acoustic perturbations

i+ v9-V)p + pV-vg+ V- (poV) = 0,
( ) A ( ) (F.26b)
polio+vo-V)p+p=0, p=cpp.
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262 F Summary of equations for fluid motion

These last equations are further simplified (elimindtend and use the fact that- (pgvg) = 0) to
the rather general convected wave equation

p5 V- (V) — i+ vo-V) [ g%(iw + v0-V)$ | =0, (F.27)

F.2.7 Uniform mean flow

The simplest, but therefore probably most important comdition with mean flow, is the one with a
uniform mean flow.

Axial mean velocityuy, mean pressurpg, densitypg and sound speeg) are constants, so we have

(Ia) + Uo(fj—x)ﬁ + pov-ﬁ =0, (F.28a)
polio+UpS)v+VpP=0, (F.28b)
(io+uoZ)(p—c5p) =0. (F.28c)

Equation (F.28c) shows that entropy perturbations are gasvected by the mean flow. Without
sources of entropy, the field is isentropic if we start withozentropy.

We may split the perturbation velocity into a vortical pantiaan irrotational part (see equation 1.22)
by introducing the vector potential (stream functignand scalar potentia as follows

b =Vx¥ + Ve, (F.29)

If desired, the arbitrariness tfn (we may add any f, sinceVxV f = 0) may be removed by adding
the gauge conditio¥- ¢ = 0, such that the vorticity is given by

& =Vxd=V(V-¥)— V2P = V9. (F.30)

By taking the curl of equation (F.28b) we can eliminaieand ¢ to produce an equation for the
vorticity:

—(i®+uoZ) VY = (iw+upZ)d = 0. (F.31)

This shows that vorticity perturbations are just convedigdhe mean flow. Without sources of vor-
ticity, the field is irrotational if we start without vortiti.

Indeed, vorticity and pressure/density perturbationsdaeupled. Since the divergence of a curl is
zero,V-v = V- (Vx¢ + V¢) = V3¢, equation (F.28a) becomes

(iw+uo)p + poV2p =0 (F.32)
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F.2 Acoustic approximation 263

By taking the divergence of equation (F.28b), and using &opm (F.28a,F.28c), not assuming isen-
tropy or irrotationality, we can eliminatg and p to obtain the convected reduced wave equation for
the pressure

GV2p— (io+uZ)’p=0. (F.33)

Plane wave solutions are given by

_ Kk _
p=Ae X d=—Ae* Q=0w—uk, cfkl®=0Q? (F.34)
P02
not propagating irk-direction but in the direction of the intensity vector
w|Al?
() = 2 QZ(k + Molklex), Mo = Uo/Co. (F.35)

With some care, especially taking due notice of any singedire behaviour, equation (F.33) may be
transformed to the ordinary reduced wave equation

VP +Q°p=0 (F.36)
by introducing
P(X,1,0; ) = P(X,1,0; Q) exp(i%X) (F.37)
where x = X, o = pQ, M_—ﬁ 1- M2,

F.2.8 Parallel mean flow

Assume a mean flow field parallel irdirection with uniform mean pressurieg. vg = (Up, 0, 0),
Uo = Up(Y, 2), po = po(Y, 2), Co = Co(Y, 2) and pg = constant. Then by taking the convective time
derivative of the divergence of the momentum equation, ialtmg the velocity, and using the fact
that pg is constant, we obtain from (F.17) the equation
o 0)\3 i i
(£ +uoZ) p+2c5 % (Viuo-Vip) — (£ + UoZ) V- (c§Vp) =0, (F.38)

whereV, denotes(dy, &,). If we look for solutions of the formp(x, y, z,t) = P(y, z)€**-* and
denoteQ = w — kug, we obtain a pre-form of the Pridmore-Brown equation [179]

—iQ%P — 2ikc} (V. Ug- V. P) —iQ (—k*C§P + V. - (§V.P)) = 0.
By noting that—kV, ug = V. Q, this equation can be further simplified into
k?c3

v, (szL P) + ( - F) P—o. (F.39)
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Answers to exercises.

Chapter 1

d)
e)

Only if thermodynamic equilibrium prevails.

The pressure on the pistqn can be related to the atmospheric presspyen the free jet by using the unsteady

Bernoulli equation (1.32b) applied to an incompressiblelfiy = po):
oA 1 o 2 P2—P1
— + (5 — —==0.
o + 2(1)2 vy) + o
By neglecting the non-uniformity of the flow we have

2
A¢ =/ vedl >~ 0101 + v205.
1
Using the mass conservation law (1.19) for an incompressibid we find by continuity of the volume flux
Aj01 = Aovap.
Hence, the equation of Bernoulli becomes, with= at,
PL— P2 A1 1/0A1\2 2
—==all1+—¢ (=) —1)@t-.
20 (1+A2 2)+2((A2) )( )
At t = 0 we have a ratio of the pressure drop, determined by theahtie potential difference, of
v1fy  A1la

vals — Aol

Chapter 2

a)

<)

d)

f)
9)
h)
D)
)

A depth of 100 m corresponds to a pressure of 10 bar, henaie densitypg which is ten times higher than at 1 bar.

Following (2.45) we have a speed of sound of 7BmNote thatogcé = y p so thatc depends only on and not on
other gas properties.

Mathematically, any sound speed can be used, but theesiphgkical meaning only appears when we choose the value
that prevails at the listener’s position.

Not necessarily. In an isentropic flowﬁ =0, butV- (vpg)) vanishes only for an homentropic flow.
No, p’ is more appropriate.

Certainly not.

Yes.

No. The fluid should be stagnant and uniform (quiescent).

No. pc2 = y p so thatpc depends also on the temperature because,/y RT.

From the wave equation it follows that= wn/cg for some real unit vectan. So the surface is given logt —n-x =
constant, with real coefficients, and so defines a plane.



Chapter 3

a) Every point of the line source has a different distancd,tharefore different travel time, to the observer. Notettile

b)

c)

d)

f)

9)

h)

D)
)

of the 2-D wave-equation Green’s function (Appendix(&}c2)~1H (t — R/c)/v/t2 — R2/c2.

The fieldP of one point source is given by (see Appendix E)

Pt — C2V2P = §(t — 1)d(X — X0)3(Y — Yp)d(2) with solution

P = d(t — r —rg/c)/4n c?rg whererg = {(X — Xg)2 + (Y — yp)? + z8}1/2.
Integrate over alko, o, introducexg = x + {r2 — 22}1/2 cosfp and

Yo =Y + {ré — z2}%/2singp, and obtain the total field

p= [ Pdxodyo = 32 [i5F d(t — t —ro/c) drg = (20) LH(t — 7 — |2//c).

This could have been anticipated from the fact that the prabé really one dimensional.

From Appendix E we find the total field

o o
. . _1 L
P, y.2) = §i > HEP(kRa) = §i " (3rkRo)"2 exp(3i — ikRo)
n=-—00 N=—00
whereRn = ((x — nd)2 + y2)2 = (r2 — 2rnd cosf) + n2d?)3.
Consider the sources satisfying <« nd <« r, such that
Rnh >~ r —ndcosf r — 00).
This part of the series looks like
e 3 Z(%nkr)’% exp(37i — ikr +ikndcosd)
and grows linearly with the number of terms if
expikndcosf) = 1, orkdcost = 2z m.
The condition is now exp-izn + ikndcosd) = 1, orkdcosfd = (2m + 1).

265

If we makex dimensionless by a length scdle we haved(x) = 5(%L) = %5(%). So the dimension of(x) is

(lengthy 2.
Multiply by a test functiony (x, y) and integrate

...=—//%¢rdxdy=—/02ﬂ000¢rdrd9=2n¢(0,0).

Let Sbe given by an equatiofi(x) = 0, such thatf (x) > 0 if and only ifx € V. The outward normat is then given

byn = —(Vf/|Vf|)i=o. SinceH(f)v vanishes outsid¥, we have

0=/V-[H(f)v]dx =/[H(f)V-v+5(f)v-Vf]dx

=/ V-vdx—/v-nda.
\ S

Only the terms contribute which satisfy<02nL < cgt, so we obtain
Lcot /2L | ol ol
@+Rgb =Rf®)+2 > (f(t (= %)).
n=1

p(x) = e kX L RelkX |f p(xg) = 0, we haveR = — e~ 2ikXo,
Sincep(xg) = 0 ando (xg) # 0 we have simplyZ = 0.

5(X) = (poco) " L(e kX —RekX)_If §(xg) = 0, we haver = e~2ikXo,
Sinceo (Xg) = 0 and p(Xg) # 0 we have simplyZ = oco.
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k) With p(x) = e kXt Re'kX andd (x) = (pgcg) (e ** —Re'kX) we haveR = (Zg — poco)/(Zo + poco), SO

)

m)

. ekl t Re kL Zo + i poco tan(kL)
L = POOGKT —Re kL — A0 poCo +iZgtankL)’
If R>0,m>0,K >0, the zeros oZ (w) = R+ iwm —i K /w belong to the upper half plane. K = 0 the zeros are
real, and have to be counted to the upper half plane. The sarttesfreal poles = 0.

—at _ pa—pt
2(t) = 22 (RS(t) + M3 (1) + K H(), y(t) = ZHW@e ™ —pe )

RZ — 4mK
wherea, # = (R+ v R2 — 4mK)/2m.

From Ingard’s boundary condition (3.43) we hauZi(v - ey) = iQp which yields withQ = /(1 + Mg cosy) and
Mo = ug/cp that(1 + Mg cosd)Z sind/poco = (1 + R)/(1 — R), or

_ (1 + Mg cosi)Zsind — poCo
" (14 Mgcos?)Zsind + pgco’

; ; P00
hile R=0if Z= .
whiie I sin? (1 + Mg cosy)

Chapter 4

a)

b)

d)
e)

f)

9)

h)

)
k)

For a wavep’ = G(x + cgt) corresponding to £~ characteristic propagating in a uniform region withy, cg)
andug = 0 theC™ characteristics carry the messagé:+ pocou’ = 0 in the entire wave region. This implies that
p’ = —pocou’ along anyC ™ characteristic. Alternatively, we have from the momentwmservation IaWpO%u’ =

_a% p = —% % p’ becausgy is a function of(x + cgt) along aC~ characteristic. Integration with respect to time

yields: pgu’ = —p’/co.

The piston induces the pressungls= pg,Co,u" and p;, = —po,co, . The force amplitude isE = S(pic +

pncinowa = 9.15N. Asp/ — pj, = 915 Pak pocg ~ 10° Pa we can use a linear theory.

The flow perturbationt is such that the total flow velocityg + u’ = 0 at the closed valve. Hence we hapg =

—pwCuwl’ = pyCypUg andpy = —p2. Forug = 0.01 nys we findpy = —p, = 1.5 x 10* Pa. Forug = 1 m/s we find
p1 = 1.5 x 10° Pa. The pressurp, can reach-15 bar if there is no cavitation. Otherwise it is limited te trapour
pressure of the water.

vj = 2, (A/S(L - /1 - (Ug/Cw)) = UgA/S. Ap = %pw(qu/S)Z.

Energy conservatio_n implie_ﬁl piuy = Aop,Hus, Wh?le mass _C(/)nseryation impliesyuj = Apuj,. Substitution of
the mass conservation law in the energy conservation ladsyip; = p,.

Ry2 =T12 — 1= (p2c2 — p1€1)/(p2C2 + p1C1)-

Rairywater = 0.99945,Tair’wa[er = 199945

RWater,air = —0~99891Twater,air = 0.0011.

Ty — To = 30K, p1€1/p2Cr = 4/Tp/T1 = 1.05.

Ry = —003,Ty 2 = 097.

(17 /11 = R&, = (p1c1 — p2c2)?/(p1c1 + pac2)?,

(0f + )Py —p)/paca =11 =1 =15, 05 /1;H=1-(17/1{).
Ry, = 0.0256,p; = (p1¢10p)/(1— Ry 2 2KL), pi" = Ry 5 p e 2KL,
p;— — pi— e—lkL+p1— elkL

T12=2A1/(A1+ A2, Ri2=1-T12 = (A1 — A2)/(AL+ Ap).

T1,2 = 2p2C2A1/(p1C1A2 + p2C2A2), Ry 2 = 1 — Ty o.
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lim Ryo=1, Im Ryp=-1
Ar/A1—0 1.2 Az/A1—> o0 1.2

For an orifice with wall thicknesk and cross-sectional arefy in a pipe of cross-sectional arég, we have:R =
py/pf =

ik(L + 20)Ap/[2Ag + ik(L + 20) Ap], wherek = w/co, § = S /Aq/x.

Without mean flowg = 0):

« At low amplitudes, when linear theory is valid, friction isgligible When&,? =2/ K Ag.

« Atlarge amplitudesuz/szd > 1, flow separation will occur. Flow separation is induced Isgwosity. Ifé)‘,? < A

then the exact value of the viscosity is not important to juteftbw separation. We have reached a high Reynolds
number limit.

With mean flow (g # 0), we have the same answer as for large amplitudes.

Flow separation always occurs when the particle disphaece is of the order of the diameter of the orifiug: ~ od.

In the pipe we haveuy = uy (d/D)2. The critical level is given by’ ~ pgcowd(d/D)2.

At 10 Hz this corresponds to SPL = 110 dB.

At 100 Hz this corresponds to SPL = 130 dB.

At 1000 Hz this corresponds to SPL = 150 dB.

Within a hearing-aid device, sound is transferred from thgldier (at the back of the ear) to the ear-drum by means
of a pipe ofD = 1 mm. An orifice ofd = 0.1 mm placed in this pipe, will protect the ear by limiting sduevel
around 1 kHz to SPL = 130 dB. Such devices are indeed in eveysia

In a stationary subsonic free jet induced by a mean flow vpeexa uniform pressure. The first intuitive guess for a
quasi-stationary theory is to assume that the inertiateffepstream of the orifice remain unchanged, while theialert
effects in the jet are negligible. This leads to the commaumption that the end correction of a thin orifice with

a mean flow is at low frequencies half of the end correctiomh&dbsence of mean flow. Experiments by Ajello [2]
indicate a much stronger reduction of the end-correctiorsoime circumstances negative end corrections are found (
Ajello [2], Peters [173]). Indeed the theory for open piperimation of Rienstra [190] indicates that we cannot predic
end corrections intuitively.

R=p;/p; =[A1— (A2 + Ag)l/[A1 + (Az + Ag)].

R= pI/pir = [(A1 — Ag)cogkL) —iApsin(kL)]/[(A1 — Ag) cogkL) + i Agsin(kL)].
R = —-1forkL = z(n+ 0.5), R = 0 for A, = O whenA; = AzandR = 1 for A3 = 0 whenkL = nz
(n=0,1,2,3,...).

Py + Py = Po+ pweacd. Po/Po=—3ya/a0. Py = RP.

AP — P) = APy — (puCw)iodraga. By + by = Py

R=—-[1+i A(a)2 - co(z))/choCmao]_l with a)g =3y po/pmag.

B/ Bin = [1+ ()22 — 11,

wdag/c2 =3p)/pw < 1. Atpg=1barp/p, = 01073

3y Po/pwC2 = O(10~%) henceagw/c,y < 1072,

@3~ 3y po/2pwd3. R=—[1+ A(w? — 3)/2rinc,a0] L.

Whenag = O(D) we do not have a radial flow around the bubble. The approxanatsed for small bubbles fails.
[g] =s/m.

A 2 A —.
24— g&g = e 10T §(x — y)/2x.
Integration arounc = yyields:—[&@]if =g it /chg.
(&8l = FikgT. Atx = y we haveg™ = e77 /4ziwcy.
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Henceg™ = gy €7KX—Y) with “+” for x > yand “” for x < y.
Therefore:g = e7197 e KXYl /47wy,
A) Using the result of exercise z) we find:
gT(Lly) = Go(Lly) with Go(x|y) = e~'r e KXVl /4ziacy.
Furthermore:
ZL gL+ § L) _ZL—poco _ G (L)
poco  GT(L) -4~ (L)’ ~ ZL+poco GT(L)
Hence: g(xly) = §* + 8~ = Go(x|y) + R@o(x|2L — y).
This corresponds to the waves generated by the originateaiy and an image source at2- y.
B) The same answer as the previous exercise with (sectidb)4.4
R=—1/[1+ A@? — co(z))/(Zﬂiconao)] whereA is the pipe cross-sectional areg, the bubble radius andg the
Minnaert frequency of the bubble.
C) For|xq — y1| > VS andkSS < 1 the Green’s function is independent of the positigs, y3) of the source in the
cross section of the pipe. Hence we havei(xy, t|y;, 7) = jfooo f_oooo G(x,t]y, 7) dyody3 = SG(x, t|y, 7).
D) Moving the source towards the observer by a distaageshould induce the same changg in g(x,tly,7) as a
displacementAx = — Ay of the observer in the direction of the source. The distarce y| is in both cases reduced
by the same amount.

This implies that: Ag = g—gAy = —g—gAx.

E) p' = p'c3 ~ Mg3poU2(d?/S) = 2 x 1072 Pa. SPL =60 dB.
F) SPL=63dB.
1
G) (S/@3)(pwC3 /3y Pp)2 = 2.3 x 10 or 87 dB. puC3 /3y po = 5.4 x 10° or 75 dB.

w w

H) f~Ug/D=01KkHz, wp/2r =6.5kHz.

R

Chapter 5

(ZL + poco) + (ZL — poCo) efsz""

(ZL + poco) — (ZL — poco) =2kl
For Z| = oo we haveZ(0) = i pgcg cotg(kgL). As ReZ(0) = O for Z| = oo the piston does in general not generate
any acoustical power unless there is resonaneggl = (n + %)n’.
The acoustical field in the pipe is given b= pT e~ 1koX 4 p— elkox.
The amplitudesp™ and p~ are calculated from the piston velocitly, by using: poColp = pt —p-, Z()ap =
pt+p.
Hence:p* = 3(Z(0) + poco)lip, P~ = 3(Z(0) — poco)lip.

b) Z| ~ Z| +ipowd.

a) Z(0) = poco

c) Forx < 0we havept = O while: p~ = 3poco(Sp/S)lip(L + e kol
The condition that there is no radiatiofi; = 0, is obtained forkgL = (2n + 1)z, wheren =0, 1,2, ....

d) p= fJ+ ekl +p~ efikoL’

poColp(S+ 2Sp) . S-25 ..

——, and p~ = .

(S+2Sp) — (S— 2Sp) e 2kl S+2Sp
Flow separation becomes dominant at the junction when:
(pt — f)_)/pC(Z) = O(kg+/S1). The amplitude of the second harmorfig, generated by non-linearities, can be esti-

with: pT
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mated from:
(P1/P*) ~ koL (p*/poch).
(Z1 + poco) + (Z1 — poco) efsz""
(Z1+ poco) — (Z1 — poco) €2k’
where:Zy = $72,73/($2Z3 + S3Z2), Z2 = poCo, Z3 = i poco tan(kol).
The system is not a closed resonator because the conditzer@pressure at the junction is never satisfied.
(Z1 + poco) + (Z1 — poco) e_szOL
(Z1+ poco) — (Z1 — poco) €2k
where:Z; = $7573(0)/($23(0) + S$3Z3), Z2 = poco,_
(Z3(2L) + poco) + (Z3(2L) — pocg) & 2ot

Z3(0) = poco koL
(Z3(2L) + poco) — (£3(2L) — poco) €

Z3(2L) = $3Z47Z5/(SZ5 + S5Z4), Z4 = 1 poCo cotg(kol), Zs = poCo.
The system is in resonance gL = (N + 3)z.
Configuration ¢)Zp = %poCoi tan(kgL).
The system is resonant fegL = (n + %)n’.

Configuration a)Zp = poCo

Configuration b):Zp = poco

f) Atthe mouthpiece we haveigcolp = p+ — p~.

If we assume friction losses to be dominant we hgve:= pt e2xL

1 [zv y —1
where:a = = [—(1 ~0.027 m 1,
“=py COL( + an/_a)

Hence we findpt ~ 7.6 x 103 Pa, andp = pt + p— ~ 2pt.

The corresponding fluid particle oscillation amplituti@t the open pipe termination id: ~ p/(pgCow) =~ 7x 102m.

If we assume non-linear losses at the open pipe terminatibe tliominant we have (equation 5.243 J(%’nﬁpco)
and p >~ pocol ~ 1.6 x 10% Pa. Friction losses and flow separation losses are compaaabll the acoustical fluid
particle displacement is of the order of the pipe diameter.

9) By — Py = pocolip, Py etRobt 4 pyelkobi — pf 4 py,
(pf e tobr_prelolyg) — (pf - p;)S,
py e 'lot2-py ellolz = pf + pg,
(py etz —p; elbola)sy — (pf — p3) s,
f’; eikols +f)§ elkols — 0, poColiex = ﬁg- e—ikols _ﬁg gikol s

h) p = Acogkx) forx < L, while p = Be KX for x > L. Suitable dimensionless groups are- kL, a = cpL/cpa,
A = poL /o, where the propagation speed of transversal waves in thebnaeecy, = /T /o is introduced. The
resonance equation is then

(z— 8a%z Ysinz= 1€,

4 — 0 when the air density becomes negligible or when the meredsanomes very heavy. In that case we have the
membrane-in-vacuum vibratiar~ a+/8+. .. and the closed pipe modes~ nz +m +...(n=1,23,.).
So whenl = 0 (no energy is radiated) there are indeed undamped sadutitth Im(z) = Im(w) = 0.

) m=poS(C+20), K =poc3SE/V.

) b — iwpo(uzfs)q

In — 5
s(1-%)
0
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Prransmitted 2(1- 602/60(2)) —(iwV/cpS)
pocolp  [2(1— w?/ad) — (ioV /o)) ekl —(iwV/coS) ekl |

There is no transmission when bath= wg andkgL = (n + %)n’.

I) Transmission and reflection coefficient:

m)

n

=

p)

a)

s)

Py 1

T BT (At ikolSp/SIL— (@2/wR) + (ikoV/2Sp)]

R BT g, (kofSp/S) -1

r31+ T (ikolSp/S) + 1
where: “’0 = 231/([V) and:¢ ~ 1. 64/31/7r V-
i®pywCu 2 7 Po S
T=2(2- JR=T -1, 02 = (Z2) ().
( Sp(y po/V)(l—wZ/wé)) = (% )(pwf)

An energy balance yields% PinO = épofﬁsn, where we assumed thdt, and Q are in phase and that vortex
shedding at the neck can be described by means of a quasiatgtmodel. The internal pressupg, is related to the
acoustical velocityl through the neck by the momentum conservation lgy:= pgi wfQ.

This yields:0 = /(37 0 Q/4S,) which is a facton/(z&kof/sp) smaller than for %i open pipe resonator.

5 _ w2
Pn _,, %% =%, (1+ —) with w3 = c2Sh/(¢V) andw; = co/¢.
Pex w1 Ug o

As there are no sources= 0, we have:
t

P == [ [0 5 ~gatxtiy.

where ga(x, tly, 7) = [[ G(x,t|y, v) dS(y).

S
Other contributions from the surface integral vanish if véswane thatG has the same boundary conditions as the
acoustic field on these surfaces. W& 0 we have(dga/oy;)nj = 0. Furthermore we hav:po—u = Cg(%p/, and

p(y, T)

]y:Oni dr,

ny = —1 aty = 0, which yields:p’ = Cop = poCO f_oo a(x, tly, r)ﬁu dz. The final result is obtained by partial
integration.

f ~ co/(2L), 0/(ww) ~ 1 m/s.p ~ pocoli ~ 4 x 1% Pa.

The ratio of acoustical particle displacement to pipe di@misw/D = 2 x 1072, We expect vortex shedding at the
pipe ends to be a minor effect in a Rijke tube.

Using an energy balance between sound production arigaligs by vortex shedding we have:.08 %pougo Bxw =~
polSBxw, or:

|G >~ 0.22ug.

The hydrodynamic resonance conditidnv/ug >~ 0.4 combined with the acoustic resonance conditiarf 2=
co/(wB/¢V) and the order of magnitude estim#te- 2./(Bw/x) = 0.44 myields: f ~ 185 Hz andug ~ 14 m/s

= 50 km/h,|p| = pwf|Q] >~ 43 Pa.

For a slit-like orifice we havé ~ w.

The blowing pressurgy is a fair estimate. Wheip reachespg the flow velocity through the reed vanishes at high
pressures, which provides a non-linear amplitude saturatiechanism.
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Chapter 6

a) The fluid pushed ahead of the sphere in the direction of#imslation can be considered as generated by a source. The
fluid sucked by the rear of the sphere corresponds to the sink.

b) Qualitatively we find that the streamlines as observedhéreference frame moving with the vortex ring are very
similar to those generated by a dipole or a translating spher
Quantitatively the circulatiofr = ¢ v - d¢ of the vortex corresponds to a discontinuity of the flow potential across
a surface sustained by the vortex ring. Such a discontimaitybe generated by a dipole layer on this surface which
replaces the vortex ring [reference Prandtl]. Assumingdipele layer to consist out of a layer of sources at the front
separated by a distanddrom a layer of sources at the rear, the potential differesggven byA¢ = ud. The velocity
u is the flow velocity between the two surfaces forming the @igayer. Taking the projectio$ of the surface on a
plane normal to the direction of propagation of the vortexgjyiwe can represent in first approximation the dipole layer
by a single dipole of strengthS) placed at the center of the ring and directed in the direatfopropagation of the
vortex ring.

c) Electromagnetic waves are transversal to the direcfipnapagation like shear-waves. Acoustical waves are cespr
sion waves and hence longitudinal.

d) R = (pairCair — pwaterCwater)/(PairCair + pwaterCwater), PairCair = 4 X 107 kg/m2 S,
PwaterCwater = 1.5 x 106 kg/m2 s, 1+ R= 1074.

e) Adipole placed normal to a hard wall will radiate as a qupdlte because the image dipole is opposite to the original
dipole. A dipole placed parallel to a hard wall will radiate @ dipole of double strength because the image has the
same sign as the original.

f) The radiated power increases by a factor two because tiesiity is four times the original intensity but the radbati
is limited to a half space.

g) The first transverse mode of the duct has a pressure nole mitldle of the duct. Hence a volume source placed on
the axis of the duct experiences a zero impedance for thisifivde. It cannot transfer energy to this mode.

h) The vanishing acoustic pressure at the water sunfaee 0 precludes any plane wave propagation. The first propagat-
ing mode has a cut-on frequendy = %%/h corresponding to a quarter wave length resonance.

i) Adipole placed normal to the duct axis will not radiateratfuencies below the cut-off frequency of the first transwer
mode in a duct with hard walls. This is explained by the desive interference of the images of the dipole in the
direction of the axis. On the other hand, however, when plateng the axis the dipole will very efficiently radiate
plane waves at low frequencies. The amplitude of these warees)| = wpodé/s.

j) Assume that the quadrupole is approximated by two dip(lesnd 2), one very close to the surface of the cylinder
(r1 ~ R) and one far awayr¢ > R). If the dipoles are directed radially, the dipole at thefate forms a quadrupole
with its image (i = Rz/rl ~ R), while the image of the other dipole is very closg € Rz/rz < R) to the axis of
the cylinder and very weak. The distance between the soutsiak forming the second dipole is reduced by a factor
(Rz/rg) while the strength of each image is equal to that of the aaigiource. As a result the dipole far away from
the cylinder radiates independently of the dipole closé¢octylinder.

A very similar behaviour is found when the dipoles forming fuadrupole are normal to the radius of the cylinder (in
tangential direction). Then the radiation of the dipolesel¢o the surface is enhanced by a factor two, while that of the
other dipole is not affected.

k) Equal thrust impliesp1u2D? = pou3D3. If p1 = p, we haveu; D1 = upD,. Assuming subsonic free cold jets we
have:l ~ u8D2 = (u D)S/D6 Hence:ly /I, = DS/DS =28 ora dlfference of 36 dB.

In practice a low sound production does also correspond ¢toverl power pu 3D2 ~ (uD)3/D. The introduction
of high bypass jet engines was aimed to reduce the proputsists, but it appeared to be also a very efficient noise
reduction method.
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I) As the compressibility of an ideal gas is determined by riean pressure there appears to be no monopole sound
production upon mixing of a hot jet with a cold gas environingith equal specific-heat ratio. The sound is produced
[141, 161] by the difference in acceleration between nedghing particles experiencing the same pressure gradient
but having different densities. This corresponds to a famderms of the analogy of Lighthill and a dipole source of
sound. Therefore the radiation scales in a subsonic cadse-a¥®.

m) The large contrast in compressibilify between the bubbly liquid and the surrounding water regottsa monopole
type source (fluctuating volume). This corresponds to drsgalile| ~ M4,

n) This effect is not significant in subsonic free jets.

0) The characteristic frequency for turbulence in a freevjét circular cross section isg/ D which implies thatD /A =
Df/c ~ ug/co. Hence a subsonic free jet is a compact flow region with régpesound production by turbulence.
Note: for a free jet with a rectangular cross sectiox h andw > h the characteristic frequency of the turbulence is
0.03ug/ h.

p) Using Curle’s formula'

XX /// X X0 IX|
Tij (Y, —Fj(t—=—
P = aaixpcd at? A ) 47 |x[2c3 ot J( co)

and% ~Ug/D, Tjj ~ pouo, Fj ~ pouod D, andV ~ D3, we obtain:

' pou3D (@ E)
4r|x|c] D/
The cylinder induces an enhancement of turbulence sourttiption by a factorf1 + dcy/Dug). Blowing on a finger
we indeed observe a significantly larger sound productian tiiowing without finger.

g) Sound production due to volume fluctuation’sof the bubble is given by:
p = (47r|x|c\%,ater)’1(62/t2)v’, where, assuming isentropic oscillations of the bubblaibiil volumeVy = 47ra8/3

at pg, we have:V'/Vg = —p'/yair po. The typical pressure fluctuations in a free jet are of theeopd ~ pwug.
Assumingo /ot ~ ug/D we find
4
p D u0 3 Pwateerater

Pwater 47T|X| Cohater D D3 Po

The enhancement in sound production, when compared to Hidsylis by a facto(l + (ag/ D)S(,Dwatercwater/ Po))-
Slncepwate,cwater/ Pp = O(10%), even a small bubble will already enhance the sound praztuctinsiderably.

r) With a single blade the sound production as a result ofdhgential component of the lift force (in the plane of the
rotor) scales as’/pg ~ C D(kg R)3/87r |X]. The sound produced by the axial component is a fagipcy weaker.

With two opposite blades, the lift forces in tangential dtren form a quadrupole which result into a factyyR
weaker sound radiation than in the case of the single bldukes®und production in a ventilator is actually dominated
by non-ideal behaviour such as the non-uniformity of th@ming flow.

s) In a hard walled duct an ideal low speed axial ventilatdl mat produce any sound. The effect of the tangential
forces is compensated by images in the walls while the presiifierenceAp induced by the axial force is constant.
Non-uniformity of the incoming flow will induce fluctuations the pressure differencép which are very efficiently
radiated away. Especially the supports of the ventilatoest@ be placed downstream of the fan. Further sources of
flow non-uniformity are the air intake or bends.

t) The sound production will be dominated by the interactiérthe rotor blades with the thin wake of the wing. The
resulting abrupt changes in lift force on the blades of therrmduce both radial and axial sound radiation. The thinne
the waker the higher the generated frequencies. As the gaitéssensitive to relatively high frequencies an increase
of the wake thickness can result into a significant reduatifomoise (dBA).
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u) The tip Mach numbenR/cy = kgR is of order unity. The rotor is therefore not compact at thation frequency, and
certainly not at the higher harmonics.

v) The dominant contribution is from the unsteady force,egi\byCD%pouS, on the body. This results into a sound
production scaling aeuo/co)3 (see Curle’s formula).

(ZL + poco) + (ZL — poco) €~ 2kok

(ZL + poco) — (ZL — poco) €2kl

x) (1) = 3[p* 0+ p0*] = 3 Re(Zp)|0[2, and (W) = za?(l).
At resonancégl = (n+ %‘)n’ we find: Zp = poCo(poCo/ZL)

(see previous exercise). This corresponds to an enhantemen
Zp/ZL = [4/(kga)?]? of the radiated power.

y) pr=Ate ikor L A=kl japoir = p+iko[ AT e Tkor —A—glkoly,
(r1/r2)? = Sy/Sandry =r — L, sorz = L/(1 - VSI/S).
At = poCoGprl/{[l —i/(korp)1e " —R[1+i/(kor1)] eikorl}

A 1- %(koaz)z[l —i/(kor2)] o—2ikor
At 1— Z(koap)2[1+i/(korp)]
z) Except for the highest frequencies, there is no radidtiomfree-space. Hence the size of the loudspeaker compared
to the acoustical wave-length is not relevant for the souasfer from loudspeaker to eardrum. The Walkman loud-

speaker acts almost directly onto the eardrum.

A) Friction losses are given byl — |p~/pt s =1 — e 2¢L ~ 24, wherea can be calculated by using the formula
of Kirchhoff. The friction is proportional tq/w.
Radiation losses are given bt — [p~/pT ) = %(koa)z, and are proportional te?. Using the results of exercise
(5.f) we find
for fo tA—1p/ptDf = 5-1072, (A —|p/pt]r =12-1074
for f; =3fo: (1—|p~/pT)¢ = 9-1072,(1—|p~/ptr = 1-1073
for f =5fg: (L—|p~/pt)¢ =12-1071, (L —|p~/pt)r = 3-1073.
In a flute of the same size as a clarinet the radiation lossaaeneased by a factor eight (two radiation holes and twice
the fundamental frequency). The friction losses incregse factor/2 due to the higher frequency.

B) Assuming a perfectly reflecting ground surface, the enésgistributed over a semi-sphere:= W /(27r2). As
Imin = 10712W/m2, we find forwy = 5 x 107> W thatr ~ 4 km.

C) In free space the bubble experiences the impedance of pambrsphere:
Re(Z) = pwateCwater(koap)?. In a pipe we have: R&) = pwaterCwater87 aS/S-

D) As the twin pipes oscillate in opposite phase the radiatias a dipole character and is a facﬂkzj’Za)z weaker than
for an individual pipe. Such systems are therefore acaaltialmost closed. In a duct a wall placed along the duct
axis can form such a system of twin pipes if it is longer thandbct width. In such a case the oscillation of the system
is called a Parker mode and does not radiate because thiatimeifrequency is below the cut-off frequency for the
first transverse mode. In fact the twin pipes forms with itags an infinite row of pipes. In a similar way such modes
can occur in rotors or stators of turbines. This kind of datidns have been reported by Spruyt [224] for grids placed
in front of ventilators.

w) ZL = pocoi (kod)%, Zp = poco

Chapter 7
a) (i) kca=2rfca/co = jj; = 1.84118, sofc = 9963 Hz.
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(i) ki1 =—1593i,5020logg|e k110 | = —20/kq1| D log;ge =
—1383D = —20, andD = 145 cm.
(i) kqqy=—184i,soD =125cm.
b) Sinceomua — o0, Im/Ify — 1 andamy = iomu =~ —ikpoCo/ X.

Forr ~a
Jm(emya) r

¢) A simple point mass sourd@d(x — Xq) et where we takeg = 0, ¥g = O, gives rise to the equation

V2p+Kk2p = |wQ5(x)—§(r ~r9) 2 5 — 2z m)
mM=—00
with solution

p(x,t,9) = Q Z z Im(@muro) Im(amy

—00 u=1 2(a2 mz/amﬂ)Jm(amﬂa)zkmﬂ

d) F(a,2)= Ia)poJm(a R) 4+ aZ J(aR) = 0, from which it immediately follows thaZ, and henc&py, is of the form
powRKm W|th Km = Jm(a R)/iaRI,(aR). From o F(a ;) 0 it follows thata R =: zis a (non-zero) solution of
23, (2) +i (Z2 —m )2 Jm(2) = 0, whileKm = (22 = ) . Note that we take the sign of the square root that yields
ReZ) > 0.

A numerical zero-search reveals tikgs = 0.28330-0.12163i,K1 = 0.20487-0.07049i,K» = 0.16628-0.05133i.

) eikmy x| —imd

Chapter 8

a) SinceA(x) = ra2e2MX, we havep(x) = fig e~ VkE-m2x-mx
b) Sincek; = |k|(R—h)/Randa = —q we have

oR R(L— ¢h)
T qki(R—he ~ (R—h)y

w

" akqe

It follows thatR = ¢~1 = 250 m and so the largest distance ig2Rh — h2 = 54.7 m.
d) Replace ca€r) and sifQr) by €7 and—i €7, expresay, in y. Then it follows that

1 . . 2 Sh
Z=—|R+ipolw —ipgCi—
0|: T 1pote —=1poChy -

Chapter 9

a) With the propeller in vane position (no angle of attacle) lift force as defined in (9.26) is directedardirection only,
andMe = MR. Using the results of section 9.3 we find

foM3 sind cost) cos(¢p — wt + kr)
4rar (1 — MR sind cos¢ — ot + kr))3’

The radiation pattern has zeros in the directiérs 0°, 90°, and 180, while it has its main directions of radiation in
(near) the conical surfacés= 45° and 135.

b) R=a R=a,sote=t—a/cy, andR-M = Macosa, and
p0Qk cosa — M 1 (a. Fi - ) (1— M?)(a- Fe)

__ FOxe Vv = -M - =
a(l—M cos(x)ZJFPOQe a?(1— Mcosa)3  a?2(1— Mcosa?)\ cg + a3(1— M cosa)3

p(x,t) ~ —

Az p(x,t) =
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