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Preface

Acoustics was originally the study of small pressure waves in air which can be detected by the human
ear:sound. The scope of acoustics has been extended to higher and lowerfrequencies: ultrasound and
infrasound. Structural vibrations are now often included in acoustics. Also the perception of sound
is an area of acoustical research. In our present introduction we will limit ourselves to the original
definition and to the propagation in fluids like air and water.In such a case acoustics is a part offluid
dynamics.

A major problem of fluid dynamics is that the equations of motion are non-linear. This implies that an
exact general solution of these equations is not available.Acoustics is a first order approximation in
which non-linear effects are neglected. In classical acoustics the generation of sound is considered to
be a boundary condition problem. The sound generated by a loudspeaker or any unsteady movement
of a solid boundary are examples of the sound generation mechanism in classical acoustics. In the
present course we will also include someaero-acousticprocesses of sound generation: heat transfer
and turbulence. Turbulence is a chaotic motion dominated bynon-linear convective forces. An ac-
curate deterministic description of turbulent flows is not available. The key of the famous Lighthill
theory of sound generation by turbulence is the use of an integral equation which is much more suit-
able to introducing approximations than a differential equation. We therefore discuss in some detail
the use of Green’s functions to derive integral equations.

Next to Lighthill’s approach which leads to order of magnitude estimate of sound production by
complex flows we also describe briefly the theory of vortex sound which can be used when a simple
deterministic description is available for a flow at low Machnumbers (for velocities small compared
to the speed of sound).

In contrast to most textbooks we have put more emphasis on duct acoustics, both in relation to its
generation by pipe flows, and with respect to more advanced theory on modal expansions and approx-
imation methods. This is particular choice is motivated by industrial applications like aircraft engines
and gas transport systems.

This course is inspired by the book of Dowling and Ffowcs Williams: “Sound and Sources of Sound”
[52]. We also used the lecture notes of the course on aero- andhydroacoustics given by Crighton,
Dowling, Ffowcs Williams, Heckl and Leppington [42].

Among the literature on acoustics the book of Pierce [175] isan excellent introduction available for a
low price from the Acoustical Society of America.

In the preparation of the lecture notes we consulted variousbooks which cover different aspects of the
problem [14, 16, 18, 37, 48, 70, 87, 93, 99, 113, 122, 145, 160,168, 171, 217, 231].



1 Some fluid dynamics

1.1 Conservation laws and constitutive equations

In fluid dynamics we consider gas and liquids as a continuum: we assume that we can define a “fluid
particle” which is large compared to molecular scales but small compared to the other length scales
in our problem. We can describe the fluid motion by using the laws of mass, momentum and energy
conservation applied to an elementary fluid particle. The integral form of the equations of conservation
are given in Appendix A. Applying these laws to an infinitesimal volume element yields the equations
in differential form, which assumes that the fluid properties are continuous and that derivatives exist.
In some cases we will therefore use the more general integrallaws. A conservation law in differential
form may be written as the time derivative of the density of a property plus the divergence of the flux
of this property being equal to the source per unit volume of this property in the particle [14, 168, 175,
217, 231].

In differential form1 we have for the mass conservation:

∂ρ

∂t
+ ∇·(ρv) = m, or

∂ρ

∂t
+ ∂

∂xi
(ρvi ) = m, (1.1)

whereρ is the fluid density andv = (vi ) is the flow velocity at positionx = (xi ) and timet . In
principle we will consider situations where mass is conserved and so in generalm = 0. The mass
source termm can, however, be used as a representation for a complex process which we do not want
to describe in detail. For example, the action of a pulsatingsphere or of heat injection may be well
approximated by such a mass source term.

The momentum conservation law is2:

∂

∂t
(ρv)+ ∇·(P + ρvv) = f + mv, or

∂

∂t
(ρvi )+ ∂

∂x j
(Pj i + ρv j vi ) = fi + mvi , (1.2)

where f = ( fi ) is an external force density (like the gravitational force), P = (Pi j ) is minus the
fluid stress tensor, and the issuing mass adds momentum by an amount ofmv. In some cases one can
represent the effect of an object like a propeller by a force density f acting on the fluid as a source of
momentum.

When we apply equation (1.1) we obtain3 for (1.2)

ρ
∂v

∂t
+ ∇·(P)+ ρv ·∇v = f , or ρ

∂vi

∂t
+ ∂Pj i

∂x j
+ ρv j

∂vi

∂x j
= fi . (1.3)

1For convenience later we present the basic conservation laws here both in the Gibbs notation and the Cartesian tensor
notation. In the latter, the summation over the values 1,2,3is understood with respect to all suffixes which appear twicein a
given term. See also the appendix of [14].

2The dyadic product of two vectorsv andw is the tensorvw = (viw j ).
3(ρv)t + ∇·(ρvv) = ρtv + ρvt + ∇·(ρv)v + ρ(v·∇)v = [ρt + ∇·(ρv)]v + ρ[vt + (v·∇)v].



2 1 Some fluid dynamics

The fluid stress tensor is related to the pressurep and the viscous stress tensorτ = (τi j ) by the
relationship:

P = p I − τ , or Pi j = p δi j − τi j (1.4)

where I = (δi j ) is the unit tensor, andδi j the Kronecker4 delta. In most of the applications which
we consider in the sequel, we can neglect the viscous stresses. When this is not the case one usually
assumes a relationship betweenτ and the deformation rate of the fluid element, expressed in the rate-
of-strain tensor∇v + (∇v)T. It should be noted that a characteristic of a fluid is that it opposes a rate
of deformation, rather than the deformation itself, as in the case of a solid. When this relation is linear
the fluid is described as Newtonian and the resulting momentum conservation equation is referred to
as the Navier-Stokes equation. Even with such a drastic simplification, for compressible fluids as we
consider in acoustics, the equations are quite complicated. A considerable simplification is obtained
when we assume Stokes’ hypothesis, that the fluid is in local thermodynamic equilibrium, so that the
pressurep and the thermodynamic pressure are equivalent. In such a case we have:

τ = η(∇v + (∇v)T)− 2
3η(∇·v)I, or τi j = η

(
∂vi

∂x j
+ ∂v j

∂xi

)
− 2

3
η

(
∂vk

∂xk

)
δi j (1.5)

whereη is the dynamic viscosity. Equation (1.5) is what we call a constitutive equation. The viscosity
η is determined experimentally and depends in general on the temperatureT and the pressurep.
At high frequencies the assumption of thermodynamic equilibrium may partially fail resulting in a
dissipation related to volume changes∇·v which is described with a volume viscosity parameter not
simply related toη [241, 175]. These effects are also significant in the propagation of sound in dusty
gases or in air over large distances [231].

In general (m = 0) the energy conservation law is given by ([14, 168, 231]):

∂

∂t
ρ
(
e+ 1

2v
2
)

+ ∇·
(
ρv(e+ 1

2v
2)

)
= −∇·q − ∇·(pv)+ ∇·(τ ·v)+ f ·v (1.6)

or
∂

∂t
ρ
(
e+ 1

2v
2
)

+ ∂

∂xi

(
ρvi (e+ 1

2v
2)

)
= −∂qi

∂xi
− ∂

∂xi
(pvi )+ ∂

∂xi
(τi j v j )+ fi vi

wherev = |v|, e is the internal energy per unit of mass5 andq is the heat flux due to heat conduction.
A commonly used linear constitutive equation forq is Fourier’s law:

q = −K∇T, (1.7)

where K is the heat conductivity which depends on the pressurep and temperatureT . Using the
fundamental law of thermodynamics for a reversible process:

Tds = de+ p d(ρ−1) (1.8)

and the equation for mechanical energy, obtained by taking the inner product of the momentum con-
servation law (equation 1.2) withv, we obtain the equation for the entropy6

ρT
(∂s

∂t
+ v ·∇s

)
= −∇·q + τ :∇v, or ρT

(∂s

∂t
+ vi

∂s

∂xi

)
= −∂qi

∂xi
+ τi j

∂v j

∂xi
(1.9)

4 δi j = 1 if i = j , δi j = 0 if i 6= j .
5We call thisthe specific internal energy, and simplythe energywhen there is no ambiguity.
6τ :∇v = ∇·(τ ·v)− v·(∇·τ ) sinceτ is symmetric. Note the convention(∇v)i j = ∂

∂xi
v j .
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wheres is the specific entropy or entropy per unit of mass. When heat conduction∇·q and viscous
dissipationτ :∇v may be neglected, the flow isisentropic7. This means that the entropys of a fluid
particle remains constant:

∂s

∂t
+ v ·∇s = 0. (1.10)

Except for regions near walls this approximation will appear to be quite reasonable for most of the
applications considered. If initially the entropy is equalto a constant values0 throughout the fluid, it
retains this value, and we have simply a flow of uniform and constant entropys = s0. Note that some
authors define this type of flow isentropic.

Equations (1.1–1.10) still contain more unknowns than equations. As closure condition we introduce
an additional constitutive equation, for examplee = e(ρ, s), which implies with equation (1.8):

p = ρ2

(
∂e

∂ρ

)

s

(1.11a)

T =
(
∂e

∂s

)

ρ

(1.11b)

In many cases we will specify an equation of statep = p(ρ, s) rather thane = e(ρ, s). In differential
form this becomes:

dp = c2dρ +
(
∂p

∂s

)

ρ

ds (1.12)

where

c2 =
(
∂p

∂ρ

)

s

(1.13)

is the square of the isentropic speed of soundc. While equation (1.13) is a definition of the thermody-
namic variablec(ρ, s), we will see thatc indeed is a measure for the speed of sound. When the same
equation of statec(ρ, s) is valid for the entire flow we say that the fluid ishomogeneous. When the
density depends only on the pressure we call the fluidbarotropic. When the fluid is homogeneous and
the entropy uniform (ds = 0) we call the flowhomentropic.

In the following chapters we will use the heat capacity at constant volumeCV which is defined for a
reversible process by

CV =
(
∂e

∂T

)

V

. (1.14)

For anideal gas the energye is a function of the temperature only

e(T) =
∫ T

0
CV dT. (1.15)

For an ideal gas with constant heat capacities we will often use the simplified relation

e = CV T. (1.16)

We call this aperfect gas. Expressions for the pressurep and the speed of soundc will be given in
section 2.3. A justification for some of the simplifications introduced will be given in chapter 2 where
we will consider the order of magnitude of various effects and derive the wave equation. Before going
further we consider some useful approximations and some different notations for the basic equations
given above.

7When heat transfer is negligible, the flow isadiabatic. It is isentropic when it is adiabaticAND reversible.
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1.2 Approximations and alternative forms of the conservation laws for
ideal fluids

Using the definition of convective (or total) derivative8 D/Dt :

D

Dt
= ∂

∂t
+ v ·∇ (1.17)

we can write the mass conservation law (1.1) in the absence ofa source(m = 0) in the form:

1

ρ

Dρ

Dt
= −∇·v (1.18)

which clearly shows that the divergence of the velocity∇·v is a measure for the relative change
in density of a fluid particle. Indeed, the divergence corresponds to the dilatation rate9 of the fluid
particle which vanishes when the density is constant. Hence, if we can neglect density changes, the
mass conservation law reduces to:

∇·v = 0. (1.19)

This is the continuity equation forincompressiblefluids. The mass conservation law (1.18) simply
expresses the fact that a fluid particle has a constant mass.

We can write the momentum conservation law for a frictionless fluid (∇·τ negligible) as:

ρ
Dv

Dt
= −∇ p + f . (1.20)

This is Euler’s equation, which corresponds to the second law of Newton (force = mass× accelera-
tion) applied to a specific fluid element with a constant mass.The mass remains constant because we
consider a specific material element. In the absence of friction there are no tangential stresses acting
on the surface of the fluid particle. The motion is induced by the normal stresses (pressure force)−∇ p
and the bulk forcesf . The corresponding energy equation for a gas is

Ds

Dt
= 0 (1.10)

which states that the entropy of a particle remains constant. This is a consequence of the fact that heat
conduction is negligible in a frictionless gas flow. The heatand momentum transfer are governed by
the same processes of molecular collisions. The equation ofstate commonly used in an isentropic flow
is

Dp

Dt
= c2 Dρ

Dt
(1.21)

wherec = c(ρ, s), a function ofρ and s, is measured or derived theoretically. Note that in this
equation

c2 =
(
∂p

∂ρ

)

s

(1.13)

8The total derivative Df/Dt of a function f = f (xi , t) and velocity fieldvi denotes just the ordinary time derivative
d f/dt of f (xi (t), t) for a pathxi = xi (t) defined by

.
xi = vi , i.e.moving with a particle alongxi = xi (t).

9Dilatation rate = rate of relative volume change.
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is not necessarily a constant.

Under reasonably general conditions [144, p.53] the velocity v, like any vector field, can be split into
an irrotational part and a solenoidal part:

v = ∇ϕ + ∇×9, ∇·9 = 0, or vi = ∂ϕ

∂xi
+ ǫi j k

∂9k

∂x j
,
∂9 j

∂x j
= 0, (1.22)

whereϕ is a scalar velocity potential,9 = (9i ) a vectorial velocity potential or vector stream func-
tion, andǫi j k the permutation symbol10. A flow described by the scalar potential only (v = ∇ϕ) is
called a potential flow. This is an important concept becausethe acoustic aspects of the flow are linked
to ϕ. This is seen from the fact that∇·(∇×9) = 0 so that the compressibility of the flow is described
by the scalar potentialϕ. We have from (1.18):

1

ρ

Dρ

Dt
= −∇2ϕ. (1.23)

From this it is obvious that the flow related to the acoustic field is an irrotational flow. A useful
definition of the acoustic field is therefore: the unsteady component of the irrotational flow field∇ϕ.
The vector stream function describes the vorticityω = ∇×v in the flow, because∇×∇ϕ = 0. Hence
we have11:

ω = ∇×(∇×9) = −∇29. (1.24)

It can be shown that the vorticityω corresponds to twice the angular velocity� of a fluid particle.
Whenρ = ρ(p) is a function ofp only, like in a homentropic flow (uniform constant entropy ds = 0),
and in the absence of tangential forces due to the viscosity (τ = 0), we can eliminate the pressure and
density from Euler’s equation by taking the curl of this equation12, to obtain

∂
∂tω + v ·∇ω = ω·∇v − ω∇·v + ∇×( f /ρ). (1.25a)

If we apply the mass conservation equation (1.1) we get

ρ

(
∂

∂t
+ v ·∇

) (
ω

ρ

)
= ω·∇v − mω

ρ
+ ∇×

(
f
ρ

)
. (1.25b)

We see that vorticity of the particle is changed either by stretching13, by a mass source in the presence
of vorticity, or by a non-conservative external force field [230, 110]. In a two-dimensional incom-
pressible flow (∇·v = 0), with velocityv = (vx, vy,0), the vorticityω = (0,0, ωz) is not affected
by stretching because there is no flow component in the direction of ω. Apart from the source terms
−mω/ρ and∇×( f /ρ), the momentum conservation law reduces to a purely kinematic law. Hence
we can say that9 (andω) is linked to the kinematic aspects of the flow.

10 ǫi j k =





+1 if i j k = 123, 231, or 312,

−1 if i j k = 321, 132, or 213,

0 if any two indices are alike

Note thatv×w = (ǫi j k v jwk).

11 For any vector fieldA: ∇×(∇×A) = ∇(∇· A)− ∇2 A.
12 ∇×(v·∇v) = ω∇·v − ω·∇v + v·∇ω, ∇×(ρ−1∇ p) = −ρ−2(∇ρ×∇ p) = −ρ−1ρ′(p)(∇ p×∇ p) = 0.
13 The stretching of an incompressible particle of fluid implies by conservation of angular momentum an increase of

rotation, because the particle’s lateral dimension is reduced. In a viscous flow tangential forces due to the viscous stress do
change the fluid particle angular momentum, because they exert a torque on the fluid particle.
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Using the definition of the specific enthalpyi :

i = e+ p

ρ
(1.26)

and the fundamental law of thermodynamics (1.8) we find for a homentropic flow (homogeneous fluid
with ds = 0):

di = dp

ρ
. (1.27)

Hence we can write Euler’s equation (1.20) as:

Dv

Dt
= −∇i + 1

ρ
f . (1.28)

We define the total specific enthalpyB (Bernoulli constant) of the flow by:

B = i + 1
2v

2. (1.29)

The total enthalpyB corresponds to the enthalpy which is reached in a hypothetical fully reversible
process when the fluid particle is decelerated down to a zero velocity (reservoir state). Using the vector
identity14:

(v ·∇)v = 1
2∇v

2 + ω×v (1.30)

we can write Euler’s equation (1.20) in Crocco’s form:

∂v

∂t
= −∇B − ω×v + 1

ρ
f (1.31)

which will be used when we consider the sound production by vorticity. The accelerationω×v cor-
responds to the acceleration of Coriolis experienced by an observer moving with the particle which is
rotating at an angular velocity of� = 1

2ω.

When the flow is irrotational in the absence of external force( f = 0), with v = ∇ϕ and hence
ω = ∇×∇ϕ = 0, we can rewrite (1.28) into:

∂∇ϕ
∂t

+ ∇B = 0,

which may be integrated to Bernoulli’s equation:

∂ϕ

∂t
+ B = g(t), (1.32a)

or
∂ϕ

∂t
+ 1

2
v2 +

∫
dp

ρ
= g(t) (1.32b)

whereg(t) is a function determined by boundary conditions. As only thegradient ofϕ is important
(v = ∇ϕ) we can, without loss of generality, absorbg(t) into ϕ and useg(t) = 0. In acoustics the
Bernoulli equation will appear to be very useful. We will seein section 2.7 that for a homentropic
flow we can write the energy conservation law (1.10) in the form:

∂

∂t
(ρB − p)+ ∇·(ρvB) = f ·v , (1.33a)

or
∂

∂t

(
ρ(e+ 1

2v
2)

)
+ ∇·(ρvB) = f ·v . (1.33b)

14[(v·∇)v]i =
∑

j v j
∂
∂x j

vi
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Exercises

a) Derive Euler’s equation (1.20) from the conservation laws (1.1) and (1.2).

b) Derive the entropy conservation law (1.10) from the energy conservation law (1.6) and the second law
of thermodynamics (1.8).

c) Derive Bernoulli’s equation (1.32b) from Crocco’s equation (1.31).

d) Is the trace1
3 Pi i of the stress tensorPi j always equal to the thermodynamic pressurep = (∂e/∂ρ−1)s?

e) Consider, as a model for a water pistol, a piston pushing with a constant accelerationa water from a tube
1 with surface areaA1 and lengthℓ1 through a tube 2 of surfaceA2 and lengthℓ2. Calculate the force
necessary to move the piston if the water compressibility can be neglected and the water forms a free
jet at the exit of tube 2. Neglect the non-uniformity of the flow in the transition region between the two
tubes. What is the ratio of the pressure drop over the two tubes att = 0?



2 Wave equation, speed of sound, and acoustic energy

2.1 Order of magnitude estimates

Starting from the conservation laws and the constitutive equations given in section 1.2 we will obtain
after linearization a wave equation in the next section. This implies that we can justify the approx-
imation introduced in section 1.2, (homentropic flow), and that we can show that in general, sound
is a small perturbation of a steady state, so that second order effects can be neglected. We there-
fore consider here some order of magnitude estimates of the various phenomena involved in sound
propagation.

We have defined sound as a pressure perturbationp′ which propagates as a wave and which is de-
tectable by the human ear. We limit ourselves to air and water. In dry air at 20◦C the speed of sound
c is 344 m/s, while in water a typical value of 1500 m/s is found. In section 2.3 we will discuss the
dependence of the speed of sound on various parameters (suchas temperature,etc.). For harmonic
pressure fluctuations, the typical range of frequency of thehuman ear is:

20 Hz6 f 6 20 kHz. (2.1)

The maximum sensitivity of the ear is around 3 kHz, (which corresponds to a policeman’s whistle!).
Sound involves a large range of power levels:

– when whispering we produce about 10−10 Watts,
– when shouting we produce about 10−5 Watts,
– a jet airplane at take off produces about 105 Watts.

In view of this large range of power levels and because our earhas roughly a logarithmic sensitivity
we commonly use the decibel scale to measure sound levels. The Sound Power Level (PWL) is given
in decibel (dB) by:

PWL = 10 log10(Power/10−12W). (2.2)

The Sound Pressure Level (SPL) is given by:

SPL= 20 log10(p
′
rms/pref) (2.3)

wherep′
rms is the root mean square of the acoustic pressure fluctuationsp′, and wherepref = 2·10−5Pa

in air andpref = 10−6 Pa in other media. The sound intensityI is defined as the energy flux (power
per surface area) corresponding to sound propagation. The Intensity Level (IL) is given by:

IL = 10 log10(I /10−12 W/m2). (2.4)

The reference pressure level in airpref = 2·10−5Pa corresponds to the threshold of hearing at 1 kHz for
a typical human ear. The reference intensity levelI ref = 10−12W/m2 is related to thisp′

ref = 2·10−5Pa
in air by the relationship valid for progressive plane waves:

I = p′2
rms/ρ0c0 (2.5)
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whereρ0c0 = 4·102 kg/m2s for air under atmospheric conditions. Equation (2.5) willbe derived later.

The threshold of pain1 (140 dB) corresponds in air to pressure fluctuations ofp′
rms = 200 Pa. The

corresponding relative density fluctuationsρ ′/ρ0 are given at atmospheric pressurep0 = 105 Pa by:

ρ ′/ρ0 = p′/γ p0 6 10−3 (2.6)

whereγ = CP/CV is the ratio of specific heats at constant pressure and volumerespectively. In
general, by defining the speed of sound following equation 1.13, the relative density fluctuations are
given by:

ρ ′

ρ0
= 1

ρ0c2
0

p′ = 1

ρ0

(
∂ρ

∂p

)

s

p′. (2.7)

The factor 1/ρ0c2
0 is the adiabatic bulk compressibility modulus of the medium. Since for waterρ0 =

103 kg/m3 andc0 = 1.5 · 103 m/s we see thatρ0c2
0 ≃ 2.2 · 109 Pa, so that a compression wave of

10 bar corresponds to relative density fluctuations of order10−3 in water. Linear theory will therefore
apply to such compression waves. When large expansion wavesare created in water the pressure can
decrease below the saturation pressure of the liquid and cavitation bubbles may appear, which results
in strongly non-linear behaviour. On the other hand, however, since the formation of bubbles in pure
water is a slow process, strong expansion waves (negative pressures of the order of 103 bar!) can be
sustained in water before cavitation appears.

For acoustic waves in a stagnant medium, a progressive planewave involves displacement of fluid
particles with a velocityu′ which is given by (as we will see in equations 2.20a, 2.20b):

u′ = p′/ρ0c0. (2.8)

The factorρ0c0 is called the characteristic impedance of the fluid. By dividing (2.8) byc0 we see by
using (1.13) in the formp′ = c2

0ρ
′ that the acoustic Mach numberu′/c0 is a measure for the relative

density variationρ ′/ρ0. In the absence of mean flow(u0 = 0) this implies that a convective term such
asρ(v ·∇)v in the momentum conservation (1.20) is of second order and can be neglected in a linear
approximation.

The amplitude of the fluid particle displacementδ corresponding to harmonic wave propagation at a
circular frequencyω = 2π f is given by:

δ = |u′|/ω. (2.9)

Hence, for f = 1 kHz we have in air:

SPL = 140 dB, p′
rms = 2 · 102 Pa, u′ = 5 · 10−1 m/s, δ = 8 · 10−5 m,

SPL = 0 dB, p′
rms = 2 · 10−5 Pa, u′ = 5 · 10−8 m/s, δ = 1 · 10−11 m.

In order to justify a linearization of the equations of motion, the acoustic displacementδ should be
small compared to the characteristic length scaleL in the geometry considered. In other words, the
acoustical Strouhal numberSra = L/δ should be large. In particular, ifδ is larger than the radius of
curvatureR of the wall at edges the flow will separate from the wall resulting into vortex shedding.
So a small acoustical Strouhal numberR/δ implies that non-linear effects due to vortex shedding are
important. This is a strongly non-linear effect which becomes important with decreasing frequency,
becauseδ increases whenω decreases.

1The SPL which we can only endure for a very short period of timewithout the risk of permanent ear damage.
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We see from the data given above that the particle displacement δ can be significantly smaller than
the molecular mean free path̄ℓ which in air at atmospheric pressure is about 5· 10−8 m. It should
be noted that a continuum hypothesis as assumed in chapter 1 does apply to sound even at such low
amplitudes becauseδ is not the relevant length scale. The continuum hypothesis is valid if we can
define an air particle which is small compared to the dimensions of ourmeasuring device(eardrum,
diameterD = 5mm) or to thewave lengthλ, but large compared to the mean free pathℓ̄ = 5·10−8 m.
It is obvious that we can satisfy this condition since forf = 20 kHz the wave length:

λ = c0/ f (2.10)

is still large (λ ≃ 1.7 cm) compared toℓ̄. In terms of our ear drum we can say that although a
displacement ofδ = 10−11 m of an individual molecule cannot be measured, the same displacement
averaged over a large amount of molecules at the ear drum can be heard as sound.

It appears that for harmonic signals of frequencyf = 1kHz the threshold of hearingp′
ref = 2·10−5 Pa

corresponds to the thermal fluctuationsp′
th of the atmospheric pressurep0 detected by our ear. This

result is obtained by calculating the number of moleculesN colliding within half an oscillation period
with our eardrum2: N ∼ nD2c0/2 f , wheren is the air molecular number density3. As N ≃ 1020 and
p′

th ≃ p0/
√

N we find thatp′
th ≃ 10−5 Pa.

In gases the continuum hypothesis is directly coupled to theassumption that the wave is isentropic
and frictionless. Both the kinematic viscosityν = η/ρ and the heat diffusivitya = K/ρCP of a gas
are typically of the order ofcℓ̄, the product of sound speedc and mean free path̄ℓ. This is related
to the fact thatc is in a gas a measure for the random (thermal) molecular velocities that we know
macroscopically as heat and momentum diffusion. Therefore, in gases the absence of friction goes
together with isentropy. Note that this is not the case in fluids. Here, isothermal rather than isentropic
wave propagation is common for normal frequencies.

As a result from this relationν ∼ cℓ̄, the ratio between the acoustic wave lengthλ and the mean free
pathℓ̄, which is an acoustic Knudsen number, can also be interpreted as an acoustic Fourier number:

λ

ℓ̄
= λc

ν
= λ2 f

ν
. (2.11)

This relates the diffusion length(ν/ f )1/2 for viscous effects to the acoustic wave lengthλ. Moreover,
this ratio can also be considered as an unsteady Reynolds numberRet :

Ret =

∣∣∣ρ ∂u′

∂t

∣∣∣
∣∣∣η∂

2u′

∂x2

∣∣∣
∼ λ2 f

ν
, (2.12)

which is for a plane acoustic wave just the ratio between inertial and viscous forces in the momentum
conservation law. For airν = 1.5·10−5m2/s so that forf = 1kHz we haveRet = 4·107. We therefore
expect viscosity to play a significant rôle only if the sound propagates over distances of 107 wave
lengths or more (3· 103 km for f = 1 kHz). In practice the kinematic viscosity appears to be a rather
unimportant effect in the attenuation of waves in free space. The main dissipation mechanism is the

2The thermal velocity of molecules may be estimated to be equal to c0.
3n is calculated for an ideal gas with molar massM from: n = NA ρ/M = NA p/M RT = p/RT (see section 2.3)

whereNA is the Avogadro number
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departure from thermodynamic equilibrium, due to the relatively long relaxation times of molecular
motion associated to the internal degrees of freedom (rotation, vibration). This effect is related to the
so-called bulk or volume viscosity which we quoted in chapter 1.

In general the attenuation of sound waves increases with frequency. This explains why we hear the
lower frequencies of an airplane more and more accentuated as it flies from near the observation point
(e.g.the airport) away to large distances (10 km).

In the presence of walls the viscous dissipation and thermalconduction will result into a significant
attenuation of the waves over quite short distances. The amplitude of a plane wave travelling along a
tube of cross-sectional surface areaA and perimeterL p will decrease with the distancex along the
tube following an exponential factore−αx, where the damping coefficientα is given at reasonably high
frequencies (A/L p ≫ √

ν/ω butω
√

A/c0 < 1) by [175]:

α = L p

2Ac

√
π f ν

(
1 + γ − 1√

ν/a

)
. (2.13)

(This equation will be derived in section 4.5.) For airγ = CP/CV = 1.4 while ν/a = 0.72. For a
musical instrument at 400 Hz, such as the clarinet,α = 0.05m−1 so that a frictionless approximation is
not a very accurate but still a fair first approximation. As a general rule, at low amplitudes the viscous
dissipation is dominant in woodwind instruments at the fundamental (lowest) playing frequency. At
higher frequencies the radiation losses which we will discuss later (chapter 6) become dominant.
Similar arguments hold for water, except that because the temperature fluctuations due to compression
are negligible, the heat conduction is not significant even in the presence of walls (γ = 1).

A small ratioρ ′/ρ0 of acoustic density fluctuationsρ ′ to the mean densityρ0 implies that over dis-
tances of the order of a few wave lengths non-linear effects are negligible. When dissipation is very
small acoustic waves can propagate over such large distances that non-linear effects always become
significant (we will discuss this in section 4.2).

2.2 Wave equation for a uniform stagnant fluid and compactness

2.2.1 Linearization and wave equation

In the previous section we have seen that in what we call acoustic phenomena the density fluctuations
ρ ′/ρ0 are very small. We also have seen that the fluid velocity fluctuationv ′ associated with the wave
propagation, of the order of(ρ ′/ρ0)c0, are also small. This justifies the use of a linear approximation
of the equations describing the fluid motion which we presented in chapter 1.

Even with the additional assumption that the flow is frictionless, the equations one obtains may still be
complex if we assume a non-uniform mean flow or a non-uniform density distributionρ0. A derivation
of general linearized wave equations is discussed by Pierce[175] and Goldstein [70].

We first limit ourselves to the case of acoustic perturbations (p′, ρ ′, s′, v′ . . .) of a stagnant(u0 = 0)
uniform fluid (p0, ρ0, s0, . . .). Such conditions are also described in the literature as aquiescentfluid.
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In a quiescent fluid the equations of motion given in chapter 1simplify to:

∂ρ ′

∂t
+ ρ0∇·v′ = 0 (2.14a)

ρ0
∂v′

∂t
+ ∇ p′ = 0 (2.14b)

∂s′

∂t
= 0 (2.14c)

where second order terms in the perturbations have been neglected. The constitutive equation (1.13)
becomes:

p′ = c2
0ρ

′. (2.15)

By subtracting the time derivative of the mass conservationlaw (2.14a) from the divergence of the
momentum conservation law (2.14b) we eliminatev′ to obtain:

∂2ρ ′

∂t2
− ∇2 p′ = 0. (2.16)

Using the constitutive equationp′ = c2
0ρ

′ (2.15) to eliminate eitherρ ′ or p′ yields the wave equations:

∂2p′

∂t2
− c2

0∇2 p′ = 0 (2.17a)

or

∂2ρ ′

∂t2
− c2

0∇2ρ ′ = 0. (2.17b)

Using thelinearizedBernoulli equation:

∂ϕ ′

∂t
+ p′

ρ0
= 0 (2.18)

which should be valid because the acoustic field is irrotational4, we can derive from (2.17a) a wave
equation for∂ϕ ′/∂t . We find therefore thatϕ ′ satisfies the same wave equation as the pressure and the
density:

∂2ϕ ′

∂t2
− c2

0∇2ϕ ′ = 0. (2.19)

Taking the gradient of (2.19) we obtain a wave equation for the velocityv′ = ∇ϕ ′. Although a rather
abstract quantity, the potentialϕ ′ is convenient for many calculations in acoustics. The linearized
Bernoulli equation (2.18) is used to translate the results obtained forϕ ′ into less abstract quantities
such as the pressure fluctuationsp′.

4 In the case considered this property follows from the fact that∇×(ρ0
∂
∂t v

′ + ∇ p) = ρ0
∂
∂t (∇×v′) = 0. In general this

property is imposed by the definition of the acoustic field.
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2.2.2 Simple solutions

Two of the most simple and therefore most important solutions to the wave equation are d’Alembert’s
solution in one and three dimensions. In 1-D we have the general solution

p′ = f (x − c0t)+ g(x + c0t), (2.20a)

v ′ = 1

ρ0c0

(
f (x − c0t)− g(x + c0t)

)
, (2.20b)

where f andg are determined by boundary and initial conditions, but otherwise they are arbitrary.
The velocityv ′ is obtained from the pressurep′ by using the linearized momentum equation (2.14b).
As is seen from the respective argumentsx ± c0t , the “ f ”-part corresponds to a right-running wave
(in positivex-direction) and the “g”-part to a left-running wave. This solution is especially useful to
describe low frequency sound waves in hard-walled ducts, and free field plane waves. To allow for a
general orientation of the coordinate system, a free field plane wave is in general written as

p′ = f (n·x − c0t), v′ = n
ρ0c0

f (n·x − c0t), (2.21)

where the direction of propagation is given by the unit vector n. Rather than only left- and right-
running waves as in the 1-D case, in free field any sum (or integral) over directionsn may be taken.
A time harmonic plane wave of frequencyω is usually written in complex form5 as

p′ = Aeiωt−ik·x, v′ = k
ρ0ω

Aeiωt−ik·x, c2
0|k|2 = ω2, (2.22)

where the wave-number vector, or wave vector,k = nk = n ω
c0

, indicates the direction of propagation
of the wave (at least, in the present uniform and stagnant medium).

In 3-D we have a general solution for spherically symmetric waves (i.e. depending only on radial
distancer ). They are rather similar to the 1-D solution, because the combinationrp(r, t) happens to
satisfy the 1-D wave equation (see section 6.2). Since the outward radiated wave energy spreads out
over the surface of a sphere, the inherent 1/r -decay is necessary from energy conservation arguments.

It should be noted, however, that unlike in the 1-D case, the corresponding radial velocityv ′
r is rather

more complicated. The velocity should be determined from the pressure by time-integration of the
momentum equation (2.14b), written in radial coordinates.

We have for pressure and radial velocity

p′ = 1

r
f (r − c0t)+ 1

r
g(r + c0t), (2.23a)

v ′
r = 1

ρ0c0

(1

r
f (r − c0t)− 1

r 2
F(r − c0t)

)
− 1

ρ0c0

(1

r
g(r + c0t)− 1

r 2
G(r + c0t)

)
, (2.23b)

whereF(z) =
∫

f (z)dz andG(z) =
∫

g(z)dz. Usually we have only outgoing waves, which means
for any physical solution that the field vanishes before sometime t0 (causality). Hence,f (z) = 0 for
z = r − c0t ≥ r − c0t0 ≥ −c0t0 becauser ≥ 0, andg(z) = 0 for anyz = r + c0t ≤ r + c0t0. Sincer
is not restricted from above, this implies that

g(z) ≡ 0 for all z.

5The physical quantity considered is described by the real part.
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This solution (2.23a,2.23b) is especially useful to describe the field of small symmetric sources
(monopoles), modelled in a point. Furthermore, by differentiation6 to the source position other solu-
tions of the wave equation can be generated (of dipole-type and higher). For example, since∂

∂x r = x
r ,

we have

p′ = x

r 2

(
f ′(r − c0t)− 1

r
f (r − c0t)

)
, (2.24a)

v ′
r = 1

ρ0c0

x

r 2

(
f ′(r − c0t)− 2

r
f (r − c0t)+ 2

r 2
F(r − c0t)

)
, (2.24b)

where f ′ denotes the derivative off to its argument.

Since the rôle ofr andt is symmetric in f and anti-symmetric ing, we may formulate the causality
condition in t also as a boundary condition inr . A causal wave vanishes outside a large sphere, of
which the radius grows linearly in time with velocityc0. This remains true for any field in free space
from a source of finite size, because far away the field simplifies to that of a point source (although
not necessarily spherically symmetric).

In the case of the idealization of a time-harmonic field we cannot apply this causality condition di-
rectly, but we can use a slightly modified form of the boundarycondition inr , calledSommerfeld’s
radiation condition:

lim
r→∞

r
(∂p′

∂t
+ c0

∂p′

∂r

)
= 0. (2.25)

A more general discussion on causality for a time-harmonic field will be given in section C.1.1. The
general solution of sound radiation from spheres may be found in [145, ch7.2].

2.2.3 Compactness

In regions –for example at boundaries– where the acoustic potentialϕ ′ varies significantly over dis-
tancesL which are short compared to the wave lengthλ, the acoustic flow can locally be approx-
imated as an incompressible potential flow. Such a region is called compact, and a source of size,
much smaller thanλ, is acompact source. For a more precise definition we should assume that we can
distinguish a typical time scaleτ or frequencyω and length scaleL in the problem. In dimensionless
form the wave equation is then:

3∑

i=1

∂2ϕ ′

∂ x̄2
i

= (He)2
∂2ϕ ′

∂ t̄2
, He = L

c0τ
= ωL

c0
= 2πL

λ
= kL (2.26)

wheret̄ = t/τ = ωt andx̄i = xi /L . The dimensionless numberHe is called the Helmholtz number.
Whenτ andL are well chosen,∂2ϕ ′/∂ t̄2 and∂2ϕ ′/∂ x̄2

i are of the same order of magnitude, and the
character of the wave motion is completely described byHe. In a compact region we have:

He ≪ 1. (2.27)

This may occur, as suggested above, near a singularity wherespatial gradients become large, or at
low frequencies when time derivatives become small. Withinthe compact region the time derivatives,

6We may freely differentiate the pressure but not the velocity! The unit vectors in spherical coordinates are not position-

invariant. However, we conveniently obtain the velocity fromv′ = i
kρ0c0

∇ p′. In particular,v ′r = i
kρ0c0

∂p′
∂r .
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being multiplied by the smallHe, may be ignored and the potential satisfies to leading order the
Laplace equation:

∇2ϕ ′ = 0 (2.28)

which describes an incompressible potential flow (∇·v′ = 0). This allows us to use incompressible
potential flow theory to derive the local behaviour of an acoustic field in a compact region. If the
compact region is embedded in a larger acoustic region of simpler nature, it acts on the scale of the
larger region as a point source, usually allowing a relatively simple acoustic field. By matching the
local incompressible approximation to this “far field” solution (spherical waves, plane waves), the
solutions may be determined. The matching procedure is usually carried out almost intuitively in the
first order approximation. Higher order approximations areobtained by using the method of Matched
Asymptotic Expansions (section 8.8, [42]).

2.3 Speed of sound

2.3.1 Ideal gas

In the previous section we have assumed that the speed of sound c2
0 = (∂p/∂ρ)s is constant. However,

in many interesting casesc0 is non-uniform in space and this affects the propagation of waves. We
therefore give here a short review of the dependence of the speed of sound in gas and water on some
parameters like temperature.

Air at atmospheric pressure behaves as an ideal gas. The equation of state for an ideal gas is:

p = ρRT, (2.29)

where p is the pressure,ρ is the density andT is the absolute temperature.R is the specific gas
constant7 which is related to the Boltzmann constantkB = 1.38066· 10−23 J/K and the Avogadro
numberNA = 6.022· 1023 mol−1 by:

R = kBNA/M, (2.30)

whereM is the molar mass of the gas (in kg/mol). For airR = 286.73 J/kg K. For an ideal gas we
have further the relationship:

R = CP − CV , (2.31)

whereCP andCV are the specific heats at constant pressure and volume, respectively. For an ideal
gas the internal energye depends only on the temperature [168], with (1.15) leading to de = CV dT ,
so that by using the second law of thermodynamics, we find for an isentropic process(ds = 0):

CV dT = −p d(ρ−1) or
dT

T
= R

CV

dρ

ρ
. (2.32)

By using (2.29) and (2.31) we find for an isentropic process:

dρ

ρ
+ dT

T
= dp

p
= γ

dρ

ρ
, (2.33)

7The universal gas constant is:R = kBNA = 8.31431 J/K mol.
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where:

γ = CP/CV (2.34)

is the specific-heat ratio. Comparison of (2.33) with the definition of the speed of soundc2 = (∂p/∂ρ)s
yields:

c = (γ p/ρ)1/2 or c = (γ RT)1/2. (2.35)

We see from this equation that the speed of sound of an ideal gas of given chemical composition
depends only on the temperature. For a mixture of ideal gaseswith mole fractionXi of componenti
the molar massM is given by:

M =
∑

i

Mi Xi (2.36)

whereMi is the molar mass of componenti . The specific-heat ratioγ of the mixture can be calculated
by:

γ =
∑

Xi γi /(γi − 1)∑
Xi /(γi − 1)

(2.37)

becauseγi /(γi − 1) = Mi Cp,i /R andγi = Cp,i /CV,i . For airγ = 1.402, whilst the speed of sound
at T = 273.15 K is c = 331.45 m/s. Moisture in air will only slightly affect the speed of sound but
will drastically affect the damping, due to departure from thermodynamic equilibrium [231].

The temperature dependence of the speed of sound is responsible for spectacular differences in sound
propagation in the atmosphere. For example, the vertical temperature stratification of the atmosphere
(from colder near the ground to warmer at higher levels) thatoccurs on a winter day with fresh fallen
snow refracts the sound back to the ground level, in a way thatwe hear traffic over much larger
distances than on a hot summer afternoon. These refraction effects will be discussed in section 8.6.

2.3.2 Water

For pure water, the speed of sound in the temperature range 273 K to 293 K and in the pressure range
105 to 107 Pa can be calculated from the empirical formula [175]:

c = c0 + a(T − T0)+ bp (2.38)

wherec0 = 1447 m/s,a = 4.0 m/sK, T0 = 283.16 K andb = 1.6 · 10−6 m/sPa. The presence of salt
in sea water does significantly affect the speed of sound.

2.3.3 Bubbly liquid at low frequencies

Also the presence of air bubbles in water can have a dramatic effect on the speed of sound ([114, 42]).
The speed of sound is by definition determined by the “mass” density ρ and the isentropic bulk
modulus:

Ks = ρ

(
∂p

∂ρ

)

s

(2.39)
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which is a measure for the “stiffness” of the fluid. The speed of soundc, given by:

c = (Ks/ρ)
1
2 (2.40)

increases with increasing stiffness, and decreases with increasing inertia (densityρ). In a one-
dimensional model consisting of a discrete massM connected by a spring of constantK, we can
understand this behaviour intuitively. This mass-spring model was used by Newton to derive equation
(2.40), except for the fact that he used the isothermal bulk modulusKT rather thanKs. This resulted
in an error ofγ 1/2 in the predicted speed of sound in air which was corrected by Laplace [231].

A small fraction of air bubbles present in water considerably reduces the bulk modulusKs, while at the
same time the densityρ is not strongly affected. As theKs of the mixture can approach that for pure
air, one observes in such mixtures velocities of sound much lower than in air (or water). The behaviour
of air bubbles at high frequencies involves a possible resonance which we will discuss in chapter 4
and chapter 6. We now assume that the bubbles are in mechanical equilibrium with the water, which
allows a low frequency approximation. Combining this assumption with (2.40), following Crighton
[42], we derive an expression for the soundspeedc of the mixture as a function of the volume fraction
β of gas in the water. The densityρ of the mixture is given by:

ρ = (1 − β)ρℓ + βρg, (2.41)

whereρℓ andρg are the liquid and gas densities. If we consider a small change in pressure dp we
obtain:

dρ

dp
= (1 − β)

dρℓ
dp

+ β
dρg

dp
+ (ρg − ρℓ)

dβ

dp
(2.42)

where we assume both the gas and the liquid to compress isothermally [42]. If no gas dissolves in the
liquid, so that the mass fraction(βρg/ρ) of gas remains constant, we have:

ρg
dβ

dp
+ β

dρg

dp
− βρg

ρ

dρ

dp
= 0. (2.43)

Using the notationc2 = dp/dρ, c2
g = dp/dρg andc2

ℓ = dp/dρℓ, we find by elimination of dβ/dp
from (2.42) and (2.43):

1

ρc2
= 1 − β

ρℓc2
ℓ

+ β

ρgc2
g

. (2.44)

It is interesting to see that for small values ofβ the speed of soundc drops drastically fromcℓ atβ = 0
towards a value lower thancg. The minimum speed of sound occurs atβ = 0.5, and at 1 bar we find
for example in a water/air mixturec ≃ 24 m/s! In the case ofβ not being close to zero or unity, we
can use the fact thatρgc2

g ≪ ρℓc2
ℓ andρg ≪ ρℓ, to approximate (2.44) by:

ρc2 ≃
ρgc2

g

β
, or c2 ≃

ρgc2
g

β(1 − β)ρℓ
. (2.45)

The gas fraction determines the bulk modulusρgc2
g/β of the mixture, while the water determines the

density(1 − β)ρℓ. Hence, we see that the presence of bubbles around a ship may dramatically affect
the sound propagation near the surface. Air bubbles are alsointroduced in sea water near the surface
by surface waves. The dynamics of bubbles involving oscillations (see chapter 4 and chapter 6) appear
to induce spectacular dispersion effects [42], which we have ignored here.
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2.4 Influence of temperature gradient

In section 2.2 we derived a wave equation (2.17a) for an homogeneous stagnant medium. We have
seen in section 2.3 that the speed of sound in the atmosphere is expected to vary considerably as a
result of temperature gradients. In many cases, when the acoustic wave length is small compared to
the temperature gradient length (distance over which a significant temperature variation occurs) we
can still use the wave equation (2.17a). It is however interesting to derive a wave equation in the more
general case: for a stagnant ideal gas with an arbitrary temperature distribution.

We start from the linearized equations for the conservationof mass, momentum and energy for a
stagnant gas:

∂ρ ′

∂t
+ ∇·(ρ0v

′) = 0 (2.46a)

ρ0
∂v′

∂t
+ ∇ p′ = 0 (2.46b)

∂s′

∂t
+ v′ ·∇s0 = 0, (2.46c)

whereρ0 ands0 vary in space. The constitutive equation for isentropic flow(Ds/Dt = 0):

Dp

Dt
= c2 Dρ

Dt

can be written as8:

∂p′

∂t
+ v′ ·∇ p0 = c2

0

(∂ρ ′

∂t
+ v′ ·∇ρ0

)
. (2.47)

Combining (2.47) with the continuity equation (2.46a) we find:

(∂p′

∂t
+ v′ ·∇ p0

)
+ ρ0c

2
0∇·v′ = 0. (2.48)

If we consider temperature gradients over a small height (ina horizontal tube for example) so that the
variation inp0 can be neglected(∇ p0/p0 ≪ ∇T0/T0), we can approximate (2.48) by:

∇·v′ = − 1

ρ0c2
0

∂p′

∂t
.

Taking the divergence of the momentum conservation law (2.46b) yields:

∂

∂t
(∇·v′)+ ∇·

( 1

ρ0
∇ p′

)
= 0.

By elimination of∇·v′ we obtain:

∂2p′

∂t2
− c2

0ρ0∇·
( 1

ρ0
∇ p′

)
= 0. (2.49)

For an ideal gasc2
0 = γ p0/ρ0, and since we assumedp0 to be uniform, we have thatρ0c2

0, given by:

ρ0c
2
0 = γ p0

8Why do we not use (2.15)?
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is a constant so that equation (2.49) can be written in the form:

∂2p′

∂t2
− ∇·(c2

0∇ p′) = 0. (2.50)

This is a rather complex wave equation, sincec0 is non-uniform. We will in section 8.6 consider
approximate solutions for this equation in the case(∇c0/ω) ≪ 1 and for large propagation distances.
This approximation is called geometrical or ray acoustics.

It is interesting to note that, unlike in quiescent (i.e. uniform and stagnant) fluids, the wave equation
(2.50) for the pressure fluctuationp′ in a stagnant non-uniform ideal gas is not valid for the density
fluctuations. This is because here the density fluctuationsρ ′ not only relate to pressure fluctuations but
also to convective effects (2.47). Which acoustic variableis selected to work with is only indifferent
in a quiescent fluid. This will be elaborated further in the discussion on the sources of sound in section
2.6.

2.5 Influence of mean flow

See also Appendix F. In the presence of a mean flow that satisfies

∇·ρ0v0 = 0, ρ0v0·∇v0 = −∇ p0, v0·∇s0 = 0, v0·∇ p0 = c2
0v0·∇ρ0,

the linearized conservation laws, and constitutive equation for isentropic flow, become (without
sources):

∂ρ ′

∂t
+ v0·∇ρ ′ + v′ ·∇ρ0 + ρ0∇·v′ + ρ ′∇·v0 = 0 (2.51a)

ρ0

(∂v′

∂t
+ v0·∇v′ + v′ ·∇v0

)
+ ρ ′v0·∇v0 = −∇ p′ (2.51b)

∂s′

∂t
+ v0·∇s′ + v′ ·∇s0 = 0. (2.51c)

∂p′

∂t
+ v0·∇ p′ + v′ ·∇ p0 = c2

0

(∂ρ ′

∂t
+ v0·∇ρ ′ + v′ ·∇ρ0

)
+ c2

0

(
v0·∇ρ0

)( p′

p0
− ρ ′

ρ0

)

(2.51d)

A wave equation can only be obtained from these equations if simplifying assumptions are introduced.
For a uniform medium with uniform flow velocityv0 6= 0 we obtain

( ∂
∂t

+ v0·∇)2
p′ − c2

0∇2 p′ = 0 (2.52)

where ∂
∂t + v0·∇ denotes a time derivative moving with the mean flow.

2.6 Sources of sound

2.6.1 Inverse problem and uniqueness of sources

Until now we have focused our attention on the propagation ofsound. As starting point for the deriva-
tion of wave equations we have used the linearized equationsof motion and we have assumed that the
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mass source termm and the external force densityf in (1.1) and (1.2) were absent. Without these re-
strictions we still can (under specific conditions) derive awave equation. The wave equation will now
be non-homogeneous,i.e. it will contain a source termq. For example, we may find in the absence of
mean flow:

∂2p′

∂t2
− c2

0∇2 p′ = q. (2.53)

Often we will consider situations where the sourceq is concentrated in a limited region of space
embedded in a stagnant uniform fluid. As we will see later the acoustic field p′ can formally be
determined for a given source distributionq by means of a Green’s function. This solutionp′ is unique.
It should be noted that the so-called inverse problem of determining q from the measurement ofp′

outside the source region does not have a unique solution without at least some additional information
on the structure of the source. This statement is easily verified by the construction of another sound
field, for example [64]:p′ + F , for any smooth functionF that vanishes outside the source region
(i.e. F = 0 whereverq = 0), for exampleF ∝ q itself! This field is outside the source region exactly
equal to the original fieldp′. On the other hand, it isnot the solution of equation (2.53), because it
satisfies a wave equation with another source:

( ∂2

∂t2
− c2

0∇2)(p′ + F) = q +
( ∂2

∂t2
− c2

0∇2)F. (2.54)

In general this source is not equal toq. This proves that the measurement of the acoustic field outside
the source region is not sufficient to determine the source uniquely [52].

2.6.2 Mass and momentum injection

As a first example of a non-homogeneous wave equation we consider the effect of the mass source
termm on a uniform stagnant fluid. We further assume that a linear approximation is valid. Consider
the inhomogeneous equation of mass conservation

∂

∂t
ρ + ∇·(ρv) = m (2.55)

and a linearized form of the equation of momentum conservation

∂

∂t
(ρv)+ ∇ p′ = f . (2.56)

The sourcem consists of mass of densityρm of volume fractionβ = β(x, t) injected at a rate

m = ∂

∂t
(βρm). (2.57)

The source region is whereβ 6= 0. Since the injected mass displaces the original massρ f by the same
(but negative) amount of volume, the total fluid density is

ρ = βρm + (1 − β)ρ f (2.58)

where the injected matter does not mix with the original fluid. Substitute (2.58) in (2.55) and eliminate
βρm

∂

∂t
ρ f + ∇·(ρv) = ∂

∂t
(βρ f ). (2.59)
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Eliminateρv from (2.56) and (2.59)

∂2

∂t2
ρ f − ∇2 p′ = ∂2

∂t2
(βρ f )− ∇· f . (2.60)

If we assume, for simplicity, thatp′ = c2
0ρ

′
f everywhere, whereρ ′

f is the fluctuating part ofρ f which
corresponds to the sound field outside the source region, then

1

c2
0

∂2

∂t2
p′ − ∇2 p′ = ∂2

∂t2
(βρ f )− ∇· f (2.61)

which shows that mass injection is a source of sound, primarily because of the displacement of a vol-
ume fractionβ of the original fluidρ f . Hence injecting mass with a large densityρm is not necessarily
an effective source of sound.

We see from (2.61) that acontinuous injection of massof constant density does not produce sound,
because∂2βρ f /∂t2 vanishes. In addition, it can be shown in an analogous way that in linear approxi-
mation the presence of auniform force field(a uniform gravitational field, for example) does not affect
the sound field in a uniform stagnant fluid.

2.6.3 Lighthill’s analogy

We now indicate how a wave equation with aerodynamic source terms can be derived. The most
famous wave equation of this type is the equation of Lighthill.

The notion of “analogy” refers here to the idea of representing a complex fluid mechanical process
that acts as an acoustic source by an acoustically equivalent source term. For example, one may model
a clarinet as an idealized resonator formed by a closed pipe,with the effect of the flow through the
mouth piece represented by a mass source at one end. In that particular case we express by this analogy
the fact that the internal acoustic field of the clarinet is dominated by a standing wave corresponding
to a resonance of the (ideal) resonator.

While Lighthill’s equation is formally exact (i.e. derivedwithout approximation from the Navier-
Stokes equations), it is only useful when we consider the case of a limited source region embedded in
a uniform stagnant fluid. At least we assume that the listenerwhich detects the acoustic field at a point
x at timet is surrounded by a uniform stagnant fluid characterized by a speed of soundc0. Hence the
acoustic field at the listener should accurately be described by the wave equation:

∂2ρ ′

∂t2
− c2

0∇2ρ ′ = 0 (2.17b)

where we have chosenρ ′ as the acoustic variable as this will appear to be the most convenient
choice for problems like the prediction of sound produced byturbulence. The key idea of the so-
called “aero-acoustic analogy” of Lighthill is that we now derive from the exact equations of motion
a non-homogeneous wave equation with the propagation part as given by (2.17b). Hence the uniform
stagnant fluid with sound speedc0, densityρ0 and pressurep0 at the listener’s location is assumed
to extend into the entire space, and any departure from the “ideal” acoustic behaviour predicted by
(2.17b) is equivalent to a source of sound for the observer [118, 119, 178, 81].
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By taking the time derivative of the mass conservation law (1.1) and eliminating∂m/∂t as in (2.59)
we find:

∂2

∂t∂xi
(ρvi ) = ∂m

∂t
− ∂2ρ

∂t2
= −∂

2ρ f

∂t2
+ ∂2βρ f

∂t2
. (2.62)

By taking the divergence of the momentum conservation law (1.2) we find:

∂2

∂t∂xi
(ρvi ) = − ∂2

∂xi ∂x j
(Pi j + ρvi v j )+ ∂ f i

∂xi
. (2.63)

Hence we find from (2.62) and (2.63) the exact relation:

∂2ρ f

∂t2
= ∂2

∂xi ∂x j
(Pi j + ρvi v j )+ ∂2βρ f

∂t2
− ∂ f i

∂xi
. (2.64)

Becauseρ f = ρ0 + ρ ′ where onlyρ ′ varies in time we can construct a wave equation forρ ′ by
subtracting from both sides of (2.63) a termc2

0(∂
2ρ ′/∂x2

i ) where in order to be meaningfulc0 is not
the local speed of sound but that at thelistener’s location.

In this way we have obtained the famous equation of Lighthill:

∂2ρ ′

∂t2
− c2

0
∂2ρ ′

∂x2
i

= ∂2Ti j

∂xi ∂x j
+ ∂2βρ f

∂t2
− ∂ f i

∂xi
(2.65)

where Lighthill’s stress tensorTi j is defined by:

Ti j = Pi j + ρvi v j − (c2
0ρ

′ + p0)δi j . (2.66)

We used

c2
0

∂2ρ ′

∂x2
i

= ∂2(c2
0ρ

′δi j )

∂xi ∂x j
(2.67)

which is exact becausec0 is a constant. Making use of definition (1.4) we can also write:

Ti j = ρvi v j − τi j + (p′ − c2
0ρ

′)δi j (2.68)

which is the usual form in the literature9. In equation (2.68) we distinguish three basic aero-acoustic
processes which result in sources of sound:

– the non-linear convective forces described by the Reynoldsstress tensorρvi v j ,
– the viscous forcesτi j ,
– the deviation from a uniform sound velocityc0 or the deviation from an isentropic behaviour
(p′ − c2

0ρ
′).

9The perturbations are defined as the deviation from the uniform reference state(ρ0, p0): ρ
′ = ρ−ρ0, andp′ = p− p0.
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As no approximations have been made, equation (2.65) is exact and not easier to solve than the orig-
inal equations of motion. In fact, we have used four equations: the mass conservation and the three
components of the momentum conservation to derive a single equation. We are therefore certainly not
closer to a solution unless we introduce some additional simplifying assumptions.

The usefulness of (2.65) is that we can introduce some crude simplifications which yield an order of
magnitude estimate forρ ′. Such estimation procedure is based on the physical interpretation of the
source term. However, a key step of Lighthill’s analysis is to delay this physical interpretation until
an integral equation formulation of (2.65) has been obtained. This is an efficient approach because an
order of magnitude estimate of∂2Ti j /∂xi ∂x j involves the estimation of spatial derivatives which is
very difficult, while, as we will see, in an integral formulation we will need only an estimate for an
average value ofTi j in order to obtain some relevant information on the acousticfield.

This crucial step was not recognized before the original papers of Lighthill [118, 119]. For a given
experimental or numerical set of data on the flow field in the source region, the integral formulation
of Lighthill’s analogy often provides a maximum amount of information about the generated acoustic
field.

Unlike in the propagation in a uniform fluid the choice of the acoustic variable appeared already in
the presence of a temperature gradient (section 2.4) to affect the character of the wave equation. If we
derive a wave equation forp′ instead ofρ ′, the structure of the source terms will be different. In some
cases it appears to be more convenient to usep′ instead ofρ ′. This is the case when unsteady heat
release occurs such as in combustion problems. Starting from equation (2.64) in the form:

∂2p

∂x2
i

= ∂2ρ

∂t2
+ ∂2

∂xi ∂x j
(τi j − ρvi v j )

where we assumed thatm = 0 and f = 0, we find by subtraction ofc−2
0 (∂2/∂t2)p′ on both sides:

1

c2
0

∂2 p′

∂t2
− ∂2 p′

∂x2
i

= ∂2

∂xi ∂x j
(ρvi v j − τi j )+ ∂2 p0

∂x2
i

+ ∂2

∂t2

( p′

c2
0

− ρ ′
)

(2.69)

where the term∂2 p0/∂x2
i vanishes becausep0 is a constant.

Comparing (2.65) with (2.69) shows that the deviation from an isentropic behaviour leads to a source
term of the type(∂2/∂x2

i )(p
′ − c2

0ρ
′) when we chooseρ ′ as the acoustic variable, while we find

a term(∂2/∂t2)(p′/c2
0 − ρ ′) when we choosep′ as the acoustic variable. Henceρ ′ is more appro-

priate to describe the sound generation due to non-uniformity as for example the so-called acoustic
“Bremsstrahlung” produced by the acceleration of a fluid particle with an entropy different from the
main flow. The sound production by unsteady heat transfer or combustion is easier to describe in terms
of p′ (Howe [81]).

We see that(∂/∂t)(p′/c2
0 − ρ ′) acts as a mass source termm, which is intuitively more easily un-

derstood (Crightonet al. [42]) when using the thermodynamic relation (1.12) appliedto a moving
particle:

Dp

Dt
= c2 Dρ

Dt
+

(
∂p

∂s

)

ρ

Ds

Dt
. (1.12)

We find from (1.12) that:

D

Dt

(
p′

c2
0

− ρ ′
)

=
(

c2

c2
0

− 1

)
Dρ ′

Dt
+ ρ2

c2
0

(
∂T

∂ρ

)

s

Ds′

Dt
(2.70)
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where we made use of the thermodynamic relation:
(
∂p

∂s

)

ρ

= ρ2

(
∂T

∂ρ

)

s

(2.71)

derived from the fundamental law of thermodynamics (1.8) inthe form:

de = T ds − p d(ρ−1). (1.8)

As a final result, using the mass conservation law, we find

−∂
2ρe

∂t2
= ∂

∂t

[(
c2

c2
0

− 1 + ρe

ρ

)
Dρ ′

Dt
+ ρ2

c2
0

(
∂T

∂ρ

)

s

Ds′

Dt
+ ∇·(vρe)

]
(2.72)

where the “excess density”ρe is defined as:

ρe = ρ ′ − p′

c2
0

.

In a free jet the first term in−∂2ρe/∂t2 vanishes for an ideal gas with constant heat capacity (because
c2/c2

0 − 1+ ρe/ρ = 0). We see that sound is produced both by spatial density variations∇·(vρe) and
as a result of non-isentropic processes(ρ2/c2

0)(∂T/∂ρ)s(Ds′/Dt), like combustion.

2.6.4 Vortex sound

While Lighthill’s analogy is very convenient for obtainingorder of magnitude estimates of the sound
produced by various processes, this formulation is not veryconvenient when one considers the sound
production by a flow which is, on its turn, influenced by the acoustic field. In Lighthill’s procedure
the flow is assumed10 to be known, with any feedback from the acoustic field to the flow somehow
already included. When such a feedback is significant, and ingeneral for homentropic low Mach
number flow, the aerodynamic formulation of Powell [178], Howe [81] and Doak [50] based on the
concept of vortex sound is most appropriate. This is due to the fact that the vorticityω = ∇×v is a
very convenient quantity to describe a low Mach number flow.

Considering a homentropic non-conductive frictionless fluid, we start our derivation of a wave equa-
tion from Euler’s equation in Crocco’s form:

∂v

∂t
+ ∇B = −ω×v (1.31)

whereB = i + 1
2v

2, and the continuity equation:

1

ρ

Dρ

Dt
= −∇·v. (1.18)

Taking the divergence of (1.31) and the time derivative of (1.18) we obtain by subtraction:

∂

∂t

(
1

ρ

Dρ

Dt

)
− ∇2B = ∇·(ω×v). (2.73)

10 This is not a necessary condition for the use of Lighthill’s analogy. It is the commonly used procedure in which we
derive information on the acoustic field from data on the flow in the source region.
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As the entropy is constant (ds = 0) we have, with (1.12) and (1.27):

∂

∂t

(
1

c2

Di

Dt

)
− ∇2B = ∇·(ω×v). (2.74)

This can be rewritten as

1

c2

D2
0 B′

Dt
− ∇2B′ = ∇·(ω×v)+ 1

c2

D2
0 B′

Dt
− ∂

∂t

(
1

c2

Di

Dt

)
(2.75)

whereB′ = B − B0 and D0
Dt = ∂

∂t + U0·∇. For the reference flowU0 we choose a potential flow with
stagnation enthalpyB0.

At low Mach numberM = v/c0 we have the inhomogeneous wave equation:

1

c2
0

D2
0 B′

Dt2
− ∇2B′ = ∇·(ω×v) (2.76)

which explicitly stresses the fact that the vorticityω is responsible for the generation of sound. (Note:
i ′ = p′/ρ0 andB′ = i ′ + v0·v′.) Some of the implications of (2.76) will be considered in more detail
in the next section. The use of a vortex sound formulation is particularly powerful when a simplified
vortex model is available for the flow considered. Examples of such flows are discussed by Howe [81],
Disselhorst & van Wijngaarden [49], Peters & Hirschberg [172], and Howe [86].

In free space for a compact source region Powell [177] has derived this analogy directly from
Lighthill’s analogy. The result is that the Coriolis forcef c = ρ0(ω×v) appears to act as an ex-
ternal force on the acoustic field. Considering Crocco’s equation (1.31) with this interpretation Howe
[82, 85] realized that the natural reference of the analogy is a potential flow rather than the quiescent
fluid of Lighthill’s analogy. There is then no need to assume free field conditions nor a compact source
region. Howe [81] therefore proposes to define the acoustic field as the unsteady scalar potential flow
component of the flow:

ua = ∇ϕ ′

whereϕ ′ = ϕ − ϕ0 andϕ0 is the steady scalar potential.

At high Mach numbers, when the source is not compact, both Lighthill’s and Howe’s analogy become
less convenient. Alternative formulations have been proposed and are still being studied [150].

2.7 Acoustic energy

2.7.1 Introduction

Acoustic energy is a difficult concept because it involves second order terms in the perturbations like
the kinetic energy density12ρ0v

′2. Historically an energy conservation law was first derived by Kirch-
hoff for stagnant uniform fluids. He started from the linearized conservation laws (2.51a–2.51d). Such
a procedure is ad-hoc, and the result, an energy expression of the approximation, is not an approx-
imation of the total energy, since a small perturbation expansion of the full non-linear fluid energy
conservation law (1.6) will contain zeroth and first order terms and potentially relevant second order
termsO((ρ ′/ρ0)

2) which are dropped with the linearization of the mass and momentum equations.
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However, it appears that for a quiescent fluid these zeroth, first and neglected second order terms
are (in a sense) not important and an acoustic energy conservation equation may be derived which is
indeed the same as found by Kirchhoff [175].

This approach may be extended to non-uniform flows as long as they are homentropic and irrotational.
Things become much less obvious in the presence of a non-uniform mean flow including entropy
variations and vorticity. If required, the zeroth, first andneglected second order terms of the expansion
may still be ignored, as Myers showed [152], but now at the expense of a resulting energy equation
which is not a conservation law any more. The only way to obtain some kind of acoustic energy
conservation equation (implying definitions for acoustic energy density and flux) is to redirect certain
parts to the “right hand side” to become source or sink terms.In such a case the question of definition,
in particular which part of the field is to be called acoustic,is essential and until now it remains subject
of discussion.

As stated before, we will consider as acoustical only that part of the field which is related to density
variations and an unsteady (irrotational) potential flow. Pressure fluctuations related to vorticity, which
do not propagate, are often referred to in the literature as “pseudo sound”. In contrast to this approach
Jenvey [96] calls any pressure fluctuations “acoustic”, which of course results in a different definition
of acoustic energy.

The foregoing approach of generalized expressions for acoustic energy for homentropic [152] and
more general nonuniform flows [153, 154] by expanding the energy equation for small perturbations
is due to Myers. We will start our analysis with Kirchhoff’s equation for an inviscid non-conducting
fluid, and extend the results to those obtained by Myers. Finally we will consider a relationship be-
tween vorticity and sound generation in a homentropic uniform inviscid non-conducting fluid at low
Mach numbers, derived by Howe [82].

2.7.2 Kirchhoff’s equation for quiescent fluids

We start from the linearized mass and momentum conservationlaws for a quiescent inviscid and
non-conducting fluid:

∂ρ ′

∂t
+ ρ0∇·v′ = m′, (2.77a)

ρ0
∂v′

∂t
+ ∇ p′ = f ′, (2.77b)

where we assumed thatf ′ and m′ are of acoustic order. Since we assumed the mean flow to be
quiescent and uniform there is no mean mass source (m0 = 0) or force (f 0 = 0). From the assumption
of homentropy (ds = 0) we have11

p′ = c2
0ρ

′. (2.15)

After multiplying (2.77a) byp′/ρ0 and (2.77b) byv′, adding the two equations, and utilizing the
foregoing relation (2.15) between density and pressure, weobtain the equation

1

2ρ0c2
0

∂p′2

∂t
+ 1

2
ρ0
∂v ′2

∂t
+ ∇·(p′v′) = p′m′

ρ0
+ v′ · f ′ (2.78)

11Note that in order to keep equation (2.15) valid we have implicitly assumed that the injected mass corresponding tom′

has the same thermodynamic properties as the original fluid.The flow would otherwise not be homentropic! In this case
m′/ρ0 corresponds to the injected volume fractionβ of equation (2.57).
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which can be interpreted as a conservation law for the acoustic energy

∂E

∂t
+ ∇· I = −D (2.79)

if we DEFINE the acoustic energy densityE, the energy flux or intensity12 I and the dissipationD as:

E = p′2

2ρ0c2
0

+ ρ0v
′2

2
, (2.80a)

I = p′v′, (2.80b)

D = − p′m′

ρ0
− v′ · f ′. (2.80c)

In integral form this conservation law (2.79) can be writtenfor a fixed control volumeV enclosed by
a surfaceSwith outer normaln as

d

dt

∫∫∫

V

E dx +
∫∫

S

I ·n dσ = −
∫∫∫

V

D dx, (2.81)

where we have used the theorem of Gauss to transform
∫∫∫

∇· I dx into a surface integral. For a
periodic acoustic field the average〈E〉 of the acoustic energy over a period is constant. Hence we find

P =
∫∫

S

〈I ·n〉 dσ = −
∫∫∫

V

〈D〉 dx, (2.82)

whereP is the acoustic power flow across the volume surfaceS. The left-hand side of (2.82) simply
corresponds with the mechanical work performed by the volume injection(m′/ρ0) and the external
force field f ′ on the acoustic field. This formula is useful because we can consider the effect of the
movement of solid boundaries like a piston or a propeller represented by source termsm′ and f ′.
We will at the end of this chapter use formula (2.82) to calculate the acoustic power generated by a
compact vorticity field.

We will now derive the acoustic energy equation starting from the original nonlinear energy conser-
vation law (1.6). We consider the perturbation of a uniform quiescent fluid without mass source term
(v0 = 0, m = 0, f0 = 0, p0 andρ0 constant). We start with equation (1.6) in standard conservation
form:

∂

∂t

(
ρe+ 1

2
ρv2

)
+ ∇·

(
v
(
ρe+ 1

2
ρv2 + p

))
= −∇·q + ∇·(τ ·v)+ f ·v, (2.83)

where we note that the total fluid energy density is

Etot = ρe+ 1

2
ρv2, (2.84a)

and the total fluid energy flux is

I tot = v(ρe+ 1

2
ρv2 + p). (2.84b)

12There is no uniformity in the nomenclature. Some authors define the acoustic intensity as the acoustic energy flux,
others as the time-averaged acoustic energy flux.
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We have dropped here the mass source termm because, in contrast to the force densityf , it does not
correspond to any physical process.

For future reference we state here some related forms, a.o. related to the entropy variation of the fluid.
Using the continuity equation we obtain

ρ
D

Dt

(
e+ v2

2

)
= −∇·(pv)− ∇·q + ∇·(τ ·v)+ f ·v, (2.85)

which by using the fundamental law of thermodynamics (1.8) may yield an equation for the change
in entropys of the fluid:

ρT
Ds

Dt
− p

ρ

Dρ

Dt
+ ρ

2

Dv2

Dt
= −∇·(pv)− ∇·q + ∇·(τ ·v)+ f ·v. (2.86)

By subtraction of the inner product of the momentum conservation equation with the velocity, this
may be further recast into

ρT
Ds

Dt
= −∇·q + τ :∇v. (2.87)

In the absence of friction (τ = 0) and heat conduction (q = 0) we have the following equations for
energy and entropy:

ρ
D

Dt

(
e+ 1

2
v2

)
= −∇·(pv)+ f ·v (2.88)

Ds

Dt
= 0. (2.89)

We return to the energy equation in standard conservation form, without friction and heat conduction:

∂

∂t

(
ρe+ 1

2
ρv2

)
+ ∇·

(
v(ρe+ 1

2
ρv2 + p)

)
= v · f . (2.90)

From the fundamental law of thermodynamics (1.8):

T ds = de+ p d(ρ−1) (1.8)

we have for isentropic perturbations:

(
∂e

∂ρ

)

s

= p

ρ2
, and so

(
∂ρe

∂ρ

)

s

= e+ p

ρ
= i,

(
∂2ρe

∂ρ2

)

s

= 1

ρ

(
∂p

∂ρ

)

s

= c2

ρ
,

wherei is the enthalpy (1.26) or heat function. We can now expand thetotal energy density, energy
flux and source for acoustic (i.e. isentropic) perturbations up to second order, to find (v0 = 0):

ρe+ 1
2ρv

2 = ρ0e0 + i0ρ
′ + 1

2ρ0c0
2
(ρ ′

ρ0

)2
+ 1

2ρ0v
′2, (2.91a)

v(ρe+ 1
2ρv

2 + p) = v′(i0ρ0 + i0ρ
′ + p′), (2.91b)

v · f = v′ · f ′. (2.91c)

Noting that the steady state is constant, and using the equation of mass conservation

∂ρ ′

∂t
+ ∇·(ρ0v

′ + ρ ′v′) = 0
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in (2.90), with (2.91a–2.91c) substituted in it, we find thatthe zeroth and first order terms inρ ′/ρ0

vanish so that (2.90) becomes within an accuracy ofO((ρ ′/ρ0)
3):

∂

∂t

( p′2

2ρ0c2
0

+ ρ0v
′2

2

)
+ ∇·(p′v′) = v′ · f ′, (2.92)

which demonstrates that Kirchhoff’s acoustic energy conservation law (2.79) is not only an energy-
like relation of the approximate equations, but indeed alsothe consistent acoustic approximation of
the energy equation of the full fluid mechanical problem.

2.7.3 Acoustic energy in a non-uniform flow

The method of Myers [152] to develop a more general acoustic energy conservation law follows
similar lines as the discussion of the previous section. We consider a homentropic flow (ds = 0, so
that de = (p/ρ2)dρ) with v0 6= 0. In this case the total enthalpyB = e+ p/ρ + 1

2v
2 appears to be a

convenient variable. In terms ofB the energy conservation law (2.90) becomes:

∂

∂t
(ρB − p)+ ∇·(ρBv) = v · f . (2.93)

The momentum conservation law in Crocco’s form (1.31) also involvesB:

∂v

∂t
+ ∇B + ω×v = f /ρ. (2.94)

By subtractingρ0v0 times the momentum conservation law (2.94) plusB0 times the continuity equa-
tion (1.18) from the energy conservation law (2.93), substituting the steady state momentum conser-
vation law:

∇B0 + ω0×v0 = f 0/ρ0, (2.95)

subtracting the steady state limit of the resulting equation, and using the vector identityv ·(ω×v) = 0,
Myers obtained the following energy corollary:

∂

∂t
Eexact+ ∇· Iexact= −Dexact (2.96)

whereEexact, IexactandDexactare defined by:

Eexact= ρ(B − B0)− (p − p0)− ρ0v0·(v − v0) (2.97a)

Iexact= (ρv − ρ0v0)(B − B0) (2.97b)

Dexact= (ρv − ρ0v0)·(ω×v − ω0×v0)− (v − v0)·( f − f 0)

− (1 − ρ0/ρ)v0· f − (1 − ρ/ρ0)v · f 0. (2.97c)

These auxiliary quantitiesEexact, IexactandDexacthave the important property, as Myers showed, that
their zeroth and first order terms in the acoustic perturbation expansion in(ρ ′/ρ0) vanish, while the
quadratic terms areonly a function of the mean flow and acoustic (first order) quantities. As a result,
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the second order approximation of the exact quantitiesEexact, IexactandDexactyield (for homentropic
flow) a general acoustic energy definition13:

E = c2
0ρ

′2

2ρ0
+ ρ0v

′2

2
+ ρ ′v0·v′ (2.98a)

I = (ρ0v
′ + ρ ′v0)

(c2
0ρ

′

ρ0
+ v0·v′

)
(2.98b)

D = −ρ0v0·(ω′×v′)− ρ ′v′ ·(ω0×v0)− (v′ + ρ ′v0/ρ0)·( f ′ − ρ ′ f 0/ρ0). (2.98c)

This equation is identical to the acoustic energy conservation law derived by Goldstein [70] starting
from the linearized equations of motion (withf 0 = 0). It is important to note that, on the one hand,
we have indeed obtained expressions entirely in first order quantities; on the other hand, however,
these expressions represent only an acoustic energy conservation law if we adopt the definition that
vorticity is non-acoustic and embodies possible acoustic sources or sinks. The present expressions for
homentropic flow are further generalized by Myers in recent papers [153] and [154].

2.7.4 Acoustic energy and vortex sound

Averaging (2.96) over one period for a periodic acoustic field and integrating over space yields, if
f = 0:

P =
∫∫

S

〈I ·n〉 dσ = −
∫∫∫

V

〈ρ0v0·(ω′×v′)+ ρ ′v′ ·(ω0×v0)〉 dx (2.99)

whereP is the acoustic power generated by the flow. It is interestingto compare this expression with
the one derived by Howe [82] for a low Mach number compact vorticity distributionω in free space
in the presence of compact solid surfaces:

P = −
∫∫∫

V

ρ0〈(ω×v)·ua〉 dx (2.100)

whereua is the acoustic velocity defined as the part of the unsteady velocity field v′ which is the
gradient of a potential (irrotational∇×ua = 0). While (2.99) is not restricted to low Mach numbers it
only allows small time dependent perturbationsω′ of the time average vorticityω0 and in this sense is
more restrictive than Howe’s formula. Furthermore, (2.99)is difficult to interpret physically because
v′ includes the solenoidal velocity perturbationsω′ = ∇×v′.

Howe’s equation (2.100) has a simple physical interpretation which in the same way as Lighthill’s
theory can be called an aero-acoustic analogy (vortex sound). In the absence of vorticity the flow of
an inviscid and non-conducting fluid is described by Bernoulli’s equation (1.32b):

∂ϕ

∂t
+ B = 0. (1.32b)

If in the same way as in Lighthill’s analogy14 we extend the potential flowv = ∇ϕ in a region where
vorticity is present (ω 6= 0) then we can think of the vorticity term(ω×v) in Crocco’s equation:

∂v

∂t
+ ∇B = −ω×v (1.28)

13Use the vector identitya·(b×c) = −c·(b×a).
14In Lighthill’s analogy the uniform quiescent fluid at the listener is extended into the source region.



2.7 Acoustic energy 31

equivalent to an external force fieldf acting on the potential flow (acoustic field). Hence we have:

f = −ρ(ω×v) (2.101)

which is the density of the Coriolis force acting on the fluid particle as a result of the fluid rotation. For
a compact region at low Mach numbers we can neglect density variation and use the approximation:

f = −ρ0(ω×v). (2.102)

In the absence of mean flow outside the source region we see by application of the integral form of
Kirchhoff’s energy equation (2.82) that we recover Howe’s formula (2.100):

P =
∫∫∫

V

〈 f ·ua〉 dx. (2.103)

This could also have been deduced from a comparison of the wave equation (2.76) in which we
introduced the approximationB′ = i ′ = p′/ρ0 becausev0 = 0:

1

c2
0

∂2 p′

∂t2
− ∇2 p′ = ρ0∇·(ω×v) (2.104)

and the wave equation (2.61) (without mass injection,m = 0):

1

c2
0

∂2 p′

∂t2
− ∇2 p′ = −∇· f . (2.105)

This corresponds to Powell’s approximation of the vortex sound theory in which we neglect terms of
orderM both in the wave region and in the source region (B′ = p′/ρ0).

In the presence of a uniform flow outside the source region, Goldstein [70] finds the wave equation:

1

c2
0

D2
0 p′

Dt2
− ∇2 p′ = −∇· f (2.106)

where

D0

Dt
= ∂

∂t
+ v0·∇.

The energy equation corresponding to (2.106) is forf 0 = 0:

P =
∫∫∫

V

〈(
ua + ρ ′

ρ0
v0

)
· f

〉
dx (2.107)

which suggests a generalization of Howe’s equation withf = ρ0(ω×v):

P = −ρ0

∫∫∫

V

〈
(ω×v)·

(
ua + ρ ′

ρ0
v0

)〉
dx, (2.108)

which corresponds with the use ofB′ = p′/ρ0 + ua ·v0 as acoustical variable, andI = B′(ρv)′ as the
intensity with(ρv)′ = ρ0ua + ρ ′v0 the fluctuation of mass flux.
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This generalization of Howe’s equation is indeed derived byJenvey [96]. Although the above discus-
sion provides an intuitive interpretation of Jenvey’s result, it is not obvious that Jenvey’s definition of
acoustic field agrees with Howe’s definition. The range of validity of this energy corollary is therefore
not obvious.

In practice Howe’s energy corollary is convenient because it is formulated by an integral. Similar to
Lighthill’s analogy in integral form, it is not sensitive to“random errors” in the model. Integration
over the volume and averaging over a period of oscillation smooths out such errors.

Exercises

a) Calculate the minimum speed of sound of air/water mixtures at a depth of 100 m below sea surface.
Assume a temperatureT0 = 300 K. Is it true that this speed of sound is independent of thegas as long as
γ = Cp/CV is the same?

b) Derive (2.93) from (2.90).

c) Is the choice ofc0 in the analogy of Lighthill arbitrary?

d) Does the acoustic source∂
2

∂t2 (p
′/c2

0 − ρ′) vanish for isentropic flows?

e) Is the acoustic variableρ′ the most convenient choice to describe the sound productionby unsteady
combustion at low Mach numbers?

f) Is the definition of acoustic intensityI = p′v′ valid in the presence of a mean flow?

g) Is it correct that when usingB′ as acoustic variable instead ofp′, one obtains a more accurate prediction
of vortex sound in a compact region with locally a high Mach number?

h) Is the equationp′ = c2
0ρ

′ always valid in a stagnant fluid?

i) Is it correct that the acoustic impedanceρc of an ideal gas depends only on the pressurep?

j) Show that the surface of constant phaseωt − k·x = constant, of plane wave solution (2.22), is planar,
even ifω is complex.

k) Show that Kirchhoff’s energy definition (2.80) remains valid for the conditions pertaining to (2.49).
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3.1 Green’s functions

3.1.1 Integral representations

Using Green’s theorem we can construct an integral equationwhich combines the effect of sources,
propagation, boundary conditions and initial conditions in a simple formula. The Green’s function
G(x, t|y, τ ) is the pulse response of the wave equation:

∂2G

∂t2
− c2

0
∂2G

∂x2
i

= δ(x − y)δ(t − τ). (3.1)

Note that the Green’s function is a generalized function! (See Appendix C.) The pulseδ(x− y)δ(t−τ)
is released at the source pointy at timeτ andG is measured at the observation pointx at timet . The
definition of G is further completed by specifying suitable boundary conditions at a surfaceS with
outer normaln enclosing the volumeV in which x and y are localized:

n·∇G + bG = 0. (3.2)

Furthermore, one usually assumes a causality condition forG that there is no field other than due to
theδ-source:

G(x, t|y, τ ) = 0 and
∂

∂t
G(x, t|y, τ ) = 0 (3.3)

for t < τ . When the boundary conditions defining the Green’s functioncoincide with those of the
physical problem considered the Green’s function is calleda “tailored” Green’s function. The integral
equation is in such a case a convolution of the sourceq(y, τ ) with the pulse responseG(x, t|y, τ ). Of
course, if the sourceq is known (and not dependent on the field) this integral equation is at the same
time just the solution of the problem. A tailored Green’s function is, in general, not easy to find. It
will, therefore, appear that sometimes, for certain specific problems, the choice of a Green’s function
which is not tailored is more convenient.

Before we can discuss this, we have to consider some general properties of Green’s functions, such as
the important reciprocity relation:

G(x, t|y, τ ) = G(y,−τ |x,−t). (3.4)

For the free field this relation follows immediately from symmetry and causality. In general [144],
this property can be derived by starting from the definition of the two Green’s functionsG1 =
G(x, t|y1, τ1) andG2 = G(x,−t|y2,−τ2):

∂2G1

∂t2
− c2

0
∂2G1

∂x2
i

= δ(x − y1)δ(t − τ1) (3.5a)
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and
∂2G2

∂t2
− c2

0
∂2G2

∂x2
i

= δ(x − y2)δ(t − τ2). (3.5b)

Multiplying (3.5a) byG2 and subtracting (3.5b) multiplied byG1 yields after integration overx andt
in V from t = −∞ until a timet ′ larger thanτ1 andτ2:

∫ t ′

−∞

∫∫∫

V

{[
G2
∂2G1

∂t2
− G1

∂2G2

∂t2

]
− c2

0

[
G2
∂2G1

∂x2
i

− G1
∂2G2

∂x2
i

]}
dx dt

= G(y1,−τ1|y2,−τ2) − G(y2, τ2|y1, τ1). (3.6)

Partial integration of the left-hand side yields:

∫∫∫

V

[
G2
∂G1

∂t
− G1

∂G2

∂t

]
dx

∣∣∣∣
t=t ′

t=−∞
− c2

0

∫ t ′

−∞

∫∫

S

[
G2
∂G1

∂xi
− G1

∂G2

∂xi

]
ni dσdt = 0 (3.7)

where the first integral vanishes because fort = −∞ bothG1 andG2 vanish because of the causality
condition (3.3). Att = t ′ the first integral vanishes because−t ′ is earlier than−τ2 (t ′ > τ2) and
therefore bothG2 = G(x,−t ′|y2,−τ2) = 0 and∂G2/∂t|t=t ′ = 0 because of causality. The second
integral vanishes becauseG1 andG2 satisfy the same boundary conditions on boundaryS. Replacing
y1 andτ1 by y andτ and y2 andτ2 by x andt in the right-hand side of (3.6) yields (3.4).

We now will prove that the Green’s functionG(x, t|y, τ ) also satisfies the equation:

∂2G

∂τ 2
− c2

0
∂2G

∂y2
i

= δ(x − y)δ(t − τ). (3.8)

We first note that because of the symmetry ofδ(t − τ) the time-reversed functionG(x,−t|y,−τ)
satisfies (3.1):

∂2

∂t2
G(x,−t|y,−τ)− c2

0
∂2

∂x2
i

G(x,−t|y,−τ) = δ(x − y)δ(t − τ). (3.9)

Using now the reciprocity relation (3.4) and interchangingthe notationx ↔ y and t ↔ τ we find
(3.8).

We have now all that is necessary to obtain a formal solution to the wave equation:

∂2ρ ′

∂τ 2
− c2

0
∂2ρ ′

∂y2
i

= q(y, τ ). (3.10)

After subtracting equation 3.8, multiplied byρ ′(y, τ ), from equation (3.10), multiplied byG(x, t|y, τ ),
and then integration toy overV and toτ between+t0 andt , we obtain:

ρ ′(x, t) =
∫ t+

t0

∫∫∫

V

q(y, τ )G(x, t|y, τ )dydτ+
∫ t+

t0

∫∫∫

V

[
ρ ′(y, τ )

∂2G

∂τ 2
−G

∂2ρ ′(y, τ )
∂τ 2

]
dydτ

− c2
0

∫ t+

t0

∫∫∫

V

[
ρ ′(y, τ )

∂2G

∂y2
i

− G
∂2ρ ′(y, τ )

∂y2
i

]
dydτ. (3.11)
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Partial integration over the time of the second integral andover the space of the third integral in the
right-hand side of (3.11) yields:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

q(y, τ )G(x, t|y, τ )dydτ−c2
0

∫ t

t0

∫∫

S

[
ρ ′(y, τ )

∂G

∂yi
−G

∂ρ ′(y, τ )
∂yi

]
ni dσdτ

−




∫∫∫

V

[
ρ ′(y, τ )

∂G

∂τ
− G

∂ρ ′(y, τ )
∂τ

]
dy



τ=t0

(3.12)

where the second integral vanishes for a tailored Green’s function and the third integral represents the
effect of the initial conditions atτ = t0. For a tailored Green’s function, and ift0 = −∞, we have the
superposition principle over elementary sources which we expect intuitively:

ρ ′(x, t) =
∫ t

−∞

∫∫∫

V

q(y, τ )G(x, t|y, τ )dydτ. (3.13)

In chapter 4 and 6 we will again reconsider the Green’s functions in more detail. For the present time
we should remember that (3.12) or (3.13) is only an explicit solution of the wave equation ifq is given.
When the sound sourceq depends on the acoustic fieldρ ′ these equations are integral equations rather
than an explicit solution.

Even in such a case the integral representation is useful because we have split up the problem into
a purely linear problem of finding a Green’s function and a second problem of solving an integral
equation. Also as stated earlier the integral equation is most convenient for introducing approximations
because integration tends to smooth out the errors of the approximations.

The treatment given here is taken from the textbook of Morse and Feshbach [144]. An integral for-
mula for the convective wave equation (2.52) and the corresponding Green’s function and integral
formulation are found in Goldstein [70].

3.1.2 Remarks on finding Green’s functions

In general, a (tailored) Green’s function is only marginally easier to find than the full solution of
an inhomogeneous linear partial differential equation. Therefore, it is not possible to give a general
recipe how to find a Green’s function for a given problem. Sometimes an expansion in eigenfunction
or modes (like in duct acoustics; see chapter 7) is possible.

It is, however, important to note that very often we can simplify a problem already, for example by
integral representations as above, by using free field Green’s functions,i.e. the Green’s function of
the problem without the usually complicating boundaries. If the medium is uniform in all directions,
the only independent variables are the distance to the source |x − y| and time lagt − τ . Furthermore,
the delta-function source may be rendered into a more easilytreated form by spatial Fourier transfor-
mation. Examples are given in Appendix C.2.7 and section 4.6, while a table is given in Appendix
E.



36 3 Green’s functions, impedance, and evanescent waves

3.2 Acoustic impedance

A useful quantity in acoustics is impedance. It is a measure of the amount by which the motion induced
by a pressure applied to a surface is impeded. Or in other words: a measure of the lumpiness of the
surface. Since frictional forces are, by and large, proportional to velocity, a natural choice for this
measure is the ratio between pressure and velocity1. A quantity, however, that would vary with time,
and depend on the initial values of the signal is not very interesting. Therefore, impedance is defined
via the Fourier transformed signal as:

Z(x;ω) = p̂(x;ω)
v̂(x;ω)·nS(x)

(3.14)

at a pointx on a surfaceSwith unit normal vectornS pointing into2 the surface. The impedance is a
complex number and a function ofω and position. The real part is called theresistance, the imaginary
part is called thereactance, and its inverse 1/Z is called theadmittance.

In the most general situation the ratioZ = p̂/(v̂ ·nS) is just a number, with a limited relevance.
We cannot consider the impedanceZ as a property of the surfaceS, becauseZ dependsalsoon the
acoustic field. However, this is not the case for the class of so-calledlocally reactinglinear surfaces.
The response of such a surface to an acoustic wave is linear and pointwise, with the result that the
impedance is indeed the same for any solution, and thereforea property of the surface alone.

Mathematically it is important to note that an impedance boundary condition is of “mixed type”. Via
the general Green’s function representation

p̂ =
∫∫

S

(
p̂∇G + i kρ0c0v̂G

)
·nS dσ (3.15a)

the Helmholtz equation reduces to an integral equation inp̂ if surfaceShas an impedanceZ:

p̂ =
∫∫

S

(
∇G·nS + i kρ0c0

Z
G

)
p̂ dσ. (3.15b)

Sometimes it is instructive to describe the coupling between two adjacent regions of an acoustic field
by means of an equivalent impedance. Suppose we place between these regions (say, region 1 and
region 2) a fictitious interface, with an impedance such, that the presence of the surface would generate
the same sound field in region 1 as there exists without surface. In that case we could say that the effect
of region 2 onto region 1 is described by this impedance.

For example, a free field plane waveeiωt−ikx, with k = ω/c0 and satisfying iωρ0v + ∇ p = 0, would
not be reflected by a screen, positioned parallel to they, z-plane, if this screen has the impedance
Z = ρ0c0. So for plane waves and in the far field (where the waves becomeapproximately plane) the
fluid may be said to have the impedanceρ0c0. This inherent impedance of the fluid is used to makeZ
dimensionless leading to thespecific impedance Z/ρ0c0.

1In mechanics, impedance denotes originally the ratio between a force amplitude and a velocity amplitude. In some
texts, the ratio acoustic pressure/velocity is therefore called “impedance per area” or specific impedance. We reservethe
nomenclature “specific impedance” to the (dimensionless) ratio of the impedance and the fluid impedanceρ0c0.

2Note that usually the normal vector of a surface is defined outof the surface.
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Many other examples are found in 1-dimensional (pipe-) models of acoustic systems where local 3-
dimensional behaviour is “packed” in an effective impedance. It may be worthwhile to note that for
such models many authors find it convenient to divideZ by the surfaceS of the pipe cross section.
In such a case the impedance is the ratio of the acoustic pressure p̂ and the volume flux(û·n)S
leaving the control volume. The one-dimensional approach then allows the use of all mathematical
tools developed for electrical circuits if we assumep̂ to be the equivalent of the electric voltage,
(û·n)S the equivalent of the electric current, and a tube to correspond to a transmission line. Further,
a compact volume is the equivalent of a capacity, and a compact orifice is a self induction. The pressure
difference is in linear approximation due to the inertia of the air in the orifice and hence proportional
to the acceleration(∂/∂t)(û·n) (section 4.4.3).

3.2.1 Impedance and acoustic energy

For a quiescent fluid the acoustic power flow (2.82) acrossS for a time-harmonic field∼ eiωt is

P =
∫∫

S

ω

2π

2π/ω∫

0

Re
(

p̂ eiωt
)

Re
(
(v̂ ·nS) eiωt

)
dt dσ

=
∫∫

S

1

4
( p̂v̂∗ + p̂∗v̂)·nS dσ (3.16a)

=
∫∫

S

1

2
Re( p̂∗v̂ ·nS)dσ, (3.16b)

wherez∗ denotes the complex conjugate ofz. If the surface has an impedanceZ, the power becomes

P =
∫∫

S

1

2
Re(Z)|v̂ ·nS|2 dσ. (3.17)

Hence, the real part of the impedance (the resistance) is related to the energy flow: if Re(Z) > 0 (for
ω ∈ R), the surface ispassiveand absorbs energy; if Re(Z) < 0, it is activeand produces energy.

3.2.2 Impedance and reflection coefficient

If we consider the acoustic field forx < 0 in a tube at low frequencies, we can write

p(x, t) = p̂(x)eiωt = p+ eiωt−ikx +p− eiωt+ikx (3.18)

wherek = ω/c0, p+ is the amplitude of the wave incident atx = 0 from x < 0 andp− is the ampli-
tude of the wave reflected atx = 0 by an impedanceZ. Using the linearized momentum conservation
law ρ0(∂v/∂t) = −∂p/∂x we find:

v̂(x) = 1

ρ0c0

(
p+ e−ikx −p− eikx

)
. (3.19)

If we define the reflection coefficientR at x = 0 as:

R = p−/p+ (3.20)
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we see that becauseZ = p̂(0)/v̂(0) :

R = Z − ρ0c0

Z + ρ0c0
. (3.21)

In two dimensions we have a similar result. Consider a plane wave (amplitudep+), propagating in the
direction(cosϑ, sinϑ) whereϑ is the angle with the positivex-axis (c.f. Fig. 3.6), and approaching
from y < 0 an impedance wall aty = 0. Here it reflects into a wave (amplitudep−) propagating in
the direction(cosϑ,− sinϑ). The pressure field is given by

p̂(x, y) = e−ikx cosϑ
(

p+ e−ikysinϑ +p− eikysinϑ
)
. (3.22)

The y-component of the velocity is

v̂(x, y) = sinϑ

ρ0c0
e−ikx cosϑ

(
p+ e−ikysinϑ −p− eikysinϑ

)
, (3.23)

so we have for the impedance

Z = p̂(x,0)

v̂(x,0)
= ρ0c0

sinϑ

p+ + p−

p+ − p− = ρ0c0

sinϑ

1 + R

1 − R
, (3.24)

and for the reflection coefficient

R = Z sinϑ − ρ0c0

Z sinϑ + ρ0c0
. (3.25)

The impedance with no reflection (of a plane surface) is thusZ = ρ0c0/ sinϑ .

3.2.3 Impedance and causality

In order to obtain a causal solution of a problem defined by boundary conditions expressed in terms
of an impedanceZ, the impedance should have a particular form.

Consider an arbitrary plane wavepi = f (t − x/c0) incident fromx < 0, and reflecting intopr =
g(t + x/c0) by an impedance wall atx = 0, with impedanceZ(ω). The total acoustic field is given
for x < 0 by:

p(x, t) = f (t − x/c0)+ g(t + x/c0), (3.26a)

v(x, t) = 1

ρ0c0

(
f (t − x/c0)− g(t + x/c0)

)
. (3.26b)

The reflected waveg is determined via the impedance condition, and therefore via the Fourier trans-
forms of thep andv . As we have seen above (equation 3.21), we have for the Fourier transforms f̂
andĝ:

ĝ(ω) = Z(ω)− ρ0c0

Z(ω)+ ρ0c0
f̂ (ω). (3.27)
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More information can be obtained, however, if we transform the boundary condition back to the time
domain

p(0, t) =
∫ ∞

−∞
p̂(0, ω)eiωt dω (3.28a)

=
∫ ∞

−∞
Z(ω)v̂(0, ω)eiωt dω (3.28b)

leading to the convolution product:

p(0, t) = 1

2π

∫ ∞

−∞
z(t − τ)v(0, τ )dτ (3.29)

where

z(t) =
∫ ∞

−∞
Z(ω)eiωt dω. (3.30)

Sincep(0, t) should only depend on the values ofv(0, t) of the past(τ < t), the Fourier transform
z(t) of the impedanceZ(ω) has to satisfy thecausality condition:

z(t) = 0 for t < 0. (3.31)

Of course, the same applies to the admittance 1/Z(ω), when we expressv(0, t) in p(0, t). This re-
quires, under conditions as given in theorem (C.1) (p.232),

Z(ω) and 1/Z(ω) are analytic in Im(ω) < 0. (3.32)

Furthermore, since bothp and v are real,z has to be real, which implies thatZ has to satisfy the
reality condition:

Z∗(ω) = Z(−ω) for ω ∈ R. (3.33)

Indeed, the mass-spring-damper system, given by

Z(ω) = R + iωm − i K/ω, (3.34)

satisfies the reality condition if all parameters are real, but is only causal, with zeros and poles in the
upper complex half plane, if all parameters are positive or zero.

Equation (3.29) yields an integral equation forg if we use equations (3.26a) and (3.26b) to eliminate
p andv :

f (t)+ g(t) = 1

2πρ0c0

∫ ∞

−∞
z(t − τ)

(
f (τ )− g(τ )

)
dτ. (3.35)

For any incident wave starting at some finite time(t = 0) we have f (t) = 0 for t < 0, so that all in
all the infinite integral reduces to an integration over the interval[0, t]:

f (t)+ g(t) = 1

2πρ0c0

∫ t

0
z(t − τ)

(
f (τ )− g(τ )

)
dτ. (3.36)

For any timet , g(t) is built up from f (t) and the history off andg along[0, t].
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As an example, consider an impedance wall of Helmholtz resonator type which is widely used in turbo
fan aircraft engine inlets [193]. Such a wall is described (see next chapter) by:

Z(ω) = ρ0c0

(
R + iωm − i cot

(
ωL
c0

))
. (3.37)

whereR,m, L > 0. Note that indeedZ∗(ω) = Z(−ω). If we write ωL
c0

= ξ − iη and c0m
L = α, then

Re
( Z

ρ0c0

)
= R + αη + coth(η)

1 + cot(ξ)2

cot(ξ)2 + coth(η)2
> 0

for η > 0, soZ is free from zeros in Im(ω) < 0. From the causality condition it follows that the poles
of cotg(ωL

c0
) belong to the upper half of the complexω-plane. Hence, we can Fourier transformZ back

to the time domain (C.34) to find:

z(t)

2πρ0c0
= Rδ(t)+ mδ′(t)+ δ(t)+ 2

∞∑

n=1

δ
(
t − 2nL

c0

)
(3.38)

whereδ′(t) denotes the derivative ofδ(t). Substitution of (3.38) in (3.36) shows thatg can be ex-
pressed as a finite sum.

For certain parameter ranges the effect of viscous frictionin the resonator neck (c.f. 2.13, 4.77) may
be included by a term like

√
iων; for example [201]

Z(ω) = ρ0c0

(
b
√

iω + R + iωm − i cot
(
ωL
c0

))
. (3.39)

whereb > 0. Since the complex square root function is subtle, it has tobe emphasised that the square
root, in the form as used here, should be theordinary (principal value) square root. With a branch cut
along the negative real axis for

√· , the branch cut of
√

iω is then along the the positive imaginary
ω-axis, yielding a function analytic in Im(ω) < 0. In particular,

√
iω shouldnot be simplified to

1
2

√
2(1 + i )

√
ω, unless the branch cut of

√
ω is rotated to the positive imaginary axis, which is of

course in actual practice an intricate operation and prone to errors and confusion3.

Moreover, with(
√

iω)∗ =
√

−iω (for ω ∈ R) also the reality condition is satisfied, whileZ is still
free from zeros in Im(ω) < 0, since Re(

√
iω) ∼ Re(

√
η + i ξ) > 0 for η > 0 (see above). Fourier

transformed back into time domain we have the causal (generalised) function
∫ ∞

−∞

√
iω eiωt dω = 2

√
π

d

dt

( H (t)√
t

)
.

3.2.4 Impedance and surface waves

Part of sound that is scattered by an impedance wall may be confined to a thin layer near the wall,
and behave like a surface wave [23, 248, 51, 159, 7, 184, 47, 226, 243, 198, 4], similar to the type of
evanescent waves discussed in section 3.3. Examples of these type of solutions are found as irregular
modes in lined ducts (section 7.4), or as sound that propagates with less than the usual 1/r 2-decay
along an acoustically coated surface.

3In [201] it was too hastily concluded that
√
ω is not admissible in a physically possible impedance representation. If

(1 + i )
√
ω is interpreted as

√
2iω with branch cut as described, it is possible.
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Figure 3.1 Trajectories ofα for varying Z = R + i X (no flow).
Fixed R & X = 0:−0.1:−∞ . FixedX & R = 0:0.1:∞ .

Consider in(x, y)-space,y > 0, a harmonic pressure fieldp(x, y)eiωt , satisfying

∇2 p + k2p = 0, with i k p(x,0) = Z ∂
∂y p(x,0)

whereZ denotes the specific impedance (scaled onρ0c0) of the wall y = 0, andk = ω/c0. Suitable
solutions are

p(x, y) = Ae−(ikαx±ikγ y), γ (α) =
√

1 − α2

whereα is to be determined. The solutions we are interested in remain restricted to the wall, which
means that± Im(γ ) 6 0. The sign ofγ depends of course on our definition of the square root. In order
to have one and the same expression for allα, i.e. ∝ e−(ikαx+ikγ y), it is therefore most convenient to
select the branch and branch cuts ofγ such that Im(γ ) 6 0 everywhere (see equation 3.52 and figure
3.5). From the boundary condition it follows that the only solutions that can occur have to satisfy

γ (α) = −Z−1.

It follows that the only impedances that may bear a surface wave have to satisfy

Im(Z) 6 0.

The complex values of scaled wave numberα, corresponding to these solutions, are given by

α = ±
√

1 − Z−2. (3.40)

Trajectories of these wave numbers, as function ofZ, are plotted in figure 3.1. To include all complex
values ofZ, we have drawn two fan-shaped families of curves: one for fixed Re(Z) and one for
fixed Im(Z). Note that un-attenuated waves occur for purely imaginaryZ. The thickness of the layer
occupied by the wave is of the ordery = O(λ| Im(Z)|), whereλ = 2π/k, the free field wave length.
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3.2.5 Acoustic boundary condition in the presence of mean flow

The boundary condition to describe a vibrating impermeablewall is that the fluid particles follow the
wall motion. In linearized form it is applied at the wall’s mean or unperturbed position. Without mean
flow, the linearized condition simply says that acoustic andwall’s normal velocity match.

With mean flow the situation is more subtle. Both the actual normal vector and the mean flow velocity
at the actual position differ from the mean values by an amount of acoustic order, which has to be
taken into account. This was recognized by several authors for various special cases. Myers gave in
[151] the most general formulation, which we will summarizehere.

Consider the unsteady surfaceS(t), which is a perturbation, scaling on a small parameterε, of the
steady surfaceS0. Associate toS0 an orthogonal curvilinear co-ordinate system(α, β, γ ) such that
α = 0 corresponds toS0. The mean flowv0 is tangent to the steady surface (section A.3), so

v0·∇α = 0 at α = 0.

Let S(t) be described, to leading order, by

α = εg(β, γ, t)+ O(ε2).

The condition of fluid particles following the surfaceS(t) becomes

∂

∂t
(α − εg)+ (v0 + εv′)·∇(α − εg) = O(ε2) at α = εg,

whereεv′ is the acoustic velocity. The linearization we seek is the acoustic order,i.e. O(ε) when
ε → 0. This appears to be [151]

v′ ·n =
( ∂
∂t

+ v0·∇ − n·(n·∇v0)
) g

|∇α| at α = 0, (3.41)

wheren is the normal ofS0, directed away fromS0 into the fluid.

An important application of this result is an impedance wall(section 3.2) with inviscid mean flow.
This can be found, for example, in the lined inlet duct of a turbo fan aircraft jet engine. The steady
surfaceS0 coincides with the impedance wall; the unsteady surfaceS(t) is the position of a (fictitious)
vortex sheet, modelling the boundary layer.

Since a vortex sheet cannot support a pressure difference, the pressure at the wall is the same as near
the wall in the flow. If the wall has an impedanceZ 6= 0 for harmonic perturbations∼ eiωt (see 3.14),
the velocity and therefore the positiong of S(t) is known in terms of the pressure:

g = − 1

iωZ

(
|∇α|p

)
α=0
.

In the mean flow, the impedance wall is now felt as

v′ ·nS =
(
iω + v0·∇ − nS·(nS·∇v0)

) p

iωZ
at S0. (3.42)

As is usual, the normal vectornS of S0 is now selected to be directedinto the wall. If Z ≡ 0, the
boundary condition is justp = 0. For uniform mean flow along a plane wall (3.42) simplifies to

v′ ·nS =
(
iω + v0·∇

) p

iωZ
, (3.43)
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a result, obtained earlier by Ingard [92]. An application ofthis generalized boundary condition (3.42)
may be found in [194, 196].

Of practical interest are the following observations. As the mean flow field is tangential to the wall, so
v0·nS = 0, the following simplification may be derived

−nS·(nS·∇v0) = v0·(nS·∇nS),

i.e. the expression does not really involve derivatives ofv0. (Incidentally, the vectornS·∇nS is tan-
gential to the surface.) Furthermore, since∇·(ρ0v0) = 0, we may multiply left and right hand side of
(3.42) byρ0 and obtain the form

ρ0v
′ ·nS = ρ0p

Z
+

(
∇ + nS·∇nS

)·(ρ0v0 p

iωZ

)
. (3.44)

The last part between brackets may be further simplified to the following two forms (c.f. [139, 58])

(
∇ + nS·∇nS

)·(ρ0v0p

iωZ

)
= nS·∇×

(
nS×

ρ0v0p

iωZ

)
, (3.45a)

= 1

hσ

∂

∂τ

(
hσ
ρ0v0 p

iωZ

)
, (3.45b)

wherev0 = |v0| and a local orthogonal coordinate system(τ, σ, ν) is introduced associated to the wall.
Coordinateν is related to the wall normal vectorn, coordinateτ is the arclength along a streamline of
v0, andσ is orthogonal toτ in the wall surface.hσ is a scale factor ofσ , defined byh2

σ = ( ∂
∂σ

x)2 +
( ∂
∂σ

y)2 + ( ∂
∂σ

z)2. Note that (3.45b) involves no more than a derivative in streamwise direction.

3.2.6 Surface waves along an impedance wall with mean flow

Consider in(x, y)-space,y > 0, a uniform mean flow inx-direction with Mach numberM, and a
harmonic field∼ eiωt satisfying (see equation 2.52)

(
i k + M

∂

∂x

)2
p −

( ∂2

∂x2
+ ∂2

∂y2

)
p = 0

(
i k + M

∂

∂x

)
v + ∇ p = 0

wherek = ω/c0. Pressurep is made dimensionless onρ0c2
0 and velocityv on c0. At y = 0 we have

an impedance boundary condition given by (see equation 3.42)

i k Zv = −
(
i k + M

∂

∂x

)
p

whereZ denotes the constant specific wall impedance andv the vertical velocity.

Solutions that decay fory → ∞ are of the type discussed in section 3.3

p(x, y) = Ae−ikαx−ikŴy .

From the equations and boundary condition it follows that

(1 − αM)2 + ŴZ = 0, α2 + Ŵ2 = (1 − αM)2.
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For further analysis it is convenient to introduce the Lorentz or Prandtl-Glauert type transformation
(see 7.42 and section 9.1.1),

β =
√

1 − M2, σ = M + β2α, γ = βŴ, γ =
√

1 − σ 2 (3.46)

with the branch and branch cuts ofγ (σ ) selected such that Im(γ ) 6 0 (see equation 3.52 and figure
3.5).

As a result (see [192, 198]) we have the equation for the reduced axial complex wave numberσ as a
function of Z

(1 − Mσ )2 + β3γ (σ )Z = 0 (3.47)

By squaring we obtain a 4-th order polynomial equation with 4complex roots. So in our problem
we have at most 4 solutions. To investigate the occurrence ofthese solutions, we analyse in detail
the behaviour of possible solutionsσ along the branch cuts ofγ , because it is there where possible
solutions may appear from or disappear to the second Riemannsheet ofγ . From a careful analysis
(see [192, 198]) it appears that in theZ-plane there are 5 distinct regions with 0, 1, 2, 3, and 4 solutions
σ , while in theσ -plane we can identify an egg-shaped area, of radius≃ M−1, inside and outside of
which we have 4 regions where solutionsσ may occur. See the figures 3.2, 3.3, and figure 3.4.

Inside the egg we have acoustic surface waves (a right-running σS R and a left-runningσSL). Outside
the egg we have hydrodynamic modes (they disappear to infinity with vanishing Mach number)σH S

andσH I , probably both right-running, such thatσH S is decaying (stable) andσH I is increasing (un-
stable). This unstable behaviour depends on the frequency-dependence ofZ, and can be proven for an
impedance of mass-spring-damper type (3.34) in the incompressible limit [192, 198, 202].
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In the limit for hard walls,i.e. for |Z| → ∞ while Im Z < 0, the hydrodynamic surface waves
σH I andσH S disappear to infinity while the acoustic surface wavesσS R andσSL approach±1 in the
following way

σH I , σH S ≃ ±i
β3

M2
Z, σS R, σSL ≃ ±1 ∓ (1 ∓ M)4

2Z2β6
. (3.48)
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3.2.7 Instability, ill-posedness, and a regularization

Although the Ingard-Myers limit of a vanishing mean flow boundary layer is very reasonable for a
fixed frequency, with all pertaining wavelengths being muchlonger than the boundary layer thickness,
it is totally useless [22, 20] in time domain [201].

The problem is that if we gradually reduce the boundary layer, one of the above hydrodynamic surface
waves changes from a convective instability (a positive growth rate for at least part of the wave number
spectrum but always with a group velocity directed downstream) to an absolute instability (positive,
0, and negative group velocities yielding unstable behaviour everywhere) [202]. At the same time the
growth rate increases until it becomes infinite in the Ingard-Myers limit of a vanishing boundary layer.
This implies that in time domain, any perturbation excites in zero time an infinitely large instability.
A model or mathematical problem with this property is calledill-posed.

The (presumably) convective instability has been observedexperimentally [8], but the absolute insta-
bility probably only numerically [31]. The reason appears to be [202] that the critical boundary layer
thickness, where the instability of the system changes fromconvective to absolute, is in any practical
situation so small (several microns) that is has never been realised.

One way to cure this problem of the Ingard-Myers model is to regularise the boundary condition by
including the effect of a boundary layer of very thin but non-zero thicknessh. For example like in
[202] for a flat lined wall of uniform dimensional impedanceZ(ω) and a mean flowv0 = U∞ex

Z(ω) =

(
iω + U∞

∂

∂x

)
p′ − hρ0iω

(
2
3iω + 1

3U∞
∂

∂x

)
(v′ ·nS)

iω(v′ ·nS)+ h

ρ0

∂2

∂x2
p′ − 1

3hiω
∂

∂nS
(v′ ·nS)

. (3.49)

which is to be compared with (3.43). By selecting a boundary layer thicker than the critical thickness
(this depends on the assumed liner model), we can guarantee awell-posed model. For a mass-spring-
damper liner (3.34) this was found to be

hc ≃ 1

4

(
ρ0U∞

R

)2

U∞

√
m

K
. (3.50)

Another form, for circumferential modes in circular ducts,has been proposed by Brambley [21], but
without estimate for a sufficient thickness of the boundary layer.

3.3 Evanescent waves and related behaviour

3.3.1 An important complex square root

The wave equation in 2-D has the very important property thata disturbance of (positive) frequencyω
and (real) wave numberα in (say)x-direction is only radiating sound if frequency and wave number
satisfy the inequality

|α| < ω/c0

(a similar inequality holds in 3-D). Outside this regime thegenerated disturbances are exponentially
decaying (evanescent) iny without an associated sound field. This is seen as follows.
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Consider in the 2-D half spacey > 0 the harmonic sound fieldp(x, y, ω) eiωt satisfying the
Helmholtz equation

∇2 p + k2p = 0.

wherek = ω/c0. If p, generated by (say) the surfacey = 0, is given aty = 0 as the Fourier integral

p(x,0) = p0(x) =
∫ ∞

−∞
A(α) e−iαx dα,

it is easily verified that the field iny > 0 may be written as

p(x, y) =
∫ ∞

−∞
A(α) e−iαx−iγ y dα (3.51)

with the important square root (with branch cuts along the imaginary axis, and the real interval|α| 6
k; see figure 3.5)

γ (α) =
√

k2 − α2, Im(γ ) 6 0, γ (0) = k. (3.52)
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Re(γ ) < 0

branch cut
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Figure 3.5 Branch cuts and signs ofγ =
√

k2 − α2 in complex α-plane.
The definition ofγ (α) adopted here is the branch of the multi-valued complex square
root that corresponds to Im(γ ) 6 0 for all α. Im(γ ) = 0 along the branch cuts.
γ (α) ≃ −iα sign(Reα) if |α| ≫ k,

The complex square root is here defined such that for any complex α the wavee−iαx−iγ y radiates
or decays in positivey-direction. This is not necessary (we could always invoke the other solution
∼ e+iγ y), but very convenient if complexα’s are essential in the problem.

If we consider solutions of the Fourier-integral type (3.51), the onlyα’s to be considered are real.
We see that only that part ofp0(x) is radiated intoy > 0 which corresponds to real positiveγ , i.e.
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with |α| < k. The rest decays exponentially withy, and is undetectable fory → ∞. This near field
with |α| > k is essentially of hydrodynamic nature, and becomes just an incompressible flow field for
|α| ≫ k. If this is true for allα, including the largestα−1, which scales on the size of the object, it
is equivalent to the condition of compactness (2.27), and shows that compact sources are acoustically
inefficient.

This distinction between radiating acoustic and non-radiating near field has far reaching implications.
We give some examples.

3.3.2 The Walkman

The low frequencies of a small Walkman headphone are not radiated as sound. We do, however, detect
the pressure when our ear is in the hydrodynamic near field.

3.3.3 Ill-posed inverse problem

Infinitely many boundary conditions are equivalent in the far field. The above boundary condition
p(x,0) = p0(x) and any other with the sameα-spectrum on[−k, k], for example

p(x,0) = p̃0(x) =
∫ k

−k
A(α) e−iαx dx

produce the same far field. Therefore, theinverseproblem of determiningp0 from a measured far field
is very difficult (ill-posed). Fine details, with a spatial structure described by|α| > k, are essentially
not radiating. Indeed, waves are in general more scattered by large than by small objects.

3.3.4 Typical plate pitch

If a metal plate is hit by a hammer, bending waves are excited with time- and space-spectra depending
on, say, frequency (ω) and wave number (α) respectively. However, not all frequencies will be radiated
as sound. As seen above, for anyα only the frequencies larger thanαc0 are radiated. Now, the smallest
α occurring is by and large determined by the size of the plate (if we ignore fluid-plate coupling), say
1/L. Therefore, the smallest frequency that is radiated is given byωmin = αminc0 = c0/L.

3.3.5 Snell’s law

Also the transmission of sound waves across an interface between two media is most directly described
via this notion of sub- and supersonic wave crests. If a planewave is incident onto the interface, the
point of reflection in medium 1 generates a disturbance in medium 2 (Fig. 3.6).

With soundspeedc1 in medium 1 and direction4 of incidence(cosϑ1, sinϑ1) the disturbance velocity,
measured along the interface, (the phase speed) isc1/ cosϑ1. Depending onϑ1 and the ratio of sound
speedsc1/c2 this disturbance moves with respect to medium 2 either supersonically, resulting into
transmission of the wave, or subsonically, resulting into so-called total reflection (the transmitted

4Traditionally, the angle used is between the propagation direction and the normal vector of the interface.
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Figure 3.6 Reflection and transmission at a discontinuity.

wave is exponentially small). In case of transmission the phase speeds of the incident and transmitted
wave has to match (thetrace-velocity matching principle, [175]).

c1

cosϑ1
= c2

cosϑ2
. (3.53)

This is equivalent to Snell’s law ([52, 175]), from which we can determine the angleθ2 of the trans-
mitted wave with the interface.

For the amplitudes (the reflection and transmission coefficients) we have to do a bit more. See for
example the next problem.

Snellius along an air-bulk interface

If the interface is between air and a dissipative bulk absorber, covered with a top plate, the idea is the
same, but we need a more precise calculation.

Suppose we have in the airy < 0

iωρ− + ρ0∇·v− = 0,

iωρ0v− + ∇ p− = 0,

p− = c2
0ρ−,

(3.54)

while the bulkabsorber iny > 0 is described by the model

iω�ρ+ + ρ0∇·v+ = 0,

(iωρe + σ )v+ + ∇ p+ = 0,

p+ = c2
eρ+.

(3.55)

At the interfacey = 0 we have a pressure jump due to the top plate and continuity ofmass

p−(x,0) − p+(x,0) = − Z

iωρ0

∂

∂y
p−(x,0),

∂

∂y
p−(x,0) = ζ

∂

∂y
p+(x,0), ζ = ρ0

ρe − iσ/ω
.

(3.56)
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Eliminatev to get

∇2 p + k2 p = 0, k = ω

c0
, y < 0

∇2 p + µ2 p = 0, µ = ω

ce

√
�

ζ
, y > 0

(3.57)

Assume incident a plane wave of unit amplitude iny < 0, propagation in(cosφ, sinφ)-direction, and
a reflected wave, together given by

p−(x, y) = e−ikx cosφ−ikysinφ +Re−ikx cosφ+iky sinφ (3.58)

Assume the following transmitted wave iny > 0, which is caused by the incident wave and therefore
has the samex-dependence (the trace-velocity matching principle)

p+(x, y) = f (y)e−ikx cosφ (3.59)

From the equation forp+ it follows that f (y) = T e−iγ y with γ 2 = µ2 − k2 cos2φ. Since the
transmitted wave is decaying fory → ∞, we choose the branch of the square root with Im(γ ) 6 0.

p+(x, y) = T e−ikx cosφ−iγ y, γ =
√
µ2 − k2 cos2 φ, Im γ 6 0. (3.60)

The direction of the transmitted wave is thus

(k cosφ,Reγ )√
k2 cos2 φ + (Reγ )2

. (3.61)

From the interface conditions we have

(1 + R)e−ikx cosφ −T e−ikx cosφ = (Z/ρ0c0)(1 − R) sinφ e−ikx cosφ

−i k(1 − R) sinφ e−ikx cosφ = −i ζγ T e−ikx cosφ

with solution

R =

Z

ρ0c0
+ k

ζγ
− 1

sinφ
Z

ρ0c0
+ k

ζγ
+ 1

sinφ

, T =
2

k

ζγ

Z

ρ0c0
+ k

ζγ
+ 1

sinφ

(3.62)

This solution includes the previous problem of a simple change in sound speedc0.

3.3.6 Silent vorticity

The field of a moving point source may be entirely acoustical,with essentially no other than convec-
tion effects. It is, however, possible, and physically indeed usual, that a fluctuating moving line force
generates a surface or sheet of trailing vorticity. This vorticity is generated in addition of the acoustic
field and is itself also of acoustic order, but, apart from some coupling effects, silent. Typical examples
are (the trailing edge of) a fluctuating wing, a propeller blade, or a flag pole in the wind. The amount
of generated vorticity is not a priori known but depends on details of the vortex shedding process (e.g.
described by the Kutta condition), usually not included in an acoustic model. Indeed, this vorticity
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solution comes into the problem as an eigensolution as soon as continuity of the potential along mean
flow streamlines is released as condition. A potential discontinuity corresponds to a vortex sheet.

Although convected vorticity is silent (it exists without pressure fluctuations) its presence may still
be acoustically important. Near a solid surface (typicallythe surface from which the vorticity is shed)
the velocity corresponding to the free vorticity cannot exist, as the field has to satisfy the vanishing
normal velocity condition. This induces a fluctuating pressure along the surface which radiates out as
sound, apparently from the surface but of course really the vorticity is the source. Examples are the
whistling sound produced by a thin pipe or wire in the wind (aeolian sound), and the trailing edge
noise – as far as it is due to shed-vorticity – from a blunt-edged airfoil. See for example [189].

We will not consider the generation process here in detail, but only indicate the presence of the eigen-
solution for a distinct source far upstream.

Consider in a 2D medium a uniform mean flow(U,0) with velocity perturbations∇ϕ and pressure
perturbationsp small enough for linearization. Bernoulli’s equation and the mass conservation equa-
tion become then

ρ0
∂ϕ

∂t
+ ρ0U

∂ϕ

∂x
+ p = 0, (3.63a)

∂p

∂t
+ U

∂p

∂x
+ ρ0c

2
0∇2ϕ = 0, (3.63b)

ϕ → 0 for |y| → ∞. (3.63c)

This may be combined to a wave equation, although the hydrodynamic field is more easily recognized
in the present form5. Possible eigensolutions (solutions without source) for the free field problem (no
solid objects) are given by

p(x, y, t) = 0 (3.64a)

ϕ(x, y, t) = f (x − Ut, y) (3.64b)

∇2 f (x, y) = 0. (3.64c)

for suitable functionsf (x, y). A non-trivial solution f decaying both fory → ∞ and y → −∞
is not possible if f is continuous, but if we allowf to be discontinuous along, say,y = 0 (any
surface parallel to the mean flow is possible), of course under the additional conditions aty = 0
of a continuous pressurep and continuous vertical velocity∂ϕ/∂y, then we may find with Fourier
transformation

ϕ(x, t) =
∫ ∞

−∞
F(α) sign(y)e−α|y|−iα(x−Ut) dα. (3.65)

5 Equations (3.63a,3.63b) may be combined to the convected wave equation

c2
0∇2ϕ − (ϕt t + 2Uϕxt + U2ϕxx) = 0

which reduces under the Prandtl-Glauert transformation (see 7.42)ϕ(x, y, t) = ψ(X, y, T) with X = x/β, T = βt +
Mx/c0β, M = U/c0, β = √

(1 − M2) to the ordinary wave equation forψ , and a pressure given byp = −ρ0(ψT +
UψX)/β. In this way we may obtain from any no-flow solutionψ a solution to the problem with flow. However, care should
be taken.

An integrable singularity in∇ψ , as would occur at a sharp edge, corresponds without flow to a finite pressure. With flow
it corresponds to a singular pressure (from theψX-term). If this is physically unacceptable, for example if the edge is a
trailing edge and the sound field induces the shedding of vorticity, a Kutta condition of finite pressure is required and the
solution is to be modified to include the field of the shed vorticity (a discontinuousϕ).
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This discontinuity relates to a concentrated layer of vorticity (vortex sheet), and is a typical (hydrody-
namic) phenomenon of acoustics with mean flow. The shedding of vorticity (on the scale of the linear
acoustics) would not occur without mean flow.

For a harmonic force (for example, a Von Kármán vortex streetmodelled by an undulating vortex
sheet) with frequencyω we have only one wave numberα = ω/U in the problem:

ϕ(x, t) = F0 sign(y)exp
(
iωt − i

ω

U
x − ω

U
|y|

)
. (3.66)

This important parameterω/U is called the “hydrodynamic wave number”. Together with a suitable
length scaleL it yields the dimensionless numberωL/U called “Strouhal number”.

It may be noted that this hydrodynamic field has an averaged intensity, directed inx-direction, equal
to (note thatp ≡ 0)

〈I ·ex〉 = 1

2
Uρ0

∣∣∣∂ϕ
∂x

∣∣∣
2

= ω2

U2
|F0|2 e−2 ωU |y| .

The total power output in flow direction is then
∫ ∞

−∞
〈I ·ex〉 dy = ω

U
|F0|2. (3.67)

In the case of an acoustic field (for example the field that triggered the vortices associated to the
hydrodynamic field) the intensity has a non-zero component in y-direction, and in addition to the
purely hydrodynamic power (3.67) some acoustic energy disappears into, or appears from, the vortex
sheety = 0. See section 9.1.3 and [116, 189, 85, 191, 72].

Exercises

a) Consider the sound produced by thunder, modelled as an infinite line source, fired impulsively. Explain
the typical long decay after the initial crack.

b) Consider in (x, y, z)-space the planez = 0, covered uniformly with point sources which are all fired
instantaneously att = τ :
δ(t −τ )δ(x−x0)δ(y− y0)δ(z) (z0 = 0). Calculate the sound field at some distance away from the plane.

c) Consider an infinite equidistant row of harmonically oscillating line sources∑
n δ(x − nd)δ(y) eiωt , placed in thex, z-plane a distanced from each other. Show that constructive

interference in the far field will only occur in directions with an angleθ such that

kdcosθ = 2πm; m = 0,1,2, . . .

wherek = ω/c0.

d) The same question for a row of alternating line sources.

e) What is the dimension ofδ(x) if x denotes a physical coordinate with dimension “length”?

f) Prove the identities (C.36a) and (C.36b).

g) Consider a finite volumeV with surfaceS and outward surface normaln. On V is defined a smooth
vector fieldv. Prove, by using surface distributions, Gauss’ theorem∫

V
∇·v dx =

∫

S
v ·n dσ.

h) Work out the expression (3.36) for the reflected waveg in the case of formula (3.38) withm = 0.
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i) We define an ideal open end as a position at whichp̂ = 0 in a tube. Calculate reflection coefficientR
and impedanceZ for such an open end.

j) The same question for an ideal closed end defined byv̂ = 0.

k) Given a uniform duct betweenx = −∞ andx = 0, with impedanceZ0 of the planex = 0 seen from
thex < 0 side. CalculateZL , the impedance of the planex = −L, seen fromx < 0.

l) Prove causality of the impedanceZ(ω) = R+ iωm − i K/ω. Find the inverse Fourier transform of both
Z andY = 1/Z.

m) Determine the reflection coefficientR of a harmonic plane wave

p(x) = e−ik·x +Re−i k̄·x, v(x) = k
ρ0�

e−ik·x +R
k̄
ρ0�

e−i k̄·x

with k = k(cosϑ, sinϑ), k̄ = k(cosϑ,− sinϑ), k = ‖k‖, c0k = �, � = ω − u0k cosϑ , incident from
y < 0 in a mean flowv0 = (u0,0) against a wall aty = 0 with impedanceZ. What is the impedance
with R = 0?



4 One dimensional acoustics

4.1 Plane waves

Plane waves are waves in which the acoustic field only dependson the spatial coordinate (say:x) in
the direction of propagation:p(x, t), ρ(x, t), v(x, t), ... . Such waves may emerge, for example, as
approximations for spheric waves at large distance from a point source, or as waves propagating at a
frequency lower than a critical frequencyfc called the cut-off frequency in a hard-walled pipe. As we
will see from the discussion in section 6.4 and section 7.2 the cut-off frequencyfc is of the order of
c0/2d whered is the pipe width (or diameter). The exact value offc depends on the shape of the pipe
cross section.

If we can neglect friction, then below the cut-off frequency, the (propagating part of the) acoustic field
in a pipe consists only of plane waves. The condition for the validity of a frictionless approximation
yields a lower bound for the frequency we can consider. At high frequencies, the effect of viscosity is
confined to boundary layers of thicknessδA = (2ν/ω)1/2 (whereν = η/ρ is the kinematic viscosity of
the fluid) near the walls. In order to make a plane wave approximation reasonable we should have thin
viscous boundary layers:δA/d ≪ 1. Hence the frequency range in which a plane wave approximation
is valid in a pipe is given by:

2ν

πd2
≪ f <

c0

2d
.

For air ν = 1.5 × 10−5 m2/s while for water a typical value isν = 10−6 m2/s. Hence we see that
a plane wave approximation will in air be valid over the threedecades of the audio range for a pipe
with a diameterd = O(10−2 m). (Check what happens for larger pipes.) This implies thatsuch an
approximation should be interesting when studying pulsations in pipe systems, musical acoustics,
speech production, etc.

We therefore focus our attention in this chapter onthe one-dimensional approximation of duct acous-
tics. For simplicity we will also assume that any mean flowu0 = u0(x) is also one dimensional. We
will consider simple models for the boundary conditions. Wewill assume that the side walls are rigid.
This implies that there is no transmission of sound through these walls. This is a drastic assumption
which excludes any application of our theory to the prediction of environmental noise induced by
pipe flows. In such cases the transmission of the sound from the internal flow to the environment is a
crucial factor. A large amplitude in the pipe may be harmlessif the acoustic energy stays inside the
pipe! Extensive treatment of this transmission problem is given by Norton [160] and Reethof [187].
In general the transmission of sound through elastic structures is described in detail by Cremer and
Heckl [36], and Junger and Feit [100]. We further ignore thiscrucial problem.

In principle the approximation we will use is limited to pipes with uniform cross sectionsA or, as we
will see in section 8.4, to pipes with slowly varying cross sections (dA/dx ≪

√
A ≪ λ). The most

interesting applications of our approximation will concern sound generated in compact regions as a
result of sudden changes in cross section or localized fluid injection. As we consider low frequencies
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( f < c0/2d) a region with a length of the order of the pipe widthd will be by definition compact.
We will treat these regions separately, taking possible three dimensional effects into account. The
(inner-) solution in the compact region is approximated by that of an incompressible flow or a region
of uniform pressure1.

The boundary conditions for this compact region are relatedto the plane wave regions by means of
integral conservation laws (Appendix A). In this way we willconsider a large variety of phenomena
(temperature discontinuities, jumps in cross sections, multiple junctions, air bubbles, turbulence...).
In the present chapter we will assume an infinitely long or semi-infinite pipe. This is a pipe which
is so long that as a result of friction the waves travelling towards the pipe end do not induce signif-
icant reflections. This will in fact exclude the accumulation of acoustic energy and phenomena like
resonance. This effect is discussed in the next chapter.

A consequence of this assumption is that the acoustic field will not have a large amplitude and that
we can usually neglect the influence of the acoustic field on a source. The flow is calculated locally
with our previously discussed compact region approximation ignoring any acoustical feedback. This
excludes fascinating effects such as whistling. These effects will be discussed in chapter 5.

If the end of the pipe is part of the problem, we will include this end by a linear boundary condition of
impedance type. The acoustic impedance is a general linear relation in the frequency domain between
velocity and pressure,i.e. a convolution product in the time domain (section 3.2). Since pressure
cannot depend on the future of the velocity (orvice versa) the discussion of such a linear boundary
condition involves the concept of causality (section 3.2).

We will show how the Green’s function formalism can be used toobtain information on aero-
acoustic sound generation by turbulence and to estimate thescattering of sound by a temperature
non-uniformity. These problems will be reconsidered laterfor free field conditions in chapter 6. It will
then be interesting to see how strong the effect of the confinement is by a comparison of the results
obtained in this chapter and chapter 5 with those obtained inchapter 6.

Convective effects on the wave propagation will be discussed in chapter 9. We restrict ourselves now
to very low mean flow Mach numbers outside the source regions.

4.2 Basic equations and method of characteristics

4.2.1 The wave equation

We consider a one-dimensional flow in a pipe with uniform cross section. If we neglect friction the
conservation laws of mass and momentum are for a one dimensional flow given by:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= ∂(ρβ)

∂t
(4.1a)

ρ
(∂u

∂t
+ u

∂u

∂x

)
+ ∂p

∂x
= fx (4.1b)

whereρβ corresponds to an external mass injection in the flow andfx is an external force per unit
volume.

1For example, the air density fluctuations in an oscillating acoustically compact air bubble in water cannot be neglected,
but we can assume that they are uniform within the bubble.
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We assume now that the field consists of a uniform state (ρ0, p0,u0), plus a perturbation (ρ ′, p′,u′)
small enough to allow linearization:

ρ = ρ0 + ρ,′ (4.2a)

p = p0 + p′, (4.2b)

u = u0 + u′. (4.2c)

∂β/∂t and fx, being the cause of the perturbation, must therefore by definition be small. We substitute
(4.2a–4.2c) in (4.1a) and (4.1b). Neglecting second and higher order terms we obtain the linearized
equations:

∂ρ ′

∂t
+ u0

∂ρ ′

∂x
+ ρ0

∂u′

∂x
= ρ0

∂β

∂t
(4.3a)

ρ0
∂u′

∂t
+ ρ0u0

∂u′

∂x
+ ∂p′

∂x
= fx (4.3b)

We can eliminateρ ′ by using the constitutive equation:

p′ = c2
0ρ

′ (4.4)

which implies that we assume a homentropic flow.

A one-dimensional wave equation is obtained by subtractingthe divergence of the momentum con-
servation law (4.3b) from the convected time derivative(∂t + u0∂x) of mass conservation law (4.3a)
(to eliminateu′):

( ∂
∂t

+ u0
∂

∂x

)2
p′ − c2

0
∂2 p′

∂x2
= c2

0

(
ρ0
∂2β

∂t2
− ∂ fx

∂x

)
. (4.5)

4.2.2 Characteristics

As an alternative we now show the wave equation in characteristic form. This allows a simple geo-
metrical interpretation of the solution of initial condition and boundary condition problems with the
help of a so-called(x, t) diagram. In acoustics this procedure is just equivalent with other procedures.
However, when considering high amplitude wave propagation(non-linear acoustics or gas dynam-
ics) the method of characteristic will still allow an analytical solution to many interesting problems
[231, 113, 168]. Also the characteristics play a crucial rôle in numerical solutions as they determine
optimal discretization schemes, and in particular their conditions of stability.

Using the constitutive equation

∂p

∂t
+ u

∂p

∂x
= c2

(∂ρ
∂t

+ u
∂ρ

∂x

)

we can write the mass conservation law (4.1a) as:

1

ρc

(∂p

∂t
+ u

∂p

∂x

)
+ c

∂u

∂x
= c

ρ

∂(ρβ)

∂t

by addition, respectively subtraction, of the momentum conservation law (4.1b) divided byρ, we find
the non-linear wave equation in characteristic form:

( ∂
∂t

+ (u ± c)
∂

∂x

)(
u ±

∫
dp

ρc

)
= fx

ρ
± c

ρ

∂(ρβ)

∂t
.
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In the absence of source terms this simply states that along the characteristicsc± the Riemann invariant
Ŵ± is conserved:

Ŵ+ = u′ +
∫

dp

ρc
= constant alongc+ =

{
(x, t)

∣∣∣ dx

dt
= u + c

}
(4.6a)

Ŵ− = u′ −
∫

dp

ρc
= constant alongc− =

{
(x, t)

∣∣∣ dx

dt
= u − c

}
(4.6b)

In the presence of source terms we have:

Ŵ± − Ŵ±
0 =

∫

c±

(
ρ0c

2
0
∂β

∂t
± c0 fx

)
dt (4.7)

where the integration is along the respective characteristic. For an ideal gas with constant specific heat
we find by using the fact that the flow is isentropic:

∫
dp

ρc
= 2c

γ − 1
.

In linear approximation in the absence of sources we have

Ŵ± = u′ ± p′

ρ0c0
along the lines defined byc± : dx

dt
= u0 ± c0.

4.2.3 Linear behaviour

In the absence of source terms (the homogeneous problem) we can write the linear perturbationp′ as
the sum of two wavesF andG travelling in opposite directions (along thec+ andc− characteristics):

p′ = F (x − (c0 + u0)t)+ G(x + (c0 − u0)t), (4.8a)

u′ = 1

ρ0c0

(
F (x − (c0 + u0)t)− G(x + (c0 − u0)t)

)
. (4.8b)

This solution can be readily verified by substitution into the homogeneous wave equation. The func-
tionsF andG are determined by the initial and boundary conditions. As anexample we consider two
simple problems for the particular case of a quiescent fluidu0 = 0.

Let us first consider a semi-infinite pipe closed by a rigid piston moving with a velocityup(t) starting
at t = 0 andx = 0. If up/c0 ≪ 1 we can use an acoustic approximation to solve the problem. Using
the method of characteristics we first observe in a(x, t) diagram (figure 4.1) that there are two regions
for x > 0:

region I below the linex = c0t

and

region II above the linex = c0t .

Region I is a region in which perturbations induced by the movement of the piston cannot be present.
The characteristicc+

1 : x = c0t corresponds to the path of the first disturbance generated att = 0
by the starting piston. Hence the fluid in region I is undisturbed and we can write by considering ac−

characteristic (c−
1 ) leaving this region:

p′ − ρ0c0u′ = 0. (4.9)
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xp(te)

te

xp(t)

(x, t)

c−
1

c−
2

c+
1

c+
2

I

II

x✲

t

✻

Figure 4.1 Solution by means of characteristics.

Thisc−
1 characteristic will meet the piston pathxp(t) =

∫ t
0 updt ′ where we have:

u′ = up (4.10a)

because we assume the fluid to stick to the piston (up ≪ c0). Hence from (4.9) and (4.10a) we have
the pressure at the piston for any time:

p′ = ρ0c0up. (4.10b)

Now starting from a pointxp(t) on the piston, we can draw ac+ characteristic (c+
2 ) along which we

have:

p′ + ρ0c0u′ = (p′ + ρ0c0u′)p = 2ρ0c0up(te) (4.11)

wherete is the retarded or emission time, implicitly given by

te = t − x − xp(te)

c0
. (4.12)

This is the time at which the disturbance travelling alongc+
2 and reaching an observer at(x, t) has

been generated by the piston. At any point(x, t) alongc+
2 we can find ac−

2 characteristic originating
from the undisturbed region for which (4.9) is valid. Combining (4.9) and (4.11) we see that alongc+

2
we have:

u′ = up(te) (4.13a)

p′ = ρ0c0up(te). (4.13b)

We could have obtained this solution directly simply by using (4.8a,4.8b), the general solution of the
homogeneous equation. Because the tube is semi-infinite andthe piston is the only source of sound,
we have only waves travelling in the positivex direction so that (withu0 = 0):

p′ = F (x − c0t) (4.14a)

u′ = F (x − c0t)/ρ0c0. (4.14b)
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x ✲

Figure 4.2 (x, t) diagram for the initial value problem.

Using the boundary conditionu′ = up at the pistonx = xp we find the retarded (or emission) time
equation (4.12) and so the solution (4.13a,4.13b).

We now consider an initial value problem in a semi-infinite pipe. Suppose that the pipe is closed at
x = 0 by a fixed rigid wall (u′(x = 0) = 0) and that in the region 0< x < L the fluid is undisturbed
while for x > L there is originally a uniform disturbance(p′

0,u
′
0) of the uniform quiescent fluid

state valid forx > 0 (p′
0,u

′
0 = 0) (figure 4.2). We can easily delimit the uniform regions I and II in

which the initial state will prevail by drawing thec+
1 andc−

1 characteristics emanating from the point
(x, t) = (L ,0).

The state in region IV at the closed pipe end is the next easiest one to determine. We draw the charac-
teristicc−

2 emanating from region II along which we have:

c−
2 : p′ − ρ0c0u′ = p′

0 − ρ0c0u′
0. (4.15)

At the closed pipe endu′ = 0 so that fort > L/c0:

p′
IV(x = 0) = p′

0 − ρ0c0u′
0 (4.16)

In region III we obtain the solution by considering the intersection of the wavesc+
1 andc−

1 emanating
from regions I and II respectively:

c+
1 : p′ + ρ0c0u′ = 0 (4.17a)

c−
1 : p′ − ρ0c0u′ = p′

0 − ρ0c0u′
0. (4.17b)

Hence:

p′
III = 1

2(p
′
0 − ρ0c0u′

0) (4.18a)

u′
III = −1

2(p
′
0 − ρ0c0u′

0)/ρ0c0. (4.18b)

Finally for any point in the region IV above the linex = c0(t − L/c0) we have:

c+
3 : p′ + ρ0c0u′ = p′

0 − ρ0c0u′
0 (4.19a)

c−
3 : p′ − ρ0c0u′ = p′

0 − ρ0c0u′
0 (4.19b)
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so that we have:

u′
IV = 0 (4.20a)

p′
IV = p′

0 − ρ0c0u′
0 (4.20b)

as we already found at the closed pipe end (x = 0). Of course we could have solved this problem
without an(x, t) diagram, but this requires quite an intellectual effort.

From the previous two examples simple rules are obtained to use an(x, t) diagram in combination
with the method of characteristics:

a) Indicate on thex andt axis the initial and boundary conditions.

b) Draw the characteristics delimiting the undisturbed regions in which the initial conditions pre-
vail.

c) Consider reflection of these boundary characteristics atboundary conditions. (Contact surface
delimiting regions of different uniform statep0, ρ0, c0, ... will be discussed in section 4.4.) This
yields a further subdivision of the(x, t) plane in uniform regions.

d) Determine the state at the boundaries at the moment the first message from the initial conditions
arrives.

e) Determine the state in regions where two characteristicsof opposite familiesc+ andc− ema-
nating from regions where the solution is known meet.

While for initial value problems the method of characteristics is most efficient, we will use Fourier
analysis when we consider boundary condition problems. Fora steady harmonic perturbation equation
(4.8a,4.8b) becomes:

p′ = p+ eiωt−ikx +p− eiωt+ikx (4.21a)

u′ = 1

ρ0c0
(p+ eiωt−ikx −p− eiωt+ikx). (4.21b)

wherep± are amplitudes which are functions ofω, andk is the wave number(k = ω/c0).

4.2.4 Non-linear simple waves and shock waves

A general solution of the non-linear one dimensional homentropic flow equations can only be obtained
by numerical methods. In the particular case of a wave propagating into a uniform region the solution
is considerably simplified by the fact that the characteristics emanating from the uniform region all
carry a uniform message. We will show that as a consequence ofthis the other characteristics in this
wave are straight lines in the (x, t)-plane. Such a wave is called a simple wave.

Let us for example consider a wave propagating alongc+-characteristics which meetsc−-waves em-
anating from a uniform region. The message carried by thec−-characteristics is:

Ŵ− = u −
∫

dp

ρc
= Ŵ−

0 for all c−. (4.22)
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If we now consider ac+-characteristic in the simple wave, we have in addition thatŴ+ is equal to
another constant, specific to that particularc+:

Ŵ+ = u +
∫

dp

ρc
. (4.23)

Addition and subtraction of (4.22) and (4.23) yields, alongthec+, the result

u = 1
2(Ŵ

+ + Ŵ−
0 ), (4.24a)∫

dp

ρc
= 1

2(Ŵ
+ − Ŵ−

0 ). (4.24b)

Hence, the velocityu is constant along thec+ considered. As in addition to the thermodynamic quan-
tity

∫
(dp/ρc) also the entropys is constant along thec+ (because the flow is homentropic), we

conclude that all thermodynamic variables2 are constant along thec+. In particular the speed of sound
c =

√
(∂p/∂ρ)s is constant along ac+ in the simple wave. Therefore, the slope(u + c) of the c+

characteristic is constant, and the characteristic is a straight line in an(x, t)-diagram.

As an example of an application we consider the simple wave generated forx > 0 by a given boundary
condition p(0, t) at x = 0, assuming a uniform quiescent fluid (u0 = 0) with a speed of soundc = c0

for t < 0. The sound speedc(0, t) at x = 0 is calculated by using the equation of state

p

p0
=

( ρ
ρ0

)γ

which implies

c

c0
=

( p

p0

) γ−1
2γ
.

The message from thec−-characteristics implies

u = 2c0

γ − 1

( c

c0
− 1

)
= 2c0

γ − 1

(( p

p0

) γ−1
2γ − 1

)
.

We can now easily construct the simple wave by drawing at eachtime t thec+-characteristic emanat-
ing from x = 0. We see from these equations that a compression∂

∂t p(0, t) > 0 implies an increase
of bothc(0, t) andu(0, t), and of course the opposite for a decompression or expansion. As a result,
characteristics at the peak of a compression wave have a higher speed (u + c) than those just in front
of it. This results into a gradual steepening of the compression wave. This non-linear deformation of
the wave will in the end result into a breakdown of the theory because neighbouringc+-characteristics
in a compression intersect for travelling times larger thants or distances larger thanxs given by

ts = −
[(∂(u + c)

∂x

)
t=0

]−1

, (4.25a)

xs = −t2
s

[(∂(u + c)

∂t

)
x=0

]
. (4.25b)

2For a homogeneous fluid the thermodynamic state is fully determined by two thermodynamic variables.
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For weak compressions we find the approximation for an ideal gas with constantγ :

xs ≃ c0ts = 2γ p0c0

γ + 1

[(∂p

∂t

)
x=0

]−1

. (4.26)

For t > ts or x > xs the solution found by integration of the differential equations becomes multiple
valued and loses its physical meaning.

The approximation on which the equations are based will already fail before this occurs because
the wave steepening involves large gradients so that heat conduction and friction cannot be ignored
anymore. This limits the process of wave deformation. For large pressure differences across the wave
the final gradients are so large that the wave thickness is only a few times the molecular mean free path,
so that a continuum theory fails. The wave structure is in thecontinuum approximation a discontinuity
with jump conditions determined by integral conservation laws. We call this a shock wave. Apart from
discontinuous, the solution is also dissipative, as there is production of entropy in the shock wave.

If the wave is initiated by a harmonic perturbationp′(0, t) = p̂ cos(ωt), the shock formation distance
corresponding to the largest value of∂

∂t p′ is given by

xsω

c0
= 2γ p0

(γ + 1) p̂
.
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Figure 4.3 The pressure signal measured at the exit of
the horn for three playing levels: piano (p),
mezzo-forte (mf), and fortissimo (ff).

In a pipe segment, closed on both sides by a rigid wall,
a wave travels easily hundreds of wave lengths before it
is attenuated significantly by friction. Therefore, even
at apparently modest amplitudes ofp̂/p0 = O(10−2)

shock waves can appear in a closed tube driven by a
piston at its resonance frequency. Recent papers dis-
cussing such effects are the review of Crighton ([42])
and the work of Ockendonet al. ([163]). When the
pipe segment is open at one end, the wave is inverted
each time it reflects at the open end. The non-linear
wave distortion due to the wave propagation during
half an oscillation period is compensated, at least in
first approximation, in the following half period. Under
such conditions non-linear effects due to flow separa-
tion at the open pipe termination (Disselhorst & Van
Wijngaarden [49]) or even turbulence in the acoustical
boundary layer ([135], [240], [3], [55]) can appear before non-linear wave distortion becomes domi-
nant.

However, when the pipe is driven by a strongly non-harmonic pressure signalp′(0, t), the wave steep-
ening may lead to a shock wave formation before the open end has been reached. This may, for
example, occur in a trombone where the pressure at the exit ofthe horn shows very sharp peaks, as
shown in figure (4.3). The increase of the wave distortion with the amplitude explains in such a mu-
sical instrument the increase of brightness (the higher harmonics) of the sound with increasing sound
level (Hirschberg [77]). In open-air loudspeaker horns wave propagate in non-linear way. In mufflers
of combustion engines shock waves are also common.
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When the non-linear deformation is small, the generation ofthe first harmonicp̂1 at 2ω0 by a signal
p̂, originally harmonic with frequencyω0, is given by [175]:

p̂1

p̂
= x

2xs
(4.27)

4.3 Source terms

While fx is a source term in (4.1b) which can be realized by non-uniform gravitational or electro-
magnetic forces, the source term∂2(ρβ)/∂t2 in (4.1a) does not correspond to the creation of mass
(because we consider non-relativistic conditions). Henceif we introduce a source term∂2(ρβ)/∂t2

this term will be a representation of a complex process whichwe include in the 1-D inviscid flow
model as a source term. For example the effect of fluid injection through a porous side wall in the pipe
can be considered by assuming a source term in a uniformly filled pipe with rigid impermeable walls.

In the case offx we may also find useful to summarize the effect of a complex flowsuch as the
flow around a ventilation fan by assuming a localized momentum source in a one dimensional model.
This is called an actuator disk model. Of course, this kind ofrepresentation of a complex process
by a simple source is only possible if we can find a model to calculate this source. This is only
attractive if a simplified model or an order of magnitude estimate can be used. When the source region
is compact we will be able to find such simple relationships between a simplified local flow model
and the corresponding 1-D sources by applying integral conservation laws over the source region
and neglecting variations in emission time over the source region. The general treatment of the aero-
acoustic sources has already been given in section 2.6. We focus here on some additional features
which we will use in our applications of the theory.

In a compact region of lengthL and fixed volumeV enclosed by a surfaceS, we will use the conser-
vation laws for mass and momentum in integral form (App. A):

d

dt

∫∫∫

V

ρ dx +
∫∫

S

ρv ·n dσ = 0 (4.28a)

d

dt

∫∫∫

V

ρv dx +
∫∫

S

(P + ρvv)·n dσ =
∫∫∫

V

f dx (4.28b)

whereP is the stress tensor (Pi j ).

Within the volumeV we describe the flow here in full three dimensional detail, so(4.28a) has no
source term. However, the source term∂2(ρβ)/∂t2 in the one dimensional representation of the mass
conservation law is supposed to include the effect of the volume integral(d/dt)

∫∫∫
ρ dx. In order

to understand this we compare the actual source region with a1-dimensional representation of this
source region (figure 4.4). Integration of (4.1a) over the source region yields for a uniform pipe cross
section:

∫ L

0

∂ρ

∂t
dx + (ρu)2 − (ρu)1 =

∫ L

0

∂(ρβ)

∂t
dx. (4.29)

If we assumeL to be small compared to the acoustic wave length (compact) and the source term
∂2(ρβ)/∂t2 to be uniform we can write in linearized form :

∂β

∂t
= 1u′δ(x − y) (4.30)
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Figure 4.4 One dimensional representation of source region.

for a small source region aroundx = y. The value of1u′ = (u′
2 − u′

1) to be used in (4.30) is found
by application of (4.28a) to the actual situation. If we assume the flow to be uniform at the planes 1
and 2 of cross-sectionA, where it enters and leaves the volumeV , we obtain:

A[(ρu)2 − (ρu)1] = − d

dt

∫∫∫

V

ρ dx + ϕex (4.31)

whereϕex is the externally injected mass flux intoV through the side walls. For identical fluids at both
sides and in linearized approximation for a compact source region we have:

Aρ01u′ = − d

dt

∫∫∫

V

ρ ′ dx + ϕex. (4.32)

Since typical wavelengths are much larger than the compact source region, density and pressure gra-
dients are negligible and we can replace the volume integralby the averaged value. We can write for
a homentropic flow

1u′ = − V

Aρ0c2
0

dp′

dt
+ ϕex

Aρ0
.

In a similar way, if we can neglect the volume contribution(d/dt)
∫∫∫

ρv dx to the integral conserva-
tion law, we obtain in linear approximation (neglectingρ0u′

2
2 andρ0u′

1
2):

fx = 1p′δ(x − y). (4.33)

This source term for the 1-dimensional wave equation can be used as a representation of a complex
flow such as that around a ventilation fan.

As an example of a sound source we consider now the effect of the convection of a small fluid particle
with a densityρ and speed of soundc (different fromρ0 andc0) passing through a sudden change in
pipe cross section in which we assume a steady isentropic andsubsonic flowu0(x) (figure 4.5). We
will first consider the problem by using the linearized form of the integral conservation laws for small
differences in density and speed of sound ((ρ − ρ0)/ρ0 ≪ 1 and(c − c0)/c0 ≪ 1). A more formal
discussion of this effect is given by Morfey in [141].
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Figure 4.5 Particle convected with the main flowu0(x) through a nozzle.

If the volumeVp of the fluid particle is much smaller than the nozzle volumeV and if the properties
of the fluid particle do not differ much from that of the rest ofthe fluid, we can assume that the particle
is convected with the undisturbed steady flow velocityu0(x). As the particle is small the pressure over
the particle will be uniform and in first approximation equalto the main flow pressurep0(x). p0(x) is
given by Bernoulli’s equation:

p0(x)+ 1
2ρ0u

2
0(x) = constant. (4.34)

The variation in pressurep0(x) will induce a volume variation of the particle, additional to that of the
mean flow, which is related to the variation in the fluid compressibility

K = 1

ρ

(∂ρ
∂p

)
S

= 1

ρc2
(4.35)

by:

A1u′ = −(K − K0)Vp
d

dt
p0(xp(t)) (4.36)

which implies a source term:

∂β

∂t
= −K − K0

A
Vp

d

dt
p0(xp(t))δ(x − y) (4.37)

where:

up = .
x p= u0(xp). (4.38)

because we assume that the particle is convected with the mean flow velocity u0. Furthermore the
particle will exert an additional force on the fluid due to thedensity difference (ρ− ρ0) which implies
a force source term:

fx = 1p′δ(x − y) = −ρ − ρ0

A
Vp

Dup

Dt
δ(x − y) = −ρ − ρ0

A
Vpu0

du0

dx
δ(x − y). (4.39)

This force is due to the difference in inertia between the particle and its environment. Note that for an
ideal gas the compressibilityK is given by:

K = 1

γ p
. (4.40)

Hence for a small particle in this linear approximation the volume source term (4.37) is due to a
difference inγ . This term vanishes if we consider the convection of a hot gasparticle (not chemically



66 4 One dimensional acoustics

different from the environment) which we call an entropy spot. In that case sound production will be
due to the difference of inertia between the entropy spot andthe surrounding fluid. Howe [81] refers
to this as acoustical “Bremsstrahlung”.

In a similar way we can describe the effect of a slow variationof the tube cross section areaA on
sound waves of low frequency (i.e. d

dx A ≪
√

A ≪ λ). With some care we can derive a suitable one-
dimensional approximation, called Webster’s horn equation, to describe the wave propagation (see
section 8.5). To leading order the momentum conservation law is not affected by the cross section
variation. The mass conservation law, however, becomes:

∂ρ ′

∂t
+ ρ0

A

∂Au′

∂x
= 0 (4.41)

This can be interpreted as the linearized continuity equation (4.3a) with a volume source term

∂β

∂t
= u′

A

∂A

∂x
(4.42)

4.4 Reflection at discontinuities and abrupt changes

The procedure described in the previous section to incorporate sources in a compact region into a one
dimensional model can also be applied to determine jump conditions over rapid changes in a pipe. It
should be noted that a mathematically more sound derivation, allowing also higher order corrections,
is obtained by using the method of Matched Asymptotic Expansions. This will be worked out in more
detail in chapter 8.

4.4.1 Jump in characteristic impedanceρc

x

ρ1c1 ρ2c2

x=y
1 2

Figure 4.6 Jump in acoustic impedance.

We first consider an abrupt change at aboutx = y in speed of soundc and densityρ between two
media, 1 and 2, in a hard-walled pipe with uniform cross section of sizeL2 (figure 4.6). If the waves
are exactly plane and the interface is exactly straight, thejump conditions across the interface (contin-
uous velocity and pressure) may follow from continuity of streamlines and normal stress. In general,
however, it is more subtle. As an illustrative example, we will give the derivation here in detail.

Assume that the typical frequenciesω are low such that the Helmholtz numbersε1 = ωL/c1 and
ε2 = ωL/c2 are small. In that case the acoustic field is 3D only in the immediate neighbourhood of
the jump. At about a diameterL away it is practically plane and only dependent onx (see page 154:
all modes are evanescent except for the plane wave). Define�1 equal to the volume between the (not
necessarily straight and steady) interfaceS(t) nearx = y and the fixed planex = y− = y − L.
Similarly, we define�2 the volume betweenSandx = y+ = y + L.
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Integrate the mass conservation equations in the form of (1.23) over�1 and�2 to obtain
∫∫∫

�1

[
1

ρ1

dρ1

dt
+ ∇·v1

]
dx +

∫∫∫

�2

[
1

ρ2

dρ2

dt
+ ∇·v2

]
dx = 0

After applying Gauss’ divergence theorem
∫∫∫

�1

1

ρ1

dρ1

dt
dx −

∫∫

x=y−
u1 dA +

∫∫

S
(v1·n1)dA

+
∫∫∫

�2

1

ρ2

dρ2

dt
dx +

∫∫

x=y+
u2 dA +

∫∫

S
(v2·n2)dA = 0

and using the fact that at interfaceS the normal velocity components are continuous and so(v1·n1) =
−(v2·n2), we obtain

∫∫∫

�1

1

ρ1

dρ1

dt
dx − u1(y−)L

2 +
∫∫∫

�2

1

ρ2

dρ2

dt
dx + u2(y+)L

2 = 0

After linearisation and estimating the volume integrals∼ L3ρt/ρ ∼ L3ωρ ′/ρ0 ∼ L3ωv ′/c0 = L2εv ′,
we find that

u′
2(y+)− u′

1(y−) = O(ε1v
′
1, ε2v

′
2)

In a similar way we integrate the axial momentum equation
∫∫∫

�1

[
ρ1

du1

dt
+ ∂p1

∂x

]
dx +

∫∫∫

�2

[
ρ2

du2

dt
+ ∂p2

∂x

]
dx = 0.

After integrating tox
∫∫∫

�1

ρ1
du1

dt
dx−

∫∫

x=y−
p1 dA+

∫∫

S
p1 dA+

∫∫∫

�2

ρ2
du2

dt
dx+

∫∫

x=y+
p2 dA−

∫∫

S
p2 dA = 0.

and using the fact that atS the pressure is continuous, we find
∫∫∫

�1

ρ1
du1

dt
dx − p1(y−)L

2 +
∫∫∫

�2

ρ2
du2

dt
dx + p2(y+)L

2 = 0.

Linearisation and estimating the volume integrals∼ L3ρut ∼ L3ωρ0u′ ∼ L3ωρ0c0u′/c0 ∼ L3ωp′/c0 =
L2εp′ lead to

p′
2(y+)− p′

1(y−) = O(ε1 p′
1, ε2 p′

2)

Altogether we have thus approximately the following jump conditions atx = y

1u′ = u′
2 − u′

1 = 0, (4.43a)

1p′ = p′
2 − p′

1 = 0. (4.43b)

By using the general solution (4.8a,4.8b) of the homogeneous wave equation, we have atx = y for
the jump conditions in the pressure and velocity, respectively:

F1(y − c1t)+ G1(y + c1t) = F2(y − c2t)+ G2(y + c2t), (4.44a)

F1(y − c1t)− G1(y + c1t)

ρ1c1
= F2(y − c2t)− G2(y + c2t)

ρ2c2
. (4.44b)
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If, for example, we have a source atx < y generating an incident waveF1, in a tube of infinite length
so thatG2 = 0, we obtain

G1(x + c1t) = RF1
(
2y − (x + c1t)

)
, (4.45a)

F2(x − c2t) = TF1
(
(1 − c1

c2
)y + c1

c2
(x − c2t)

)
, (4.45b)

where R = ρ2c2 − ρ1c1

ρ2c2 + ρ1c1
, T = 2ρ2c2

ρ2c2 + ρ1c1
.

The factorR betweenG1 andF1 is called the reflection coefficient and the factorT betweenF2 andF1

the transmission coefficient. We observe that ifρ1c1 = ρ2c2 the acoustic wave is not reflected at the
contact discontinuity. Inspection of (4.44a,4.44b) forρ1c1 = ρ2c2 also shows that the only solution is
F1 = F2 andG1 = G2. This corresponds to results obtained already in section 3.2 when considering
harmonic waves.

4.4.2 Smooth change in pipe cross section

We now consider a compact transition in pipe cross sectionalarea fromA1 to A2. If the flow is

A1 A2

1
2

L

Figure 4.7 Abrupt cross sectional area change.

homentropic and there is no flow separation (vorticity is zero) the pressure difference1p′ = p′
2 − p′

1
across the discontinuity can be calculated by using the incompressible unsteady Bernoulli equation
(1.32b):

1p′ = 1
2ρ0(u

′
1

2 − u′
2

2)− ρ0
∂
∂t1ϕ, (4.46)

where1ϕ = ϕ2 − ϕ1 is the potential difference. In linear approximation:

1p′ ≃ −ρ0
∂
∂t1ϕ. (4.47)

For a compact smooth change in cross section as in figure (4.7)we have continuity of fluxA1u′
1 =

A(x)u′(x), while the potential difference can be estimated as1ϕ =
∫ 2

1 u′ dx ≃ u′
1

∫ 2
1 (A1/A(x))dx ∼

u′
1L. The pressure difference1p′ is of the order ofρ0ωu′

1L, which is negligible whenLω/c0 ≪ 1. We
then have a pressure uniform over the entire region. Note that while this is a very crude approximation,
this is a stronger result than just a continuity condition (see section 4.4.4). This condition1p′ = 0
can be combined with the linearized mass conservation law inthe low frequency approximation

ρ0A1u′
1 = ρ0A2u′

2 (4.48)

to calculate the reflection at a pipe discontinuity.
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4.4.3 Orifice and high amplitude behaviour

Instead of a smooth variation of the pipe areaA we consider an orifice placed in the pipe with an
opening areaAd and a thicknessL (figure 4.8). We start with the problem of acoustic wave propagation
through a stagnant fluid (u0 = 0). In principle, if we use the approximations (4.47) and (4.48) and if we
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Figure 4.8 Orifice.

neglect the potential jump1ϕ, we see that the orifice will be completely “transparent” to the acoustic
waves. However, ifAd ≪ A we find experimentally a significant effect of such an orifice which is
due to the inertia of the air in the opening. Assuming a uniform velocity and an incompressible flow
without friction we have from (4.47):

1p′ ≃ −ρ0
A

Ad
L
∂u′

∂t
. (4.49)

whereu′ is the acoustic velocity in the pipe. We could also simply have obtained this result by con-
sidering the pressure difference1p′ necessary to accelerate the mass of fluid (ρ0Ad L) in the orifice
and noticing that the particle velocity in the orifice is given by:

u′
d = A

Ad
u′. (4.50)

In practice (4.49) yields a lower bound for the pressure dropacross the orifice because we neglected
the inertia of the air in the region outside the orifice. This effect can be taken into account by intro-
ducing an “end correction”δ on both sides:

Leff = L + 2δ (4.51)

whereδ appears to be of the order of(Ad/π)
1/2. Typically (8/3π)(Ad/π)

1/2 for a circular orifice and
a larger value for a slit [91]. This explains why a thin orifice(L → 0) also affects the propagation of
acoustic waves in a pipe. For a circular orifice of radiusa in a thin plate we haveLeff = πa/2 (see
[175]).

If we consider a narrow orifice the local velocityu′
d in the orifice may become quite large. When the

acoustic particle displacementu′
d/ω becomes comparable to the radius of curvature of the edges atthe

entrance and the exit of the orifice non-linear effects and friction will result into acoustically induced
vortex shedding [94, 95, 49, 44]. When the fluid particle displacement becomes comparable to the
diameter of the orifice(Ad/π)

1/2u′
d/ω = O(1) the vortex shedding can be described in terms of the

formation of a free jet, by assuming that there is no pressuredifference across the boundaries of the
jet. The shear layers enclosing the jet are not capable of sustaining a pressure difference. Furthermore,
if Ad/A ≪ 1 we assume that the kinetic energy in the flow1

2ρu′
d

2 is lost upon deceleration of the
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jet by turbulent mixing with the air in the pipe. This impliesthat in addition to the linear terms in
Bernoulli we should add the non-linear effects:

1p′ = −ρ0
A

Ad
L
∂u′

∂t
− 1

2ρ
( A

Ad
u′

)2
. (4.52)

A typical feature of this effect is that the pressure1p′ has now a component1
2ρu′

d
2 which is in phase

with the acoustic velocity, and therefore will involve (acoustic) energy losses that were absent in the
situations discussed until now. These losses are due to the fact that the kinetic energy in the jet is
dissipated by turbulence.

The model proposed here appears quite reasonable but in manycases the surface area of the jet is
smaller thanAd which implies additional losses[44]. This effect can be as much as a factor 2. The jet
contraction by a factor 2 corresponds to the so called vena contracta at an unflanged pipe entrance.
For a thin orifice with sharp edges the jet cross section is a factor π

π+2 narrower than the orifice. When
the edges are rounded off the contraction effect disappearsrapidly.

It is interesting to consider now how a mean flow affects the acoustic properties of an orifice. We
assume that the mean flow velocityu0 in the pipe is so small compared to the speed of soundc0

that we can neglect all convective effects on the wave propagation (u0/c0 ≪ 1). As the orifice has
a small aperture(Ad/A), the mean flow velocity in the orifice is significant. We assumea stationary
frictionless and incompressible flow. The assumption of a frictionless flow fails, however, to describe
the flow at the exit of the orifice where as a result of friction the flow separates from the wall and a
free jet of surface areaAd is formed.

Assuming further no pressure difference between the jet andits environment we can write for the total
pressure difference1 p0:

1p0 = −1
2ρ

( A

Ad
u0

)2
. (4.53)

For acoustic velocity fluctuationsu′ we have, neglecting the higher order terms inu′:

1p′ = −ρ0
A

Ad
L
∂u′

∂t
− ρ0

( A

Ad

)2
u0u′. (4.54)

We see from this equation that even in the linear approximation energy is transferred (ρ0(A/Ad)
2u0u′2)

from the acoustic field to the flow (where it is dissipated by turbulence). This effect is of course a
result of the forceρ0(ω×v) in Howe’s analogy (section 2.6). The vorticity responsiblefor this is
located in the shear layer that confines the free jet. We will describe the formation of a free jet in
section 5.1. The consequence of this effect is that an orificeplaced in a tube with a mean flow is a
very efficient damping mechanism. This device is indeed useddownstream of a compressor in order
to avoid the low frequency pulsations that may be induced by the compressor into the pipe system. As
explained by Bechert [10], for any orifice placed at the end ofa pipe one can find a Mach number at
which the reflection coefficient for long acoustic waves vanishes. Such an orifice acts thus an anechoic
termination for low frequencies!

A beautiful property of this damping mechanism is that it is not frequency dependent as long as
the frequency is low enough. This is not the case with the effect of friction and heat transfer which
are strongly frequency dependent (equation 3.13), in a way that at low frequencies friction is quite
inefficient.
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Figure 4.9 Vortex shedding at an orifice.

It is interesting, however, to note that under special flow conditions an orifice can produce sound as a
result of vortex shedding. This occurs in particular if the orifice has sharp edges at the entrance where
the vortices are shed [6] (figure 4.9a) or when the edges are rounded at the downstream side [251, 76]
(figure 4.9b).

The frequency of the sound produced by the vortex shedding issuch that the period of oscillation
roughly corresponds to the travel time of a vortex through the orifice (a Strouhal numberSr =
f L/(Au0/Ad) = O(1)). When this sound source couples with a resonator (see next chapter) large
amplitudes may be generated. This is an explanation for human whistling [251, 219]. Flow instabil-
ities of this type also occur around pipe arrays such as used in heat exchangers [18]. Whistling cor-
responds to self-sustained flow instabilities. In the case of an externally imposed acoustic wave, the
periodic vortex shedding is a non-linear phenomenon which will generate higher harmonics. Hence,
suppressing low frequency-pulsations (being mechanically dangerous) with an orifice may be paid by
the generation of high frequency noise which is an environmental problem.

A generalization of the procedure which we introduced intuitively for the orifice can be obtained for
an arbitrary compact discontinuity in a pipe system. The acoustical effect of this discontinuity can
be represented in an acoustical model by a pressure discontinuity (1p)source which is calculated by
subtracting from the actual pressure difference1p the pressure difference(1p)pot, corresponding to
a potential flow with the same velocity boundary conditions:

(1p)source= 1p − (1p)pot.

The actual pressure difference1p can be measured or calculated as a function of the main flow ve-
locity u0 and the acoustical velocity fluctuationu′. The potential flow difference(1p)pot is calculated.
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This procedure is in particular powerful when we can use a quasi-stationary flow model. We then
use the incompressible continuity equation and Bernoulli:Su= constant andp + 1

2ρ0u2 = constant,
to calculate(1p)pot, while1p is measured in the form1p = CD

1
2ρu2 as a function of various pa-

rameters. When convective effects are taken into account inthe wave propagation, it appears to be
important to define the aeroacoustic source in terms of a discontinuity (1B)sourcein the total enthalpy
rather than in the pressure.

4.4.4 Multiple junction

In the previous sections we used the equation of Bernoulli toderive pressure jump conditions for a
discontinuous change in pipe diameter. We could also have obtained a similar expression by consid-
ering the law of energy conservation. The use of Bernoulli isa stronger procedure. To illustrate this
statement we consider the reflection of waves at a multiple junction. As an example consider aT
shaped junction between three pipes of cross-sectional surface A1, A2 and A3, respectively (figure
4.10).

❄
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✻A3
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Figure 4.10 Multiple junction.

We define along each pipe ax-coordinate with a positive direction outwards from the junction. The
conservation of mass for a compact junction yields:

A1u′
1 + A2u′

2 + A3u′
3 = 0 (4.55)

while from the equation of Bernoulli we find:

p′
1 = p′

2 = p′
3 (4.56)

Note that closed side branches are very popular as reflectorsto prevent the propagation of compressor
induced pulsations. It is interesting to note that flow may also drastically affect the acoustic properties
of a multiple junction and make the use of this device quite dangerous. In particular if we consider
junctions with closed side branches, the shear layer separating the main flow from the stagnant fluid in
the pipe is unstable. Coupling of this instability with a resonant acoustic field may result into pulsation
levels of the order ofp′ ≃ O(ρc0u0) ([25, 108, 254]). Again, the amplitude of these pulsations
depends crucially on the shape of the edges of the junction, in the same way as the shape of the edges
was crucial in the orifice problem. More about this will be explained in the next chapter.

For a T-shaped junction of a main pipe with a closed side branch or a grazing flow along an orifice in
the wall the quasi-steady theory for a main flowu0 indicates that the shear layer can be represented
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by an acoustical pressure discontinuity:(1p)source= −Kρ0u0u′, whereK is unity for a uniform main
flow. For an orifice small compared to the boundary layer thickness of the main flowK is of the order
of 0.7 because of the velocity defect in the boundary layer relative to the main flow velocityu0. This
effect is discussed by Ronneberger [208], Tijdeman [233] and Cummings [45].

4.4.5 Reflection at a small air bubble in a pipe

Air bubbles in the water circuit of the central heating of a house are responsible for a very charac-
teristic, high-frequency sound. As a first step to the understanding of this effect we now consider the
reflection of a harmonic wave on a small air bubble of radiusa (Volume Vp = (4π/3)a3) placed in
a pipe filled with water at a static pressurep0. If the bubble is small compared to the characteristic
acoustic wave length we can assume that the pressurep′

b in the bubble will be uniform. We neglect
surface tension effects and assume that the bubble pressurep′

b is equal to the surrounding water pres-
sure.

In the low frequency limit, when the inertial forces in the flow around the bubble can be neglected, the
pressure induced by a passing acoustic plane wave in the water around the bubble will be practically
uniform:1p′ = 0. The bubble will react quasi-statically to the imposed acoustic pressure variationp′.
Since the air-filled bubble is much more compressible than water, the presence of the bubble results
into a volume source term, giving rise to a jump in acoustic velocity across a control volume including
the bubble:

1u′ ≃ − Vp

Aγ p0

dp′

dt
(4.57)

where we neglected the water compressibility compared to the air compressibility(Kair = 1/γ p0)

and we assume an adiabatic compression (takingγ = 1 would imply an isothermal compression as
we expect for very low frequencies). The reflection coefficient for a waveF1 incident to the bubble
can now be calculated from the jump conditions for1p′ and1u′. AssumingG2 = 0 we find from the
continuity of pressure:

F1 + G1 − F2 = 0 (4.58)

and from (4.57):

F1 − G1 − F2 = ρwcwVp

Aγ p0

d

dt
(F1 + G1). (4.59)

By subtraction of (4.58) from (4.59) we can eliminateF2 and find:

G1 = −ρwcwVp

2Aγ p0

d

dt
(F1 + G1) (4.60)

The inertia of the water around the bubble will dramaticallyinfluence the interaction between the
bubble and acoustic waves at higher frequencies. If we assume that the acoustic wave lengths in both
air and water are very large compared to the bubble radius we still can assume a uniform pressure
in the bubble. This implies also that the bubble will remain spherical. The oscillations of the bubble
radius:

a = a0 + â eiωt (4.61)
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around the equilibrium valuea0 will induce a radial flow of the water around the bubble if we assume
that the bubble is small compared to the pipe diameter. In thelow frequency approximation considered
here, this flow is incompressible. Hence we have for the radial velocity vr :

vr =
(a

r

)2(∂a

∂t

)
≃ iω

(a0

r

)2
â eiωt (4.62)

where we have assumedâ/a0 ≪ 1. The pressure variation in the bubble:

pb = p0 + p̂b eiωt (4.63)

can be related to the incompressible far field (still near thebubble compared to the pipe radius) by
applying the linearized Bernoulli equation:

p + ρw
∂ϕ

∂t
= pb + ρ0

∂ϕb

∂t
. (4.64)

Using (4.62) we can calculate(ϕ − ϕb):

ϕ − ϕb =
∫ ∞

a
vr dr ≃ iωa0â eiωt (4.65)

so that:

p − pb = ρwω
2a0â eiωt . (4.66)

Assuming the air in the bubble to be an ideal gas withpb ∼ ρ
γ
b and neglecting the dissolution of air

in water so thata3ρb = constant, we find:

1

ρb

∂ρb

∂t
= 1

γ pb

∂pb

∂t
= −3

a

∂a

∂t
(4.67)

or in linear approximation:

p̂b

p0
= −3γ

â

a0
. (4.68)

Combining (4.66) with (4.68) and assuming thatp = p0 + p̂′ eiωt we have:

p̂′ = ρwa0â(ω2 − ω2
0) (4.69)

where the resonance frequencyω0 (Minnaert frequency) is defined by:

ω2
0 = 3γ p0

a2
0ρw

. (4.70)

The reflection coefficientR = G1/F1 can now be calculated in a similar way as from (4.58) and (4.59)
with the modified source term1u′ = 4π iωa2

0â A−1 eiωt . Since1p′ = 0, we have:

F1 + G1 − F2 = 0 (4.71a)

and

F1 − G1 − F2 = ρwcw
4π iωa0(F1 + G1)

Aρw(ω2 − ω2
0)

(4.71b)
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or

R = G1

F1
= −

(
1 + A(ω2 − ω2

0)

2π iωcwa0

)−1
. (4.72)

We see that at resonanceω = ω0 the wave is fully reflected by the bubble, and the reflection coefficient
is R = −1. We have of course obtained such a dramatic result because we have neglected all the
dissipation mechanisms which can limit the amplitude of thebubble oscillation. The compressibility
of the water flow around the bubble yields already such a mechanism which limits the amplitude of the
oscillation at the resonance frequencyω0. This is, however, only one of the many amplitude-limiting
mechanisms.

For small bubbles, when the diffusion length for heat transfer into the bubble is comparable to the bub-
ble radius, heat transfer is a significant energy loss [180].This occurs for:a = O((Kair/ωρairCP)

1/2).
For larger bubbles heat transfer is negligible. For smallerbubbles the compression occurs isothermally
and one should putγ = 1 in the theory. However, the change ofγ from 1.4 to 1 does not introduce
damping. It is only in the intermediate range that the heat flux results in a significant rate of vol-
ume change in phase with the acoustic pressure. (As it is the work W =

∫
p′dV =

∫ T
0 p′(dV/dt)dt

which determines the losses, a volumeV proportional top′ implies for a periodic oscillationW ∼∫ T
0 p′(dp′/dt)dt = 0.)

Another limitation of the amplitude of the oscillation is the highly non-linear behaviour of the pres-
sure for oscillation amplitudeŝa comparable toa0. If a → 0 the pressure in the bubble increases
dramatically(pb ∼ a−3γ ). Linear theory fails and the bubble may start showing chaotic behaviour
(referred to as acoustical chaos) [114].

As an isolated air bubble already has a strong effect on the acoustics of a water filled tube, a large
amount of bubbles will have a dramatic effect. In section 2.3we already considered the low frequency
limit for the speed of sound in a bubbly liquid. We have seen that a small volume fraction of bubbles
can considerably reduce the speed of sound. This is due to thelarge compressibility of the air in the
bubbles. Asω reachesω0 this effect will become dramatic resulting in a full reflection of the waves
(speed of sound zero) [42, 100]. In the frequency rangeω0 < ω < ω0cw/cair no wave propagation is
possible in an ideal bubbly liquid. Above the anti-resonance frequencyω0cw/cair the bubble movement
is in opposition to the applied pressure fluctuations. The radius increases when the pressure increases.
This is just opposite to the low frequency behaviour (figure 4.11). As a result the bubbly mixture will
be stiffer than water, andc > cw! Sound speeds of up to 2500 m/s were indeed observed in bubbly
water withβ = 2 × 10−4 !

Another fascinating effect of bubble resonance is its role in the very specific, universal, sound that
rain is known to generate when it hits a water surface [181]. First it should be noted that bubble
oscillation is such an efficient source of sound that any rainimpact sound is dominated by it. Now, in
spite of the wide range of velocities and sizes of rain drops that occurs, the universality of the sound
of rain is due to the fact that only bubbles are formed of just one3 particular size. This is a result
of the following coincidence. On the one hand, not any combination of drop size and drop velocity
occurs: rain drops fall at terminal velocity (balance of airdrag and drop weight) which is an increasing
function of the droplet radius. On the other hand, not any combination of drop size and drop velocity
generates bubbles upon impact on water. At each drop size there is one drop velocity where bubbles
are formed. This bubble formation velocity is a decreasing function of the droplet radius. Combining
these increasing and decreasing functions, we see that theyintersect just at one combination of radius
and velocity, with just one bubble size.

3i.e.a narrow range
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Figure 4.11 Idealized frequency dependence of the speed of sound in a bubbly liquid.
The low-frequency limitclow, slightly lower thancw , is given in equation (2.44) or (2.45).

4.5 Attenuation of an acoustic wave by thermal and viscous dissipation

4.5.1 Reflection of a plane wave at a rigid wall

Consider a pipe−∞ < x 6 0, closed atx = 0 by a rigid wall. Inside the pipe a plane wave
p+(x, t) = F (t − x/c0) travels in positive direction and reflects into a left-running wavep−(x, t).
Without visco-thermal losses, the boundary condition of vanishing velocity becomes

u(0, t) = p+(0, t) − p−(0, t)

ρ0c0
= 0.

This implies a reflected wavep−(x, t) = F (t + x/c0), equal in amplitude and shape to the incident
wave, and therefore a reflection coefficient of unity

R = p−(0, t)

p+(0, t)
= 1.

In reality unsteady heat transfer at the wall will act as a sink of sound, slightly reducing the reflection
coefficient. This heat transfer is a result from the difference between the wall temperatureTw, which
remains practically constant, and the bulk temperatureT of the gas, which varies with the adiabatic
pressure fluctuationsp′ = p+ + p−. We will limit our analysis to small temperature differences
(T − Tw) and small departures from the quiescent reference state. This allows a linearized theory, so
that we can consider the reflection of a harmonic wave, denoted in complex form as

p(x, t) = p̂(x)e−iωt

with amplitude p̂ outside the neighbourhood of the wall being given byp̂(x) = p̂+ e−ikx + p̂− eikx.
(Likewise, in the following the hatted quantities with “ˆ ” will denote their corresponding,x-
dependent, complex amplitudes.)
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We define(see also section 8.8) the thermal boundary layer thicknessδT as the width of the region
near the wall in which the rate of increase of internal energyis just balancing the net rate of heat
conduction (in this region the wave equation is not valid):

(
ρ0Cp

∂

∂t
T ∼ ωρ0CpT ′

)
≃

(
K0

∂2

∂x2
T ∼ K0

T ′

δ2
T

)
.

Hence, the characteristic length scale for the thermal boundary layer is

δT =
√

2K0

ωρ0Cp
. (4.73)

We will now calculate the temperature profile within the thermal boundary layer. This will allow us to
calculate the deviation̂ρe = ρ̂ − p̂/c2

0 between the density fluctuations in the boundary layer and the
density fluctuationŝp/c2

0 corresponding to adiabatic compression of an ideal acoustic flow as found
outside the boundary layer. This excess densityρ̂e has to be supplied by a fluid flow towards the
wall at the edge of the boundary layer. This velocityû∞ can be interpreted by an observer, outside
the boundary layer, as due to a displacementd̂T of the rigid wall in a hypothetical fluid without heat
conduction. The work performed by this “virtual” wall displacement on the acoustic field corresponds
to the sound dissipation by the thermal conduction in the boundary layer.

This approximation is based on the key assumption that the acoustic wave length is much larger than
the thicknessδT of the thermal boundary layer:ωδT/c0 ≪ 1. In such a case we can assume at the edge
of the boundary layer a uniform adiabatic flow,(dû/dx)∞ = 0, of a uniform fluid (̂p∞, ρ̂∞). The non-
uniformity associated with the acoustic wave propagation is negligible on the length scale we consider.
The boundary layer flow is described by the one-dimensional conservation laws (1.1,1.2,1.6,1.7) in
linearized form:

iωρ̂ = −ρ0
dû

dx
, (4.74a)

iωρ0û = −dp̂

dx
+ 4

3
η0

d2û

dx2
, (4.74b)

iωCVρ0T̂ = −p0
dû

dx
+ K0

d2T̂

dx2
. (4.74c)

Since in a liquid acoustic wave propagation is isothermal wecan limit our analysis to a gas. We assume
an ideal gas with:

p̂

p0
= ρ̂

ρ0
+ T̂

T0
.

The boundary conditions are given by:

T̂(0) = T̂w, û(0) = 0,
T̂∞
T0

= γ − 1

γ

p̂∞
p0
,

p̂(x) → p̂∞ = p̂+ + p̂− (x/δT → −∞),

where we have introduced, for generality, the fluctuation ofthe wall temperaturêTw. After the study
of the reflection of a wave at an isothermal wall (T̂w = 0) we can use the same theory to calculate the
sound generated by fluctuations of the wall temperature (T̂w 6= 0).



78 4 One dimensional acoustics

After eliminating û from the energy equation by using the mass conservation law,and eliminatingρ̂
by means of an ideal gas law, we obtain

iω
( T̂

T0
− γ − 1

γ

p̂

p0

)
= a0

d2

dx2

( T̂

T0

)

wherea0 = K0/ρ0Cp is the heat diffusivity coefficient. In terms of the excess density, with

ρ̂e

ρ0
= 1

ρ0

(
ρ̂ − p̂

c2
0

)
= ρ̂

ρ0
− p̂

γ p0
= γ − 1

γ

p̂

p0
− T̂

T0
,

this equation becomes

iω
ρ̂e

ρ0
= a0

d2

dx2

( ρ̂e

ρ0

)
− a0

γ − 1

γ

d2

dx2

( p̂

p0

)
.

Combining the momentum and mass conservation laws we have

ω2ρ̂ = −d2 p̂

dx2
+ 4

3
η0

d3û

dx3
.

Assuming that viscosity is not dominant – which we can check from the solution to be obtained – we
see that

d2

dx2

( p̂

p0

)
≃ −ω

2ρ̂

p0
= −ω

2γ

c2
0

ρ̂

ρ0
.

The relative pressure variation across the boundary layer (4.73) is of the order of

p̂ − p̂∞
p0

∼ ω2δ2
T

c2
0

( ρ̂
ρ0

)

while ρ̂e/ρ0 is of the same order of magnitude asρ̂/ρ0, becauseγ − 1 = O(1). This implies that if
we neglect terms of the order ofω2δ2

T/c
2
0, we have

iω
ρ̂e

ρ0
= a0

d2

dx2

( ρ̂e

ρ0

)
.

This equation has the solution

ρ̂e

ρ0
=

[
ρ̂e

ρ0

]

w

exp
(
(1 + i )x/δT

)
(4.75)

where

[
ρ̂e

ρ0

]

w

= γ − 1

γ

p̂∞
p0

− T̂w
T0
.

Using the equation of mass conservation, the velocityû(−δT ) at the edge of the boundary layer is
given by the integral of the density across the boundary layer as follows. (Note that we have chosen
the positivex-direction towards the wall.)

û(0)− û(−δT ) = −iω
∫ 0

−δT

ρ̂

ρ0
dx.
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The difference between this velocity and the velocity iω(ρ̂∞/ρ0)δT that would occur in the absence
of heat conduction, can be interpreted as a fictitious wall velocity ûT given by

ûT = iωd̂T = iω
∫ 0

−δT

ρ̂ − ρ̂∞
ρ0

dx = iω
∫ 0

−∞

ρ̂e

ρ0
dx,

whered̂T is the fictitious wall displacement amplitude. Substitution of solution (4.75) yields

d̂T = 1
2(1 − i )δT

[ ρ̂e

ρ0

]
w
, (4.76a)

= 1
2(1 − i )δT

γ − 1

γ

p̂∞
p0

if Tw = 0 (an isothermal wall). (4.76b)

For an isothermal wall (̂Tw = 0) these wall effects, leading to the effective velocityûT , have the
same effect to the incident acoustic wave as an impedance of the wall. This equivalent impedance
ZT , defined as the ratio of the acoustic pressure fluctuationsp̂∞ at the wall and the flow velocitŷuT

directed towards the wall (c.f. Eq. 3.14), is then given by

ZT = p̂∞
ûT

= p̂∞

iωd̂T

= ρ0c0
(1 − i )c0

(γ − 1)ωδT

The corresponding time averaged acoustic intensity is found to be

〈IT 〉 = 〈p′u′〉 = 1
2 Re(1/ZT )| p̂∞|2 = 1

4(γ − 1)
ωδT

ρ0c2
0

| p̂∞|2

which indicates an energy flux from the acoustic field towardsthe wall and therefore an absorption of
energy.

4.5.2 Viscous laminar boundary layer

The viscous attenuation of a plane acoustic wave propagating along a pipe can often be described
in a similar way as the thermal attenuation by means of a displacement thicknesŝdV of the wall. We
consider first the simple case of a laminar boundary layer in the case of wave propagation in a stagnant
and uniform fluid. The wave propagates in thex-direction and induces an acoustic velocity parallel to
the wall which has an amplitudêu∞ in the bulk of the flow. The no-slip condition at the wall,ûw = 0,
induces a viscous boundary layer of thickness

δV =
√

2ν0/ω = δT

√
Pr . (4.77)

wherePr = ν0ρ0Cp/K0 is Prandtl’s number. This viscous boundary layer is usuallyreferred to as the
Stokes layer. Neglecting terms of the order of(ωδV/c0)

2 and using Euler’s equation we can write the
x-momentum conservation law in the boundary layer as

iωρ0û = −dp

dx
+ η0

d2û

dy2
= iωρ0û∞ + η0

d2û

dy2
,

wherey is the direction normal to and towards the wall (soy ≤ 0). They-momentum conservation
law reduces to the pressure being uniform across the viscousboundary layer. The boundary conditions
are

û(0) = ûw = 0, û(y) → û∞ if y/δV → −∞.
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The solution is then

û = û∞

[
1 − exp

((1 + i )y

δV

)]
. (4.78)

The displacement thicknessdV is defined as the fictitious wall position for which the acoustical mass
flux of a uniform flow with the velocitŷu∞ is equal to the actual mass flow. This implies:

d̂V = −
∫ 0

−∞

(
1 − û

û∞

)
dy = −1

2(1 − i )δV . (4.79)

4.5.3 Damping in ducts with isothermal walls.

In section 4.5.1 we have considered the attenuation of an acoustic wave that reflects normally to a wall.
This attenuation was due to the heat conduction in the thermal boundary layer. In the previous section
4.5.2 we have described the laminar viscous boundary layer associated to a plane wave propagating
along a duct (parallel to the wall). In a gas such a propagation will also induce a thermal boundary
layer, determined by the pressure fluctuationsp′

∞ in the bulk of the flow. The expression for the
displacement thicknesŝdT derived in section 4.5.1 can be applied.

Using the concept of displacement thickness we will calculate the attenuation of a plane wave travel-
ling in x-direction along a pipe of cross-sectional areaA and cross-sectional perimeterL p. We assume
that the boundary layers are thin compared to the pipe diameter.

The bulk of the flow is described by the following plane wave, satisfying Euler’s equation in linear
approximation:

p′
∞ = p̂∞ eiωt−ikx, iωρ0u

′
∞ = i kp′

∞,

wherek is a complex wave number (the imaginary part will describe the attenuation). Incorporating
the displacement thickness to the mass conservation law integrated over the pipe cross section yields
(Lighthill [122])

∂

∂t

[
ρ∞(A + L pdT )

]
= ∂

∂x

[
ρ∞u∞(A + L pdV )

]

In linear approximation for a harmonic wave this becomes

iω
( p̂∞

c2
0

A + ρ0L pd̂T

)
= i kρ0û∞(A + L pd̂V)

where we made use of the isentropic relationshipp̂∞ = c2
0ρ̂∞. After substitution of the expressions

for the displacement thicknesŝdT (4.76b) andd̂V (4.79)

d̂T = 1
2(1 − i )δT

γ − 1

γ

p̂∞
p0
, and d̂V = −1

2(1 − i )δV ,

and elimination ofû∞ by means of the Euler’s equation, we find a homogeneous linearequation for
p̂∞, which yields the dispersion relation

k2

k2
0

=
A + 1

2(1 − i )(γ − 1)L pδT

A − 1
2(1 − i )L pδV

,



4.6 One dimensional Green’s function 81

wherek0 = ω/c0. Expanding this expression for smallδT andδV (using the fact thatδV/δT =
√

Pr =
O(1)) and retaining the first order term, we obtain the result of Kirchhoff

k − k0 = 1
4(1 − i )

L p

A
δVk0

(
1 + (γ − 1)

δT

δV

)
, (4.80)

which corresponds to equation (2.13). More accurate expressions at low frequencies, when the acous-
tical boundary layers are not thin, are discussed by Tijdeman [232] and Kergomard [104]. At high
frequencies the viscosity becomes significant also in the bulk of the flow (Pierce [175]).

At high amplitudes (̂u∞δV/ν ≥ 400) the acoustical boundary layer becomes turbulent (Merkli [135],
Eckmann [55], Akhavan [3], Verzicco [240]). In such a case the damping becomes essentially non-
linear. Akhavan [3] presents results indicating that a quasi-stationary turbulent flow model provides a
fair first guess of the wall shear stress.

For an isothermal (liquid) flow the quasi-steady approximation yields

k2 − k2
0 = −1

4 i k0
L p

A
c f û∞

where the friction coefficientc f is defined (and determined) by

c f = − 4A

L p
1
2ρ0U2

0

dp0

dx

which relates the mean pressure pressure gradient (dp0/dx) to the stagnation pressure12ρ0U2
0 of a

mean flow through the pipe. Note that since(k − k0) depends on the amplitudêu∞ of the acoustical
velocity this model implies a non-linear damping. The transition from laminar to turbulent damping
can therefore be a mechanism for saturation of self-sustained oscillations (see chapter 5).

For smooth pipes, Prandtl proposed a correlation formula for c f as a function of the Reynolds num-
ber of the flow. The influence of wall roughness is described inthe Moody diagram. Such data are
discussed by Schlichting [217]. In the case of a turbulent gas flow the thermal dissipation is rather
complex. This makes a low frequency limit difficult to establish. In the presence of a mean flow var-
ious approximations describing the interaction between the acoustic waves and the turbulent main
flow have been discussed by Ronneberger [209] and Peters [173]. The formula of Kirchhoff derived
above appears to be valid at low Mach numbers (U0/c0 ≪ 1) as long as the Stokes viscous boundary
layer thicknessδV remains less than the laminar sublayerδL ≃ 15ν/

√
τwρ0 of the turbulent main flow

(where the wall shear stressτw = c f
1
8ρ0U2

0 ).

WhenδL ≪ δV , we can use a quasi-stationary approximation. The transition from the high frequency
limit to the quasi-stationary limit is discussed in detail by Ronneberger [209] and Peters [172].These
references also provide information about the Mach number dependence of the wave number.

4.6 One dimensional Green’s function

4.6.1 Infinite uniform tube

We consider a one dimensional approximation for the propagation of waves in a pipe. This approxi-
mation will be valid only if the frequencies generated by thesources of sound in the pipe are lower
than the cut-off frequency. As the acoustic field observed atpositionx far from a source placed aty is
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induced by a plane wave, the observer position in the cross section of the pipe is indifferent. Apply-
ing the reciprocity principle (section 3.1) we see that in the low frequency approximation the signal
observed atx should also be indifferent for the position of the source in the cross section of the tube
at y. Hence as the source position within a cross section is indifferent we can consider the source to
be smeared out over this cross section resulting in a 1-dimensional source. We therefore look for the
corresponding one-dimensional Green’s functiong(x, t|y, τ ) defined by:

∂2g

∂t2
− c2

0
∂2g

∂x2
= δ(t − τ)δ(x − y). (4.81)

Comparison of this wave equation with the wave equation (4.5) in the presence of source termρ0∂β/∂t
and forcesfx:

∂2p′

∂t2
− c2

0

∂2 p′

∂x2
= c2

0

(
ρ0
∂2β

∂t2
− ∂ fx

∂x

)
(4.5)

indicates that we can assume that (4.81) is a particular caseof (4.5) for fx = 0 and:

∂β

∂t
= 1

ρ0 c2
0

H (t − τ)δ(x − y). (4.82)

For an infinitely long tube the solution is:

g(x, t|y, τ ) =





1

2c0
H

(
t − τ + x − y

c0

)
for x < y,

1

2c0
H

(
t − τ − x − y

c0

)
for x > y.

(4.83)

This result is obtained intuitively by using (4.30) which implies thatg is the pressure wave generated
by a piston moving with a velocityu′ = (2ρ0c2

0)
−1H (t − τ) for x = y + ε and a second piston with

a velocityu′ = −(2ρ0c2
0)

−1H (t − τ) for x = y − ε. Equations (4.83) are then obtained by using the
method of characteristics (section 4.2).

Of course, the above result (4.83) is more efficiently written as:

g(x, t|y, τ ) = 1

2c0
H

(
t − τ − |x − y|

c0

)
. (4.84)

The combinationt − |x − y|/c0 is the time at which the signal observed at(x, t) has been emitted by
the source aty. This time is called the retarded or emission timete:

te = t − |x − y|
c0

. (4.85)

4.6.2 Finite uniform tube

We can also fairly easily construct a Green’s function for a semi-infinite pipe (x < L) terminated
at x = L by an ideal open end at which by definitiong(L , t|y, τ ) = 0. By constructing the wave
reflecting at this ideal open end with the method of characteristics we find:

g(x, t|y, τ ) = 1

2c0

{
H

(
t − τ + x − y

c0

)
+ H

(
t − τ − x − y

c0

)

−H
(
t − τ + x + y − 2L

c0

)}
(4.86)
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which we can also write forx < L as:

g(x, t|y, τ ) = 1

2c0

{
H

(
t − τ − |x − y|

c0

)
− H

(
t − τ − |x + y − 2L|

c0

)}
. (4.87)

This solution could also have been obtained by assuming the pipe to be part of an infinitely long
pipe, in which at the pointx = 2L − y a second point source is placed with opposite sign of and
synchronous with the original point source atx = y. This second source, calledimage source, is
constructed such that it generates the field due to reflectionby the boundary atx = L in the original
problem, and therefore brings into effect the boundary condition at x = L. Thismethod of imagescan
be generalized to the case of a finite pipe segment (0< x < L). In such a case we will have to consider
the contribution of an infinite number of images corresponding to the reflections of the original waves
at the boundaries. For example, the field in a finite pipe with hard walled ends is equivalent with the
field in an infinite pipe with equal sources inx = −y, ±2L ± y, ±4L ± y, . . . . This comes down to
a right-hand-side of equation 4.81 of

∞∑

n=−∞
δ(t − τ)

(
δ(x − y − 2nL)+ δ(x + y − 2nL)

)

and a solution

g(x, t|y, τ ) = 1

2c0

∞∑

n=−∞

{
H

(
t − τ − |x − y − 2nL|

c0

)
+ H

(
t − τ − |x + y − 2nL|

c0

)}
.

(4.88)

The Green’s function is clearly more complex now. Furthermore, the addition of mass by the source
in the finite volume results into a (roughly) linear growth ofg in t . (Verify this for x = y = 1

2 L and
τ = 0.) This is of particular interest in the time-harmonic case. When the end conditions are such that
multiple reflections are physically relevant they imply that constructive and destructive interferences
will select waves corresponding to standing wave patterns or resonances of the tube. This problem
will be discussed further in the next chapter.

4.7 Aero-acoustical applications

4.7.1 Sound produced by turbulence

We consider a turbulent jet in an infinitely extended pipe (figure 4.12). We suppose that the jet diameter

S

✻

❄

d✻❄

Figure 4.12 Turbulent jet in a pipe.
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d and the jet velocityu0 are such that the characteristic frequencyu0/d of the sound produced in the
pipe is low enough to use a one dimensional approximation. Wewill use the integral formulation
of Lighthill to obtain an order of magnitude estimate for thesound pressure level produced by this
flow, assuming that the mean flow in the pipe is negligible. We also assume that the jet temperature and
density is the same as that of the environment (homogeneous fluid and homentropic flow). If Reynolds
numberRe = u0d/ν ≫ 1 and Mach numberM = u0/c0 ≪ 1 we can use Lighthill’s analogy in the
form4:

∂2ρ ′

∂t2
− c2

0
∂2ρ ′

∂x2
i

= ∂2(ρ0vi v j )

∂xi ∂x j
. (4.89)

As we use a tailored Green’s function (we neglect the effect of the flow injection device) the density
ρ ′ can be estimated by:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

∂2(ρ0vi v j )

∂yi∂y j
G(x, t|y, τ )dydτ. (4.90)

Using the approximate Green’s function derived in the previous section (Eq. 4.84) we have:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

∂2(ρ0vi v j )

∂yi∂y j
g(x, t|y, τ )S−1dydτ. (4.91)

After two partial integrations, assuming the source to be limited in space, we obtain:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

∂2

∂y2
g(x, t|y, τ )S−1ρ0u

2 dydτ. (4.92)

We moved the differentiation from the unknown source term towards the known, and explicitly avail-
able, Green’s function (4.84). We now note that:

∂g

∂y
= − 1

2c2
0

δ
(
t − τ − |x − y|

c0

)∂|x − y|
∂y

, (4.93)

so that from:

∂|x − y|
∂y

= − sign(x − y) = −∂|x − y|
∂x

(4.94)

we have the following important symmetry in the Green’s function of an infinite pipe:

∂g

∂y
= −∂g

∂x
. (4.95)

We substitute this result in (4.92). Since the integration is to the source positiong, we can now remove
one of the differentiations tox from the integral, resulting in the expression:

ρ ′(x, t) = ∂

∂x

∫ t

t0

∫∫∫

V

ρ0u2

2Sc20
δ(te − τ) sign(x − y)dydτ. (4.96)

4While the assumption that friction is a negligible source ofsound was already formulated by Lighthill, a reasonable
confirmation of its validity was only provided thirty years later by the work of Morfey [142] and Obermeier [162]. The exact
range of validity is still subject of research.
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with te = t − |x − y|/c0. The time integration can now be carried out:

ρ ′(x, t) = ∂

∂x

∫∫∫

V

1

2Sc20
[ρ0u

2]τ=te sign(x − y)dy (4.97)

where we used the property (C.26) of theδ-function. At sufficiently large distances the only length
scale in the solution is the characteristic wave lengthc0d/u0 corresponding to the characteristic fre-
quency5 u0/d of the turbulence in the jet. Hence we can estimate:

∂

∂x
≃ 1

c0

∂

∂t
∼ u0

c0d
= M0

d
. (4.98)

Because the sound production by turbulence decreases very fast with decreasing mean flow velocity,
the volume of the free jet contributing to the sound production is limited to a region of the order of
d3. In this region the turbulent velocity fluctuations are of the order ofu0. Hence we find at large
distances:

ρ ′ ∼ M0

d

ρ0u2
0

2Sc20
d3 (4.99)

implying:

ρ ′2 ∼
(1

2
ρ0M3

0d2/S
)2
. (4.100)

This is the result obtained by Ffowcs Williams [63]. This Mach number dependence has indeed been
observed in a pipe downstream of an orifice for sufficiently high Mach numbers. At low Mach numbers
the sound production is dominated by the dipole contribution of O(M4) due to the interaction of the
flow with the orifice [136].

A discussion of the sound production by confined circular jets is provided by Reethof [187] for ar-
bitrary jet Mach numbers. Reethof finds for subsonic jets (M0 < 1) a ratio of the radiated power
to the flow powerηac = 3 × 10−4M3

0 . For supersonic jets (M0 > 1) typical values areηac =
1.6 × 10−3(M2

0 − 1)1/2. In that case the Mach number is taken fromM2
0 = 2

γ−1[(p1/p2)
(γ−1)/γ − 1],

wherep1/p2 is the ratio of the pressure across the orifice.

The dependence of the sound production on the jet geometry isdiscussed by Verge [239] and
Hirschberg [78]. For planar jets issued from a slit of heighth the typical frequencies are of the
order of 0.03u0/h (Bjørnø [15], Sato [216]). This implies that correlations developed for subsonic
circular jets are useless for planar jets.

4.7.2 An isolated bubble in a turbulent pipe flow

Consider an isolated bubble of radiusa0 small compared to the pipe diameterD. Assume a turbulent
pipe flow. The sound produced by the turbulence will, locally, be enhanced by the presence of the
bubble. If we assume that the frequencies in the turbulence,typically O(u0/D), are much smaller
than the bubble resonance frequencyω0, we can calculate the sound produced by the interaction of
the bubble with the turbulence.

5We assume a jet with circular cross section.
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The Green’s function is calculated by using the reciprocityprinciple. We consider the acoustic re-
sponse of the bubble for a plane wave emitted from the observer positionx towards the bubble. For
the sake of simplicity we consider this incident wave to be harmonic pin = p̂in eiωt−ikx. The bubble
pressure responsêpb is, as is shown in 5.4.5 (use (4.72) withp̂in = F1 and p̂′ = F2), given by:

p̂b = −

(ω0

ω

)2

1 −
(ω0

ω

)2
− 2π i a0cw

Sω

p̂in. (4.101)

Using Bernoulli and the continuity equation we can calculate the pressure distribution around the
bubble:

p̂ − p̂b = −ρwiω(ϕ − ϕb) (4.102)

where:

ϕ − ϕb =
∫ r

a0

iωâa2
0

r 2
dr = iωâa0

(
1 − a0

r

)
. (4.103)

Furthermore, we have:

â

a0
= − p̂b

3γ p0
, (4.104)

so thatp̂(r ) is given by:

p̂ = p̂b

(
1 −

( ω
ω0

)2(
1 − a0

r

))
=

1 −
(ω0

ω

)2
− a0

r

1 −
(ω0

ω

)2
− 2π i a0cw

Sω

p̂in. (4.105)

Taking for p̂in the Fourier transform of(2c0S)−1H (t − τ − |x − y|/c0) we obtain asp̂ the Fourier
transformĜ(x|y) of the Green’s functionG(x, t|y, τ ):

Ĝ(x|y) = e−iωτ−ik|x−y|

2iωcwS
·

1 −
(ω0

ω

)2
− a0

r

1 −
(ω0

ω

)2
− 2π i a0cw

Sω

. (4.106)

Using Lighthill’s analogy we now can compare the response ofthe pipe to turbulence, with and with-
out bubble. We obtain by partial integration:

ρ ′ =
∫ t

t0

∫∫∫

V

ρ0vi v j
∂2G

∂yi∂y j
dydτ. (4.107)

If we consider a small turbulent spot in the direct neighbourhood of the bubble the ratio of the re-
sponses is given by:

∂2Gb

∂r 2

∂2G0

∂y2

=

∂2Gb

∂r 2

∂2G0

∂x2

=

c2
wa0

ω2r 3

1 −
(ω0

ω

)2
− 2π i a0cw

Sω

. (4.108)



4.7 Aero-acoustical applications 87

At the resonance frequencyω0 this yields a factor(a0S/4πr 3)(ρwc2
w/3γ p0)

1
2 while for low fre-

quencies we find(a0/r )3(ρwc2
w/3γ p0). If r = O(a0) we see that the sound produced by turbulence in

the neighbourhood of the bubble will be dramatically enhanced.

The major contribution of the bubble turbulence interaction will be at low frequencies. An important
reason for this is that for typical conditions in water flow, the length scale of vortices corresponding
to pressure fluctuations at the bubble resonance frequencyω0/2π is much smaller than the bubble
radius [43]. In such a case these pressure fluctuations are averaged out at the bubble surface and do
not have any significant contribution to the spherical oscillations of the bubble. An example of sound
production by bubbles in a pipe flow is the typical sound of a central heating system when air is
present in the pipes. Also the romantic sound of water streams and fountains is dominated by bubbles.
In those cases, however, we have a three-dimensional environment.

4.7.3 Reflection of a wave at a temperature inhomogeneity

As a last example of the use of the integral equation based on the Green’s function formalism we
consider the interaction of a wave with a limited region in which the gas temperatureT(x) is non-
uniform (0< x < L). We assume the pipe to be horizontal and that gravity is negligible. Hence, at
rest the pressure is uniform. The gas density is given by:

ρ/ρ0 = T/T0 (4.109)

and the speed of soundc is given by:

c/c0 = (T/T0)
1
2 (4.110)

whereρ0, T0 and c0 are the properties of the uniform region. We now further assume that|T −
T0|/T0 ≪ 1 so that we can use a linear approximation in which we assume that the scattered sound
wave p′′ is weak compared to the amplitudep′

i of the incident wave. In such a case we can write
p′ = p′

in + p′′, so that the linearized 1-D wave equation (2.50):

∂2p′

∂t2
− ∂

∂x

(
c2∂p′

∂x

)
= 0

can be approximated by:

∂2p′′

∂t2
− c2

0
∂2 p′′

∂x2
= ∂

∂x

(
(c2 − c2

0)
∂p′

in

∂x

)
. (4.111)

The source term has been linearized by assuming that the pressure fluctuations are equal to the (undis-
turbed) incident wave amplitude. It is the source term considered by Powell [178] for the description
of sound scattering at entropy spots.

Using the integral formulation (3.13) and the one dimensional Green’s functiong we find:

p′′ =
∫ ∞

−∞

∫ L

0

∂

∂y
(c2 − c2

0)
∂p′

in

∂y
g dydτ. (4.112)

Partial integration yields

p′′ = −
∫ ∞

−∞

∫ L

0
(c2 − c2

0)
∂p′

in

∂y

∂g

∂y
dydτ. (4.113)
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From equation (4.84) we have

∂g

∂y
= 1

2c2
0

sign(x − y)δ(te − τ) (4.114)

(with te = t − |x − y|/c0) and hence

p′′ = − 1

2c2
0

∫ L

0
sign(x − y)(c2 − c2

0)

∫ ∞

−∞
δ(te − τ)

∂p′
in

∂y
dτdy

= − 1

2c2
0

∫ L

0
sign(x − y)(c2 − c2

0)
∂

∂y
p′

in(y, te)dy. (4.115)

If we take for example

p′
in = p̂in H (x − c0t) (4.116)

and use the relationc2/c2
0 = T/T0, then we have for (say)x < 0

p′′ = 1
4 p̂in

∫ L

0

T − T0

T0
δ
(

y − x + c0t

2

)
dy (4.117)

=





1
4 p̂in

T(1
2(x + c0t))− 1

T0
if 0 < x + c0t < 2L

0 otherwise.

Exercises

a) Show that for an acoustic wave travelling in the negativex direction we have:

u′ = −p′/ρ0c0.

b) Consider a rigid piston at(x = 0) separating the fluid I forx < 0 from the fluid II atx > 0 in an
infinitely long pipe of 10−2 m2 cross section. Assume that the piston oscillates with a frequencyω and
an amplitudea. Calculate the force necessary to move the piston as a function of time (ρ0,I = 1.2kg/m3,
c0,I = 344 m/s,ρ0,II = 1.8 kg/m3 andc0,II = 279 m/s,ω = 103 rad/s,a = 10−3 m). Use linear theory
and verify if it is indeed valid.

c) Water hammer effect:
Consider a steady flow of water in a rigid horizontal pipe which we stop suddenly by closing a valve.
Calculate the pressure on both sides of the valve for flow velocities of 0.01 m/s and 1 m/s. What is the
force on the valve for a pipe cross section surface of 10−2 m2.
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d) The same problem as c) but with a slowly closing valve in an infinitely long pipe (figure 4.13). Assume
the area of the valve opening to be a given function of time:

A = A(t).

Suppose further that the flow separates at the exit of the valve forming a free jet into the pipe downstream
of the valve. IfA ≪ S we can neglect the recovery of dynamic pressure(1

2ρv
2
j ) upon declaration of the

fluid by turbulent mixing of the jet with the fluid in the pipe. Hence the pressure drop1p across the
valve is1p = 1

2ρv
2
j if we neglect inertial effects in the valve (we assume

√
A(∂v j /∂ t) ≪ v2

j ).

e) Sow that, in the absence of aero-acoustic sources, the conservation of acoustic energy implies a continuity
of pressure (1p′ = 0) across a compact discontinuity in a pipe, like a sudden change in diameter.

f) Calculate the reflection coefficientR and the transmission coefficientT for a contact surface between
water and air. Consider both the cases of a wave incident fromthe air and water sides in the direction
normal to the surface.

g) Same question as f) for a discontinuity in temperature of 30 K in air at atmospheric pressure (corre-
sponding to the temperature difference from inside our mouth to outside in the winter).

h) Calculate the reflected and transmitted acoustic intensities I for questions f) and g).

i) Consider a semi-infinite tube closed atx = 0 by a harmonically moving piston (up = ûp eiωt ). The
tube is filled with air. At a distanceL from the piston there is a temperature jump of 30K . Calculate the
amplitude of the waves in steady state conditions.

j) Calculate the reflection coefficientR and the transmission coefficientT for a low frequency waveF1
incident from the left to a stepwise area change fromA1 to A2 in an infinitely long pipe. Assume linear
behaviour and no mean flow.

k) Same exercise as j) for a combined stepwise change in crosssection and specific acoustic impedance
jump1ρc of the fluid.

l) A closed pipe end can be considered as a change of area such,that A2/A1 → 0, while an open end can
be approximated by a change withA2/A1 → ∞. Calculate in both cases the reflection coefficientR,
using the result of exercise j).

m) Calculate the reflection coefficient for a harmonic wave atan orifice, assuming linear behaviour and no
mean flow.

n) What are the conditions for which we can neglect friction in the orifice?

o) Consider an orifice ofd = 1 mm diameter, without sharp edges, in a pipe, of diameterD = 1 cm, filled
with air at room conditions. At which amplitude (in dB) one would expect non-linear losses due to
acoustical flow separation for a harmonic wave (with a frequency of 10 Hz, 100 Hz and 1000 Hz) if there
is no mean flow. Such orifices are used in hearing-aid devices for protection.

p) When flow separation occurs as a result of mean flow, the end correctionδ is affected. At low frequencies
by about a factor 3 compared to high frequencies or the linearbehaviour without flow separation. Explain
qualitatively this effect. (Why can we expect a decrease ofδ?)

q) Consider a waveG1(t + x1/c0) incident on a junction of three semi-infinite tubes (with cross sections
A1,A2, andA3). Assuming no other incident wave (G2 = G3 = 0) calculate the reflection and transmis-
sion coefficients.

r) Consider a pipe of cross sectional areaA1 (A1 = A3) with a closed side branch of sectionA2 and of
lengthL (figure 4.14). Calculate the reflection and transmission coefficientsR = F1/G1 andT = F3/G1
for an incident harmonic wave

G1 = eiωt+ikx1

if we assume thatG3 = 0. The wave numberk is defined ask = ω/c0. What are the conditions for which
R = 0 ? What are the conditions for whichR = 1 ? What are the conditions for whichR = −1?
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Figure 4.14 Tube with closed side branch.

s) Calculate the low frequency limit of the reflection coefficient R = F1/G1 for an air bubble of 1 mm in a
pipe of 1 cm diameter for a harmonic wave of frequencyω. Assumep0 = 1 bar.

t) Calculate the pressurepb in an air bubble of mean radiusa0 in water for an incident wavepin =
p̂in eiωt−ikx in a pipe of cross sectionAp ≫ a2

0.

u) In the model described above (section 4.4.5) the pressurein the bubble is assumed to be uniform. Is this
a reasonable approximation for an air bubble of 1 mm radius inwater up to the resonance frequencyω0
for p0 = 1 bar?

v) In the above model the acoustic pressure imposed on the bubble by the incident acoustic field is assumed
to be uniform across the pipe diameter. Is this a reasonable approximation for a bubble with a radiusa0 =
1 mm placed in a pipe of diameterD= 1 cm filled with water at ambient pressure? Assume a frequency
ω = ω0.

w) In the above model we assumed the bubble to be small compared to the pipe diameter, and far from the
walls. Estimateω0 for a bubble placed at the wall.

x) Is the model valid for a bubble which is large compared to the pipe diameter? Why?

y) Determine the physical dimensions of the Green’s function by substitution in the wave equation (4.81).

z) Verify (4.84) by Fourier transformation of (4.81) and then using section C.1.

A) Construct the Fourier transformed Green’s function for asemi-infinite (x < L) tube terminated atx = L
by an impedanceZL .

B) Construct the Fourier transformed Green’s function for asource placed left from a small bubble placed
in an infinite tube.

C) Show that for low frequenciesG(x, t| y, τ ) = g(x, t|y, τ )/S for |x − y| ≫
√

S in a tube of uniform
cross sectionS.

D) Explain (4.95) in terms of the effect of displacement of the source or observer on the Green’s function
for an infinite tube.

E) Calculate using (4.99) the sound pressure level in a tube of 10 cm diameter due to the inflow of a air jet
of 1 cm diameter with a velocity of 10 m/s. Assume atmosphericconditions and room temperature. Are
the assumptions valid in this case? Are the assumptions valid if u0 = 102 m/s ?

F) Same question as E) for a jet placed at the end of a semi-infinite pipe closed by a rigid wall, as indicated
in figure 4.15.

G) Calculate the amplification factor for turbulence noise at resonance(S/a2
0)(ρwc2

w/3γ p0)
1
2 , and at low

frequenciesρwc2
w/3γ p0 for an air bubble of diameter 2a0 = 1 mm in a pipe ofD = 1 cm diameter filled

with water at atmospheric pressure.
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Figure 4.15 Exercise F)

H) In principle the turbulent pressure fluctuations in a pipehave a broad spectrum with a maximum around
a characteristic frequencyu0/D. Consider a flow velocity of 1 m/s. Do you expect the characteristic
frequency of turbulence to be large or small compared to the resonance frequencyω0/2π of an air
bubble with 2a0 = 1 mm as in question G)?

I) For a small bubble the surface tensionσ contributes significantly to the internal pressurepb of the bubble.
For a spherical bubble we have:

pb = pwater(a)+
2σ

a
.

In equilibrium pwater(a) = p0. If we consider the oscillation of such a bubble we find a resonance
frequency:

ω0 =
(3γ p0

ρwa2
0

+ 4σ

ρwa3
0

) 1
2
.

Derive this formula. Given the surface tensionσ of water is 7× 10−2 N/m, calculate the bubble radius
for which the surface tension becomes important.

J) The sound in bubbly liquid is often due to the oscillationsof bubbles caused by a rapid local acceleration
or to oscillations induced by the coalescence or collapse ofbubbles. This yields the typical “bubbling”
noise of a fountain or brook. As an example consider the difference in volume1V between the sum of
the volumes of two bubbles of equal radiia0 = 10−4m and a single bubble containing the same gas (after
coalescence). This difference in volume is due to surface tension effects (see previous question). Assume
that the new bubble is released with a radiusa corresponding to the original volume of the two smaller
bubbles. The bubble will oscillate around its new equilibrium radius. The movement will be damped out
by radiation. Calculate the amplitude of the acoustic pressure waves generated in a pipe of 1cm diameter
filled with water as a function of time.



5 Resonators and self-sustained oscillations

5.1 Self-sustained oscillations, shear layers and jets

When using Lighthill’s analogy to estimate the intensity ofthe sound produced by a turbulent flow
in section 4.7.1 we have assumed that the sound source is independent of the acoustic field. This
assumption was not justified but it seems reasonable if the acoustic velocities in the flow are “small
enough”. In fact this hypothesis breaks down in a large number of very interesting cases. In many
of these cases the acoustic feedback (influence of the sound field on the sound source) results in the
occurrence of a sharply defined harmonic oscillation, due tothe instability of the flow. Whistling,
jet-screech and reheat-buzz are examples of such oscillations. In general the maintenance of such
oscillations implies the existence of a feedback loop as shown in figure 5.1.

edge hydrodynamic
instability

acoustic
resonator

hydrodynamic feedback

acoustic feedback

Figure 5.1 Flow-acoustic oscillator.

In most cases the acoustic field interacts with an intrinsically unstable hydrodynamic flow (jet, shear
layer) at a sharp edge where the flow separates from the wall. This separation point appears to be a
localized region where the acoustic flow and the hydrodynamic flow are strongly coupled. We will
now consider this interaction in some detail.
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Figure 5.2 Flow in a bend.

In principle, if the flow were frictionless and is described accurately
by a potential flow, the velocity at an edge would be infinitelylarge.
This can be understood by considering the flow in a pipe at a bend
(figure 5.2).

The fluid particles passing the bend feel a centrifugal forceρu2
ϑ/r per

unit volume. If the flow is stationary it is obvious that thereshould be
a centripetal force compensating the centrifugal force. Ina frictionless
flow the only force available is the pressure gradient−∂p/∂r . Hence,
we see that the pressure at the outer wall in the bend should belarger
than at the inner wall. Using the equation of Bernoulli for a stationary
incompressible flow(p + 1

2ρv
2 = constant) we conclude that the

velocity is larger at the inner wall than at the outer wall! (See figure 5.3.)
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r
v

Figure 5.3 Frictionless flow
in a bend.

We could also have found this result kinematically by noticing that if
a particle in anirrotational flow follows a curved path there should be
a gradient∂v/∂r which “compensates” the rotation which the particle
undergoes by following a curved path.

The fact that the pressure is larger at the outer wall can alsobe understood
as a consequence of the inertia of the flow which is trying to follow a
straight path and “hits” the wall. The pressure built up at the wall yields
the force necessary to bend the streamlines.

A particle in the flow close to the inner wall is just like a ballrolling into a
well (figure 5.4). The Bernoulli equation, which representsin this case the
law of conservation of mechanical energy, tells that the pressure decrease

implies a decrease of potential energyp which is compensated by an increase of kinetic energy1
2ρv

2.
When leaving the well (bend) the kinetic energy is again converted into pressure as the particle climbs
again (the adverse pressure gradient).

v v

v

Figure 5.4 Ball passing along a well.

A frictionless flow is only possible far from the wall.
Even at high Reynolds numbers there is always a thin
region at the wall where friction forces are of the same
order of magnitude as the inertial forces. We call this
thin region of thicknessδ a viscous boundary layer.
It can be shown that because the flow is quasi-parallel
the pressure in the boundary layer is uniform and equal
to the local pressure of the frictionless flow just outside
the boundary layer. More accurately: this implies that the normal pressure gradientn·∇ p at the wall
is negligible in the boundary layer. In the boundary layer the friction decelerates the flow to satisfy the
“no-slip boundary condition” at the wall:v = 0 (for a fixed wall; figure 5.5). As is clear from figure
5.5 the flow in the boundary layer is not irrotational. The boundary layer is a region of concentrated
vorticity.
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Figure 5.5 Boundary layer
velocity profile.

If we consider now a sharp bend the velocities following poten-
tial flow theory should now become infinitely large at the inner
edge (figure 5.6). (This can be verified by integration of the radial
momentum conservation law.) The assumptions used to derivethe
flow pattern break down: the viscous termη∇2v which we have
neglected in the equation of motion becomes dominant near the
edge. This results into a flow separation. The flow separationcan
be understood qualitatively when we think of the ball in figure 5.4
in the case of a very deep well and in presence of friction. In such
a case the ball never succeeds in climbing up the strong pressure
gradient just behind the edge.

The separation of the boundary layer at the edge implies an injection of vorticity in the main stream.
This vorticity is concentrated in the shear layer separating the mean flow from a dead water region
(figure 5.6) just behind the bend. Taking the circulation along a path enclosing part of such a shear
layer clearly shows that the circulation per unit length(dŴ/dℓ) in the shear layer is just equal to the
velocity jump across the layer: dŴ/dℓ = 1v (figure 5.7).

This complex process of separation can be described within the frame of a frictionless theory by
stating that the velocity at a sharp edge should remain finite. This so-called “Kutta condition” implies
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Figure 5.6 Sharp bend. a) potential flow; b) actual flow.
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Figure 5.7 Circulation in the shear layer

that a thin shear layer should be shed at the edge. The shear layer contains a distribution of vorticity
such that the velocity induced at the edge by the vorticity just compensates the singularity of the
potential flow (which would exist in absence of shear layer).

It can be shown that this condition also implies that the shear layer is shed tangentially to the wall
at the side of the edge where the flow velocity is the largest. The validity of a Kutta condition for
an unsteady flow has been the subject of quite a long controversy. At this moment for a sharp edge
this is an accepted principle. Hence if next to a stationary flow we impose an unsteady potential flow
(acoustic perturbation) the amount of vorticity shed at theedge will be modulated because we modify
the singular potential flow at the edge.

We see therefore that within a potential flow theory the sharpedges play a crucial rôle because they
are locations at which a potential flow can generate vorticity.1 It is not surprising therefore that in
nature the feedback from the acoustic field on a flow will oftenbe concentrated at an edge.

Self-sustained oscillations imply an amplification of the acoustic perturbations of the main flow by
flow instability (this is the energy supply in the feedback loop). The instability of a thin shear layer
can be understood by considering as a model an infinitely longrow of line vortices in a 2-D flow
(figure 5.8).

The velocity induced by a line vortex of strengthŴ is calculated using Biot-Savart’s law:

uϑ = Ŵ

2πr
, (5.1)

wherer is the distance between the point at which we consider the velocity and the vortex. As we see
in figure 5.8a a row of vortices is (meta)stable because the velocity induced on a given vortex by the

1In a two dimensional frictionless incompressible flow Dω/Dt = 0 so that there is no interaction between the vortical
and potential flow which can changeω within the flow.
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Figure 5.8 Instability of a vortex row induced by a non-uniformity of dŴ/dℓ.

vortices left of the point are just compensated by the velocities induced by the vortices at the right (by
symmetry). This is, however, a metastable situation as any perturbation will induce a growing flow
instability. For example a lateral displacement of one of the vortices out of the row is sufficient. Hence
we understand (figure 5.8b) that a modulation of the vorticity by acoustic perturbations can induce a
roll up of the shear layer into a vortex structure as shown in figure 5.9.

Figure 5.9 Shear layer instability.

The most unstable type of flows is the flow between two shear layers of opposite vorticity: jets and
wakes (figure 5.10). A wake appears to be so unstable that whenfriction forces are sufficiently small
(above a certain Reynolds number) it is absolutely unstable[88]. Hence, any perturbation will result
in a break up of the wake structure shown in figure 5.10. A typical result of this is the occurrence of
vortices, periodically shed from a cylinder forRe > 50, which is known as the Von Kármán vortex
street [18]. This periodic vortex shedding is responsible for the typical whistle of an empty luggage
grid on a car. A jet left alone (free jet) will also exhibit some specific oscillations at moderate Reynolds
numbers (Re = O(103)) [16]. Turbulence will, however, kill any clear structure at higher Reynolds
numbers. A jet needs a little help to start whistling. However, there are many ways to persuade him to
whistle!
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Extensive reviews of these jet oscillations are given by Blake and Powell [17], Rockwell [205, 207],
and Verge [236]. We consider here only two examples:

– the edge tone;

– the jet screech.

jet

wake

Figure 5.10 Jet and wake.

In the first case the jet oscillations are controlled by placing a
sharp edge in the jet. The interaction of the jet with the edge
induces a complex time dependent flow. At low Mach num-
bers the flow can be described locally as an incompressible
flow (compact) and a description of the jet oscillation can
be obtained without considering sound propagation or radi-
ation [40]. As the phase condition in the feedback loop is
determined by the travel time of perturbations along the jet,
the oscillation frequency will be roughly proportional to the
main flow velocityV0 in the jet. Self-sustained oscillations
occur for those frequencies for which the phase of the signal
changes by a multiple of 2π as the signal travels around the
feedback loop. We assume an instantaneous feedback from
the jet-edge interaction towards the separation point from
which the shear layers bounding the jet emerge. The phase
shift is therefore determined by the jet.

As a rough first order estimate the perturbations travel in
the shear layer with a compromise between the velocities at
both sides of the shear layer (about1

2V0). A more accurate
estimate can be obtained by considering the propagation of
infinitesimal perturbations on an infinite jet as proposed by
Rayleigh [16, 186]. In spite of the apparent simplicity of the
geometry an exact analytical theory of edge tone instabilities is not available yet.

Like in the case of many other familiar phenomena there does not exist any simple “exact” theory for
jet oscillations. Actually, the crudest models such as proposed by Holger [79] are not less realistic
than apparently more accurate models.

The most reasonable linear theory until now is the one proposed by Crighton [40]. A major problem of
such a linear theory is that it only predicts the conditions under which the system is stable or unstable.
It is not able to predict the amplitude of self-sustained oscillations. At the end of this chapter we will
discuss the model of Nelson [158] for a shear-layer which is very similar to the model of Holger [79]
for an oscillating free jet. Both models do predict an amplitude for sound production by the oscillating
flow.

Placing such an edge tone configuration near an acoustic resonator will dramatically influence its
behaviour. A resonator is a limited region of space in which acoustic energy can accumulate, just like
mechanical energy can accumulate in the oscillations of a mass-spring system. The sound radiated by
the edge-jet interaction results now in a second feedback path through the oscillations of the resonator.
In such a case the resonator often imposes its resonance frequency to the system. The phase change
that a signal undergoes as it travels around the feedback loop is now not only determined by the jet
but also by the delay in the acoustic response of the participating resonator. The oscillation condition
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is still that the total phase change should be a multiple of 2π . When the frequency is close to the
resonance frequency of the resonator, a small variation in frequency results into a large phase shift
and this easily compensates the change in travel time along the jet. An example of such a system is
the flute or the recorder.

In many textbooks the flute oscillation is described as an acoustically driven edge-tone system. It
is rather tragi-comic that one describes a system which we would like to understand in terms of the
behaviour of a system which we hardly understand. As stated by Coltman [32] this is “a rather circular
procedure in view of the fact that there are many gaps in the theoretical basis for both”. Simplified
models of the recorder are proposed by Fabre [59] and Verge [238, 236, 237, 239]. It indeed appears
that a recorder is not simply an “edge tone” coupled to a resonator.

We do not always need an edge for jet oscillations. In the jet screech we have a supersonic jet which
has a cell structure due to the formation of shocks and expansions when the jet pressure at the exit is
not equal to that of the environment (figure 5.11). The interaction of acoustic perturbations with the
edges at the pipe exit results into the formation of periodically shed vortices. The vortex interaction

Figure 5.11 Under-expanded supersonic jet with typical cell structure. We observe acoustic waves generated by the interac-
tion of a vortex with the shock. The vortex is shed periodically at the nozzle lip. Acoustical feedback has been
reinforced in this experiment of Poldervaart and Wijnands (TUE) by placing reflectors around the jet nozzle.
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with a shock wave appears to generate strong acoustic pulses. In particular the interaction with the
third cell appears to result into a localized periodic source of sound. The acoustic wave travels back
towards the pipe exit via the quiescent environment of the jet. This feedback loop can be blocked
by placing a wall of absorbing material around the jet [176, 207]. This reduces the jet oscillations,
demonstrating that the feedback loop described is the one which controls the jet oscillations. A review
of some related supersonic flow oscillations is given by Jungowski [101].

Many of the features observed in a jet oscillation can also beobserved in a shear layer separating a
uniform main flow from a dead water region in a cavity [206] (closed side branch in a pipe system or
open roof of a car). We will discuss these types of oscillations after we have discussed the acoustics
of some elementary type of acoustic resonators.

5.2 Some resonators

5.2.1 Introduction

Before considering other types of acoustically controlledflow instabilities we will focus our attention
on the acoustic resonator. This is an essential step becausein many applications the identification of
the resonator is sufficient to find a cure to self-sustained oscillations. Furthermore resonators are also
used to impede the propagation of sound or to enhance absorption. An example of this behaviour is
the reflection of acoustic waves by an air bubble in a pipe filled with water (section 4.4.5). We start
our discussion with explaining the occurrence of resonancein a duct segment. We then will discuss
the behaviour of the Helmholtz resonator.

5.2.2 Resonance in duct segment

We will first discuss the behaviour of a pipe segment excited by an oscillating piston. The most effi-
cient way to do this is to consider this behaviour in linear approximation for a harmonically oscillating
piston. We will see at the end of this section that at criticalfrequencies the theory does not provide
a solution if we neglect friction. In the time domain we can understand this so-called resonance be-
haviour more easily. For this reason we will start our discussion by considering the problem in the
time domain.

Consider a pipe segment 0< x < L closed atx = L by a rigid wall (û·n = 0) and atx = 0 by an
oscillating piston with a velocityup(t):

up = ûpE(t) at x = 0 (5.2)

where, in order to simplify the notation, we introduced in this subsection the auxiliary function

E(t) = H (t)eiωt . (5.3)

We assume that̂up/c0 ≪ 1 so that an acoustic approximation is valid. We consider only plane waves
(ωA1/2/c0 ≪ 1) and we neglect friction and heat transfer ((ν/ωA)1/2 ≪ 1). The piston starts oscil-
lating att = 0 and we assume that initially the fluid in the pipe is quiescent and uniform (u0 = 0). In
such a case at least for short times the linear (acoustic) approximation is valid. We can now calculate
the acoustic field by using the method of characteristics as described in section 4.2. We will describe
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Figure 5.12 Wave pattern induced by a moving piston atx = 0, starting att = 0.

the calculation in detail. However, a reader only interested in the final result can jump to the final
result, equation (5.16). The(x, t) diagram is shown in figure 5.12.

In region I we have a quiescent fluid:

pI = 0 and uI = 0. (5.4)

In region II we have thec+ waves generated at the piston:

pII = p+
II

(
t − x

c0

)
. (5.5)

Using the boundary conditionuII = up for x = 0 we find:

p+
II (t) = ρ0c0up(t) = ρ0c0ûpE(t). (5.6)

In region III we have a superposition of thec+ waves emanating from region II and thec− waves
generated at the wallx = L:

pIII = p+
II

(
t − x

c0

)
+ p−

III

(
t + x − L

c0

)
. (5.7)

p−
III can be determined by application of the boundary conditionuIII = 0 atx = L:

ûpE
(
t − L

c0

)
− 1

ρ0c0
p−

III (t) = 0. (5.8)

Hence we have:

pIII = ρ0c0ûp

{
E

(
t − x

c0

)
+ E

(
t + x − 2L

c0

)}
. (5.9)

In region IV we have a superposition of thec− waves from region III and thec+ waves generated at
the pistonx = 0:

pIV = p−
III

(
t + x − L

c0

)
+ p+

IV

(
t − x

c0

)
. (5.10)
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p+
IV is determined by applying the boundary conditionuIV = up at x = 0:

ûpE
(
t − 2L

c0

)
− 1

ρ0c0
p+

IV (t) = ûpE(t) (5.11)

and so we find:

pIV = ρ0c0ûp

{
E

(
t − x

c0

)
+ E

(
t + x − 2L

c0

)
+ E

(
t − x + 2L

c0

)}
. (5.12)

In region V we have thec+ waves from region IV superimposed on thec− waves generated at the wall
x = L:

pV = p+
IV

(
t − x

c0

)
+ p−

V

(
t + x − L

c0

)
. (5.13)

As before,p−
V is determined by applying the boundary conditionuV = 0 atx = L. We find:

pV = ρ0c0ûp

{
E

(
t − x

c0

)
+ E

(
t + x − 2L

c0

)
+ E

(
t − x + 2L

c0

)
+ E

(
t + x − 4L

c0

)}
. (5.14)

If we now limit ourselves to the positionx = 0 we see that after each period of time 2L/c0 a new
wave is added to the original waves reflected at the wall and piston. These original waves have now
an additional phase of 2kL, wherek = ω/c0.

Substitutingx = 0 in (5.13) and generalizing the structure of the formula we find for 2N L/c0 < t <
2(N + 1)L/c0:

p2N = 2ρ0c0ûp eiωt

{
N∑

n=0

e−2iknL H
(
t − 2nL

c0

)
− 1

2

}
. (5.15)

This structure could also have been obtained by using the method of images described in section 4.6.2.
We consider the piston as a volume source placed atx = 0+. Placing image sources in an infinitely
extended tube atx = ±2nL/c0 and summing up all the waves generated yields:

p = ρ0c0ûpE
(
t − |x|

c0

)
+ ρ0c0ûp

∞∑

n=1

{
E

(
t − |x − 2nL|

c0

)
+ E

(
t − |x + 2nL|

c0

)}
. (5.16)

Note that this series contains always only a finite number of non-zero terms, because for largen the
argument of the Heaviside function inE becomes negative. So we have (fort > 0)

p

ρ0c0ûp
e−iωt = e−ikx

N1∑

n=0

e−2iknL + eikx
N2∑

n=1

e−2iknL,

N1 =
⌊c0t − x

2L

⌋
, N2 =

⌊c0t + x

2L

⌋
,

where⌊q⌋ denotes the integer part ofq. It may be verified that after substitution ofx = 0 in (5.16)
we find (5.15), withN = ⌊c0t/2L⌋. The geometric series may be summed2, so we obtain:

p

ρ0c0ûp
e−iωt =





e−ikx 1 − e−2ik(N1+1)L

1 − e−2ikL
+ eikx−2ikL 1 − e−2ikN2L

1 − e−2ikL
if kL 6= πℓ,

e−ikx(N1 + 1)+ eikx N2 if kL = πℓ,

(5.17)

2 Note that:
N∑

n=0

an =





1 − aN+1

1 − a
if a 6= 1,

N + 1 if a = 1,

N∑

n=1

an =





a
1 − aN

1 − a
if a 6= 1,

N if a = 1.
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whereℓ = 1,2,3 . . .. For kL 6= πℓ, and allowing for a small amount of damping by givingω a
small negative imaginary part,p converges towards a finite value. We call this the steady state limit. If
kL = πℓ for anyℓ = 1,2,3 . . ., the pressure increases without limit, at least as long as linear theory
is valid. We call this a resonance of the tube, with the resonance frequencies given by12ℓc0/L. The
resulting equations are

p

ρ0c0ûp
e−iωt →





−i
cos(kx − kL)

sinkL
if kL 6= πℓ,

cos(kx)
c0t

L
if kL = πℓ.

(5.18)

When resonance occurs the linearized wave equation is only valid during the initial phase of the build
up and if there are no losses at the walls. As a result of the temperature dependence of the speed of
sound the compression waves tend to steepen up and shock waves are formed. Shock waves are very
thin regions with large velocity and temperature gradientsin which viscous force and heat transfer
induce a significant dissipation [5, 30]. This extreme behaviour will, however, only occur in closed
tubes at high pressures or at high amplitude (section 4.2).

In an open tube at high amplitudes vortex shedding at the pipeend will limit the amplitude [46]. If
we assume an acoustic particle displacement at the open pipeend which is large compared to the tube
diameterd we can use a quasi-stationary model to describe (locally) the flow. This is a model similar
to the one discussed for an orifice in section 4.4.3.

Let’s assume that the tube is terminated by a horn as shown in figure 5.13. In such a case flow sepa-

x = 0 x = L

u′

u′

Figure 5.13 Flow at an open pipe termination at high acousticamplitudes.

ration will occur only while the acoustic flow is outgoing (figure 5.13a). Assuming a dominant fun-
damental harmoniĉu sinωt , the powerWe corresponding to the energy losses due to the formation of
the jet can be calculated from:

We = S

T

∫ T

0
u′1p dt (5.19)

where1p = −1
2ρ0u′2 for 0 < t < 1

2T andu′ > 0 because a free jet is formed which cannot sustain
a pressure difference3. In terms of the Vortex Sound theory of Howe we would say that when the jet

3We assume that due to turbulence all the kinetic energy in thejet is dissipated further downstream. We assume also
that flow separation occurs at the junction between the pipe and the horn. This is quite pessimistic, since the separationis
expected to be delayed considerably by the gentle divergence of the horn.
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is formed during the outflow there is a deviation from potential flow resulting intop′ = p′
ex, while

potential flow theory would predictp′ = p′
ex − 1

2ρ0u′2. This is due to the vorticity in the jet which
results into a source of sound, that we can represent by a pressure source1p = −1

2ρ0u′2.

For 1
2T < t < T andu′ < 0 we have:

1p = 0 (5.20)

because we have a potential inflow into the pipe. Hence:

We ≃ −
1
2ρ0û3S

T

∫ 1
2 T

0
sin3ωt dt = − 1

3π
ρ0û

3S. (5.21)

The amplitude of the acoustic field in the tube can now be estimated by assuming that the lossesWe

at the open end balance the acoustic powerWp delivered by the piston:

Wp = S

T

∫ T

0
up p′(x = 0)dt. (5.22)

Assuming that friction losses at the pipe wall are negligible we have:

Wp ≃ 1
2 Supρ0c0û, (5.23)

whereû is measured at the open pipe exit. Hence we find fromWe + Wp = 0:

û

c0
=

√
3π

2

up

c0
. (5.24)

The model proposed here is valid when the Strouhal number based on the diameter and the acoustical
velocity is smaller than 1,i.e.ωd < û.

The non-linear behaviour of resonators, occurring for example with flow separation, makes such de-
vices efficient sound absorbers. Sound is “caught” by the resonator and dissipated by vortex shedding.

In many cases the most significant losses are friction lossesat the wall. We will discuss the influence of
radiation from an open pipe end in section 6.7. When a plane wave approximation is valid a harmonic
acoustic field in a pipe with uniform cross section can in the absence of mean flow still be described
by:

p′ = p+ eiωt−ikx +p− eiωt+ikx . (5.25)

The wave numberk, however, is now complex and is in first order approximation given by:

k = k0 + (1 − i )α (5.26)

wherek0 = ω/c0 andα is the damping coefficient given by equation (2.13), derivedin section 4.5.
(In a liquid one should assumeγ ≃ 1.)

Damping also affects the impedanceZc of an infinite tube. To leading order approximation one finds
[122]:

Zc = p′

u′ = ±Z0
k0

k
(5.27)
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where the sign indicates the direction of the wave propagation (+x or −x) andZ0 = ρ0c0. We further
see that wave speedc is affected:

c = c0
Re(k)

k0
(5.28)

While friction is relatively easily taken into account for harmonic waves, in the time domain friction
involves a convolution integral which makes the solution ofproblems more difficult to analyse [30].
We will now further limit our discussion to the case of harmonic waves. Hence we seek only for a
steady state solution and we assume that linear acoustics isvalid.

As an example we consider a piston with a velocityup = ûp eiωt at x = 0 exciting a tube of cross
sectionS closed atx = L by a rigid wall. We neglect the radiation losses atx = L (which we will
discuss further in section 6.7). The boundary conditions atx = 0 andx = L can be written in terms
of equation (5.25) as:

ûp = p+ − p−

Zc
(5.29)

and

0 = p+ e−ikL −p− eikL (5.30)

so that we find:

p+ = Zcûp

1 − e−2ikL
. (5.31)

In contrast to our earlier examplep+ does not become infinitely large with resonance becausek is
complex. The impedanceZp seen by the piston atx = 0 is given by:

Zp = p+ + p−

ûp
= −i Zc cotg(kL). (5.32)

Upon resonance, Re(k) = nπ/L with n = 1,2,3, ..., we find for the caseαL ≪ 1:

Zp ≃ Zc

αL
. (5.33)

When the damping(αL) predicted by laminar boundary layer theory is small the oscillation am-
plitudes may become so large that the acoustical boundary layers become turbulent. This implies a
non-linear energy dissipation as discussed in section 4.5.3.

5.2.3 The Helmholtz resonator (quiescent fluid)

The resonance conditions for a duct segment (5.25) imply that the tube length should be of the order
of magnitude of the acoustic wave length (kL = O(1)). In many technical applications this would
imply that resonators used to absorb sound should be large (and expensive). A solution to this problem
is to use a non-uniform pipe in the shape of a bottle. When the bottle is small compared to the acoustic
wave length (for low frequencies), the body of the bottle acts as an acoustic spring while the neck of
the bottle is an acoustic mass (figure 5.14).
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Sb
V p′

in

u′
in ≃ 0

u′
n

ℓ

p′
ex

Sn

K
m

Figure 5.14 Helmholtz resonator as mass-spring system.

If the cross-sectional areaSb of the bottle is large compared to the cross sectional areaSn of the neck,
the acoustic velocities in the bottle will be small comparedto those in the neck. Hence we may in
first order approximation assume that the pressure and density perturbationsp′

in andρ ′
in in the bottle

are uniform. Furthermore, as we have assumed the bottle neck(lengthℓ) to be acoustically compact,
i.e. short compared to the wave length,kℓ ≪ 1, we can neglect compressibility and integrate the
line integral of the momentum equation along a streamline from a point inside to a point outside as
follows. Use identity (1.30) and the fact thatω×v is orthogonal to a streamline to obtain

ρ0

∫ ex

in

∂v′

∂t
·ds + 1

2
ρ0(u

′
ex

2 − u′
in

2)+ (p′
ex − p′

in) =
∫ ex

in
µ∇2v′ ·ds (5.34)

Assuming that the streamline does not change in time (for example the center streamline) we have
∫ ex

in

∂v′

∂t
·ds = d

dt

∫ ex

in
v′ ·ds (5.35)

The velocity line integral evidently scales on a typical length times a typical velocity. If friction effects
are minor and the velocity is reasonably uniform, we can use the neck velocityu′

n with a corresponding
length being the neck lengthℓ, added by a small end correctionδ (4.51) to take into account the inertia
of the acoustic flow at both ends just outside the neck (insideand outside the resonator); see section
5.2.3.1. Then we have:

∫ ex

in
v′ ·ds = (ℓ+ 2δ)u′

n. (5.36)

The stress term line integral is far more difficult to assess.Apart fromu′
n itself, it will depend on flow

profile, Reynolds number, wall heat exchange, turbulence, separation from sharp edges, and maybe
more. Following Melling [133], we will take these effects together in a resistance factorR, which will
a priori be assumed to be relatively small, to have resonanceand a small decay per period in the first
place.

∫ ex

in
µ∇2v′ ·ds ≃ −Ru′

n (5.37)

Due to separation from the outer exit, we have with outflowuin ≃ 0 with uex = u′
n jetting out, while

similarly during inflow,uex ≃ 0 with uin = u′
n jetting into the cavity. The pressure in the jets, however,

has to remain equal to the surrounding pressure (p′
ex andp′

in respectively) because the boundary of the
jet cannot support a pressure difference. Therefore, we have altogether

ρ0(ℓ+ 2δ)
d

dt
u′

n + 1

2
ρ0u

′
n|u′

n| + Ru′
n = p′

in − p′
ex (5.38)
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In order to have a second equation betweenp′
n andu′

n we apply the integral mass conservation law
on the volumeV of the bottle. The change of mass must be equal to the flux through the bottle neck,
which is in linearised form for the density perturbationρ ′

in:

V
dρ ′

in

dt
= −ρu′

nSn ≃ −ρ0u
′
nSn. (5.39)

Assuming an adiabatic compression of the fluid in the bottle we can eliminateρ ′
in by using the consti-

tutive equation:

p′
in = c2

0ρ
′
in. (5.40)

Elimination ofρ ′
in andu′

n from (5.38) by using (5.39) and (5.40) yields:

(ℓ+ 2δ)V

c2
0Sn

d2 p′
in

dt2
+ V2

2ρ0c4
0S2

n

dp′
in

dt

∣∣∣∣
dp′

in

dt

∣∣∣∣ + RV

ρ0c2
0Sn

dp′
in

dt
+ p′

in = p′
ex. (5.41)

When the damping is small, there exist solutions without external forcingp′
ex, i.e. resonance solutions.

(ℓ+ 2δ)V

c2
0Sn

d2 p′
in

dt2
+ p′

in = 0.

Hence we see that the Helmholtz resonator reacts as a mass-spring system with a resonance frequency
ω0 given by:

ω2
0 = Snc2

0

(ℓ+ 2δ)V
. (5.42)

When the amplitude is small, the damping will in general be linear. For larger amplitudes the damping
will be nonlinear, which among other things generates otherharmonics than the frequency of the
driving force; see section 5.2.4. A spectacular effect of additional damping occurs when the flow in
the neck is superimposed on a mean flow, forcing vortex shedding from the exit even without nonlinear
terms; see section 5.2.5.

5.2.3.1 Intermezzo: End correction

If, as is the case in many technical applications, an orifice is used instead of bottle neck (ℓ = 0), the
use of a reasonable estimate forδ is important. For an orifice with a circular aperture we have in the
limit of small k

δ = 0.85
( Sn

π

) 1
2
. (5.43)

For an unflanged thin-walled open-pipe end we can use for small k the approximation:

δ = 0.61
( Sn

π

) 1
2
. (5.44)

See also section 6.7. Values ofδ for various other geometries are given by Ingard [91].
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5.2.4 Non-linear losses in a Helmholtz resonator

The theory described in the previous section assumes that there is no-flow separation. Flow separa-
tion will certainly occur when the acoustic particle displacement has an amplitude comparable to the
diameter of the neck. The Strouhal numberSr = ω(Sn/π)

1/2/u′
n yields a measure for this effect.

WhenSr ≪ 1 flow separation will only occur locally at sharp edges of theneck (or orifice). When
Sr = O(1) flow separation will occur even if these edges are rounded off. In principle the effect of
flow separation can under these circumstances be described by assuming the formation of a quasi-
stationary jet as for the pipe end (section 5.2.2). A multiple-scales solution for this problem may be
found in section 8.3.

In the case of an orifice with sharp edges, one should take intoaccount the fact that the jet diameter
tends to be smaller than the orifice diameter by a factorβ called the vena contracta factor. For a thin
orifice β ≃ 0.6 [44]. Using a quasi-stationary Bernoulli equation this implies an enhancement of the
pressure loss1p by a factorβ−2. Furthermore losses occur for an orifice in both flow directions, while
in a pipe with horn we assumed losses to occur only upon outgoing acoustic flow.

5.2.5 The Helmholtz resonator in the presence of a mean flow

We consider a Helmholtz resonator of volumeV , neck lengthℓ and neck surfaceSn in which we inject
a continuous volume flowQ0 = u0Sn (figure 5.15). Neglecting the viscous dissipation, but otherwise

Q0

V

p′
in

u′
in ≃ 0

ℓ

u0 + u′
n Sn

Figure 5.15 Helmholtz resonator with a mean flow.

using the same equation as before we now find

ρ0(ℓ+ 2δ)
du′

n

dt
+ 1

2ρ0(u0 + u′
n)

2 + p′
ex = p0 + p′

in (5.45)

where we used the fact thatu′
ex = u′

n because the total flow is always an outflow. Further, we assumed
that the pressure in the jet is uniform and equal top′

ex, the fluctuations due to an external acoustic
source. (This is a reasonable assumption foru0/c ≪ 1 andω(Sn/π)

1/2/u0 ≪ 1). Separating the zero
and first order terms in the acoustic perturbations and neglecting second order terms we find

p0 = 1
2ρu2

0 (5.46)

and

ρ0(ℓ+ 2δ)
du′

n

dt
+ ρ0u0u′

n + p′
ex = p′

in. (5.47)
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Using the linearized mass conservation law we have neglecting terms of order(u0/c0)
2:

V
dρ ′

in

dt
= −(ρ0u

′
n + ρ ′

exu0)Sn. (5.48)

Eliminating ρ ′
in by using the constitutive equationp′

in = c2
0ρ

′
in and eliminatingp′

in from (5.47) and
(5.48) we find:

d2u′
n

dt2
+ u0

ℓ+ 2δ

du′
n

dt
+ ω2

0un = −ω
2
0M0

ρ0c0
p′

ex − 1

ρ0(ℓ+ 2δ)

dp′
ex

dt
.

ω0 is defined by equation (5.42) andM0 = u0/c0. For a harmonic excitationp′
ex = p̂exeiωt we find:

ρ0c0ûn

p̂ex
= − M0 + iω1ω/ω

2
0

1 − (ω/ω0)2 + i M0ω1ω/ω
2
0

(5.49)

whereω1 = c0/(ℓ+2δ). We see that the mean flow induces a damping factor which we might a priori
not have expected because we did not assume friction losses nor heat transfer.

The key assumption which has introduced damping is that we have assumed that the pressure pertur-
bation at the pipe exit is equal to the environment pressure perturbationpex. This is true, because the
flow leaves the exit as a jet4, which implies separation of the flow at the pipe exit and a Kutta condition
to be added to an inviscid model (section 5.1)! This implies that a varying exit velocityun modulates
the vorticity shed at the edges of the pipe exit, which is, on its turn, a loss of kinetic energy for the
acoustic field. This confirms that the Kutta condition is indeed a quite significant assumption [39].

5.3 Green’s function of a finite duct

Formally, the Green’s function of a finite duct can be obtained if we neglect friction and losses at the
pipe terminations by using the method of images (section 4.6.2 and section 5.2.2). For a pipe segment
0 < x < L closed by rigid walls a source atx = y in the pipe segment is represented by a row of
sources (in an infinitely long pipe) at positions given by (figure 5.16)

xn = ±(2n + 1)L ± y; n = 0,1,2,3, ... (5.50)

The Green’s function is the sum of all the contributions of these sources:

Figure 5.16 Images of source atx = y.

4A very interesting proof of the fact that a quasi-stationarysubsonic free jet cannot sustain any pressure difference with
the environment is provided by Shapiro [220].
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g(x, t|y, τ ) = 1

2c0

∞∑

n=0

{
H

(
t − τ + x + (2n + 1)L − y

c0

)

+ H
(
t − τ + x + (2n + 1)L + y

c0

)

+ H
(
t − τ − x − (2n + 1)L − y

c0

)

+ H
(
t − τ − x − (2n + 1)L + y

c0

)}
. (5.51)

It is clear that such a formal solution has no simple physicalinterpretation.

Another representation for the 1-D Green’s function on[0, L] that might be useful in some applica-
tions is found by a series expansion of the Fourier transformĝ of g:

ĝ =
∞∑

n=0

An fn(x) (5.52)

in a suitable basis{ fn}. In this case we willnot start from elementary solutions of the wave equation.
The functionsfn we will consider will (only) satisfy the boundary conditions atx = 0 andx = L, so
that their sum will automatically satisfy these conditionsif this sum converges uniformly. Hence we
will construct now atailoredGreen’s function (section 3.1). Furthermore, it is evidently necessary that
the basis{ fn} is complete, and convenient that it is orthogonal to some suitable inner product. Let’s
now for simplicity assume that the pipe segment is limited bya rigid wall atx = 0 and an impedance
ZL at x = L. Consider:

fn = sin(Knx) (5.53)

with Kn determined by the equation

tan(Y)

Y
= i

ZL

kL
(5.54)

with KnL = Y. Note that forn → ∞ (ZL 6= 0)

KnL ≃ (n + 1
2)π + ikL

(n + 1
2)πZL

+ ... (5.55)

so that for largen, fn approaches the Fourier-sine series basis. The number of solutions between 0 and
(n+ 1

2)π (for n → ∞) is not always exactlyn. Depending onZL/kL it may differ by 1. For example,
if ZL/kL = i C andC is real, there is no purely imaginary solutionY = iσ with tanh(σ )/σ = −C if
C > 0 or C < −1, and exactly one solution if−1 < C < 0, which disappears to infinity ifC → 0.
Finally, we note that{ fn} is orthogonal to theL2 inner product:

( fn, fm) =
∫ L

0
fn(x) fm(x)dx. (5.56)

(Note:not .. f ∗
m(x) ..), which is easily seen by direct integration:

If n 6= m:
∫ L

0
sin(Knx) sin(Kmx)dx = sin(KnL − KmL)

2(Kn − Km)
− sin(KnL + KmL)

2(Kn + Km)
= 0 (5.57)
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after application of (5.54).
If n = m:

∫ L

0
sin2(Knx)dx = 1

2 L − sin(2KnL)

4Kn
= 3n. (5.58)

We now seek an expression for the Green’s function, defined by:

d2ĝ

dx2
+ k2ĝ = −δ(x − y)

c2
0

(5.59)

in the form (5.52). Substitution of the series, multiplication left- and right-hand side byfm, and inte-
grating over[0, L] yields (because of orthogonality):

(k2 − K 2
m)3mAm = − fm(y)/c

2
0. (5.60)

Hence we have:

ĝ(x, y) = 1

c2
0

∞∑

n=0

fn(x) fn(y)

(K 2
n − k2)3n

. (5.61)

We see explicitly that:

i) the Green’s function is indeed symmetric inx and y (source and observation points) as stated
earlier in section 3.1 (reciprocity), and

ii) any source with a frequencyω = Kn c0 (so thatKn = k) yields an infinite field, in other
words: resonance. Note that in generalKn is complex, so that such a source strength increases
exponentially in time.

When the frequencyω of the source is close to a resonance frequency this resonance will dominate the
response of the pipe segment and we can use a single mode approximation of the Green’s function.
This is the approximation which we will use when discussing the thermo-acoustic oscillations in a
pipe segment (Rijke tube, section 5.5).

5.4 Self-sustained oscillations of a clarinet

5.4.1 Introduction

The coupling of acoustic oscillations to mechanical vibrations is a technically important problem
[245]. In some case such a coupling can cause the failure of a security valve. Instead of looking at
a technical application we are going to consider a musical instrument. The model used is very crude
and only aims at illustrating the principles of two methods of analysis:

– the stability analysis;

– the temporal simulation.

In the first case we consider a linear model and deduce the minimal blowing pressure necessary to
obtain self-sustained oscillations. In the second case we consider a simplified non-linear model de-
veloped by McIntyreet al. [130] which can be used for time domain simulation. The aim ofthe
simplification is to allow for a real time simulation of a clarinet! We will restrict our discussion to the
principle of the solution of the problem. The results of the calculations can be found in the literature.
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5.4.2 Linear stability analysis

A simplified model of a reed instrument like a clarinet is a cylindrical pipe fed by a pressure reservoir
P0 (the mouth) through a valve (reed). The reed has a massmr and is maintained at a rest positionhr

by a spring of constantKr . The apertureh of the valve is assumed to be controlled by the pressure
difference1p = P0 − p′ between the mouth pressureP0 and the acoustic pressurep′ in the pipe just
behind the reed (figure 5.17). The equation of motion of the reed is:

h uB

mr

Kr

Sr

p′

u′

L

S

p′ ≃ 0

Figure 5.17 Simplified clarinet.

mr
d2h

dt2
+ γr

dh

dt
+ Kr (h − hr ) = −Sr (P0 − p′) = −Sr1p. (5.62)

γr is the damping coefficient of the reed,Sr is the surface of the reed andh is the aperture of the reed
channel through which the air flows from the mouth to the pipe.We assume that the flow in the reed
channel is quasi-stationary and that at the end of the reed channel a free jet is formed. Neglecting
pressure recovery by mixing of the jet with the air in the pipewe assume the pressurep′ to be uniform
in the jet and equal to the pressure at the pipe inlet.

The flow volumeQr of air into the pipe is given in this approximation (if we neglect friction) by the
equation of Bernoulli:

Qr = uBhw = hw(2|1p|/ρ) 1
2 sign(1p) (5.63)

wherew is the width of the reed channel anduB the (Bernoulli) velocity of the air in the jet. The
acoustic velocityu′ at the entrance of the pipe (x = 0) is given by:

u′ = Qr

S
(5.64)

whereS is the pipe cross sectional area. If we consider a small perturbation of the rest position (p′ ≪
P0) we can linearize the equations and consider the behaviour of a harmonic perturbationp′ = p̂ eiωt .

The steady state values ofh andQr are given by:

h0 = hr − Sr P0

K
, Q0 = u0h0w, u0 = (2P0/ρ0)

1
2 .

The linear perturbations are governed by the equations:

(−ω2mr + iωγr + Kr )ĥ = Sr p̂ (5.65a)

ûB = −u0 p̂

2P0
(5.65b)

Q̂r = w(ĥu0 + h0ûB). (5.65c)
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We further assume that the acoustical behaviour of the pipe is described by an impedanceZp(ω) so
that:

p̂ = ZpQ̂r /S. (5.65d)

Since the system of equations 5.65a–5.65d is homogeneous, it can only be satisfied if the determinant
vanishes. This condition yields an equation from which we can calculateω for a givenP0:

−ω2mr + iωγr + Kr

Sr u0
=

( S

Zpw
+ h0u0

2P0

)−1
. (5.66)

If Im (ω) > 0 the perturbations are damped, and if Im(ω) < 0 the perturbations grow in time. It is clear
that the steady state amplitude in a clarinet can only be reached by non-linear saturation of the system
because linear theory predicts a monotonically growing or decaying amplitude. When Im(ω) = 0
the perturbations are neutral, they do not change in amplitude. If we assume Im(ω) = 0 equation
(5.66) becomes an equation for Re(ω) and P0. This allows to determine the threshold of pressure
above which oscillations occur and the frequency of the mostunstable mode which starts oscillating.
A discussion of the solution of this clarinet model, including non-linear effects, is given by Gazengel
[68] and Kergomard in [76].

It is interesting to note that in some cases the inertia of theflow in the reed which we neglected is
the main driving force for instability. This is for example the case in harmonium reeds [225] and for
valves in water like river gates [107]. A discussion of the flow through double reeds and the vocal
folds is given by Hirschberg [76].

5.4.3 Rayleigh’s Criterion

An interesting analysis of the problem of clarinet oscillation is already obtained by considering the
very simple quasi-stationary reed model:

h = hr − Sr1p

K
and Qr = hw

√
2|1p|
ρ0

sign(1p).

When1p = 0 there is obviously no flow becauseu =
√

2|1p|/ρ0 sign(1p) vanishes. When1p >
hr K/Sr = 1pmax the reed closes andh = 0. Between these two zero’s ofQr it is obvious that
Qr > 0 and should be a maximum at a pressure difference which we call critical 1pcrit ≃ 1

31pmax.
The acoustical power

W = 1

T

∮
p′ dV = 1

T

∫ T

0
p′ dV

dt
dt = 1

T

∫ T

0
p′Q′

r dt

produced by the fluctuating volume flowQ′
r = dV

dt should at least be positive. We consider here an
oscillation periodT in order to sustain oscillations. FluctuationsQ′

r = (dQr /dp′)p′ in Qr induced
by pressure fluctuations in the pipe are negative for1p < 1pcrit and positive for1p > 1pcrit . This
explains the presence of a blowing pressure threshold belowwhich the clarinet does not play. The
criterion

∮
p′Qr dt > 0 is called the Rayleigh criterion for acoustical instability. We will use it again

in the analysis of thermo-acoustical oscillations.
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5.4.4 Time domain simulation

Early attempts to describe the non-linearity of a clarinet were based on a modal expansion of the
acoustic field in the pipe. This implies that the Green’s function was approximated by taking the
contribution of a few (one to three) modes5 into account (equation (5.61)). The typical procedure is
further to assume a weak non-linearity which implies that a perturbation method like the method of
averaging can be used to calculate the time dependence of themodes [67]. A full solution is obtained
by the method of harmonic balance discussed by Gilbert [69].

As stated by McIntyre [130] the non-linearity in a clarinet is not weak. In fact the most spectacular
non-linearity is due to the limited movement of the reed uponclosing. The collision of the reed against
the wall of the mouthpiece can result in a chaotic behaviour [68]. The key feature of a clarinet mouth-
piece is that this abrupt non-linearity is replaced by a softer non-linearity because upon touching the
wall the reed gradually closes as it is bent on the curved wallof the mouthpiece (called the lay) and
its stiffness increases because the oscillating part is becoming shorter.

However, the high resonance frequency of the reedω2
r = Kr /mr suggests that a quasi-stationary

model of the reed could be a fair first approximation. Hence McIntyre [130] proposes to use the
steady approximation of (5.62):

Kr (h − hr ) = −Sr (P0 − p′) = −Sr1p (5.67)

combined with (5.63), (5.64) and (5.65d). The numerical procedure is further based on the knowledge
that the acoustic pressurep′ at the reed is composed of an outgoing wavep+ and an incoming wave
p− (result of the reflection of earlierp+ wave at the pipe end):

p′ = p+ + p−. (5.68)

The pipe has a characteristic impedanceZc (= ρ0c0 when friction is neglected) so that:

u′ = p+ − p−

Zc
. (5.69)

If we now define the reflection functionr (t) as the acoustic wavep− induced by a pressure pulse
p+ = δ(t), we find:

p− = r ∗ p+ (5.70)

where∗ indicates a convolution (equation C.10). Elimination ofp+ andp− from (5.68)–(5.70) yields:

p′ = Zcu
′ + r ∗(Zcu

′ + p′) (5.71)

whereu′ is calculated at each time step by using (5.63), (5.66), and (5.67):

u′ = w

S

(
hr − Sr1p

Kr

)(2|1p|
ρ0

) 1
2

sign(1p). (5.72)

The solution is obtained by integrating (5.71) step by step,using the previous value ofp′ to calculate
u′ in the convolution of the right-hand side (5.71).

5Standing waves in the pipe closed at the reed end.
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The interesting point in McIntyre’s approach is that he usesa reflection functionr (t) (which is the
Fourier transform ofR(ω) = (Zp−ρc)/(Zp+ρc)) rather thanzp, the Fourier transform ofZp. Using
zp would have given the integral equation:

p′ = zp∗u′ (5.73)

which can be combined with (5.72) to find a solution. It appears, however, that (5.73) is a numerically
slowly converging integral becausezp has an oscillatory character corresponding to the responsep′

of a close tube to a pulseu′ = δ(t) (tube closed at pipe inlet).

u′ = δ(t)
p′ = zp

p+ = δ(t) p−

p− = r

a)

b)

y = 0 y = L

Figure 5.18 Difference betweenzp andr .

The reflection functionr is in fact calculated in a semi-infinite tube and therefore has not such an
oscillatory character (figure 5.18). So it appears that a Green’s function which is not tailored may be
more appropriate than a tailored one.

5.5 Some thermo-acoustics

5.5.1 Introduction

We have focused our attention until now on wave propagation and interaction of acoustic fields with
isentropic flows. In section 2.6 we have seen that variationss′ in entropy should act as a volume
sound source (if we usep′ as acoustic variable). We will now discuss such effects as aninteresting
example of self-sustained oscillations in resonators. At low Mach numbers in gases, entropy variations
due to dissipation are negligible (order 0.2 M2). Entropy fluctuations occur mainly as a result of
combustion (or vapour condensation) in the bulk of the flow oras a result of heat conduction at the
wall. Mixing of hot and cold gases results into fluctuations of the entropy caused by the unsteady
heat conduction (equation 2.87). For ideal gases one can, however, show that this sound source has
a vanishing monopole strength (Morfey [141], Obermeier [161]). Convection of entropy spots during
the mixing of a hot jet with the environment dominates the lowMach number behaviour (Crighton
[42], Morfey [141]). This sound source has the character of adipole.

Combustion instability is often triggered by the strong dependence of combustion processes on tem-
perature. The reaction rates depend exponentially onT . Hence temperature fluctuations associated
with pressure fluctuations will induce variation in combustion rate. This implies a source of sound
which, if it is in phase with the acoustic field, can lead to instability. Even in free space this implies
a strong increase in sound production. We experience this effect when we ignite the flame of a gas
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burner. Placed in a closed tube a flame can couple with standing waves. This type of instability is
known in aircraft engine as a re-heat buzz (Keller [103], Bloxsidgeet al. [19]). The “singing flame”
has already been discussed extensively by Rayleigh [186]. More recent information on the interaction
of combustion with acoustic is found in Crightonet al. [42], Candel & Poinsot [27], McIntosh [129],
and Putnam [182].

We will now focus our attention on the effect of unsteady heattransfer at walls. This type of interaction
has already attracted the attention of Rayleigh [186] in theform of the Rijke tube oscillation. This
experiment was carried our first by De Rijke around 1848 [204]. He found that placing an electrically
heated gauze in the lower part of a vertical tube open at both ends would induce strong acoustical
oscillations. De Rijke considered the use of such a device asan organ pipe. The subject has been
studied as a model for combustion instability by many scientists, among which Merk [134], Kwon
and Lee [111], Bayly [9], Heckl [74], Gervais [174], and Raun[185].

Closely related phenomena of acoustical oscillations induced by a temperature gradient in a tube
is used by scientists to detect the level of liquid Helium in areservoir. This phenomenon has been
extensively studied by Rott [147, 210, 211, 212, 213, 255], in a very systematic series of papers. The
fascinating aspect of this phenomenon is that it can be inverted, acoustic waves interacting with a wall
induce a transfer of heat which can be used to design an acoustically driven cooling machine. Such
engines have been studied by Wheatley [249], Radebaugh [183] and Swift [228]; see also [169]. The
ultimate engine consists of two thermo-acoustic couples (elements with a a temperature gradient): one
at the hot side which induces a strong acoustic field and a second at the cold side which is driven by
the first (figure 5.19) [229]. This is a cooling machine without moving parts!

driver cooler

very hot cold very cold cold

Figure 5.19 Heat driven acoustical cooling engine.

We will limit our discussion to a simple analysis of the Rijketube oscillation.

5.5.2 Modulated heat transfer by acoustic flow and Rijke tube

We consider a thin strip of metal of temperatureTw and widthw aligned along the mean flow direction
in a uniform flow u∞. Along the strip viscous and thermal boundary layersδV(x) and δT (x) will
develop. We assume thatδV/w andδT/w are small and thatωw/u∞ ≪ 1, while δV/δT = O(1). For
small fluctuationsu′ of u∞ around an average valueu0 the fluctuations in the heat transfer coefficient
can be calculated as described by Schlichting [217] for any mean flow of the typeu0 ∼ xn (wedge
flow). We now limit ourselves to the flat plate (n = 0) and we use a low frequency limit from which the
memory effect will become more obvious than from Schlichting’s solution. We further approximate
the velocity and temperature profiles in the boundary layersby:

u(y) = u∞
δV

y (5.74)

T(y)− Tw
T∞ − Tw

= y

δT
. (5.75)
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Such an approximation is only valid for low frequencies and small perturbation amplitudes, corre-
sponding toωw/u∞ ≪ 1 andu′/u0 ≪ 1. Outside the boundary layers the flow is uniform. In this
approximation the viscous stressτw at the wall is given by:

τw = η
u∞
δV

(5.76)

and the heat transferq at the wall by:

q = −K
(∂T

∂y

)
y=0

= −K
T∞ − Tw
δT

. (5.77)

Using an integral formulation of the conservation law in boundary layer approximation we find [217]:

[ ∂
∂t

+ 1

3
u∞

∂

∂x

]
δ2

V = 4ν − 2δ2
V

u∞

∂u∞
∂t

(5.78a)

[ ∂
∂t

+ 2

3
u∞

( δT

δV

) ∂
∂x

]
δ2

T = 4a + 1

3
u∞

( δT

δV

)3 ∂

∂x
δ2

V for δT < δV (5.78b)

[ ∂
∂t

+ u∞
(
1 −

( δT

δV

)2) ∂
∂x

]
δ2

T = 4a − u∞
(2

3
− δT

δV

) ∂
∂x
δ2

V for δT > δV (5.78c)

wherea is the thermal diffusivity of the gas:

a = K

ρCP
. (5.79)

Note that we have used the assumption(Tw − T∞)/T∞ ≪ 1 in order to keep the equations simple.
This is certainly a very crude approximation in a Rijke tube.The boundary conditions are:

δV(0) = δT (0) = 0 atx = 0. (5.80)

In air we havePr < 1 and hence in generalδV < δT . We will, however, use further the assumption
Pr = 1 because we do not expect an essentially different physicalbehaviour.

The stationary solution of (5.78a) is:

δV =
(12νx

u0

) 1
2

(5.81)

while δT can be calculated from (5.78b):

δT = δV . (5.82)

Using the notationδ0 = δT = δV for the stationary solution we find in linear approximation:

[ ∂
∂t

+ 1

3
u0
∂

∂x

]
δ′

V = − δ0

u0

∂u′

∂t
− 1

3
u0

(δ′
V

δ0
+ u′

u0

)∂δ0

∂x
(5.83a)

[ ∂
∂t

+ 2

3
u0
∂

∂x

]
δ′

T = +1

3
u0
∂δ′

V

∂x
+ 1

3
u0

(δ′
V − δ′

T

δ0
− u′

u0

)∂δ0

∂x
, (5.83b)
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hot grid

x=L

x=0

x=−L u0

✻

Figure 5.20 Rijke tube.

whereu∞ = u0 + u′. These equations can be solved by integration along the
characteristics:(x = 1

3u0t) for (5.83a) and(x = 2
3u0t) for (5.83b). We see

that the perturbations inδ′
T move along the strip with a phase velocity2

3u0

which implies a “memory” of the heat transferq for perturbationsu′ of the
mean flow. This memory is crucial for the understanding of theRijke tube
instability.

The Rijke tube is an open pipe of length 2L (figure 5.20). In the pipe we
place a row of hot strips (or a hot gauze). When the tube is vertical a flowu0

will be induced by free convection (the tube is a chimney). When the tube is
horizontal we imposeu0 by blowing.

It appears that the tube starts oscillating at its fundamental frequency f0 =
c/4L when the heating element is placed atx = −1

2 L, at a quarter of the tube
length in the upstream direction (at the lower part of the tube for a vertical
tube). We will now explain this. Note that some excitation ofhigher modes
can be obtained but these are weak because of increased radiation losses at
high frequencies. Hence we will assume that only the fundamental mode can
be excited. This corresponds to a single mode expansion of the Green’s func-
tion (5.61). As proposed by Rayleigh [186] we start our analysis by placing
the warming element at the center of the tube (x = 0).

As shown in figure 5.21 the acoustic velocityu′ at x = 0 will vanish for the fundamental mode. The
variation of heat transferq is only due to the temperature fluctuationsT ′ = (γ − 1)γ −1 p′ of the gas
in the main flow. If we neglect the “memory” effect of the heat capacity of the boundary layers the
heat fluxq decreases whenp′ increases becauseTw − T is reduced.

The acoustic effect of the unsteady heat transferq is given in a quantitative way by the linearized
equation 2.69 in which (2.70) has been substituted:

1

c2
0

∂2 p′

∂t2
− ∇2 p′ ≃ ρ0

c2
0T0

(∂T

∂ρ

)
S

∂

∂t
∇·q (5.84)

which corresponds to a volume source term∂2(βρ f )/∂t2 in (2.65) or in linearized form∂(m/ρ0)/∂t .

x = L

x = 0

x = −L u0

p′ = p̂(x) cosωt

u′ = −dp̂

dx

sinωt

ρ0ω

Figure 5.21 Pressurep′ and acoustic velocityu′ distribution for the fundamental mode.
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As derived in section 2.7 the powerW produced by the source is (2.82):

W =
∫∫∫

V

〈
p′ m

ρ0

〉
dV. (5.85)

This equation can also be derived from the equation for the work A performed by volume variation
dV :

A =
∮

p dV (5.86)

which can be written as:

A =
∫ T

0
p

(dV

dt

)
dt (5.87)

where dV/dt =
∫

m/ρ0 dV andT = 2π/ω is the oscillation period. The rate of volume injection
dV/dt corresponds to the volume integral

∫
V ∇·q dx =

∫
S q ·n dσ which is the integral of the heat

transfer from the heating element. Furthermore, as the transfer of heat from the wall to the gas implies
an expansion of the gas we can also understand (5.84) in termsof (5.87).

We now easily understand that asq is opposite in phase withp′ the presence of a hot element atx = 0
will damp oscillations of the fundamental mode of the pipe. Hence we understand that the Rijke tube
oscillation is due to modulation ofq by the acoustic velocity fluctuationsu′. An optimal amplitude of
q is obtained just at the end of the pipe atx = −L whereu′ has the largest amplitude. However, at this
placep′ is close to zero so that we see from (5.85) that the source is ineffective at this position. We
therefore see that the positionx = −1

2 L is a compromise between an optimum forp′ and an optimum
for q. We still have to understand why it should bex = −1

2 L and notx = 1
2 L. The key of this is that

for x < 0 the pressurep′ increases when the acoustic velocityu′ enters the pipe (u′ > 0) upwards
while for x > 0 the velocity is downwards at that time. If the heat transferwould react instantaneously
on u′ thenq would vary as sin(ωt) while p′ varies as cos(ωt). As a consequenceW integrated over
a period of oscillation would vanish. Hence the occurrence of oscillations is due to a delayτ in the
reaction ofq onu′. As the delayτ is due to the “memory” of the boundary layer we expect thatτ > 0,
since the boundary layer integrates, and cannot anticipateon perturbations ofu′.

u′(x > 0, t)
✁✁☛

q(x, t)
❄

u′(x < 0, t)❆
❆❑

τ✛✲

p′(x, t)PP✐
t

Figure 5.22 Sketch of time dependence ofp′ andu′ in the upper (x > 0) and lower (x < 0) part of the tube. A memory
effect of 1

2π will shift the phase of the heat transferq from that ofu′ (the quasi-steady approximation)
toward that ofp′. It is the part ofq which is in phase withp′ that produces the sound in a Rijke tube.

As we see from the diagram of figure 5.22 forωτ = 1
2π , the delayed heat fluxq is in phase withp′ if

x < 0. Pulsations induced by a hot grid placed atx > 0 would involve a larger delay:ωτ = 3
2π . As
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we will explain such a condition implies a very low flow velocity and hence much weaker oscillations.
In practice this oscillation mode at low velocities is not observed. The time delayτ is determined by
the time that a perturbation inδ′

T remains along the strip. When we blow very hard the residencetime
τ of a perturbationδ′

T in the boundary layer on the strip will be very short because we expect from
(5.83b) that:

τ = O
( 3w

2u0

)
(5.88)

wherew denotes the length of the heated strip in flow direction. Whenwe do not blow hard enough
the boundary layersδ0 will be very thick. The hot gas remains around the warming element blocking
the heat transfer. Also whenπ 6 ωτ 6 2π we expect that the oscillations will be damped out. Hence,
an optimum of pulsations may be expected forωτ = 1

2π :

wω

u0
= π

3
. (5.89)

This behaviour is indeed verified by experiments. Of course in order to obtain a stable oscillation the
temperatureTw should reach a critical limit. For a horizontal tube at a fixedu0, imposed by blowing
through the pipe, this is less critical6 than in a vertical pipe where the temperature element also drives
the main flowu0. In experiments with a horizontal pipe it is quite easily observed that blowing too
hard reducesτ such, that pulsations disappear.

While we have seen that certain conditions are favourable for an oscillation we did not yet discuss
the non-linear effects leading to saturation. The most obvious effect is that when the acoustic particle
displacement becomes comparable to the width of the strip:

u′

ωw
= O(1), (5.90)

back flow will occur from the wake towards the strip. The stripis then surrounded by pre-heated gas
and this blocks the heat transfer. Note that at very large amplitudes (u′/ωw > 1) there is a wake
upstream of the strip during part of the oscillation period.We now understand, by combination of
(5.89) and (5.90), why in the experiment one finds typical amplitudes of the order ofu′ = O(u0). The
proposed saturation model has first been used by Heckl [74]. It is interesting to note that Rayleigh
[186] describes this non-linear effect of saturation as a “driving” mechanism.

A comprehensive theory of the Rijke tube oscillation, including non-linear effects and the influence of
large temperature differences, has not yet been presented.We see that such a theory is not necessary
to predict the order of magnitude of the oscillation amplitude. On the contrary, it is sufficient to isolate
the essential limiting non-linearity.

5.6 Flow induced oscillations of a Helmholtz resonator

In view of the large amount of applications in which they occur, flow induced pulsations of a
Helmholtz resonator or wall cavity have received considerable attention in the literature [11, 26,

6Since the design of a vertical Rijke tube driven by natural convection is not easy we provide here the dimensions of a
simple tube. For a glass pipe of 2L=30 cm length and an inner diameter ofd =2.5 cm, one should use a metal gaze made of
wires of 0.2 mm to 0.5 mm diameter, the wires being separated by a distance in the order of 1 mm. This gaze can be cut in a
square of 2.5×2.5 cm2. The bended corners can be used to fix the gaze at its position (x = −1

2 L). A small candle is a very
suitable heat source. The pipe will produce its sound after the candle is drawn back.
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46, 206, 53, 73, 83, 84, 89, 132, 157, 158, 208]. In principle the flow instability has already been
described qualitatively in section 5.1. We will now more specifically consider a grazing uniform flow.

We will now discuss models which can be used to predict the order of magnitude of the pulsations.
The configuration which we consider is shown in figure 5.23. Self-sustained oscillations with a fre-
quencyω close to the resonance frequencyω0 of the resonator occur when the phase condition for a
perturbation in the feedback loop (shear layer/resonator)is satisfied and the gain is sufficiently large.
Whenω = ω0 we find a maximum of the pulsation amplitude and the phase condition is entirely
determined by the shear layer. In principle we should add to the convection time of the perturbation
along the shear layer a phase shift at the “receptivity” point upstream and another at the “excitation”
point downstream. These corrections are either due to “end corrections” or to the transition from a
pressure perturbationp′ in the resonator to a velocity or displacement perturbationof the shear layer.
We now ignore these effects for the sake of simplicity and because we do not have available any theory
that predicts these corrections.

In both configurations of figure 5.23 in first order approximation perturbations of the shear layer (at the
opening of the resonator) propagate with a velocityuc of the order of12u0. It appears from experiment
that when the travel time of a perturbation across the opening widthw roughly matches the oscillation
period 2π/ω0 of the resonator (or a multiple of 2π/ω0) pulsations occur. Typically one finds a velocity
uc ≃ 0.4u0. Hence the phase condition for instability is [76]:

ω0w

0.4u0
= 2πn; n = 1,2,3, ... . (5.91)

More complex phase condition depending on the geometry and the Mach number has been reported by
[16, 206, 208]. The first hydrodynamic mode (n = 1) is usually the strongest because it corresponds
with the highest velocity at which pulsations occur. Furthermore when the hydrodynamic wave length
(w/n) becomes comparable to the gradient lengthδ in the grazing velocity profile (boundary layer

u0

u0

V

V

w

Figure 5.23 Helmholtz resonator in a wall with grazing flow.
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thickness at the wall) the flow becomes stable and the perturbations are damped. Typically for:

δω0

0.4u0
> 2 (5.92)

the flow is linearly stable. A currently used cure for pulsations is to place a device called “spoiler”
which increasesδ just upstream of the cavity [25, 206]. Equation (5.92) can beused to choose a rea-
sonable spoiler height. However, we found in some experiments that this is no guarantee for stability
[25]. Equation (5.92) imposes an upper bound to the hydrodynamic mode instability. In most exper-
iments mode numbers higher thann = 5 are not observed. A remarkable exception is the oscillation
found inside solid propellant rockets for which 6≤ n ≤ 12 [242].

It is often assumed that the perturbations along the shear layer grow according to a linear theory. It
appears that a linear theory is only valid for low pulsation amplitudes, in the range ofu′/u0 ≤ 10−3.
In the experiments one observes in most cases for a grazing uniform flow a spectacular non-linear
behaviour of the shear layer [25]. The vorticity of the shearlayer is concentrated into discrete vortices.
At moderate acoustic amplitudeu′/u0 = O(10−1) one can assume that the acoustic field only triggers
the flow instability but does not modify drastically the amount of vorticity Ŵ shed at the upstream
edge of the slot. This leads to the model of Nelson [25, 76, 157, 158] in which one assumes a vortex
of strengthŴ given by:

dŴ

dt
= dŴ

dx
· dx

dt
= u0 · 1

2u0 (5.93)

travelling at a velocityuc = 0.4u0 across the slot (see figure 5.7). A new vortex is generated following
Nelson’s experimental observations at the moment that the acoustic velocityu′ is zero and is increasing
(directed into the resonator,p′ in the resonator is at a minimum).

Using Howe’s analogy as described in section 2.6 and 2.7 one can calculate the acoustic pulsation
amplitude. As the source strength∇·(ω×v) is independent ofu′ we find a finite amplitude by balancing
the friction, radiation and heat transfer losses with the power generated by the vortices. As friction
and radiation losses scale onu′2, we would expect from this theory to find pressure amplitudesscaling
with the dynamical pressure of the flowp′ = O(1

2ρu2
0). This occurs indeed when the edges of the slot

are sharp. Typically, the acoustic powerW generated by vortices due to instability of the grazing flow
along an orifice of area(w × B) is given by

W = O(5 · 10−2)1
2ρ0u2

0wBu′

whereu′ is the amplitude of the acoustic velocity fluctuations through the orifice.

−(ω×v)

v

u′

W

t

absorption

production

T

Figure 5.24 Absorption of acoustic energy by vortex shedding.
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The amplitude of the pulsations depends critically on the shape of the edge at which vortex shedding
occurs. This effect can be understood as follows. Upon formation of a new vortex the acoustic fieldu′

is directed towards the interior of the resonator. Using Howe’s formula:

W = −ρ0

∫∫∫

V

〈(ω×v)·u′〉 dV, (2.100)

we see that the vortex is initially absorbing energy from theacoustic field (figure 5.24) because−(ω×v)
is opposite tou′. At a sharp edgeu′ is large because the potential (acoustic) flow is singular. When an
edge is rounded offu′ is not singular (figure 5.25) and the initial absorption willbe modest.

u0

vortex

V

Figure 5.25 Rounded upstream edge.

The net sign ofW over a periodT = 2π/ω0 of oscillation depends of course also on the amount of
energy produced by the vortex in the second half of the acoustic period when the acoustic velocity
u′ is directed outwards from the resonator [25, 108]. Of course, whenu0 is so large that the travel
time (w/0.4u0) of the vortex across the slot is shorter than half a period (w/0.4u0 <

1
2T), then only

absorption occurs. Self-sustained oscillations are impossible in this case. This effect can easily be
experienced by whistling with our lips. If we increase the blowing velocity the sound disappears.

The main amplitude limitation mechanism at high amplitudes, u′/u0 > 0.2, is the shedding of vorticity
by the acoustic flow. At the upstream edge this implies an increase of the shed vorticityŴ with u′

and a dependence of the initial damping onu′3. Howe [85] observes that at high amplitudes the
vortex sound absorption scales onu′3 whereas the sound production scales onu′u2

0. Hence, when
those effects balance each other, the amplitudeu′ scales onu0. This behaviour is indeed observed
[25, 108]. A typical amplitude observed in Helmholtz resonators isu′/u0 = O(10−1). This amplitude
is also typical of a recorder flute or a whistle [76, 237].

In [108] it is observed that at very high amplitudes (u′/u0 = O(1)) in a resonator formed by side
branches along a pipe, non-linear wave propagation resulting into the generation of non-resonant
cavity modes was a major amplitude limiting mechanism. Another possible mechanism at high am-
plitudes is the transition of acoustical flow from laminar into turbulent (section 4.5.3).

The discussion given here provides some qualitative indications for various basic phenomena of cav-
ity oscillation. Models as the one of Nelson [157, 158] provide insight but are not able to predict
accurately the amplitude of the oscillations. In many engineering applications insight is sufficient for
taking remedial measures. However, when a prediction of theamplitude is required a more detailed
flow model is needed. Such models are not yet available.
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Exercises

a) Calculate the impedance seen by a piston placed at the endx = 0 of a tube closed atx = L by an
impedanceZ(L). Neglect friction in the tube. ForZ(L) = ∞ (closed wall) calculate the power generated
by the piston. Calculate the amplitude of the acoustic field for Z(L) 6= ∞.

b) When the impedanceZ(L) at a pipe end is small,|Z(L)| ≪ ρ0c0, one can consider the pipe being
terminated at virtual positionx = L + δ by a purely resistive impedanceZ(L)′ = ReZ(L). δ is called
the end correction of the pipe. Derive a relationship between δ andZ(L).

x = 0 x = L x

S up up

Sp

Figure 5.26 Two pistons along a pipe.

c) Consider two identical pistons of surfaceSp placed at a distanceL from each other along an infinitely
extended pipe (figure 5.26) of cross sectional surfaceS. Assume that the two pistons move harmonically
with the same velocitŷup eiωt . Show that under specific conditions the acoustic field vanishes forx > L
andx < 0. How large is the amplitude of the acoustic field under thesecircumstances for 0< x < L ?

S2

S1

up

L

Figure 5.27 T-junction.

d) Consider a piston placed at the end of a closed side branch of cross sectional surfaceS1 along a main
pipe with a cross sectional surfaceS2 (figure 5.27). The side branch has a lengthL. The edges of the
junction at the main pipe are rounded off. Calculate the amplitude p̂ of the acoustic field at the piston
following linear theory forωS1/2/c < 1 as a function ofS1/S2 andL. Estimate the largest amplitudes
that may be reached before linear theory fails.

e) What is the impedanceZp of the piston for the configurations of figure 5.28a, b and c. Assume that
radiation losses at the open ends are negligible. Neglect friction in the pipe. Are these configurations at
certain critical frequencies equivalent to closed resonators?

f) Consider a clarinet as a cylindrical pipe segment of 2 cm diameter and 1 m long driven by a piston with
a velocityup = ûp eiωt . Assume that̂up = 1 m/s which is a typical order of magnitude. Assume that
the pipe is driven at the first (lowest) resonance frequency.Calculate the pressure at the piston assuming
an ideal open end behaviour without radiation losses or flow separation. Calculate the amplitude of the
fluid particle displacement at the pipe end. Calculate the same quantities if a quasi-stationary model is
used at the pipe end to describe flow separation of the outgoing acoustic flow while friction is neglected.
Is a quasi-stationary model reasonable?
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a)
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Figure 5.28 Coupled T-junctions.

g) A pipe segment with a different cross sectional areaS2 than the cross sectionS1 of the rest of the pipe
can be used as a filter to prevent the propagation of waves generated by a piston. Two solutions can be
consideredS2 > S1 andS1 < S2 (figure 5.29a and b). Assuming an ideal open end atx = L1 + L2 + L3,
provide a set of equations from which we can calculate the amplitude of the acoustic velocitŷu endat the
pipe end for a given velocitŷup of the piston.

h) Introduction:
A possible 3-D model for a kettle drum consists of a cavity in free space, with acoustic perturbations

up
p′ ≃ 0

L1 L2 L3

S1 S2 S1

up
p′ ≃ 0S1 S2 S1

L1 L2 L3

Figure 5.29 Resonators in a pipe.
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p = p̂eiωt in- and outside the cavity:

∇2 p̂ + k2 p̂ = 0, iωρ0û + ∇ p̂ = 0

for k = ω/c0. The cavity is hard-walled on all sides (û·n = 0) except one, which is closed by an
elastic membrane (tensionT , mass densityσ ). The membrane displacementη = η̂ eiωt is driven by (and
drives...) the pressure difference across the membrane:

T∇2η̂ + ω2σ η̂ = pupper− plower

The normal velocitŷu·n at both sides of the membrane is equal to∂η/∂ t = iωη̂ eiωt , as the air follows
the membrane.

A basic musical question is: what is the spectrum of this system, i.e. for which (discrete) set{ωn} does
there exist a solution without forcing? Note that since the waves radiate away into free space any solution
will decrease and die out (called “radiation damping”), and(in general) the possibleωn’s will be complex,
with Im(ωn) > 0.

Problem:
A 1-D variant of the kettle drum problem is a semi-infinite pipe (06 x < ∞) of typical radiusa, closed
atx = 0, and a piston-like element atx = L (modelling the membrane) driven by the pressure difference
acrossx = L, and kept in position by a spring.

p̂xx + k2 p̂ = 0 for x ∈ (0, L) ∪ (L,∞)

−8T a−2η̂ + ω2σ η̂ = p̂(L+)− p̂(L−) at x = L

p̂x = 0 at x = 0

p̂x = ω2ρ0η̂ at x = L

outgoing waves forx → ∞.

Determine the equation forω, solve this for some simple cases, and try to indicate the general solution
graphically in the complexω-plane for dimensionless groups of parameters. Are there solutions with
Im(ω) = 0? How are these to be interpreted physically?

i) Consider the Helmholtz resonator as an acoustic mass-spring system. What are the acoustic massm and
the spring constantK of this mass-spring system.

j) Assuming thatp′
ex = 0, how would the Helmholtz resonator react to a periodic volume injectionQ =

Q̂ eiωt into the bottle (e.g.a piston moving in the bottom wall).

L

up

Sn
V

S

Figure 5.30 Helmholtz resonator driven by a piston.

k) Consider a Helmholtz resonator in a semi-infinite pipe driven by a piston atx = 0 (figure 5.30). Cal-
culate the transmitted acoustic field following linear theory. What is the condition for which there is no
transmission.

l) Consider the volumeV between two orifices of equal aperture surfaceSd ≪ Sp in a pipe of surfaceSp

(figure 5.31). Calculate the transmission coefficient and reflection coefficient following linear theory for
an acoustic wavep+ eiωt−ikx incident from the left.
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Sp V Sd

Figure 5.31 Two orifices
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V
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water
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Figure 5.32 Exercise m

m) Consider a volumeV filled with air connected by a short pipe of lengthℓ to a pipe filled with water
(figure 5.32). Calculate the reflection and transmission coefficient following linear theory for a wave
p+ eiωt−ikx incident from the left.

n) Assumingρ0ωℓû ≫ 1
2ρ0û2, estimate the maximum acoustic velocityû which can be reached for given

volume injectionQ̂ eiωt in a Helmholtz resonator if friction and heat transfer are neglected. Compare
this with the maximum pressure which can be reached in a1

4λ pipe resonator (with one open end).

o) Calculate the value of̂pin/ p̂ex at resonance for a Helmholtz resonator in the presence of mean flow of
velocityu0 through the neck.

p) Using the integral formulation (3.12) on[0, L] using the Green’s functionga corresponding to the ge-
ometry of figure 5.18a (with(∂ga/∂y)y=0 = 0 and(ga)y=L corresponding to the impedance of the pipe
seen from the positiony = 0) we find:

p′ = −ρ0c2
0

∫ t

−∞

[(∂ga

∂τ

)
u′(y, τ )

]
y=0

dτ.

Derive this equation starting from (3.12). This equation isequivalent to (5.73).

q) Calculate the expected acousticoptimal amplitude in a vertical Rijke tube of 1 m length and 5 cm
diameter in which a gauze with a strip of widthw = 1 mm has been placed atx = −0.25 m. Do you
expect that at this amplitude vortex shedding at the pipe endwill be a significant acoustic energy loss
mechanism?

r) Consider a Helmholtz resonator with a volumeV and a slot aperturew × B placed in a wall with a
grazing flow (figure 5.23). Given that the maximum power is given by

W = 0.051
2ρ0u2

0ûwB

estimate the amplitude of the acoustic pressurep̂ in the resonator for air if:

V = 3 m3, w = 0.3 m, B = 0.5 m.

(A car with open roof!). Assume that the effective neck length isℓ ≃ w.

s) Give an order of magnitude of the acoustical pressure fluctuations in a clarinet.



6 Spherical waves

6.1 Introduction

In the previous chapter we have considered the low frequencyapproximation of the acoustics of
pipes and resonators. Radiation of sound from such systems was assumed to be a small effect for
the internal acoustic field, and therefore could be neglected in our analysis. However, if sound would
not escape we would not hear it. Hence, for the calculation ofenvironmental noise the radiation is
crucial. Furthermore, as sound often is transferred through walls, the vibration of elastic structures is
an essential part of the radiation path. To keep things manageable we will assume that the vibrating
objects are small compared to the wave length (compact bodies) and that we radiate sound into an
unbounded homogeneous quiescent fluid (free space).

Starting from an exact solution of the acoustic field inducedby the pulsation and translation of a sphere
(section 6.2) we will derive an expression for the free field Green’s functionG0 (6.36,6.37). Taylor’s
series expansion ofG0 will be used to introduce the concepts of monopole, dipole, quadrupole, etc,
and multipole expansion (section 6.3). The method of imageswill appear to be a very powerful tool
to get insight into the effect of boundaries on radiation (section 6.4). After a summary of the classical
application of Lighthill’s analogy to free jets (section 6.5) we will consider the radiation of a compact
body by using Curle’s formalism (section 6.6). This will be used to get insight into the sound generated
by a ventilator. Finally the radiation from an open pipe termination will be discussed (section 6.7).

Note. Two-dimensional acoustic waves have a complex structure asmay be seen from the Green’s
functions given in Appendix E (see the discussion by Dowlinget al. [52]).

6.2 Pulsating and translating sphere

The wave equation in 3-D allows quite complex solutions. However, for the particular case of a spher-
ically symmetric acoustic field the wave equation reduces to:

1

c2
0

∂2 p′

∂t2
− 1

r 2

∂

∂r

(
r 2∂p′

∂r

)
= 0 (6.1)

wherer is the distance between the observation point and the origin. The key for solving (6.1) is that
we can formulate a 1-D wave equation for (rp′):

1

c2
0

∂2(rp′)

∂t2
− ∂2(rp′)

∂r 2
= 0. (6.2)

This result can easily be understood because acoustic energy scales withp′2 (equation 2.80a). Hence,
as the surface of a spherical wave increases withr 2 the amplitudep′(r ) should decrease asr −1 to keep
energy constant as the wave propagates.
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Compared to 1-D waves the relationship between pressurep′ and acoustic velocityv ′ now shows
a drastically new behaviour which depends on the ratio ofr and the acoustic wave length. In three
dimensions we have a region withkr ≪ 1 called “near field” in which we find a behaviour ofv ′ which
is close to that of an incompressible flow, while forkr ≫ 1 we find a “far field” region in which the
waves behave locally as plane waves. The radius of curvatureof the wave front is large compared to
the wave length.

These features may be derived from the radial component of the (linearized) momentum conservation
law:

ρ0
∂v ′

∂t
= −∂p′

∂r
(6.3a)

and the linearized mass conservation law:

∂(ρ ′r 2)

∂t
= −ρ0

∂(v ′r 2)

∂r
. (6.3b)

The mass in a volume shell 4πr 2dr changes as a result of the difference between 4πr 2v ′ and 4π(r +
dr )2v ′(r + dr ) in flux. We eliminateρ ′ by using the constitutive equationp′ = c2

0ρ
′, and eliminatev ′

by subtracting the time derivative ofr 2 times the momentum equation (6.3a) from the spatial derivative
of the mass equation (6.3b). This yields the wave equation (6.1).

The general, formal solution of (6.2) is:

rp′ = F
(
t − r

c0

)
+ G

(
t + r

c0

)
, (6.4)

combining an outgoing waveF and an incoming waveG. Far away there is no incoming wave, so we
definethe “free field” as the region for whichG = 0. This result of a vanishing incoming wave in free
space may also be formulated as a boundary condition atr → ∞ (2.23a,2.23b,2.25).

As already stated, the acoustic velocityv ′ has a rather complex behaviour, in contrast with the 1-D
situation. This behaviour is found by substitution of (6.4)into the momentum conservation law (6.3a):

ρ0
∂v ′

∂t
= −∂p′

∂r
= 1

r 2
F

(
t − r

c0

)
+ 1

c0r
F ′

(
t − r

c0

)
. (6.5)

We now observe that the first term of (6.5) corresponds, forr/c0 much smaller than the typical inherent
time scale, to an incompressible flow behaviour (r 2v ′ = constant) while the second term corresponds
to wave-like phenomena. Only the second term does contribute to the acoustic energy flux〈I 〉 =
〈p′v ′〉. This may be verified by substitution of a harmonic solution into (6.5):

p′ = p̂ eiωt = A

4πr
eiωt−ikr (6.6)

we find

v̂ = p̂

iωρ0r
+ p̂

ρ0c0
= p̂

ρ0c0

(
− i

kr
+ 1

)
. (6.7)

The first term inv̂ is 1
2π out of phase withp̂ and therefore does not contribute to〈I 〉 = 〈p′v ′〉. Hence:

〈p′v ′〉 = 1
4(v̂ p̂∗ + v̂∗ p̂) = p̂ p̂∗

2ρ0c0
. (6.8)
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A very systematic discussion of this fundamental solution is given by Lighthill [122].

Using (6.5) we can now determine the acoustic field generatedby a pulsating sphere of radiusa(t). If
(∂a/∂t)/c0 ≪ 1, we can use linear acoustics, while the movement of the sphere boundary yields the
equation derived from (6.5):

ρ0
∂2a

∂t2
= 1

a2
F

(
t − a

c0

)
+ 1

c0a
F ′

(
t − a

c0

)
. (6.9)

For a compact sphere the first term is dominating(a(∂2a/∂t2)/c2
0 ≪ 1). We find exactly the result

which we could anticipate from (2.61), the second derivative to time of the volume of the sphere is
the source of sound.

A steady expansion of the sphere (∂a/∂t = constant) does not (in this approximation) generate sound.
The second term of (6.9) is dominating for large sphere radii(a(∂2a/∂t2)/c2

0 ≫ 1). In such a case the
action of the wall movement is that of a piston which generates plane waves. For harmonic oscillations
of the sphere(a = a0+â eiωt), the amplitudeA of the radiated field is found from (6.6) by substitution
of v̂ = iωâ in (6.7) atr = a0.

p̂(a0) = A

4πa0
e−ika0 = −ω

2ρ0a0â

1 + i ka0
.

Hence

p̂(r ) = −ρ0c
2
0 kâ

k2a2
0

1 + i ka0

e−ik(r−a0)

kr
. (6.10)

We can also determine the acoustic impedanceZ

Z(ω) = p̂(a0)

v̂(a0)
= p̂(a0)

iωâ
(6.11)

Using (6.7) we find:

Z

ρ0c0
= i ka0

1 + i ka0
= i ka0 + (ka0)

2

1 + (ka0)2
. (6.12)

We see that the real part of the radiation impedance of a compact sphere (ka0 ≪ 1) is very small:

Re
( Z

ρ0c0

)
≃ (ka0)

2 (6.13)

Hence (see (3.17)) a compact vibrating object in free space will be a very ineffective source of sound.
This effect becomes even more dramatic when we consider the radiation of a compact vibrating ob-
ject of constant volume. The most simple example of this behaviour is a translating sphere of constant
radiusa0. This is what we call a dipole radiation source, in contrast to the monopole source corre-
sponding to a compact pulsating sphere.

The solution of the problem is easily obtained since we can generate from the spherically symmetric
solution (6.4) non-spherically symmetric solutions by taking a spatial derivative (see equation 2.24b).
If ϕ is a (spherically symmetric) solution of the wave equation:

1

c2
0

∂2ϕ

∂t2
− ∇2ϕ = 0 (6.14)
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then any derivative ofϕ, such as(∂ϕ/∂xi ) or (∂ϕ/∂t), is also a solution:

1

c2
0

∂2

∂t2

( ∂ϕ
∂xi

)
− ∇2

( ∂ϕ
∂xi

)
= 0, (6.15)

in particular, any derivative of Eq. (6.6) is a solution. So if we try to find the field of a translating
sphere with velocityv0 (in x-direction), where at its surface the radial flow velocity isgiven by:

v ′(a0, ϑ) = v0· r
a0

∣∣∣
|r |=a0

= v0 cosϑ. (6.16)

we can use the derivative in thex-direction. For a harmonic oscillationv0 = v̂0 eiωt with (v̂0/ωa0) ≪ 1
the pressure fieldp′ is given by:

p̂ = A
∂

∂x

(e−ikr

r

)
= Acosϑ

∂

∂r

(e−ikr

r

)
(6.17)

because∂ r
∂x = cosϑ . This pressure is related to the acoustic velocityv ′ by the momentum conservation

law (6.3a):

iωρ0v̂ = −Acosϑ
∂2

∂r 2

(e−ikr

r

)
. (6.18)

Using the boundary condition (6.16) forr = a0 we can now calculate the amplitudeA for given v̂0:

iωρ0v̂0 = −A
2 + 2ika0 − (ka0)

2

a3
0

e−ika0 (6.19)

so that the pressure field (6.17) can be written as:

p̂ = −iωρ0v̂0a3
0 cosϑ

2 + 2ika0 − (ka0)2
∂

∂r

(e−ik(r−a0)

r

)
. (6.20)

In the limit of (ka0) ≪ 1 we see that:

p̂ ≃ −1
2(ka0)

2ρ0c0v̂0
a0 cosϑ

r

(
1 − i

kr

)
e−ikr . (6.21)

Again we observe a near field behaviour with a pressure decreasing asr −2 and for which p̂ is 1
2π

out of phase witĥv0. This pressure field simply corresponds to the inertia of theincompressible flow
induced by the movement of the fluid from the front towards theback of the moving sphere. From
(6.21) forr = a0 with (ka0) ≪ 1 we see that:

p̂(a0) = 1
4ρ0c0v̂0 cosϑ

(
2ika0 + i (ka0)

3 + (ka0)
4 + · · ·

)
. (6.22)

Hence, as the drag on the sphere, which is in phase withv̂0, scales asa2
0 Re[ p̂(a0)], we see that the

acoustic power generated by the sphere scales asρ0c0v̂
2
0a2

0(ka0)
4. This is a factor(ka0)

2 weaker than
the already weak radiation power of a compact pulsating sphere. So we now understand the need of
a body in string instruments or of a sound board in a piano. While the string is a compact oscillating
cylinder (row of oscillating spheres), which does not produce any significant sound directly, it induces
vibrations of a plate which has dimensions comparable with the acoustic wave length and hence is
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radiating with an acoustic impedanceρ0c0 which is a factor(ka0)
4 more efficient than direct radiation

by the string.

Note. In order to provide a stable sound one should avoid in string instruments elastic resonances of
the body which are close to that of the string. If this is not the case the two oscillators start a complex
interaction, which is called for a violin a “wolf tone”, because it has a chaotic behaviour [130].

Having discussed aspects of bubble acoustics in a pipe in section 4.4.5, we will now consider some
specific free field effects. Consider the oscillation of a compact air bubble in water as a response to
an incident plane wavepin = p̂in eiωt−ikx in free space (deep under water). We can locally assume
the pressurepb in the bubble to be uniform and we assume a spherical oscillation of the bubble of
equilibrium radiusa0:

a = a0 + â eiωt . (6.23)

The pressure in the bubble is given by:

p′
b = p′

in + p′
r (a0) (6.24)

wherep′
r (a0) is the acoustic pressure due to the spherical waves generated by the bubble oscillation.

We have neglected surface tension. Furthermore, we assume an ideal gas behaviour in the bubble:

p′
b

p0
= −3γ

a′

a0
(6.25)

whereγ = 1 for isothermal compression andγ = CP/CV for isentropic compression.̂pr (a) is related
to â by the impedance condition:

p̂r (a) = iωâZ (6.26)

andZ(ω) is given by equation (6.12). Hence combining (6.24) with (6.25) and (6.26) we find:

− 3γ p0

a0
â = p̂in + iωâZ (6.27)

or:

p̂r (a0) = iωâZ = − p̂in

1 − i
3γ p0

ωa0Z

(6.28)

and

p̂r = p̂r (a0)
a0

r
e−ik(r−a0) . (6.29)

Using (6.12) we can write (6.28) as:

p̂r (a0) = − p̂in

1 −
(ω0

ω

)2(
1 + i ka0

) (6.30)

whereω0 is the Minnaert frequency defined by:

ω2
0 = 3γ p0

ρ0a2
0

. (6.31)
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It is interesting to note that at resonance (ω = ω0) under typical conditions a bubble is compact
because:

(k0a0)
2 =

(ω0a0

c0

)2
= 3γ p0

ρ0c2
0

(6.32)

is small as long asp0 ≪ ρ0c2
0.

For waterρ0c2
0 = 2 × 104 bar, hence up top0 = 100 bar one can still assume bubble oscillations

at resonance to be compact. Equation (6.30) has many interesting further applications [52, 114]. For
example, sonar detection of fishes by using a sweeping incident sound frequency yields information
about the size of fishes because the resonance frequencyω0 of the swim bladder yields information
on the sizea0 of the fish. Furthermore, at resonance sound is scattered quite efficiently:

p̂r = −i
p̂in

k0r
e−ik(r−a0) . (6.33)

Hence the fish scatters sound with an effective cross sectionof the order of the acoustic wave length
at ω0 (an effective increase of the cross section by a factor(k0a0)

−1). As we knowa0 from ω0 the
intensity of the scattered field yields information on the amount of fish. Another fascinating effect of
bubble resonance is the very specific sound of rain impact on water [181].

6.3 Multipole expansion and far field approximation

The free field Green’s functionG0 defined by equation (3.1)

∂2G0

∂t2
− c2

0

∑ ∂2G0

∂x2
i

= δ(x − y)δ(t − τ) (3.1)

and the Sommerfeld radiation condition (2.25), may be foundin Appendix E, but can be derived as
follows. We start with considering the Fourier transform̂G0 of G0, with

G0 =
∫ ∞

−∞
Ĝ0 eiωt dω

and satisfying

∑ ∂2Ĝ0

∂x2
i

+ k2Ĝ0 = − 1

2πc2
0

δ(x − y)e−iωτ , (6.34)

wherek = ω/c0. From symmetry arguments,̂G0 can only be a function of distancer = |x − y|, so
the solution of (6.34) has the form (see equation (6.6))

Ĝ0 = A

4πr
e−ikr (6.35)

where A is to be determined. Integration of (6.34) over a small sphere Bε around y, given by, say,
r = ε, yields by application of Gauss’ theorem

∫∫∫

Bε

∑ ∂2Ĝ0

∂x2
i

+ k2Ĝ0 dx =
∫∫∫

Bε

− 1

2πc2
0

δ(x − y)e−iωτ dx =

∫∫

∂Bε

∑ ∂Ĝ0

∂xi
ni dσ +

∫∫∫

Bε

k2Ĝ0 dx = 4πε2∂Ĝ0

∂r
+ O(ε2) = −A + O(ε) = − 1

2πc2
0

e−iωτ
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whereni denotes the outward normal ofBε, and we used the fact thatε is small. If we letε → 0 we
find thatA = (2πc2

0)
−1 e−iωτ . So we have:

Ĝ0 = e−iωτ−ikr

8π2c2
0r

= e−iω(τ+r/c0)

8π2c2
0r

(6.36)

(note the factor−1/2π difference with the Green’s function of a regular Helmholtzequation) and,
using equation (C.33),

G0 = δ(t − τ − r/c0)

4πrc2
0

. (6.37)

In order to derive the general multipole expansion we will first consider the field at a single frequency.
By using the free-field Green’s function (Appendix E) we find the acoustic field for a given time-
harmonic source distribution̂q(x)eiωt in a finite volumeV to be given by

ρ̂ ′ = p̂′

c2
0

=
∫∫∫

V

q̂(y)Ĝ0(x|y)dy =
∫∫∫

V

q̂(y)
e−ikr

4πc2
0r

dy. (6.38)

Suppose the origin is chosen insideV . We are interested in the far field,i.e. |x| is large, and a compact
source,i.e. kL is small whereL is the typical diameter ofV. This double limit can be taken in
several ways. As we are interested in the radiation properties of the source, which corresponds with
k|x| > O(1), we will keepkx fixed. In that case the limit of smallk is the same as smally, and we
can expand in a Taylor series aroundy = 0

r =
(
|x|2 − 2(x · y)+ |y|2

)1/2 = |x|
(
1 − x· y

|x|2 + |y|2
2|x|2 − (x· y)2

2|x|4 + . . .
)

= |x|
(
1 − |y|

|x| cosθ + 1
2

|y|2
|x|2 sin2 θ + . . .

)

(whereθ is the angle betweenx and y) and

e−ikr

r
= e−ik|x|

|x|
(
1 +

(
1 + i k|x|

) 1

|x|2
3∑

j =1

x j y j + . . .
)

=
∞∑

l ,m,n=0

yl
1ym

2 yn
3

l ! m! n!

[
∂ l+m+n

∂yl
1∂ym

2 ∂yn
3

e−ikr

r

]

y1=y2=y3=0

. (6.39)

As r is a symmetric function inx and y, this is equivalent to

e−ikr

r
=

∞∑

l ,m,n=0

(−1)l+m+n

l ! m! n! yl
1ym

2 yn
3

∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

e−ik|x|

|x| . (6.40)

The acoustic field is then given by

ρ̂ ′ = 1

4πc2
0

∞∑

l ,m,n=0

(−1)l+m+n

l ! m! n!

∫∫∫

V

yl
1ym

2 yn
3 q̂(y)dy

∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

e−ik|x|

|x| . (6.41)

As each term in the expansion is by itself a solution of the reduced wave equation, this series yields
a representation in which the source is replaced by a sum of elementary sources (monopole, dipoles,
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quadrupoles, in other words, multipoles) placed at the origin (y = 0). Expression (6.41) is the mul-
tipole expansion of a field from a finite source in Fourier domain. From this result we can obtain the
corresponding expansion in time domain as follows.

With Green’s function (6.37) we have the acoustic field from asourceq(x, t)

ρ ′ =
∫ ∞

−∞

∫∫∫

V

q(y, τ )
δ(t − τ − r/c0)

4πrc2
0

dydτ =
∫∫∫

V

q(y, t − r/c0)

4πrc2
0

dy (6.42)

If the dominating frequencies in the spectrum ofq(x, t) are low, such thatωL/c0 is small, we obtain
by Fourier synthesis of (6.41) the multipole expansion in time domain (see Goldstein [70])

ρ ′ = 1

4πc2
0

∞∑

l ,m,n=0

(−1)l+m+n

l ! m! n!
∂ l+m+n

∂xl
1∂xm

2 ∂xn
3




1

|x|

∫∫∫

V

yl
1ym

2 yn
3 q(y, t − |x|/c0)dy




=
∞∑

l ,m,n=0

∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

[
(−1)l+m+n

4π |x|c2
0

µlmn(t − |x|/c0)

]
(6.43)

whereµlmn(t) is defined by:

µlmn(t) =
∫∫∫

V

yl
1ym

2 yn
3

l ! m! n! q(y, t)dy. (6.44)

The (lmn)-th term of the expansion (6.43) is called a multipole of order 2l+m+n. Since each term
is a function of|x| only, the partial derivatives toxi can be rewritten into expressions containing
derivatives to|x|. In general, these expressions are rather complicated, so we will not try to give
the general formulas here. It is, however, instructive to consider the lowest orders in more detail as
follows.

The first term corresponds to the monopole:

ρ ′
0 = µ0(t − |x|/c0)

4πc2
0|x|

(6.45)

where we wrote for brevityµ0 = µ000. We have concentrated the source at the origin and

µ0(t) =
∫∫∫

V

q(y, t)dy. (6.46)

The next term is the dipole term:

ρ ′
1 = −

3∑

i=1

xi

|x|
∂

∂|x|
(µ1,i (t − |x|/c0)

4πc2
0|x|

)
(6.47)

where we wrote for brevity:µ1,1 = µ100, µ1,2 = µ010 andµ1,3 = µ001. If q is a point source this
dipole term is easily visualized as shown in figure 6.1.

The dipole of strengthµ1,i , which we should place at the origin (y = 0):

µ1,i (t) =
∫∫∫

V

yi q(y, t)dy, (6.48)
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.....

Figure 6.1 First step in the multipole expansion of a point source.

is obtained by bringing the (point) sourceq towards the origin while increasing its strength and that
of the opposite (point) source−q at the origin in such a way that we keep|y|q constant.

A dipole field is not isotropic because in a direction normal to the vectory the two sources forming
the dipole just compensate each other, while in the other directions due to a difference in emission
time there is a net acoustic field. This effect of the difference in retarded time (figure 6.2) between the

ϑ

y

x

x − y

y·x
|x|

Figure 6.2 Retarded or emission time difference is( y·x/|x|)/c0 = (|y| cosϑ)/c0.

sources in the dipole simplifies in the far field as follows. Writing (6.47) as:

ρ ′
1 = −

3∑

i=1

xi

|x|

∫∫∫

V

yi

4πc2
0

{
− 1

c0|x|
∂

∂t
q(y, t − |x|/c0)− 1

|x|2 q(y, t − |x|/c0)

}
dy (6.49)

we see that for large distances (k|x| ≫ 1) the acoustic field due to the dipole contribution is given by:

ρ ′
1 ≃

3∑

i=1

xi

4πc3
0|x|2

∂

∂t

∫∫∫

V

yi q(y, t − |x|/c0)dy =
3∑

i=1

xi

4πc3
0|x|2

[ d

dte
µ1,i (te)

]
te=t−|x|/c0

(6.50)

whereµ1,i (t) is the dipole strength. If the source has a particular form, for example it represents a
force densityfi like in (2.65):

q(y, τ ) = −
3∑

i=1

∂ f i

∂yi
, (6.51)

we observe that the surface integral of the monopole term vanishes because we assumed a finite
source region, outside whichf = 0. We see that the force fieldfi is equivalent to an acoustic dipole
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of strength:

µ1,i =
∫∫∫

V

fi dy (6.52)

which corresponds simply to the total forceF on V . In a similar way it is clear that the Lighthill stress
tensorTi j induces a quadrupole field because from (2.65) we have:

q =
3∑

i, j =1

∂2Ti j

∂yi∂y j
.

By partial integration it follows that the strength of the quadrupole is:

µ2,i j =
∫∫∫

V

Ti j dx, (6.53)

where we wrote for brevityµ2,11 = µ200, µ2,12 = µ110, µ2,13 = µ101, etc. . In the far field ap-
proximation, where the retarded (or emission) time effect can be estimated by replacing(∂/∂|x|) by
−c−1

0 (∂/∂t), we find for a quadrupole field

ρ ′ ≃
3∑

i, j =1

xi x j

4πc2
0|x|3

1

c2
0

[ d2

dt2
e

µ2,i j (te)
]

te=t−|x|/c0

. (6.54)

6.4 Method of images and influence of walls on radiation

Using G0 we can build the Green’s function in presence of walls by using the method of images as
discussed in section 4.6. The method of images is simple for aplane rigid wall and for a free surface.
In the first case the boundary conditionv′ ·n = 0 is obtained by placing an image of equal strength
q at the image point of the source position (figure 6.3). For a free surface, defined by the condition
p′ = 0 (air/water interface seen from the water side), we place anopposite source−q at the image
point.

For a rigid wall atx1 = 0 we simply have the Green’s function:

G(x, t|y, τ ) = δ(t − τ − r/c0)

4πc2
0r

+ δ(t − τ − r ∗/c0)

4πc2
0r ∗ (6.55)

where

r =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

r ∗ =
√
(x1 + y1)2 + (x2 − y2)2 + (x3 − y3)2.

We easily see from figure 6.3 that a source placed close to a rigid wall will radiate as a source of
double strength (|y1|k ≪ 1) while a source close to a free surface will radiate as a dipole.

When more than a wall is present the method of images can be used by successive reflections against
the walls. This is illustrated in figure 6.4. When a harmonic source is placed half way between two
rigid walls separated by a distanceh (at y = 1

2h) the radiated field is equivalent to that of an infinite
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Figure 6.4 Application of the method of images.

array of sources placed at a distanceh from each other (figure 6.4b). We immediately see from this that
there are directionsϑ in which the sources in the array interfere positively. The interference condition
is simply:

h sinϑ = nλ; n = 0,1,2, ... (6.56)

whereλ is the acoustic wave length. For this symmetrically placed source only symmetric modes can
occur. When the source is placed at one of the walls (y = 0 or h) we find the interference condition
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given by

h sinϑ = 1
2nλ; n = 0,1,2, ... (6.57)

since the source and its images form an array of sources placed at a distance 2h from each other.

The conditionn = 0 corresponds to plane waves in a tube. The conditionsn > 0 correspond to
higher order mode propagation in the “duct” formed by the twowalls. This can also be seen for a duct
of square cross section for which the image source array becomes two-dimensional. We clearly see
from this construction that higher order modes will not propagate at low frequencies because when
(h < 1

2λ), there are no other solutions thanϑ = 0 to equation (6.57). This justifies the plane wave
approximation used in chapter 4 (see further chapter 7). We see also that at low frequencies (for plane
waves) the radial position of a source does not affect the radiation efficiency. For a higher mode, on the
other hand, the sound field is not uniform in the duct cross section and the source radiation impedance
is position dependent. The first non-planar mode has a pressure node on the duct axis and cannot be
excited by a volume source placed on the axis(

∮
p′Q dt = 0). This explains the difference between

condition (6.56) and (6.57) for the excitation of a higher mode. A more comprehensive treatment of
pipe modes is given in chapter 7.

R r∗

r

Figure 6.5 Image of a line source in a compact cylinder.

The method of images can also be used for a line source close toa compact cylinder of radiusR or
a point source near a compact sphere of radiusa [137]. For a line source near a cylinder we should
place an identical line source at the inverse pointr∗ defined by:

r∗ = r (R/|r|)2 (6.58)

and an opposite line source (i.e. a sink) atr = 0 on the cylinder axis (figure 6.5). For a sphere we
should place a sourceq∗ at r∗ defined by:

q∗ = q a/|r| (6.59)

and

r∗ = r (a/|r|)2 (6.60)

while in order to keep the mass balance we place a line of uniformly spaced sinks of total strengthq∗

stretching fromr∗ to the center of the sphere (r = 0) [137].

6.5 Lighthill’s theory of jet noise

Consider a free turbulent jet formed at the exit of a circularpipe of diameterD. The mean flow velocity
in the pipe isu0. We assume thatu0 ≪ c0 and that the entropy is uniform (air jet in air with uniform
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temperature). The key idea of Lighthill was that the sound produced by the turbulence was originated
from a volume of orderD3 and that the influence of the pipe walls on the sound radiationcould be
neglected.

In such a case combining (2.65) with (3.13) and using the freespace Green’s functionG0 given by
(6.37) we find:

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

∂2Ti j

∂yi∂y j
G0(x, t|y, τ )dydτ. (6.61)

Partial integration (twice) yields:

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

∂2G0

∂yi∂y j
Ti j (y, τ )dydτ. (6.62)

BecauseG0 is only a function ofr = |x − y| we have:

∂G0

∂yi
= ∂G0

∂r

∂r

∂yi
= −

(xi − yi

r

)∂G0

∂r
= −∂G0

∂xi
. (6.63)

Approaching the source towards the observation point has the same effect as approaching the obser-
vation point towards the source. Hence we can write (6.62) as:

ρ ′(x, t) = ∂2

∂xi ∂x j

t∫

−∞

∫∫∫

V

G0(x, t|y, τ )Ti j (y, τ )dydτ. (6.64)

The integration variableyi does not interfere withxi . Using now (6.37) we can carry out the time
integration:

ρ ′(x, t) = ∂2

∂xi ∂x j

∫∫∫

V

Ti j (y, t − r/c0)

4πc2
0r

dy. (6.65)

In the far field the only length scale is the wave length, hencewe have replaced the problem of the
estimate of a space derivative(∂/∂yi ) at the source by the problem of the estimate of the characteristic
frequency of the produced sound. In the far field approximation we have:

ρ ′(x, t) ≃ xi x j

4πc2
0|x|2

∂2

c2
0∂t2

∫∫∫

V

Ti j (y, t − |x|/c0)

|x| dy. (6.66)

For high Reynolds number we can neglect the effect of viscosity (if it were not small turbulence would
not occur!). If we assume a homentropic compact flow we have (2.68):

Ti j ≃ ρ0vi v j . (6.67)

The first estimates of Lighthill for a circular1 free jet are:

1See Bjørnø [15] for planar jets.
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– the characteristic time scale for large eddy’s in the flow is (D/u0).
– the Reynolds stress scales asρu2

0.
– the relevant volumeV is of orderD3.

Hence we should replace(∂/∂t) by u0/D in (6.66) and we find:

ρ ′(x, t) ∼ 1

4πc4
0

(u0

D

)2ρ0u2
0D3

|x| (6.68)

or in terms of intensityρ ′2 and Mach numberM0 = u0/c0:

ρ ′2 ∼
( ρ0D

4π |x|
)2

M8
0 . (6.69)

This is the celebrated 8-th power law of Lighthill which ".. represents a triumph of theory over ex-
periment; before the publication ofU8, most reports of measured jet noise data gave aU4 variation,
which was then quickly recognized, postU8, as associated with noise sourceswithin the engine itself,
rather than with the jet exhaust turbulent mixing downstream of the engine. In fact, variation of in-
tensity withU8 is now generally accepted asdefiningjet mixing noise .." (Crighton, l.c.); see figure
6.6. Equation (6.69) tells us that turbulence in free space is a very ineffective source of sound. When
a more detailed description of the flow is used to estimateTi j one can also find the directivity pattern
of the radiation field [70, 16, 188]. This directivity pattern results from Doppler effects and refraction
of the sound waves by the shear layer surrounding the jet.
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Figure 6.6 Sound power generated by a jet.

As the Mach number approaches unity the character of the sound production changes drastically
because the flow is not compact any more (D/λ ∼ M0) and because at higher Mach numbers shock
waves appear if the jet is not properly expanded. These shocks generate noise by interaction with
turbulence (random vorticity) and vortices (coherent structures) [66].

Moreover, it is obvious that the generated power cannot growindefinitely with a powerM8. There
is a natural maximum corresponding to the kinetic energy fluxin the jet 1

2ρu3
0 · π4 D2. This natural

upper bound prevails aboveM > 1 and the sound intensity scales aboveM > 1 asM3
0 . The typical

fraction of flow power transferred to the acoustic field at high Mach number by a properly expanded
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supersonic jet is 10−4 (M > 1). Following Goldstein [70] the acoustic powerW generated by a
subsonic homentropic jet is given by

W
1
8ρ0u3

0πD2
= 8 × 10−5M5

0 . (6.70)

Hence at MachM0 = 0.1 we can estimate that only a fraction 10−9 of the hydrodynamic power is
transferred to the acoustic field. This is the key of the problem of calculating the acoustic field from
a numerical calculation of the flow pattern at low Mach numbers. In order to achieve this we have
to calculate the flow field within an accuracy which is far above the typical score (5%) of turbulence
modelling nowadays. However, the simple scaling law of Lighthill already tells us that in order to
reduce turbulence noise we should reduce the Mach number. A very useful result as we will see from
exercise k) below.

Lighthill’s analogy in the form of equation (6.66) is often used to obtain acoustical information from
numerical calculations of turbulent flow. Such calculations can be based on an incompressible model
which by itself does not include any acoustic component.

When the jet has a different entropy than the environment (hot jet or different fluid) the sound pro-
duction at low Mach numbers is dominated by either Morfey’s dipole source term(∂/∂yi )((c2 −
c2

0)/c
2
0)(∂p′/∂yi ) or by a volume source term due to diffusion and heat transfer (entropy fluctuations).

When a hot gas with constant caloric properties is mixed withthe cold environment the monopole
sound source is negligible compared to the dipole due to convective effects ([141]). One finds then a
sound power which at low Mach numbers scales atM6

0 . Upon increasing the Mach number the tur-
bulent Reynolds stress can become dominant and a transitionto the cold jet behaviour(M8

0) can be
observed in some cases.

In hot jets with combustion, vapour condensation or strongly temperature dependent caloric gas prop-
erties the monopole source dominates ([42]), and a typicalM4

0 scaling law is found forρ ′2.

The influence of the viscosity on the sound generation by a free jet has been studied by Morfey [142],
Obermeier [162] and Iafrati [90].

6.6 Sound radiation by compact bodies in free space

6.6.1 Introduction

In principle, when a compact body is present in a flow we have two possible methods to calculate
the sound radiation when using Lighthill’s theory (section2.6). In the first case we use atailored
Green’s function which is often easy to calculate in the far field approximation by using the reciprocity
principle (3.4). In the second case we can use thefree fieldGreen’s functionG0 which implies that
we should take surface contributions in equation (3.12) into account. This second method is called
Curle’s method [70, 16]. The advantage of the method of Curleis that we still can use the symmetry
properties ofG0 like:

∂G0

∂yi
= −∂G0

∂xi
. (6.71)

Furthermore, we will see that the surface terms have for compact rigid bodies quite simple physical
meaning. We will see that the pulsation of the volume of the body is a volume source while the force



6.6 Sound radiation by compact bodies in free space 141

on the body is an aero-acoustic dipole. In this way we can in fact say that if we know the aerodynamic
(lift and drag) force on a small propeller we can represent the system by the reaction force acting on
the fluid as an aero-acoustic source, ignoring further the presence of the body in the calculation of the
radiation.

6.6.2 Tailored Green’s function

The method of tailored Green’s function has of course the nice feature of a simple integral equation
(3.13). We will, however, in general not have a simple symmetry relation allowing to move the space
derivative outside the integral. The construction of the tailored Green’s function in the far field ap-
proximation is in fact equivalent to considering the acoustic response of the body to a plane incident
wave. In applications like the effect of a bubble on turbulence noise we already did this for a bubble
in a duct (section 4.7).

The method of images discussed in section 6.4 is an efficient procedure to construct a Green’s function
for simple geometries. This is obvious when we consider a plane rigid wall. Using the reciprocity
principle we send a plane wavep′

in and look at the resulting acoustic field in the source pointy. The
acoustic field iny is built out of the incident wavep′

in and the wave reflected at the surfacep′
r . In the

method of images we simply assume thatp′
r comes from an image source, as shown in figure 6.7.

a) b)

x x

y y

p′
in

p′
r

source

image

Figure 6.7 a) Acoustic response to a plane wave. b) Sound emitted by the source in the same observers direction.

When calculating the Green’s function we should take in freespace as amplitude of the incident wave
p′

in the amplitude calculated from (6.37). For compact bodies orsources close to a surface we can
neglect the variation in travel time ofp′

in over the source region and we find:

p′
in = δ(−t + τ − |x|/c0)

4π |x|c2
0

(6.72)

where the signs oft andτ have been changed because of reciprocity relation (3.4). When considering
harmonic waves we have from (6.36) that:

p̂in = e−ikr

8π2c2
0r

(6.73)

where in the far field approximationr ≃ |x|. The Green’s function is found by adding the system
responsep′

r (or p̂r ) to the incident wavep′
in. Once a tailored Green’s function has been obtained we
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find by using (3.13):

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

q(y, τ )G(x, t|y, τ )dydτ. (3.13)

By partial integration and assuming that the sources are thevolume sources∂2Ti j /∂xi ∂x j as defined
in (2.65) which are limited to a small region of space we find:

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

∂2G

∂yi∂y j
Ti j dydτ. (6.74)

Comparison of the space derivative of the tailored Green’s function with that of the free space Green’s
functionG0 yields an amplification factorA of the radiated field:

A =
∣∣∣ ∂

2G

∂yi∂y j

∣∣∣/
∣∣∣ 1

c2
0

∂2G0

∂t2

∣∣∣ (6.75)

where we made use of the approximation∂2G0/∂xi ∂x j ≃ (∂2G0/∂t2)/c2
0 in the far field, and assumed

that the flow is not influenced by the foreign body (Ti j = constant).

Using this procedure one can show [16, 52, 70] that turbulence near the edge of a semi-infinite plane
produces a sound field for whichρ ′2 scales asM5

0 which implies forM0 ≪ 1 a dramatic increase
(by a factorM−3

0 ) compared to free field conditions. This contribution to trailing edge noise is very
important in aircraft noise and wind turbine noise.

6.6.3 Curle’s method

When we place a cylinder of diameterd in a turbulent jet with a main flow velocityu0, the cylinder
will not only enhance the radiation by the already present turbulence. A cylinder will affect the flow.
Behind the cylinder at high Reynolds numbers we have an unstable wake. Above a Reynolds number
of Re = u0d/ν = 40 the wake structure is dominated by periodic vortex shedding if 40 6 Re 6

3 × 105 and forRe > 3.5 × 106 [16, 18, 75]. The frequencyfV of the vortex shedding is roughly
given by:

fVd

u0
= 0.2. (6.76)

Hence the sound produced by vortex shedding has in contrast with turbulence a well-defined fre-
quency. The periodic shedding of vorticity causes an oscillating lift force on the cylinder, with an
amplitudeL per unit length given by

L = −ρ0Ŵu0, (6.77)

whereŴ is the circulation of the flow around the cylinder. By definition the lift force is perpendicular
to the mean flow direction(u0). In dimensionless form the lift is expressed as a lift coefficient CL :

CL = L
1
2ρu2

0d
. (6.78)
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The lift coefficient of a cylinder is in a laminar flow of order unity. However,CL is strongly affected
by small disturbances and the lift force is not always coherent along the cylinder. This results in aCL

for a rigid stationary cylinder ranging

from (CL)rms ≃ 0.1 for Re6 2 × 105

to (CL)rms ≃ 0.3 for Re> 5 × 105,

while (CL)peak≃ 1.0 for Re6 2 × 105

and (CL)peak≃ (CL)rms for Re> 2 × 105.

The drag force has a fluctuating component corresponding to(CD)rms ≃ 0.03. Elastic suspension of
a cylinder enhance considerably the coherence of vortex shedding resulting into a typical value of
CL ≃ 1. The calculation of the sound production by vortex shedding when using a tailored Green’s
function is possible but is not the easiest procedure. We will now see that Curle’s method relates
directly the data on the lift and drag to the sound production.

S

n

V

Figure 6.8 Control volumeV and surfaceS
and outer normaln.

Consider a body which, for generality, is allowed to pulsate,
and is enclosed by a control surfaceS (figure 6.8). We want
to calculate the fieldρ ′ in the fluid and hence we define the
control volumeV at the fluid side ofS. The outer normal
n on S is directed towards the body enclosed byS. (Note
that we use here the convention opposite from Dowlinget
al. [52]!) Using equation (3.12) combined with Lighthill’s
analogy (2.65), ignoring external mass sources and force
fields and takingt0 = −∞ yields

ρ ′ =
t∫

−∞

∫∫∫

V

∂2Ti j

∂yi∂y j
G0(x, t|y, τ )dydτ − c2

0

t∫

−∞

∫∫

S

[
ρ ′ ∂G0

∂yi
− G0

∂ρ ′

∂yi

]
ni dσdτ. (6.79)

Applying partial integration twice yields:

ρ ′ =
t∫

−∞

∫∫∫

V

Ti j
∂2G0

∂yi∂y j
dydτ +

∫ t

−∞

∫∫

S

{[
G0
∂Ti j

∂yi
n j − Ti j

∂G0

∂y j
ni

]

+ c2
0

[
G0
∂ρ ′

∂yi
ni − ρ ′ ∂G0

∂yi
ni

]}
dσdτ. (6.80)

Using the definition (2.66) ofTi j and its symmetry (Ti j = Tj i ):

Ti j = Pi j + ρvi v j − c2
0ρ

′δi j (2.66)

we find:

ρ ′ =
t∫

−∞

∫∫∫

V

Ti j
∂2G0

∂yi∂y j
dydτ +

t∫

−∞

∫∫

S

G0

(∂Pi j + ρvi v j

∂y j

)
ni dσdτ

−
t∫

−∞

∫∫

S

(
Pi j + ρvi v j

)∂G0

∂y j
ni dσdτ. (6.81)
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Using the momentum conservation law (1.2) in the absence of external forces (fi = 0):

∂

∂τ

(
ρvi

)
+ ∂

∂y j

(
Pi j + ρvi v j

)
= 0

and the symmetry ofG0 (6.70), we obtain:

ρ ′ =
t∫

−∞

∫∫∫

V

Ti j
∂2G0

∂xi ∂x j
dydτ −

t∫

−∞

∫∫

S

G0
∂(ρvi )

∂τ
ni dσdτ

+
t∫

−∞

∫∫

S

(
Pi j + ρvi v j

)∂G0

∂x j
ni dσdτ. (6.82)

The spatial partial derivatives(∂/∂x j ) do not refer toy and can be taken outside the integral. In the
far field they can be approximated by the time derivatives−(x j /|x|)c−1

0 (∂/∂t). Furthermore, in the
second integral in (6.82) we can make use of the general symmetry in the time coordinate of any
Green’s function:

∂G

∂t
= −∂G

∂τ
. (6.83)

(The effect of listening later is the same as shooting earlier!) In order to use (6.83) we therefore first
move the time derivative(∂/∂τ) from ρvi towardsG0 by partial integration. We finally obtain:

ρ ′ ≃ xi x j

|x|2c2
0

∂2

∂t2

∫ t

−∞

∫∫∫

V

Ti j G0 dydτ − ∂

∂t

∫ t

−∞

∫∫

S

ρvi G0ni dσdτ

− x j

c0|x|
∂

∂t

t∫

−∞

∫∫

S

(
Pi j + ρvi v j

)
G0ni dσdτ. (6.84)

Using theδ-function inG0 of equation (6.37), we can carry out the time integrals and wehave Curle’s
theorem

ρ ′ ≃ xi x j

4π |x|2c4
0

∂2

∂t2

∫∫∫

V

[Ti j

r

]
t=te

dy − 1

4πc2
0

∂

∂t

∫∫

S

[ρvi ni

r

]
t=te

dσ

− x j

4π |x|c3
0

∂

∂t

∫∫

S

[(
Pi j + ρvi v j

)ni

r

]
t=te

dσ (6.85)

wherer = |x − y| and the retarded timete is

te = t − r/c0 ≃ t − |x|/c0. (6.86)

The first term in (6.85) is simply the turbulence noise as it would occur in absence of a foreign body
(except for the fact that the control volumeV excludes the body).

The second term is the result of movement of the body. For a rigid body at a fixed position we have
vi ni = v ·n = 0. This term is important when the body is pulsating. For a compact body we have then
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a simple volume source term. This term can be used to describethe flow out of a pipe. Note thatρ is
the fluid density just outside the control surface so that we consider the displacement of fluid around
the body, rather than a mass injection.

The last integral in (6.85) is the momentum flux through the surface and the pressure and viscous
forces. For a fixed rigid bodyρvi v j = 0 becausev = 0 at a surface (“no slip” condition in viscous
flow). In the case of a compact, fixed, and rigid body, we can neglect the emission time variation along
the body, and we haver ≃ |x|. The instantaneous forceFi of the fluidon the body(lift and drag) is
then

Fi (te) ≃
∫∫

S

[
Pi j

]
t=te

n j dσ. (6.87)

Hence, for a fixed rigid compact body we have:

ρ ′(x, t) = xi x j

4π |x|3c4
0

∂2

∂t2

∫∫∫

V

Ti j (y, t − |x|/c0)dy − x j

4π |x|2c3
0

∂

∂t
F j (t − |x|/c0). (6.88)

6.7 Sound radiation from an open pipe termination

Horns and tubes are used as an impedance matching between a volume source and free space. We use
such a device to speak! Without vocal tract the volume sourcedue to the vocal fold oscillation would
be a very inefficient source of sound. We consider now the radiation of sound from such a tube.

We know the behaviour of sound waves in a duct at low frequencies (chapter 4). We know how sound
propagates from a point source in free space. We are now able to find the radiation behaviour of a pipe
end by matching the two solutions in a suitable way. If the frequency is low enough compared to the
pipe diameter, the flow near the pipe end is incompressible ina region large enough to allow the pipe
opening to be considered as a monopole sound source. The strength of this monopole is determined
by the pipe end velocityv ′. For convenience, we assume that the pipe end is acoustically described for
the field inside the pipe by an impedanceZp. The pressurep′ in the pipe consists of a right-running
incident wave and a left-running reflected wave:

p′ = p+ + p−. (6.89)

The acoustic velocity in the pipe is related to the acoustic pressure in the pipe by:

v ′ = v̂ eiωt = p+ − p−

ρ0c0
. (6.90)

Assuming a redistribution of the acoustic mass flowv ′S through the pipe end with cross sectionS into
the surface of a compact sphere of radiusr and surface 4πr 2 (conservation of mass), we can calculate
the radiated power for a harmonic field in- and outside the pipe, by using (6.13):

I S = 〈p′v ′〉S = 1
2 v̂ v̂

∗ Re(Zp)S= 1
2

( S

4πr 2
v̂
)( S

4πr 2
v̂∗

)
(k2r 2ρ0c0)(4πr 2). (6.91)

From this conservation of energy relation we find for the realpart of the radiation impedanceZp of
an unflanged pipe:

Re(Zp) = 1

4π
k2Sρ0c0 (6.92)



146 6 Spherical waves

which is for a pipe of radiusa:

Re(Zp) = 1
4(ka)2ρ0c0. (6.93)

This result is the low frequency limit of the well-known theory of Levine and Schwinger [117].

The imaginary part Im(Zp) takes into account the inertia of the air flow in the compact region just
outside the pipe. It appears that Im(Zp) is equal tokδ, whereδ is the so-called “end correction”. This
seen as follows. Just outside the pipe end, in the near field ofthe monopole, the pressure is a factor
ρ0c0kr lower than the acoustic velocity, which is much smaller thantheρ0c0 of inside the pipe (see
equation 6.7). Therefore, the outside field forces the inside pressure to vanish at about the pipe end.
Although the exact position of this fictitious pointx = δ (the “end correction”), where the wave in the
pipe is assumed to satisfy the conditionp = 0, depends on geometrical details, it is a property of the
pipe end and thereforeδ = O(a). This implies that the end correction amounts to leading order in ka
to nothing but a phase shift of the reflected wave and so to a purely imaginary impedanceZp. Up to
order(ka)2 this impedance can now be expressed as:

Zp = (i kδ + 1
4(ka)2)ρ0c0 (6.94)

where it appears that2:

0.61a 6 δ 6 0.85a (6.95)

for circular pipes [173]. The lower limit corresponds to an unflanged pipe while the upper limit corre-
sponds to a pipe end with an infinite baffle (flanged). See also section 7.9.

Exercises

a) Note that the acoustic field generated by a compact translating sphere is a dipole (equation 6.21) we find
the typical cosϑ = xi yi /|x|| y| directivity. What are the source and the sink forming the dipole? (Explain
qualitatively.)

b) A vortex ring with time dependent vorticity is a dipole. (Explain qualitatively.)

c) An electrical dipole radiates perpendicularly to the axis of the dipole. What is the reason for this differ-
ence in directivity of electrical and acoustic dipoles?

d) Why is the boundary conditionp′ = 0 reasonable for acoustic waves reflecting at a water/air interface
(on the water side)?

e) We have seen (section 6.2) that a translating sphere induces a dipole field. Moving parts of a rigid
machine also act as dipoles if they are compact. Explain why abody translating in an oscillatory manner
close to the floor produces more sound when it moves horizontally than vertically.

f) The acoustic pressurep′ generated by a monopole close to a wall increases by a factor 2in comparison
with free field conditions. Hence the radiatedI intensity increases by a factor 4. How much does the
power generated by the source increase?

g) The cut-off frequencyfc above which the first higher mode propagates in a duct with square cross section
appears to be given by12λ = 1

2c0 fc = h. figure 6.4 suggests that this would bec0 fc = h for a source
placed in the middle of the duct. Explain the difference.

h) In a water channel with open surface sound does not propagate below a certain cut-off frequencyfc.
Explain this and calculatefc for a square channel cross sectionh = 3 m.

2 − 1
π

∫ ∞
0 log(2I1(x)K1(x))

dx
x2 = 0.612701035. . . , 2

∫ ∞
0 J1(x)

dx
x2 = 8

3π = 0.848826363. . .
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h

h

i) Consider a sphere oscillating (translating periodically) in an infinite duct with hard walls and square cross
section. Discuss the radiation as function of the oscillation frequency and the direction of oscillation
(along the duct axis or normal to the axis). Relate the dipolestrengthδQ to the amplitude of the acoustic
waves for f < fc in a pipe of cross sectional areaS.

j) Explain by using the method of images why a line quadrupoleplaced near a cylinder, parallel to the
axis of the cylinder (figure 6.9), will radiate as a line dipole. (This explains that turbulence near such a
cylinder will radiate quite effectively [131]!)

Figure 6.9 A line quadrupole near a cylinder.

k) Consider two jet engines developing the same thrust with diametersD1 and D2 = 2D1, respectively.
Assuming a low Mach number estimate the ratio of the sound power generated by both engines.

l) Which scaling rule do you expect for the Mach number dependence of the sound produced by a hot
steam in cold air?

m) Which scaling rule do you expect for the Mach number dependence of the sound produced by a bubbly
liquid jet in water?

n) Typical entropy fluctuations due to friction at the pipe wall from which the jet is leaving correspond to
temperature fluctuationsT ′/T0 ≃ 0.2M2. At which Mach number do you expect such effect to become
a significant source of sound?

o) A subsonic jet withM ≪ 1 is compact if we consider the sound produced by turbulence.Why?

p) Estimate the amplification of turbulence noise due to the presence of a cylinder of diameterd near a free
jet of diameterD at a main speedu0 if we assume that the cylinder does not affect the flow.

q) Same question for a small air bubble of diameter 2a near a free jet of diameterD and speedu0. Assume
a low frequency response of the bubble.

r) Consider a small ventilator rotating at a radial frequencyω in a uniform flowu0. The fan feels at a certain
distancer from the axis of the ventilator an effective wind velocityveff which is a combination of the
axial velocityu0 and the tangential velocityωr (where we neglect the air rotation induced by the fan)
(figure 6.10). Assume thatu0 = 0.1ωR. If we concentrate on the tip of the fan (r = R) we have a lift
forceL, per unit length, which is normal toveff. The magnitude ofL is given by:

L = 1

2
ρv2

effDCL
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u0

ωR

veff

L

D

Figure 6.10 The forces on a fan blade (Exercise r)

whereD is the width of the profile of the blade. TypicallyCL is O(1) for a well-designed ventilator.
Consider first a ventilator with a single blade. Discuss the contribution of the tangential and axial com-
ponents of the lift forL on the noise. What is the effect of having a second blade on theventilator? (See
figure 6.11.) A well-designed ventilator has many blades. How does this affect sound production?

D

R

ω ω

Figure 6.11 Single and dual bladed ventilator (Exercise r)

s) How does the presence of duct walls influence the low-frequency sound production of an axial ventilator
placed in the duct.

t) Consider an airplane with a rotor placed just behind the wing (figure 6.12). Discuss the sound production
(frequency, directivity . . . ).

Figure 6.12 Propeller in pusher position (Exercise t)

u) Can we consider an aircraft propeller as a compact body?

v) What is the Mach number dependence of the sound produced bya small (compact) body placed in a
turbulent flow?

w) Estimate the low frequency impedanceZp of a flanged pipe termination.

x) Assuming a low frequency, calculate the power radiated infree space by a piston placed at the end of a
circular pipe of radiusa and lengthL (figure 6.13). What is the ratio between this power at resonance
k0L = (n + 1

2)π , and the power which would be radiated by the piston without apipe.



6.7 Sound radiation from an open pipe termination 149

v p(t)

L

2a

Figure 6.13 Piston in cylindrical pipe (Exercise x)

v p(t)

L

S1 S2

Figure 6.14 Piston in conical pipe (Exercise y)

y) Consider a conical pipe driven by a piston of surfaceS1 and with an outlet surfaceS2 (figure 6.14).
Determine the sound field inside the pipe.Hint. Use spherical waves centred at the cone top!

z) A small transistor radio is not able to produce low frequencies (why?). We hear low frequencies because
our ear is artificially guessing these low frequencies when we supply a collection of higher harmon-
ics (figure 6.15). On the other hand, when using a Walkman we are actually provided with real, low
frequencies. Why is this possible even though the loudspeaker is a miniature device?

f0 2 f0 3 f0 4 f0 f0 2 f0 3 f0 4 f0

Figure 6.15 We hear the missing fundamental! (Exercise z)

A) Calculate the friction and radiation losses in a clarinet. Assume a tube radius of 1 cm and a length of 1
m. Carry out the calculation for the first three modes of the instrument. What is the difference between
the radiation losses of a clarinet and of a flute with the same pipe dimensions.

B) How far can we be heard when we scream in quiescent air if we produce 10−5 W acoustic power?

C) Calculate the ratio between the acoustic impedance experienced by an air bubble of radiusa0 = 1 mm
in water at atmospheric pressure:

– in free space;
– in an infinite duct of cross sectional areaS= 10−4 m2.

D) Consider two twin pipes of lengthL and radiusa, placed along each other in such a way that correspond-
ing ends of either pipe just touch each other. Assume that thepipes are acoustically excited and oscillate
in opposite phase. How does the radiation losses of the system scale withL anda.
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In a duct of constant cross section the reduced wave (or Helmholtz) equation may be solved by means
of a series expansion in a particular family of solutions, called modes. They are related to the eigenso-
lutions of the two-dimensional Laplace operator acting on across section. Therefore, the terminology
of modes contains many references to the corresponding eigenvalues.

Modes are interesting mathematically because they form, ingeneral, a complete basis by which any
solution can be represented. Physically, modes are interesting because they are solutions in their own
right, not just mathematical building blocks, and by their simple structure the usually complicated
behaviour of the total field is more easily understood.

7.1 General formulation

The time-harmonic sound field in a duct of constant cross section with linear boundary conditions
that are independent of the axial coordinate may be described by an infinite sum of special solutions,
called modes, that retain their shape when travelling down the duct. They consist of an exponential
term multiplied by the eigenfunctions of the Laplace operator corresponding to a duct cross section.

DA

∂A

n

x

y

z

Figure 7.1 A ductD of cross sectionA.

Consider the two-dimensional areaA with a smooth boundary∂A and an externally directed unit
normal n. For physical relevanceA should be simply connected, otherwise we would have several
independent ducts. When we consider, for definiteness, thisarea be part of they, z-plane, it describes
the ductD (see Fig. 7.1) given by

D = {(x, y, z)|(y, z) ∈ A} (7.1)

with axial cross sections being copies ofA and where the normal vectorsn are the same for allx. In
the usual complex notation (with+iωt–sign convention), the acoustic field

p(x, t) ≡ p(x, ω)eiωt , v(x, t) ≡ v(x, ω)eiωt (7.2)
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satisfies in the duct (x ∈ D) the equations

∇2 p + ω2p = 0, (7.3a)

iωv + ∇ p = 0. (7.3b)

Solutions of a more general time-dependence may be constructed via Fourier synthesis inω (equation
C.2). At the duct wall we assume the boundary condition

B(p) = 0 for x ∈ ∂D (7.4)

whereB is typically of the form (c.f. for example Eqs. (3.14) or (3.42))

B(p) = a(y, z)(n·∇ p)+ b(y, z)p + c(y, z) ∂
∂x p. (7.5)

Self-similar solutions (calledmodes) of the form p(x, y, z) = φ(x)ψ(y, z) exist forφ(x) = e−ikx

with particular values ofk and associated functionsψ . This leads to general solutions given by

p(x, y, z) =
∞∑

n=0

Cnψn(y, z)e−iknx (7.6)

whereψn are the eigenfunctions of the Laplace operator reduced toA, i.e.solutions of

−
(
∂2

∂y2 + ∂2

∂z2

)
ψ = α2ψ for (y, z) ∈ A,

with B̃(ψ;α) = 0 for (y, z) ∈ ∂A,
(7.7)

whereα2 is the corresponding eigenvalue and the eigenmode boundarycondition operatorB̃ is

B̃(ψ;α) = a(y, z)(n·∇ψ)+ b(y, z)ψ − i k(α)c(y, z)ψ. (7.8)

The axial wave numberk is given by one of the square rootsk = ±
√
ω2 − α2 (+ for right and−

for left running). Each term in the series expansion,i.e.ψn(y, z)e−iknx, is called aduct mode. If the
duct cross section is circular or rectangular and the boundary condition is uniform everywhere, the
solutions of the eigenvalue problem are relatively simple and may be found by separation of variables.
These eigensolutions consist of combinations of exponentials and Bessel functions in the circular
case or combinations of trigonometric functions in the rectangular case. Some other geometries, like
ellipses, do also allow explicit solutions, but only in special cases such as with hard walls. For other
geometries one has to fall back on numerical methods for the eigenvalue problem. As a final remark,
we note that the above solution only needs a minor adaptationto cope with a uniform mean flow inside
the duct.

By application of Green’s theorem it can easily be shown thatthe set of eigenfunctions{ψn} is bi-
orthogonalto their complex conjugates{ψ∗

n}. In other words, the innerproduct

(ψn, ψ
∗
m) =

∫∫

A

ψnψm dσ

{
= 0 if n 6= m,

6= 0 if n = m.
(7.9)

(Some care is required when, due to a symmetric geometry, each αn is linked to more than oneψn.)
This implies that for realψn and realαn, which is for example the case for hard-walled ducts where
Z = ∞, the set of eigenfunctions is bi-orthogonal to itself: in other words isorthogonal. This orthog-
onality can be used to obtain the amplitudes of the expansion. See section 7.7.

In the following sections, we will present the modes with their properties and applications for cylin-
drical ducts with both hard walls and soft walls of impedancetype, as well as for rectangular ducts.



152 7 Duct acoustics

7.2 Cylindrical ducts

Consider in a duct, with radiusa, uniform sound speedc0 and mean densityρ0, time-harmonic acous-
tic waves of angular frequencyω. We scale our variables as follows

x := ax, t := at/c0, p := ρ0c
2
0 p, ρ := ρ0ρ, v := c0v, and ω := ωc0/a,

while intensity scales onρ0c3
0 and power onρ0c3

0a2. Note thatω, the dimensionless frequency or
dimensionless free field wave number1, is just the Helmholtz number.

In the present polar coordinates

∇ = ex
∂

∂x
+ er

∂

∂r
+ eϑ

1

r

∂

∂ϑ
, (7.10a)

∇2 = ∂2

∂x2
+ ∂2

∂r 2
+ 1

r

∂

∂r
+ 1

r 2

∂2

∂ϑ2
, (7.10b)

and so the reduced wave equation (7.3a) becomes

∂2p

∂x2
+ ∂2 p

∂r 2
+ 1

r

∂p

∂r
+ 1

r 2

∂2p

∂ϑ2
+ ω2p = 0. (7.11)

We begin with a hard-walled hollow duct, which has the wall boundary condition

∂p

∂r
= 0 atr = 1. (7.12)

Solutions of modal type may be found by separation of variables, i.e. by assuming the formp =
F(x)ψ(y, z) = F(x)G(r )H (ϑ)

(d2H

dϑ2

)
/H = −m2 (7.13a)

(d2G

dr 2
+ 1

r

dG

dr

)
/G = m2

r 2
− α2 (7.13b)

(d2F

dx2

)
/F = α2 − ω2 (7.13c)

so that

(a) H (ϑ) = e−imϑ , m = 0,±1,±2, · · · .
Here, use is made of the condition of continuity fromϑ = 0 toϑ = 2π .

(b) G(r ) = Jm(αmµr ), µ = 1,2, · · · , where:
Jm denotes the ordinary Bessel function of the first kind (Appendix D);
αmµ = j ′

mµ is theµ-th nonnegative non-trivial zero ofJ ′
m, to satisfy the boundary condition

G′(1) = 0.

(c) F(x) = e∓ikmµx, with:

kmµ =
√
ω2 − α2

mµ such that Re(kmµ) > 0, Im(kmµ) 6 0.

1in dimensional form better known aska.
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Although technically speaking{α2
m,µ} are the eigenvalues of (minus) the cross-sectional Laplaceop-

erator, it is common practice to refer toαmµ as the radial eigenvalue or radial modal wave number, to
m as the circumferential eigenvalue or circumferential wavenumber, and tokmµ as the axial eigen-
value or axial wave number. The associated solutions are called duct modes, and they form a complete
set of building blocks suitable for constructing any sound field in a duct. At the same time, they are
particular shape-preserving solutions with easily interpretable properties.

Note that allαmµ andm are real, while only a finite number ofkmµ are real; see figure 7.2). The branch
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Figure 7.2 Complex axial wave numbers (m = 0,ω = 5).

we selected here of the complex square rootkmµ is such thate−ikmµx describes a right-running wave
andeikmµx a left-running wave. This will be further clarified later.

These modes (normalized for convenience)

pmµ(x, r, ϑ) = Umµ(r )e−imϑ∓ikmµx, (7.14)

Umµ(r ) = Nmµ Jm(αmµr ),

Nmµ =
{

1
2(1 − m2/α2

mµ)Jm(αmµ)
2
}−1/2

,

form (for fixed x) a complete set (inL2-norm over(r, ϑ)), so by superposition we can write any
solution as the following modal expansion:

p(x, r, ϑ) =
∞∑

m=−∞

∞∑

µ=1

(Amµ e−ikmµx +Bmµ eikmµx)Umµ(r )e−imϑ .

(7.15)

The normalization factorNmµ is chosen such that a modal amplitudeAmµ scales with the energy
content of the corresponding mode (see below).

A surface of constant phase,i.e. mϑ + Re(kmµ)x = constant, is a helicoid of pitch 2πm/Re(kmµ);
see figure 7.3.
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x-axis

Figure 7.3 Surface of constant phasemϑ + Re(kmµ)x.

An important special case is the plane wavem = 0,µ = 1, with

j ′
01 = 0, α01 = 0, k01 = ω, N01 =

√
2, p01 =

√
2e−iωx .

In fact, this is the only non-trivial eigenvalue equal to zero. All others are greater, the smallest being
given by

j ′
11 = 1.84118· · · .

Since the zeros ofJ ′
m form an ever increasing sequence both inm and inµ (with j ′

mµ ≃ (µ+ 1
2m− 1

4)π

for µ → ∞) (see Appendix D), there are for anyω always a (finite)µ = µ0 andm = m0 beyond
whichα2

mµ > ω
2, so thatkmµ is purely imaginary, and the mode decays exponentially inx.

So we see that there are always afinitenumber of modes withreal kmµ (see figure 7.2). Since they are
the only modes that propagate (see below), they are calledcut-on. The remaining infinite number of
modes, withimaginary kmµ, are evanescent and therefore calledcut-off. This cut-on and cut-off modes
are essentially similar to the radiating and evanescent waves discussed in section 3.3.

For low frequency,i.e. for

ω < j ′
11 = 1.84118· · ·

all modes are cut-off except for the plane wave. In this case aplane wave approximation (i.e.consider-
ing only the first mode) is applicable if we are far enough awayfrom any sources, changes in boundary
condition, or other scattering objects, for the generated evanescent modes to become negligible.

From the orthogonality relation2 of equation 7.9 (note that we have here a hard-walled duct)
∫ 1

0

∫ 2π

0
Umµ(r )e−imϑ

(
Unν(r )e−inϑ

)∗
r dϑdr = 2πδmnδµν (7.16)

we find by integration of the time-averaged axial intensity

〈I · ex〉 = 1
4(pu∗ + p∗u) = 1

2 Re(pu∗)

over a duct cross sectionx = constant the transmitted acoustic power

P = π

ω

∞∑

m=−∞

∞∑

µ=1


Re(kmµ)(|Amµ|2 − |Bmµ|2)+ 2 Im(kmµ) Im(A∗

mµBmµ)

. (7.17)

2 δi j = 1 if i = j , δi j = 0 if i 6= j
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The summation over Re(kmµ) contains only afinite number of non-zero terms: the cut-on modes.
By taking eitherAmµ or Bmµ equal to zero, it is clear that a cut-on exp(−i kmµx)-mode propagates
in positivedirection, and a cut-on exp(i kmµx)-mode innegativedirection (for the present+iωt–
sign convention). Indeed, with Im(kmµ) 6 0, the respective cut-off modes decay in the propagation
direction, and we can say that a mode propagates or decays exponentially depending on the frequency
being lower or higher than the cut-off or resonance frequency

fc =
j ′
mµc0

2πa
. (7.18)

As is clear from the second part of expression (7.17), cut-off modes may transport energy by in-
teraction between right- and left-running (Amµ and Bmµ) modes. It should be noted, however, that
(depending on the choice of the originx = 0) usually either the right- or left-running cut-off modes
Amµ or Bmµ are exponentially small, and the productA∗

mµBmµ is therefore quickly negligible.

The axialphase velocity(C.19) of a cut-on mode is equal to

vph = ω

kmµ
(7.19)

The axialgroup velocity(C.21) of a cut-on mode is given by

vg =
(dkmµ

dω

)−1
= kmµ

ω
. (7.20)

Note that

vgvph = 1, with vg < 1< vph. (7.21)

The axial group velocity is lower than the soundspeed because the modal wave fronts do not propagate
parallel to thex-axis, but rather follow a longer path, spiralling around the x-axis, with a right-hand
rotation form> 0 and a left-hand rotation form< 0.

7.3 Rectangular ducts

In a completely analogous way as in the foregoing section 7.2, the general modal solution, similar to
(7.15), of sound propagation in a rectangular hard walled duct, can be found as follows.

Separation of variablesp(x, y, z) = F(x)G(y)H (z) applied to∇2 p+ω2 p = 0 in the duct 0≤ x ≤ a,
0 ≤ y ≤ b, results intoFxx = −α2F , Gyy = −β2G andHzz = −(ω2 − α2 − β2)H , whereα andβ
are eigenvalues to be determined from the hard-wall boundary conditions. We obtain

F(x) = cos(αnx), αn = nπ
a , n = 0,1,2, . . .

G(x) = cos(βmx), βm = mπ
b , m = 0,1,2, . . .

H (z) = e∓iknmz, knm = (ω2 − α2
n − β2

m)
1/2,

where Re(knm) ≥ 0 and Im(knm) ≤ 0. So the general solution is

p(x, y, z) =
∞∑

n=0

∞∑

m=0

cos(αnx) cos(βmy)(Anm e−iknmz +Bnm eiknmz).

(7.22)
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7.4 Impedance wall

7.4.1 Behaviour of complex modes

When the duct is lined with sound absorbing material of a typethat allows little or no sound propaga-
tion in the material parallel to the wall, the material is called locally reactingand may be described by
a wall impedanceZ(ω) (scaled onρ0c0). This gives in the acoustic problem the following boundary
condition in the frequency domain:

iωp
∣∣∣
r=1

= −Z(ω)
∂p

∂r

∣∣∣∣
r=1

, (7.23)

the impedance being defined asp/(v ·n) with n a normal pointinginto the surface. A typical practical
example is: the inlet of an aircraft turbojet engine. The previous concept of a modal expansion, with
modes again retaining their shape travelling down the duct,is also here applicable. The general solu-
tion has a form similar to (7.14) and (7.15), the hard walled case. Only the eigenvaluesαmµ are now
defined by

Jm(αmµ)

αmµJ ′
m(αmµ)

= i Z

ω
, (7.24)

related tokmµ by the same square root as before:

kmµ =
√
ω2 − α2

mµ,

but another normalization may be more convenient. A normalization that preserves the relation

∫ 1

0
Umµ(r )U

∗
mµ(r )r dϑdr = 1

(note that now the modes arenot orthogonal) is

Nmµ =
{ |αmµJ ′

m(αmµ)|2 Re(Z)

Im(α2
mµ)ω

}−1/2
. (7.25)

Qualitatively, the behaviour of these modes in the complexkmµ-plane is as follows.

If Im (Z) > 0, all modes may be found not too far from their hard wall values on the real interval
(−ω,ω) or the imaginary axis (that is, withαmµ = j ′

mµ, and Im(kmµ) 6 0.) More precisely, if we
vary Z from |Z| = ∞ to Z = 0, αmµ varies from its|Z| = ∞-value j ′

mµ to its Z = 0-value jmµ.
( jmµ is theµ-th zero ofJm.) Thesejmµ and j ′

mµ are real and interlaced according to the inequalities
j ′
mµ < jmµ < jm,µ+1 < etc., so the correspondingkmµ are also interlaced and shift into a direction of

increasing mode numberµ.

However, if Im(Z) < 0 (for +iωt-sign convention), a couple of two modes wander into their quarter
of the complex plane in a more irregular way, and in general quite far away from the others. In figure
7.5 this behaviour is depicted by the trajectories of the modes as the impedance varies along lines of
constant real part (figure 7.4). Compare this figure with figure 3.1 of the related 2-D problem, which
may be considered as the high-frequency approximation of the duct problem. (Note the notation!α
in the 2-D problem corresponds tokmµ here.) For small enough Re(Z) (smaller than, say, 2) we see
the first (µ=1) mode being launched into the complexkmµ-plane when Im(Z) is negative, and then
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✻

real axis

imaginary
axis Re(Z) =constant

Z ∈ C

Figure 7.4 Complex impedance plane.

returning as a (for example)µ=4 or 2 mode when Im(Z) is positive. We will call these irregular modes
surface waves: their maximum is at the wall surface, and away from the wall they decay exponentially
([192]). This is most purely the case for an imaginary impedanceZ = i X. See figure 7.6.

A solutionαmµ = i̺mµ, ̺mµ real, may be found3 satisfying

Im(̺mµ)

̺mµ I ′
m(̺mµ)

= − X

ω
if − ω

m
< X < 0. (7.26)

The modal shape inr , described byJm(αmµr ) = i mIm(̺mµr ), is exponentially restricted to the imme-
diate neighbourhood ofr = 1 and indeed shows the surface wave character, since the modified Bessel
function Im(x) has exponential behaviour forx → ∞. It is interesting to note that the corresponding
axial wave numberkmµ = (ω2 + ̺2

mµ)
1/2 is now larger thanω. Hence, the modal phase velocity is

smaller than the sound speed, which is indeed to be expected for anon-radiatingsurface wave. The
group velocity (7.20) depends onZ(ω).

7.4.2 Attenuation

Usually, lining is applied to reduce the sound level by dissipation. It is a simple exercise to verify that
the time-averaged intensity at the wall directed into the wall ( i.e. the dissipated power density) of a
mode is

〈I ·er 〉 ∝ Im(α2
mµ). (7.27)

A natural practical question is then: which impedanceZ gives the greatest reduction. This question
has, however, many answers. In general, the optimum will depend on the source of the sound. If
more than one frequency contributes, we have to include the way Z = Z(ω) depends onω. Also
the geometry may play a rôle. Although it is strictly speaking not dissipation, the net reduction may
benefit from reflections at discontinuities in the duct (hard/soft walls, varying cross section).

A simple approach would be to look at the reduction per mode, and to maximize the decay rate of
the least attenuated mode,i.e. the one with thesmallest| Im(kmµ)|. A further simplification is based
on the observation that the decay rate Im(kmµ) of a mode increases with increasing order, so that a
(relatively) large decay rate is obtained if the first and second mode (of the most relevantm) coalesce
(Cremer’s optimum). This is obtained if also the derivativeto αmµ of (7.24) vanishes, yielding the
additional condition

J ′
m(αmµ)

2 +
(
1 − m2

α2
mµ

)
Jm(αmµ)

2 = 0 (7.28)

3The functionh(z) = z I′m(z)/Im(z) increases monotonically inz, with h(0) = m, andh(z) ∼ z asz → ∞.
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(c) 1.5, (d) 2.0.
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(see also exercise 7d). An example is given in figure 7.7. Notethat no mode is lost, as the two corre-
sponding modes degenerate into

Jm(αmµr )Nmµ e−ikmµx−imϑ , (7.29a)(
αmµx Jm(αmµr )− i kmµr J ′

m(αmµr )
)

Nmµ e−ikmµx−imϑ . (7.29b)
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7.5 Annular hard-walled duct modes in uniform mean flow

With uniform mean flow (see equation 2.52), the modal theory still applies. In view of applications,
we consider an annular duct of (scaled) inner radiush.

Consider the following linearized equations for small perturbations
(
iω + M

∂

∂x

)
p + ∇ ·v = 0, (7.30a)

(
iω + M

∂

∂x

)
v + ∇ p = 0, (7.30b)

with hard-wall boundary conditions. Eliminatev to obtain the convected wave equation
(
iω + M

∂

∂x

)2
p − ∇2 p = 0, (7.31)

Note, however, the possibility of convective incompressible pressureless disturbances of the form

v = F(r, θ)e−i ωM x, such that∇ ·v = 0 andp ≡ 0.

Fully written out, equation (7.31) becomes

(
iω + M

∂

∂x

)2
p −

( ∂2

∂x2
+ ∂2

∂r 2
+ 1

r

∂

∂r
+ 1

r 2

∂2

∂ϑ2

)
p = 0. (7.32)

The eigenvalue problem can now be solved, and we may expand the general solution in Fourier-Bessel
modes

p(x, r, θ) =
∞∑

m=−∞

∞∑

µ=1

(
Amµ e−ik+

mµx +Bmµ e−ik−
mµx

)
Umµ(r )e−imθ (7.33)

where the radial modes and radial and axial wave numbers satisfy

U ′′
mµ + 1

r
U ′

mµ +
(
α2

mµ − m2

r 2

)
Umµ = 0 (7.34a)

α2
mµ = (ω − Mkmµ)

2 − k2
mµ (7.34b)

k±
mµ =

−ωM ±
√
ω2 − (1 − M2)α2

mµ

1 − M2
(7.34c)

and solution

Umµ(r ) = Nmµ

(
cos(τmµ)Jm(αmµr )− sin(τmµ)Ym(αmµr )

)
. (7.35)

The corresponding phase and group velocities for cut-on modes are found to be

v±
ph = ω

k±
mµ

=
ω2M ± ω

√
ω2 − (1 − M2)α2

mµ

ω2 − α2
mµ

, (7.36a)

v±
g =

(dk±
mµ

dω

)−1
= ±(1 − M2)

√
ω2 − (1 − M2)α2

mµ

ω ∓ M
√
ω2 − (1 − M2)α2

mµ

. (7.36b)



7.5 Annular hard-walled duct modes in uniform mean flow 161

Due to the mean flow, the axial modal wave numbers are shifted to the left (M > 0), or right (M < 0),
by a fixed amount of−ωM/(1 − M2), while the (dimensionless) cut-off frequency is lowered from
ω = αmµ for no flow toω = αmµ

√
1 − M2 with flow. So with flow more modes are possibly cut-on

than without. Note that (forM > 0) the rightrunning modes that become cut-on in this way (and
only these) have a negative real part of their axial wave number. Indeed, rightrunning modes with a
frequency along the interval

αmµ

√
1 − M2 < ω < αmµ

have phase velocities that areoppositeto their group velocities, the speed of information. The same
applies for left-running modes ifM < 0. Sincev+

g > 0 andv−
g < 0, this shows that it is not the sign

of kmµ but of its radical that corresponds with the direction of propagation [140];c.f. equation (7.42).

Eigenvaluesαmµ are determined via boundary conditionU ′
mµ(1) = U ′

mµ(h) = 0

J ′
m(α)Y

′
m(αh)− J ′

m(αh)Y′
m(α) = 0 (7.37)

The normalization is such that
∫ 1

h U2(r )r dr = 1 (c.f. [191]), so

Nmµ =
1
2

√
2παmµ

{
1 − m2/α2

mµ

J ′
m(αmµ)2 + Y′

m(αmµ)2
−

1 − m2/α2
mµh2

J ′
m(αmµh)2 + Y′

m(αmµh)2

} 1
2

(7.38)

and

τmµ = arctan
{ J ′

m(αmµ)

Y′
m(αmµ)

}
. (7.39)

This implies the following choice of signs

cosτmµ = sign(Y′
m(αmµ))

Y′
m(αmµ)√

J ′
m(αmµ)2 + Y′

m(αmµ)2
, (7.40a)

sinτmµ = sign(Y′
m(αmµ))

J ′
m(αmµ)√

J ′
m(αmµ)2 + Y′

m(αmµ)2
, (7.40b)

with the advantage that it reduces to the expected limitNmµ Jm(αmµr ) for h → 0. Other choices, for
example without the factor sign(Y′

m), are also possible.

The modes are physically interesting because their shape remains the same. Mathematically, they are
interesting because they form a complete and orthonormalL2-basis for the solutions of the convected
wave equation (except for the pressureless convected perturbations):

∫ 2π

0

∫ 1

h
Umµ(r )Unν(r )eimθ e−inθ r dr dθ = 2πδmnδµν (7.41)

It is convenient to introduce theLorentzor Prandtl-Glauerttype transformation (see 3.46 and section
9.1.1)

β =
√

1 − M2, x = βX, ω = β�, αmµ = �γmµ

k±
mµ = ±�σmµ −�M

β
, σmµ =

√
1 − γ 2

mµ,
(7.42)
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whereσmµ is positive real or negative imaginary, then we have for pressure p and axial acoustic
velocity v

p =
∞∑

m=−∞

∞∑

µ=1

(
Amµ e−i�σmµX +Bmµ ei�σmµX

)
ei�M X Umµ(r )e−imθ (7.43a)

v =
∞∑

m=−∞

∞∑

µ=1

( σmµ − M

1 − Mσmµ
Amµ e−i�σmµX − σmµ + M

1 + Mσmµ
Bmµ ei�σmµX

)
ei�M X Umµ(r )e−imθ

(7.43b)

This includes the important case of the plane wavem = 0,µ = 1, with α01 = 0, k±
01 = ±ω/(1 ± M)

andU01 = (2/(1 − h2))1/2, such that

p(x, r, θ) =
[

A01 e− iωx
1+M +B01e

iωx
1−M

]( 2

1 − h2

)1/2
, (7.44a)

v(x, r, θ) =
[

A01 e− iωx
1+M −B01e

iωx
1−M

]( 2

1 − h2

)1/2
. (7.44b)

If we have at positionx = 0 a given pressure and axial velocity profilesP(0, r, θ) andV(0, r, θ), we
can expand these profiles in the following Fourier-Bessel series

P(0, r, θ) =
∞∑

m=−∞

∞∑

µ=1

PmµUmµ(r )e−imθ , (7.45a)

V(0, r, θ) =
∞∑

m=−∞

∞∑

µ=1

VmµUmµ(r )e−imθ , (7.45b)

where

Pmµ = 1

2π

∫ 2π

0

∫ 1

h
P(0, r, θ)Umµ(r )eimθ r dr dθ, (7.46a)

Vmµ = 1

2π

∫ 2π

0

∫ 1

h
V(0, r, θ)Umµ(r )eimθ r dr dθ. (7.46b)

If these pressure and velocity profiles satisfy the above propagation model of sound in uniform mean
flow, the corresponding amplitudesAmµ andBmµ are found from identifying

Pmµ = Amµ + Bmµ, (7.47a)

Vmµ = σmµ − M

1 − Mσmµ
Amµ − σmµ + M

1 + Mσmµ
Bmµ, (7.47b)

leading to

Amµ =
(1 − Mσmµ)(σmµ + M)Pmµ + (1 − M2σ 2

mµ)Vmµ

2σmµ(1 − M2)
, (7.48a)

Bmµ =
(1 + Mσmµ)(σmµ − M)Pmµ − (1 − M2σ 2

mµ)Vmµ

2σmµ(1 − M2)
. (7.48b)
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From the axial intensity in hard-walled flow duct

〈I x〉 = 1
2 Re

[
(p + Mu)(u∗ + Mp∗)

]
(7.49)

we obtain the axial power:

P = πβ4
∞∑

m=−∞

µ0∑

µ=1

σmµ

[ |Amµ|2
(1 − Mσmµ)2

− |Bmµ|2
(1 + Mσmµ)2

]
+

+ 2πβ4
∞∑

m=−∞

∞∑

µ=µ0+1

|σmµ|
(1 + M2|σmµ|2)2

·
[
Im(AmµB∗

mµ)(1 − M2|σmµ|2) − Re(AmµB∗
mµ)2M|σmµ|

]
(7.50)

whereµ0 is the number of cut-on modes. Note the coupling between left- and right-running cut-off
modes.

7.6 Behaviour of soft-wall modes and mean flow

Consider a cylindrical duct with soft wall of specific impedance Z and uniform mean flow of Mach
numberM. For this configuration the acoustic field allows again modes, similar to the no-flow situa-
tion, although their behaviour with respect to possible surface waves is more complicated [198].

We start with modes of the same form as for the hard wall case (equations 7.33 with 7.42, and 7.43a)
for pressurep and radial velocityv (we drop the exponentials with iωt and imθ)

p = e−i�σ X+i�M X Jm(�γ r ), v = iβγ

1 − Mσ
e−i�σ X+i�M X J ′

m(�γ r ),

whereγ 2 + σ 2 = 1 and the sign ofσ depends (in general) on the direction of propagation4. From the
boundary condition (see equation 3.42)

iωZv =
(
iω + M ∂

∂x

)
p

we find the equation for reduced axial wave numberσ for any givenZ, m, andω

(1 − Mσ )2Jm(�γ )− iβ3Zγ J ′
m(�γ ) = 0. (7.51)

A graphical description of their behaviour as a function of Im Z (from +∞ down to−∞) and fixed
ReZ is given in the series of figures (7.8). For large enough frequency,ω, the behaviour of the modes
can be classified as follows. Whenσ is near a hard-wall value, the mode described is really of acoustic
nature, extending radially through the whole duct. However, whenσ is far enough away from a hard-
wall value, the imaginary part of�γ becomes significant. The complex Bessel functionJm(�γ r )
becomes exponentially decaying away from the wall, and the mode is radially restricted to the duct
wall region. In other words, it has become a surface wave, of two-dimensional nature, approximately
described by the theory of section 3.2.6 (eqn. 3.47).

The “egg” (figure 3.3), indicating the location of possible surface waves in the 2D limit, is drawn in
the figures by a dotted line. The 2D surface wave solutions areindicated by black lines. The behaviour
of the modes is to a certain extent similar to the no-flow situation (section 7.4.1, figures 7.5), although
the effect of the mean flow is that we have now 4 rather than 2 possible surface waves.

4Note that ifσ = 1/M, i.e. if γ = ±iβ/M, we have to rescale the modal amplitude such thatp = 0. In this case the
mode is a pressureless vorticity mode, comparable with (3.66).
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Figure 7.8 Trajectories of reduced wave numberσmµ (m = 1, ω = 5) whereM = 0.5, for Im(Z) varying from−∞
to ∞ and fixed Re(Z). The 2D surface wave solutions of eqn. (3.47) are included asblack lines.
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For large ReZ, the modes remain near their hard-wall values. For lower values of ReZ the behaviour
becomes more irregular. The modes change position with a neighbour, and some become temporarily
a surface wave. The two hydrodynamic modes disappear to infinity for Im Z → −∞ like is described
in equation (3.48).

7.7 Source expansion

7.7.1 Modal amplitudes

A source atx = 0, defined by

p(x, r, ϑ)
∣∣∣
x=0

= p0(r, ϑ)

produces in a hard walled duct a sound field (7.15) with modal amplitudes given by (inx > 0)

Amµ = 1

2π

∫ 2π

0

∫ 1

0
p0(r, ϑ)Umµ(r )eimϑ r dr dϑ (7.52a)

Bmµ = 0 (7.52b)

(use (7.16)), and the same inx < 0 but with A andB interchanged. Note that, similar to the evanes-
cent waves of section 3.3, details of the source (averaged out for the lower modes in the process of
integration), only contribute to higher order modes and do not generate sound if these modes are
cut-off.

7.7.2 Rotating fan

Of practical interest, especially in aircraft noise reduction [234], is the following model of a propeller
or fan with B identical blades, equally spaced1ϑ = 2π/B radians apart, rotating with angular speed
�. If at some timet = 0 at a fixed positionx the field due to one blade is given by the shape function
q(ϑ, r ), then from periodicity the total field is described by

p(r, ϑ,0) = q(ϑ, r ) + q(ϑ −1ϑ, r )+ · · · + q(ϑ − (B − 1)1ϑ, r )

=
B−1∑

k=0

q
(
ϑ − 2πk

B , r
)
.

This function, periodic inϑ with period 2π/B, may be expanded in a Fourier series:

p(ϑ, r,0) =
∞∑

n=−∞
qn(r )e−inBϑ .

Since the field is associated to the rotor, it is a function ofϑ −�t . So at a timet

p(ϑ, r, t) =
B−1∑

k=0

q
(
ϑ −�t − 2πk

B , r
)

=
∞∑

n=−∞
qn(r )einB�t−inBϑ (7.53)
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(with q−n = q∗
n becausep is real). Evidently, the field is built up from harmonics of the blade passing

frequencyB�. Note that each frequencyω = nB� is now linked to a circumferential periodicity
m = nB, and we jump with stepsB through the modalm-spectrum. Since the plane wave (m = 0) is
generated with frequencyω = 0 it is acoustically not interesting, and we may ignore this component.
An interesting consequence for a rotor in a duct is the observation that it is not obvious if there is
(propagating) sound generated at all: the frequency must behigher than the cut-off frequency. For any
harmonic (n > 0) we have:

fm = m�

2π
>

j ′
m1c0

2πa
(7.54)

which is for the tip Mach numberMtip the condition

Mtip = a�

c0
>

j ′
m1

m
. (7.55)

Since the first zero ofJ ′
m is always (slightly) larger thanm (Appendix D), it implies that the tip must

rotatesupersonically(Mtip > 1) for the fan to produce sound.

Of course, in practice a ducted fan with subsonically rotating blades will not be entirely silent. For ex-
ample, ingested turbulence and the turbulent wake of the blades are not periodic and will therefore not
follow this cut-off reduction mechanism. On the other hand,if the perturbations resulting from blade
thickness and lift forces alone are dominating as in aircraft engines, the present result is significant,
and indeed the inlet fan noise level of many aircraft turbo fan engines is greatly enhanced at take off
by the inlet fan rotating supersonically (together with other effects leading to the so-calledbuzzsaw
noise([223])).

7.7.3 Tyler and Sofrin rule for rotor-stator interaction

The most important noise source of an aircraft turbo fan engine at inlet side is the noise due to inter-
action between inlet rotor and neighbouring stator.

Behind the inlet rotor, or fan, a stator is positioned (figure7.9) to compensate for the rotation, or swirl,
in the flow due to the rotor. The viscous and inviscid wakes from the rotor blades hit the stator vanes
which results into the generation of sound ([218]). A very simple but at the same time very important
and widely used device to reduce this sound is the “Tyler and Sofrin selection rule” ([223, 234]). It is
based on elegant manipulation of Fourier series, and amounts to nothing more than a clever choice of
the rotor blade and stator vane numbers, to link the first (few) harmonics of the sound to duct modes
that are cut-off and therefore do not propagate.

Consider the same rotor as above, withB identical blades, equally spaced1ϑ = 2π/B radians apart,
rotating with angular speed�, and a stator withV identical vanes, equally spaced1ϑ = 2π/V
radians apart. First, we observe that the field generated by rotor-stator interaction must have the time
dependence of the rotor, and is therefore built up from harmonics of the blade passing frequencyB�.
Furthermore, it is periodic inϑ , so it may be written as

p(r, ϑ, t) =
∞∑

n=−∞
Qn(r, ϑ)einB�t =

∞∑

n=−∞

∞∑

m=−∞
Qnm(r )einB�t−imϑ .

However, we can do better than that, because most of them-components are just zero. The field is
periodic inϑ with the stator periodicity 2π/V in such a way that when we travel with the rotor over
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16 = turbine exhaust duct
17 = hot jet nozzle
18 = far-field hot exit
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  7 = engine section stator
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  9 = cold jet nozzle
10 = far-field cold exit
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Figure 7.9 Sketch of high by-pass turbo fan engine. Note the fan (or inlet rotor), which produces with the stator (or
outlet guide vanes) the importantrotor-stator interactionnoise. This is to be attenuated by the acoustically
lined walls of the inlet and bypass duct.

an angle1ϑ = 2π/V in a time step1t = 1ϑ/� the field must be the same:

p(r, ϑ, t) =
∞∑

n=−∞

∞∑

m=−∞
Qnm(r )einB�(t−1t)−im(ϑ−1ϑ) .

This yields for anym the restriction:−i nB�1t + i m1ϑ = 2π i k, or

m = kV + nB (7.56)

wherek is any integer, andn the harmonic of interest. By selectingB and V such that the lowest
|m| possible is high enough for the harmonic of interest to be cut-off, this component is effectively
absent for a long enough inlet duct. In practice, only the first harmonic is reduced in this way. A recent
development is that the second harmonic, which is usually cut-on, is reduced by selecting the mode
numberm to be of opposite sign ofn, which means: counter rotating with respect to the rotor. Inthis
case the rotor itself acts as a shield obstructing the spiralling modes to leave the duct ([218]).

In detail: for a cut-offn-th harmonic (we only have to consider positiven) we need

nB�

2π
<

j ′
m1c0

2πa
or nBMtip < j ′

m1.

Since typicallyMtip is slightly smaller than 1 andj ′
m1 is slightly larger than|m| we get the analogue

of evanescent wave conditionk < |α| (section 3.3)

nB 6 |m| = |kV + nB|.



168 7 Duct acoustics

The only values ofkV for which this inequality is not satisfied automatically is in the interval−2nB<
kV < 0. If we make the step sizeV big enough so that we avoid this interval fork = −1, we avoid it
for anyk. So we have finally the condition:V > 2nB.

Consider, as a realistic example, the following configuration of a rotor withB = 22 blades and a stator
with V = 55 vanes. The generatedm-modes are for the first two harmonics:

for n = 1: m = · · · , −33, 22, 77, · · · ,
for n = 2: m = · · · , −11, 44, 99, · · · ,

which indeed corresponds to only cut-off modes of the first harmonic (m = 22 and larger) and a
counter rotating cut-on second harmonic (m = −11).

7.7.4 Point source in a lined flow duct

Consider a cylindrical duct of non-dimensional radius 1, a mean flow of subsonic Mach numberM,
and harmonic pressure and velocity perturbationsp of non-dimensional angular frequencyω. The
pressure is excited by a point source atx0, and satisfies the equation

∇2 p −
(
iω + M

∂

∂x

)2
p = δ(x − x0), (7.57)

so p(x; x0) represents the Green’s function of the system. Note that we use theeiωt - convention. The
impedance boundary condition atr = 1 (3.42), becomes in terms of the pressure

(
iω + M

∂

∂x

)2
p + iωZ

∂p

∂r
= 0 at r = 1. (7.58)

For a hollow duct finiteness ofp is assumed atr = 0. Finally, we adopt radiation conditions that says
that we only accept solutions that radiate away from the source positionx0.

We represent the delta-function by a generalized Fourier series inϑ and Fourier integral inx

δ(x − x0) = δ(r − r0)

r0

1

2π

∫ ∞

−∞
e−iκ(x−x0) dκ

1

2π

∞∑

m=−∞
e−im(ϑ−ϑ0) . (7.59)

where 0< r0 < 1, and write accordingly

p(x, r, ϑ) =
∞∑

m=−∞
e−im(ϑ−ϑ0) pm(r, x) =

∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞

−∞
p̂m(r, κ)e−iκ(x−x0) dκ. (7.60)

Substitution of (7.59) and (7.60) in (7.57) yields forp̂m

∂2 p̂m

∂r 2
+ 1

r

∂ p̂m

∂r
+

(
α2 − m2

r 2

)
p̂m = δ(r − r0)

4π2r0
,

with

α2 = �2 − κ2, � = ω − κM.

This has solution

p̂m(r, κ) = A(κ)Jm(αr )+ 1
8π H (r − r0)

(
Jm(αr0)Ym(αr )− Ym(αr0)Jm(αr )

)
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where use is made of the Wronskian

Jm(x)Y
′
m(x)− Ym(x)J

′
m(x) = 2

πx
. (7.61)

A prime denotes a derivative to the argument,x. A(κ) is to be determined from the boundary condi-
tions atr = 1, which is (assuming uniform convergence) per mode

i�2 p̂m + ωZ p̂′
m = 0 at r = 1.

A prime denotes a derivative tor . This yields

A = 1

8π

[
Ym(αr0)− i�2Ym(α)+ ωαZY′

m(α)

i�2Jm(α)+ ωαZ J′
m(α)

Jm(αr0)

]
,

and thus

p̂m(r, κ) = Jm(αr<)
i�2Gm(r>, α)+ ωZ Hm(r>, α)

8πEm(κ)
,

wherer> = max(r, r0), r< = min(r, r0) and

Em(κ) = i�2Jm(α)+ ωαZ J′
m(α)

Gm(r, α) = Jm(α)Ym(αr )− Ym(α)Jm(αr )

Hm(r, α) = αJ ′
m(α)Ym(αr )− αY′

m(α)Jm(αr )

By substituting the defining series we find thatGm and Hm are analytic functions ofα2, while both
Em and Jm(αr<) can be written asαm times an analytic function ofα2. As a result,p̂m(r, κ) is a
meromorphic5 function ofκ. It has isolated polesκ = κ±

mµ, given by

Em(κ
±
mµ) = 0,

which is equivalent to (7.51). The final solution is found by Fourier back-transformation: close the
integration contour around the lower half plane forx > x0 to enclose the complex modal wave
numbers of the right-running modes, and the upper half planefor x < x0 to enclose the complex
modal wave numbers of the left-running modes. In figure 7.10 atypical location of the integration
contour with no-flow modes is shown. See also figures 7.5, 7.6 and 7.8.

We define

Qmµ = ±
[
(κmµ +�mµM)

(
1 − m2

α2
mµ

−
�4

mµ

(ωαmµZ)2

)
− 2i M�mµ

ωZ

]
,

where+/− relates to right/left-running modes. With the result

dEm

dκ

∣∣∣∣
κ=κmµ

= ±ωZ QmµJm(αmµ)

the integral is evaluated as a sum over the residues in the poles atκ = κ+
mµ for x > x0 and atκ−

mµ for
x < x0. From eigenvalue equationEm(κ

±
mµ) = 0 and the Wronskian (7.61) we obtain

i�2
mµGm(r>, αmµ)+ ωZ Hm(r>, αmµ) = − 2ωZ

π Jm(αmµ)
Jm(αmµr>).

5A meromorphicfunction is analytic on the complex plane except for isolated poles.
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Figure 7.10 Contour of integration in theκ-plane.

whereαmµ = α(κmµ). We can skip the distinction betweenr> andr< and achieve the soft wall modal
expansion

pm(r, x) = − 1

2π i

∞∑

µ=1

Jm(αmµr )Jm(αmµr0)

Qmµ J2
m(αmµ)

e−iκmµ(x−x0) (7.62)

where forx > x0 the sum pertains to the right-running waves, correspondingto the modal wave num-
bersκ+

mµ found in the lower complex half plane, and forx < x0 the left-running waves, corresponding
to κ−

mµ found in the upper complex half plane (see [198]).

Only if a mode from the upper half plane is to be interpreted asa right-running instability (their
existence is still an unresolved problem), its contribution is to be excluded from the set of modes for
x < x0 and included in the modes forx > x0. The form of the solution remains exactly the same, as
we do no more than deforming the integration contour into theupper half plane.

It may be noted that expression (7.62) is continuous in(x, r ), except at(x0, r0) where the series
slowly diverges like a harmonic series. As may be expected from the symmetry of the configuration,
the clockwise and anti-clockwise rotating circumferential modes are equal,i.e. pm(r, x) = p−m(r, x).

Solution (7.62) is very general. It includes both the no-flowsolution (takeM = 0) and the hard
walled duct (takeZ = ∞). Without mean flow the problem becomes symmetric inx and it may be
notationally convenient to writeα±

mµ = αmµ, κ+
mµ = κmµ andκ−

mµ = −κmµ.

Finding all the eigenvaluesκ±
mµ is evidently crucial for the evaluation of the series (7.62), in particular

when surface waves (Section 3.2.6) occur. An example ofpm(x, r ) is plotted in figure 7.11.

7.7.5 Point source in a duct wall

A problem, closely related to the previous one, is the field from a sourcev ·er = −δ(x − x0) in
the duct wallr = 1. Consider for simplicity a hard-walled duct without mean flow. We have for the
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pressure

1

iω

∂p

∂r

∣∣∣∣
r=1

= 1

2π

∫ ∞

−∞
e−iκ(x−x0) dκ

1

2π

∞∑

m=−∞
e−im(ϑ−ϑ0) . (7.63)

We solve equation (7.3a) again via Fourier transformation in x, and Fourier series expansion inϑ . We
obtain

p(x, r, ϑ) =
∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞

−∞
Am(κ)Jm(α(κ)r )e−iκ(x−x0) dκ (7.64)

whereα(κ)2 = ω2 − κ2. From the Fourier transformed boundary condition (7.63) itfollows that
αAmJ ′

n(α) = −ω/4π2i , so

p(x, r, ϑ) = − ω

4π2i

∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞

−∞

Jm(αr )

αJ ′
m(α)

e−iκ(x−x0) dκ.

The poles of the meromorphic6 integrand are found atκ = ±κmµ (we use the symmetry inx), and
since the waves must be outgoing the integration contour in theκ-plane must be located as in figure
7.10. Closing the contour via Im(κ) → −∞ for x > 0 and via Im(κ) → +∞ yields the solution, in
the form of a series over the residue-contributions7 in κ = ±κmµ. This yields the modal expansion

p(x, r, ϑ) = ω

2π

∞∑

m=−∞

∞∑

µ=1

Jm(αmµr )e−iκmµ|x−x0|−im(ϑ−ϑ0)

(1 − m2/α2
mµ)Jm(αmµ)κmµ

. (7.65)

The contribution of them = 0, µ = 1 plane-wave mode is

1

2π
e−iω|x| .

6A meromorphicfunction is analytic on the complex plane except for isolated poles.
7Nearκ = κmµ is J ′

m(α(κ)) ≃ −(κ − κmµ)κmµα
−1
mµJ ′′

m(αmµ).
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7.7.6 Vibrating duct wall

When, instead of a point, a finite part of the wall vibrates (e.g.[109]) as

r = 1 − η(x, ϑ)eiωt for − L 6 x 6 L (7.66)

then the solution may be found as follows. We write as a Fourier sum

η(x, ϑ) =
∞∑

m=−∞
e−imϑ ηm(x) =

∞∑

m=−∞
e−imϑ

∫ ∞

−∞
η̂m(κ)e−iκx dκ.

Similar to above we find the solutionp(x, r, ϑ) as a formal Fourier integral, which can be rewritten,
by using result (7.65) and the Convolution Theorem (C.10) (p.231), as

p(x, r, ϑ) = iω2
∞∑

m=−∞

∞∑

µ=1

1

κmµ

α2
mµ

α2
mµ − m2

Jm(αmµr )

Jm(αmµ)
e−imϑ

∫ L

−L
ηm(x

′)e−iκmµ|x−x′| dx′ (7.67)

with the plane-wave contribution

iω
∫ L

−L
η0(x

′)e−iω|x−x′| dx′.

A naive interpretation of this formula might suggest the contradictory result that the field, built up from
hard-wall modes with vanishingr -derivative at the wall, does not satisfy the boundary condition of
the moving wall. This is not the case, however, because the infinite series is not uniformly converging
(at least, its radial derivative). Pointwise, the value at the wall is not equal to the limit to the wall,
while it is only the limit which is physically relevant.

Although in the source region no simple modes can be recognized, outside this region,i.e. for |x| > L,
the remaining integral is just the Fourier transform times exponential,η̂m(±κmµ)exp(−κmµ|x|), and
the solution is again just a modal sum of right- or left-running modes.

7.8 Reflection and transmission at a discontinuity in diameter

One single modal representation is only possible in segments of a duct with constant properties (di-
ameter, wall impedance). When two segments of different properties are connected to each other we
can use a modal representation in each segment, but since themodes are different we have to reformu-
late the expansion of the incident field into an expansion of the transmitted field in the neighbouring
segment, using conditions of continuity of pressure and velocity. This is called:mode matching. Fur-
thermore, these continuity conditions cannot be satisfied with a transmission field only, and a part
of the incident field is reflected. Each mode is scattered intoa modal spectrum of transmitted and
reflected modes.

Consider a duct with a discontinuity in diameter atx = 0 (figure 7.12): a radiusa alongx < 0 and a
radiusb alongx > 0, with (for definiteness)a > b. Because of circumferential symmetry there is no
scattering into otherm-modes, so we will consider only a singlem-mode.

The fieldpin, incident fromx = −∞ and given by (see equation 7.14)

pin =
∞∑

µ=1

AmµUmµ(r )e−ikmµx−imϑ , (7.68a)
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r = a

r = b

Figure 7.12 Duct with discontinuous diameter.

is scattered atx = 0 into the reflected wavepref

pref =
∞∑

µ=1

BmµUmµ(r )eikmµx−imϑ, (7.68b)

Bmµ =
∞∑

ν=1

Rmµν Amν , or B = RA,

and into the transmitted waveptr

ptr =
∞∑

µ=1

CmµÛmµ(r )e−iℓmµx−imϑ, (7.68c)

Ûmµ(r ) = N̂mµ Jm(βmµr ),

Cmµ =
∞∑

ν=1

TmµνAmν , or C = T A.

Ûmµ(r ) and N̂mµ are the obvious generalizations ofUmµ(r ) and Nmµ on the interval[0,b]. Suitable
conditions of convergence of the infinite series are assumed, while

αmµ = j ′
mµ/a, kmµ =

√
ω2 − α2

mµ, Im(kmµ) 6 0,

βmµ = j ′
mµ/b, ℓmµ =

√
ω2 − β2

mµ, Im(ℓmµ) 6 0.

The matricesR andT are introduced to use the fact that each incident mode reflects and transmits into
a modal spectrum. When acting on the incident field amplitudevector A, they produce the reflection
and transmission field amplitude vectorsB andC. Therefore, they are called “reflection matrix” and
“transmission matrix”.

At the walls we have the boundary condition of vanishing normal velocity. At the interfacex = 0,0 6

r 6 b we have continuity of pressurepin + pref = ptr and corresponding axial velocity.

At the edges we have the so-callededge condition[138]: the energy integral of the field in a neigh-
bourhood of an edge must be finite (no source hidden in the edge). This condition is necessary in a
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geometry with edges because the boundary conditions lose their meaning at an edge, whereas the dif-
ferential equation is not valid at the boundary. In the context of modal series expansions this condition
is related to the convergence rate of the series. Aδ-function type of a spurious edge source generates a
divergent series expansion (to be interpreted as a generalized function; section C.2). Although its rôle
remains in the usual engineering practice somewhat in the background, the edge condition is certainly
important in the present problem.

Since the problem is linear it is sufficient to determine the scattered field of a singleµ-mode. It then
follows that the continuity of pressure at the interface

∞∑

ν=1

(δνµ + Rmνµ)Umν =
∞∑

ν=1

TmνµÛmν (7.69)

yields, after multiplication withÛmλ(r )r , integration from 0 tob, and using orthonormality, the fol-
lowing relation8 to expressTmλµ in the vectorRm·µ:

∞∑

ν=1

〈
Ûmλ ,Umν

〉
b
(δνµ + Rmνµ) = Tmλµ, (7.70)

where

〈
f ,g

〉
b

=
∫ b

0
f (r )g(r )r dr.

This integral may be evaluated by using equations (D.58) and(D.59). The continuity of axial velocity
at the interface

∞∑

ν=1

kmν(δνµ − Rmνµ)Umν =
∞∑

ν=1

ℓmνTmνµÛmν (7.71)

yields, after multiplication withUmλ(r )r , integration from 0 toa of the left hand side, and from 0 to
b of the right hand side, usingpx = 0 onb 6 r 6 a, the following relation expressingRmλµ in the
vectorTm·µ:

kmλ(δλµ − Rmλµ) =
∞∑

ν=1

〈
Umλ ,Ûmν

〉
b
ℓmνTmνµ. (7.72)

Both equations (7.70) and (7.72) are valid for anyλ andµ, so we can write in matrix notation

M(I + R) = T ,

k (I − R) = M⊤ℓ T ,
(7.73)

for identity matrix I , matrixM and its transposeM⊤, and diagonal matricesk andℓ, given by

Mλν =
〈
Ûmλ ,Umν

〉
b
, kλν = δλνkmλ, ℓλν = δλνℓmλ.

So we have formally the solution

R = (k + M⊤ℓM)−1(k − M⊤ℓM) (7.74)

8 δi j = 1 if i = j , δi j = 0 if i 6= j .
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which can be evaluated by standard techniques for any sufficiently large truncated matrices.

A suitable choice of truncation [126, 127, 195, 252], allowing for a certain balance between the accu-
racy in x < 0 and inx > 0, is to include proportionally more terms in the wider duct:a truncation
of the series of (7.70) after, say,P terms and of (7.72) afterQ terms, withP/a ≃ Q/b. This gives
truncated matricesMQ×P, M⊤

P×Q, kP×P, ℓQ×Q, so that we obtainRP×P andTQ×P.

It should be noted that if we takeP/Q very much different froma/b, wemayconverge forP,Q → ∞
to another solution (7.74) than the physical one. This is notan artefact of the method: the solution is
indeed not unique, because we have not yet explicitly satisfied the edge condition. The behaviour near
the edge depends on the way we letP and Q tend to infinity, and the edge condition is satisfied if
their ratio remains:P/Q ≃ a/b.

7.8.1 The iris problem

When an abrupt contraction of the duct diameter is immediately followed by an expansion to the
previous diameter (an infinitely thin orifice plate), we callthis an iris. In this case one might be
tempted to solve the problem directly by matching the modal expansions at either side of the iris
plate. This solution will, however, either not or very slowly converge to the correct (i.e. physical)
solution.

The above method of section 7.8, however, is well applicableto this problem too, if we consider the
iris as a duct (albeit of zero length) connecting the two mainducts at either side of the iris. Each
transition (from duct 1 to the iris, and from the iris to duct 2) is to be treated as above. Since the
matrices of each transition are similar, the final system of matrix equations may be further simplified
[195].

7.9 Reflection at an unflanged open end

The reflection and diffraction at and radiation from an open pipe end of a modal sound wave depends
on the various problem parameters like Helmholtz numberω, mode numbersm, µ and pipe wall
thickness. A canonical problem amenable to analysis is thatof a hard-walled, cylindrical, semi-infinite
pipe of vanishing wall thickness. The exact solution (by means of the Wiener-Hopf technique) was
first found by Levine and Schwinger (form = 0) in their celebrated paper [117]. Generalizations for
higher modes may be found in [247] and with uniform [191] or jet mean flow [148, 149].

Inside the pipe we have the incident mode with reflected field,given by p(x, r, ϑ) = pmµ(x, r )e−imϑ

where

pmµ(x, r ) = Umµ(r )e−ikmµx +
∞∑

ν=1

RmµνUmν(r )eikmν x . (7.75)

Outside the pipe we have in the far field

pmµ(x, r ) ≃ Dmµ(ξ)
e−iω̺

ω̺
(ω̺ → ∞), (7.76)

wherex = ̺ cosξ , r = ̺ sinξ , and Dmµ(ξ) is called the directivity function, and|Dmµ(ξ)| is the
radiation pattern.
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The reflection matrix{Rmµν} and the directivity function are both described by complex integrals,
which have to be evaluated numerically. Some important properties are:

• At resonanceω = αmµ we have total reflection in itself,Rmµµ = −1, and no reflection in any other
mode,Rmµν = 0.

• Near resonanceω ∼ αmµ the modulus|Rmµν(ω)| behaves linearly from the left, and like a square
root from the right side; the behaviour of the phase arg(Rmµν(ω)) is similar but reversed: linearly
from the right and like a square root from the left.

• A reciprocity relation between theµ, ν and theν, µ-coefficients:

kmνRmµν = kmµRmνµ.

• In the forward arc, 0< ξ < 1
2π , Dmµ(ξ) consists of lobes (maxima interlaced by zeros), while

D01(0) = 1
2

√
2 iω2 andDmµ(0) = 0.

• In the rearward arc,12π 6 ξ < π , Dmµ(ξ) is free of zeros, and tends to zero forξ → π if m > 1
and to a finite value ifm = 0.

• If kmν is real andν 6= µ, the zeros ofDmµ(ξ) are found at

ξ = arcsin(αmν/ω).

• If the mode is cut on, the main lobe is located at

ξmµ = arcsin(αmµ/ω).

• If ω → 0, the radiation pattern of the plane wavemµ = 01 becomes spherically shaped and
small like O(ω2), while the reflection coefficient becomesR011 ≃ − exp(−i 2δω), whereδ =
0.6127. The dimensional distanceδa is called the end correction, sincex = δa is a fictitious point
just outside the pipe, at which the wave appears to reflect with p = 0. See also (6.95,5.44).

Based on the method presented in [191], plots ofRmµν and|Dmµ(ξ)| may be generated, as given in
figures 7.13 and 7.14.

Of the reflection coefficient we have plotted modulus|Rmµν(ω)| and phaseφmµν = arg(Rmµν) as a
function ofω = 0 . . . 7., form = 0 . . . 2 andµ, ν = 1,2. Note that the resonance (cut-off) frequencies
areω = 3.8317 and 7.0156 form = 0, ω = 1.8412 and 5.3314 form = 1, andω = 3.0542 and
6.7061 form = 2.

The radiation pattern is plotted, on dB-scale, of the first radial mode (µ = 1) for m = 0 andm = 1,
andω = 2,4,6. For m = 0 the main lobe is atξ01 = 0, while the zeros are found forω = 4 at
ξ = 73.3◦, and forω = 6 atξ = 39.7◦. Form = 1 we have the main lobe atξ11 = 67.0◦,27.4◦,17.9◦

for ω = 2,4,6. The zero is found atξ = 62.7◦ for ω = 6.

Furthermore, the trend is clear that for higher frequenciesthe refraction effects become smaller, and
the sound radiates more and more like rays [29]. It is instructive to compare the wave front velocity of
a mode (the sound speed, dimensionless 1) and the axial phasevelocityvph (7.19). As the mode spirals
through the duct, the wave front makes an angleξmµ with the x-axis such that cos(ξmµ) = 1/vph =
kmµ/ω. Indeed,

ξmµ = arccos(kmµ/ω) = arcsin(αmµ/ω)

is the angle at which the mode radiates out of the open end,i.e. the angle of the main lobe.
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Figure 7.13 Modulus and phase of reflection coefficientsRmµν for m = 0 . . .2,µ, ν = 1,2, as a function ofω = 0 . . .7.
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Figure 7.14 Radiation pattern 20 log10 |Dmµ| + 71.7 for mµ = 01,= 11 andω = 2, 4,6.

Exercises

a) Consider a hard-walled duct of radiusa = 0.1 m with an acoustic medium withc0 = 340 m/s. A
harmonic source with frequencyf = 500 Hz is positioned atx = 0 half-way the radius. A microphone
is to be placed an axial distancex = D away from the source, such that the plane wave is detected at
least 20 dB louder than the other modes.
– What is the cut-off frequency ?
– Assuming that all excited modes have about the same initialamplitude, ignoring details liker -variation

of higher-order modes: what is the necessary distanceD?
– What isD for frequencyf tending to zero ?

b) Investigate the behaviour ofkmµ (equation 7.26) forω → ∞. Find analytical approximate expressions
of the surface waves.

c) Find in a similar way as for equation (7.65), by Fourier transformation tox, the field of a harmonic point
sourceinsidea hard-walled infinite duct. Verify this by an alternative approach based on representation
(D.57).

d) Consider a cylindrical duct of radiusR, with an acoustic medium of densityρ0 and soundspeedc0, and
lined with sound absorbing material of uniform impedanceZ. Inside the duct we have a sound field of
angular frequencyω and circumferential periodicitym. For definiteness the sound field may be described
in complex form as a linear combination of the modesJm(αmµr ) eiωt−imθ∓ikmµx, µ = 1 . . . .

We define the optimal impedanceZopt as the impedance that maximises the modal attenuation,i.e.
| Im(kmµ)|, of the least attenuated mode (Cremer’s optimum). You may assume that this optimum is
found at one of the values ofZ where two modes coincide (see also figure 7.7).
– Derive the eigenvalue equationF(α, Z) = 0 for radial wave numberαmµ. This is a dimensional

version of equation (7.24). Note that coinciding solutionsare found whereF(α, Z) and ∂
∂α

F(α, Z)
vanish simultaneously.

– Show thatZopt takes the form

Zopt = ρ0c0

(ωR

c0

)
Km,

whereKm is a fixed number to be determined numerically.
– Find numericallyKm for m = 0,1,2.
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Mathematical modelling is the art of sorting out the whole spectrum of effects that play a role in a
problem, and then making a selection by including what is relevant and excluding what is too small.
This selection is what we call a “model” or “theory”. Models and theories, applicable in a certain
situation, are not “isolated islands of knowledge” provided with a logical flag, labelling it “valid” or
“invalid”. A model is never unique, because it depends on thetype, quality and accuracy of answers
we are aiming for, and of course the means (time, money, numerical power, mathematical skills) that
we have available.

Normally, when the problem is rich enough, this spectrum of effects does not simply consist of two
classes “important” and “unimportant”, but is a smoothly distributed hierarchy varying from “essen-
tial” effects via “relevant” and “rather relevant” to “unimportant” and “absolutely irrelevant” effects.
As a result, in practically any model we select there will be effects that are small but not small enough
to be excluded. We can ignore this fact, and just assume that all effects that constitute our model are
equally important. This is the usual approach when the problem is simple enough for analysis or a
brute force numerical simulation.

There are situations, however, where it could be wise to utilise the smallness of these small but im-
portant effects in such a way that we simplify the problem without reducing the quality of the model.
Usually, an otherwise intractable problem becomes solvable and we gain great insight in the problem.

Perturbation methods do this in a systematic manner by usingthe sharp fillet knife of mathematics in
general, and asymptotic analysis in particular. From this perspective, perturbation methods are ways
of modelling with other means and are therefore much more important for the understanding and
analysis of practical problems than they’re usually credited with. David Crighton [41] called “Asymp-
totics - an indispensable complement to thought, computation and experiment in applied mathematical
modelling”.

Examples are numerous: simplified geometries reducing the spatial dimension, small amplitudes al-
lowing linearization, low velocities and long time scales allowing incompressible description, small
relative viscosity allowing inviscid models, zero or infinite lengths rather than finite lengths, etc.

The question is: how can we use this gradual transition between models of different level. Of course,
when a certain aspect or effect, previously absent from our model, is included in our model, the change
is abrupt and usually the corresponding equations are more complex and more difficult to solve. This
is, however, only true if we are merely interested in exact ornumerically “exact” solutions. But an
exact solution of an approximate model is not better than an approximate solution of an exact model.
So there is absolutely no reason to demand the solution to be more exact than the corresponding model.
If we accept approximate solutions, based on the inherent small or large modelling parameters, we do
have the possibilities to gradually increase the complexity of a model, and study small but significant
effects in the most efficient way.

The methods utilizing systematically this approach are called “perturbations methods”. Usually, a
distinction is made between regular and singular perturbations. A (loose definition of a) regular per-
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turbation is where the solution of the approximate problem is everywhere close to the solution of the
unperturbed problem.

In acoustics we have as typical examples of modelling hierarchies: wave propagation in a uniform
medium or with simple boundaries being considerably simpler than in a non-uniform medium or
with complicated boundaries. For a uniform medium and simple boundary conditions, many exact
analytical results are available. For an arbitrary non-uniform medium or complex boundary conditions,
we usually have to resort to numerical methods. Analytical approximations and perturbation methods
come into play for cases in between where the problem differsonly a little from one which allows full
analytical treatment.

We will consider here three methods relevant in acoustical problems. The first is the problem of Web-
ster’s horn, an example of a regular perturbation method [128] known as method of slow variation,
since the typical axial length scale is much greater than thetransverse length scale. The others are ex-
amples of singular perturbation methods. The method of multiple scales (related to the WKB method)
describes problems in which in the problem several length scales act in the same direction, for exam-
ple a wave propagating through a slowly varying environment. The method of matched asymptotic
expansions is used to analyse problems in which several approximations, valid in spatially distinct
regions, are necessary.

In order to quantify the used small effect in the model, we will always introduce a small positive
dimensionless parameterε. Its physical meaning depends on the problem. It will usually stem from a
characteristic amplitude, wave number, or medium gradient.

8.1 Webster’s horn equation

Consider the following problem of low frequency sound wavespropagating in a slowly varying duct
or horn [115, 200]. The typical length scale of duct variation is assumed to be much larger than
a diameter, and of the same order of magnitude as the sound wave length. We introduce the ratio
between a typical diameter and this length scale as the smallparameterε, and write for the duct
surface and wave numberk

r = R(X, θ), X = εx, k = εκ. (8.1)

A(X)
ℓ

R(X, θ)

r

θ

nn⊥

X = εx

Figure 8.1 Geometry of Webster horn.

By writing R as a function of slow variable
X, rather thanx, we have made our formal
assumption of slow variation explicit in a
convenient and simple way, since

∂R

∂x
= ε

∂R

∂X
= O(ε).

The crucial step will now be the assump-
tion that the propagating sound wave is
onlyaffected by the geometric variation in-
duced byR. Any initial or entrance effects are absent or have disappeared. As a result the acoustic
field p is a function ofX, rather thanx, and its axial gradient scales onε, as ∂

∂x p = O(ε).
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It is convenient to introduce the following functionSand its gradients

S= r − R(X, θ), (8.2)

∇S= εSXex + Sr er + Sθ
r

eθ = −εRXex + er − Rθ
r

eθ , (8.3)

∇⊥S= Sr er + Sθ
r

eθ = er − Rθ
r

eθ . (8.4)

At the duct surfaceS = 0 the gradient∇S is a vector normal to the surface (see section A.3), while
the transverse gradient∇⊥S, directed in the plane of a cross sectionX = const., is normal to the duct
circumferenceS(X = c, r, θ) = 0.

Inside the duct we have the reduced wave equation (Helmholtzequation)

ε2pX X + ∇2
⊥ p + ε2κ2p = 0, (8.5)

at the solid wall the boundary condition of vanishing normalvelocity

∇ p ·∇S = ε2pX SX + ∇⊥ p ·∇⊥S= 0 at S= 0. (8.6)

This problem is too difficult in general, so we try to utilize in a systematic manner the small parameter
ε. Since the perturbation terms areO(ε2), we assume the asymptotic expansion

p(X, r, θ; ε) = p0(X, r, θ)+ ε2p1(X, r, θ)+ O(ε4).

After substitution in equation (8.5) and boundary condition (8.6), further expansion in powers ofε2

and equating like powers ofε, we obtain to leading order a Laplace equation in(r, θ)

∇2
⊥ p0 = 0 with ∇⊥ p0·∇⊥S = 0 at S= 0.

An obvious solution isp0 ≡ 0. Since the solution of the Laplace equation with boundary conditions
in the normal derivative are unique up to a constant (here: a function ofX), we have

p0 = p0(X).

To obtain an equation forp0 in X we continue with theO(ε2)-equation and corresponding boundary
condition

∇2
⊥ p1 + p0X X + κ2p0 = 0, ∇⊥ p1·∇⊥S= − p0X SX. (8.7)

The boundary condition can be rewritten as

∇⊥ p1·n⊥ = p0X RX

|∇⊥S| = p0X RRX√
R2 + R2

θ

wheren⊥ = ∇⊥S/|∇⊥S| is the transverse unit normal vector. By integrating equation (8.7) over a
cross sectionA of areaA(X), using Gauss’ theorem, and noting thatA =

∫ 2π
0

1
2 R2 dθ , and that a

circumferential line element is given by dℓ = (R2 + R2
θ )

1/2dθ , we obtain
∫∫

A

∇2
⊥ p1 + p0X X + κ2 p0 dσ =

∫

∂A

∇⊥ p1·n⊥ dℓ+ A( p0X X + κ2 p0) =

p0X

2π∫

0

RRX dθ + A( p0X X + κ2 p0) = AX p0X + A( p0X X + κ2p0) = 0.
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Finally, we have obtained for the leading order fieldp0 the Webster horn equation [12, 56, 143, 175,
214, 215, 246], which is, for convenience written in the original variablesx andk, given by

1

A

d

dx

(
A

d

dx
p0

)
+ k2 p0 = 0. (8.8)

By introducingA = D2 andφ = Dp0, the equation may be transformed into

φ′′ +
(
k2 − D′′

D

)
φ = 0. (8.9)

This can be solved analytically for certain families of cross sectional shapesA. For example, the term
D′′/D becomes a constant if

D = a emx +be−mx,

(parameterized bya, b, andm), and the equation (8.8) simplifies to

φ′′ + (k2 − m2)φ = 0

which can be solved by elementary methods. In the special casem → 0 such thata = 1
2(A0 + A1/m)

andb = 1
2(A0 − A1/m), the shape reduces to the conical hornA = (A0 + A1x)2. Forb = 0 we have

the exponential horn, and ifb = a the catenoidal horn.

The parameterm is clearly most important since it determines whether the wave is propagating (m<

k) or cut-off (m> k).

8.2 Multiple scales

Introduction

By means of the method of multiple scales we will consider problems typically of waves propagating
in a slowly varying but otherwise infinite medium (ray acoustics), or waves propagating in a slowly
varying duct.

In both cases there is a small parameter in the problem which is the corner stone of the approximation.
This small parameter is the ratio between a typical wave length and the length scale over which the
medium or duct varies considerably (say, order 1).

Intuitively, it is clear that over a short distance (a few wave lengths) the wave only sees a constant
medium or geometry, and will propagate approximately as in the constant case, but over larger dis-
tances it will somehow have to change its shape in accordancewith its new environment.

A technique, utilizing this difference between small scaleand large scale behaviour is the method of
multiple scales ([155, 13]). As with most approximation methods, this method has grown out of prac-
tice, and works well for certain types of problems. Typically, the multiple scale method is applicable
to problems with on the one hand a certain global quantity (energy, power) which is conserved or
almost conserved and controls the amplitude, and on the other hand two rapidly interacting quantities
(kinetic and potential energy) controlling the phase.
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An illustrative example

We will illustrate the method by considering a damped harmonic oscillator

d2y

dt2
+ 2ε

dy

dt
+ y = 0 (t > 0), y(0) = 0,

dy(0)

dt
= 1 (8.10)

with 0< ε ≪ 1. The exact solution is readily found to be

y(t) = sin(
√

1 − ε2 t)e−εt /
√

1 − ε2 (8.11)

A naive approximation for smallε and fixedt would give

y(t) = sint − εt sint + O(ε2) (8.12)

which appears to be not a good approximation for larget for the following reasons:

1) if t = O(ε−1) the second term is of equal importance as the first term and nothing is left over of
the slow exponential decay;

2) if t = O(ε−2) the phase has an error ofO(1) giving an approximation of which even the sign may
be in error.

In the following we shall demonstrate that this type of erroroccurs also if we construct a straight-
forward approximate solution directly from equation (8.10). However, knowing the character of the
error, we may then try to avoid them. Suppose we can expand

y(t; ε) = y0(t)+ εy1(t)+ ε2y2(t)+ · · · . (8.13)

Substitute in (8.10) and collect equal powers ofε:

O(ε0) : d2y0

dt2
+ y0 = 0 with y0(0) = 0,

dy0(0)

dt
= 1,

O(ε1) : d2y1

dt2
+ y1 = −2

dy0

dt
with y1(0) = 0,

dy1(0)

dt
= 0,

then

y0(t) = sint, y1(t) = −t sint, etc.

Indeed, the straightforward, Poincaré type, expansion (8.13) that is generated breaks down for large
t , whenεt > O(1). As is seen from the structure of the equations foryn, the quantityyn is excited
(by the “source”-terms−2dyn−1/dt) in its eigenfrequency, resulting in resonance. The algebraically
growing terms of the typetn sint and tn cost that are generated are called in this context:secular1

terms.

Apart from being of limited validity, the expansion revealsnothing of the real structure of the solution:
a slowly decaying amplitude and a frequency slightly different from 1. For certain classes of problems
it is therefore advantageous to incorporate this structureexplicitly in the approximation.

Introduce the slow time scale

T = εt (8.14)

1From astronomical applications where these terms occurredfor the first time in this type of perturbation series: secular
≈ occurring once in a century; saeculum= generation, about 100 years.
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and identify the solutiony with a suitably chosen other functionY that depends on both variablest
andT :

y(t; ε) = Y(t, T; ε). (8.15)

The underlying idea is the following. There are, of course, infinitely many functionsY(t, T; ε) that
are equal toy(t, ε) along the lineT = εt in (t, T)-space. So we have now some freedom to prescribe
additional conditions. With the unwelcome appearance of secular terms in mind it is natural to think
of conditions, chosen such that no secular terms occur when we construct an approximation.

Since the time derivatives ofy turn into partial derivatives ofY

dy

dt
= ∂Y

∂t
+ ε

∂Y

∂T
, (8.16)

equation (8.10) becomes forY

∂2Y

∂t2
+ Y + 2ε

(∂Y

∂t
+ ∂2Y

∂t∂T

)
+ ε2

(∂2Y

∂T2
+ 2

∂Y

∂T

)
= 0. (8.17)

Assume the expansion

Y(t, T; ε) = Y0(t, T)+ εY1(t, T)+ ε2Y2(t, T)+ · · · (8.18)

and substitute this into equation (8.17) to obtain to leading orders

∂2Y0

∂t2
+ Y0 = 0,

∂2Y1

∂t2
+ Y1 = −2

∂Y0

∂t
− 2

∂2Y0

∂t∂T
,

with initial conditions

Y0(0,0) = 0,
∂

∂t
Y0(0,0) = 1,

Y1(0,0) = 0,
∂

∂t
Y1(0,0) = − ∂

∂T
Y0(0,0).

The solution forY0 is easily found to be

Y0(t, T) = A0(T) sint with A0(0) = 1, (8.19)

which gives a right-hand side for theY1-equation of

−2
(

A0 + ∂A0

∂T

)
cost.

No secular terms occur (no resonance betweenY1 andY0) if this term vanishes:

A0 + ∂A0

∂T
= 0 −→ A0 = e−T . (8.20)

Note (this is typical), that we determineY0 fully only on the level ofY1, however, without having to
solveY1 itself.
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The present approach is by and large the multiple scale technique in its simplest form. Variations on
this theme are sometimes necessary. For example, we have notcompletely got rid of secular terms. On
a longer time scale (t = O(ε−2)) we have inY2 again resonance because of the “source”:e−T sint ,
yielding termsO(ε2t). We see that a second time scaleT2 = ε2t is necessary.

Sometimes, the occurrence of higher order time scales is really an artefact of the fast variable being
slowly varying due to external effects, like a slowly varying problem parameter. In this case the fast
variable is to be strained locally by a suitable strain function in the following way

t̃ = 1

ε

∫ εt

ω(τ ; ε)dτ. (8.21)

(The need for the 1/ε-factor is immediately clear if we observe thatt̃ = ε−1ωεt = ωt for a constant
ω = O(1).) For linear wave-type problems we may anticipate the structure of the solution and assume
the WKB hypothesis (see [13, 80])

y(t; ε) = A(T; ε)ei ε−1
∫ T

0 ω(τ ;ε) dτ . (8.22)

We have

∂y

∂t
=

(
iωA + ε

∂A

∂T

)
ei ε−1

∫ T
0 ω dτ

∂2y

∂t2
=

(
−ω2A + 2iεω

∂A

∂T
+ i ε

∂ω

∂T
A + ε2∂

2A

∂T2

)
ei ε−1

∫ T
0 ω dτ

so that substitution in (8.10) and suppressing the exponential factor yields

(1 − ω2)A + i ε
(
2ω
∂A

∂T
+ ∂ω

∂T
A + 2ωA

)
+ ε2

(∂2A

∂T2
+ 2

∂A

∂T

)
= 0.

Note that the secular terms are now not explicitly suppressed. The necessary additional condition is
here that the solution of the present typeexists(assumption 8.22), and that each higher order correction
is no more secular than its predecessor. With some luck and ingenuity this is just sufficient to determine
A andω. In general, this is indeed not completely straightforward. So much freedom may be left that
ambiguities can result.

Finally, the solution is found as the following expansion

A(T ; ε) = A0(T)+ εA1(T)+ ε2A2(T)+ · · ·
ω(T; ε) = ω0(T)+ ε2ω2(T)+ · · · .

(8.23)

Note thatω1 may be set to zero since the factor exp(i
∫ T

0 ω1(τ )dτ) may be incorporated inA. Substi-
tute and collect equal powers ofε:

O(ε0) : (1 − ω2
0)A0 = 0 → ω0 = 1,

O(ε1) : ∂A0

∂T
+ A0 = 0 → A0 = e−T ,

O(ε2) : 2i
(∂A1

∂T
+ A1

)
= (1 + 2ω2)e−T → ω2 = −1

2, A1 = 0.

The solution that emerges is indeed consistent with the exact solution.
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8.3 Helmholtz resonator with non-linear dissipation

An interesting application of the multiple scale techniqueis the Helmholtz resonator, derived in equa-
tion (5.41). In this way we will be able to investigate the small non-linear terms that will be seen to
represent a small damping. See also [221].

We start with equation (5.41)

ℓV

c2
0Sn

d2 p′
in

dt2
+ V2

2ρ0c4
0S2

n

dp′
in

dt

∣∣∣∣
dp′

in

dt

∣∣∣∣ + RV

ρ0c2
0Sn

dp′
in

dt
+ p′

in = p′
ex. (5.41)

where we wrote for simplicityℓ := ℓ+ 2δ.

For a proper analysis it is most clarifying to rewrite the equation into non-dimensional variables. For
this we need an inherent timescale and pressure. For vanishing amplitudes and negligible dissipa-
tion the equation describes a harmonic oscillator, so the reciprocal of its angular frequencyω0 =
(c2

0Sn/ℓV)1/2 is the obvious timescale of the problem. By dividing the nonlinear damping term by the
acceleration term we find the pressure level 2ρ0c2

0ℓSn/V at which the nonlinear damping would be
just as large as the other terms. So for a pressure that is a small fraction ε of this level we have a prob-
lem with only little nonlinear damping. In addition we assume that the linear damping is small and (to
make the problem interesting) of the same order of magnitudeas the nonlinear damping. Anticipating
the fact that we will consider (in the forced problem) the external pressure exciting near resonance,
the driving amplitudep′

ex will be an order smaller thanp′
in.

In order to make all this explicit we introduce a small parameter ε (selected, as we just explained, via
the external forcing amplitude), and make dimensionless

τ = ω0t, ω0 =
(

c2
0Sn

ℓV

) 1
2

, R = ερ0c0

(
ℓSn

V

) 1
2

r,

p′
in = 2ερ0c2

0
ℓSn

V
y, p′

ex = 2ε2ρ0c
2
0
ℓSn

V
F, where 0< ε ≪ 1,

(8.24)

to obtain

d2y

dτ 2
+ ε

dy

dτ

∣∣∣∣
dy

dτ

∣∣∣∣ + εr
dy

dτ
+ y = εF. (8.25)

The initial value problem

We will start with the response to a stepwise change of external pressure, so we assumeF = 0, and
prescribe ay = 1 at t = 0. This yields the problem

d2y

dτ 2
+ ε

dy

dτ

∣∣∣∣
dy

dτ

∣∣∣∣ + εr
dy

dτ
+ y = 0, with y(0) = 1,

dy(0)

dτ
= 0. (8.26)

By comparing the accelerationy′′ with the dampingε(y′|y′| + r y′) it may be inferred that on a
timescaleετ the influence of the damping isO(1). So we conjecture a slow timescaleετ , and split up
the time dependence in two by introducing the slow timescaleT and the dependent variableY

T = ετ, y(τ ; ε) = Y(t, T; ε), dy

dτ
= ∂Y

∂τ
+ ε

∂Y

∂T
,
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and obtain for equation (8.26)

∂2Y

∂τ 2
+ Y + ε

(
2
∂2Y

∂τ∂T
+ ∂Y

∂τ

∣∣∣∣
∂Y

∂τ

∣∣∣∣ + r
∂Y

∂τ

)
+ O(ε2) = 0

Y(0,0; ε) = 1,
( ∂
∂τ

+ ε
∂

∂T

)
Y(0,0; ε) = 0.

(8.27)

The error ofO(ε2) results from the approximation∂
∂τ

Y + ε ∂
∂T Y ≃ ∂

∂τ
Y, and is of course only valid

outside a small neighbourhood of the points where∂
∂τ

Y = 0. We assume the regular expansion

Y(t, T; ε) = Y0(t, T)+ εY1(t, T)+ O(ε2)

and find for the leading order

∂2Y0

∂τ 2
+ Y0 = 0, with Y0(0,0) = 1,

∂

∂τ
Y0(0,0) = 0 (8.28)

with solution

Y0 = A0(T) cos(τ −20(T)), where A0(0) = 1, 20(0) = 0.

For the first order we have the equation

∂2Y1

∂τ 2
+ Y1 = −2

∂2Y0

∂τ∂T
− ∂Y0

∂τ

∣∣∣∣
∂Y0

∂τ

∣∣∣∣ − r
∂Y0

∂τ
= 2

dA0

dT
sin(τ −20)

− 2A0
d20

dT
cos(τ −20)+ A2

0 sin(τ −20)| sin(τ −20)| + r A0 sin(τ −20) (8.29)

with corresponding initial conditions (they are unimportant for the leading order result). The secular
terms are suppressed if the first harmonics (cos and sin) of the right-hand side cancel. For this we use
the Fourier series expansion (section C.3, eq. C.45e)

sinτ | sinτ | = − 8

π

∞∑

n=0

sin(2n + 1)τ

(2n − 1)(2n + 1)(2n + 3)
(8.30)

and we obtain the equations

2
dA0

dT
+ 8

3π
A2

0 + r A0 = 0 and
d20

dT
= 0 (8.31)

with solution20 = 0 and

A0(T) =
1
2r

(
4

3π + 1
2r

)
e

1
2rT − 4

3π

(8.32)

With little linear dissipation (r small) this reduces to an algebraic decay,viz. A0(T) = (1 + 4
3π T)−1,

and with little nonlinear dissipation (r large) to the exponential decayA0(T) = e− 1
2rT . All together

we have

pin ≃ 2ερ0c2
0
ℓSn

V

1
2r cosτ

(
4

3π + 1
2r

)
e

1
2r ετ − 4

3π

, with τ =
(

c2
0Sn

ℓV

) 1
2

t. (8.33)

Comparison with a numerically obtained “exact” solution shows that this approximation happens to
be quite good.
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The response to harmonic forcing

Suppose we excite the Helmholtz resonator harmonically by an external forcingp′
ex = C cos(ωt) of

frequencyω. In the scaled variablesτ andF this becomes

εF = εF0 cos(�τ), with ω = �ω0.

So we have the forced oscillator

d2y

dτ 2
+ ε

dy

dτ

∣∣∣∣
dy

dτ

∣∣∣∣ + εr
dy

dτ
+ y = εF0 cos(�τ) (8.34)

where we don’t care about initial conditions, because we areonly interested in the stationary state.

When we stay away from resonance conditions, in other words when 1−�2 is not small, the solution
is relatively simple. The internal pressure follows the external excitation both in amplitude and in
time dependence. The nonlinear terms hardly play a role, because the driving amplitude is small. So
to leading order inε we have the solution

y(τ ) = εF0
(1 −�2) cos�τ + εr� sin�τ

(1 −�2)2 + ε2r 2�2
= Acos(�τ − θ),

A = εF0√
(1 −�2)2 + ε2r 2�2

, tanθ = εr�

1 −�2
.

(8.35)

We see that near resonance this solution is not valid anymore. When 1− �2 = O(ε), amplitudeA
rises to levels ofO(1), and the assumption that the nonlinear damping is negligible is not correct. At
the same time, it should be noticed that this corresponds with the most important situations (with the
most achieved damping). So it is worthwhile to analyse this problem in more detail. As the physics of
the problem essentially change when�2 = 1 + O(ε), we assume

� = 1 + ε1. (8.36)

To facilitate the analysis we remove theε-dependence from the driving force, so we make again a
slight shift in the time coordinate and introduce

τ̃ = �τ (8.37)

to obtain

�2d2y

dτ̃ 2
+ ε�2 dy

dτ̃

∣∣∣∣
dy

dτ̃

∣∣∣∣ + ε�r
dy

dτ̃
+ y = εF0 cos(τ̃ ) (8.38)

To leading order this becomes

(1 + 2ε1)
d2y

dτ̃ 2
+ ε

dy

dτ̃

∣∣∣∣
dy

dτ̃

∣∣∣∣ + εr
dy

dτ̃
+ y = εF0 cos(τ̃ ) (8.39)

When we substitute the assumed expansiony(τ̃ ; ε) = y0(τ̃ ) + εy1(τ̃ )+ . . . , and collect like powers
of ε, we find fory0

d2y0

dτ̃ 2
+ y0 = 0 (8.40)
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with general solution

y0(τ̃ ) = A0 cos(τ̃ − θ0). (8.41)

Although y0 is the result of driving forceF , we don’t have any information yet so we can’t determine
the integration constantsA0 andθ0 at this level. Therefore we continue with the next ordery1.

d2y1

dτ̃ 2
+ y1 = F0 cos(τ̃ )− 21

d2y0

dτ̃ 2
− dy0

dτ̃

∣∣∣∣
dy0

dτ̃

∣∣∣∣ − r
dy0

dτ̃
(8.42)

= F0 cos(τ̃ )+ 21A0 cos(τ̃ − θ0)+ A0|A0| sin(τ̃ − θ0)
∣∣sin(τ̃ − θ0)

∣∣ + r A0 sin(τ̃ − θ0).

From the argument that we are only interested in the stationary state it follows that no resonant ex-
citation is allowed in the right-hand-side of the equation for y1. This is effectively very similar to
the condition of absent secular terms of the previous initial value problem. So we can use the same
techniques to suppress the cos- and sin-terms, and use equation (8.30) to obtain

F0 cosθ0 = −21A0, F0 sinθ0 =
(

8
3π |A0| + r

)
A0 (8.43)

with solution

[(
8

3π |A0| + r
)2 + 412

]
A2

0 = F2
0 , tanθ0 = −

8
3π |A0| + r

21
. (8.44)

This equation has several solutions, and it may not be immediately clear which is the correct one. To
solveA0 = A0(1) is difficult, but it is easy to write12 as a function ofA0:

12 = 1

4

[
F2

0

A2
0

−
(

8
3π |A0| + r

)2
]
.

Since12 > 0 we see immediately that two solutions exists only for a finite interval inA0, these two
are± symmetric (we only need to consider one), while1 → ±∞ only whenA0 → 0. In particular,

A0 ≃ F0

2|1| , tanθ0 ≃ − r

21
or θ0 ≃ − r

21
+ nπ,

which is in exact agreement with the asymptotic behaviour for � = 1 + ε1, 1 large, of (8.35). In
fact, by tracing the solution parametrically as a function of 1, we can see that if we start withθ0 = 0
for 1 → −∞, we end withθ0 = π for 1 → ∞. See figure 8.2 for an example.
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Figure 8.2Solutions of amplitudeA0 and phaseθ0 as a function of1, for r = 1 andF0 = 1. See (8.44)
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8.4 Slowly varying ducts

Consider a hard-walled circular cylindrical duct with a slowly varying diameter (c.f. [196, 194, 203,
156, 34, 199, 166],), described in polar coordinates(x, r, θ) as

r = a(εx) (8.45)

with ε a dimensionless small parameter. In this duct we have an acoustic medium with constant mean

X = εxθ

r = a(X)

Figure 8.3Sketch of geometry of slowly varying circular duct.

pressure and a slowly varying sound speedc0 = c0(εx) (for simplicity no variation inr and θ is
assumed). Sound waves of circular frequencyω are described by a variant of the Helmholtz equation

∇·
( 1

k2
∇ p

)
+ p = 0 (8.46)

wherek = k(εx) = ω/c0(εx), with boundary condition a vanishing normal velocity component at
the wall, so

n·∇ p = 0 atr = a(εx). (8.47)

Since (section A.3)

n ∝ ∇
(
r − a(εx)

)
= er − εa′(εx)ex,

(wherea′(z) = da(z)/dz) this is

∂p

∂r
− εa′(εx)

∂p

∂x
= 0 atr = a(εx). (8.48)

We know that for constanta and constantk the general solution can be built up from modes of the
following type (chapter 7)

p = AJm(αmµr )e−imθ−ikmµx, (8.49)

αmµ = j ′
mµ/a,

k2
mµ = k2 − α2

mµ, Re(kmµ) > 0, Im(kmµ) 6 0,

and we assume for the present problem, following the previous section, that there are solutions close
to these modes. We introduce the slow variable

X = εx
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so thatk = k(X), and we seek a solution of slowly varying modal type:

p = A(X, r ; ε)e−imθ e−i ε−1
∫ X

0 γ (ξ ;ε) dξ (8.50)

Since

∇·
( 1

k2
∇ p

)
= ∂

∂x

( 1

k2

∂p

∂x

)
+ 1

k2

(∂2 p

∂r 2
+ 1

r

∂p

∂r
+ 1

r 2

∂2 p

∂θ2

)

∂p

∂x
=

(
−iγ A + ε

∂A

∂X

)
exp

(
· · ·

)

∂2 p

∂x2
=

(
−γ 2A − 2iεγ

∂A

∂X
− i ε

∂γ

∂X
A + ε2 ∂

2A

∂X2

)
exp

(
· · ·

)

we have for (8.46) after multiplication withk2:

[
−γ 2A − 2iεγ

∂A

∂X
− i ε

∂γ

∂X
A + ε2 ∂

2A

∂X2
− 2ε

1

k

∂k

∂X

(
−iγ A + ε

∂A

∂x

)

+∂
2A

∂r 2
+ 1

r

∂A

∂r
− m2

r 2
A + k2A

]
exp

(
· · ·

)
= 0.

After suppressing the exponential factor, this is up to order O(ε)

L(A) = i ε
k2

A

∂

∂X

(γ A2

k2

)
,

∂A

∂r
+ i ε

∂a

∂X
γ A = 0 atr = a(X),

(8.51)

where we introduced for short the Bessel-type operator (seeAppendix D)

L(A) = ∂2A

∂r 2
+ 1

r

∂A

∂r
+

(
k2 − γ 2 − m2

r 2

)
A

and rewrote the right-hand side in a form convenient later. Expand

A(X, r ; ε) = A0(X, r )+ εA1(X, r )+ O(ε2)

γ (X; ε) = γ0(X)+ O(ε2)

substitute in (8.51), and collect like powers ofε.

O(1) : L(A0) = 0 (8.52)

∂A0

∂r
= 0 atr = a(X),

O(ε) : L(A1) = i
k2

A0

∂

∂X

(γ0A2
0

k2

)
(8.53)

∂A1

∂r
= −i

∂a

∂X
γ0A0 at r = a(X).
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Since variableX plays no other rôle in (8.52) than that of a parameter, we havefor A0 the “almost-
mode”

A0(X, r ) = P0(X)Jm(α(X)r ),

α(X) = j ′
mµ/a(X), (8.54)

γ 2
0 (X) = k2(X)− α2(X), Re(γ0) > 0, Im(γ0) 6 0,

The amplitudeP0 is still undetermined, and follows from a solvability condition for A1. As before,
amplitudeP0 is determined at the level ofA1, without A1 necessarily being known.

Multiply left- and right-hand side of (8.53) withr A0/k2 and integrate tor from 0 to a(X). For the
left-hand side we utilize the self-adjointness ofrL.

∫ a

0

r A0

k2
L(A1)dr = 1

k2

∫ a

0
r A0L(A1)− r A1L(A0)dr = 1

k2

[
r A0

∂A1

∂r
− r A1

∂A0

∂r

]a

0

= −i
γ0a

k2

∂a

∂X
A2

0.

For the right-hand side we apply the Leibniz integral rule

i
∫ a

0

∂

∂X

(γ0A2
0

k2

)
r dr = i

d

dX

∫ a

0

r γ0A2
0

k2
dr − i

γ0a

k2

∂a

∂X
A2

0.

As a result
∫ a

0

r γ0A2
0

k2
dr =

[
γ0

2k2
P2

0

(
r 2 − m2

α2

)
Jm(αr )2

]a

0

= γ0P2
0

2k2
a2

(
1 − m2

j ′
mµ

2

)
Jm( j ′

mµ)
2 = constant

or:

P0(X) = const.
k(X)

a(X)
√
γ0(X)

= const.
k(X)α(X)√
γ0(X)

(8.55)

It is not accidental that the above integral
∫ a

0 (r γ0A2
0/k2)dr is constant. The transmitted power ofp is

to leading order

P =
∫ 2π

0

∫ a

0

1
2 Re(pu∗)r dr dθ = π

ωρ0

∫ a

0
Im

(
p ∂
∂x p∗

)
r dr

= π

ωρ0
Re(γ0)e2ε−1

∫ X
0 Im(γ0) dξ

∫ a

0
|A0|2r dr. (8.56)

This is for propagating modes (γ0 real) constant:

P = π

ωρ0
γ0|P0|2 1

2a2
(
1 − m2

j ′
mµ

2

)
Jm( j ′

mµ)
2 = const.

γ0

ρ0

k2

a2γ0
a2 = const.

1

ρ0c2
0

= constant

sinceρ0c2
0 is, apart from a factor, equal to the constant mean pressure.
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8.5 Reflection at an isolated turning point

An important property of expression (8.55) forP0 is that it becomes invalid whenγ0 = 0. So when
the medium and diameter vary in such a way that at some pointX = X0 wave numberγ0 vanishes,
the present method breaks down [197, 164, 165, 167, 222]. In asmall interval aroundX0 the mode
doesnot vary slowly and locally a different approximation is necessary.

When γ 2
0 changes sign, andγ0 changes from real into imaginary, the mode is split up into a cut-

on reflected part and a cut-off transmitted part. IfX0 is isolated, such that there are no interfering
neighbouring points of vanishingγ0, it is clear that no power is transmitted beyondX0 (Re(γ0) = 0 in
(8.56)), and the wave has to reflect atX0. Therefore, a point where wave numberγ0 vanishes is called
a “turning point”.

X0

Figure 8.4 Turning pointX0, where a mode changes from cut-on to cut-off.

Asymptotically, a turning point region is a boundary layer and the appropriate analysis is that of
matched asymptotic analysis (section 8.8), in the context of the WKB method (see [13, 80]). However,
since the physics of the subject is most relevant in this section on slowly varying ducts, we will present
the pertaining results here2.

Assume atX = X0 a transition from cut-on to cut-off, so∂
∂Xγ

2
0 < 0 or

c′
0(X0)

c0(X0)
− a′(X0)

a(X0)
> 0, or α′(X0)− k′(X0) > 0.

Consider an incident, reflected and transmitted wave of the type found above (equations 8.50,8.54,8.55).
So in X < X0, whereγ0 is real positive, we have the incident and reflected waves

p(x, r, θ) = k(X)α(X)√
γ0(X)

Jm(α(X)r )e−imθ
[
e−i ε−1

∫ X
X0
γ0(X′) dX′

+Rei ε−1
∫ X

X0
γ0(X′) dX′]

(8.57)

with reflection coefficientR to be determined. InX > X0, whereγ0 is imaginary negative, we have
the transmitted wave

p(x, r, θ) = T
k(X)α(X)√
γ0(X)

Jm(α(X)r )e−imθ e−i ε−1
∫ X

X0
γ0(X′) dX′

. (8.58)

with transmission coefficientT to be determined, while
√
γ0 = e− 1

4π i √|γ0| will be taken.

2As is explained in section 8.8, the steps in the process of determining the boundary layer thickness and equations, and
finally the matching, are very much coupled, and usually too lengthy to present in detail. Therefore, to keep the present
example concise, we will present the results with a limited amount of explanation.
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This set of approximate solutions of equation (8.46), validoutside the turning point region, constitute
the outer solution. Inside the turning point region this approximation breaks down. The approximation
is invalid here, because neglected terms of equation (8.46)are now dominant, and another approxi-
mate equation is to be used. This will give us the inner or boundary layer solution. To determine the
unknown constants (here:R andT), inner and outer solution are asymptotically matched.

For the matching it is necessary to determine the asymptoticbehaviour of the outer solution in the
limit X → X0, and the boundary layer thickness (i.e. the appropriate local coordinate).

From the limiting behaviour of the outer solution in the turning point region (see below), we can
estimate the order of magnitude of the solution. From a balance of terms in the differential equation
(8.46) it transpires that the turning point boundary layer is of thicknessX − X0 = O(ε2/3), leading to
a boundary layer variableξ given by

X = X0 + ε2/3ξ.

Since forε → 0

γ 2
0 (X) = γ 2

0 (X0 + ε2/3ξ) = −2ε2/3k0(α
′
0 − k′

0)ξ + O(ε4/3ξ2),

wherek0 = k(X0), k′
0 = k′(X0), etc., we have

1

ε

∫ X

X0

γ0(X
′)dX′ =

{
−2

3|ξ̄ |3/2 = −ζ, if ξ < 0

−i 2
3 ξ̄

3/2 = −i ζ, if ξ > 0

where we introduced

ξ̄ = {2k0(α
′
0 − k′

0)}1/3ξ and ζ = 2
3|ξ̄ |

3/2.

The limiting behaviour forX ↑ X0 is now given by

p ≃ k0 α0

{2εk0(α
′
0 − k′

0)}1/6 |ξ̄ |1/4
Jm(α0r )e−imθ

(
eiζ +Re−iζ

)
, (8.59)

while it is for X ↓ X0 given by

p ≃ T
e

1
4π i k0 α0

{2εk0(α
′
0 − k′

0)}1/6 ξ̄1/4
Jm(α0r )e−imθ e−ζ . (8.60)

Since the boundary layer is relatively thin, also compared to the radial coordinate, the behaviour of the
incident mode remains rather unaffected in radial direction, and we can assume in the turning point
region

p(x, r, θ) = Jm(α(X)r )ψ(ξ)e−imθ .

From the properties of the Bessel equation (D.1), we have

∂2p

∂r 2
+ 1

r

∂p

∂r
+ 1

r 2

∂2p

∂θ2
+ k2 p = γ 2

0 p = O(ε2/3)p.

Hence, equation (8.46) yields

k2∇·
( 1

k2
∇ p

)
+k2p ≃ ε2/3∂

2 p

∂ξ2
+γ 2

0 p = ε2/3Jm(α(X)r )e−imθ
{∂2ψ

∂ξ2
−2k0(α

′
0−k′

0)ξψ
}

= 0
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Figure 8.5Airy functions

which is, written in variablēξ , equivalent to Airy’s equation (D.83)

∂2ψ

∂ξ̄2
− ξ̄ψ = 0.

This has the general solution (see figure 8.5)

ψ(ξ) = aAi(ξ̄ )+ bBi(ξ̄ ),

wherea and b, parallel with R and T , are now determined from matching. Using the asymptotic
expressions (D.84,D.85) for Airy functions, we find that forξ̄ large with 1≪ ξ̄ ≪ ε−2/3, equation
(8.60) matches the inner solution if

a

2
√
πξ̄1/4

e−ζ + b
√
πξ̄1/4

eζ ∼ T
e

1
4π i k0 α0

{2εk0(α
′
0 − k′

0)}1/6 ξ̄1/4
e−ζ .

Sinceeζ → ∞, we can only haveb = 0, and thus

a = 2
√
π T k0 α0 e

1
4π i

{2εk0(α
′
0 − k′

0)}1/6
.

If −ξ̄ is large with 1≪ −ξ̄ ≪ ε−2/3 we use the asymptotic expression (D.84), and find that equation
(8.59) matches the inner solution if

a
√
π |ξ̄ |1/4

cos(ζ − 1
4π) ∼ k0 α0

{2εk0(α
′
0 − k′

0)}1/6 |ξ̄ |1/4
(ei ζ +Re−i ζ ),

or

T e
1
4π i(eiζ− 1

4π i + e−iζ+ 1
4π i) = T eiζ +T i e−iζ ∼ ei ζ +Re−i ζ .

So, finally, we have

T = 1, R = i . (8.61)
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8.6 Ray acoustics in temperature gradient

When a sound wave propagates in free space through a medium that varies on a much larger scale
than the typical wave length (typically: temperature gradients, or wind with shear), the same ideas of
multiple scales may be applied. In contrast to the duct, where the wave is confined by the duct walls,
the waves may now freely refract and follow curved paths. These paths are called rays. This means
that rays are not localized “beams” of sound, but only the tangents of the intensity vectors of a sound
field.

Consider an infinite 3D medium with varying temperature but otherwise with a constant mean pres-
sure, so that we have again equation (8.46), but nowc varying more generally as a function ofx

∇·
(
c2

0∇ p
)

+ ω2p = 0, c0 = c0(εx) (8.62)

for a time harmonic sound fieldp ∝ eiωt . The typical lengthscaleL of sound speed variations, es-
timated fromL−1 ∼ ‖∇c0‖/c0, is assumed much larger than the typical wave lengthλ ∼ c0/ω. In
order to quantify this, we writec0 = c0(εx) where the small parameterε is given byε = λ/L. In the
following, we will see that this introduction ofε is a convenient way of keeping the large and small
terms apart.3

Assuming the field to be locally plane we try an approximate solution having the form of a plane wave
but with slowly varying (real) amplitudeA = A(X; ε) and phaseτ = τ(X)

p(x) = Ae−iτ/ε (8.63)

whereX = εx the slow variable. The surfacesτ(X) = εωt describe the propagating wave front. Note
that the vector field∇τ is normal to the surfacesτ = constant (section A.3). Define the operator

∇ =
( ∂

∂X
,
∂

∂Y
,
∂

∂Z

)

so that∇ = ε∇. Define the local wave vector

k = ∇τ, (8.64)

inspired by the fact that if we approximate locallyτ(X) = τ0 + ∇τ ·X + . . . (with τ0 an unimpor-
tant constant), the wave becomes a plane wave≃ A0 eiωt−ik·x with frequencyω and wave vectork.
Substitute (8.63) in (8.62):

∇ p =
(
ε∇ A − i Ak

)
e−iτ/ε, (8.65a)

∇2 p =
(
ε2∇2

A − 2iε∇ A·k − i εA∇ ·k − A|k|2
)

e−iτ/ε, (8.65b)

to obtain

(ω2 − c2
0|k|2)A − i εA−1∇ ·(c2

0 A2k
)
+ ε2∇ ·(c2

0∇ A
)

= 0. (8.66)

Expand

A(X; ε) = A0(X)+ εA1(X)+ O(ε2)

3It should be noted that our point of view here is to think of theproblem as a wave in a slowly varying medium,i.e. to
considerL “large”. Another, equally valid point of view is to think of amedium with a high frequency wave,i.e. to scale
the problem onL and to consider the wave length “short” or the frequency “high”.
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and collect like powers in (8.66). We find to leading order

c2
0|k|2 − ω2 = 0 (8.67)

∇ ·(c2
0 A2

0k
)

= 0. (8.68)

Equation (8.67) is theeikonal equation, which determines the wave fronts and the ray paths. Equation
(8.68) is called thetransport equationand describes theconservation of wave action, which is here
equivalent toconservation of energy[121, 250]. It relates the amplitude variation to divergingor
converging rays.

The eikonal equation is a nonlinear first order partial differential equation, of hyperbolic type, which
can always be reduced to an ordinary differential equation along characteristics [35]. This is summa-
rized by the following theorem ([250, p.65]).

Theorem 8.1 (General solution of 1st order PDE)
The solution of the first-order partial differential equation

H (k, τ, x) = 0, k = ∇τ,

with consistent boundary conditions on a surface S, is givenby the system of ordinary differential
equations4

dχ

dλ
= ∇k H,

dτ

dλ
= k·∇k H,

dk
dλ

= −k
∂H

∂τ
− ∇x H,

where the curvex = χ(λ), with parameterλ, is called a characteristic.

A characteristic forms a path along which the information ofthe boundary values on S is transferred to
the point of observation. In general the characteristic depends on the solution, and both characteristic
and solution are to be determined together. If more than one point of a characteristic is part of S, the
boundary conditions are not independent, and in general inconsistent. If more than one characteristic
passes through a point, the solution is not unique.

By starting from other, equivalent, equations H(k, τ, x) = 0, we obtain the same solution but with
other parametrizations.

Sometimes a preferable parametrization is the so-called natural parametrization, withλ equal to the
arclength and‖ d

dλχ‖ = 1.

The characteristics are here identical to the rays. By rewriting equation (8.67) as12ε(c
2
0|k|2−ω2)/ω =

0 and using theorem (8.1) (p.197), the characteristic variable is just the timet (but not the arclength),
and we have the expected

τ(X(t)) = εωt (8.69)

along a rayX = X(t) given by

dX
dt

= εc0
k
|k| . (8.70a)

dk
dt

= −ε|k|∇c0. (8.70b)

4∇k H denotes the gradient ink: ( ∂H
∂ki
); similar for∇x H .
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where|k| = ω/c0. Equations (8.70) form a first order system of ordinary differential equations, called:
“ray-tracing equations”. Together with suitable initial value conditions ink andX, they constitute an
initial value problem that can be solved numerically by standard integration routines like a Runge-
Kutta method.

Once we know the rays, the transport equation (8.68) can be solved as follows. Consider a small area
S1 of the surfaceτ = C1, and connect the points ofS1 via the rays (following the vector fieldk) with
the corresponding areaS2 on the surfaceτ = C2. Then the volume of rays connectingS1 and S2 is
called a ray-tube. Sincek is just parallel to the tube’s surface, except forS1 and S2 where it is just
ω/c0 and perpendicular to it, we have (with Gauss’ theorem)

∫

tube
∇ ·(c2

0 A2
0k

)
dX = 0 =

∫

S2

c0A2
0 ds −

∫

S1

c0A2
0 ds.

If we associate to a rayX(t) a ray-tube with cross sectionS = S(X), the amplitude varies according
to the relation

A2
0(X)c0(X)S(X) = constant along a ray tube. (8.71)

From equation (8.70b) it can be inferred that a ray (with direction k) bends away from regions with
higher sound speed. This explains why sound is carried far along a cold surface like water or snow, and
not at all along for example hot sand. When the surface is coldthere is a positive soundspeed gradient
which causes the sound waves to bend downwards to the surface. In combination with reflection at the
surface the sound is trapped and tunnels through the layer adjacent to the surface. When the surface
is hot there is a negative soundspeed gradient which causes the sound to bend upwards and so to
disappear into free space.

We can make this more explicit for a sound speed that varies linearly in space. We have then the
remarkable result of exact solutions of rays following plane circles. To show this in detail, it is neces-
sary that we obtain a parametrization that corresponds withan arclength (in the slow coordinateX).
Therefore, we recast the eikonal equation in the form

H (X, τ, k) = 1

2

(
|k| − ω2

c2
0|k|

)
(8.72)

and obtain from theorem (8.1)

dX
ds

= ∇k H = 1

2

k
|k| + 1

2

ω2

c2
0|k|3

k = k
|k| = t

dτ

ds
= k·∇k H = k·k

|k| = |k|

dk
ds

= −k
∂H

∂τ
− ∇X H = 0 − ω2

c3
0|k|

∇c0 = −|k|
c0

∇c0

The ray is given by the curveX = X(s) and launched atX(0) = εx(0) in the directionk(0) with
initial phaseτ(0). Since we have applied the so-called natural parametrization, with s the arclength,
d
ds X = t is the unit tangent vector andd

2

ds2 X the curvature vector:

κ = d2X
ds2

= 1

ω

d

ds

(
c0k

)
= 1

ω

[
k
|k|(∇c0·k)− |k|∇c0

]
(8.73)
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The curvature, or reciprocal radius, is then

|κ| = 1

ω

[
|k|2|∇c0|2 − (∇c0·k)2

]1/2
(8.74)

Now we use the fact thatc0 varies linearly in (say) directionn:

c0 = q + α(X ·n), ∇c0 = αn. (8.75)

Decompose vectork in a component inn direction and one orthogonal to it

k = k0n + k1b, with n·b = 0, |b| = 1. (8.76)

Of course,k0 = (k·n) andk1 = (k·b). It follows from

dk
ds

= −|k|
c0

∇c0 = −|k|
c0
αn (8.77)

that k only varies inn-direction, whilek1b is constant, determined by the initial wave vectork(0).
Since alson is fixed, it is onlyk0 = k0(s) that varies withs. So we go on with the curvature

κ = 1

ω|k|
[
k(∇c0·k)− |k|2∇c0

]
= 1

ω|k|
[
(k0n + k1b)αk0 − (k2

0 + k2
1)αn

]

= 1

ω|k|
[
αk2

0n + αk0k1b − αk2
0n − αk2

1n
]

= αk1

ω|k|(k0b − k1n) = αk1

ω
c

(8.78)

where vector

c = k0b − k1n
|k| (8.79)

is the unit curvature vector (or principal normal unit vector) of curveX(s). Sincen andb are constant,
c, and thereforeX, is in one plane. More precisely formulated: the normal vector of the plane ofX
(the so-called osculating plane ofX) is

t×c = n×b

or the unit binormal vector ofX. Sincen andb are constant, the torsion ofX

d

ds
(t×c) = 0

is zero, andX is a plane curve. Furthermore, since the curvature

|κ| =
∣∣∣∣
αk1

ω

∣∣∣∣

is constant, the curve is a circle. The radius (inx coordinates) isR = |ω/αk1ε|, and depends on the
initial conditionk1. The center of the circle is found atx = x(0)+ Rc. See [123].
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8.7 Refraction in shear flow

The propagation of sound waves in the atmosphere is greatly affected by wind. For example, the
communication between two people, one downstream and one upstream, is not symmetric. The one
upstream is easier to understand for the one downstream thanthe other way around. This isnotbecause
the wind “carries the waves faster”, but it is due to refraction by the wind gradient (the atmospheric
boundary layer). This is seen as follows ([121]).

U (z)

Figure 8.6 Refraction in shear flow.

Consider the acoustic wave equations (2.51a-2.51d) for sound in an arbitrary mean flow. We assume
the sound field to be time harmonic with a frequency high enough to adopt a ray approximation. The
small parameter is now againε ∼ c0/ωL, with L a typical length scale for variations in the mean flow
velocity v0. Similar to the foregoing chapter we introduce the compressed variableX = εx and the
ray approximations

p, ρ, v, s = P(X; ε), R(X; ε), V (X; ε), S(X; ε)× eiωt−iτ (X)/ε

which are substituted in (2.51a-2.51d), with∇τ = k, to obtain to leading order

ρ0V (ω − v0·k) = Pk, R(ω − v0·k) = ρ0V ·k,

S(ω− v0·k) = 0, P(ω − v0·k) = c2
0R(ω − v0·k).

This yieldsS = 0, P = c2
0R and an eikonal equation

c2
0|k|2 =

(
ω − v0·k

)2
. (8.80)

This equation is similar to (8.67). By rewriting eq. (8.80) as 1
2εc

2
0|k|2/(ω−v0·k)− 1

2ε(ω−v0·k) = 0
and using theorem (8.1) (p.197), the characteristic variable is just the timet , and we have

τ(X) = εωt

along the rayX = X(t), given by5

dX
dt

= ε

(
c0

k
|k| + v0

)
, (8.81a)

dk
dt

= −ε
(
|k|∇c0 + ∇v0·k

)
. (8.81b)

5 (∇v·k)i =
∑

j
∂v j
∂xi

k j .
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A popular, but unnecessary approximation is to write the above equations (8.81) in the same form as
(8.70), by introducing an “effective sound speed”ceff as follows.

dX
dt

≃ εceff
k
|k| ,

dk
dt

≃ −ε|k|∇ceff, ceff = c0 + k
|k| ·v0.

This approximation is correct ifv0 − k
|k|(

k
|k| ·v0) and|k|(∇ k

|k| ·v0) are negligible (for example whenk
points mainly in the direction ofv0 and varies little spatially). This depends, among other things, on the
initial conditions and the trajectory traversed, and should always be checked afterwards. Moreover, the
numerical solution is not simpler, so there seems to be no good reason to resort to this approximation.

For a simple parallel flow inx-direction, varying only inz, and a uniform sound speed

v0(X) = (U0(Z),0,0)

equation (8.81b) becomes

dkx

dt
= dky

dt
= 0,

dkz

dt
= −εU ′

0(Z)kx. (8.82)

So, if we start with for example a vertical wave frontk = kxex, then a positive wind shear (dU0/dZ >
0) will decrease thez-componentkz. In other words, the rays will bend towards the low wind-speed
regions. Propagating with the wind, the waves bend down and remain near the ground; against the
wind they bend up and disappear in the free space.

8.8 Matched asymptotic expansions

Introduction

Very often it happens that a simplifying limit applied to a more comprehensive model gives a correct
approximation for the main part of the problem, but not everywhere: the limit isnon-uniform. This
non-uniformity may be in space, in time, or in any other variable. For the moment we think of non-
uniformity in space. This non-uniformity may be a small region near a point, sayx = 0, or it may be
far away,i.e. for x → ∞, but this is of course still a small region near the origin of 1/x, so for the
moment we think of a small region.

If this region of non-uniformity is crucial for the problem,for example because it contains a boundary
condition, or a source, we may not be able to utilize the pursued limit and have to deal with the full
problem (at least locally). This, however, is usually not true. The local nature of the non-uniformity
itself gives often the possibility of another reduction. Insuch a case we call this a couple of limiting
forms, “inner and outer problems”, and are evidence of the fact that we have apparently physically
two connected but different problems as far as the dominating mechanism is concerned. (Depending
on the problem) we now have two simpler problems, serving as boundary conditions to each other via
continuity ormatchingconditions.

Suppose we are interested in the solution of

ε
dy

dx
+ y = sinx, y(0) = 1, x > 0

for small positiveε, and suppose for the moment that we are not able to find an exactsolution. It is
natural to try to use the fact thatε is small. For example, from the structure of the problem, where
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both the source and the boundary value areO(1), it is very likely to conclude thaty = O(1). If also
the derivativey′ is not very large (which is true for the most, but not, as we will see, everywhere), then
a first approximation is clearly

y0 ≃ sinx.

We could substitute this into the original equation, and finda correction

y1 ≃ sinx − εy′
0 = sinx − ε cosx.

We can continue this indefinitely, and hope for a better and better approximation of the real solution.
However, this can not be true: the approximate solution found this way is completely determined
without integration constants, and we cannot apply anywhere the boundary conditiony(0) = 1. In
fact, the value atx = 0 that appears is something like−ε . . . , and quite far away from 1.

What’s happening here? The cause of this all, is the fact thatin the neighbourhood ofx = 0, to be
exact: forx = O(ε), the solution changes its character over a very short distance (boundary layer),
such that the derivativey′ is nownot O(1), but very large:O(ε−1). Since equation and solution are
evidently closely related, also the equation becomes essentially different, and the above approximation
of the equation is not valid anymore.

The remedy to this problem is that we have to stretch the variables such that the order of magnitude of
the solution is reflected in the rescaling. In general this isfar from obvious, and certainly part of the
problem. In the present example it goes as follows. We writex = εξ andy(x) = Y(ξ), so that

dY

dξ
+ Y = sin(εξ), Y(0) = 1,

Now we may construct another approximation, locally valid for ξ = O(1)

dY0

dξ
+ Y0 ≃ 0, Y0(0) = 1,

with solutionY0(ξ) = e−ξ . We may continue to construct higher order corrections. Then we will see
that for ξ large, respectivelyx small, thisinner solutionY0 smoothly changes into the aboveouter
solutiony0 (matching), and together they form a uniform approximation.

General methodology

In the following we will describe some of the mathematical methodology in more detail ([155, 13, 54,
115, 42, 80, 112, 105]). We are interested in the limiting behaviour forε ↓ 0 of a sufficiently smooth
function8(x; ε) with, say, 06x61, 0<ε6ε0. 8 has aregular asymptotic approximation on [0,1]
if there exists a gauge-functionµ0(ε) and a shape-function80(x) such that

lim
ε→0

∣∣∣∣
8(x; ε)
µ0(ε)

−80(x)

∣∣∣∣ = 0 uniform inx

or:

8(x; ε) = µ0(ε)80(x)+ o(µ0) (ε → 0, uniform in x).
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A regular asymptotic series expansion, with gauge-functionsµn(ε) and shape-functions8n(x) is de-
fined by induction, and we say

8(x; ε) =
N∑

n=0

µn(ε)8n(x)+ o(µN) (ε → 0, uniform in x). (8.83)

Note that neither gauge- nor shape-functions are unique. Furthermore, the series is only asymptotic in
ε for fixed N. The limit N → ∞ may be meaningless.

The functions that concern us here donot have a regular asymptotic expansion on the whole inter-
val [0,1] but say, on any partial interval[A,1], A>0, A fixed. We call this expansion theouter-
expansion, valid in the “x = O(1)”-outer region.

8(x; ε) =
N∑

n=0

µn(ε)ϕn(x)+ o(µN) ε → 0, x = O(1). (8.84)

The functions do not have a regular expansion on the whole interval because the limitε→ 0, x → 0 is
non-uniform and may not be exchanged. There is a gauge-function δ(ε), with lim

ε→0
δ(ε) = 0, such that

in the stretched coordinate

ξ = x

δ(ε)

the function9(ξ ; ε) = 8(δ(ε)ξ ; ε) has a non-trivial regular asymptotic series expansion on any
partial intervalξ ∈ [0, A], A>0, A fixed. The adjective non-trivial is essential: the expansion must be
“significant”, i.e.different from the outer-expansion inϕn rewritten inξ . For thelargestδ(ε) with this
property we call the expansion for9 the inner-expansion or boundary layer expansion, the region
ξ = O(1) or x = O(δ) being the boundary layer with thicknessδ, andξ the boundary layer variable.
A boundary layer may be nested and may contain more boundary layers.

Suppose,8(x; ε) has an outer-expansion

8(x; ε) =
n∑

k=0

µk(ε)ϕk(x)+ o(µn) (8.85)

and a boundary layerx = O(δ) with inner-expansion

9(ξ ; ε) =
m∑

k=0

λk(ε)ψk(ξ)+ o(λm) (8.86)

and suppose that both expansions are complementary,i.e. there is no other boundary layer in between
x = O(1) andx = O(δ), then the “overlap-hypothesis” says that both expansions represent the same
function in an intermediate region of overlap. This overlapregion may be described by a stretched
variablex =η(ε)σ , asymptotically in betweenO(1) and O(δ), so: δ≪η≪ 1. In the overlap region
both expansionsmatch, which means that asymptotically both expansions are equivalent and reduce
to the same expressions. A widely used and relatively simpleprocedure is Van Dyke’s matchings
rule [235]: the outer-expansion, rewritten in the inner-variable, has a regular series expansion, which
is equal to the regular asymptotic expansion of the inner-expansion, rewritten in the outer-variable.
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Suppose that

n∑

k=0

µk(ε)ϕk(δξ) =
m∑

k=0

λk(ε)ηk(ξ)+ o(λm) (8.87a)

m∑

k=0

λk(ε)ψk(x/δ) =
n∑

k=0

µk(ε)θk(x)+ o(µn) (8.87b)

then the expansion ofηk back tox

n∑

k=0

λk(ε)ηk(x/δ) =
n∑

k=0

µk(ε)ζk(x)+ o(µn)

is such thatζk = θk for k = 0, · · · ,n.

The idea of matching is very important because it allows one to move smoothly from one regime into
the other. The method of constructing local, but matching, expansions is therefore called “Matched
Asymptotic Expansions” (MAE).

The most important application of this concept of inner- andouter-expansions is that approximate
solutions of certain differential equations can be constructed for which the limit under a small param-
eter is apparently non-uniform. Typical examples in acoustics are small Helmholtz number problems
where long waves are scattered by small objects or otherwiseconnected to a small geometrical size.

The main lines of argument for constructing a MAE solution toa differential equation+ boundary
conditions are as follows. Suppose8 is given by the equation

D(8′,8, x; ε) = 0 + boundary conditions, (8.88)

where8′ = d8/dx. Then we try to construct an outer solution by looking for “non-trivial degenera-
tions” of D underε → 0, that is, findµ0(ε) andν0(ε) such that

lim
ε→0

ν−1
0 (ε)D(µ0ϕ

′
0, µ0ϕ0, x; ε) = D0(ϕ

′
0, ϕ0, x) = 0 (8.89)

has a non-trivial solutionϕ0. A seriesϕ = µ0ϕ0 +µ1ϕ1 + · · · is constructed by repeating the process
for D − ν−1

0 D0, etc.

Suppose, the approximation is non-uniform (for example, not all boundary conditions can be satisfied),
then we start looking for an inner-expansion if we have reasons to believe that the non-uniformity
is of boundary-layer type. Presence, location and size of the boundary layer(s) are now found by
the “correspondence principle”, that is the (heuristic) idea that if8 behaves somehow differently in
the boundary layer, the defining equation must also be essentially different. Therefore, we search for
“significant degenerations” or “distinguished limits” ofD. These are degenerations ofD underε→ 0,
with scaledx and8, that contain the most information, and without being contained in other, richer,
degenerations.

The next step is then to select from these distinguished limits the one(s) allowing a solution that
matches with the outer solution and satisfies any applicableboundary condition.
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Symbolically:

find

x0, δ(ε), λ(ε), κ(ε)

with

x = x0 + δξ, 8(x; ε) = λ(ε)9(ξ ; ε)
such that

B0(ψ
′
0, ψ0, ξ ) = lim

ε→0
κ−1D(δ−1λ9 ′, λ9, x0 + δξ ; ε)

has the “richest” structure, and there exists a solution of

B0(ψ
′
0, ψ0, ξ ) = 0

satisfying boundary and matching conditions. Again, an asymptotic expansion may be constructed
inductively, by repeating the argument. It is of practical importance to note that the order estimateλ
of 8 in the boundary layer is often determined a posteriori by boundary or matching conditions.

Simple example

A simple example to illustrate some of the main arguments is

D(ϕ ′, ϕ, x; ε) = ε
d2ϕ

dx2
+ dϕ

dx
− 2x = 0, ϕ(0) = ϕ(1) = 2. (8.90)

The leading order outer-equation is evidently (withµ0 = ν0 = 1)

D0 = dϕ0

dx
− 2x = 0

with solutionϕ0 = x2 + A. The integration constantA can be determined by the boundary condition
ϕ0(0) = 2 atx = 0 orϕ0(1) = 2 atx = 1, but not both, so we expect a boundary layer at either end.
By trial and error we find that no solution can be constructed if we assume a boundary layer atx = 1,
so, inferring a boundary layer atx = 0, we have to use the boundary condition atx = 1 and find

ϕ0 = x2 + 1

The structure of the equation suggests a correction ofO(ε), so we try the expansion

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · .

This results forϕ1 into the equation

dϕ1

dx
+ d2ϕ0

dx2
= 0, with ϕ1(1) = 0 (theO(ε)-term of the

boundary condition),

which has the solution

ϕ1 = 2 − 2x.



206 8 Approximation methods

Higher orders are straightforward:

dϕn

dx
= 0, with ϕn(1) = 0

leading to solutionsϕn ≡ 0, and we find for the outer expansion

ϕ = x2 + 1 + 2ε(1 − x)+ O(εN). (8.91)

We continue with the inner expansion, and find withx0 = 0, ϕ = λψ , x = δξ

ελ

δ2

d2ψ

dξ2
+ λ

δ

dψ

dξ
− 2δξ = 0.

Both from the matching (ϕouter→ 1 for x ↓ 0) and from the boundary condition (ϕ(0) = 2) we have
to conclude thatϕinner = O(1) and soλ = 1. Furthermore, the boundary layer has only a reason for
existence if it comprises new effects, not described by the outer solution. From the correspondence
principle we expect that new effects are only included if(d2ψ/dξ2) is included. Soεδ−2 must be at
least as large asδ−1, the largest ofδ−1 andδ. From the principle that we look for the equation with
the richest structure, it must be exactly as large, implyinga boundary layer thicknessδ = ε. Thus we
haveκ = ε−1, and the inner equation

d2ψ

dξ2
+ dψ

dξ
− 2ε2ξ = 0.

From this equation it wouldseemthat we have a series expansion without theO(ε)-term, since the
equation for this order would be the same as for the leading order. However, from matching with the
outer solution:

ϕouter → 1 + 2ε + ε2(ξ2 − 2ξ)+ · · · (x = εξ, ξ = O(1))

we see that an additionalO(ε)-term is to be included. So we substitute the series expansion:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · . (8.92)

It is a simple matter to find

d2ψ0

dξ2
+ dψ0

dξ
= 0 , ψ0(0) = 2 → ψ0 = 2 + A0(e−ξ −1)

d2ψ1

dξ2
+ dψ1

dξ
= 0 , ψ1(0) = 0 → ψ1 = A1(e−ξ −1)

d2ψ2

dξ2
+ dψ2

dξ
= 2ξ, ψ2(0) = 0 → ψ2 = ξ2 − 2ξ + A2(e−ξ −1)

where constantsA0, A1, A2, · · · are to be determined from the matching condition that outer expan-
sion (8.91) forx → 0 :

1 + x2 + 2ε − 2εx + · · ·

must be functionally equal to inner expansion (8.92) forξ →∞:

2 − A0 − εA1 + x2 − 2εx − ε2A2 + · · · .
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A full matching is obtained if we choose:A0 = 1, A1 = −2, A2 = 0.

It is important to note that a matching is possible at all! Only a part of the terms can be matched
by selection of the undetermined constants. For example, the coefficients of thex andx2 terms are
already equal, without free constants. This is an importantconsistency check on the found solution, at
least as long as no real proof is available. If no matching appears to be possible, almost certainly one
of the assumptions made with the construction of the solution have to be reconsidered. Particularly
notorious are logarithmic singularities of the outer field,not uncommon in 2D acoustical radiation
problems ([115]). Even for such a simple (looking) problem as that of a plane wave scattered by a
static compact sphere a careful approach is necessary to getthe right results ([38]). On the other hand,
only in rather rare cases, probably related to exceptional physical phenomena, no matching couple of
inner and outer solutions is possible at all.

Summarizing: matching of inner- and outer expansion plays an important rôle in the following ways:

i) it provides information about the sequence of order (gauge) functions{µk} and {λk} of the
expansions;

ii) it allows us to determine unknown constants of integration;

iii) it provides a check on the consistency of the solution, giving us confidence in the correctness.

8.9 Duct junction

A very simple problem that can be solved with matched asymptotic expansions is the reflection and
transmission of low-frequency sound waves through a junction of two ducts with different diameter.
The problem will appear to be so simple that the apparatus of MAE could justifiably be considered
as a bit of an overkill. However, the method is completely analogous in many other duct problems,
allows any extension to higher orders, and is therefore a good illustration.

Consider two straight hard walled ducts with cross sectionA1 for x < 0, cross sectionA2 for x > 0,
in some (here rather irrelevant) way joined together atx = 0 (figure 8.7). Apart from a region near

A1

A2

x = 0
x < 0

x > 0

incident

reflected
transmitted

Figure 8.7 Duct junction.

this junction, the ducts have a constant cross section with awall normal vectornwall independent of
the axial position.

A sound wave with potentialϕin = eiωt−ikx is incident fromx = −∞. The wavelength is large
compared to the duct diameter:

k
√

A1 = ε ≪ 1. (8.93)
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To avoid uninteresting complications, we assume that in terms ofε the ratioA1/A2 is not close to 1 or
0: A1/A2 = O(1), A1 6= A2. Introduce dimensionless variablesX := kx, y := y/

√
A1, z := z/

√
A1.

Then for a uniform acoustic medium we have for a time harmonicscattered fieldϕ

ε2 ∂
2ϕ

∂X2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
+ ε2ϕ = 0 (8.94a)

∇ϕ ·nwall = 0 at the wall. (8.94b)

In the outer regionx = (X, y, z) = O(1) we expand in powers ofε (not ε2 as will be clear in the
end)

ϕ(x; ε) = ϕ0(x)+ εϕ1(x)+ ε2ϕ2(x)+ · · · (8.95)

and substitute in (8.94a) to find that all terms are function of the axial coordinateX only:

O(1) :
∂2ϕ0

∂y2
+ ∂2ϕ0

∂z2
= 0

∇ϕ0·nwall = 0





−→ ϕ0 = ϕ0(X), (8.96a)

O(ε) :
∂2ϕ1

∂y2
+ ∂2ϕ1

∂z2
= 0

∇ϕ1·nwall = 0





−→ ϕ1 = ϕ1(X), (8.96b)

O(ε2) :

∂2ϕ2

∂y2
+ ∂2ϕ2

∂z2
+ ∂2ϕ0

∂X2
+ ϕ0 = 0

∇ϕ2·nwall = 0





−→
ϕ2 = ϕ2(X),

∂2ϕ0

∂X2
+ ϕ0 = 0.

(8.96c)

This last result is obtained from integration over a cross section A
def== {X = constant} with surface

|A|, and applying Gauss’ theorem

∫

A

(∂2ϕ2

∂y2
+ ∂2ϕ2

∂z2
+ ∂2ϕ0

∂X2
+ ϕ0

)
ds =

∫

∂A
(∇ϕ2·nwall)dℓ+

(∂2ϕ0

∂X2
+ ϕ0

)
|A| = 0.

Evidently, this process can be continued and we obtain

ϕ0 =
{

e−i X +R0 ei X (X < 0)
T0 e−i X (X > 0)

(8.97a)

ϕn =
{

Rn ei X (X < 0)
Tn e−i X (X > 0)

(8.97b)

(wheren > 1). The regionX = O(ε) appears to be a boundary layer, and we introduce

x = X/ε,

8 = ϕ(εx, y, z; ε).
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The equation for8 becomes

∂28

∂x2
+ ∂28

∂y2
+ ∂28

∂z2
+ ε28 = 0 (8.98)

∇8·nwall = 0 at the wall. (8.99)

but now with matching conditions forx → −∞ andx → +∞, i.e. X ↑ 0 andX ↓ 0 of the outer
solution (8.97a-8.97b):

x → −∞ : 8 ≃ 1 + R0 + ε(R1 − i x + i x R0)+ ε2(R2 + i x R1 − 1
2x2 − 1

2x2R0)+ · · · ,
x → +∞ : 8 ≃ T0 + ε(T1 − i xT0)+ ε2(T2 − i xT1 − 1

2x2T0)+ · · · .

Guided by the behaviour under matching we assume the expansion

8 = 80 + ε81 + ε282 · · · ,

then

O(1) : ∇280 = 0 −→ 80 = constant−→ 1 + R0 = T0 (8.100)

O(ε) : ∇281 = 0 −→ 81 = not necessarily constant.

In general, the solution81 is difficult to obtain. However, if we are for the moment only interested in
the global effects on reflection and transmission, we can again make use of Gauss’ theorem. Consider
a large volume V , reaching fromx = x1 large negative, tox = x2 large positive (large in variable
x but small in variableX, so that we can use the matching conditions). Atx = x1 the surface ofV
consists of a cross sectionA1, and atx = x2 a cross sectionA2. The size ofV is denoted by|V |, the
sizes ofA1 andA2 by |A1| and|A2|. We integrate over this volume to obtain:

∫

V
∇281 dx = −

∫

A1

∂81

∂x
ds +

∫

A2

∂81

∂x
ds = −(−i + i R0)|A1| − i T0|A2| = 0

so that:

1 − R0 = T0
|A2|
|A1|

(8.101)

which, together with equation (8.100), determinesR0 andT0 fully. We continue with theO(ε2) term:

O(ε2) : ∇282 = −80.

Again, to obtain82 is difficult in a general situation, but if we follow the same arguments as for81

we find
∫

V
∇282 dx = −80|V | =

−
∫

A1

∂82

∂x
ds +

∫

A2

∂82

∂x
ds = −|A1|(i R1 − x1 − x1R0)+ |A2|(−i T1 − x2T0)

= −T0(x2|A2| − x1|A1| + θ1)
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whereθ1 denotes the difference, due to obvious details of the junction geometry, between|V | and the
sum of the two duct partsx2|A2| − x1|A1|. The above identity results into

|A1|R1 + |A2|T1 = −i T0θ1. (8.102)

This process can be continued, at least formally. For eachn-th step more and more information of
solution8n−2 is needed. For example, the next step for83 gives a relation forR1 andT1, andR2 and
T2, in terms of the integral (check yourself!)

θ2 =
∫

V
81 dx −

∫ 0

x1

(R1 − i x + i R0x)dx −
∫ x2

0
(T1 − i T0x)dx

= i |A1|R2 + i |A2|T2.

Note that the correctionsR1 andT1 are imaginary and therefore appear as a phase shift in the reflected
and transmitted (outer-) waves. So the reflection and transmission amplitudes (i.e. absolute value) are
given byR0 andT0 up to O(ε2).

8.10 Co-rotating line-vortices

−Ŵ

2Ŵ

−Ŵ

Figure 8.8 Three co-rotating vortices.

In an inviscid infinite 2D medium a stationary line vortex produces
a time-independent velocity and pressure field. Two of such vor-
tices, however, move in each others velocity field. Two equally
strong and equally orientated vortices rotate around a common cen-
tre, and produce a fluctuating velocity and pressure field (for a fixed
observer).

If the velocities are relatively low, this field will be practically in-
compressible. A small fraction of the energy, however, willradiate
away as sound [146, 37].

For a physically consistent problem (it is not possible in aninviscid
medium to change the total amount of circulation) we position at the common centre a third vortex
with a double but opposite vortex strength. By symmetry thisvortex will not move but of course will
contribute to the rotating motion of the other two.

Inviscid compressible irrotational flow depending onx = r cosθ , y = r sinθ andt is described by

∂ρ

∂t
+ ∇ϕ ·∇ρ + ρ∇2ϕ = 0, (8.103a)

ρ∇
(∂ϕ
∂t

+ 1
2

∣∣∇ϕ
∣∣2

)
+ ∇ p = 0, (8.103b)

p

p0
=

( ρ
ρ0

)γ
, c2 = dp

dρ
= γ p

ρ
, (8.103c)

with densityρ, pressurep, velocity potentialϕ, sound speedc and gas constantγ . Introduce the
auxiliary quantity (c.f. (1.32b))

Q = ∂ϕ

∂t
+ 1

2

∣∣∇ϕ
∣∣2 (8.104)
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then

(γ − 1)Q + c2 = c2
0 (constant) (8.105)

where under the assumption thatϕ→ 0 for r →∞ the constantc0 is the far field sound speed. Hence

∂Q

∂t
+ c2

ρ

∂ρ

∂t
= 0, ∇Q + c2

ρ
∇ρ = 0

and so
(
c2

0 − (γ − 1)Q
)
∇2ϕ = ∂Q

∂t
+ ∇ϕ ·∇Q. (8.106)

We will consider two vortices with vortex strength−Ŵ, positioned opposite to each other on the circle
r = a, and a vortex of strength 2Ŵ at the originr = 0. Their motion around each other will be
incompressible as follows. Typical induced velocities areof the order ofŴ/a, and we assume this to
be small enough compared to the sound speed for locally incompressible flow:

ε = Ŵ

ac0
≪ 1. (8.107)

Introduce dimensionless variables (where we keep for convenience the same notation):

t := tŴ/a2, x := x/a, y := y/a, ϕ := ϕ/Ŵ, Q := Qa2/Ŵ2.

Equation (8.106) is then in dimensionless form

(
1 − (γ − 1)ε2Q

)
∇2ϕ = ε2

(∂Q

∂t
+ ∇ϕ ·∇Q

)
. (8.108)

In the inner region r = O(1), we have to leading order the Laplace equation for incompressible
potential flow

∇2ϕ = 0 (8.109)

with solution the sum6 of the contributions of the three co-rotating vortices

ϕ = 1

π
arctan

y

x
− 1

2π
arctan

y − y1(t)

x − x1(t)
− 1

2π
arctan

y − y2(t)

x − x2(t)
. (8.110)

The position vectorx1(t) = (x1(t), y1(t)) (and similarlyx2(t)) is determined by the observation that
a vortex is just a property of the flow and therefore the velocity

.
x1 (t) must be equal to the induced

velocity of the other vortices atx = x1 :

dx1

dt
= 1

2π

y1 − y2

(x1 − x2)2 + (y1 − y2)2
− 1

π

y1

x2
1 + y2

1

(8.111a)

dy1

dt
= − 1

2π

x1 − x2

(x1 − x2)2 + (y1 − y2)2
+ 1

π

x1

x2
1 + y2

1

. (8.111b)

From symmetryx2 = −x1, and the solution along the circle|x| = 1 is given by

x1 = cos(1
2ωt), y1 = sin(1

2ωt), where ω = 3/2π, (8.112)

6Equation (8.109) is linear.
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and apart from an irrelevant phase shift. Solution (8.110) can now be written as

ϕ = 1

π
θ − 1

2π
arctan

( r 2 sin 2θ − sinωt

r 2 cos 2θ − cosωt

)
. (8.113)

For matching with the outer field we need the behaviour of inner solutionϕ for r →∞:

ϕ ≃ sin(ωt − 2θ)

2πr 2
+ · · · (r → ∞). (8.114)

For theouter regionwe first observe that the time scale is dictated by the source,so this is the same
everywhere. Then, if we scalẽr = δ(ε)r , it follows from matching with equation (8.114) thatϕ =
O(δ2). A significant degeneration of (8.108) is obtained ifδ = ε, when∇2ϕ and∂2ϕ/∂t2 balance
each other. Together we have:

r = r̃ /ε, ϕ = ε2ϕ̃ (8.115a)

Q = ε2
(∂ϕ̃
∂t

+ 1
2ε

4
∣∣∇̃ϕ̃

∣∣2
)

= ε2Q̃ (8.115b)

which gives

(
1 − (γ − 1)ε4Q̃

)
∇̃2ϕ̃ = ∂ Q̃

∂t
+ ε4∇̃ϕ̃ ·∇̃ Q̃ (8.116)

To leading order,̃ϕ satisfies the wave equation

∇̃2ϕ̃ − ∂2ϕ̃

∂t2
= 0 (8.117)

with outward radiation conditions for̃r → ∞ (no source at infinity), and a condition of matching
with (8.114) forr̃ ↓ 0. This matching condition says that, on the scale of the outer solution, the inner
solution behaves like a harmonic point source∝ e2iωt at r̃ = 0, with properties to be determined.

Relevant point source solutions are

ϕ̃ = Re
{

AH(2)
n (ωr̃ )eiωt−inθ

}
(8.118)

with H (2)
n a Hankel function (Appendix D), and ordern and amplitudeA to be determined. For match-

ing it is necessary that the behaviour forr̃ ↓ 0 coincides with (8.114):

ε2 Re
{
−A

(n − 1)!

iπ

( 2

ωr̃

)n
eiωt−inθ

}
∼ sin(ωt − 2θ)

2πr 2
(8.119)

(if n > 1). Clearly, there is no other possibility thann = 2, and henceA = −1
8ω

2. Note that this
order 2 indicates an acoustic field equivalent to that of a rotating lateral quadrupole. In dimensional
variables the acoustic far field is given by

ϕ ≃ ŴM3/2

2

( a

πr

)1/2
cos

(
�(t − r/c0)− 2θ + 1

4π
)
. (8.120)

where frequency� and vortex Mach numberM are given by

� = ωŴ

a2
= 3Ŵ

2πa2
, M = �a

2c0
.
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We see that for fixedθ the waves radiate outwards (r − c0t constant), for fixedr the waves rotate with
positive orientation (θ− 1

2�t constant), and at a fixed timet the wave crests are localized along spirals
(r + 2θc0/� constant). This may be compared with a rotating lawn sprinkler.

The outward radiating time-averaged energy flux or intensity is found from equation (8.120) to be

I = 8

9
πρ0c

3
0M7 a

r
. (8.121)

This functional dependence onU7 in 2D is to be compared with theU8-law of Lighthill for turbulence
noise (equation 6.69), and forms a confirmation of the estimates for turbulence in the Lighthill analogy.

We have now obtained the solution to leading order. Higher orders may be constructed in a similar
fashion, but we will limit ourselves to the present one. For higher orders more and more equivalent
far fields of higher order multipoles will appear.

We finally note that from a simple calculation the outward radiated 2D power is equal to16
9 π

2ρ0c3
0aM7.

Strictly speaking, this amount of energy per time leaks awayfrom the total energy of the system of
vortices (which scales onρ0Ŵ

2), and we could try to include a small decay in time of the vortex
strengthŴ. This is, however, impossible in the present model.

Exercises

a) Determine (using Webster’s horn equation) the right-running wavep(x), with p(0) = p̂0, in an expo-
nential horn with radiusa emx.

b) In a hot desert, a man is giving a speech to an audience. The mouth of the man and the ears of the
audience are at a height ofy = h = 1.5 m above the flat ground, given byy = 0. The ground is so hot
compared to the air that a vertically stratified uniform temperature profile is established in the air. We
assume for the region relevant here that this profile corresponds to a sound speed which is linear iny.
The sound speed profile is given by:c0(y) = q(1 − εy), whereq = 360 m/s andε = 1

250 m−1. Since
the sound speed gradient is negative the sound waves are refracted upwards and will disappear into the
air. Under the assumptions that the man speaks loud enough, that a typical wave length is small enough
for ray acoustics to be applicable, and that we only considerrays that skim along the ground, what is the
largest distance over which the man can be heard?

c) Determine the suitable modelling assumptions and derivefrom the wave equations (F.22) and (F.27) the
following generalized Webster equations

A−1 d

dx

(∫∫

A

c2 dσ
dp

dx

)
+ ω2p = 0, (8.122)

(ρ0A)−1 d

dx

(
Aρ0

dφ

dx

)
−

(
iω + U

d

dx

)[
c−2(iω + U

d

dx

)
φ
]

= 0. (8.123)

d) A large array of acoustically compact equal Helmholtz resonators (all openings in upward direction)
is covered by a top plate of negligible thickness. The plate is solid except for holes positioned exactly
at the openings of the resonator, such that the plate has a uniform
porosityσ ∈ (0,1) (= the open fraction). A time harmonic acous-
tic field (p, v) eiωt is scattered by plate and Helmholtz resonators.
Find an expression for the impedance of the plate surface. You may
assume the model given by equation (5.41), without the nonlinear
terms to start with.Hint : you may assume that the neck velocity
u′

n = −σ−1(v ·n); use (8.35).

e) Derive the results of section 8.4 for a 2D duct given by|y| < h(εx).



9 Effects of flow and motion

Being a fluid mechanical phenomenon itself, an acoustic wavemay be greatly affected by mean flow
effects like convection, refraction in shear, coupling with vorticity, scattering by turbulence, and many
others. We will briefly consider here some of these effects.

9.1 Uniform mean flow, plane waves and edge diffraction

Consider a uniform mean flow inx direction with small irrotational perturbations1. We have then for
potentialφ, pressurep, densityρ and velocityv the problem given by

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
− 1

c2
0

( ∂
∂t

+ U0
∂

∂x

)2
φ = 0,

p = −ρ0

( ∂
∂t

+ U0
∂

∂x

)
φ, p = c2

0ρ, v = ∇φ
(9.1)

whereU0, ρ0 andc0 denote the mean flow velocity, density and sound speed, respectively. We assume
in the following that|U0| < c0. The equation forφ is known as the convected wave equation.

9.1.1 Lorentz or Prandtl-Glauert transformation

By the following transformation (in aerodynamic context named after Prandtl and Glauert, but qua
form originally due to Lorentz)

X = x

β
, T = βt + M

c0
X, M = U0

c0
, β =

√
1 − M2, (9.2)

the convected wave equation may be associated to a stationary problem with solutionφ(x, y, z, t) =
ψ(X, y, z, T) satisfying

∂2ψ

∂X2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
− 1

c2
0

∂2ψ

∂T2
= 0, p = −ρ0

β

( ∂
∂T

+ U0
∂

∂X

)
ψ. (9.3)

For a time harmonic fieldeiωt φ(x, y, z) = ei�T ψ(X, y, z) or φ(x, y, z) = ei K M X ψ(X, y, z), where
� = ω/β, k = ω/c0 and K = k/β, we have

∂2ψ

∂X2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+ K 2ψ = 0. (9.4)

The pressure may be obtained fromψ , but sincep satisfies the convected wave equation too, we may
also associate the pressure field directly by the same transformation with a corresponding stationary
pressure field. The results are not equivalent, however, andespecially when the field contains singu-
larities some care is in order. The pressure obtained directly is no more singular than the pressure of
the stationary problem, but the pressure obtained via the potential is one order more singular due to
the convected derivative. See the example below.

1The assumption of irrotationality may depend on the type of source (1.25b), presence of singularities like edges,etc.
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9.1.2 Plane waves

A plane wave (inx, y-plane) may be given by

pi = a exp
(
−i k

x cosθn + y sinθn

1 + M cosθn

)
= a exp

(
−i kr

cos(θ − θn)

1 + M cosθn

)
(9.5)

whereθn is the direction of the normal to the phase plane andx = r cosθ , y = r sinθ . This is
physically not the most natural form, however, becauseθn is due to the mean flow not the direction
of propagation. By comparison with a point source field far away, or from the intensity vector (c.f.
(F.34,F.35))

〈I〉 = 〈(ρ0v + ρv0)(p/ρ0 + v0·v)〉 = 1
2ρ0ω

[(
β2 Im(φφ∗

x)+ kM|φ|2
)
ex + Im(φφ∗

y)ey

]

=
1
2ρ0ωk|φ|2

1 + M cosθn

[
(cosθn + M)ex + sinθney

]

we can learn thatθs, the direction of propagation (the direction of any shadows, fig. 9.1), is given by

cosθs = M + cosθn√
1 + 2M cosθn + M2

, sinθs = sinθn√
1 + 2M cosθn + M2

. (9.6)

By introducing the transformed angle2s

cos2s = cosθs√
1 − M2 sin2 θs

= M + cosθn

1 + M cosθn
, (9.7)

sin2s = β sinθs√
1 − M2 sin2 θs

= β sinθn

1 + M cosθn
(9.8)

and the transformed polar coordinatesX = Rcos2, y = Rsin2, we obtain the plane wave

pi = a exp
(
i K M X − i K Rcos(2−2s)

)
. (9.9)

9.1.3 Half-plane diffraction problem

By using the foregoing transformation, we obtain from the classical Sommerfeld solution for the half-
plane diffraction problem (see Jones [97]) of a plane wave (9.9), incident on a solid half plane along
y = 0, x < 0 (fig. 9.1), the following solution (see Rienstra [189]) in terms ofpotential

φ(x, y) = i aβ2

ω(1 − M cos2s)
exp

(
i K M X − i K R

)(
F(Ŵs)+ F(Ŵ s)

)
(9.10)

where

F(z) = eiπ/4

√
π

eiz2
∫ ∞

z
e−i t2

dt and Ŵs, Ŵs = (2K R)1/2 sin 1
2(2∓2s). (9.11)

An interesting feature of this solution is the following. When we derive the corresponding pressure

p(x, y) = a exp
(
i K M X − i K R

)(
F(Ŵs)+ F(Ŵ s)

)

+ a
e−iπ/4

√
π

M cos1
22s

1 − M cos2s
exp

(
i K M X − i K R

)
sin 1

22
( 2

K R

)1/2
, (9.12)
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θs

Figure 9.1 Sketch of scattered plane wave with mean flow

we see immediately that the first part is a solution by itself:it is a multiple of the solution of the
potential. So the second part has to be a solution too. Furthermore, the first part isregular like φ,
while this second part issingularat the scattering edge. As the second part decays for anyR → ∞, it
does not describe the incident plane wave, and it may be dropped if we do not accept the singularity
in p at the edge. So the found solution (9.12) is not unique by the existence of an eigensolutionpv

pv(x, y) = exp
(
i K M X − i K R

)sin 1
22√

K R
, (9.13)

Without pv , the solution is regular, otherwise it is singular. If we study pv a bit deeper, it transpires
that it has no continuous potential that decays to zero for large |y|. In fact, pv corresponds to the field
of vorticity (in the form of a vortex sheet) that is being shedfrom the edge. This may be more clear if
we construct the corresponding potentialφv for largex, to be compared with (3.66), which is

φv ∼ sign(y)exp
(
− ω

U0
|y| − i

ω

U0
x
)
, pv ∼ 0. (9.14)

In conclusion: we obtain the singular solution by transforming the no-flow solution in potential form,
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Figure 9.2 (ρ0ω/|a|2)P as function of(M, θn).

and the regular solution from the no-flow solution in pressure
form. Their difference is the field of the shed vortex sheet.

This shedding of vorticity costs acoustic energy, so on the one
hand it is a sink of acoustic energy. On the other hand, the shed
vorticies moving near the solid plate produce also sound, and
so the shedding of vorticity is also a source of sound (with the
mean flow as the unlimited source of energy). The net sum of
both can be both negative and positive, depending onM andθn.
Remarkably, the present model problem allows the following
exact expression of the power absorbed by vortex shedding2.

P = (|a|2/ρ0ω)M cos2 1
2θn(1 + M cosθn)(2 + 2M cosθn − M) (9.15)

The assumption that just as much vorticity is shed that the pressure field is not singular anymore, is
known as the unsteady Kutta condition. Physically, the amount of vortex shedding is controlled by
the viscous boundary layer thickness compared to the acoustic wave length and the amplitude (and

2This isnot only the energy lost into the vortex sheet, but allacousticenergy lost by vortex shedding. For example, it
includes the irrotational hydrodynamic energy (3.67) associated to the vortex sheet. The energy just lost into the vortex sheet
would beP = (|a|2/ρ0ω)M cos2 1

2θn(1 + M cosθn)(1 + 2M cosθn − M). See Howe [85].
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the Mach number for high speed flow). These effects are not included in the present acoustic model,
therefore they have to be included by an additional edge condition, for example the Kutta condition.
As vorticity can only be shed from a trailing edge, a regular solution is only possible ifM > 0. If
M < 0 the edge is a leading edge and we have to leave the singular behaviour as it is.

9.2 Moving point source and Doppler shift

Consider a point (volume) source of strengthQ(t) (the volume flux), moving subsonically along the
pathx = xs(t) in a uniform acoustic medium. The generated sound field is described by

1

c2
0

∂2 p

∂t2
− ∇2 p = ρ0

∂

∂t

{
Q(t)δ(R(t))

}
, R(t) = x − xs(t). (9.16)

Using the free field Green’s function (equation (6.37) or Appendix E)

G(x, t|y, τ ) = 1

4πc2
0|x − y|

δ
(
t − τ − |x − y|

c0

)
,

the solution for potentialϕ, with p = −ρ0
∂
∂t ϕ, is given by

4πϕ(x, t) = −
∫ ∞

−∞

Q(τ )

R(τ )
δ
(
t − τ − R(τ )

c0

)
dτ, R = |R|. (9.17)

Using theδ-function integral (C.28)
∫ ∞

−∞
δ(h(τ ))g(τ )dτ =

∑

i

g(τi )

|h′(τi )|
, h(τi ) = 0 (C.28)

this representation is very elegantly3 [52] reduced to the Liénard-Wiechert potential ([99, p.127])

4πϕ(x, t) = − Qe

Re(1 − Me cosϑe)
, (9.18)

where the subscripte denotes evaluation at timete, given by the equation

c0(t − te)− R(te) = 0. (9.19)

Absolute values are suppressed because we assumed|Me| < 1. Restriction (9.19) is entirely natural
and to be expected. If we trace the observed acoustic perturbation back to its origin, we will find4 it
to be created at timete by the source at positionxs(te) and strengthQ(te). Therefore,te is usually
calledemission time, or retarded time. It is important to note that by its implicit definition (9.19), te is
a function of botht andx.

Other convenient notations used here and below are

M = x′
s/c0, M = |M|, RM cosϑ = R ·M,

3To appreciate the elegance the reader might compare it with the more traditional derivation as found in [145, p.721] for
the less general problem of a point source moving with constant speed along a straight line.

4A generalization to supersonic motion of the source involves in general a summation, according to (C.28), over more
than one solution of equation (9.19).
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whereM and M are, respectively, the scalar and vectorial Mach number of the source, whileϑ is
the angle between the source velocity vector and the observer’s position, seen from the source. The
combinationM cosϑ is often also denoted byMr .

By applying the chain rule to equation (9.19) we obtain the identities

∂te
∂t

= 1

1 − Me cosϑe
,

∂Re

∂t
= − c0Me cosϑe

1 − Me cosϑe
,

∂

∂t
(ReMe cosϑe) = Re·M ′

e − c0M2
e

1 − Me cosϑe
.

After differentiation of equation (9.18) with respect to time, we finally have

4πp(x, t) = ρ0Q′
e

Re(1 − Me cosϑe)2
+ ρ0Qe

Re·M ′
e + c0Me(cosϑe − Me)

R2
e(1 − Me cosϑe)3

. (9.20)

The O(R−1
e )-part dominates the far field, while theO(R−2

e )-part dominates the near field [124]. A
typical effect of motion is that both the pressure and the potential fields are increased by the “Doppler
factor” (1− Me cosϑe)

−1, but not with the same power. Furthermore, more Doppler factors appear for
higher order multipole sources. (See Crighton [38].)

The name “Doppler factor” is due to its appearance in the well-known frequency shift of moving
harmonic sources. Assume

Q(t) = Q0 eiω0t

with frequencyω0 so high that we candefinean instantaneous frequencyω for an observer of (9.20)
at positionx:

ω(t) = d

dt
(ω0te) = ω0

1 − Me cosϑe
. (9.21)

This describes theDoppler shiftof frequencyω0 due to motion. Expression (9.20) is quite general.
The more common forms are for a straight source path with constant velocityxs(t) = (V t,0,0) in
which caseMe is constant andx′′

s = 0.

Analogous to the above point volume source, or monopole, we can deduce the field of a moving point
force, or dipole. For this we return to the original linearized gas dynamics equations inρ, v, and p
with external forceF(t)δ(x − xs(t)), and eliminateρ andv to obtain:

1

c2
0

∂2 p

∂t2
− ∇2 p = −∇ ·

{
F(t)δ(R(t))

}
. (9.22)

Following the same lines as in the monopole problem we have the solution

4πp(x, t) = −∇ ·
( Fe

Re(1 − Me cosϑe)

)
(9.23)

Here we see that a rotating force is not the same as a rotating∇ · F -field, sincete = te(x, t). By
application of the chain rule to equation (9.19) we derive:

∇Re = −c0∇te = Re

Re(1 − Me cosϑe)
,

∇(ReMe cosϑe) = Me − Re

Re(1 − Me cosϑe)

( Re·M ′
e

c0
− M2

e

)
,
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so that we have the general expression for a moving point force:

4πp(x, t) = Re· F′
e − c0Me·Fe

c0R2
e(1 − Me cosϑe)2

+ (Re·Fe)
Re·M ′

e + c0(1 − M2
e)

c0R3
e(1 − Me cosϑe)3

. (9.24)

The O(R−1
e )-part dominates the far field, while theO(R−2

e )-part dominates the near field [124].

It should be noted that the above distinction between a pointsourceQ and a point forceF is rather
idealized. In any real situationQ andF are coupled, since in general a real mass source also produces
a momentum change (see [52]).

9.3 Rotating monopole and dipole with moving observer

An application of the previous section is a model for (subsonic) propeller noise, due to Succi and
Farassat [61, 227].

Two main sources of sound may be associated to a moving propeller blade: the displacement of fluid
by the moving body leading to thickness noise, and the movinglift force distribution leading to loading
noise. See the next section 9.4, equation (9.28). A description of the loading noise is obtained by
representing the propeller blade force by an equivalent distribution of point forcesF j , followed by a
summation overj of the respective sound fields given by equation (9.24).

The thickness noise is a bit more involved. It can be shown (equation 9.32) that a compact moving
body of fixed volumeV generates a sound field, due to its displacement of fluid, given by thetime
derivativeof equation (9.16) whileQ = V , with solution thetime derivativeof equation (9.20).

4πpth(x, t) = ρ0V
∂2

∂t2

1

Re(1 − Me cosϑe)
.

(Equivalent forms in terms of spatial derivatives are also possible; see for example [24, 61].) By
discretising the propeller blade volume by an equivalent collection of volumesVj , the thickness noise
is found by a summation overj of the respective sound fields.

The method is attractive in its relative simplicity, and easy programming. The formulas are laborious,
however. Therefore, to illustrate the method, we will work out here the related problems of the far
field of a subsonically rotating and translating monopoleQ = q0 and dipole f0. The position of the
point source, rotating in thex, y-plane along a circle of radiusa with frequencyω, and translating
along thez-axis with constant velocityU (figure 9.3), is given by

xs(t) = (a cosωt,a sinωt,Ut).

It is practically of most interest to consider an observer moving with the source, with forward speed
Ut . Therefore, we start with the field of the source, given in thestationary medium by equation (9.20),
and substitute for position vectorx the position of a co-moving observerxo = (xo, yo, zo), given in
spherical coordinates by

xo(t) = (r cosφ sinϑ, r sinφ sinϑ, r cosϑ + Ut).

With R(o)
e = xo(t)− xs(te) we obtain the relations

R(o)
e ·Me = MR r sinϑ sin(φ − ωte)+ MF r sinϑ + M2

F R(o)e ,

R(o)
e ·M ′

e = c0M2
R

(
1 − r

a
sinϑ cos(φ − ωte)

)
,

M2
e = M2

R + M2
F , where MR = ωa/c0, MF = U/c0.
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x

y
z

Figure 9.3 Trajectory of point, moving along helical pathxs(t).

The “far field” denotes the asymptotic behaviour for(a/r ) → 0. Since

c2
0(t − te)

2 = (R(o)e )2 = r 2 − 2ar sinϑ cos(φ − ωte)+ a2 + 2Ur (t − te) cosϑ + U2(t − te)
2

and noting that asymptoticallyt − te = O(r/c0), we have fora/r → 0

te = t − r̃

c0
+ ã

c0
sinϑ cos(φ − ωt + kr̃ )+ . . .

wherek = ω/c0 and

r̃ = r
MF cosϑ +

√
1 − M2

F sin2ϑ

1 − M2
F

, ã = a
1√

1 − M2
F sin2ϑ

.

With this we find:

R(o)e ≃ r̃ − ã sinϑ cos(φ − ωt + kr̃ )

Me cosϑe ≃
(1 − M2

F )MR sinϑ sin(φ − ωt + kr̃ )+ MF cosϑ + M2
F

√
1 − M2

F sin2ϑ

MF cosϑ +
√

1 − M2
F sin2ϑ

Altogether in equation (9.20):

4πp(x, t) = ρ0c0q0

R2
e(1 − Me cosϑe)3

( (R(o)
e ·M ′

e

c0
+ Me cosϑe − M2

e

)

≃ −ρ0c0q0

ar

(1 − M2
F )

2M2
R sinϑ cos(φ − ωt + kr̃ )

(
MF cosϑ +

√
1 − M2

F sin2ϑ
)2(

1 − Me cosϑe

)3 (9.25)

We do have aO(1/r ) decay, and in spite of the dQ(t)/dt = 0, a nearly harmonic signal. Note the
2-lobe radiation pattern,i.e. 2 maxima perpendicular to the axis of rotation where sinϑ = 1, and
minima in the direction of the axis where sinϑ = 0.
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Figure 9.4 Time history of sound pressure generated by spiralling point source (left) and point force (right).

The rotating point force will portray a very simple propeller model. We assume the propeller to be
concentrated in one point (this is a plausible approximation for the lowest harmonics) by a point force
equal to the blade thrust force (the pressure jump across theblade integrated over the blade), in a
direction perpendicular to the blade. Furthermore, the blade surface will practically coincide with the
screw plane described by the effective velocity fieldV = U ex − ωaeθ .

So we have a force

F(t) = f0√
U2 + (ωa)2

(U sinωt,−U cosωt, ωa) (9.26)

In figure 9.4 plots are made of the time history of the sound pressure generated by the above point
source and point force, for the following parameters:U = 145 m/s,c0 = 316 m/s,a = 1.28 m,
ω = 17·2π /s, f0 = 700 N,ρ0 = 1.2 kg/m3, q0 = 1.8 m3/s, for an observer moving with and in the
plane of the source at a distancex0 = 2.5 m. No far-field approximation is made.

9.4 Ffowcs Williams & Hawkings equation for moving bodies

Curle (6.85) showed that the effect of a rigid body can be incorporated in the aero-acoustical anal-
ogy of Lighthill as additional source and force termsQm and F. This approach has been generalized
by Ffowcs Williams and Hawkings who derived [65] a very general formulation valid for any mov-
ing body, enclosed by a surfaceS(t). Their derivation by means of generalized functions (surface
distributions, section C.2.8) is an example of elegance andefficiency. Although originally meant to
include the effect of moving closed surfaces into Lighthill’s theory for aerodynamic sound, it is now
a widely used starting point for theories of noise generation by moving bodies like propellers, even
when turbulence noise is of little or no importance.
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There is no unique relation between a source and its sound field, because a given field can be created
by infinitely many equivalent but different sources (section 2.6.1). Therefore, there is no unique way
to describe the effect of a surfaceS(t) in terms of an acoustic source distribution, and a simple and
transparent choice is preferable. The choice put forward byFfowcs Williams and Hawkings was both
simple and transparent: just force any flow variable to vanish inside the enclosed volume. The resulting
equations are automatically valid everywhere, and use can be made of the free field Green’s function.

Consider a finite volumeV = V(t) with sufficiently smooth surfaceS = S(t), moving continuously
in space. Introduce a (smooth) functionf (x, t) such that

f (x, t)





< 0 if x ∈ V(t),

= 0 if x ∈ S(t),

> 0 if x 6∈ V(t),

but otherwise arbitrary. If we multiply any physical quantity by the Heaviside functionH ( f ) – such
asρ ′ H ( f ) – we obtain a new variable which vanishes identically withinV becauseH ( f ) = 1 in
the fluid, andH ( f ) = 0 insideV. Since∇ f | f =0 is directed normal outwards fromV, the outward
normaln of S is given by (section A.3).

n(x, t) = ∇ f

|∇ f |

∣∣∣∣
f =0

.

Let the surfaceS(t) be parametrized in time and space, by coordinates5 (t;λ,µ). A surface point
xS(t) ∈ S (considerλ andµ fixed), moving with velocityU = .

xS, remains at the surface for all time,
so f (xS(t), t) = 0 for all t , and therefore

∂ f

∂t
= − .

xS ·∇ f = −(U ·n)|∇ f |.

It is important to note that the normal velocity(U ·n) is a property of the surface, and is independent
of the choice off or parametrization. We now start the derivation by multiplying the exact equations
(1.1,1.2) of motion for the fluid byH ( f ):

H ( f )
[∂ρ ′

∂t
+ ∇ ·(ρv)

]
= 0,

H ( f )
[ ∂
∂t
(ρv)+ ∇ ·(P + ρvv)

]
= 0,

whereρ ′ = ρ − ρ0 andρ0 is the mean level far away from the body. Although the original equations
were only valid outside the body, the new equations are trivially satisfied insideV, and so they are valid
everywhere. By reordering the terms, and using the identity∂

∂t H ( f ) = −U ·∇H ( f ), the equations
can be rewritten as equations for the new variablesρ ′H ( f ) andρvH ( f ) as follows.

∂

∂t
[ρ ′H ( f )] + ∇·[ρvH ( f )] = [ρ0U + ρ(v − U)]·∇H ( f ),

∂

∂t
[ρvH ( f )] + ∇·[(ρvv + P)H ( f )] = [ρv(v − U)+ P]·∇H ( f ).

5WhenS(t) is the surface of a solid and undeformable body, it is naturalto assume a spatial parametrization which is
materially attached to the surface. This is, however, not necessary. Like the auxiliary functionf , this parametrization is not
unique, but that will appear to be of no importance.
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Using the same procedure (subtracting the time-derivativeof the mass equation from the divergence
of the momentum equation) as for Lighthill’s analogy (2.65), we find the Ffowcs Williams-Hawkings
equations [65]:

∂2

∂t2
ρ ′H ( f )− c2

0∇2ρ ′ H ( f ) = ∇·

∇·

[(
ρvv − τ + (p′ − c2

0ρ
′) I

)
H ( f )

]


+ ∂

∂t

[(
ρ(v − U)+ ρ0U

)
·∇H ( f )

]
− ∇·

[(
ρv(v − U)+ p′ I − τ

)
·∇H ( f )

]
. (9.27)

The sources at the right hand side consist of the double divergence of the common quadrupole-type
Lighthill stress tensor, and a time derivative and divergence of sources only present at the surface
f = 0. Of course, the right hand side contains all the unknowns, and in principle this equation (9.27)
is not simpler to solve than the original Navier-Stokes equations. However, as with Lighthill’s analogy,
the source terms are of aerodynamic nature, and can be solvedseparately, without including the very
small acoustic back-reaction.

Very often, Lighthill’s stress tensorρvv − τ + (p′ − c2
0ρ

′) I and the shear stresses at the surface are
negligible. Moreover, if the surfaceS is solid such thatv ·n = U ·n, and we change from density
to pressure as our field variable, and definep̄ ′ = p′ H ( f ), we have a reduced form of the Ffowcs
Williams-Hawkings equation, which is widely used for subsonic propeller and fan noise (no shocks)
[61]

1

c2
0

∂2

∂t2
p̄ ′ − ∇2 p̄ ′ = ∂

∂t

[
ρ0U ·n|∇ f |δ( f )

]
− ∇·

[
p′n|∇ f |δ( f )

]
. (9.28)

The first source term is of purely geometrical nature, and describes the noise generated by the fluid
displaced by the moving body. The associated field is called thickness noise. The second part depends
on the normal surface stresses due to the pressure distribution, and describes the noise generated by
the moving force distribution. The associated field is called loading or lift noise.

If we know the pressure distribution along the surface, we can in principle solve this equation, in a way
similar to the problem of the moving point source of section 9.2. Let us consider first the following
prototype problem

1

c2
0

∂2

∂t2
ϕ − ∇2ϕ = Q(x, t)|∇ f |δ( f ). (9.29)

By using the free field Green’s function we can write

4πϕ(x, t) =
∫ ∫∫∫

Q(y, τ )
R

δ(t − τ − R/c0)|∇ f |δ( f )dy dτ,

whereR = |x − y(τ )|, the distance between observer’s and source’s position. Noting that|∇ f |δ( f )
is just equivalent to the surface distribution ofS(t) (equation C.38), we can integrateδ( f ) (equation
C.37 or C.39) and write

4πϕ(x, t) =
∫ ∫∫

S(t)

Q(y, τ )
R

δ(t − τ − R/c0)dσ dτ.

The integral overτ can be evaluated by noting that any contributions come from the solutionτ = te
of the emission-time equation (the zero of the argument of the remainingδ-function), given by

c0(t − τ)− R = 0,
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which describes (for givenx, t) a surface in(y, τ )-space, symbolically denoted byS(te). Analogous
to the point source field (9.18) we have then

4πϕ(x, t) =
∫∫

S(te)

Qe

Re(1 − Me cosϑe)
dσ. (9.30)

As before, subscripte denotes evaluation at emission timete, andM cosϑ is the component of the
vectorial Mach number of the source in the direction of the observer (in some literature also denoted
by Mr ). From this auxiliary solution we can now formulate a solution for p̄ ′ as follows

4π p̄ ′(x, t) = ∂

∂t

∫∫

S(te)

ρ0Ue·ne

Re(1 − Me cosϑe)
dσ − ∇·

∫∫

S(te)

pene

Re(1 − Me cosϑe)
dσ. (9.31)

Extreme care should be taken in interpreting this equation,because for anyx andt the emission time
te varies over the source region, while at the same time the source varies its position! Other forms
of the solution are available which might be easier to handlein certain applications; seee.g.Farassat
[60, 61].

It is therefore interesting to consider the compact limit, in which case the typical wave length is much
longer than the body size. The emission time does not vary significantly over the source region, and
Re andMe cosϑe refer only to a single typical source coordinatexs, for example the centre of gravity.
The source becomes equivalent to a point source (section 9.2,9.3).

A particularly interesting form (Farassat [61]) for the thickness noise component is found by writing
the surface integral as a volume integral. Using

ρ0U ·n|∇ f |δ( f ) = ∂

∂t
ρ0(1 − H ( f )),

and noting that the function 1− H ( f ) equals unity inside the bodyV and zero elsewhere, we have
for the thickness noise component of equation (9.31)

∂

∂t

∫∫

S(te)

ρ0Ue·ne

Re(1 − Me cosϑe)
dσ = ∂2

∂t2

∫∫∫

V(te)

ρ0

Re(1 − Me cosϑe)
dy.

Since the volume integral of the constant 1 is justV , the volume ofV, and denoting the total force of
the fluid on the body by

F(t) =
∫∫

S(t)

p·n dσ,

we have the compact limit of equation (9.31) (see also section 9.3)

4π p̄ ′(x, t) ≃ ∂2

∂t2

( ρ0V

Re(1 − Me cosϑe)

)
− ∇·

( Fe

Re(1 − Me cosϑe)

)
. (9.32)

Exercises

a) Evaluate the expressions for the acoustic field of the propeller of equation 9.26 without forward speed
(U = 0) and find the approximation for the far field. What can you tell about the typical lobes in the
radiation pattern?

b) Evaluate the expressions for the acoustic field of a movingpoint volume source (9.20) and point force
(9.24) for the windtunnel situation: a moving sourcexs = V t ex and a moving observex = a + V t ex.



A Integral laws and related results

A.1 Reynolds’ transport theorem

For an arbitrary single-valued scalar functionF = F(x, t) with continuous derivatives, and an ar-
bitrary control volumeV∗(t) with surfaceS∗(t), outward-pointing unit-normaln, and b the local
velocity of S∗, the following integral relation holds:

d

dt

∫∫∫

V∗

F dx =
∫∫∫

V∗

∂F

∂t
dx +

∫∫

S∗

F (b·n)dσ. (A.1)

This theorem, known as Reynolds’ Transport Theorem (see equation C.40), is used to translate integral
conservation laws into differential conservation laws. Conservation laws such as mass conservation
are understood most easily when they are applied to a so-called material volumeV = V(t) (enclosed
by the surfaceS = S(t)), which is a volume contained in the fluid and with no fluid entering or
leaving it. The concept arises when considering a fluid particle which is large in number of molecules,
but small compared to the macroscopic scales in the problem.For a certain –diffusion controlled–
period of time the particle keeps its identity, and can be labelled. In such a case we have for the fluid
velocity v at surfaceS

(b·n) = (v ·n).

Hence, for any property of the fluidF = F(x, t) with continuous derivatives, Reynold’s theorem
becomes:

d

dt

∫∫∫

V

F dx =
∫∫∫

V

∂F

∂t
dx +

∫∫

S

F (v ·n)dσ, (A.2)

A.2 Conservation laws

The conservation laws (mass, momentum, energy) in integralform are more general than in differ-
ential form because they can be applied to flows with discontinuous properties. We will give here a
summary of the basic formulae. A detailed derivation may be found in [168] or [231]. Consider a
material volumeV with surfaceS.

Mass conservation (F = ρ):

d

dt

∫∫∫

V

ρ dx = 0. (A.3)

Momentum conservation (F = ρvi ):

d

dt

∫∫∫

V

ρvi dx =
∫∫∫

V

fi dx −
∫∫

S

Pi j n j dσ. (A.4)
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Energy conservation (F = ρ(e+ 1
2v

2), v2 = vi vi ):

d

dt

∫∫∫

V

ρ(e+ 1
2v

2)dx =
∫∫∫

V

f i vi dx −
∫∫

S

Pi j v j ni dσ −
∫∫

S

qi ni dσ. (A.5)

Consider now an arbitrary control volumeV∗(t) with surfaceS∗(t) andb the local velocity ofS∗. By
applying (A.3) and (A.1) withF = ρ we find:

d

dt

∫∫∫

V∗

ρ dx =
∫∫∫

V∗

∂ρ

∂t
dx +

∫∫

S∗

ρbi ni dσ (A.6)

∫∫∫

V

∂ρ

∂t
dx = −

∫∫

S

ρvi ni dσ. (A.7)

At any given instant we may identifyV∗ with a given material volumeV . Hence (A.7) can be used to
eliminate the first integral on the right-hand side of (A.6) to obtain:

d

dt

∫∫∫

V∗

ρ dx =
∫∫

S∗

ρ(bi − vi )ni dσ. (A.8)

This can be applied to any volumeV∗ and in particular to a fixed volume (bi = 0). In a similar way
we have for the momentum:

d

dt

∫∫∫

V∗

ρvi dx +
∫∫

S∗

ρvi (v j − b j )n j dσ =
∫∫∫

V∗

fi dx −
∫∫

S∗

Pi j n j dσ (A.9)

and for the energy:

d

dt

∫∫∫

V∗

ρ(e+ 1
2v

2)dx +
∫∫

S∗

ρ(e+ 1
2v

2)(vi − bi )ni dσ

=
∫∫∫

V∗

fi vi dx −
∫∫

S∗

Pi j v j ni dσ −
∫∫

S∗

qi ni dσ. (A.10)

For the entropys we further find:

d

dt

∫∫∫

V∗

ρsdx +
∫∫

S∗

ρs(vi − bi )ni dσ +
∫∫

S∗

1

T
qi ni dσ > 0 (A.11)

where the equality is valid when the processes in the flow are reversible.

A.3 Normal vectors of level surfaces

A convenient way to describe a smooth surfaceS is by means of a suitable smooth functionS(x),
wherex = (x, y, z), chosen such that the level surfaceS(x) = 0 coincides withS. So S(x) = 0 if
and only if x ∈ S. Then∇Sat S = 0 is a normal ofS, provided∇S 6= 0. This is seen as follows.

Consider a pointx0 and a neighbouring pointx0 + h, both on the surfaceS. ExpandS(x0 + h) into a
Taylor series inh. We then obtain

S(x0 + h) = S(x0)+ h·∇S(x0)+ O(h2) ≃ h·∇S(x0) = 0.
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Since in the limit for|h| → 0 the vector∇S(x0) is normal to the tangent vectorh, it is normal to the
surfaceS. Furthermore, the unit normal vectornS = ∇S

|∇S| (at S = 0) is directed from theS< 0-side
to theS> 0-side. If we expandS(x) nearx0 ∈ S we haveS(x) = (x − x0)·∇S(x0)+ . . . , so, near
the surface,S(x) varies, to leading order, only in the coordinate normal to the surface.

A.4 Vector identities and theorems

Letψ,φ anda, b, c, d, v denote well-behaved scalar functions and vector fields.

a ·(b×c) = b·(c×a) = c·(a×b) (A.12a)

a×(b×c) = b(a·c)− c(a ·b) (A.12b)

(a×b)·(c×d) = (a·c)(b·d)− (a·d)(b·c) (A.12c)

∇(a ·b) = a·∇b + b·∇a + a×(∇×b)+ b×(∇×a) (A.12d)

a ·∇(b·c) = b·(a ·∇c)+ c·(a ·∇b) (A.12e)

∇ ·(a×b) = b·(∇×a)− a·(∇×b) (A.12f)

∇×(a×b) = a(∇·b)− b(∇·a)− a ·∇b + b·∇a (A.12g)

∇×(φa) = (∇φ)×a + φ(∇×a) (A.12h)

∇×(ψ∇φ) = (∇ψ)×(∇φ) (A.12i)

(v ·∇)v = ∇(1
2v

2)+ (∇×v)×v (A.12j)

Note that∇·(∇×v) = 0 and∇×(∇φ) = 0.
Let� denote a three-dimensional volume with volume element dV , and∂� a closed two-dimensional
surface bounding� with area element dS and associated unit outward vectorn. Then we have the
following integral relations.

Gauss’ divergence theorem:
∫

�

∇·v dV =
∮

∂�

v ·n dS (A.13a)
∫

�

∇φ dV =
∮

∂�

φ n dS (A.13b)
∫

�

∇×v dV =
∮

∂�

n×v dS (A.13c)

Green’s first identity:
∫

�

(
φ∇2ψ + ∇φ ·∇ψ)

dV =
∮

∂�

φ∇ψ ·n dS (A.13d)

Green’s second identity:
∫

�

(φ∇2ψ − ψ∇2φ)dV =
∮

∂�

(φ∇ψ − ψ∇φ)·n dS (A.13e)

Let S denote a smooth orientable surface, bounded by the positively oriented contourC with line
element dℓ. The normaln to S is defined according to the right-hand-screw rule applied toC. Then

Stokes’ theorem:
∫

S

(∇×v)·n dS =
∮

C

v ·dℓ (A.14a)
∫

S

n×∇φ dS =
∮

C

φdℓ (A.14b)



B Order of magnitudes: O and o.

In many cases it is necessary to indicate in a compact way the behaviour of some functionf (x), of
variable or parameterx, asx tends to some limit (finite or infinite). The usual way to do this is by
comparing with a simpler functiong(x). For this we have theorder symbols Oando. When f is
comparable with or dominated byg, we have

Definition B.1 f (x) = O(g(x)) as x→ a

means, that there is a constant C and an interval(a − h,a + h)
such that for all x∈ (a − h,a + h): | f (x)| 6 C|g(x)|.

Whenx ↓ a the interval is one-sided:(a,a + h); similarly for x ↑ a. For the behaviour at infinity we
have

Definition B.2 f (x) = O(g(x)) as x→ ∞
means, that there is a constant C and an interval(x0,∞)

such that for all x∈ (x0,∞): | f (x)| 6 C|g(x)|.

Similarly for x → −∞. When f is essentially smaller thang we have

Definition B.3 f (x) = o(g(x)) as x→ a

means, that for every positiveδ there is an interval(a − η,a + η)

such that for all x∈ (a − η,a + η): | f (x)| 6 δ|g(x)|.

with obvious generalizations tox ↓ a, x → ∞, etc.

Theorem B.1 If lim
f (x)

g(x)
exists, and is finite, then f(x) = O(g(x)).

Theorem B.2 If lim
f (x)

g(x)
= 0, then f(x) = o(g(x)).

Note that f = o(g) implies f = O(g), in which case the estimateO(g) is only an upper limit, and
not as informative as the “sharpO”, defined by

Definition B.4 f (x) = Os(g(x)) means: f(x) = O(g(x)) but f(x) 6= o(g(x).



C Fourier transforms and generalized functions

C.1 Fourier transforms

The linearity of sound waves allows us to build up the acoustic field as a sum of simpler solutions of
the wave equation. The most important example is the reduction into time harmonic components, or
Fourier analysis. This is attractive in several respects. Mathematically, because the equation simplifies
greatly if the coefficients in the wave equation are time-independent, and physically, because the
Fourier spectrum represents the harmonic perception of sound.

Consider a functionp(t) with the following (sufficient, not necessary) conditions [28, 98, 120, 170,
253].

– p is continuous, except for at most a finite number
of discontinuities wherep(t) = 1

2[p(t + 0)+ p(t − 0)].
– |p(t)| and|p(t)|2 are integrable.

Then theFourier transform p̂(ω) of p(t) is defined as the complex function

p̂(ω) = Fp(ω)
def== 1

2π

∫ ∞

−∞
p(t) e−iωt dt, (C.1)

while according to Fourier’s inversion theorem,p(t) is equal to the inverse Fourier transform

p(t) = F −1
p̂ (t)

def==
∫ ∞

−∞
p̂(ω) eiωt dω. (C.2)

The Fourier transform and its inverse are closely related. Apart from a sign change and a factor 2π , it
is the same operation:F −1

p̂ (t) = 2πF p̂(−t). It is important to note that slight differences with respect
to the factor 1/2π , frequencyω = 2π f , and the sign of the phase iωt are common in the literature.
Especially the prevailinge±iωt -convention shouldalwaysbe checked when referring or comparing to
other work.

Some examples of Fourier transforms are:

1

2π

∫ ∞

−∞
H (t) e−αt e−iωt dt = 1

2π(α + iω)
, (C.3a)

1

2π

∫ ∞

−∞

H (t)√
t

e−αt e−iωt dt = 1

2
√
π

√
α + iω

, (C.3b)

1

2π

∫ ∞

−∞

1

1 + t2
e−iωt dt = 1

2
e−|ω|, (C.3c)

1

2π

∫ ∞

−∞
e− 1

2 t2
e−iωt dt = 1√

2π
e− 1

2ω
2
, (C.3d)
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whereα > 0, the ordinary square root is taken, andH (t) denotes Heaviside’s unit step function
(C.29), which isH (t) = 1 for t > 0 andH (t) = 0 for t < 0.

Although it may seem to be no serious restriction to assume that a physically relevant signalp(t)
vanishes att = ±∞, we deal in practice with simplified models, yielding expressions forp(t) which
do not decay at infinity (e.g.a constant, sin(ω0t)). So we have on the one hand the “real”p(t) which
is Fourier-transformable, and on the other hand the approximate “model” p(t), which is not always
Fourier-transformable. Is there a way to approximate, or atleast get an idea of, the real Fourier trans-
form, using the approximatep(t)? One way is to assumep to vanish outside a certain large interval
[−N, N], as for example:

1

2π

∫ N

−N
e−iωt dt = sinωN

πω

1

2π

∫ N

−N
sin(ω0t) e−iωt dt = i

2π

(sin(ω0 + ω)N

ω0 + ω
− sin(ω0 − ω)N

ω0 − ω

)

We see a large maximum (∼ N/π ) depending onN near the dominating frequencies, and for the
other frequencies an oscillatory behaviour, also depending on N, that is difficult to interpret. This is
too vague and too arbitrary for general use. Therefore, a mathematically more consistent and satisfying
approach, not depending on the arbitrary choice of the interval size, will be introduced later in terms
of generalized functions.

Derivative

Since a derivative tot corresponds to a multiplication by iω as follows

d

dt
p(t) =

∫ ∞

−∞
iω p̂(ω) eiωt dω, (C.4)

the wave equation reduces to the Helmholtz equation

∇2ϕ − 1

c2

∂2ϕ

∂t2
= 0

F.T.=⇒ ∇2ϕ̂ + ω2

c2
ϕ̂ = 0. (C.5)

Further reduction is possible by Fourier transformation inspace variables.

More dimensions and Hankel transform

Fourier transforms inn space dimensions is usually denoted as

f̂ (k) = 1

(2π)n

∫

R
n

f (x)eik·x dx, f (x) =
∫

R
n

f̂ (k)e−ik·x dk. (C.6)

The Hankel transformHm(φ;ρ) of a functionφ(r ), given by

Hm(φ;ρ) = 1

2π

∫ ∞

0
φ(r )Jm(ρr )r dr (C.7)
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arises naturally when the 2D Fourier transform of a functionf (x) is re-written in polar coordinates.

f̂ (k) = 1

4π2

∫∫

R
2

f (x)eik·x dx = 1

4π2

∫ ∞

0

∫ 2π

0

∞∑

m=−∞
fm(r )e−imθ eiρr cos(θ−α) r dθdr

= 1

2π

∞∑

m=−∞

∫ ∞

0
i m fm(r )Jm(ρr )e−imα r dr =

∞∑

m=−∞
i m e−imα Hm( fm;ρ) (C.8)

wherex = (r cosϑ, r sinϑ), k = (ρ cosα, ρ sinα),

f (x) =
∞∑

m=−∞
fm(r )e−imϑ

and use is made of equation (D.63).

Multiplication and convolution

Fourier transformation is basically a linear operation andlittle can be said about other than linear
combinations of transformed functions. Only for multiplication with powers ofω we have

∫ ∞

−∞
(iω)n p̂(ω) eiωt dω = dn

dtn
p(t). (C.9)

For multiplication with a general̂q(ω) we find the convolution product ofp(t) andq(t), also known
as the Convolution Theorem

(p∗q)(t) = 1

2π

∫ ∞

−∞
p(t ′)q(t − t ′)dt ′ =

∫ ∞

−∞
p̂(ω)q̂(ω) eiωt dω. (C.10)

Note that in terms of generalized functions, to be introduced below, result (C.9) for the product with
ωn is a special case of the convolution theorem. A particular case is Parseval’s theorem, obtained by
taking1 q(t ′) = p∗(−t ′) andt = 0:

∫ ∞

−∞
| p̂(ω)|2 dω = 1

2π

∫ ∞

−∞
|p(t ′)|2 dt ′ (C.11)

which is in a suitable context a measure of the total energy ofa signalp(t).

Poisson’s summation formula

Intuitively, it is clear that the high frequencies relate tothe short time behaviour, and the low fre-
quencies to the long time behaviour. An elegant result due toPoisson is making this explicit.

∞∑

n=−∞
p(λn) = 2π

λ

∞∑

n=−∞
p̂
(2πn

λ

)
. (C.12)

Sampling with large steps (λ large) of p yields information about the low part of the spectrum and
vice versa.

1z∗ = x − i y denotes the complex conjugate ofz = x + i y.
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Reality condition

Although p̂(ω) is complex, the correspondingp(t) is in any physical context real. Therefore, not any
p̂(ω) can occur. A givenp̂(ω) corresponds to a real signalp(t) if it satisfies thereality condition

p̂(−ω) = p̂(ω)∗. (C.13)

This is just the consequence ofp(t), given by equation (C.2), being identically equal to its complex
conjugate.

C.1.1 Causality condition

The wave equation and the equation of motion do not impose a direction for the time, if dissipation
effects are neglected. The fact that the sound should be produced before we observe it (causality)
is not a property automatically implied by our equations, and it should be imposed to the solution.
The problem is simple for an initial value problem, where it suffices to require a zero field before the
switch-on time. However, when we consider a time-harmonic solution, or in general based on Fourier
analysis, it is not obvious any more because we assume the solution to be built up from stationary
oscillations. Stationary means that it exists forever and has always existed. In such a case causality,
i.e. the difference between cause and effect, is not readily clear. It is therefore of interest to investigate
conditions for the Fourier transform that guarantees a causal signal.

No physical process can exist for all time. A processp(t) that starts by some cause at some finite time
t = t0, while it vanishes beforet0, is calledcausal. The corresponding Fourier transform

p̂(ω) = 1

2π

∫ ∞

t0

p(t) e−iωt dt (C.14)

has the property that̂p(ω) is analytic2 in the lower complex half-space

Im(ω) < 0. (C.15)

So this is a necessary condition onp̂ for p to be causal. Examples are the exponentially decaying
functions, switched on att = 0, of equations (C.3a) and (C.3b). The Fourier transforms are non-
analytic in the upper half-plane (singularities atω = iα and a branch cut from iα up to i∞), but are
indeed analytic in the half-plane Im(ω) < α.

A sufficient condition3 is the followingcausality condition[170].

Theorem C.1 (Causality Condition)
If: (i) p̂(ω) is analytic inIm(ω) 6 0, (ii) | p̂(ω)|2 is integrable along the real axis, and (iii) there is a
real t0 such thateiωt0 p̂(ω) → 0 uniformly with regard toarg(ω) for |ω| → ∞ in the lower complex
half plane, then: p(t) is causal, and vanishes for t< t0.

2Infinitely often differentiable in the complex variableω.
3Cauchy’s theorem [106] for analytic functions says that iff is analytic in the inner-region of a closed contourC in the

complex plane, the integral off alongC is equal to zero:
∫
C f (z)dz = 0. Under the conditions stated in theorem (C.1)

(p.232) the functionp̂(ω) exp(iωt) is analytic in the lower-half complexω-plane. So its integral along the closed contour
consisting of the real interval[−R, R] and the semi-circleω = Reiθ , −π <θ < 0, is equal to zero.

Let R→∞ while t < 0 (= t0; the case of a generalt0 is similar).
The factoreiωt = ei Re(ω)t e− Im(ω)t decays exponentially fast to zero in the lower complexω-plane because− Im(ω)t < 0.
Hence, the contribution from the large semi-circle becomesexponentially small and vanishes. So the part along the realaxis
is also zero. However, this is justp(t), the inverse Fourier transform ofp̂.
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(Note that thelower complex half-space becomes theupperhalf-space if the opposite Fourier sign
convention is taken.) Consider as a typical example the inverse transform of equation (C.3a). When
t > 0 the exponential factoreiωt = ei Re(ω)t e− Im(ω)t decays in the upper half plane, so the contour can
be closed via the upper half plane, resulting in 2π i times the residue4 of the pole in iα. Whent < 0
the contour can be closed via the lower half plane, with zero result because the integrand is analytic
there: causal as it should be.

∫ ∞

−∞

eiωt

2π(α + iω)
dω =

{
e−αt if t > 0,

0 if t < 0.

It should be noted that in the limit of no damping (α ↓ 0) the singularity of (C.3a) and (C.3b) at
ω = iα moves toω = 0, which is on the real axis. This is a bit of a problem if we are interested in the
inverse transform5, because the realω-axis is just the contour of integration, and a pole there would
make the result of the integral ambiguous. The integral is tobe interpreted via a suitable deformation6

of the contour, but this is either over or under the singularity, and the results are not the same. So,
without further information this would leave us with two possible but different answers!

We do know, however, that this singularity comes from the complex upper half, so we have to indent
the contourunder the pole. This is exactly in agreement with the argument of causality: a causal
signal has a Fourier transform that is analytic in the lower complex half-plane, so it is safe to indent
the contour into the lower half-plane. The singularity is tobe considered to belong to the upper half-
plane.

This example is typical of the more general case of a signalp(t), described via the inverse transform of
its Fourier transform. If it occurs that, due to inherent idealizations of the model, this Fourier transform
has singularities along the realω axis, the causality condition tells us how to deal with this problem.
Consider the following example. The transformed harmonic-like signal

p̂(ω) = −ω0

2π

1

ω2 − ω2
0

has to be analytic in the lower half plane, so that the integration contour can be closed with zero result
if t < 0. Therefore, the contour must be indented in Im(ω)<0 aroundω = ω0 andω = −ω0 (figure
C.1). The result is then

p(t) = H (t) sin(ω0t).

A more subtle example, dealing with complicated manipulations in two complex planes, is the follow-
ing. Consider the fieldp(x, t), described via a Fourier integral for both thex- and thet-dependence.

p(x, t) =
∫ ∞

−∞

∫ ∞

−∞
p̃(k, ω) eiωt−ikx dkdω.

If p̃(k, ω), the time- and space-Fourier transformedp(x, t), is given by:

p̃(k, ω) = 1

4π2c2
0

1

k2 − ω2/c2
0

, (C.16)

4If z=z0 is a simple pole off (z), then the residue off at z0 is: Resf (z0) = limz→z0(z − z0) f (z).
5We ignore for the moment the problem that forα = 0 the original time signal is only Fourier transformable in the

context of generalized functions.
6The integral of an analytic function does not change with deformation of the integration contourwithin the region of

analyticity.



234 C Fourier transforms and generalized functions

real axis

imaginary
axis

• •
✒ ✑ ✒ ✑

ω0−ω0

ω ∈ C

Figure C.1 Integration contour in complexω-plane.

then the time-Fourier transformed̂p(x, ω), given by

p̂(x, ω) = 1

4π2c2
0

∫ ∞

−∞

e−ikx

k2 − ω2/c2
0

dk,

must be analytic in Im(ω)6 0. This means that the contour in the complexk-plane (the real axis)
must be indented up-aroundk = ω/c0 and down-aroundk = −ω/c0 (figure C.2). This is seen as

real axis

imaginary
axis

• •
✒ ✑

✓ ✏
✭✭

ω/c0

−ω/c0

k ∈ C

❄

✻

Figure C.2 Integration contour in complexk-plane. The arrows indicate the path of the poles±ω/c0 in thek-plane, when
ω moves in its complexω-plane from the negative imaginary half onto the real axis, as Im(ω)↑ 0.

follows. For any value of±ω/c0 not on thek-contour, the integral exists and can be differentiated to
ω any times, sop̂(x, ω) is analytic inω. However, when a polek = ω/c0 or k = −ω/c0 crosses
the contour,p̂(x, ω) jumps discontinuously by an amount of the residue at that pole, and therefore
p̂(x, ω) is not analytic for any±ω/c0 on the contour. So, here, the value of the integral may be either
the limit from above or from below. Since causality requiresthat p̂(x, ω) is the analytic continuation
from Im(ω)<0, we have to take the limit Im(ω)↑ 0, i.e. from below for the polek = ω/c0 and from
above for the polek = −ω/c0. Since a deformation of the integration contour for an analytic function
does not change the integral, these limits are most conveniently incorporated by a small deformation
of the contour, in a direction opposite to the limit (Fig. C.2). The result is

p̂(x, ω) = e−iω|x|/c0

4π i c0ω
. (C.17)
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As before, the poleω = 0 belongs to the upperω-half plane, and we have (c.f. (4.84))

p(x, t) = 1

4π i c0

∫ ∞

−∞

eiω(t−|x|/c0)

ω
dω = 1

2c0
H (t − |x|/c0). (C.18)

If we readx − y for x and t − τ for t , this is just the one-dimensional Green’s function. (See also
below).

C.1.2 Phase and group velocity

The phase velocityof a wave, given byeiωt−ikx (ω andk real), is the velocity for which the phase
ωt − kx = constant. This is

vphase=
ω

k
. (C.19)

Since a harmonic wave is an idealization, any wave is really apacket of waves, with frequencies and
wavenumbers related by a dispersion relationω = ω(k), and localized within a beginning and an end.
This packet does not necessarily travel with the phase speed, but with thegroup velocity. This should
also be the speed of the energy if an energy is defined.

To determine the group velocity for analmostharmonic waveφ, i.e. with a spatial Fourier represen-
tation concentrated near a single wave numberk0, we may approximate

φ(x, t) =
∫ ∞

−∞

f (k)

2ε
eiω(k)t−ikx dk ≃

∫ k0+ε

k0−ε

f (k)

2ε
eiω(k)t−ikx dk (C.20)

≃ f (k0)

2ε
eiω0t−ik0x

∫ k0+ε

k0−ε
ei(k−k0)ω

′
0t−i(k−k0)x dk = f (k0)

sinε(x − ω′
0t)

ε(x − ω′
0t)

eiω0t−ik0x

with ω0 = ω(k0), ω′
0 = d

dkω(k0). This shows thatφ is a wave packet centred aroundx −ω′
0t = 0, and

therefore travelling with the velocityω′
0. In other words,

vgroup =
(

dω

dk

)

k=k0

. (C.21)

C.2 Generalized functions

C.2.1 Introduction

In reality dissipative effects will cause any discontinuity to be smooth and any signal to decay fort →
∞, while any signal can be regarded to be absent fort → −∞. So the classical concept of (smooth)
functions is more than adequate to describe any property of areal sound field. This is, however, not
the case in most of our idealized models. For example, a pointsource of vanishing size but finite
source strength cannot be described by any ordinary function: it would be something that is zero
everywhere except in one point, where it is infinitely large.Another example is a non-decaying signal,
even as common as sin(ωt), which (classically) cannot be Fourier transformed: for some frequencies
the Fourier integral is not defined and for others just infinitely large. Still, the spectrum of sin(ωt),
consisting of two isolated peaks atω and−ω, is almost a prototype!
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Does that mean that our idealized models are wrong, or too restricted to be useful? No, not at all. Only
our mathematical apparatus of functions is too restricted.It is therefore convenient, even vital for a
lucid theory, to extend our meaning of function to the so-called generalized functions [120, 98, 253,
102, 62].

Technically speaking,generalized functionsor tempered distributions are not functions with a point-
wise definition. Their meaning is always defined in an integrated sense. There are many definitions
and terminology7 of generalized function spaces, mathematically not equivalent, but all containing
the elements most important in applications (delta function, Heaviside function, etc.). See for exam-
ple [62].

C.2.2 Formal definition

In the present context we will follow the definition that is intuitively most appealing: the limit8 in
a suitable function spaceG, such that derivatives and Fourier transforms are always defined. This
definition is analogous to the definition of real numbers by convergent sequences of rational numbers.
We start with the space of the real, smooth, and very fast decaying good functions

G
def==

{
f : R → R | f (k) ∈ C∞(−∞,∞) and (C.22)

f (k) = O(|x|−n) (|x| → ∞) for anyn, k > 0
}
.

where f (k)(x) = dk

dxk f (x). A sequence( fn) ⊂ G defines a generalized function if for everytestfunc-
tion g ∈ G the sequence of real numbers

lim
n→∞

∫ ∞

−∞
fn(x)g(x)dx (C.23)

exists as a real number (depending ong, of course).

Care is to be taken: although it is the limit of a sequence of ordinary functions, a generalized function
is not an ordinary function. In particular, it is not a function with a pointwise and explicit meaning.
It is only defined by the way its corresponding sequence( fn) acts under integration. Furthermore, a
generalized function may be defined by many equivalent regular sequences because it is only the limit
that counts.

On the other hand, generalized functions really extend our definition of ordinary functions. It can be
shown, that any reasonably behaving ordinary function is equivalent to a generalized function, and
may be identified to it. Therefore, we retain the symbolism for integration, and write for a generalized
function f defined by the sequence( fn) and anyg ∈ G

∫ ∞

−∞
f (x)g(x)dx

def== lim
n→∞

∫ ∞

−∞
fn(x)g(x)dx. (C.24)

7For example: generalized functions and tempered distributions when Fourier transformation is guaranteed, weak func-
tions and distributions when derivatives are guaranteed.

8Technically termed: closure of. . .
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C.2.3 The delta function and other examples

A very important generalized function is the delta functionδ(x), defined (for example) by

δn(x) =
( n

π

)1/2
e−nx2

, or δn(x) = sinnx

πx
e−x2/n2

. (C.25)

In the limit for n → ∞ all contributions in the integral except from nearx = 0 are suppressed, such
that

∫ ∞

−∞
δ(x)g(x)dx = g(0). (C.26)

The second expression of (C.25) illustrates that it is not necessary for a representation ofδ(x) to
vanish pointwise outsidex = 0. Highly oscillatory behaviour outside the origin may be sufficient for
the integral to vanish.

A useful identity is

δ(ax) = 1

|a|δ(x), (C.27)

which at the same time shows that a delta function is not necessarily dimensionless, as it has the
inverse dimension of its argument (or put in another way:δ(x)dx is dimensionless). A generalization
of this identity yields, for a sufficiently smooth functionh with h′ = dh

dx 6= 0 at any zero ofh, the
following result:

∫ ∞

−∞
δ(h(x))g(x)dx =

∑

i

g(xi )

|h′(xi )|
, h(xi ) = 0 (C.28)

where the summation runs over all the zeros ofh. This result may be derived from the fact thatδ(h(x))
is locally, near a zeroxi , equivalent toδ(h′(xi )(x − xi )), so thatδ(h(x)) =

∑
δ(x − xi )/|h′(xi )|.

The sequence

Hn(x) =
(

1
2 tanh(nx)+ 1

2

)
e−x2/n2

defines the Heaviside stepfunctionH (x). If the Heaviside generalized function is used as an ordinary
function it has the pointwise definition

H (x) =





0 (x < 0)
1
2 (x = 0)

1 (x > 0)

(C.29)

Any C∞-function f , with algebraic behaviour for|x| → ∞ (for example, polynomials), defines a
generalized function (also calledf ) via the sequencefn(x) = f (x)exp(−x2/n2), since for any good
g

lim
n→∞

∫ ∞

−∞
fn(x)g(x)dx =

∫ ∞

−∞
f (x)g(x)dx.
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Any C∞–functionh with algebraic behaviour for|x| → ∞ multiplied by a good function is a good
function, so that the product of such ah with a generalized functionf is well-defined. For example,
the equation

x f (x) = 0

has a meaning in generalized sense, with the solution

f (x) = Cδ(x) (C.30)

which is unique, up to the multiplicative constantC.

C.2.4 Derivatives

Every generalized functionf defined by( fn) has a derivativef ′ defined by( f ′
n), and also satisfying

∫ ∞

−∞
f ′(x)g(x)dx = −

∫ ∞

−∞
f (x)g′(x)dx. (C.31)

Although generalized functions do not have a pointwise meaning, they are not arbitrarilywild. We
have the general form given by the following theorem ([98, p.84]).

Theorem C.2 (General representation)
A necessary and sufficient condition for f(x) to be a generalized function, is that there exist a contin-
uous function h(x) and positive numbers r and k such that f(x) is a generalized r-th order derivative
of h(x)

f (x) = dr

dxr
h(x)

while h(x) has the property that

h(x)

(1 + x2)k/2

is bounded onR.

For example:

sign(x) = 1 + 2H (x) = d

dx
|x|, δ(x) = 1

2

d2

dx2
|x|.

By differentiation of the equationxδ(x) = 0 we obtain for then-th derivativeδ(n)(x) the identity

xnδ(n)(x) = (−1)nn!δ(x).
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C.2.5 Fourier transforms

Every generalized functionf defined by( fn) has a Fourier transform̂f defined by( f̂n) which is itself
a generalized function. Indeed, since the Fourier transform ĝ of a good functiong is a good function,
we have using the convolution theorem a well-defined

∫ ∞

−∞
f̂ (ω)ĝ(ω)dω = lim

n→∞

∫ ∞

−∞
f̂n(ω)ĝ(ω)dω = 1

2π
lim

n→∞

∫ ∞

−∞
fn(x)g(−x)dx

= 1

2π

∫ ∞

−∞
f (x)g(−x)dx. (C.32)

Examples of Fourier transforms are

1

2π

∫ ∞

−∞
δ(x) e−iωx dx = 1

2π
1

2π

∫ ∞

−∞
e−iωx dx = δ(ω)

1

2π

∫ ∞

−∞
cos(ω0x) e−iωx dx = 1

2δ(ω − ω0)+ 1
2δ(ω + ω0),

1

2π

∫ ∞

−∞
H (x) e−iωx dx = P.V.

( 1

π iω

)
+ 1

2δ(ω) = 1

2π i (ω − i0)

(C.33)

where P.V. denotes “principal value”, which means that under the integration sign the singularity is
to be excluded in the following symmetric way:P.V.

∫ ∞
−∞ = limε↓0

∫ −ε
−∞ +

∫ ∞
ε

. The notationω − i0
means that the poleω = 0 is assumed to belong to the complex upper half plane, similar to (C.17).

If −i cotg(ω) is a causal Fourier transform, the polesω = nπ belong to the complex upper half
plane. In order to make sure that we approach the poles from the right side, we write

−i cotg(ω) = 1 + 2
e−2iω

1 − e−2iω
= 1 + 2 lim

ε↓0

∞∑

n=1

e−2inω−2εn = 1 + 2
∞∑

n=1

e−2inω,

and obtain for the back transform to time domain

∫ ∞

−∞
−i cotg(ω) eiωt dω = 2πδ(t)+ 4π

∞∑

n=1

δ(t − 2n). (C.34)

C.2.6 Products

Products of generalized functions are in general not defined. For example, depending on the defining
sequences ofδ(x) andH (x), we may getδ(x)H (x) = Cδ(x) for any finiteC. Therefore, integration
along a semi-infinite or finite interval, which is to be interpreted as a multiplication of the integrand
with suitable Heaviside functions, is not always defined.
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Two generalized functions may be multiplied only when either of the two is locally equivalent to an
ordinary function, or as a direct product when they depend ondifferent variables. Some results are

δ(x)H (x + 1) = δ(x),
∫ x0

−x0

δ(x) f (x)dx =
∫ ∞

−∞
δ(x) f (x)dx if x0 > 0,

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(t) f (x, t)dt dx =

∫ ∞

−∞
δ(x)




∫ ∞

−∞
δ(t) f (x, t)dt


dx,

∫ ∞

−∞
δ(t − τ)δ(τ)dτ = δ(t).

C.2.7 Higher dimensions and Green’s functions

A generalization to several dimensions is possible [207], and many results are fairly straightforward
after an obvious introduction of multi-dimensional good functions. For example, we may define a new
generalized functionf (x)g(y) in R

2 by the direct product off (x) andg(y). For the delta function in
R

3 this leads to

δ(x) = δ(x)δ(y)δ(z)

Care is required near the singular points of a coordinate transformation. For example, providedδ′(r )
is considered to be an odd function inr , the 2-D delta functionδ(x − x0) may be written in polar
coordinates ([98, p.306]) as

δ(x − x0) =





δ(r − r0)

r0

∞∑

n=−∞
δ(ϑ − ϑ0 − 2πn) if r0 6= 0,

−δ
′(r )

π
(r > 0) if r0 = 0.

(C.35)

Relevant in the theory of 2-D incompressible potential flow are the following identities. The line
source is a delta function source term in the mass equation:

v = 1

r
(cosθ, sinθ,0) satisfies ∇·v = 2πδ(x, y). (C.36a)

The line vortex is a delta function type vorticity field:

v = 1

r
(− sinθ, cosθ,0) satisfies ∇×v = 2πδ(x, y)ez. (C.36b)

A most important application of (more-dimensional) delta functions in the present context is that they
allow a very direct definition of Green’s functions. Classically, the Green’s functionG is defined in
a rather complicated way, but in the context of generalized functions it appears to be just the field
resulting from a delta function source. Consider for example the one dimensional wave equation (c.f.
(4.81))

∂2G

∂t2
− c2

0
∂2G

∂x2
= δ(x − y)δ(t − τ).
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After Fourier transformation tot andx we obtain

−ω2G̃ + c2
0k2G̃ = 1

4π2
e−iωτ eiky

which yields equation (C.16) (apart from the amplitude) andthen, after the described transformation
back into space and time domain, the Green’s function given by expression (C.18).

See Appendix E for a table of free field Green’s functions in 1-,2-, and 3-D, for the Laplace,
Helmholtz, wave, and heat equations.

C.2.8 Surface distributions

Of particular interest are the so-called surface distributionsδ6(x) defined by the surface integral
∫

R
3
δ6(x)φ(x)dx =

∫

6
φ(x)dσ (C.37)

whereφ is an arbitrary test function, and6 denotes a smooth surface inR3 with surface element dσ .
In practice, a surface is often defined by an equationS(x) = 0 (section A.3). Near a pointx0 on the
surface,S(x) varies to leading order only in the direction of the surface normaleν = ∇S0/|∇S0|,

S(x) = (x − x0)·∇S0 + · · · ≃ |∇S0|ν,

whereν = (x − x0)·eν andS0 indicates evaluation atx0. Sinceδ6 is locally, after a suitable rotation
and transformation of coordinates, equivalent to a one-dimensional delta function inν, the coordinate
normal to the surface, we have

δ6(x) = δ(ν) = |∇S0|δ(|∇S0|ν) = |∇S0|δ(S). (C.38)

Note that this result is in fact a generalization of formula (C.28). For sufficiently smoothh we have
∫

R
3
δ(h(x))g(x)dx =

∑

i

∫

Si

g(x)
|∇h(x)| dσ (C.39)

where the summation runs over all the surfacesSi defined by the equationh(x) = 0.

This concept of surface distributions has numerous important applications. For example, integral the-
orems like that of Gauss or Green [102], and Reynolds’ Transport Theorem (section A.1) may be
derived very elegantly and efficiently. We show it for Reynolds’ Theorem and leave Gauss’ theorem
as an exercise.

Consider a finite volumeV = V(t) with sufficiently smooth surfaceS = S(t), moving continuously
in space. Introduce a (smooth) functionf (x, t) such that

f (x, t)





> 0 if x ∈ V(t),

= 0 if x ∈ S(t),

< 0 if x 6∈ V(t),

but otherwise arbitrary. Since∇ f | f =0 is directed normal inwards intoV, the outward normalnS of S

is given by (section A.3)

nS(x, t) = − ∇ f

|∇ f |

∣∣∣∣
f =0

.
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Let the surfaceS(t) be parametrized in time and space, by coordinates(t;λ,µ). Like the auxiliary
function f , this parametrization is not unique, but that will appear tobe of no importance. A surface
point xS(t) ∈ S (considerλ andµ fixed), moving with velocityb = .

xS, remains at the surface for all
time, so f (xS(t), t) = 0 for all t , and therefore also its time-derivative, and so

∂ f

∂t
= − .

xS ·∇ f = |∇ f | b·nS.

The variation of a qualityF(x, t), integrated overV, is now given by

d

dt

∫

V
F(x, t)dx = d

dt

∫

R
3

H ( f )F(x, t)dx

=
∫

R
3


H ( f )

∂

∂t
F(x, t)+ δ( f )

∂ f

∂t
F(x, t)


dx

=
∫

V

∂

∂t
F(x, t)dx +

∫

S
(b·nS) F(x, t)dσ. (C.40)

whereH denotes the Heaviside function, and use is made of equation (C.38). Note that, although in
generalb is not unique, its normal componentb·nS is unique, in particular it is independent of the
selected functionf and parametrization.

C.3 Fourier series

A Fourier series (in complex form) is the following functionf (x), defined by the infinite sequence
{cn}∞

n=−∞,

f (x) =
∞∑

n=−∞
cn e2π inx/L . (C.41)

If the series converges,f is periodic with periodL. For sufficiently well-behaved functionsf the
coefficients are given by

cn = 1

L

∫ L

0
f (x)e−2π inx/L dx. (C.42)

Classically, the Fourier series precedes both the Fourier transform and generalized functions. The
classic theory is, however, rather complicated. On the other hand, Fourier series appear to have a
much simpler structure when they are embedded in the generalized functions, in the following sense.

Fourier series are equivalent to the Fourier transform of periodic generalized functions.

A generalized functionf is said to be periodic, with periodL, if a coordinate shift

f (x) = f (x + L)

yields the same generalized function.

RienstraHirschberg 8 Aug 2016, 20:00



C.3 Fourier series 243

We have the following couple of theorems ([120, 253]), telling us when a Fourier series is a general-
ized function, andvice versa.

Theorem C.3 (From Fourier series to generalized function)
A Fourier series (C.41) converges9 to a generalized function if and only if the coefficients cn are of
slow growth. This means, that there is a constant N such that cn = O(|n|N) for |n| → ∞. The
generalized function it defines is periodic and unique.

Theorem C.4 (From generalized function to Fourier series)
The most general periodic generalized function is just the Fourier series: any periodic generalized
function can be written as a Fourier series with Fourier coefficients cn, while the Fourier transform is
a periodic array of delta functions:

f (x) =
∞∑

n=−∞
cn e2π inx/L, (C.43a)

f̂ (ω) =
∞∑

n=−∞
cnδ

(
ω − 2πn

L

)
, cn = 1

L

∫ ∞

−∞
f (x)U

( x

L

)
e−2π inx/L dx. (C.43b)

Any Fourier series can be differentiated and integrated term by term.
U ∈ C∞ is an auxiliary smoothing function with the following properties:

U (x) = 0 for |x| > 1, U (x)+ U (x − 1) = 1 for 06 x 6 1,

but otherwise arbitrary.U is necessary because a generalized function may not be integrable along a
finite interval (for example, when singularities coincide with the end points).

If we are dealing with a generalized function defined by aperiodic absolutely-integrable ordinary
function, thenU is not necessary, and the expression forcn simplifies to the classical form (C.42).
Although in such a case the Fourier series may converge in ordinary sense, this is not guaranteed, and
the Fourier series is still to be interpreted in a generalized sense.

Examples are the “row of delta’s”

∞∑

n=−∞
δ(x − n) =

∞∑

n=−∞
e2π inx = 1 + 2

∞∑

n=1

cos(2πnx), (C.44a)

with its Fourier transform

1

2π

∞∑

n=−∞
e−iωn =

∞∑

n=−∞
δ(ω − 2πn), (C.44b)

9As the generalized limit of, for example,fm(x) = exp(−x2/m2)
∑m

n=m cn e2π inx/L .
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and itsN-th derivative

∞∑

n=−∞
δ(N)(x − n) =

∞∑

n=−∞
(2π i n)N e2π inx . (C.44c)

Furthermore, the sawtooth or N-wave with simple discontinuities atx = m (m ∈ Z)

[
1
2 − x

]
1

=
∞∑

n=−∞

′ e2π inx

2π i n
=

∞∑

n=1

sin(2πnx)

πn
, (C.44d)

and a sequence of parabola’s, continuous atx = m (m ∈ Z)

1
2

[
x − x2 − 1

6

]
1

=
∞∑

n=−∞

′ e2π inx

(2π i n)2
= −

∞∑

n=1

cos(2πnx)

2π2n2
. (C.44e)

∑′ denotes a sum excludingn = 0, [ · ]L denotes theL-periodic continuation of a functionf (x)
defined on the interval[0, L]:

[
f (x)

]
L

=
∞∑

n=−∞
B( x

L − n) f (x − nL),

andB denotes the unit block function

B(x) = H (x)− H (x − 1) ≡
{

1 if 0 ≤ x ≤ 1,

0 otherwise.

Apart from an additionalx and 1
2x2, (C.44d) is the first integral and (C.44e) is the second integral of

the row of delta’s of (C.44a). In general it is true that any generalized Fourier series, with coefficients
cn = O(|n|N)(|n| → ∞), is the(N + 2)-th derivative of a continuous function. This shows that there
is a limit to the seriousness of the singularities that thesefunctions can have [120].

Related examples of some interest are:

− log |2 sinπx| =
∞∑

n=1

cos(2πnx)

n
, (C.45a)

1
2 cotg(πx) =

∞∑

n=1

sin(2πnx), (C.45b)
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−1
2 tan(πx) =

∞∑

n=1

(−1)n sin(2πnx), (C.45c)

| sinx| = 2

π
− 1

π

∞∑

n=1

cos(2nx)

n2 − 1
4

. (C.45d)

sinx| sinx| = − 1

π

∞∑

n=0

sin(2n + 1)x

(n2 − 1
4)(n + 3

2)
(C.45e)

Until now we have considered only generalized Fourier series because of their more transparent prop-
erties. We have to be very cautious, however, when dealing inpractice with divergent series. No
attempt must be made to sum such a series numerically term by term! Numerical evaluation is only
possible for classically convergent Fourier series. Some of the most important results are the follow-
ing.

For a given functionf we have the following theorem.

Theorem C.5 (Existence of ordinary Fourier series)
If a function f is piecewise smooth10 on the interval[0, L], such that f(x) = 1

2[ f (x+) + f (x−)],
then the Fourier series of f converges for every x to the L-periodic continuation of f .

For a given Fourier series we have the following theorem.

Theorem C.6 (Continuity of ordinary Fourier series)
If a Fourier series is absolutely convergent,i.e.

∑
|cn| < ∞, then it converges absolutely and uni-

formly to a continuous periodic function f , such that cn are just f ’s Fourier coefficients.

An example of the first theorem is (C.44d). Note that the similar looking (C.45a) just falls outside this
category. Examples of the second are (C.44e) and (C.45d).

C.3.1 The Fast Fourier Transform

The standard numerical implementation of the calculation of a Fourier transform or Fourier coefficient
is theFast Fourier Transformalgorithm [33]. This algorithm calculates for a given complex array
{x j }, j = 0, . . . , N−1 very efficiently (especially ifN is a power of 2) the Discrete Fourier Transform

Xk =
N−1∑

j =0

x j exp(−2π i jk/N), k = 0, . . . , N − 1. (C.46)

10 f is piecewise continuous on[0, L] if there are a finite number of open subintervals 0< x < x1, . . . , xN−1 < x < L
on which f is continuous, while the limitsf (0+), f (x1±), . . . , f (L−) exist. f is piecewise smooth if bothf and f ′ are
piecewise continuous.
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A Fourier coefficient (C.42) is calculated by discretizing the integral

cn = 1

L

∫ L

0
f (x)e−2π inx/L dx ≃ 1

N

N−1∑

j =0

f ( j L/N)exp(−2π i jn/N)

and identifyingx j = f ( j L/N) andcn = Xn/N.

A Fourier transform (C.1) is determined as follows. Restrict the infinite integral to a large enough
finite interval [−1

2T, 1
2T], and consider only the valuesω = 2πk/T , for k = −1

2 N, . . . , 1
2 N − 1.

Then we have

p̂(ω) = 1

2π

∫ ∞

−∞
p(t) e−iωt dt ≃ 1

2π

∫ 1
2 T

− 1
2T

p(t) e−iωt dt

= 1

2π

∫ 1
2 T

0
p(t) e−iωt dt + 1

2π

∫ T

1
2 T

p(t − T) e−iωt dt.

If we finally discretize the integrals

p̂
(2πk

T

)
≃ T

2πN

1
2 N−1∑

j =0

p( j T/N)exp(−2π i jk/N)

+ T

2πN

N−1∑

j = 1
2 N

p( j T/N − T)exp(−2π i jk/N).

we obtain the required result by identifying

x j =
{

p( j T/N) if 0 ≤ j ≤ 1
2 N − 1,

p( j T/N − T) if 1
2 N ≤ j ≤ N − 1,

p̂
(2πk

T

)
= T

2πN

{
Xk+N if − 1

2 N ≤ k ≤ −1,

Xk if 0 ≤ k ≤ 1
2 N − 1.
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D Bessel functions

The Bessel equation for integerm

y′′ + 1

x
y′ +

(
1 − m2

x2

)
y = 0 (D.1)

has two independent solutions [244, 1, 57, 71, 125]. Standardized forms are

Jm(x), m-th order ordinary Bessel function of the 1st kind, (D.2a)

Ym(x), m-th order ordinary Bessel function of the 2nd kind. (D.2b)

Jm is regular inx = 0; Ym is singular inx = 0 with branch cut alongx < 0; for m > 0 is:

Jm(x) =
∞∑

k=0

(−1)k(1
2x)m+2k

k!(m + k)! (D.3)

Ym(x) = − 1

π

m−1∑

k=0

(m − k − 1)!
k! (1

2x)−m+2k + 2

π
log(1

2x)Jm(x)

− 1

π

∞∑

k=0

{
ψ(k + 1)+ ψ(m + k + 1)

} (−1)k(1
2x)m+2k

k!(m + k)!

with ψ(1) = −γ, ψ(n) = −γ +
n−1∑

k=1

1

k
, γ = 0.577215664901532

Jm(−x) = (−1)mJm(x), (D.4)

Ym(−x) =




(−1)m

(
Ym(x)− 2i Jm(x)

)
, 0<arg(x)6π,

(−1)m
(
Ym(x)+ 2i Jm(x)

)
, −π<arg(x)60.

(D.5)

J−m(x) = (−1)mJm(x), (D.6)

Y−m(x) = (−1)mYm(x). (D.7)
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Other common independent sets of solutions are the Hankel functions

H (1)
m (x) = Jm(x)+ i Ym(x), (D.8a)

H (2)
m (x) = Jm(x)− i Ym(x). (D.8b)

Related are the modified Bessel functions of the 1st and 2nd kind

Im(x) = i −mJm(i x), (D.9a)

Km(x) =
{

1
2π i m+1H (1)

m (i x) , −π<arg(x)61
2π,

1
2π i m+1H (1)

m (i x)− 2π i (−1)mIm(x) , 1
2π <arg(x)6 π,

(D.9b)

=
{

1
2π(−i )m+1H (2)

m (−i x) , −1
2π<arg(x)6 π,

1
2π(−i )m+1H (2)

m (−i x)+ 2π i (−1)mIm(x), −π <arg(x)6−1
2π,

(D.9c)

satisfying

y′′ + 1

x
y′ −

(
1 + m2

x2

)
y = 0 (D.10)

Im is regular inx = 0, Km is singular inx = 0 with branch cut alongx < 0.

Im(−x) = (−1)mIm(x) (D.11)

Km(−x) =
{
(−1)mKm(x)+ π i Im(x), 0<arg(x)6 π,

(−1)mKm(x)− π i Im(x), −π<arg(x)60,
(D.12)

I−m(x) = Im(x), (D.13)

K−m(x) = Km(x). (D.14)

Wronskians (with prime′ denoting derivative):

Jm(x)Y′
m(x)− Ym(x)J ′

m(x) = 2/πx (D.15)

H (1)
m (x)H (2)

m
′(x)− H (2)

m (x)H (1)
m

′(x) = −4i/πx (D.16)

Im(x)K ′
m(x)− Km(x)I ′

m(x) = −1/x (D.17)

Jm(x)Ym+1(x)− Ym(x)Jm+1(x) = −2/πx (D.18)

Im(x)Km+1(x)+ Km(x)Im+1(x) = 1/x (D.19)
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Jm(x) and J ′
m(x) have an infinite number of real zeros, all of which are simple with the possible

exception ofx = 0. Theµ-th positive (6= 0) zeros are denoted byjmµ and j ′
mµ respectively, except

thatx = 0 is counted as the first zero ofJ ′
0: j ′

01 = 0. It follows that j ′
0,µ = j1,µ−1.

Asymptotically the zeros behave like

jmµ ≃ (µ+ 1
2m − 1

4)π + O(µ−1) (µ → ∞) (D.20a)

j ′
mµ ≃ (µ+ 1

2m − 3
4)π + O(µ−1) (µ → ∞) (D.20b)

j ′
m1 ≃ m + 0.8086m1/3 + O(m−1/3) (m → ∞). (D.20c)

Not only asymptotically but in general it is true thatj ′
m1 > m.

Asymptotic behaviour forx → 0:

Jm(x) ≃ (1
2x)m/m! , (D.21)

Y0(x) ≃ 2 log(x)/π, (D.22)

Ym(x) ≃ −(m − 1)! (1
2x)−m/π, (D.23)

H (1,2)
0 (x) ≃ ±2i log(x)/π, (D.24)

H (1,2)
m (x) ≃ ∓ i (m − 1)!(1

2x)−m/π, (D.25)

Im(x) ≃ (1
2x)m/m! , (D.26)

K0(x) ≃ − log(x), (D.27)

Km(x) ≃ 1
2(m − 1)! (1

2x)−m, (D.28)

Asymptotic behaviour for|x| → ∞ andm fixed:

Jm(x) ≃ (1
2πx)−

1
2 cos(x − 1

2mπ − 1
4π), (D.29)

Ym(x) ≃ (1
2πx)−

1
2 sin(x − 1

2mπ − 1
4π), (D.30)

H (1,2)
m (x) ≃ (1

2πx)−
1
2 exp[± i (x − 1

2mπ − 1
4π)], (D.31)

Im(x) ≃ (2πx)−
1
2 ex, (| arg(x)| < 1

2π), (D.32)

Km(x) ≃ (2x/π)−
1
2 e−x, (| arg(x)| < 3

2π). (D.33)
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Asymptotic behaviour for|x| → ∞ andm2/x fixed:

Jm(x) ≃ (1
2πx)−

1
2 cos

(
x − 1

2πm − 1
4π + 1

2(m
2 − 1

4)x
−1

)
, (D.34)

Ym(x) ≃ (1
2πx)−

1
2 sin

(
x − 1

2πm − 1
4π + 1

2(m
2 − 1

4)x
−1), (D.35)

H (1,2)
m (x) ≃ (1

2πx)−
1
2 exp[± i (x − 1

2mπ − 1
4π + 1

2(m
2 − 1

4)x
−1)], (D.36)

with absolute accuracy of <1% alongx > 2+ 2m+ 1
13m1.5 for any 06 m 6 100. The corresponding

approximating zero’s ofJm andJ ′
m (and similarly forYm) are easily found to be

jmµ ≃ 1
2(µ+ 1

2m − 1
4)π + 1

2

√
(µ+ 1

2m − 1
4)

2π2 − 2m2 + 1
2, (D.37)

j ′
mµ ≃ 1

2(µ+ 1
2m − 3

4)π + 1
2

√
(µ+ 1

2m − 3
4)

2π2 − 2m2 + 1
2. (D.38)

Asymptotic behaviour form → ∞:

Jm(x) ≃ (2πm)−
1
2 (ex/2m)m, (D.39)

Jm(m) ≃ 2
1
3/(3

2
3Ŵ(2

3)m
1
3 ), (D.40)

Jm(mx) ≃
{
(1

2πmζ+)
− 1

2 cos(mζ+ − marctanζ+ − 1
4π),

(2πmζ−)
− 1

2 exp(mζ− − martanhζ−),
(D.41)

Ym(x) ≃ −(1
2πm)−

1
2 (ex/2m)−m, (D.42)

Ym(m) ≃ −2
1
3/(3

1
6Ŵ(2

3)m
1
3 ), (D.43)

Ym(mx) ≃
{
(1

2πmζ+)
− 1

2 sin(mζ+ − marctanζ+ − 1
4π),

−(1
2πmζ−)

− 1
2 exp(−mζ− + martanhζ−),

(D.44)

whereζ+ =
√

x2 − 1, valid forx > 1, andζ− =
√

1 − x2, valid for 0< x < 1.

For any continuousf , such that the integral exists, andα > 0, we have

lim
m→∞

∫ ∞

0
m Jm(mαx) f (x)dx = α−1 f

(
α−1

)
. (D.45)
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Important recurrence relations are

Jm−1(x)+ Jm+1(x) = 2m
x Jm(x), (D.46)

Jm−1(x)− Jm+1(x) = 2J ′
m(x), (D.47)

Ym−1(x)+ Ym+1(x) = 2m
x Ym(x), (D.48)

Ym−1(x)− Ym+1(x) = 2Y′
m(x), (D.49)

Im−1(x)+ Im+1(x) = 2I ′
m(x), (D.50)

Im−1(x)− Im+1(x) = 2m
x Im(x), (D.51)

Km−1(x)+ Km+1(x) = −2K ′
m(x), (D.52)

Km−1(x)− Km+1(x) = −2m
x Km(x). (D.53)

In particular:

J ′
0(x) = −J1(x), Y′

0(x) = −Y1(x),

I ′
0(x) = I1(x), K ′

0(x) = −K1(x),
(
xn+1 Jn+1(x)

)′ = xn+1 Jn(x),
(
xn+1 In+1(x)

)′ = xn+1 In(x),(
xn+1Yn+1(x)

)′ = xn+1Yn(x),
(
xn+1Kn+1(x)

)′ = −xn+1Kn(x).

(D.54)

Some useful relations involving series are

eix cosϑ =
∞∑

m=−∞
i mJm(x)eimϑ, (D.55)

J0(k R) =
∞∑

m=−∞
eim(ϑ−ϕ) Jm(kr)Jm(k̺), (D.56)

where: R2 = r 2 + ̺2 − 2r̺ cos(ϑ − ϕ),

1

r0
δ(r − r0) =





∞∑

µ=1

Jm( j ′
mµr0)Jm( j ′

mµr )
1
2(1 − m2/ j ′2

mµ)Jm( j ′
mµ)

2
(0< r, r0 < 1),

∞∑

µ=1

Jm( jmµr0)Jm( jmµr )
1
2 J ′

m( jmµ)2
(0< r, r0 < 1).

(D.57)
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252 D Bessel functions

Relations involving integrals:∫
xCm(αx)C̃m(βx)dx = x

α2 − β2

{
βCm(αx)C̃

′
m(βx) − αC ′

m(αx)C̃m(βx)
}
, (D.58)

∫
xCm(αx)C̃m(αx)dx = 1

2(x
2 − m2

α2 )Cm(αx)C̃m(αx)+ 1
2x2C ′

m(αx)C̃
′
m(αx) , (D.59)

whereCm, C̃m is any linear combination ofJm,Ym, H (1)
m andH (2)

m ,

∫
xDm(αx)D̃m(βx)dx = −x

α2 − β2

{
βDm(αx)D̃

′
m(βx) − αD ′

m(αx)D̃m(βx)
}
, (D.60)

∫
xDm(αx)D̃m(αx)dx = 1

2(x
2 + m2

α2 )Dm(αx)D̃m(αx)− 1
2x2D ′

m(αx)D̃
′
m(αx), (D.61)

whereDm, D̃m is any linear combination ofIm andKm,

∫ π

0
eix cosϑ cos(mϑ)dϑ = 1

2

∫ π

−π
eix cosϑ+imϑ dϑ = π i mJm(x), (D.62)

1
2π

∫ π

−π
e−imϑ+ix sinϑ dϑ = Jm(x), (D.63)

∫ ∞

0

α

γ
e−iγ |z| J0(̺α)dα = e−ikr

−i r
,

{
γ=

√
k2 − α2, Im(γ )60,

r =
√
̺2 + z2, k>0,

(D.64)

∫ ∞

−∞
e±ix coshy dy = ±π i H (1,2)

0 (x), (D.65)

∫ ∞

−∞

1

γ
e−iαx−iγ |y| dα = πH (2)

0 (kr),

{
γ=

√
k2 − α2, Im(γ )60,

r =
√

x2 + y2, k>0,
(D.66)

∫∫ ∞

−∞

1

γ
e−iαx−iβy−iγ |z| dαdβ = 2π

e−ikr

−i r
,





γ=
√

k2 − α2 − β2,
Im(γ )60, k>0,
r =

√
x2 + y2 + z2,

(D.67)

∫ ∞−i0

−∞−i0
H (2)

0 (ωr )eiωt dω = 4i
H (t − r )√

t2 − r 2
, (D.68)

∫ ∞

0

x J0(xr)

x2 − k2
dx =

{
1
2π i H (1)

0 (kr) (Im(k) > 0),

−1
2π i H (2)

0 (kr) (Im(k) < 0),
(D.69)

∫ ∞

0
xn Jn(x)e−ax dx = 1 · 3 · 5 · · · (2n − 1)

(1 + a2)n+ 1
2

,

∫ ∞

0
xn Jn−1(x)e−ax dx = 1 · 3 · 5 · · · (2n − 1)

(1 + a2)n+ 1
2

a,
(a > 0) (D.70)
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∫ ∞

0
x Jm(αx)Jm(βx)dx = δ(α − β)√

αβ
(α, β > 0), (D.71)

∫ ∞

0
xYm(αx)Jm(βx)dx = 2

π

1

α2 − β2

(
β

α

)m

(Princ. Val.), (D.72)

∫ ∞

0
J0(αx) sin(βx)dx = H (β − α)√

β2 − α2
, (α, β > 0) (D.73)

∫ ∞

0
J0(αx) cos(βx)dx = H (α − β)√

α2 − β2
, (α, β > 0) (D.74)

∫ ∞

0
Jn(αx) sin(βx)dx =





sin(n arcsin(β
α
))√

α2 − β2
(0<β<α),

αn cos(1
2nπ)√

β2 − α2
(
β +

√
β2 − α2

)n (0<α<β),
(D.75)

∫ ∞

0
Jn(αx) cos(βx)dx =





cos(n arcsin(β
α
))

√
α2 − β2

(0<β<α),

−αn sin(1
2nπ)√

β2 − α2
(
β +

√
β2 − α2

)n (0<α<β),
(D.76)

∫ ∞

0
Y0(αx) sin(βx)dx =





2

π

1√
α2 − β2

arcsin(β
α
) (0<β<α),

2

π

−1√
β2 − α2

arcosh(β
α
) (0<α<β),

(D.77)

∫ ∞

0
Y0(αx) cos(βx)dx = − H (β − α)√

β2 − α2
, (α, β > 0) (D.78)

∫ ∞

0
K0(αx) sin(βx)dx = 1√

α2 + β2
arsinh(β

α
), (α, β > 0) (D.79)

∫ ∞

0
K0(αx) cos(βx)dx =

1
2π√
α2 + β2

(α, β > 0) (D.80)

Related to Bessel functions of order1
3 are the Airy functionsAi andBi [1], given by

Ai(x) = 1

π

∫ ∞

0
cos(1

3t3 + xt)dt (D.81)

Bi(x) = 1

π

∫ ∞

0

[
exp(−1

3t3 + xt)+ sin(1
3t3 + xt)

]
dt (D.82)
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254 D Bessel functions

They are solutions of

y′′ − xy = 0, (D.83)

with the following asymptotic behaviour (introduceζ = 2
3|x|3/2)

Ai(x) ≃





cos(ζ − 1
4π)√

π |x|1/4 (x → −∞),

e−ζ

2
√
π x1/4

(x → ∞),

(D.84)

Bi(x) ≃





cos(ζ + 1
4π)√

π |x|1/4 (x → −∞),

eζ√
π x1/4

(x → ∞).

(D.85)

0

0.5

1

2 4 6 8 10 12 14

Figure D.1 Bessel functionJn(x) as function of order and argument.
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E Free field Green’s functions

Some relevant Green’s functions for the Laplace equation, the reduced wave equation (Helmholtz
equation), the wave equation, and the diffusion equation (heat equation) are summarized in the table
below for 1-, 2-, and 3-dimensional infinite space. The boundary conditions applied are (depending
on the equation): symmetry, the function or its derivative vanishing at infinity, outward radiating (as-
suming aeiωt convention) and causality (vanishing beforet = 0).

Equation 1-D 2-D 3-D

∇2G = δ(x)
1

2
|x| 1

2π
log R − 1

4πr

∇2G + k2G = δ(x)
i

2k
e−ik|x| i

4
H (2)

0 (k R) −e−ikr

4πr

∂2G

∂t2
− c2∇2G = δ(x)δ(t)

1

2c
H (t − |x|/c) 1

2πc2

H (t − R/c)√
t2 − R2/c2

δ(t − r/c)

4πc2r

∂G

∂t
− α∇2G = δ(x)δ(t)

H (t)e−x2/4αt

(4παt)1/2
H (t)e−R2/4αt

4παt

H (t)e−r 2/4αt

(4παt)3/2

Notation: R =
√

x2 + y2, r =
√

x2 + y2 + z2.



F Summary of equations for fluid motion

For general reference we will describe here a large number ofpossible acoustic models, systematically
derived from the compressible Navier-Stokes equations, under the assumptions of absence of friction
and thermal conduction, and the fluid being a perfect gas. Theflow is described by a steady mean flow
and unsteady perturbations, upon which linearization and Fourier time-analysis is possible. Further
simplifications are considered based on axi-symmetric geometry and mean flow.

F.1 Conservation laws and constitutive equations

The original laws of mass, momentum and energy conservation, written in terms of pressurep, density
ρ, velocity vectorv, scalar velocityv = |v|, viscous stress tensorτ , internal energye, and heat flux
vectorq, are given by

mass: ∂
∂t ρ + ∇·(ρv) = 0 (F.1)

momentum: ∂
∂t (ρv) + ∇·(ρvv) = −∇ p + ∇ ·τ (F.2)

energy: ∂
∂t (ρE)+ ∇·(ρEv) = −∇·q − ∇·(pv)+ ∇·(τv) (F.3)

while

E = e+ 1
2v

2. (F.4)

It is often convenient to introduce enthalpy or heat function

i = e+ p

ρ
, (F.5)

or entropys and temperatureT via the fundamental law of thermodynamics for a reversible process

Tds = de+ pdρ−1 = di − ρ−1dp. (F.6)
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With d
dt = ∂

∂t + v ·∇ for the convective derivative, the above conservation lawsmay be reduced to

mass: d
dtρ = −ρ∇·v (F.7a)

momentum: ρ d
dt v = −∇ p + ∇ ·τ (F.7b)

energy : ρ d
dt e = −∇·q − p∇·v + τ :∇v (F.7c)

ρ d
dt i = d

dt p − ∇·q + τ :∇v (F.7d)

ρT d
dt s = −∇·q + τ :∇v. (F.7e)

Of the energy equations, the entropy form (F.7e) is the most convenient one for acoustic applications.

For anideal gas we have the following relations

p = ρRT, de = CVdT, di = CPdT (F.8a,b,c)

whereCV is the heat capacity or specific heat at constant volume,CP is the heat capacity or specific
heat at constant pressure [113].CV = CV(T) andCP = CP(T) are in general functions of temper-
ature.R is the specific gas constant andγ the specific-heat ratio, which are practically constant and
given by (the figures refer to air)

R = CP − CV = 286.73 J/kg K, γ = CP

CV
= 1.402 (F.9a,b)

From equation (F.6) it then follows for an ideal gas that

ds = CV
dp

p
− CP

dρ

ρ
(F.10)

while isentropic perturbations (ds = 0), like sound, propagate with the sound speedc given by

c2 =
(∂p

∂ρ

)
s
= γ p

ρ
= γ RT. (F.11)

For aperfectgas, the specific heats are constant (independent ofT ), and we can integrate

e = CV T + einit, i = CPT + i init, s = CV log p − CP logρ + sinit. (F.12a,b,c)

The integration “constants”einit, i init andsinit refer to the initial situation of each particle. So this result
is only useful if we start with a fluid of uniform thermodynamical properties, or if we are able to trace
back the pathlines (or streamlines for a steady flow).
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F.2 Acoustic approximation

F.2.1 Inviscid and isentropic

In the acoustic realm we will consider, the viscous or turbulent stress terms will be assumed to play a
role only in an aerodynamic source region, while any perturbation is too fast to be affected by thermal
conduction. Therefore, for the applications of acoustic propagation we will ignore viscous shear stress
(τ ) and thermal conduction (q). In particular, this is obtained as follows. We make dimensionless by
scaling

x := Lx, v := v0v, t := L

v0
t, ρ := ρ0ρ,

dp := ρ0v
2
0dp, τ := µv0

L
τ , q := κ1T

L
q,

T := T0T, dT := 1TdT, ds := CP1T

T0
ds

to get

d
dt ρ = −ρ∇·v (F.13a)

ρ d
dt v = −∇ p + 1

Re
∇ ·τ (F.13b)

ρT d
dt s = − 1

Pe
∇·q + Ec

Re
τ :∇v, (F.13c)

whereRe = ρ0v0L/µ denotes the Reynolds number,Pe = ρ0CPv0L/κ the Peclet number, and
Ec = v2

0/CP1T the Eckert number. If the Reynolds number tends to infinity, usually also the Peclet
number does, becausePe = PrRe and the Prandtl numberPr is for most fluids and gases of order 1.
Then, provided the Eckert number is not large, we obtain

d
dtρ = −ρ∇·v (F.14a)

ρ d
dt v = −∇ p (F.14b)
d
dt s = 0 (F.14c)

which means that entropy remains constant, and thus dh = ρ−1dp, along streamlines.

Furthermore, we will assume the gas to be perfect, with the following thermodynamical closure rela-
tions

ds = CV
dp

p
− CP

dρ

ρ
, c2 = γ p

ρ
. (F.14d)
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By substituting equation (F.14d) into equation (F.14c) we obtain

d
dt p = c2 d

dt ρ. (F.14e)

If the flow is initially homentropic (sinit is uniformly constant) then

p ∝ ργ es/CV (F.14f)

If the flow is homentropic (s is uniformly constant) then

p ∝ ργ (F.14g)

F.2.2 Perturbations of a mean flow

When we have a steady mean flow with unsteady perturbations, given by

v = v0 + v′, p = p0 + p′, ρ = ρ0 + ρ ′, s = s0 + s′ (F.15)

and linearize for small amplitude, we obtain for the mean flow

∇·(ρ0v0) = 0 (F.16a)

ρ0(v0·∇)v0 = −∇ p0 (F.16b)

(v0·∇)s0 = 0 (F.16c)

while

ds0 = CV
dp0

p0
− CP

dρ0

ρ0
, c2

0 = γ p0

ρ0
(F.16d)

and the perturbations

∂
∂t ρ

′ + ∇·(v0ρ
′ + v′ρ0) = 0 (F.17a)

ρ0
(
∂
∂t + v0·∇)

v′ + ρ0
(
v′ ·∇)

v0 + ρ ′(v0·∇)v0 = −∇ p′ (F.17b)

( ∂
∂t + v0·∇)s′ + v′ ·∇s0 = 0 (F.17c)

while, assumings′
init = 0,

s′ = CV

p0
p′ − CP

ρ0
ρ ′ = CV

p0

(
p′ − c2

0ρ
′), c′ = 1

2c0

( p′

p0
− ρ ′

ρ0

)
. (F.17d)

The expression forc′ usually serves no purpose.
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From equation (F.14e) we get for the mean flowv0·∇ p0 = c2
0v0·∇ρ0, and for the perturbations an

equation, equivalent to (F.17c) and (F.17d),

∂
∂t p′ + v0·∇ p′ + v′ ·∇ p0 = c2

0

(
∂
∂t ρ

′ + v0·∇ρ ′ + v′ ·∇ρ0

)
+ c2

0

(
v0·∇ρ0

)( p′

p0
− ρ′

ρ0

)
. (F.18)

If the mean flow is homentropic (s0 = constant), we have∇ p0 = c2
0∇ρ0 while the perturbations are

isentropic along streamlines.

If the perturbations are entirely isentropic (s′ ≡ 0), for example whenv0 = 0 ands0 = constant or
when the flow is homentropic (satisfying equation F.14g), the pressure and density perturbations are
related by the usual

p′ = c2
0ρ

′. (F.19)

F.2.3 Myers’ Energy Corollary

Myers’ definition of energy [152, 153, 154] for unsteady disturbances propagating in moving fluid
media is both consistent with the general conservation law of fluid energy and with the order of ap-
proximation in the linear model adopted to describe the disturbances. When the mass and momentum
equations (F.1,F.2) and the general energy conservation law (F.3) for fluid motion is expanded to
quadratic order, this 2nd order energy term may be reduced tothe following conservation law for
perturbation energy densityE, energy fluxI , and dissipationD

∂
∂t E + ∇· I = −D (F.20)

where (for simplicity we neglect viscous stress and heat conduction)

E = p′2

2ρ0c2
0

+ 1
2ρ0v

′2 + ρ ′v0·v′ + ρ0T0s′2

2Cp
, (F.21a)

I =
(
ρ0v

′ + ρ ′v0
)( p′

ρ0
+ v0·v′

)
+ ρ0v0T ′s′, (F.21b)

D = −ρ0v0·(ω′×v′) − ρ ′v′ ·(ω0×v0
)
+ s′(ρ0v

′ + ρ ′v0
)·∇T0 − s′ρ0v0·∇T ′. (F.21c)

while the vorticity vector is denoted by∇×v = ω = ω0+ω′. Without mean flow this definition reduces
to the traditional one. Note that, according to this definition, acoustic energy is entirely conserved in
homentropic, irrotational flow. In vortical flow, the interaction with the mean flow may constitute a
source or a sink of acoustic energy.
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F.2.4 Zero mean flow

Without mean flow, such thatv0 = ∇ p0 = 0, the equations may be reduced to

∂2

∂t2 p′ − ∇·(c2
0∇ p′) = 0. (F.22)

F.2.5 Time harmonic

When the perturbations are time-harmonic, given by

v′ = Re(v̂ eiωt), p′ = Re( p̂ eiωt), ρ ′ = Re(ρ̂ eiωt), s′ = Re(ŝeiωt), (F.23)

we have in the usual complex notation

iωρ̂ + ∇·(v0ρ̂ + v̂ρ0
)

= 0 (F.24a)

ρ0
(
iω + v0·∇)

v̂ + ρ0
(
v̂ ·∇)

v0 + ρ̂
(
v0·∇)

v0 = −∇ p̂ (F.24b)
(
iω + v0·∇)

ŝ + v̂ ·∇s0 = 0 (F.24c)

ŝ = Cv

p0

(
p̂ − c2

0ρ̂
)
. (F.24d)

F.2.6 Irrotational isentropic flow

When the flow is irrotational and isentropic everywhere (homentropic), we can introduce a potential
for the velocity, wherev = ∇φ, and expressp as a function ofρ only, such that we can integrate the
momentum equation, and obtain the important simplification

∂

∂t
φ + 1

2v
2 + c2

γ − 1
= constant,

p

ργ
= constant. (F.25)

For mean flow with harmonic perturbation, whereφ = φ0 + Re(φ̂ eiωt), we have then for the mean
flow

1
2v

2
0 + c2

0

γ − 1
= constant,

∇·(ρ0v0) = 0,
p0

ρ
γ
0

= constant
(F.26a)

and for the acoustic perturbations
(
iω + v0·∇)

ρ̂ + ρ̂∇·v0 + ∇·(ρ0∇φ̂
)

= 0,

ρ0
(
iω + v0·∇)

φ̂ + p̂ = 0, p̂ = c2
0ρ̂.

(F.26b)
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These last equations are further simplified (eliminatep̂ andρ̂ and use the fact that∇·(ρ0v0) = 0) to
the rather general convected wave equation

ρ−1
0 ∇·(ρ0∇φ̂

)
−

(
iω + v0·∇)[

c−2
0

(
iω + v0·∇)

φ̂
]

= 0. (F.27)

F.2.7 Uniform mean flow

The simplest, but therefore probably most important configuration with mean flow, is the one with a
uniform mean flow.

Axial mean velocityu0, mean pressurep0, densityρ0 and sound speedc0 are constants, so we have

(
iω + u0

∂
∂x

)
ρ̂ + ρ0∇· v̂ = 0, (F.28a)

ρ0
(
iω + u0

∂
∂x

)
v̂ + ∇ p̂ = 0, (F.28b)

(
iω + u0

∂
∂x

)(
p̂ − c2

0ρ̂
)

= 0. (F.28c)

Equation (F.28c) shows that entropy perturbations are justconvected by the mean flow. Without
sources of entropy, the field is isentropic if we start with zero entropy.

We may split the perturbation velocity into a vortical part and an irrotational part (see equation 1.22)
by introducing the vector potential (stream function)ψ̂ and scalar potential̂φ as follows

v̂ = ∇×ψ̂ + ∇φ̂, (F.29)

If desired, the arbitrariness in̂ψ (we may add any∇ f , since∇×∇ f ≡ 0) may be removed by adding
the gauge condition∇·ψ̂ = 0, such that the vorticity is given by

ω̂ = ∇×v̂ = ∇(∇·ψ̂)− ∇2ψ̂ = −∇2ψ̂ . (F.30)

By taking the curl of equation (F.28b) we can eliminatep and φ to produce an equation for the
vorticity:

−
(
iω + u0

∂
∂x

)
∇2ψ̂ =

(
iω + u0

∂
∂x

)
ω̂ = 0. (F.31)

This shows that vorticity perturbations are just convectedby the mean flow. Without sources of vor-
ticity, the field is irrotational if we start without vorticity.

Indeed, vorticity and pressure/density perturbations aredecoupled. Since the divergence of a curl is
zero,∇· v̂ = ∇·(∇×ψ̂ + ∇φ̂) = ∇2φ̂, equation (F.28a) becomes

(
iω + u0

∂
∂x

)
ρ̂ + ρ0∇2φ̂ = 0 (F.32)
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By taking the divergence of equation (F.28b), and using equations (F.28a,F.28c), not assuming isen-
tropy or irrotationality, we can eliminateφ andρ to obtain the convected reduced wave equation for
the pressure

c2
0∇2 p̂ −

(
iω + u0

∂
∂x

)2
p̂ = 0. (F.33)

Plane wave solutions are given by

p̂ = Ae−ik·x, v̂ = k
ρ0�

Ae−ik·x, � = ω − u0kx, c2
0|k|2 = �2, (F.34)

not propagating ink-direction but in the direction of the intensity vector

〈I〉 = ω|A|2
2ρ0�2

(
k + M0|k|ex

)
, M0 = u0/c0. (F.35)

With some care, especially taking due notice of any singularedge behaviour, equation (F.33) may be
transformed to the ordinary reduced wave equation

c2
0∇2 p̃ +�2 p̃ = 0 (F.36)

by introducing

p̂(x, r, θ;ω) = p̃(X, r, θ;�)exp(i �M
c0

X), (F.37)

where x = βX, ω = β�, M = u0

c0
, β =

√
1 − M2.

F.2.8 Parallel mean flow

Assume a mean flow field parallel inx-direction with uniform mean pressure,i.e. v0 = (u0,0,0),
u0 = u0(y, z), ρ0 = ρ0(y, z), c0 = c0(y, z) and p0 = constant. Then by taking the convective time
derivative of the divergence of the momentum equation, eliminating the velocity, and using the fact
that p0 is constant, we obtain from (F.17) the equation

(
∂
∂t + u0

∂
∂x

)3
p + 2c2

0
∂
∂x (∇⊥u0·∇⊥ p)−

(
∂
∂t + u0

∂
∂x

)
∇· (

c2
0∇ p

)
= 0, (F.38)

where∇⊥ denotes(∂y, ∂z). If we look for solutions of the formp(x, y, z, t) = P(y, z)eiωt−ikx and
denote� = ω − ku0, we obtain a pre-form of the Pridmore-Brown equation [179]

−i�3P − 2ikc2
0 (∇⊥u0·∇⊥ P)− i�

(
−k2c2

0 P + ∇⊥ · (
c2

0∇⊥ P
))

= 0.

By noting that−k∇⊥u0 = ∇⊥�, this equation can be further simplified into

∇⊥ ·
( c2

0

�2
∇⊥ P

)
+

(
1 − k2c2

0

�2

)
P = 0. (F.39)
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G Answers to exercises.

Chapter 1
d) Only if thermodynamic equilibrium prevails.

e) The pressure on the pistonp1 can be related to the atmospheric pressurep2 in the free jet by using the unsteady
Bernoulli equation (1.32b) applied to an incompressible fluid (ρ = ρ0):
∂1φ

∂t
+ 1

2
(v2

2 − v2
1)+ p2 − p1

ρ0
= 0.

By neglecting the non-uniformity of the flow we have

1φ =
∫ 2

1
v·dℓ ≃ v1ℓ1 + v2ℓ2.

Using the mass conservation law (1.19) for an incompressible fluid we find by continuity of the volume flux

A1v1 = A2v2.

Hence, the equation of Bernoulli becomes, withv1 = at,
p1 − p2

ρ0
= a

(
ℓ1 + A1

A2
ℓ2

)
+ 1

2

(( A1

A2

)2
− 1

)
(at)2.

At t = 0 we have a ratio of the pressure drop, determined by the ratioof the potential difference, of
v1ℓ1

v2ℓ2
= A1ℓ1

A2ℓ2
.

Chapter 2
a) A depth of 100 m corresponds to a pressure of 10 bar, hence anair densityρg which is ten times higher than at 1 bar.

Following (2.45) we have a speed of sound of 75 m/s. Note thatρgc2
g = γ p so thatc depends only onγ and not on

other gas properties.

c) Mathematically, any sound speed can be used, but the simple physical meaning only appears when we choose the value
that prevails at the listener’s position.

d) Not necessarily. In an isentropic flow isDs
Dt = 0, but∇·(vρ0)) vanishes only for an homentropic flow.

e) No, p′ is more appropriate.

f) Certainly not.

g) Yes.

h) No. The fluid should be stagnant and uniform (quiescent).

i) No. ρc2 = γ p so thatρc depends also on the temperature becausec =
√
γ RT.

j) From the wave equation it follows thatk = ωn/c0 for some real unit vectorn. So the surface is given byc0t − n·x =
constant, with real coefficients, and so defines a plane.



265

Chapter 3
a) Every point of the line source has a different distance, and therefore different travel time, to the observer. Note thetail

of the 2-D wave-equation Green’s function (Appendix E)(2πc2)−1H(t − R/c)/
√

t2 − R2/c2.

b) The fieldP of one point source is given by (see Appendix E)
Pt t − c2∇2P = δ(t − τ)δ(x − x0)δ(y − y0)δ(z) with solution
P = δ(t − τ − r0/c)/4πc2r0 wherer0 = {(x − x0)

2 + (y − y0)
2 + z2}1/2.

Integrate over allx0, y0, introducex0 = x + {r 2
0 − z2}1/2 cosθ0 and

y0 = y + {r 2
0 − z2}1/2 sinθ0, and obtain the total field

p =
∫∫

P dx0dy0 = 2π
4πc2

∫ ∞
|z| δ(t − τ − r0/c) dr0 = (2c)−1H(t − τ − |z|/c).

This could have been anticipated from the fact that the problem is really one dimensional.

c) From Appendix E we find the total field

p(x, y, z) = 1
4 i

∞∑

n=−∞
H (2)

0 (k Rn) ≃ 1
4 i

∞∑

n=−∞
(1

2πk Rn)
− 1

2 exp(1
4π i − i k Rn)

whereRn = ((x − nd)2 + y2)
1
2 = (r 2 − 2rnd cosθ + n2d2)

1
2 .

Consider the sources satisfying−r ≪ nd ≪ r , such that

Rn ≃ r − ndcosθ (r → ∞).

This part of the series looks like

· · · ≃ 1
4 i

∑
(1

2πkr)−
1
2 exp(1

4π i − i kr + i kndcosθ)

and grows linearly with the number of terms if
exp(i kndcosθ) = 1, orkdcosθ = 2πm.

d) The condition is now exp(−iπn + i kndcosθ) = 1, orkdcosθ = (2m + 1).

e) If we makex dimensionless by a length scaleL , we haveδ(x) = δ( x
L L) = 1

L δ(
x
L ). So the dimension ofδ(x) is

(length)−1.

f) Multiply by a test functionφ(x, y) and integrate

· · · = −
∫∫

1

r
φr dx dy = −

∫ 2π

0

∫ ∞

0
φr dr dθ = 2πφ(0, 0).

g) Let Sbe given by an equationf (x) = 0, such thatf (x) > 0 if and only if x ∈ V . The outward normaln is then given
by n = −(∇ f/|∇ f |) f =0. SinceH( f )v vanishes outsideV , we have

0 =
∫

∇·[H( f )v
]
dx =

∫ [
H( f )∇·v + δ( f ) v·∇ f

]
dx

=
∫

V
∇·v dx −

∫

S
v·n dσ.

h) Only the terms contribute which satisfy 0< 2nL ≤ c0t , so we obtain

(2 + R)g(t) = R f(t)+ 2
⌊c0t/2L⌋∑

n=1

(
f
(
t − 2nL

c0

)
− g

(
t − 2nL

c0

))
.

i) p̂(x) = e−ikx +Reikx. If p̂(x0) = 0, we haveR = − e−2ikx0.
Since p̂(x0) = 0 andv̂(x0) 6= 0 we have simplyZ = 0.

j) v̂ (x) = (ρ0c0)
−1(e−ikx −Reikx). If v̂ (x0) = 0, we haveR = e−2ikx0.

Sincev̂ (x0) = 0 and p̂(x0) 6= 0 we have simplyZ = ∞.
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k) With p̂(x) = e−ikx +Reikx andv̂ (x) = (ρ0c0)
−1(e−ikx −Reikx) we haveR = (Z0 − ρ0c0)/(Z0 + ρ0c0), so

ZL = ρ0c0
eikL +Re−ikL

eikL −Re−ikL
= ρ0c0

Z0 + iρ0c0 tan(kL)

ρ0c0 + i Z0 tan(kL)
.

l) If R> 0, m > 0, K > 0, the zeros ofZ(ω) = R+ iωm− i K/ω belong to the upper half plane. IfR = 0 the zeros are
real, and have to be counted to the upper half plane. The same for the real poleω = 0.

z(t) = 2π(Rδ(t)+ mδ′(t)+ K H(t)), y(t) = 2πH(t)(α e−αt −β e−βt )√
R2 − 4mK

,

whereα, β = (R ±
√

R2 − 4mK)/2m.

m) From Ingard’s boundary condition (3.43) we have iωZ(v·ey) = i�p which yields with� = ω/(1 + M0 cosϑ) and
M0 = u0/c0 that(1 + M0 cosϑ)Z sinϑ/ρ0c0 = (1 + R)/(1 − R), or

R = (1 + M0 cosϑ)Z sinϑ − ρ0c0

(1 + M0 cosϑ)Z sinϑ + ρ0c0
,

while R = 0 if Z = ρ0c0

sinϑ(1 + M0 cosϑ)
.

Chapter 4
a) For a wavep′ = G(x + c0t) corresponding to aC− characteristic propagating in a uniform region with(ρ0, c0)

andu0 = 0 theC+ characteristics carry the message:p′ + ρ0c0u′ = 0 in the entire wave region. This implies that
p′ = −ρ0c0u′ along anyC− characteristic. Alternatively, we have from the momentum conservation law:ρ0

∂
∂t u′ =

− ∂
∂x p′ = − 1

c0
∂
∂t p′ becausep′ is a function of(x + c0t) along aC− characteristic. Integration with respect to time

yields:ρ0u′ = −p′/c0.

b) The piston induces the pressuresp′
I = ρ0,Ic0,Iu

′ and p′
II = −ρ0,II c0,II u

′. The force amplitude is:̂F = S(ρIcI +
ρII cII )ωa = 9.15 N. As p′

I − p′
II = 915 Pa≪ ρ0c2

0 ≃ 105 Pa we can use a linear theory.

c) The flow perturbationu′ is such that the total flow velocityu0 + u′ = 0 at the closed valve. Hence we havep1 =
−ρwcwu′ = ρwcwu0 and p1 = −p2. Foru0 = 0.01 m/s we findp1 = −p2 = 1.5× 104 Pa. Foru0 = 1 m/s we find
p1 = 1.5 × 106 Pa. The pressurep2 can reach−15 bar if there is no cavitation. Otherwise it is limited to the vapour
pressure of the water.

d) v j = 2cw(A/S)(1 −
√

1 − (u0/cw)) ≃ u0A/S.1p ≃ 1
2ρw(u0A/S)2.

e) Energy conservation implies:A1p′
1u′

1 = A2p′
2u′

2, while mass conservation implies:A1u′
1 = A2u′

2. Substitution of
the mass conservation law in the energy conservation law yields: p′

1 = p′
2.

f) R1,2 = T1,2 − 1 = (ρ2c2 − ρ1c1)/(ρ2c2 + ρ1c1).
Rair,water = 0.99945,Tair,water = 1.99945.
Rwater,air = −0.9989,Twater,air = 0.0011.

g) T1 − T2 = 30 K,ρ1c1/ρ2c2 =
√

T2/T1 = 1.05.
R1,2 = −0.03, T1,2 = 0.97.

h) (I −
1 /I +

1 ) = R2
1,2 = (ρ1c1 − ρ2c2)

2/(ρ1c1 + ρ2c2)
2,

(p+
1 + p−

1 )(p
+
1 − p−

1 )/ρ1c1 = I +
1 − I −

1 = I +
2 , (I +

2 /I +
1 ) = 1 − (I −

1 /I +
1 ).

i) R1,2 = 0.0256,p+
1 = (ρ1c1ûp)/(1 − R1,2 e−2ikL), p−

1 = R1,2 p+
1 e−2ikL,

p+
2 = p+

1 e−ikL +p−
1 eikL.

j) T1,2 = 2A1/(A1 + A2), R1,2 = 1 − T1,2 = (A1 − A2)/(A1 + A2).

k) T1,2 = 2ρ2c2A1/(ρ1c1A2 + ρ2c2A2), R1,2 = 1 − T1,2.
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l) lim
A2/A1→0

R1,2 = 1, lim
A2/A1→∞

R1,2 = −1.

m) For an orifice with wall thicknessL and cross-sectional areaAd in a pipe of cross-sectional areaAp we have:R =
p−

1 /p+
1 =

i k(L + 2δ)Ap/[2Ad + i k(L + 2δ)Ap], wherek = ω/c0, δ ≃ 8
3π

√
Ad/π .

p) Without mean flow (u0 = 0):

• At low amplitudes, when linear theory is valid, friction is negligible whenδ2v = 2ν/ω ≪ Ad.

• At large amplitudes,u2/ω2Ad > 1, flow separation will occur. Flow separation is induced by viscosity. Ifδ2v ≪ Ad
then the exact value of the viscosity is not important to predict flow separation. We have reached a high Reynolds
number limit.

With mean flow (u0 6= 0), we have the same answer as for large amplitudes.

o) Flow separation always occurs when the particle displacement is of the order of the diameter of the orifice:u′
d ∼ ωd.

In the pipe we have:u′
D = u′

d(d/D)2. The critical level is given byp′ ∼ ρ0c0ωd(d/D)2.
At 10 Hz this corresponds to SPL = 110 dB.
At 100 Hz this corresponds to SPL = 130 dB.
At 1000 Hz this corresponds to SPL = 150 dB.
Within a hearing-aid device, sound is transferred from the amplifier (at the back of the ear) to the ear-drum by means
of a pipe ofD = 1 mm. An orifice ofd = 0.1 mm placed in this pipe, will protect the ear by limiting sound level
around 1 kHz to SPL = 130 dB. Such devices are indeed in everyday use.

p) In a stationary subsonic free jet induced by a mean flow we expect a uniform pressure. The first intuitive guess for a
quasi-stationary theory is to assume that the inertial effects upstream of the orifice remain unchanged, while the inertial
effects in the jet are negligible. This leads to the common assumption that the end correction of a thin orifice with
a mean flow is at low frequencies half of the end correction in the absence of mean flow. Experiments by Ajello [2]
indicate a much stronger reduction of the end-correction. In some circumstances negative end corrections are found (
Ajello [2], Peters [173]). Indeed the theory for open pipe termination of Rienstra [190] indicates that we cannot predict
end corrections intuitively.

q) R = p−
1 /p+

1 = [A1 − (A2 + A3)]/[A1 + (A2 + A3)].
r) R = p−

1 /p+
1 = [(A1 − A3) cos(kL)− i A2 sin(kL)]/[(A1 − A3) cos(kL)+ i A2 sin(kL)].

R = −1 for kL = π(n + 0.5), R = 0 for A2 = 0 when A1 = A3 and R = 1 for A3 = 0 whenkL = nπ
(n = 0,1, 2,3, . . . ).

s) p̂+
1 + p̂−

1 = p̂b + ρwω
2a0â. p̂b/p0 = −3γ â/a0. p̂−

1 = Rp̂+
1 .

A( p̂+
1 − p̂−

1 ) = Ap̂+
2 − (ρwcw)iω4πa2

0â. p̂+
1 + p̂−

1 = p̂+
2 .

R = −[1 + i A(ω2 − ω2
0)/2πωcwa0]−1 with ω2

0 = 3γ p0/ρwa2
0.

t) p̂b/ p̂in = [1 + ( ωω0
)2(2π ia0

Ak − 1)]−1.

u) ω2
0a2

0/c
2
l = 3ρl /ρw ≪ 1. At p0 = 1 bar,ρl /ρw = O(10−3).

v) 3γl p0/ρwc2
w = O(10−4) hencea0ω/cw < 10−2.

w) ω2
0 ≃ 3γl p0/2ρwa2

0. R = −[1 + A(ω2 − ω2
0)/2π iωcwa0]−1.

x) Whena0 = O(D) we do not have a radial flow around the bubble. The approximation used for small bubbles fails.

y) [g] = s/m.

z) ω2ĝ − c2
0

d2

dx2 ĝ = e−iωτ δ(x − y)/2π .

Integration aroundx = y yields:−[ d
dx ĝ]y+

y− = e−iωτ /2πc2
0.

[ d
dx ĝ]± = ∓i kĝ±. At x = y we haveĝ± = e−iωτ /4π iωc0.

RienstraHirschberg 8 Aug 2016, 20:00



268 G Answers to exercises.

Henceĝ± = ĝ±
x=y e∓ik(x−y) with “+” for x > y and “-” for x < y.

Therefore:ĝ = e−iωτ e−ik|x−y| /4π iωc0.

A) Using the result of exercise z) we find:

ĝ+(L |y) = ĝ0(L |y) with ĝ0(x|y) = e−iωτ e−ik|x−y| /4π iωc0.

Furthermore:
ZL

ρ0c0
= ĝ+(L)+ ĝ−(L)

ĝ+(L)− ĝ−(L)
, R = ZL − ρ0c0

ZL + ρ0c0
= ĝ−(L)

ĝ+(L)
.

Hence: ĝ(x|y) = ĝ+ + ĝ− = ĝ0(x|y) + Rĝ0(x|2L − y).

This corresponds to the waves generated by the original source aty and an image source at 2L − y.

B) The same answer as the previous exercise with (section 4.4.5):
R = −1/[1 + A(ω2 − ω2

0)/(2π iωcwa0)] whereA is the pipe cross-sectional area,a0 the bubble radius andω0 the
Minnaert frequency of the bubble.

C) For |x1 − y1| ≫
√

S| andk2
0S ≪ 1 the Green’s function is independent of the position(y2, y3) of the source in the

cross section of the pipe. Hence we have:g(x1, t |y1, τ ) =
∫ ∞
−∞

∫ ∞
−∞ G(x, t |y, τ ) dy2dy3 = SG(x, t |y, τ ).

D) Moving the source towards the observer by a distance1y should induce the same change1g in g(x, t |y, τ ) as a
displacement1x = −1y of the observer in the direction of the source. The distance|x − y| is in both cases reduced
by the same amount.
This implies that: 1g = ∂g

∂y1y = − ∂g
∂x1x.

E) p′ ≃ ρ′c2
0 ∼ M0

1
2ρ0U2

0 (d
2/S) = 2 × 10−2 Pa. SPL = 60 dB.

F) SPL = 63 dB.

G) (S/a2
0)(ρwc2

w/3γ p0)
1
2 = 2.3 × 104 or 87 dB. ρwc2

w/3γ p0 = 5.4 × 103 or 75 dB.

H) f ∼ U0/D = 0.1 kHz, ω0/2π = 6.5 kHz.

Chapter 5

a) Z(0) = ρ0c0
(ZL + ρ0c0)+ (ZL − ρ0c0) e−2ik0L

(ZL + ρ0c0)− (ZL − ρ0c0) e−2ik0L

For ZL = ∞ we haveZ(0) = iρ0c0 cotg(k0L). As ReZ(0) = 0 for ZL = ∞ the piston does in general not generate
any acoustical power unless there is resonance,i.e. k0L = (n + 1

2)π .

The acoustical field in the pipe is given by:p̂ = p̂+ e−ik0x + p̂− eik0x.
The amplitudesp̂+ and p̂− are calculated from the piston velocityûp by using:ρ0c0ûp = p̂+ − p̂−, Z(0)ûp =
p̂+ + p̂−.
Hence:p̂+ = 1

2(Z(0)+ ρ0c0)ûp, p̂− = 1
2(Z(0)− ρ0c0)ûp.

b) ZL ≃ Z′
L + iρ0ωδ.

c) Forx < 0 we havep̂+ = 0 while: p̂− = 1
2ρ0c0(Sp/S)ûp(1 + e−ik0L ).

The condition that there is no radiation,p̂− = 0, is obtained for:k0L = (2n + 1)π , wheren = 0, 1,2, . . . .

d) p̂ = p̂+ eik0L + p̂− e−ik0L ,

with: p̂+ = ρ0c0ûp(S+ 2Sp)

(S+ 2Sp)− (S− 2Sp) e−2ik0L
, and p̂− = S− 2Sp

S+ 2Sp
p̂+.

Flow separation becomes dominant at the junction when:
( p̂+ − p̂−)/ρc2

0 = O(k0
√

S1). The amplitude of the second harmonicp̂1, generated by non-linearities, can be esti-
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mated from:
( p̂1/ p̂+) ∼ k0L( p̂+/ρ0c2

0).

e) Configuration a):Zp = ρ0c0
(Z1 + ρ0c0)+ (Z1 − ρ0c0) e−2ik0L

(Z1 + ρ0c0)− (Z1 − ρ0c0) e−2ik0L
,

where:Z1 = S1Z2Z3/(S2Z3 + S3Z2), Z2 = ρ0c0, Z3 = iρ0c0 tan(k0L).
The system is not a closed resonator because the condition ofzero pressure at the junction is never satisfied.

Configuration b):Zp = ρ0c0
(Z1 + ρ0c0)+ (Z1 − ρ0c0)e−2ik0L

(Z1 + ρ0c0)− (Z1 − ρ0c0)e−2ik0L
,

where:Z1 = S1Z2Z3(0)/(S2Z3(0)+ S3Z2), Z2 = ρ0c0,

Z3(0) = ρ0c0
(Z3(2L)+ ρ0c0)+ (Z3(2L)− ρ0c0)e−2ik0L

(Z3(2L)+ ρ0c0)− (Z3(2L)− ρ0c0)e−2ik0L
,

Z3(2L) = S3Z4Z5/(S4Z5 + S5Z4), Z4 = iρ0c0 cotg(k0L), Z5 = ρ0c0.
The system is in resonance fork0L = (n + 1

2)π .

Configuration c):Zp = 1
2ρ0c0i tan(k0L).

The system is resonant fork0L = (n + 1
2)π .

f) At the mouthpiece we have:ρ0c0ûp = p̂+ − p̂−.
If we assume friction losses to be dominant we have:p̂− = p̂+ e−2αL

where:α = 1

D

√
πν

c0L

(
1 + γ − 1√

ν/a

)
≃ 0.027 m−1.

Hence we find:p̂+ ≃ 7.6 × 103 Pa, andp̂ = p̂+ + p̂− ≃ 2p̂+.
The corresponding fluid particle oscillation amplitude1 at the open pipe termination is:1 ≃ p̂/(ρ0c0ω) ≃ 7×10−2m.
If we assume non-linear losses at the open pipe termination to be dominant we have (equation 5.24)û =

√
(3

2π ûpc0)

and p̂ ≃ ρ0c0û ≃ 1.6 × 104 Pa. Friction losses and flow separation losses are comparable and the acoustical fluid
particle displacement is of the order of the pipe diameter.

g) p̂+
1 − p̂−

1 = ρ0c0ûp, p̂+
1 e−ik0L1 + p̂−

1 eik0L1 = p̂+
2 + p̂−

2 ,

( p̂+
1 e−ik0L1 − p̂−

1 eik0L1)S1 = ( p̂+
2 − p̂−

2 )S2,

p̂+
2 e−ik0L2 + p̂−

2 eik0L2 = p̂+
3 + p̂−

3 ,

( p̂+
2 e−ik0L2 − p̂−

2 eik0L2)S2 = ( p̂+
3 − p̂−

3 )S3,

p̂+
3 e−ik0L3 + p̂−

3 eik0L3 = 0, ρ0c0ûex = p̂+
3 e−ik0L3 − p̂−

3 eik0L3.

h) p̂ = Acos(kx) for x < L , while p̂ = B e−ikx for x > L . Suitable dimensionless groups arez = kL, α = cM L/c0a,
λ = ρ0L/σ , where the propagation speed of transversal waves in the membranecM =

√
T/σ is introduced. The

resonance equation is then

(z − 8α2z−1) sinz = λeiz .

λ → 0 when the air density becomes negligible or when the membrane becomes very heavy. In that case we have the
membrane-in-vacuum vibrationz ≃ α

√
8+. . . and the closed pipe modesz ≃ nπ+ λ

nπ−8α2/nπ
+. . . (n = 1,2, 3, ..).

So whenλ = 0 (no energy is radiated) there are indeed undamped solutions with Im(z) = Im(ω) = 0.

i) m = ρ0Sn(ℓ+ 2δ), K = ρ0c2
0S2

n/V .

j) p̂in = i ωρ0(ℓ+ 2δ)Q̂

Sn

(
1 − ω2

ω2
0

) .
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k)
p̂transmitted

ρ0c0ûp
=

2(1 − ω2/ω2
0)− (iωV/c0S)

[2(1 − ω2/ω2
0)− (iωV/c0S)] eik0L −(iωV/c0S)e−ik0L

.

There is no transmission when bothω = ω0 andk0L = (n + 1
2)π .

l) Transmission and reflection coefficient:

T =
p̂+

2

p̂+
1

= 1

(1 + i k0ℓSp/Sd)[1 − (ω2/ω2
0)+ (i k0V/2Sp)]

,

R =
p̂−

1

p̂+
1

= T +
(i k0ℓSp/Sn)− 1

(i k0ℓSp/Sn)+ 1
,

where:ω2
0 = c2

02Sd/(ℓV), and:ℓ ≃ 1.6
√

Sd/π ≃
√

Sd.

m) T = 2
(
2 − iωρwcw

Sp(γ p0/V)(1 − ω2/ω2
0)

)−1
, R = T − 1, ω2

0 =
(γ p0

V

)( S

ρwℓ

)
.

n) An energy balance yields:12 p̂inQ̂ = 2
3π ρ0û3Sn, where we assumed thatp̂in and Q̂ are in phase and that vortex

shedding at the neck can be described by means of a quasi-stationary model. The internal pressurep̂in is related to the
acoustical velocitŷu through the neck by the momentum conservation law:p̂in = ρ0iωℓû.
This yields:û =

√
(3πωℓQ̂/4Sn) which is a factor

√
(2Snk0ℓ/Sp) smaller than for a14λ open pipe resonator.

o)
p̂in

p̂ex
= 1 + ω0

ω1

u0 − c0

u0
+ i

(
1 +

ω2
0

ω2
1

)
, with ω2

0 = c2
0Sn/(ℓV) andω1 = c0/ℓ.

p) As there are no sourcesq = 0, we have:

ρ′(x, t) = −c2
0

t∫

−∞

[
ρ′(y, τ )

∂ga

∂yi
− ga(x, t |y, τ )

ρ′(y, τ )
∂yi

]
y=0

ni dτ ,

where ga(x, t |y, τ ) =
∫∫

S
G(x, t |y, τ ) dS( y).

Other contributions from the surface integral vanish if we assume thatG has the same boundary conditions as the
acoustic field on these surfaces. Aty = 0 we have(∂ga/∂yi )ni = 0. Furthermore we have:ρ0

∂
∂τ u′ = −c2

0
∂
∂yρ

′, and

n1 = −1 at y = 0, which yields:p′ = c2
0ρ

′ = ρ0c2
0

∫ t
−∞ ga(x, t |y, τ ) ∂∂τ u′ dτ . The final result is obtained by partial

integration.

q) f ≃ c0/(2L), û/(ωw) ≃ 1 m/s. p̂ ≃ ρ0c0û ≃ 4 × 102 Pa.
The ratio of acoustical particle displacement to pipe diameter isw/D = 2 × 10−2. We expect vortex shedding at the
pipe ends to be a minor effect in a Rijke tube.

r) Using an energy balance between sound production and dissipation by vortex shedding we have: 0.05 1
2ρ0u2

0ûB×w ≃
ρ0û3B×w, or:
|û| ≃ 0.22u0.
The hydrodynamic resonance conditionfw/u0 ≃ 0.4 combined with the acoustic resonance condition 2π f =
c0

√
(wB/ℓV) and the order of magnitude estimateℓ ∼ 2

√
(Bw/π) = 0.44 m yields: f ≃ 18.5 Hz andu0 ≃ 14 m/s

= 50 km/h,| p̂| = ρωℓ|û| ≃ 43 Pa.
For a slit-like orifice we haveℓ ∼ w.

s) The blowing pressurep0 is a fair estimate. When̂p reachesp0 the flow velocity through the reed vanishes at high
pressures, which provides a non-linear amplitude saturation mechanism.
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Chapter 6
a) The fluid pushed ahead of the sphere in the direction of the translation can be considered as generated by a source. The

fluid sucked by the rear of the sphere corresponds to the sink.

b) Qualitatively we find that the streamlines as observed in the reference frame moving with the vortex ring are very
similar to those generated by a dipole or a translating sphere.
Quantitatively the circulationŴ =

∮
v · dℓ of the vortex corresponds to a discontinuity1φ of the flow potential across

a surface sustained by the vortex ring. Such a discontinuitycan be generated by a dipole layer on this surface which
replaces the vortex ring [reference Prandtl]. Assuming thedipole layer to consist out of a layer of sources at the front
separated by a distanceδ from a layer of sources at the rear, the potential differenceis given by1φ = uδ. The velocity
u is the flow velocity between the two surfaces forming the dipole layer. Taking the projectionS of the surface on a
plane normal to the direction of propagation of the vortex ring, we can represent in first approximation the dipole layer
by a single dipole of strengthuSδ placed at the center of the ring and directed in the directionof propagation of the
vortex ring.

c) Electromagnetic waves are transversal to the direction of propagation like shear-waves. Acoustical waves are compres-
sion waves and hence longitudinal.

d) R = (ρaircair − ρwatercwater)/(ρaircair + ρwatercwater), ρaircair = 4 × 102 kg/m2 s,
ρwatercwater = 1.5 × 106 kg/m2 s, 1+ R = 10−4.

e) A dipole placed normal to a hard wall will radiate as a quadrupole because the image dipole is opposite to the original
dipole. A dipole placed parallel to a hard wall will radiate as a dipole of double strength because the image has the
same sign as the original.

f) The radiated power increases by a factor two because the intensity is four times the original intensity but the radiation
is limited to a half space.

g) The first transverse mode of the duct has a pressure node in the middle of the duct. Hence a volume source placed on
the axis of the duct experiences a zero impedance for this first mode. It cannot transfer energy to this mode.

h) The vanishing acoustic pressure at the water surfacep′ = 0 precludes any plane wave propagation. The first propagat-
ing mode has a cut-on frequencyfc = 1

4c0/h corresponding to a quarter wave length resonance.

i) A dipole placed normal to the duct axis will not radiate at frequencies below the cut-off frequency of the first transverse
mode in a duct with hard walls. This is explained by the destructive interference of the images of the dipole in the
direction of the axis. On the other hand, however, when placed along the axis the dipole will very efficiently radiate
plane waves at low frequencies. The amplitude of these wavesare:| p̂| = ωρ0Q̂δ/S.

j) Assume that the quadrupole is approximated by two dipoles(1 and 2), one very close to the surface of the cylinder
(r1 ≃ R) and one far away (r2 ≫ R). If the dipoles are directed radially, the dipole at the surface forms a quadrupole
with its image (r ′

1 = R2/r1 ≃ R), while the image of the other dipole is very close (r ′
2 = R2/r2 ≪ R) to the axis of

the cylinder and very weak. The distance between the source and sink forming the second dipole is reduced by a factor
(R2/r 2

2) while the strength of each image is equal to that of the original source. As a result the dipole far away from
the cylinder radiates independently of the dipole close to the cylinder.
A very similar behaviour is found when the dipoles forming the quadrupole are normal to the radius of the cylinder (in
tangential direction). Then the radiation of the dipole close to the surface is enhanced by a factor two, while that of the
other dipole is not affected.

k) Equal thrust implies:ρ1u2
1D2

1 = ρ2u2
2D2

2. If ρ1 = ρ2 we haveu1D1 = u2D2. Assuming subsonic free cold jets we

have:I ∼ u8D2 = (uD)8/D6. Hence:I1/I2 = D6
2/D6

1 = 26 or a difference of 36 dB.

In practice a low sound production does also correspond to a lower power1
2ρu3D2 ∼ (uD)3/D. The introduction

of high bypass jet engines was aimed to reduce the propulsioncosts, but it appeared to be also a very efficient noise
reduction method.
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l) As the compressibility of an ideal gas is determined by themean pressure there appears to be no monopole sound
production upon mixing of a hot jet with a cold gas environment with equal specific-heat ratioγ . The sound is produced
[141, 161] by the difference in acceleration between neighbouring particles experiencing the same pressure gradient
but having different densities. This corresponds to a forcein terms of the analogy of Lighthill and a dipole source of
sound. Therefore the radiation scales in a subsonic case atI ∼ M6.

m) The large contrast in compressibilityK between the bubbly liquid and the surrounding water resultsinto a monopole
type source (fluctuating volume). This corresponds to a scaling rule I ∼ M4.

n) This effect is not significant in subsonic free jets.

o) The characteristic frequency for turbulence in a free jetwith circular cross section isu0/D which implies that:D/λ =
D f/c ∼ u0/c0. Hence a subsonic free jet is a compact flow region with respect to sound production by turbulence.
Note: for a free jet with a rectangular cross sectionw × h andw ≫ h the characteristic frequency of the turbulence is
0.03u0/h.

p) Using Curle’s formula:

ρ′ =
xi x j

4π |x|3c4
0

∂2

∂t2

∫∫∫

V

Ti j

(
y, t − |x|

c0

)
dy +

x j

4π |x|2c3
0

∂

∂t
F j

(
t − |x|

c0

)

and ∂
∂t ∼ u0/D, Ti j ∼ ρ0u2

0, F j ∼ ρ0u2
0d D, andV ∼ D3, we obtain:

ρ′ ∼
ρ0u3

0D

4π |x|c3
0

(u0

c0
+ d

D

)
.

The cylinder induces an enhancement of turbulence sound production by a factor(1+ dc0/Du0). Blowing on a finger
we indeed observe a significantly larger sound production than blowing without finger.

q) Sound production due to volume fluctuationsV ′ of the bubble is given by:
ρ′ = (4π |x|c2

water)
−1(∂2/t2)V ′, where, assuming isentropic oscillations of the bubble of initial volumeV0 = 4πa3

0/3

at p0, we have:V ′/V0 = −p′/γair p0. The typical pressure fluctuations in a free jet are of the order p′ ∼ ρwu2
0.

Assuming∂/∂t ∼ u0/D we find

ρ′

ρwater
∼ D

4π |x|
u4

0

c4
water

a3
0

D3

ρwaterc2
water

p0
.

The enhancement in sound production, when compared to no bubbles, is by a factor(1 + (a0/D)3(ρwaterc2
water/p0)).

Sinceρwaterc2
water/p0 = O(104), even a small bubble will already enhance the sound production considerably.

r) With a single blade the sound production as a result of the tangential component of the lift force (in the plane of the
rotor) scales as:ρ′/ρ0 ∼ CL D(k0R)3/8π |x|. The sound produced by the axial component is a factoru0/c0 weaker.
With two opposite blades, the lift forces in tangential direction form a quadrupole which result into a factork0R
weaker sound radiation than in the case of the single blade. The sound production in a ventilator is actually dominated
by non-ideal behaviour such as the non-uniformity of the incoming flow.

s) In a hard walled duct an ideal low speed axial ventilator will not produce any sound. The effect of the tangential
forces is compensated by images in the walls while the pressure difference1p induced by the axial force is constant.
Non-uniformity of the incoming flow will induce fluctuationsin the pressure difference1p which are very efficiently
radiated away. Especially the supports of the ventilators are to be placed downstream of the fan. Further sources of
flow non-uniformity are the air intake or bends.

t) The sound production will be dominated by the interactionof the rotor blades with the thin wake of the wing. The
resulting abrupt changes in lift force on the blades of the rotor induce both radial and axial sound radiation. The thinner
the waker the higher the generated frequencies. As the ear isquite sensitive to relatively high frequencies an increase
of the wake thickness can result into a significant reductionof noise (dBA).
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u) The tip Mach numberωR/c0 = k0R is of order unity. The rotor is therefore not compact at the rotation frequency, and
certainly not at the higher harmonics.

v) The dominant contribution is from the unsteady force, given byCD
1
2ρ0u2

0, on the body. This results into a sound

production scaling as(u0/c0)
3 (see Curle’s formula).

w) ZL = ρ0c0
1
4(k0a)2, Zp = ρ0c0

(ZL + ρ0c0)+ (ZL − ρ0c0)e−2ik0L

(ZL + ρ0c0)− (ZL − ρ0c0)e−2ik0L
.

x) 〈I 〉 = 1
4[ p̂∗û + p̂û∗] = 1

2 Re(Zp)|û|2, and 〈W〉 = πa2〈I 〉.
At resonancek0L = (n + 1

2)π we find: Zp = ρ0c0(ρ0c0/ZL )

(see previous exercise). This corresponds to an enhancement
Zp/ZL = [4/(k0a)2]2 of the radiated power.

y) p̂r = A+ e−ik0r +A− eik0L , iωρ0ûr = p̂ + ik0[A+ e−ik0r −A− eik0L ].
(r1/r2)

2 = S1/S2 andr1 = r2 − L , sor2 = L/(1 −
√

S1/S2).

A+ = ρ0c0ûpr1/
{
[1 − i/(k0r1)] e−ik0r1 −R[1 + i/(k0r1)] eik0r1

}

R = A−

A+ = −
1 − 1

4(k0a2)
2[1 − i/(k0r2)]

1 − 1
4(k0a2)

2[1 + i/(k0r2)]
e−2ik0r2

z) Except for the highest frequencies, there is no radiationinto free-space. Hence the size of the loudspeaker compared
to the acoustical wave-length is not relevant for the sound transfer from loudspeaker to eardrum. The Walkman loud-
speaker acts almost directly onto the eardrum.

A) Friction losses are given by:(1 − | p̂−/ p̂+|) f = 1 − e−2αL ≃ 2αL , whereα can be calculated by using the formula
of Kirchhoff. The friction is proportional to

√
ω.

Radiation losses are given by:(1 − | p̂−/ p̂+|)r = 1
2(k0a)2, and are proportional toω2. Using the results of exercise

(5.f) we find
for f0 : (1 − | p̂−/ p̂+|) f = 5 · 10−2, (1 − | p̂−/ p̂+|)r = 1.2 · 10−4;
for f1 = 3 f0 : (1 − | p̂−/ p̂+|) f = 9 · 10−2, (1 − | p̂−/ p̂+|)r = 1 · 10−3;
for f2 = 5 f0 : (1 − | p̂−/ p̂+|) f = 1.2 · 10−1, (1 − | p̂−/ p̂+|)r = 3 · 10−3.
In a flute of the same size as a clarinet the radiation losses are increased by a factor eight (two radiation holes and twice
the fundamental frequency). The friction losses increase by a factor

√
2 due to the higher frequency.

B) Assuming a perfectly reflecting ground surface, the energy is distributed over a semi-sphere:I = Wr /(2πr 2). As
Imin = 10−12 W/m2, we find forWr = 5 × 10−5 W thatr ≃ 4 km.

C) In free space the bubble experiences the impedance of a compact sphere:
Re(Z) = ρwatercwater(k0a0)

2. In a pipe we have: Re(Z) = ρwatercwater8πa2
0/S.

D) As the twin pipes oscillate in opposite phase the radiation has a dipole character and is a factor(k02a)2 weaker than
for an individual pipe. Such systems are therefore acoustically almost closed. In a duct a wall placed along the duct
axis can form such a system of twin pipes if it is longer than the duct width. In such a case the oscillation of the system
is called a Parker mode and does not radiate because the oscillation frequency is below the cut-off frequency for the
first transverse mode. In fact the twin pipes forms with its images an infinite row of pipes. In a similar way such modes
can occur in rotors or stators of turbines. This kind of oscillations have been reported by Spruyt [224] for grids placed
in front of ventilators.

Chapter 7
a) (i) kca = 2π fca/c0 = j ′11 = 1.84118, sofc = 996.3 Hz.
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(ii) k11 = −15.93 i, so 20 log10 | e−ik11D | = −20|k11|D log10e =
−138.3D = −20, andD = 14.5 cm.

(iii) k11 = −18.4 i, soD = 12.5 cm.

b) Sinceσmµa → ∞, Im/I ′
m → 1 andαmµ = iσmµ ≃ −i kρ0c0/X.

For r ≃ a

Jm(αmµr )

Jm(αmµa)
e−ikmµx ≃

(a

r

)1/2
e−σmµ(a−r ) e

−i
√

k2+σ2
mµx

.

c) A simple point mass sourceQδ(x − x0)eiωt , where we takex0 = 0,ϑ0 = 0, gives rise to the equation

∇2 p + k2 p = −iωQδ(x)
1

r0
δ(r − r0)

∞∑

m=−∞
δ(ϑ − 2πm)

with solution

p(x, t, ϑ) = ωQ

4π

∞∑

m=−∞

∞∑

µ=1

Jm(αmµr0)Jm(αmµr ) e−ikmµ|x|−imϑ

1
2(a

2 − m2/α2
mµ)Jm(αmµa)2kmµ

.

d) F(α, Z) = iωρ0Jm(αR)+ αZ J′
m(αR) = 0, from which it immediately follows thatZ, and henceZopt, is of the form

ρ0ωRKm with Km = Jm(αR)/iαRJ′
m(αR). From ∂

∂α F(α, Z) = 0 it follows thatαR =: z is a (non-zero) solution of
z J′

m(z)+ i (z2 − m2)
1
2 Jm(z) = 0, while Km = (z2 − m2)−

1
2 . Note that we take the sign of the square root that yields

Re(Z) > 0.
A numerical zero-search reveals thatK0 = 0.28330−0.12163i,K1 = 0.20487−0.07049i,K2 = 0.16628−0.05133i.

Chapter 8

a) SinceA(x) = πa2 e2mx, we havep(x) = p̂0 e−i
√

k2−m2x−mx.

b) Sincek1 = |k|(R − h)/R andα = −q we have

R =
∣∣∣∣
ω

αk1ε

∣∣∣∣ = ωR

q|k|(R − h)ε
= R(1 − εh)

(R− h)ε
.

It follows that R = ε−1 = 250 m. and so the largest distance is 2
√

2Rh− h2 = 54.7 m.

d) Replace cos(�τ) and sin(�τ) by ei�τ and−i ei�τ , expressu′
n in y. Then it follows that

Z = 1

σ

[
R+ iρ0ℓω − iρ0c2

0
Sn

Vω

]
.

Chapter 9
a) With the propeller in vane position (no angle of attack) the lift force as defined in (9.26) is directed inz-direction only,

andMe = MR. Using the results of section 9.3 we find

p(x, t) ≃ −
f0M2

R sinθ cosθ cos(φ − ωt + kr)

4πar(1 − MR sinθ cos(φ − ωt + kr))3
.

The radiation pattern has zeros in the directionsθ = 0◦, 90◦, and 180◦, while it has its main directions of radiation in
(near) the conical surfacesθ = 45◦ and 135◦.

b) R = a, R = a, sote = t − a/c0, andR·M = Ma cosα, and

4πp(x, t) = ρ0Q′
e

a(1 − M cosα)2
+ρ0QeV

cosα − M

a2(1 − M cosα)3
= 1

a2(1 − M cosα2)

( a·F′
e

c0
−M ·Fe

)
+ (1 − M2)(a·Fe)

a3(1 − M cosα)3
.
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