
Modeling Software Architectures in the
Unified Modeling Language

NENAD MEDVIDOVIC
University of Southern California
DAVID S. ROSENBLUM and DAVID F. REDMILES
University of California, Irvine
and
JASON E. ROBBINS
CollabNet, Inc.

The Unified Modeling Language (UML) is a family of design notations that is rapidly becoming
a de facto standard software design language. UML provides a variety of useful capabilities to
the software designer, including multiple, interrelated design views, a semiformal semantics ex-
pressed as a UML meta model, and an associated language for expressing formal logic constraints
on design elements. The primary goal of this work is an assessment of UML’s expressive power
for modeling software architectures in the manner in which a number of existing software archi-
tecture description languages (ADLs) model architectures. This paper presents two strategies for
supporting architectural concerns within UML. One strategy involves using UML “as is,” while the
other incorporates useful features of existing ADLs as UML extensions. We discuss the applica-
bility, strengths, and weaknesses of the two strategies. The strategies are applied on three ADLs
that, as a whole, represent a broad cross-section of present-day ADL capabilities. One conclusion
of our work is that UML currently lacks support for capturing and exploiting certain architectural
concerns whose importance has been demonstrated through the research and practice of software
architectures. In particular, UML lacks direct support for modeling and exploiting architectural
styles, explicit software connectors, and local and global architectural constraints.

This material is based upon work supported by the National Science Foundation under Grant
No. CCR-9624846, Grant No. CCR-9701973, and Grant No. CCR-998441. Effort also sponsored by
the Defense Advanced Research Projects Agency, Rome Laboratory, Air Force Materiel Command,
USAF, under agreement numbers F30602-00-2-0615, F30602-97-2-0021, and F30602-94-C-0218,
and the Air Force Office of Scientific Research under grant number F49620-98-1-0061. Additional
support is provided by Rockwell International and Northrop Grumman Corp. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research Projects Agency, Rome Laboratory,
or the U.S. Government.
Authors’ addresses: N. Medvidovic, Computer Science Department, University of Southern
California, Los Angeles, CA 90089-0781; email: neno@usc.edu; D. S. Rosenblum and D. F. Redmiles,
Department of Information and Computer Science, University of California, Irvine, CA 92697-3425;
email: dsr@ics.uci.edu; redmiles@ics.uci.edu; J. E. Robbins, CollabNet, Inc., Brisbane, CA 94005-
1865; email: jrobbins@collabnet.net.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or fee.
C© 2002 ACM 1049-331X/02/0100–0002 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002, Pages 2–57.



Modeling Software Architectures in UML • 3

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.11 [Software Engineering]: Software Architectures

General Terms: Design, Languages, Standardization

Additional Key Words and Phrases: C2, formal modeling, Object Constraint Language, object-
oriented design, Rapide, software architecture, Unified Modeling Language, Wright

1. INTRODUCTION

Software architecture is an aspect of software engineering directed at de-
veloping large, complex applications in a manner that reduces development
costs, increases the potential for commonality among different members of
a closely related product family, and facilitates evolution, possibly at system
runtime [Garlan and Shaw 1993; Perry and Wolf 1992]. The primary focus
of architecture-based software development is shifted from lines-of-code to
coarser-grained architectural elements, their high-level interactions, and their
overall interconnection structure. This enables developers to abstract away un-
necessary details and focus on the “big picture”—system structure, high-level
communication protocols, assignment of software components and connectors
to hosts, development process, and so on [Garlan and Shaw 1993; Kruchten
1995; Luckham and Vera 1995; Perry and Wolf 1992; Soni et al. 1995; Taylor
et al. 1996]. The basic promise of software architecture research is that better
software systems can result from modeling their important architectural as-
pects throughout, and especially early in, the development lifecycle. Choosing
which aspects to model and how to evaluate them are two decisions that frame
software architecture research [Medvidovic and Rosenblum 1997].

To date, the software architecture research community has focused predom-
inantly on analytic evaluation of architectural descriptions. Many researchers
have come to believe that, to obtain the benefits of an explicit architectural
focus, software architecture must be provided with its own body of specification
languages and analysis techniques [Garlan 1995; Garlan et al. 1995; Magee
and Perry 1998; Wolf 1996]. Such languages are needed to define and analyze
properties of a system upstream in its development, thus minimizing the costs
of detecting and removing errors. The languages are also needed to provide
abstractions that are adequate for modeling a large system, while ensuring
sufficient detail for establishing properties of interest. A large number of archi-
tecture description languages (ADLs) have been proposed [Allen and Garlan
1997; Garlan et al. 1994; Luckham and Vera 1995; Magee and Kramer 1996;
Medvidovic et al. 1999; Medvidovic et al. 1996; Moriconi et al. 1995; Shaw,
De Line et al. 1995; Vestal 1996].

Each ADL embodies a particular approach to the specification and evolution
of an architecture. Answering specific evaluation questions demands power-
ful, specialized modeling and analysis techniques that address specific system
aspects in depth. However, the emphasis on depth over breadth of the model
can make it difficult to integrate these models with other development arti-
facts because the rigor of formal methods draws the modeler’s attention away
from day-to-day development concerns. The use of special-purpose modeling

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



4 • N. Medvidovic et al.

Table I. Software Architecture Community Fragmentation

Research Community Practitioner Community

Major Focus Analytic evaluation of architectural Wide range of development issues
models

Artifacts Individual models Families of models to span and
relate issues

Rigor Formal modeling notations Practicality over formality
Primary Goal Powerful analysis techniques Architecture as “big picture”

in development
Scope Depth over breadth Breadth over depth
Outcome Special-purpose solutions General-purpose solutions

languages has made this part of the architecture community fairly fragmented,
as revealed by a recent study of ADLs [Medvidovic and Taylor 2000].

Another community, primarily from industry, has focused on modeling a wide
range of issues that arise in software development, perhaps with a family of
(often less formal) models that span and relate the issues of concern. By pay-
ing the cost of making such models, developers gain the benefit of clarifying
and communicating their understanding of the system. However, emphasizing
breadth over depth potentially allows many problems and errors to go unde-
tected because lack of rigor allows developers to ignore some important details.

These two predominant perspectives on software architecture are summa-
rized in Table I, which compares them along a number of important dimensions.
We acknowledge that the positions of the two communities are significantly
more complex than represented in the table. However, we believe that the table
provides a useful, if simplified, overview of the relationship between the two
communities and shows the need to bridge the chasm between them.

As in the case of the numerous ADLs produced by the research commu-
nity, several competing notations have been used in the practitioner commu-
nity. However, there now exists a concerted effort to standardize on notations
and methods for software analysis and design. Standardization provides an
economy of scale that results in more and better tools, better interoperability
between tools, a larger number of available developers skilled in using the stan-
dard notation, and lower overall training costs. One hypothesis of this paper is
that the benefits of standardization need not be achieved at the expense of losing
the power afforded by specialized notations. Instead, when special-purpose no-
tations are needed, they can often be based on, or related to, standard notations.

Specifically, in this paper we investigate the possibility of using the Unified
Modeling Language (UML) [Booch et al. 1998], an emerging standard software
design language, as a starting point for bringing architectural modeling into
wider, industrial use. At first glance, UML appears to be well suited for this
because it provides a large, useful, and extensible set of predefined constructs,
is semiformally defined, has the potential for substantial tool support, and is
based on experience with mainstream development methods. The primary goal
of this work is an assessment of UML’s expressive power for modeling soft-
ware architectures in the manner in which existing ADLs model architectures.
To this end, we have conducted an extensive examination of UML’s ability to

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 5

Fig. 1. (a) Leveraging a combination of a standard notation (the core model) and a set of specialized
notations (model extensions) to address the multitude of issues that may arise during software
development. (b) Sketch of a corresponding development process in which excursions from the
“main” process are undertaken to address specific concerns using the specialized notations.

model the architectural concepts provided by several ADLs. Our study forms
a necessary foundation for further investigating the possibility of providing a
broadly applicable extension of UML for architecture modeling.

Representing in UML the architectural building blocks supported by an ADL
(e.g., Wright’s components, connectors, ports, roles, and styles [Allen and Garlan
1997]) offers potential benefits both to practitioners who prefer the ADL as a
design notation and to those who are more familiar with UML. For example, if a
mapping were enabled from an architecture modeled in Wright to one in UML,
a Wright user might be able to leverage a wide number of general-purpose
UML tools for later stages of development, such as tools for code generation,
simulation, analysis, reverse engineering, and so forth. Conversely, if UML were
extended to include Wright’s modeling capabilities, it would potentially enable
a UML user to exploit the powerful analyses for which Wright is suited, such
as interface compatibility checking and deadlock detection.

In order to evaluate UML’s suitability for modeling software architectures
in the manner outlined above, we have placed no restrictions on the manner in
which UML is used for this purpose, other than the requirement that the result-
ing approach still involve standard UML. The motivation for this requirement
is clear: Altering UML in any way to better support the needs of software ar-
chitectures invalidates the argument for using a standard notation in the first
place. We have identified three possible strategies for using UML to model ar-
chitectures. Since a preliminary evaluation indicated that one of the strategies
results in a notation that is not legal UML, we have pursued only two strategies
in depth.

It is important to note that we envision the strategies discussed in this paper
being used by practitioners in the context of their existing software processes
and have thus tried to refrain from prescribing a particular process for relat-
ing ADLs and UML. But at least at a high level, our overall approach can be
visualized in the context of a modeled software system as shown in Figure 1a:
Standard, “core” UML is constrained (either implicitly in the way it is used,
or explicitly via the mechanisms discussed below) to address specific architec-
tural concerns identified by the architect. The conceptual view of the corre-
sponding process is given in Figure 1b: Occasional “excursions” from the main
development process may be undertaken as needed to address the identified

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



6 • N. Medvidovic et al.

architectural concerns. These model extensions (Figure 1a) and process excur-
sions (Figure 1b) may involve mapping between UML and ADLs that provide
particular kinds of support, or they may involve using a particular UML ex-
tension and corresponding UML-compliant tools that have been developed to
provide the necessary support.

We have defined a minimum set of requirements for objectively evaluating
UML’s ability to represent software architectures effectively. This set was de-
rived from our extensive studies of ADLs [Medvidovic and Taylor 2000] and
software system development concerns that have significant architectural rel-
evance [Medvidovic and Rosenblum 1997; Medvidovic and Taylor 1998]. While
certainly not exhaustive, we have found these requirements to be sufficiently
broad to highlight both the strengths and weaknesses of UML in this endeavor.
The requirements are as follows:

—UML should be well suited to model the structural concerns (i.e., the con-
figuration or topology [Medvidovic and Taylor 2000]) of a system. This re-
quirement is also advocated in a study of modeling the structural aspects of
architecture in UML by Garlan et al. [Garlan and Kompanek 2000].

—UML should be able to capture a variety of stylistic issues addressed both
explicitly and implicitly by ADLs. These issues include a standard design
vocabulary, recurring topologies, and, possibly, generic system behavior.

—UML should be able to model the different behavioral aspects of a system
focused upon by different ADLs. While this may appear to be an unfair
requirement, given the wide range of semantic models employed by exist-
ing ADLs (e.g., CSP [Allen and Garlan 1997], partially ordered event sets
[Luckham and Vera 1995], π -calculus [Magee and Kramer 1996], first-order
logic [Medvidovic et al. 1999]), its primary goal is to highlight UML’s lim-
itations and suggest possible areas for improvement. Moreover, our study
has shown UML to be surprisingly flexible in representing a wide range of
semantic concerns.

—UML should be able to support modeling of a wide range of component interac-
tion paradigms (whether specific to or independent of a particular style). This
requirement stems from one of the key contributions of software architecture
research—the focus on component interactions (i.e., software connectors) as
first-class system modeling concerns [Mehta et al. 2000; Shaw 1996].

—Finally, a requirement derived from the ones above is that UML should be
able to capture any constraints arising from a system’s structure, behavior,
interactions, and style(s).

The remainder of the paper is organized as follows. Section 2 presents a brief
overview of UML. Section 3 identifies and briefly evaluates the three possible
strategies to modeling architectures in UML. Sections 4 and 5 then present
in-depth evaluations of the two viable strategies based on modeling capabili-
ties provided by three ADLs: C2 [Medvidovic, Oreizy, et al. 1996], Wright [Allen
and Garlan 1994], and Rapide [Luckham and Vera 1995]. Section 6 discusses re-
lated work. Section 7 presents our conclusions, summarizing the strengths and
weaknesses of the presented strategies and outlining plans for future research.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 7

Fig. 2. The four-layer metamodeling architecture of UML. The diagram qualitatively depicts the
increase in the sizes of the modeling spaces at each level. For example, the single meta-meta model
can be used to define a number of meta models, such as UML’s, which can, in turn, be used to model
countless user objects.

2. AN OVERVIEW OF UML

UML is a modeling language with a semiformal syntax and semantics. It is de-
fined within a general four-layer metamodeling architecture shown in Figure 2.
The meta-meta model layer defines a language for specifying the meta model
layer. The meta model layer, in turn, defines legal specifications in a given mod-
eling language; for example, the UML meta model defines legal UML specifica-
tions. The model layer is used to define models of specific software systems. And
the user objects layer is used to construct specific instances of a given model.

The model and meta model layers are most relevant for modeling software
architectures in UML. They are summarized in the remainder of this section.
The section also presents a brief overview of UML’s associated constraint lan-
guage, the Object Constraint Language (OCL). For more extensive details, the
reader is referred to standard texts on UML and OCL [Booch et al. 1998;
Rumbaugh et al. 1998; Warmer and Kleppe 1998] and to the draft specifica-
tion developed by the Object Management Group (OMG) [Object Management
Group 2000].

2.1 UML Design Models and Diagrams

A UML model of a software system consists of several partial models, each of
which addresses a certain set of issues at a certain level of fidelity. UML models
address a number of design issues through a variety of diagrams: (1) classes
and their declared attributes, operations, and relationships; (2) the possible
states and behavior of individual classes; (3) packages of classes and their de-
pendencies; (4) example scenarios of system usage including kinds of users
and relationships between user tasks; (5) the behavior of the overall system
in the context of a usage scenario; (6) examples of object instances with actual
attributes and relationships in the context of a scenario; (7) examples of the
actual behavior of interacting instances in the context of a scenario; and (8) the
deployment and communication of software components on distributed hosts.
Fidelity refers to how closely the model will correspond to the eventual imple-
mentation of the system; low-fidelity models tend to be used early in the lifecycle
and are more problem-oriented and generic, whereas high-fidelity models tend

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



8 • N. Medvidovic et al.

Fig. 3. An example design expressed in UML.

to be used later and are more solution-oriented and specific. Increasing fidelity
demands effort and knowledge to build more detailed models, but results in
more properties of the model holding true in the system.

Figure 3 presents an example of a UML model in which a UML class dia-
gram is used to model part of a human resources system. A Company employs
many Workers, offers many training Courses, and owns many Robots. Robots
and Employees are Workers (i.e., they inherit from Worker as subclasses). La-
bor union contracts constrain Companies such that Robots may not make up
more than 10% of the work force. This is stated in a constraint at the top of
the class diagram; the details of this constraint will be explained shortly. A
training Course contains many Trainees, and each Trainee may take from one
to four Courses. In this example, Trainee is an interface (a set of exported op-
erations) rather than a full class. An Employee is capable of performing all the
operations of Trainee. In UML, aggregation (white diamond) is an association
indicating that one object is temporarily subordinate to one or more others,
whereas composition (black diamond), a stronger form of aggregation, is an
association indicating that an object is subordinate to exactly one other object
throughout its lifetime. The association between Company and Course involves
no inheritance, aggregation, or composition.

2.2 UML Extension Mechanisms and the Object Constraint Language

Designers periodically may need to extend UML in well-defined ways in order to
capture certain kinds of modeling concerns. UML provides a number of exten-
sion mechanisms that allow designers to customize and extend the semantics
of model elements:

(1) Constraints place added semantic restrictions on model elements. The pos-
sibilities for constraints are numerous and include type constraints on class
attribute values, constraints on the construction of associations between
classes, and so on.

(2) Tagged values allow attributes to be associated with model elements. For
instance, a project may wish to associate “version” and “author” tags or
other such metadata with certain model elements.

(3) Stereotypes allow groups of constraints and tagged values to be given de-
scriptive names (with the name specified in double angle brackets), and

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 9

applied to model elements, effectively creating a new yet restricted form
of meta class for constructing models. The semantic effect is as if the con-
straints and tagged values were attached directly to those elements. For
instance, interfaces are identified in class diagrams by attaching the stereo-
type name<<interface>> to class icons; among other things, the stereotype
constrains an interface to declare only operations and no attributes.

(4) Profiles are predefined sets of stereotypes, tagged values, constraints, and
icons to support modeling in specific domains. The UML specification cur-
rently defines profiles for the Unified Process and for Business Modeling
[Object management Group 2000].

It is possible to express constraints on UML models using the Object Con-
straint Language, which combines first-order predicate logic with a diagram
navigation language [Object Management Group 2000; Warmer and Kleppe
1998]. Each OCL expression is specified and evaluated in the context of (the in-
stances of) some model element (referred to as self) and may use attributes and
relationships of that element as terms. The self instance may be a UML classi-
fier (such as a class or an interface), or an element used by a classifier (such as
an attribute, an operation, or an end element of associations), or another type
of model element. OCL also defines operations on sets, bags, and sequences to
support construction and manipulation of collections of model elements in OCL
expressions. For instance, the operations defined within a class form a set that
can be traversed in order to apply a constraint to each operation.

The top of Figure 3 illustrates a simple OCL constraint on the instances of
class Company (the self model element) expressed in terms of the cardinalities
of its associations with Robot and Worker classes. Each association is identified
by the name of the role filled by the class at the other end of the association. By
default, the role name is the name of the class itself with the first letter changed
to lower case, and the role name evaluates to the set of all instances filling the
role. Referring to associations and roles in this manner provides a means of
navigating through the enclosing diagram and is therefore a key technique for
constructing constraints in OCL. The predefined property size is used to obtain
cardinalities of collections of elements (in this case, the number of elements
filling the robot role and the number of elements filling the worker role). Thus,
the constraint says that the number of instances of Robots aggregated to an
instance of Company divided by the number of instances of Workers aggregated
to the instance of Company must be less than one-tenth.

We further describe and illustrate OCL with constraints on the UML meta
model in the next section and in Section 5.

2.3 The UML Meta Model

As mentioned above, UML is a graphical language with semiformal syntax
and semantics, which are specified via a meta model, informal descriptive text,
and constraints [Object Management Group 2000]. The meta model is itself a
UML model that specifies the abstract syntax of UML models. For example, the
UML meta model states that a Class is one kind of model element with certain
attributes, and that a Feature is another kind of model element with its own

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



10 • N. Medvidovic et al.

Fig. 4. Simplified UML meta model (adapted from Object Management Group [2000]). Italicized
classes are abstract (i.e., noninstantiable) classes. All classes are subclasses of ModelElement (ex-
cept ModelElement itself); this relationship is not shown.

attributes, and that there is a one-to-many composition relationship between
them. Thus, in terms of Figure 2, the meta class Class is defined at the meta
model level, and instances of Class are the classes defined in software system
models at the model level. Figure 4 depicts the parts of the UML meta model
used in this paper.

A powerful application of the extension mechanisms described in Section 2.2
is to constrain the way the meta model is used in constructing system models.
In particular, a stereotype can be defined for use with a particular meta model
element and then applied to instances of that element in the model level
(thereby constraining all instances of the stereotyped element at the user ob-
jects level of Figure 2). A stereotype thus essentially creates a new modeling
construct, but one whose use still results in legal UML models. For example,
suppose we wish to enhance the class diagram of Figure 3 to impose a design
constraint that a person may not be a composite element of another class—in
other words, “a person must be the whole in any whole-part relationships.” This
does not prevent a person from participating in containment relationships, only
composite relationships. In this example, composition would mean that employ-
ees could not participate in any other aggregates and never work for another
company. The constraint may be stated formally in OCL as:

Stereotype Person for instances of meta class Class

--1-- If a person is in any composite relationship, it must be the composite, not
the composed.

self.associationEnd.forAll(myEnd |
myEnd.association.associationEnd->forAll(anyEnd |

anyEnd.aggregation = composite implies
myEnd.aggregation = composite))

Note that the stereotype is defined for use with classes (i.e., instances of the
meta model element Class) in system models, and thus we could apply this

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 11

stereotype to class Worker in Figure 3; to do so, the stereotype name would be
specified in double angle brackets (i.e., as <<Person>>) above the name Worker
in Worker’s class icon. Associating the stereotype with a meta model element
in this way allows the stereotype to be defined in terms of attributes, roles, and
other elements at the meta model level. The first line of the OCL constraint
defined in the stereotype is a universal quantifier over all association ends
of the stereotyped class. In particular, self is an instance of the meta model
element Class; Class has associations with instances of the meta model element
AssociationEnd, which by default fills a role called associationEnd in each such
association (see Figure 4). For each such association end myEnd, the second line is
a universal quantifier over all the association ends of the association to which
myEnd is attached (and thus myEnd is included in the quantification). Again,
note that association and associationEnd in this line refer to roles defined for
associations in the meta model. For each such association end anyEnd, the third
line checks to see if the aggregation attribute of anyEnd is composite, indicating
that anyEnd is a composite of the association. If there is a composite association
end, then the fourth line states the requirement that myEnd also must be a
composite of the association. Because UML already constrains associations to
have at most one composite end, this in effect constrains myEnd to be the only
composite in the association.

The labor union constraint presented in Figure 3 and described in Section 2.2
uses terms from the model to constrain the state of the system at run-time. In
contrast, the stereotype Person uses terms from the UML meta model to con-
strain the model of the system. In addition, although not depicted in Figure 4,
models themselves are defined in the meta model through the meta class Model.
This makes it possible to apply constraints to whole diagrams, which for exam-
ple allows one to constrain all the elements of a diagram to uniformly use a
particular set of stereotypes. As described in the next section, we use these
techniques of constraining the UML meta model in our second strategy for
supporting architectural modeling in UML.

3. MODELING SOFTWARE ARCHITECTURES IN UML

The four-layer metamodeling architecture of UML suggests three possible
strategies for modeling software architectures using UML:

1. Use UML “as is.”

2. Constrain the UML meta model using UML’s built-in extension mechanisms.

3. Extend the UML meta model to directly support the needed architectural
concepts.

Each approach has certain potential advantages and disadvantages. This
section presents a brief discussion and preliminary evaluation of the ap-
proaches. Recall from the introduction that, in order to reap the benefits of
standardization (e.g., understandability and manipulability by standard tools),
we require that any resulting notation adhere to the syntax and semantics
of UML.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



12 • N. Medvidovic et al.

Fig. 5. The UML model is explicitly constrained to support software architecture modeling needs.

3.1 Strategy 1: Using UML “As Is”

The simplest strategy is to use the existing UML notation to represent software
architectures. Assessing the practicality of this approach requires an evalu-
ation of the suitability of UML’s modeling features for representing specific
architectural concepts. A major advantage of the approach is that it would
result in architectural models that are immediately understandable by any
UML user and manipulable by UML-compliant tools. However, the approach
would provide no means for explicitly representing the relationship between
existing UML constructs and architectural concepts for which there is no di-
rect UML counterpart (such as software connectors and architectural style
rules). Rather, this relationship would have to be maintained implicitly by the
software architect.

3.2 Strategy 2: Constraining UML

The space of software development situations and concerns for which UML is
intended exceeds that of ADLs (e.g., as reflected in UML’s support for require-
ments analysis and specification, and low-level design). Therefore, one possible
approach to modeling architectures in UML is to constrain UML. UML is an ex-
tensible language in that new constructs may be added to address new concerns
in software development. It provides a means for incorporating new modeling
capabilities and addressing new development concerns without changing the
existing syntax or semantics of UML. This is accomplished via the extension
mechanisms described in Section 2.2. Conceptually, this approach can be rep-
resented using UML’s metamodeling architecture from Figure 2. As depicted in
Figure 5, only a relevant portion of the UML modeling space is made available
to the software architect.

The major advantage of this approach is that it explicitly represents and
enforces architectural constraints. Furthermore, an architecture specified in
this manner would still be manipulable by standard UML tools and would be
understandable to UML users (with some added effort in studying the OCL con-
straints). A disadvantage of the approach is that it may be difficult to fully and
correctly specify the boundaries of the modeling space in Figure 5. Additionally,
as a practical concern, tools that enforce OCL constraints in UML specifications
are only beginning to emerge [Tigris 2000].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 13

Fig. 6. The UML meta model is extended to support software architecture modeling needs.

3.3 Strategy 3: Augmenting UML

One obvious, and therefore tempting, approach to adapting UML to support
the needs of software architectures is to augment UML’s meta model, as shown
in Figure 6. Augmenting the meta model helps to formally incorporate new
modeling capabilities into UML. The potential benefit of such an extension
is that it could fully capture every desired feature of every ADL and provide
“native” support for software architectures in UML. However, the challenge of
standardization is finding a language that is general enough to capture needed
concepts without adding too much complexity, while such a modification would
result in a notation that is overly complex. More importantly, the notation would
not conform to the UML standard and could become incompatible with UML-
compliant tools.

Given that it violates the key requirement that the resulting notation adhere
to the syntax and semantics of UML, we do not pursue the third strategy further.
We discuss the first two strategies, outlined in Sections 3.1 and 3.2, in more
detail below.

4. STRATEGY 1: UML AS AN ARCHITECTURE DESCRIPTION LANGUAGE

At first blush, it appears that the rich set of notations and features provided by
UML make it suitable “as is” for modeling software architectures. Indeed, many
of the proponents of UML believe that its support for modeling the architecture
of a system is entirely adequate. This viewpoint is perhaps best represented
by the Unified Software Process, a process developed by the creators of UML
for “architecture-centric” development of systems using UML [Jacobson et al.
1999]. However, we note that there is still widespread disagreement as to what
a software architecture is, and hence we expect there to be even greater dis-
agreement as to how to model an architecture in UML.

We evaluate the presumption of UML’s adequacy by using UML to model
applications in the same manner as they would be modeled using an ADL.
This strategy allows us to assess the support provided by UML for the needs of
architectural modeling and to compare directly the modeling power provided
by UML to that of an ADL.

To illustrate this strategy, we model an application in the C2 architectural
style using its accompanying ADL [Taylor et al. 1996]. While neither the chosen

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



14 • N. Medvidovic et al.

application nor the style are universally applicable, they are sufficient to high-
light the important similarities and differences between UML and ADLs. This
example is representative in that a number of issues we encountered are in-
dependent of C2 or the application’s characteristics, in particular representing
architectural structure and individual elements (components and connectors) in
UML, modeling component and connector interfaces in UML, identifying differ-
ent roles that the elements of a UML domain model play in the architecture, and
the process of transforming a UML domain model into an architectural model.

4.1 Example Application

The selected example application is a simplified version of the meeting sched-
uler problem, initially described by van Lamsweerde and colleagues [Feather
et al. 1997] and recently considered as a candidate model problem in software
architectures [Shaw, Garlan et al. 1995]. In this application, meetings are typi-
cally arranged in the following way. A meeting initiator asks all potential meet-
ing attendees for a set of dates on which they cannot attend the meeting (their
“exclusion set”) and a set of dates on which they would prefer the meeting to take
place (their “preference set”). The exclusion and preference sets are contained
in some time interval prescribed by the meeting initiator (the “date range”). The
meeting initiator also asks active participants to provide any special equipment
requirements on the meeting location (e.g., projector, workstation, network con-
nection, telephones). The meeting initiator may also ask important participants
to state preferences for the meeting location.

The proposed meeting date should belong to the stated date range and to
none of the exclusion sets. It should also ideally belong to as many preference
sets as possible. A date conflict occurs when no such date can be found. A
conflict is strong when no date can be found within the date range and outside
all exclusion sets; it is weak when dates can be found within the date range
and outside all exclusion sets, but no date can be found at the intersection of
all preference sets. Conflicts can be resolved in several ways:

—The meeting initiator extends the date range.
—Some participants expand their preference set or narrow down their exclusion

set.
—Some participants withdraw from the meeting.

4.2 Overview of C2

Before proceeding with the architectural design of the application, we provide
a high-level overview of the C2 architectural style [Taylor et al. 1996], needed
to understand this example. Section 5 contains a more detailed discussion of
the style’s rules. C2 and its accompanying ADL [Medvidovic, Oreizy et al. 1996;
Medvidovic et al. 1999; Medvidovic, Taylor et al. 1996] are used for highly dis-
tributed software systems. In a C2-style architecture, software connectors trans-
mit messages between components, while components maintain state, perform
operations, and exchange messages with other components via two interfaces
(named “top” and “bottom”). Each interface consists of a set of messages that

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 15

Fig. 7. A C2-style architecture for a meeting scheduler system.

may be sent and a set of messages that may be received. A component inter-
face may be attached to at most one connector. A connector may be attached
to any number of other components and connectors. Intercomponent messages
are either requests for a component to perform an operation, or notifications
that a given component has performed an operation or changed state. Request
messages may only be sent “upward” through the architecture, and notification
messages may only be sent “downward.”

The C2 style further demands that components communicate with each other
only through message-passing, never through shared memory. Also, C2 requires
that notifications sent from a component correspond to its operations, rather
than the needs of any components that receive those notifications. This con-
straint on notifications helps to ensure substrate independence, which is the
ability to reuse a C2 component in architectures with differing substrate com-
ponents (e.g., different GUI toolkits). The C2 style explicitly does not make any
assumptions about the language(s) in which the components or connectors are
implemented, whether or not components execute in their own threads of con-
trol, the deployment of components to hosts, or the communication protocol(s)
used by connectors.

4.3 Modeling the Meeting Scheduler in C2

This section presents a partial model of the meeting scheduler application in
C2 using its ADL.1 The purpose of this model is to introduce the reader to the
nuances of architectural decomposition according to the rules of C2, as well
as to serve as a basis for evaluating the corresponding UML model, given in
Section 4.4. Figure 7 shows a graphical depiction of a C2-style architecture for
the meeting scheduler system. The system consists of components supporting
the functionality of a MeetingInitiator and several potential meeting Atten-
dees and ImportantAttendees. Three C2 connectors are used to route messages
among the components. Certain messages from the MeetingInitiator are sent
both to Attendees and ImportantAttendees, while others (e.g., to obtain meeting
location preferences) are only routed to ImportantAttendees. Since a C2 compo-
nent has only one communication port on its top and one on its bottom, and all
message routing functionality is relegated to connectors, it is the responsibility

1A complete model of the application is given in Medvidovic and Rosenblum [1999].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



16 • N. Medvidovic et al.

of MainConn to ensure that AttConn and ImportantAttConn above it receive
only those messages relevant to their respective attached components.

The MeetingInitiator component initiates the computation by sending re-
quests for meeting information to Attendees and ImportantAttendees. The two
sets of components notify the MeetingInitiator component, which attempts to
schedule a meeting and either requests that each potential attendee mark it in
his/her calendar (if the meeting can be scheduled), or it sends other requests to
attendees to extend the date range, remove a set of excluded dates, add preferred
dates, or withdraw from the meeting. Each Attendee and ImportantAttendee
component, in turn, notifies the MeetingInitiator of its date, equipment, and lo-
cation preferences, as well as excluded dates. Attendee and ImportantAttendee
components cannot make requests of the MeetingInitiator component, since
they are above it in the architecture.

Most of this information is implicit in the graphical view of the architec-
ture shown in Figure 7. For this reason, we specify the architecture in C2’s
textual ADL [Medvidovic, Oreizy et al. 1996; Medvidovic, Taylor et al. 1996].
For simplicity, we assume that all attendees’ equipment needs will be met, and
that a meeting location will be available on the given date and that it will be
satisfactory for all (or most) of the important attendees.

The MeetingInitiator component is specified below. The component only com-
municates with other parts of the architecture through its top port. The requests
it sends to initiate the computation in the system are specified in the startup
segment of its behavior.2

component MeetingInitiator is
interface

top domain is
out

GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
GetLocPrefs ();
RemoveExclSet ();
RequestWithdrawal (to Attendee);
RequestWithdrawal (to ImportantAttendee);
AddPrefDates ();
MarkMtg (d : date; l : loc type);

in
PrefSet (p : date rng);
ExclSet (e : date rng);
EquipReqts (eq : equip type);
LocPref (l : loc type);

behavior
startup always generate GetPrefSet, GetExclSet, GetEquipReqts,

GetLocPrefs;

2Startup and cleanup are optional parts of a component’s specification that indicate any special
processing needed after the component is instantiated and before it is removed from a system,
respectively (see Medvidovic and Rosenblum [1999]). In an OO language, startup functionality
is typically provided as part of an object’s constructor, while proper cleanup is ensured by the
destructor.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 17

received messages PrefSet may generate RemoveExclSet xor
RequestWithdrawal xor MarkMtg;

received messages ExclSet may generate AddPrefDates
xor RemoveExclSet xor RequestWithdrawal xor MarkMtg;

received messages EquipReqts may generate AddPrefDates xor
RemoveExclSet xor RequestWithdrawal xor MarkMtg;

received messages LocPref always generate null ;
end MeetingInitiator;

The Attendee and ImportantAttendee components receive meeting schedul-
ing requests from the Initiator and notify it of the appropriate information. The
two types of components only communicate with other parts of the architecture
through their bottom ports.

component Attendee is
interface

bottom domain is
out

PrefSet (p : date rng);
ExclSet (e : date rng);
EquipReqts (eq : equip type);

in
GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
RemoveExclSet ();
RequestWithdrawal ();
AddPrefDates ();
MarkMtg (d : date; l : loc type);

behavior
received messages GetPrefSet always generate PrefSet;
received messages AddPrefDates always generate PrefSet;
received messages GetExclSet always generate ExclSet;
received messages GetEquipReqts always generate EquipReqts;
received messages RemoveExclSet always generate ExclSet;
received messages RequestWithdrawal always generate null ;
received messages MarkMtg always generate null ;

end Attendee;

ImportantAttendee is a specialization of the Attendee component: It dupli-
cates all of Attendee’s functionality and adds specification of meeting location
preferences. ImportantAttendee is thus specified as a subtype of Attendee that
preserves its interface and behavior (though it can implement that behavior in
a new manner).

component ImportantAttendee is subtype Attendee (int and beh )
interface

bottom domain is
out

LocPrefs (l : loc type);
in

GetLocPrefs ();
behavior

received messages GetLocPrefs always generate LocPrefs;
end ImportantAttendee;

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



18 • N. Medvidovic et al.

The MeetingScheduler architecture depicted in Figure 7 is shown below. The
architecture is specified with the conceptual components (i.e., component types)
defined above. Each conceptual component (e.g., Attendee) can be instantiated
multiple times in a system.

architecture MeetingScheduler is
conceptual components

Attendee; ImportantAttendee; MeetingInitiator;
connectors

connector MainConn is message filter no filtering ;
connector AttConn is message filter no filtering ;
connector ImportantAttConn is message filter no filtering ;

architectural topology
connector AttConn connections

top ports Attendee;
bottom ports MainConn;

connector ImportantAttConn connections
top ports ImportantAttendee;
bottom ports MainConn;

connector MainConn connections
top ports AttConn; ImportantAttConn;
bottom ports MeetingInitiator;

end MeetingScheduler;

An instance of the architecture (a system) is specified by instantiating the
components. For example, an instance of the meeting scheduler application
with three participants and two important participants is specified as follows:

system MeetingScheduler 1 is
architecture MeetingScheduler with

Attendee instance Att 1, Att 2, Att 3;
ImportantAttendee instance ImpAtt 1, ImpAtt 2;
MeetingInitiator instance MtgInit 1;

end MeetingScheduler 1;

4.4 Modeling the C2-Style Meeting Scheduler in UML

UML provides constructs for modeling software components, their interfaces,
and their deployment on hosts.3 However, these built-in constructs are not suit-
able for describing architecture-level components because they assume both too
much and too little. Components in UML are assumed to be concrete, executable
artifacts that consume machine resources such as memory. In contrast, archi-
tectural components are conceptual artifacts that decompose the system’s state
and behavior. Although instances of architectural components in a given system
may be implemented by concrete UML component instances, the architectural
components are not themselves concrete. Furthermore, components in UML
may have any number of interfaces and any internal structure, whereas ar-
chitectural components must satisfy the rules or constraints imposed on them

3Unless otherwise noted, “component” in this discussion refers to a component type, as opposed to
a specific instance of that type. This is the case with both architectural components (modeled in an
ADL) and UML components.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 19

Fig. 8. UML class diagram for the meeting scheduler application. Details (attributes and opera-
tions) of each individual class have been elided for clarity.

(e.g., by an architectural style such as C2). For these reasons, we have chosen
instead to use UML classes to model architectural components.

The key to this strategy for relating UML and an ADL is ensuring that the
design of an application in UML be driven and constrained both by the mod-
eling features available in UML and the constraints imposed by the ADL (and
possibly its underlying architectural style rules). The two must be considered
simultaneously. For this reason, the initial steps in this process are to develop
(1) a domain model for the application expressed in UML and (2) an informal
architectural diagram, such as the C2 diagram from Figure 7. The architec-
tural diagram is key to making the appropriate mappings between classes in
the domain model and components in the architectural diagram. This step is
similar to relating domain models and reference architectures in the domain-
specific software architecture (DSSA) process [Tracz 1995]. One effect of the
mapping is that it directly points to the need to explicitly model architectural
constructs that commonly are not found in UML designs, such as the connectors
and component message interfaces found in a C2-style architecture.

Our initial attempt at a UML domain model for the meeting scheduler ap-
plication is shown in the class diagram in Figure 8. The diagram depicts the
domain classes, their inheritance relationships, and their associations. Apart
from limiting MeetingInitiator to a single instance and specifying possible car-
dinalities of the other components, the diagram abstracts away many architec-
tural details, such as the mapping of classes in the domain to implementation
components, the order of interactions among the different classes, and so forth.
Furthermore, much of the semantics of class interaction is missing from the di-
agram. For example, the association Invites associates two Meetings with one
or more Attendees and one MeetingInitiator. However, the association does not
make clear the fact that the two Meetings are intended to represent a range of
possible meeting dates, rather than a pair of related meetings.

Message interfaces are prominent elements of C2-style components (recall
Section 4.3). This is reflected in a UML design by modeling interfaces (i.e.,

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



20 • N. Medvidovic et al.

Fig. 9. Meeting scheduler class interfaces.

Fig. 10. Application-specific UML classes representing C2 connectors.

class icons stereotyped with <<interface>>) explicitly and independently of
the classes that will implement those interfaces. Each class corresponding to
a component exports one or more of the interfaces shown in Figure 9. The
interfaces ImportantMtgInit and ImportantMtgAttend inherit from the inter-
faces MtgInit and MtgAttend, respectively. The only difference is the added
operation to request and notify of location preferences. Note that every method
signature (i.e., UML operation) in Figure 9 corresponds to a C2 message in the
architecture specified in Section 4.3. All operations in the UML model will be
implemented as asynchronous message passes, as they would in C2. For this
reason, the method signatures in Figure 9 lack return types.

In order to model a C2 architecture in UML, connectors must be defined.
Although connectors fulfill a role different from components, they can be mod-
eled also with UML classes. However, a C2 connector is by definition generic
and can accommodate connections to any number and type of C2 components;
informally, the interface of a C2 connector is a union of the interfaces of its
attached components. Furthermore, C2 connectors inherently support broad-
cast of messages to all the recepient components, in which case each compo-
nent decides whether it is interested in a given message. UML does not sup-
port this form of genericity; instead, the connectors specified in UML must be
application-specific, have fixed interfaces, and support message unicast. To re-
flect the generic nature of C2 connectors, the connector classes for the meeting
scheduler application realize the same interfaces as the components they con-
nect. Each connector can be thought of as a simple class that (possibly filters
and) forwards the messages it receives to the appropriate components. There-
fore, while the component class interface specifications, shown in Figure 9,
correspond to the different C2 components’ outgoing messages (i.e., their pro-
vided functionality), the connector interfaces are routers of both the incoming
and outgoing messages, as depicted in Figure 10. Connectors do not add any

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 21

Fig. 11. UML class diagram for the meeting scheduler application designed in the C2 architectural
style.

functionality at the domain model level; they are thus absent from the class
diagram in Figure 8.

A refined class diagram for the meeting scheduler application is shown in
Figure 11, which depicts primarily the interface relationships between the
classes. In particular, each solid arc from a class to a circle labeled with an
interface name is a “lollipop” depicting the realization of the interface by the
class, while each dashed arrow from a class to a lollipop depicts a dependency
the class has on the interface. The classes Attendee and ImportantAttendee
are related by interface inheritance, which is depicted in Figure 9, but is only
implicit in Figure 11. We have omitted from Figure 11 the classes Location,
Meeting, and Date shown in Figure 8, since they represent the data exchanged
by the components in the system and have not been impacted. We have also
omitted the two superclasses for the components and connectors (Person and
Conn, respectively).

The class diagram in Figure 11 has been deliberately structured to highlight
its similarity with the C2 architecture depicted in Figure 7. One difference
is that the diagram in Figure 7 depicts instances of the different components
and connectors, while a UML class diagram depicts classes (i.e., types) and
their associations (with multiplicities used to convey information about the
number of possible instances); in other words, the class diagram represents the
possible relationships among instances of the depicted classes. Furthermore,
being a class diagram, it does not formally capture the topological constraints
implied by its layout. To both depict class instances and more accurately convey
topological intent, we use a collaboration diagram.

Figure 12 depicts a collaboration between an instance of the MeetingIni-
tiator class (MI) and instances of Attendee and ImportantAttendee classes
(with the collaboration represented by the numbered sequence of operation

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



22 • N. Medvidovic et al.

Fig. 12. Collaboration diagram for the meeting scheduler application showing a response to a
request issued by the MeetingInitiator to both Attendees and ImportantAttendees.

invocations). In particular, MI issues a request for a set of preferred meeting
dates; MC, an instance of the MainConn class, routes the request to instances of
both connectors above it, AC and IAC, which, in turn, route the requests to all
components attached on their top sides; each participant component chooses
a preferred date and notifies any components below it of that choice; these
notification messages will eventually be routed to MI via the connectors. Note
that, if MI had sent the request to get meeting location preferences (GetLocPrefs
in the ImportantMtgInit interface in Figure 9), MC would have routed it only
to IAC and none of the instances of the Attendee class would have received
that request.

The above diagrams, and particularly Figure 11, differ from a C2 architecture
in that they explicitly specify only the messages a component receives (via
interface attachments to the class icon for a component). On the other hand, a
model of a C2-style architecture also specifies the messages sent by components,
as well as structural and behavioral aspects of the architecture. The issue of
architectural structure and behavior is further discussed below.

4.5 Discussion

We base our assessment of UML’s suitability for modeling software architec-
tures using this first strategy on the evaluation requirements introduced in
Section 1. The exercise described above demonstrated that, to a large extent,
we can successfully model a C2-style architecture in UML. Part of the success
can be attributed to the fact that, as anticipated, many architectural concepts
are found in UML (e.g., interfaces, components, component associations, and
so forth). The same basic strategy can be used to model the structure of ar-
chitectures that adhere to other styles and/or are modeled with other ADLs,
e.g., ACME [Garlan et al. 1997], Darwin [Magee and Kramer 1996], or UniCon
[Shaw, Deline et al. 1995].

It must be noted, however, that the modeling capabilities provided by UML
“as is” do not fully satisfy the structural needs of architectural description
for two key reasons. First, UML does not provide specialized constructs for
modeling architectural artifacts. For example, although they are different

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 23

architectural entities with very different responsibilities, connectors and com-
ponents must be modeled in UML using the same mechanism. Second, the rules
of a given architectural style are directly reflected in its corresponding ADL and
maintained by the accompanying toolset, whereas those rules must be applied
mentally by the software architect who chooses to use UML. “Emulating” par-
ticular structural constraints in UML, as was done in the example in Section
4.4, is an error-prone approach. Furthermore, additional documentation must
accompany such a UML model to ensure that no future modifications violate
the desired constraints.

Note that the purpose of this work is a general assessment of the ability of
UML “as is” to model software architectures. In order to more thoroughly eval-
uate UML in this regard and point out all of its strengths and shortcomings,
one could extend the approach discussed above by representing the major struc-
tural ADL features using additional UML diagrams (e.g., package diagrams),
as in [Garlan and Kompanek 2000]. While the specific details of such an eval-
uation are likely to vary from one chosen representation to another, the two
major shortcomings of UML discussed above will remain.

In addition to structural aspects of an architecture, a number of ADLs (e.g.,
Rapide [Luckham and Vera 1995] and Wright [Allen and Garlan 1994; Allen
and Garlan 1997]) also provide constructs for modeling the dynamic component
behavior and interactions in the architecture. UML’s features, such as sequence,
collaboration, and statechart diagrams, can be used effectively to this end (see
Section 5). As with the structural constructs, however, it may be difficult to
ensure that the intended behaviors or interactions, as they would be speci-
fied in an ADL (e.g., in Wright’s communicating sequential processes, or CSP
[Hoare 1985]), are correctly modeled in UML (e.g., using statecharts). These po-
tential difficulties motivate our exploration of the second strategy introduced
in Section 3.2.

5. STRATEGY 2: CONSTRAINING UML TO MODEL SOFTWARE
ARCHITECTURES

The second strategy for modeling architectures in UML involves using OCL to
specify additional constraints on existing meta classes of UML’s meta model. In
principle, this allows the use of existing UML-compliant tools to represent and
analyze the desired architectural models, and ensure architectural constraints.
This strategy involves

—selecting one or more existing meta classes from the UML meta model in
which to situate a given ADL modeling construct or capability, and

—defining a stereotype that can be applied to instances of those meta classes
in order to constrain their semantics to that of the associated ADL feature.

This strategy treats UML as a core notation that is extended in order to
support specific architectural concerns. Note that this notion of extension is
different from the one discussed in Section 3.3 and depicted in Figure 6: UML is
conceptually extended to provide architects with additional modeling tools that
originally did not exist in UML; however, the UML meta model remains intact

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



24 • N. Medvidovic et al.

and the OCL facilities are actually used to constrain the notation to a specific
UML-compliant subset. As new concerns arise in development, new extensions
may be added to support those concerns. The semantics of the core notation are
always enforced by UML-compliant tools. The semantics of each extension are
enforced by the constraints of that extension. Dependencies and conflicts may
arise between different extensions and must be handled by developers just as
they manage other development dependencies and conflicts. This situation is
not ideal, but it is practical: It uses available methods and tools that are well
integrated into day-to-day development, and it is incremental. We feel that
these features are key to bringing the benefits of architectural modeling into
mainstream use.

We demonstrate this approach by providing examples of UML extensions
for three ADLs: C2, Wright, and Rapide. We selected these languages because
our extensive study of ADLs [Medvidovic and Taylor 2000] indicates that they
constitute a broadly representative set of capabilities found in current ADLs:

—C2 provides guidance for structural decomposition and event-based interac-
tion according to a particular but fairly general architectural style;

—Wright enables behavioral and interaction modeling of individual architec-
tural elements; and

—Rapide supports specification of local and global behavioral constraints.

The extensions based on these ADLs allow a broad assessment of UML’s suit-
ability for architecture modeling. Furthermore, they provide several insights
that could inform the design of a UML profile for architectural modeling. Each
of the three extensions is discussed in more detail below and evaluated with
respect to the requirements established in Section 1.

5.1 Extensions Based on C2

The basic elements of the C2 style and its accompanying ADL were discussed
in Section 4. The ADL is tightly tied to the C2 style; its syntax and seman-
tics directly derive from the style. In this section we further elaborate on the
C2 ADL’s elements and model their semantics in UML via stereotypes.4 The
key elements of a C2 architectural description are components, connectors, and
their architectures. Components and connectors interact by exchanging mes-
sages (also referred to as events); a message received by a component typ-
ically results in one or more outgoing messages. The style constraints that
determine legal architectural topologies were informally discussed in Section
4.2 and will be formally specified below. Note that the ADL also allows sim-
ple causal relationships to be specified between incoming and outgoing mes-
sages in a component. However, we have chosen not to model this aspect of
the ADL; instead, we point the reader to Section 5.3, where a much more ex-
pressive mechanism for modeling event causality is discussed and represented
in UML.

4In this section we present a representative sample of the stereotypes we have defined for C2. For
a full specification, see Robbins et al. [1998].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 25

5.1.1 C2 Messages in UML. The UML meta class Operation matches the
C2 concept of a message specification. A UML operation consists of a name, a
parameter list, and an optional return value. Operations may be public, private,
or protected. To model C2 message specifications, we add a tag to differentiate
notifications from requests and to constrain Operation to have no return values.
C2 messages are all public, but that property is built into the UML meta class
Interface, used in the definition of stereotype C2Interface below.

Stereotype C2Operation for instances of meta class Operation

--1-- C2Operations are tagged as either notifications or requests.

c2MsgType : enum { notification, request }

--2-- C2Operations are tagged as either incoming or outgoing.

c2MsgDir : enum { in, out }

--3-- C2 messages do not have return values.

self.parameter->forAll(p | p.kind <> return)

This stereotype is intended for application to operations (which are defined
within classes and interfaces). The stereotype contains both tagged values
(c2MsgType and c2MsgDir) and a universally quantified constraint on the param-
eters of the stereotyped operation (in particular, on the attribute kind defined
for meta class Parameter in the meta model, as shown in Figure 4).

5.1.2 C2 Components in UML. The UML meta class Class is closest to C2’s
notion of component.5 Classes may provide multiple interfaces with operations,
may own internal parts, and may participate in associations with other classes.
However, there are aspects of Class that are not appropriate, namely, that a
class may have methods and attributes. In UML, an operation is a specification
of a procedural abstraction (i.e., a procedure signature with optional pre- and
post-conditions), while a method is a procedure body. Components in C2 provide
only operations, not methods, and those operations must be part of interfaces
provided by the component, not directly part of the component.

Stereotype C2Interface for instances of meta class Interface

--1-- A C2Interface has a tagged value identifying its position.

c2pos : enum { top, bottom }

5Other researchers have explored using different UML constructs to model components. For ex-
ample, Hofmeister et al. [2000] used UML Classes to model simple components (i.e., modules) and
UML Packages to model composite components (i.e., subsystems), while Garlan and Kompanek
[2000] explored the possibility of modeling components using several additional UML elements
(see Section 6). We believe that no single selection of UML constructs will be sufficient to fulfill ev-
eryone’s architecture needs. Furthermore, multiple options may be pursued even in a single project.
Although it may be possible to model C2 components with, say, UML packages instead of classes,
such an exercise is outside the scope of this paper.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



26 • N. Medvidovic et al.

--2-- All C2Interface operations must have stereotype C2Operation.

self.operation->forAll(o | o.stereotype = C2Operation)

Stereotype C2Component for instances of meta class Class

--1-- C2Components must implement exactly two interfaces, which must be
-- C2Interfaces, one top, and the other bottom.

self.interface->size = 2 and
self.interface->forAll(i i.stereotype = C2Interface) and
self.interface->exists(i i.c2pos = top) and
self.interface->exists(i i.c2pos = bottom)

--2-- Requests travel “upward” only, i.e., they are sent through top interfaces
-- and received through bottom interfaces.

let topInt = self.interface->select(i i.c2pos = top) in
let botInt = self.interface->select(i i.c2pos = bottom) in
topInt.operation->forAll(o |

(o.c2MsgType = request) implies (o.c2MsgDir = out)) and
botInt.operation->forAll(o |

(o.c2MsgType = request) implies (o.c2MsgDir = in))

--3-- Notifications travel “downward” only. Similar to the constraint above.

--4-- Each C2Component has at least one instance in the running system.

self.allInstances->size >= 1

The constraints in these stereotypes use many OCL features illustrated ear-
lier in the paper, including quantification over meta model elements and cardi-
nalities of collections. The second constraint of C2Component defines additional
attributes (topInt and botInt) that are used to aid the definition of the con-
straint. The property allInstances returns all the instances of the associated
model element (the self in the case of constraint 4 in stereotype C2Component) in
existence at the time the expression is evaluated. The operation select selects
a subset of an associated set for which the specified expression is true.

5.1.3 C2 Connectors in UML. C2 connectors share many of the constraints
of C2 components. However, components and connectors are treated differently
in the architecture composition rules discussed below. Another difference is
that connectors may not define their own interfaces; instead their interfaces
are determined by the components that they connect.

We can model C2 connectors using a stereotype C2Connector that is similar to
C2Component. Below, we reuse some constraints and add two new ones. But first,
we introduce three stereotypes for modeling the attachments of components to
connectors. These attachments are needed to determine component interfaces.

Stereotype C2AttachOverComp for instances of meta class Association

--1-- C2 attachments are binary associations.

self.associationEnd->size = 2

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 27

--2-- One end of the attachment must be a single C2Component.

let ends = self.associationEnd in
ends[1].multiplicity.min = 1 and ends[1].multiplicity.max = 1 and
ends[1].class.stereotype = C2Component

--3-- The other end of the attachment must be a single C2Connector.

let ends = self.associationEnd in
ends[2].multiplicity.min = 1 and ends[2].multiplicity.max = 1 and
ends[2].class.stereotype = C2Connector

Stereotype C2AttachUnderComp for instances of meta class Association.
Same as C2AttachOverComp, but with the order reversed.

Stereotype C2AttachConnConn for instances of meta class Association

--1-- C2 attachments are binary associations.

self.associationEnd->size = 2

--2-- Each end of the association must be on a C2 connector.

self.associationEnd->forAll(ae |
ae.multiplicity.min = 1 and ae.multiplicity.max = 1 and
ae.class.stereotype = C2Connector)

--3-- The two ends are not the same C2Connector.

self.associationEnd[1].class <> self.associationEnd[2].class

Stereotype C2Connector for instances of meta class Class

--1 through 3-- Same as constraints 1–3 on C2Component.

--4-- Each C2 connector has exactly one instance in the running system.

self.allInstances->size = 1

--5-- The top interface of a connector is determined by the components and
-- connectors attached to its bottom.

let topInt = self.interface -> select(i | i.c2pos = top) in
let downAttach = self.associationEnd.association -> select(a |

a.associationEnd[2] = self) in
let topsIntsBelow = downAttach.associationEnd[1].interface->select(i|

i.c2pos = top) in topsIntsBelow.operation->asSet =
topInt.operation->asSet

--6-- The bottom interface of a connector is determined by the components and
-- connectors attached to its top. This is similar to the constraint above.

The above stereotypes use the attribute multiplicity of association ends.
Note that because the meta-level association between an Association and an
AssociationEnd is ordered, the associationEnd role evaluates to a sequence
(which is indexable) rather than to a set. While UML places no semantic signif-
icance on this ordering, and while modelers usually do not concern themselves

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



28 • N. Medvidovic et al.

with the underlying order of an association, we nevertheless found it necessary
to exploit this ordering to encode topological information about the architecture.
As will be seen later, this requires the architect to use a particular diagrammatic
convention allowed by UML to ensure that the required order is maintained.
This may seem somewhat inelegant; however, the only alternative we could con-
ceive is to encode such topological information in additional tagged values in
the relevant stereotypes. We have opted against this second alternative (adding
tagged values) because it would complicate the model, while, at the same time,
still requiring the architect to explicitly select appropriate values for the tags.

Note also that it is possible to specify constraints in terms of the stereotypes
associated with a model element. This is done above in the C2Attach stereo-
types, as well as below in the C2Architecture stereotype, to ensure that the C2
stereotypes are used consistently and completely when defining the topology of
a C2 architecture.

5.1.4 C2 Architectures in UML. We now turn our attention to the overall
composition of components and connectors in the architecture of a system. Re-
call from Section 4.2 that well-formed C2 architectures consist of components
and connectors, components may be attached to one connector on the top and
one on the bottom, and the top (bottom) of a connector may be attached to any
number of other connectors’ bottoms (tops). Below, we also add two new rules
that guard against degenerate cases (constraints 7 and 8).

Stereotype C2Architecture for instances of meta class Model

--1-- The classes in a C2Architecture must all be C2 model elements.

self.modelElement->select(me | me.oclIsKindOf(Class))->forAll(c |
c.stereotype = C2Component or
c.stereotype = C2Connector)

--2-- The associations in a C2Architecture must all be C2 model elements.

self.modelElement->select(me | me.oclIsKindOf(Association))->
forAll(a | a.stereotype = C2AttachOverComp or
a.stereotype = C2AttachUnderComp or
a.stereotype = C2AttachConnConn)

--3-- Each C2Component has at most one C2AttachOverComp.

let comps = self.modelElement->select(me |
me.stereotype = C2Component) in

comps->forAll(c | c.associationEnd.association->select(a |
a.stereotype = C2AttachOverComp)->size <= 1)

--4-- Each C2Component has at most one C2AttachUnderComp. Similar to the
-- constraint above.

--5-- C2Connectors do not participate in any non-C2 associations.

let conns = self.modelElement->select(me |
me.stereotype = C2Connector) in

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 29

conns.associationEnd.association->forAll(a |
a.stereotype = C2AttachOverComp or
a.stereotype = C2AttachUnderComp or
a.stereotype = C2AttachConnConn)

--6-- C2Components do not participate in any non-C2 associations. Similar to
-- the constraint above, but without the third disjunct.

--7-- Each C2Connector must be attached to some connector or component.

let conns = self.modelElement->select(e |
e.stereotype = C2Connector) in

conns->forAll(c | c.associationEnd->size > 0)

--8-- Each C2Component must be attached to some connector. Similar to the
-- constraint above.

The operation oclIsKindOf used in the above stereotypes is a predicate on
the meta model class of the associated model instance. It evaluates to true if the
instance belongs to the specified class or one of its subclasses. This operation
is used in situations where a class of interest in the meta model is a subclass
of some superclass that is directly accessible within the enclosing expression.
This is the situation with Class and Association, which are two of the many
subclasses of ModelElement (recall Figure 4); in turn, ModelElement is directly
associated with the class Model to which the stereotype applies.

5.1.5 Discussion of C2 Extensions. Constraining UML to enforce the rules
of the C2 style has been fairly straightforward, because many (mostly struc-
tural) C2 concepts are found in UML. Neither C2 nor UML constrain the choice
of implementation language or require that any two components be imple-
mented in the same language. Neither UML (as we have used it in this sec-
tion) nor C2 constrain the choice of interprocess communication mechanisms,
nor do they assume that any two components run in the same thread of con-
trol or on the same host. Both UML and C2 support interactions via message
passing. However, it should be noted that UML only allows specification of the
messages received (corresponding to the operations provided) by a class, but
not messages sent by the class; call actions can be used in a state diagram as-
sociated with the class to invoke required operations in another class, but the
call actions are not explicitly declared as elements of the invoking class. We
see this as a major shortcoming of UML, and we were forced to build the dis-
tinction between provided and required operations into our model indirectly by
using the tagged values c2MsgType and c2MsgDir, which for required operations
merely document the intent that an operation be required. Finally, although
we did not model details of the internal parts of a C2 component [Taylor et al.
1996] or the behavior of any C2 constructs, such aspects can be modeled in
UML, as demonstrated in the following sections where we capture the internal
behavioral aspects of model elements expressed in Wright and Rapide.

It is important to note that, while a majority of the concepts discussed above
are implicit in the C2 ADL (recall the example in Section 4), each concept had to
be carefully, explicitly specified in UML. The reason, of course, is that C2 ADL’s

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



30 • N. Medvidovic et al.

Fig. 13. The C2-style architecture depicted in Figures 7 and 11 expressed in “constrained” UML.
Component interfaces have been omitted to draw attention to the stereotypes defining the different
architectural elements. For clarity, we show the resulting topology among classes (i.e., component
types) rather than their instances.

sole purpose is to model C2-style architectures and most of its semantics is
directly derived from the style, while UML has a much broader intended scope.
This is also the major difference between our first strategy to modeling soft-
ware architectures in UML, discussed in Section 4, and this strategy: Unlike
the first strategy, where the different architectural concepts (e.g., components,
connectors, messages) were implicit in the UML design, this approach explicitly
defines and constrains all relevant concepts. For example, the C2-style architec-
ture represented in a UML class diagram in Figure 11 now appears as shown in
Figure 13. This diagram clearly distinguishes between components, connectors,
and their different kinds of associations. Although components and connectors
are derived by constraining the same UML meta class, this has been abstracted
away in the diagram. In addition, as mentioned in Section 5.1.3, the formaliza-
tion of the semantics of attachments in C2 requires an explicit diagrammatic
indication (using a notation defined by UML) of the underlying order of the
attachment associations. This is the purpose of the upward-pointing triangles
on all the attachment associations in Figure 13.

It is also worth pointing out that some concepts of C2 are very different from
those of UML and object-oriented design in general. For example, mainstream
object-oriented design maintains a strict dichotomy between classes and in-
stances where all the major traits (i.e., the “blueprint”) of an instance are spec-
ified in its class definition. In contrast, as already discussed, the interface of a
C2 connector is determined by context rather than declared; the addition of a
new component instance at run-time is considered an architectural change. If
a system uses two C2 connectors, they must each have their own class in the cor-
responding UML design since a different set of C2 component instances will be
attached to each connector. However, the two connectors may be implemented

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 31

by the same concrete module. Another conceptual difference is that, strictly
speaking, it is legal for C2 messages to be sent and not received by any compo-
nent, whereas UML assumes that every message sent will be received. We have
declined to address this last difference since it does not involve a key property
of C2 and would introduce more complexity than we feel it merits.

5.2 Extensions Based on Wright

The preceding section demonstrates that an ADL that supports a specific archi-
tectural style can be modeled in UML. This section demonstrates the applicabil-
ity of our second strategy to a general-purpose ADL, Wright [Allen and Garlan
1994; Allen and Garlan 1997]. In addition to the features modeled below, a more
recent version of Wright also supports system families, architectural styles, and
hierarchical composition [Allen 1997]. We do not address these newer features
here; as mentioned, the preceding section illustrates how support for archi-
tectural styles can be incorporated into UML using our second strategy, while
Hofmeister et al. [2000] have shown that a system family and hierarchical com-
position can be incorporated using an approach that is in essence an instance
of our second strategy.

An architecture in Wright is described in three parts:

—component and connector types;
—component and connector instances; and
—configurations of component and connector instances.

Unlike C2, Wright does not enforce the rules of a particular style, but is
applicable to multiple styles. However, it still places certain topological con-
straints on architectures. For example, as in C2, two components cannot be
directly connected, but must communicate through a connector; on the other
hand, unlike C2, Wright disallows two connectors from being directly attached
to one another.

The remainder of the section describes an extension to UML for modeling
Wright architectures. Stereotypes and constraints are elided whenever they
are obvious from the discussion in this or the previous section.

5.2.1 Behavioral Specification in Wright. Wright uses a subset of CSP
[Hoare 1985] to provide a formal basis for specifying the behavior of compo-
nents and connectors, as well as the protocols supported by their interface
elements. Given that this subset “defines processes that are essentially finite
state” [Allen and Garlan 1994, p. 74] it is possible to model Wright’s behavioral
specifications using UML state machine diagrams.

CSP processes are entities that engage in communication events. An event,
e, can be primitive, or it can input or output a data item x (denoted in CSP with
e?x or e!x, respectively). CSP events are modeled in state machines as shown
in Figure 14.

These two types of state transitions can be used in modeling more complex
CSP expressions supported by Wright. Table II presents the mapping from CSP
to state machines using events with no actions (Figure 14a); the mapping for
null events with actions (Figure 14b) is straightforward. It is possible for CSP

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



32 • N. Medvidovic et al.

Table II. UML State Machine Templates for Wright’s CSP Constructs

CSP Concept CSP Notation UML State Machine

Prefixing P= a→Q

Alternative (deterministic choice) P= b→Q [] c→R

Decision (nonderministic choice) P=d→Qu e→R

Parallel Composition P=Q ‖R

Success Event P=√

Fig. 14. (a) A CSP event with input data, e?x, is modeled in UML state machines as a state
transition event with no action. (b) A CSP event, e, with output data, e!x, is modeled as a null state
transition event that results in action e.

events to have no associated data. In such a case, the semantics of state ma-
chines forces us to make a choice as to which entities generate events and which
observe them. We choose to model Wright ports and roles (described below) with
event-generating actions, and computation and glue with transitions that ob-
serve those events. The state machines in Table II can be used as templates from
which equivalents of more complex CSP expressions can be formed.6 Therefore,
a “Wright” state machine is described by the following stereotypes.

Stereotype WSMTransition for instances of meta class Transition

--1-- A transition is tagged as one of the two cases shown in Figure 14.

WSMtransitionType : enum { event, action }
--2-- An “event” transition consists of a call event only (Figure 14a).

self.WSMtransitionType = event implies
(self.event->notEmpty and self.event.oclIsKindOf(CallEvent) and
self.action->isEmpty)

6Note that operational models of CSP based on state machines and transition systems are well
known; e.g., see Roscoe [1988] and Scattergood [1998]. Our approach is similar, but also leverages
the advanced modeling features of UML state machines and aims at providing a notational aid to
software designers.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 33

--3-- An “action” transition consists of a null event and a single action
-- (Figure 14b).

self.WSMtransitionType = action implies
(self.event->isEmpty and self.action->size = 1)

Stereotype WrightState for instances of meta class State

--1-- All Transitions in a composite WrightState must be WSMTransitions

self.oclIsKindOf(CompositeState) implies
self.transition->forAll(t | t.stereotype = WSMTransition)

--2-- WrightState applies recursively to its nested states

self.oclIsKindOf(CompositeState) implies
(self.oclAsType(CompositeState).state->forAll(s |
s.stereotype = WrightState))

Stereotype WrightStateMachine for instances of meta class StateMachine

--1-- A WrightStateMachine consists of one of the composite states discussed
-- above, and partially depicted in Table 2. This constraint is elided in the
-- interest of space.

--2-- All WrightStateMachine transitions must be WSMTransitions.

self.top.oclIsKindOf(CompositeState) implies
self.top.transition->forAll(t | t.stereotype = WSMTransition)

--3-- The nested states of the top state of a WrightStateMachine must be
-- WrightStates

self.top.oclIsKindOf(CompositeState) implies
(self.top.oclAsType(CompositeState).state->forAll(s |
s.stereotype = WrightState))

The stereotypes above use the operation oclAsType to coerce the associated
model element to the specified class of the meta model, thereby providing access
to the other meta model elements accessible from the specified meta class. They
also illustrate the basic pattern we use to constrain state machines, namely,
expressing constraints in terms of model elements reachable from the single,
top-level state of a state machine (i.e., its attribute top).

5.2.2 Wright Component and Connector Interfaces in UML. Each Wright
interface (a port in a component or a role in a connector) has one or more
operations. In Wright, these operations are modeled implicitly, as part of
a port or role’s CSP protocol. We choose to model the operations explicitly
in UML. The CSP protocols associated with a port or role are modeled as
WrightStateMachines.

Stereotype WrightOperation for instances of meta class Operation

--1-- WrightOperations do not have parameters; parameters are implicit in the
-- CSP specification associated with each operation.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



34 • N. Medvidovic et al.

self.parameter->isEmpty

Stereotype WrightInterface for instances of meta class Interface

--1-- WrightInterfaces are tagged as either ports or roles.

WrightInterfaceType : enum { port, role }
--2-- All operations in a WrightInterface are WrightOperations.

self.operation->forAll(o | o.stereotype = WrightOperation)

--3-- Exactly one WrightStateMachine is associated with each WrightInterface.

self.stateMachine->size = 1 and
self.stateMachine->forAll(sm | sm.stereotype = WrightStateMachine)

--4-- The WrightStateMachine of a WrightInterface is expressed only in terms
-- of that interface’s operations, all of which must be operations associated
-- with the call events on the transitions of the state machine.

self.stateMachine.transition->forAll(t |
(t.event.oclIsKindOf(CallEvent)) implies
self.operation->exists(o | o = t.event.operation))

5.2.3 Wright Connectors in UML. A connector type in Wright is described
as a set of roles, which describe the expected behavior of the interacting com-
ponents, and a glue, which defines the connector’s behavior by specifying how
its roles interact.

We will model Wright connectors with the UML meta class Class. Wright
connectors provide multiple interfaces (roles) and participate in associations
with other classes (Wright components). Wright connector types are assumed
to have no state other than the state of their internal parts, and thus may have
no direct attributes.

Stereotype WrightGlue for instances of meta class Operation

--1-- WrightGlue contains a single WrightStateMachine.

self.stateMachine->size = 1 and
self.stateMachine->forAll(sm | sm.stereotype = WrightStateMachine)

Stereotype WrightConnector for instances of meta class Class

--1-- WrightConnectors must implement at least one WrightInterface, which
-- must be a role.

self.interface->size >= 1 and
self.interface->forAll(i |

i.stereotype = WrightInterface and
i.WrightInterfaceType = role)

--2-- A WrightConnector contains a single glue.

self.operation->size = 1 and
self.operation->forAll(o | o.stereotype = WrightGlue)

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 35

--3-- Operations with no data and with input data that belong to the different
-- interface elements of a connector are the trigger events in the glue’s state
-- machine.

self.operation.stateMachine.transition->forAll(t |
(t.event.oclIsKindOf(CallEvent)) implies
self.interface.operation->exists(o | o = t.event.operation))

--4-- Operations with output data that belong to the different interface elements
-- of a connector are the actions in glue’s state machine. Similar to the above
-- constraint.

--5-- The semantics of a Wright connector can be described as the parallel
-- interaction of its glue and roles [Allen and Garlan 1994].

let glueop = self.operation->select(o | o.stereotype = WrightGlue) in
self.stateMachine->size = 1 and
self.stateMachine->forAll(sm |

sm.top.oclIsKindOf(CompositeState) implies
(sm.top.isConcurrent = true and
sm.top.state->size = 1 + self.interface->size and
sm.top.state->exists (gs gs = glueop.stateMachine.top) and
self.interface->forAll(i
sm.top.state->exists (rs | rs = i.stateMachine.top)))

--6-- A WrightConnector must have at least one instance in the running system.

self.allInstances->size >= 1

The fifth constraint of stereotype WrightConnector is rather complex, since
it must specify a number of conditions arising from the semantics of connectors
in Wright. In particular, for the state machine associated with a connector, its
top-level state must have concurrent substates. One of these substates is the top
state of the glue’s state machine, and each of the remaining substates is the top
state of the state machine of a (role) interface. Thus, the number of substates
must be one plus the number of roles, and the glue and all roles must have
their top states represented as substates of the state machine of the connector.
Every role plus the glue is represented exactly once in the state machine of the
connector, and the states thus represented are concurrently composed to form
the top state of the connector.

5.2.4 Wright Components in UML. A component type is modeled by a set of
ports, which export the component’s interface, and a computation specification,
which defines the component’s behavior. We model Wright components in UML
with a stereotype WrightComponent. This stereotype has much in common with
the WrightConnector stereotype and is thus omitted.

5.2.5 Wright Architectures in UML. We introduce stereotypes for mod-
eling the attachments of components to connectors and for Wright architec-
tures. Unlike C2, which considers architectures to be networks of abstract

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



36 • N. Medvidovic et al.

placeholders, Wright architectures are composed of component and connector
instances. One solution we considered was to define WrightConnectorInstance
and WrightComponentInstance stereotypes and express architectural topology
in terms of them. However, we believe it is undesirable to introduce instances
at this level, since we are dealing with design issues. Additionally, we have
found that most of the rules for composition of component and connector in-
stances hold for their corresponding types. Therefore, we refer to component
and connector types in the stereotypes below.

Stereotype WrightAttachment for instances of meta class Association

--1-- Wright attachments are associations between two elements.

self.associationEnd->size = 2

--2-- One end of the association must be the port of a WrightComponent, and
-- the other must be the role of a WrightConnector.

let ends = self.associationEnd in
ends[1].multiplicity.min = 1 and ends[1].multiplicity.max = 1 and
ends[2].multiplicity.min = 1 and ends[2].multiplicity.max = 1 and
((ends[1].interface.stereotype = WrightInterface and

ends[1].interface.WrightInterfaceType = port and
ends[2].interface.stereotype = WrightInterface and
ends[2].interface.WrightInterfaceType = role) or

(ends[2].interface.stereotype = WrightInterface and
ends[2].interface.WrightInterfaceType = port and

ends[1].interface.stereotype = WrightInterface and
ends[1].interface.WrightInterfaceType = role) or

Stereotype WrightArchitecture for instances of meta class Model

--1-- The classes in a WrightArchitecture must all be Wright model elements.

self.modelElement->select(me | me.oclIsKindOf(Class))->forAll(c |
(c.stereotype = WrightComponent or
c.stereotype = WrightConnector)

--2-- The associations in a WrightArchitecture must all be Wright model
-- elements.

self.modelElement->select(me | me.oclIsKindOf(Association))->
forAll(a | a.stereotype = WrightAttachment)

--3-- Each WrightComponent port participates in at most one association with
-- a WrightConnector role, and vice versa.

let comps = self.modelElement->select(e | e.stereotype =
WrightInterface) in comps.associationEnd->size <= 1

--4 and 5-- WrightComponents and WrightConnectors do not participate in any
-- non-Wright associations. Similar to constraints 5 and 6, respectively, of
-- stereotype C2Architecture in Section 5.1.4.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 37

Fig. 15. A connector specified in Wright (adapted from Allen and Garlan [1994]).

The semantics of port-role attachments in Wright are formally defined [Allen
and Garlan 1997]. However, Wright places no language-level constraints on
port-role pairs. Instead, establishing and enforcing these constraints is the task
of external analysis tools. Hence, we provide no port-role compatibility con-
straints. Furthermore, unlike the situation described in Section 5.1.3, where
we found it necessary to exploit the underlying order of constrained associa-
tions, in the case of WrightAttachment we found it unnecessary to account for
the ordering, and so that stereotype allows the association to be specified in
either order.

5.2.6 Discussion of Wright Extensions. We have defined the stereotypes
for Wright in much the same way we did for C2 in Section 5.1. Similar aspects
of the two ADLs were captured and constrained in similar ways. For example,
components and connectors are modeled as stereotyped classes, and their valid
compositions in an architecture (i.e., architectural structure) as stereotyped
associations. At the same time, modeling Wright’s component and connector
semantics required a significant augmentation to what was done for C2.

As an example, consider a Wright specification of a Pipe connector, adapted
from Allen and Garlan [1994] and shown in Figure 15. The connector is repre-
sented in UML by using the stereotyped class WrightConnector; it is analogous
to one of the stereotyped C2Connector classes from Figure 13 and has been
omitted for brevity. However, unlike the UML model of C2, which was entirely
captured by stereotyping classes and their associations, we model the complex
internal behavior and interactions of a Wright component or connector using
the UML state machine diagrams. The state machine model of the Pipe con-
nector is shown in Figure 16. Wright’s scoping of events is modeled in UML
by prefixing every event’s name with the name of the role to which the event
belongs.

Figure 16 demonstrates how the state machines from Table II become atomic
building blocks of a CSP specification modeled in UML. In that sense, Table II
serves the same purpose as OCL stereotypes: It places constraints on the al-
lowed uses of a UML construct. Note, however, that while adherence to stereo-
types must be ensured by UML-compliant tools, this aspect of our approach
does not: A standard UML tool may treat a particular state machine as valid
even if it violates the mapping given in Table II. We do not consider this a
problem. UML state machines are a powerful modeling formalism in their own
right [Harel 1987; Harel and Naamad 1996] and we have shown how they can
model a useful subset of CSP. In doing so, we have given practitioners the choice
of either mapping architectural models between UML and Wright in order to

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



38 • N. Medvidovic et al.

Fig. 16. UML state machine model of the Pipe connector.

exploit Wright’s tool support or building comparable support in UML. While
neither of the two tasks is trivial, the benefits of either one may outweigh the
difficulties.

5.3 Extensions Based on Rapide

This section describes the application of our second strategy to Rapide, an ADL
that has a particularly rich semantic basis and supports the specification of
architectural constraints [Luckham et al. 1995; Luckham and Vera 1995]. With
Rapide we also begin to encounter some of the limitations of the second strategy.
As will be seen, these limitations stem from weaknesses and ambiguities in the
semantics of UML itself.

The underlying behavioral model of Rapide is partially ordered sets (or posets)
of events. In particular, the behavior of components is characterized in Rapide
primarily in terms of events, which can be associated with typed parameters.
Components observe events in the external environment of their execution, and
they declare these events as in actions. Components generate events into their
external environment, and they declare these events as out actions. Compo-
nents can be multithreaded; as threads within or across components synchro-
nize with each other, they establish causal dependencies between their event
streams. Hence, the behaviors of both individual components and a complete
architecture can be represented by an event poset, in which event orderings

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 39

represent causal dependencies introduced by thread synchronizations. The
structural aspects of components and architectures in Rapide can be repre-
sented with UML class diagrams in a manner similar to the approaches de-
scribed previously for C2 and Wright. In this section we focus our attention on
representing the event-based behavioral modeling features of Rapide.

Rapide supports two kinds of event-based specifications. First, a component
behavior can be specified in terms of state transition rules, in which a compo-
nent observes a pattern of events and then generates an associated pattern of
events in response. Second, event pattern constraints can be used to specify
restrictions on the content of the poset generated by a component or an archi-
tecture. The Rapide tools currently restrict the specification of constraints to
never constraints, which specify event patterns that should never occur within
the behavior of the enclosing component or architecture; our extensions for
constraints thus adhere to this restriction.

Both kinds of event-based specification in Rapide are expressed in terms
of event patterns, compound patterns of events expressed using a variety of
compositional operators. These operators can be used to specify when events
should happen in sequence in the causal order, when they should happen inde-
pendently of each other in the causal order, when one of a set should happen,
when all of a set should happen, and so on.

Analysis of Rapide specifications is carried out via runtime simulation of
an architectural model. The Rapide runtime system executes state transi-
tion rules to drive the simulation, and it evaluates constraints against the
generated poset. In particular, the runtime system matches event patterns
against corresponding events in the poset of an execution; the matching of
any portion of event pattern can be constrained by a Boolean-valued guard
associated with the portion. Placeholders also can be used within an event
pattern to achieve unification-style binding to corresponding values in the
matched events.

We use a simple Bank component for a banking system to illustrate some of
the features of Rapide and to illustrate our approach to representing Rapide’s
event modeling features in UML:

type Bank is interface
action in Open Account (Customer : Integer),

Deposit (Acct : Natural; Amt : Float),
Withdraw (Acct : Natural; Amt: Float);

out Assign Account (Customer : Integer; Acct : Natural),
New Balance (Acct : Natural; Amt : Float);

behavior
type Account Array is array [Natural] of ref (Float);
Accounts : Account Array (1 .. 100, default is ref to (Float, 0.0));
Last : var Natural := 0;

begin
(?C : Integer)

Open Account (?C) where $Last < 100 => Last := $Last + 1;
Assign Account (?C, $Last);;

(?A : Natural; ?D : Float)
Deposit (?A, ?D) => Accounts[?A] := $(Accounts[?A]) + ?D;
New Balance (?A, $(Accounts[?A]);;

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



40 • N. Medvidovic et al.

(?A : Natural; ?D : Float)
Withdraw (?A, ?D) => Accounts[?A] := $(Accounts[?A]) − ?D;
New Balance (?A, $(Accounts[?A]);;

constraint
never (?A : Natural; ?D : Float)

New Balance (?A, ?D) where ?D < 0.0;
never (?C1, ?C2 : Integer; ?A1, ?A2 : Natural)

(Assign Account (?C1, ?A1) -> Assign Account (?C2, ?A2)) where ?A2 == ?A1;
end Bank;

As shown in the specification, a Rapide component is defined by an interface
type. The Bank component observes three kinds of events (opening an account,
and depositing and withdrawing money in an account), as specified in the dec-
laration of its in actions. Its out actions specify that it generates two kinds of
events (assigning an account number and reporting a new balance). Each of
these kinds of events is parameterized with appropriate information (integer
customer numbers, natural account numbers, floating-point dollar amounts).

The behavior section of the component sets up an array of 100 accounts to
hold account balances (with each account initialized to zero, and the variable
Last used to remember the most recently assigned account number). The com-
ponent’s behavior is specified by three state transition rules, each of which uses
placeholders (the variables denoted with “?”) to quantify over all possible oc-
currences of the events mentioned in the rules. The portion of a rule to the left
of the “=>” symbol is the rule’s trigger, which, if matched, causes the portion to
the right of the “=>” symbol, the rule’s body, to be executed. Note that the bodies
specify both generated events and updates to local state variables. In general,
the state transition rules of a Rapide component are unordered and are fired re-
peatedly; the choice of which rule to fire is nondeterministic, although the avail-
ability and unavailability of matches for the triggers helps narrow the choice.

The first rule of the Bank component says that whenever a customer ?C opens
an account (as signified by the occurrence of an Open Account event), then the
value of the variable Last is incremented (using an assignment statement) and
the same customer ?C is assigned the value of variable Last as the new account
number (through the generation of an Assign Account event). The reading of the
variable’s value is denoted with “$”. The use of the guard (the where clause)
on the event in the trigger ensures that the rule is triggered only if the array
of accounts has not been exhausted. The rule would fire for all occurrences of
an Open Account event for which the guard is true. The second rule says that
whenever an amount ?D is deposited to an account ?A (via a Deposit event),
then the balance of the same account ?A is updated to reflect the deposit, and
then the new balance is reported (via a New Balance event). The third rule
handles withdrawals in a manner similar to the rule for deposits.

The constraint section of the component describes two patterns of events that
should never happen during the execution of the component. The first says that
the component should never generate a New Balance event for any account ?A
and any amount ?D less than 0.0 (thereby disallowing the reporting of negative
balances). The second says that there should never be a compound sequence
(as indicated by the “->” operator) of two Assign Account events in which the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 41

first event assigns an account ?A1 to a customer ?C1 and the second assigns
an account ?A2 to a customer ?C2, with ?A1 and ?A2 being equal (thereby
disallowing the assignment of the same account to multiple customers).

Additional component interface types would be declared to complete the spec-
ification of the banking system’s components, and then instances of the types
would be declared in a Rapide architecture declaration to specify the configura-
tion of the component instances.

For the remainder of this section we focus in detail on the representation
of Rapide component behaviors in UML. We will then conclude with a brief
discussion of other features of Rapide.

5.3.1 Representing Rapide Event Patterns in UML. There is a natural cor-
respondence between events in Rapide and signals in UML state diagrams.
Hence we can use UML signals to model events in our extensions for Rapide.
Like a Rapide event, a UML signal corresponds to an atomic occurrence in
time, is associated with a set of parameters of arbitrary type, is associated with
a single component (i.e., UML class), is generated by a component (as a send
action) as part of the execution of its state machine, and can be observed by
a component (as a signal event) during the execution of its state machine. A
signal is observed or sent by a component thread asynchronously with respect
to the execution of other threads in the same or other components. A signal may
be broadcast to multiple components and hence is observable by multiple com-
ponents (and possibly at multiple places within a component state machine),
although a particular instance of a signal is observed at most once by any one
state machine thread.

A signal event typically triggers a transition in the state machine of a com-
ponent, and a send action is typically executed as a response. Therefore, we can
model Rapide component behaviors (i.e., the set of state transition rules as-
sociated with a Rapide component) as UML state machines whose transitions
are associated with signal event triggers and send actions that correspond to
individual Rapide events. The state machine notation in UML is rich enough
to model all of the compound event patterns that can be specified in Rapide,
and thus we represent compound event patterns with corresponding composite
states in the UML state machines. Furthermore, the trigger of a state machine
transition can be constrained by a Boolean guard condition, and in this way we
can model the guards on Rapide event patterns.

Figure 17 sketches a state machine illustrating the basic approach to model-
ing Rapide component behaviors in UML. The figure shows a state machine for
a component having m state transition rules and n constraints, with the set of
rules forming one substate and each constraint forming an additional parallel
substate. Each parallel substate is designed as a looping machine, to reflect the
fact that rules are selected and executed repeatedly (until the component ter-
minates), and the fact that constraints are checked repeatedly. Furthermore,
each state representing a rule or constraint in Figure 17 in actuality comprises
an appropriate composition of nested substates and transitions that models its
associated pattern of events in a manner similar to the patterns defined for
Wright in Table II. Within the parallel substate for the rules, the machine is

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



42 • N. Medvidovic et al.

Fig. 17. State machine template for modeling Rapide component behaviors and behavior con-
straints in UML.

designed so that one rule at a time is fired, with the choice of rule being nonde-
terministic. Within the parallel substates for each constraint, a special signal
is used to represent the violation of the constraint.

Figure 18 shows how the general form of Figure 17 would be instantiated for
the Bank component described previously. The top parallel substate represents
the three state transition rules of the Bank component. The middle and bottom
parallel substates represent the first and second constraints, respectively, of the
Bank component. Note that the updates to local state variables in the Rapide
state transition rules are represented by entry actions in intermediate states
(i.e., the states between the transitions representing the rule triggers and the
events of the rule bodies). As shown in the final transitions of the middle and
bottom parallel substates, the signal Constraint Violation is used to repre-
sent the violation of the associated constraint. The bottom parallel substate
illustrates the representation of a Rapide composite event pattern, in this case,
a sequence of two events. The sequencing of the constraint is reflected in the
sequencing of the two UML transitions through an intermediate state.

Construction of a state machine such as the one shown in Figure 18 raises
a number of additional problems that must be dealt with in the representation
of Rapide event patterns in UML. We discuss these problems next.

5.3.2 Representing Rapide Variables and Placeholders in UML. The first
serious problem we encountered is how to represent variables and placeholders
declared in a Rapide component specification. Local variables declared inside
a component (such as Accounts and Last in the Bank component) can be rep-
resented in UML as private attributes of the associated class. Thus, Accounts
and Last would be declared as private attributes of the UML class representing
the Bank component, reducing the problem to representation of placeholders
declared within Rapide state transition rules and constraints.

In a UML state machine, a simple variable mentioned on a transition and not
otherwise declared as an attribute of the associated class is visible only to that
transition and its target state. However, the scope of the placeholders declared
in the Rapide state transition rules and constraints extends throughout the
associated rule or constraint. To represent this larger scope of the placeholders
in the UML state machine, the placeholder names must be qualified to clarify

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 43

Fig. 18. UML state machine representation of Rapide Bank component.

their scope. Furthermore, in order to segregate the scopes of the variables for
each state transition rule and constraint, the portion of the UML state machine
representing each rule and constraint must be represented by its own named
substate, as demonstrated in Figure 18.

For instance, the second state transition rule of the Bank component de-
clares a placeholder ?A and uses it in the Deposit event in the rule trigger, in
the New Balance event in the rule body, and in the update to the Accounts
array in the rule body. To achieve the desired effect in UML, the variable
representing the placeholder ?A is named Rule2::A in all cases in substate

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



44 • N. Medvidovic et al.

Rule2. Using the unqualified name A everywhere within substate Rule2 would
cause one variable named A to be associated with the Deposit transition and
a different variable named A to be associated with the New Balance transi-
tion, thereby losing the binding of the A used in New Balance to the A used
in Deposit.

These subtleties involving variables in UML are a consequence of UML’s
semantics of namespaces, which are associated with many different kinds of
model elements. However, we were unable to determine from the UML specifi-
cation [Object Management Group 2000] whether our use of variable naming
described here actually achieves the desired effect, including both the implicit
declaration of variable A in Rule2’s namespace and the binding behavior in-
duced by the placeholder semantics of Rapide.

5.3.3 Representing Multiple Matches of Rapide Event Patterns in UML.
The framework described above for representing Rapide events and event pat-
terns in UML is complicated further by the fact that there may be multiple
candidate sets of events that can form a partial match of a Rapide event pat-
tern. All such sets must be maintained until a complete match is found. This
applies both to the selection of a particular state transition rule to fire and
to the detection of all possible constraint violations. Hence, the UML state
machine representing an event pattern must be constructed in such a way
that it is “re-entrant” in a manner corresponding to the matching semantics
of Rapide.

We use recursive submachine state references in a UML state diagram to
represent the re-entrant behavior of Rapide event patterns. A submachine state
reference is a pseudostate that references another state machine by name, with
the semantics being that the named state machine is expanded in place of the
reference.7 Essentially, once there is a match for a single event of a larger event
pattern, the state machine representing the pattern must be re-entered to allow
subsequent matches of the full pattern.

Figure 19 illustrates how a submachine state reference is used in the
representation of a Rapide constraint. The figure presents an improved
version of substate Constraint2 of Figure 18, which represents the sec-
ond constraint of the Bank component. The improved version uses a recur-
sive reference to Constraint2 (the include clause), thereby allowing multiple
parallel attempts to match the constraint, one for every occurrence of an
Assign Account event.

Rapide state transition rules can be treated in a similar manner, except that
a complete match of one rule’s trigger terminates any partial matches for other
rules. Although not shown here, the termination can be achieved with judicious
use of signals.

5.3.4 Representing Rapide Event Causality in UML. Our representational
framework for Rapide events is complicated still further by the need to main-
tain information about the causal ordering of events in Rapide. The problems in

7It is not clear whether the UML semantics [Object Management Group 2000] actually allows
submachine state references to be recursive, and we know of no UML tools that support them.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 45

Fig. 19. Use of submachine state reference in UML representation of Rapide constraints.

maintaining information about causality in distributed systems are well known
[Lamport 1978]. The traditional solution for explicitly representing the partial
order of a set of events is to associate a vector timestamp with each event [Fidge
1991]. In UML, many of the more subtle nuances of event ordering semantics
are left unspecified, or are specified very loosely [Object Management Group
2000]. In particular, we interpret the semantics of UML (especially the seman-
tics of event queues for state machines) as allowing one component to send
signals in one order and another component to observe the signals in a com-
pletely different order, with no means for avoiding deadlock in the observing
component. Hence, signals in UML do not respect typical notions of causality. In
Rapide, however, an event pattern may specify that, say, a sequence of causally
ordered events is to be matched, or that a set of events that are not causally
ordered is to be matched; the Rapide runtime system will gather the necessary
information about the generated events and their causal relationships in order
to perform the match as specified.

There are a number of possible approaches to addressing causality in UML.
One approach would be to ignore causality, forgo the possibility of constraining
component behaviors with respect to causally related events, and simply ac-
cept UML’s “looser” semantics for event ordering. A second approach would be
to specify and use vector timestamps as additional model elements for encod-
ing the partial order within the signals used in a UML model; OCL stereotypes
would be needed to formalize the semantics of the vector timestamps and to en-
sure their consistent and correct use across the model. A third approach would
be to specify an additional model element that is the equivalent of the Rapide
runtime system; this would still require the declaration and use of additional
information in the signals used in a UML model.

Each of these approaches has its strengths and weaknesses, but they all
share the disadvantage of greatly complicating the resulting models. This sug-
gests that causality among events is an architectural concern that simply can-
not be represented in UML in a straightforward manner at the present time.
While we intend to explore these possibilities in greater detail in the future, we
are hopeful that future versions of UML will incorporate a more precise and
comprehensive semantics for event ordering.

5.3.5 Discussion of Rapide Extensions. This section has focused on repre-
senting Rapide’s features for event-based behavioral modeling of architectural

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



46 • N. Medvidovic et al.

components. Rapide is a large language that contains a number of addi-
tional features, including features for encapsulating specifications in reusable
modules and for specifying component behaviors with traditional procedural
statements. Representation of these features should be straightforward in
UML, and hence we have ignored them here.

Rapide differs from other ADLs in a number of ways. First, Rapide does not
support a notion of connectors as first class architectural elements. Instead,
connection rules are used to specify interactions between components. In par-
ticular, a connection rule is defined as part of a Rapide architecture declaration,
and it specifies how events generated by one set of components are connected
to events observed by another set of components. Hence, the configuration of an
architecture in Rapide is implicit, arising as a result of the firing of the archi-
tecture’s connection rules. Many of the concepts underlying architectural con-
nection rules are similar to those underlying component state transition rules.
Hence, their representation in UML would be similar. The main difference is
that, with Rapide components represented as UML classes, and with Rapide
component behaviors represented as UML state machines, the representation
of Rapide connection rules in UML requires the association of signals sent by
one component’s state machine with the signals received by another’s state ma-
chine. However, while UML provides syntactic mechanisms for achieving such
associations, the semantics of the resulting composite behavior is problematic,
as described in Section 5.3.4.

As discussed above, Rapide’s model of events and event patterns has many
natural analogs in the features of UML state diagrams. This is not too sur-
prising since UML state diagrams are based on statecharts [Harel 1987]. Both
Rapide and statecharts are suited to specifying the behavior of reactive systems,
and both exploit the complementary functions provided by events and states in
operational models of behavior. But in constraining UML to represent Rapide,
we were confronted by a number of semantic ambiguities and limitations of
UML, especially in its semantics for state diagrams. These problems suggest
that, in general, the semantics of UML will need to be made more precise in
order to support modeling of certain kinds of architectural concerns.

6. RELATED WORK

UML represents a maturation in the development of object-oriented design
notations. It offers a diverse collection of notations for capturing many as-
pects of the software development lifecycle, including not only traditional
design concerns (such as functional decomposition), but also aspects of re-
quirements analysis (particularly domain modeling), implementation, and
testing (particularly scenario-based functional testing). This paper has de-
scribed approaches to overcoming a key weakness of UML, its lack of ade-
quate support for modeling software architectural concerns. In this section
we discuss related work, including techniques for exploiting the architectural
modeling capabilities of one language within another language, and work on
improving the semantic basis and modeling features of UML and other object-
oriented notations.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 47

6.1 Architectural Interchange

This paper has described two strategies for providing software architects with
a variety of architecture modeling capabilities in a single, widely used notation.
One common thread between the two strategies is their attempt at leveraging
standardization—finding and exploiting a base notation (UML) that is general
enough to capture needed capabilities without providing too many opportuni-
ties for incompatibilities or adding too much complexity. The software archi-
tecture research community has attempted a different approach to supporting
the diverse needs of architects, namely, architectural interchange, as a way of
tolerating the existence and use of multiple, incompatible notations. In partic-
ular, architectural interchange is intended to allow architects to move between
different ADLs so that they need not all agree to use a single, standard ADL.

ACME is an architecture interchange language that is intended to support
automatic transformation of a system modeled in one ADL to an equivalent
model in another ADL [Garlan et al. 1997]. This allows architects to model and
analyze their system architecture in one ADL and then translate the model to
another ADL for further analysis. ACME’s approach is easier than providing di-
rect mappings between pairs of ADLs because the ACME language serves as an
intermediate step and provides additional tool support. ACME’s architectural
ontology plays a role analogous to UML’s meta model; however, ACME’s ontol-
ogy is smaller than UML’s meta model and focuses only on structural aspects
of architectures.

Full realization of ACME’s goals presents a number of challenges. Complete,
automated translation among a set of ADLs requires a set of semantic mappings
that involve every concept of every ADL in the set, which may not be possible
given that different ADLs address different system aspects and have different
semantics. The translation approach depends on exploiting constructs common
to every ADL. At this point, the evident commonalities are syntactic rather
than semantic [Medvidovic and Taylor 2000]. Furthermore, a study by Di Nitto
and Rosenblum demonstrated wide variation and little overlap in the abilities
of ADLs to support modeling of architectural styles induced by common mid-
dleware infrastructures [Di Nitto and Rosenblum 1999], suggesting that there
is little in the way of semantic commonality among ADLs to be interchanged.
For these reasons, ACME emphasizes a partial and incremental approach.

The approach discussed in this paper does not use translation between no-
tations, but rather is based on a core model (Strategies 1 and 2), possibly with
several independent extensions (Strategy 2). In using a core model and exten-
sions, the question arises of what should be in the core and what should be
left to extensions. Technical considerations play some role in this decision. For
example, ACME’s simple architectural ontology has the potential to ease tool
building, whereas UML’s larger meta-model presents a higher barrier. Devel-
opment processes also influence the core model. For example, object-oriented
design and use cases are widely used by practitioners and directly relate to
day-to-day development activities. We choose UML as our core model because
it is grounded in mainstream development practices, already has substantial
(and growing) tool support, and provides explicit extension mechanisms.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



48 • N. Medvidovic et al.

6.2 Architectures as Collections of Views

The work described in this paper focuses on a set of approaches to software
architectures that has emerged from one part of the research community: spec-
ification of structural and behavioral aspects of a software system centered
around a (formal) notation, an ADL. Another part of the community has tried
to identify useful architectural perspectives, or views. A model expressed in an
ADL essentially provides a single view of an architecture, which is typically for-
mal. In contrast, the views constructed in multiple-view approaches are often
informal or semiformal. Two representative examples of work with multiple
views are provided by Kruchten [1995] and Soni et al. [1995].

Kruchten [1995] presented the 4+ 1 view model of software architectures.
The four main views are the conceptual, static, dynamic, and physical views.
Together, these views capture a software system’s architecture. Kruchten [1995]
provides system usage scenarios, similar to UML’s use cases, as the fifth view
to relate the other four.

Similarly, Soni et al. [1995] identified four structural categories of software
architectures—conceptual, module interconnection, execution, and code. The
module interconnection view is a refinement of the conceptual view; it pro-
vides a functional and layered decomposition of the system. The execution
and code views closely correspond to Kruchten’s [1995] dynamic and static
views, respectively.

Although these approaches are in certain ways more comprehensive than
ADL-centered approaches, the strategies for modeling architectures in UML
described in this paper are applicable to the multiple-view approaches as
well. Indeed, Soni et al. [1995] demonstrated how UML can be constrained to
model their four architectural views [Hofmeister et al. 2000]. Their approach
is an instance of our Strategy 2, whereby UML constructs are stereotyped to
model architectural constructs. The strategy and examples we presented in
Section 5 go beyond their approach in that we also use OCL to formally specify
the stereotypes.

6.3 Other Work with UML and Design Notations

In addition to the work of Soni et al. [1995] with UML mentioned above, four
other related efforts with object-oriented design notations deserve mention.

Recently, Garlan and Kompanek [2000] conducted a study whose goal was
to enumerate and evaluate different options an architect has in selecting UML
modeling constructs to represent architectural structure (i.e., components, con-
nectors, systems, and styles). Unlike our choice of (stereotyped) UML classes
and class instances to represent architectural elements, Garlan and Kompanek
[2000] investigated five possibilities: UML classes as architectural types and
objects as their instances; UML stereotypes as types and classes as instances;
UML classes as both types and instances; UML components; and UML subsys-
tems (stereotyped UML packages). Their study shows that, while each of the
five choices has its merits, none of them is an ideal fit for the needs of software
architectures in terms of semantic match, understandability, or completeness.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 49

While our work has also focused on nonstructural aspects of architectures (be-
haviors, interactions, and constraints), we view Garlan and Kompanek’s [2000]
study as a useful extension to the work presented in this paper.

The work that is perhaps most similar to our own is the tailoring of UML to
support real-time systems development. Selic [1999] and Selic and Rumbaugh
[2000] described the use of stereotypes to augment UML with architecture mod-
eling constructs borrowed from the Real-Time Object-Oriented Method (ROOM)
[Selic et al. 1994]. The main architectural building block in this approach is
the capsule (i.e., a simple or compound component), which provides one or more
ports to support interaction with other capsules (including nested subcapsules).
Ports of different capsules are connected via connectors (which capture inter-
action relationships between capsules and which resemble simple attachments
between architectural elements found in ADLs). UML collaboration diagrams
are used to model an architecture as a configuration of capsules. Behavior is
modeled in this approach as protocols, which are specified by stereotypes that
identify a protocol and its protocol roles. UML state machines are used to spec-
ify behavioral models of capsule and protocol implementations, for which the
UML state machine notation has been augmented with a stereotype for a chain
state construct (a degenerate form of state used to chain transitions between
internal states of different compound states). Instances of all these newly intro-
duced architectural constructs are specified as stereotyped instances of existing
UML meta model elements, so that the resulting models are still valid UML.
Hence, this approach is a successful instance of our Strategy 2, and we view it
as an independent confirmation of the utility of that strategy.

Cheng and colleagues have worked on strengthening the formal underpin-
nings of OMT (the Object Modeling Technique), a precursor to UML [Bourdeau
and Cheng 1995; Wang et al. 1997]. In particular, they described an approach to
deriving algebraic specifications from OMT models (in particular, Larch specifi-
cations from OMT object models [Bourdeau and Cheng 1995] and LOTOS spec-
ifications from OMT dynamic models [Wang et al. 1997]). The derived specifica-
tions can then be subjected to rigorous, automated analyses for design errors,
including inconsistencies between the associated object and dynamic views.
While not specifically addressing architectural concerns, their research was
very much in the spirit of research on ADLs, which has attempted to create
languages with precise formal semantics to enable early analysis of architec-
tural models. However, while Cheng’s work involved deriving separate formal
models from an object-oriented notation, our work involves enhancing such a
notation with well-defined architecture modeling capabilities.

The creators of UML have developed a process model, the Unified Software
Process, for applying UML in object-oriented analysis and design [Jacobson
et al. 1999; Kruchten 1998]. The Unified Software Process is oriented toward
early development of an architecture from use cases. It is worth noting that the
Unified Software Process is supported by a UML profile comprising a number of
UML stereotypes and tagged values—much like the approach described in this
paper—but also requires additional graphical notation beyond what UML pro-
vides (along the lines of our Strategy 3, described in Section 3.3). In the Unified
Software Process, the architecture description of a system is a cross-section of

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



50 • N. Medvidovic et al.

the “architecturally significant” elements of the models in the architecture base-
line. The architecture baseline comprises early versions of the use-case model,
analysis model, and design model developed as part of the elaboration phase
[Jacobson et al. 1997]8. The architecture description is developed iteratively and
is considered to be fundamentally important for analyzing and understanding
the structure, behavior, performance, and other global characteristics of a soft-
ware system under construction. Hence, the architecture description achieves
the level of importance advocated by the software architecture research com-
munity. However, the fact that the Unified Software Process considers the ar-
chitecture to be an implicit attribute of existing UML models rather than an
explicit model in its own right is at odds with the accepted orthodoxy of software
architecture research.

7. DISCUSSION AND CONCLUSIONS

From our experience to date, adapting UML to address architectural concerns
seems to require reasonable effort, to be a useful complement to ADLs (and,
potentially, their analysis tools), and to be a practical step toward mainstream
architectural modeling. Using UML has the benefits of leveraging mainstream
tools, skills, and processes. It may also aid in the comparison of ADLs because
it forces some implicit assumptions to be explicitly stated in common terms.
Finally, the example ADL-specific extensions performed as illustrations of our
second strategy (Section 5) can be looked at as a basis of an evolvable, broadly
applicable extension of UML for architectural modeling.

The two strategies we describe are not without drawbacks: For each architec-
tural approach and ADL, we introduced a somewhat specialized usage conven-
tion (Strategy 1) or semantic extension (Strategy 2). Furthermore, our second
strategy relied heavily on OCL, whose formality may hinder wide adoption of
the strategy even though end users of the constrained UML model typically
will not need to write OCL constraints. OCL is a part of the standard UML def-
inition, and it is expected that standardized UML tools will be able to process
it. However, OCL is considered an uninterpreted part of UML, and UML tools
may not support it to the extent needed for creating, manipulating, analyzing,
and evolving architectural models. As serious as these drawbacks may be, we
believe them to be eclipsed by the potential benefits that can accrue.

This effort has thus furthered our understanding of UML and its suitabil-
ity for supporting architecture-based software development. While it may not
represent an all-inclusive study of the relationship between UML and ADLs,
it has given us valuable insights on which we intend to base our future work.
These insights and areas of future work are discussed below.

7.1 Key Insights in Relating UML and ADLs

There are many insights that could be drawn from the experiences reported
in this paper. In this section, we highlight six that are important from our

8Roughly speaking, the elaboration phase is the phase in which requirements are elaborated into
an initial design.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 51

broader experience with software architectures. Where appropriate, we draw
the reader’s attention to specific examples, figures, and sections that have led
to a given observation.

7.1.1 Software Modeling Philosophies. Neither UML nor ADLs constrain
the choice of implementation language or require that any two components be
implemented in the same language or thread of control. ADLs or styles may
assume particular communication protocols, such as C2’s asynchronous mes-
sage passing, and UML typically supports such restrictions (e.g., see Sections
4.4 and 5.1.1). Unlike some ADLs’ component specifications, UML classes only
support specifications of events that may be received, but not those that may
be sent.

The behavior of architectural constructs (components, connectors, commu-
nication ports, and so forth) to a large degree can be modeled with UML’s se-
quence, collaboration, statechart, and activity diagrams (e.g., see Figure 12 in
Section 4.4). Existing ADLs are typically able to support only a subset of these
kinds of semantic models [Medvidovic and Taylor 2000].

7.1.2 Assumptions about Intended Usage. Like any notation, UML em-
bodies its creators’ assumptions about its intended usage. “Architecting” a sys-
tem in the sense it is used in the software architecture community and in
this paper—by employing conceptual components, connectors, and their con-
figurations, exploiting rules of specific architectural styles, and modeling local
and global architectural constraints—was not an intended use of UML. UML’s
genesis and its primary strength is modeling software from an object-oriented
perspective, where the major system elements (components), their constituent
building blocks (subcomponents), their interactions (connectors), and the data
exchanged among them are all represented in the same way—as objects. Fur-
thermore, UML embodies a philosophy of maximum flexibility in the use of the
notation by designers and developers, which necessarily comes at a loss of some
formality and rigor. This would appear to conflict with the expectations ADL
purveyors have about the level of formality desired or needed by practicing
software designers. For these reasons, while one can indeed focus on the dif-
ferent architecturally relevant perspectives when modeling a system in UML,
a software architect may find that the support for those perspectives provided
by UML only partially satisfies his/her needs (as shown throughout the paper,
but especially in Sections 4 and 5).

7.1.3 Problem Domain Modeling. UML provides extensive support for
modeling a problem domain (e.g., see Figure 8 in Section 4.4). On the other
hand, architectural models described in ADLs often hide much of the informa-
tion present in a domain model, as seen in Section 4. This can be considered a
shortcoming of ADLs given that a domain model is considered to be a centerpiece
of a large category of software architecture models, namely, domain-specific
software architectures (DSSA) [Tracz 1995]. Modeling all the relevant infor-
mation early in the development lifecycle is crucial to the success of a software
project. Therefore, a domain model should be considered a useful architectural
complement [Medvidovic and Rosenblum 1997; Tracz 1995].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



52 • N. Medvidovic et al.

7.1.4 Architectural Abstractions. Some concepts of software architectures
are very different from those of UML (and of object-oriented design in general).
Connectors are first-class entities in many ADLs. As demonstrated in this paper,
the functionality of a connector can typically be abstracted by a class or com-
ponent (e.g., see Figure 10 in Section 4.4, and Sections 5.1.3, 5.2.2, and 5.2.3).
However, connectors may have properties that are not directly supported by a
UML class. For example, the interfaces of C2 connectors are context-reflective;
our attempts to model such connectors in UML required specialized modeling
of application-specific connector classes.

The underlying problem is even deeper. Although UML may provide mod-
eling power equivalent to or surpassing that of an ADL, the abstractions it
provides may not match an architect’s mental model of the system as faith-
fully as the architect’s ADL of choice. If the primary purpose of a language
is to provide a vehicle of expression that matches the intentions and prac-
tices of users, then that language should aspire to reflect those intentions and
practices [Shaw and Garlan 1995]. We believe this to be a key issue and one
that argues against considering a notation like UML to be a “mainstream”
ADL: A given language (e.g., UML) offers a set of abstractions that an archi-
tect uses as design tools. If certain abstractions (e.g., components and con-
nectors) are buried in other abstractions (e.g., classes), the architect’s job is
made more (and unnecessarily) difficult; separating components from connec-
tors, raising them both to visibility as top-level abstractions, and endowing them
with certain features and constraints also raises them in the consciousness of
the designer.

7.1.5 Architectural Styles. Architecture is the appropriate level of abstrac-
tion at which rules of a compositional style (i.e., an architectural style) can be
exploited and should be elaborated. Doing so results in a set of heuristics that,
if followed, will guarantee that a resulting system has certain desirable prop-
erties or lacks undesirable properties.

Standard UML provides no support for architectural styles; the rules of dif-
ferent styles somehow have to be “built into” UML (e.g., with a style-specific
profile). Our second strategy (described in Section 5) demonstrated how this can
be done using stereotypes. On the other hand, using UML “as is” (as described
in our first strategy in Section 4) introduces a problem in this regard: While
every architecture designed this way adheres to the UML meta model, and can
be relatively easily understood by a typical UML user and manipulated with
standardized UML tools, there is no guarantee that the designer will always
adhere to the rules of a given style.

7.1.6 Implementation Support. An ADL is frequently accompanied by
tools that generate (parts of) the infrastructure of systems modeled in the ADL.
This infrastructure is often also referred to as “glue code” [Shaw, DeLine et al.
1995] and it enforces the desired topology, interfaces, and interactions among
system components. At the same time, ADL specifications do not supply enough
detail to generate the entire system (e.g., the internal functionality of individ-
ual components), leaving a sizable task to external tools or human developers.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 53

Using UML in the manner discussed in this paper has the potential to aug-
ment the ADL-specific generation tools with similar tools provided to generate
implementations from UML models. For example, an implementation of a stat-
echart model of a component, such as the one depicted in Figure 16, can be
generated by using the STATEMATE tool [Harel and Naamad 1996]. Given
that the consistency between the ADL and UML models of the architecture
is ensured by the OCL constraints provided in our mapping, it is reasonable
to expect that the “internal” part of the implementation generated from the
UML model will fit with the “external” part generated from the ADL. We are
currently validating this hypothesis in the context of our prototype environ-
ment for mapping ADL specifications to UML specifications [Abi-Antoun and
Medvidovic 1999].

7.2 Future Work

We intend to expand this work in several directions, including providing tool
support for using UML in architecture modeling, maintaining traceability and
consistency between architectural and design decisions, and combining the ex-
isting implementation generation capabilities for ADLs and UML. We also in-
tend to draw upon our experience to date to suggest specific extensions needed
in the UML meta model to better support software architectures.

We have already begun to address several of these issues. We have developed
an initial integration of DRADEL [Medvidovic et al. 1999], an environment for C2
style architecture-based development, with Rational Rose [Rational Software
Corp. 1998], an environment for software design and implementation with
UML [Abi-Antoun and Medvidovic 1999]. The integration enables automated
mapping from an architecture described in C2’s ADL into UML using both
Strategies 1 and 2. Currently, this mapping is unidirectional, and the UML
model is consistent with respect to the architecture only initially; any sub-
sequent refinements of the UML model may violate architectural decisions.
Also, as additional views are introduced into the design (e.g., activity and
deployment diagrams), their consistency with the existing views (e.g., state and
class diagrams) must be ensured. To this end, we are beginning to develop a set
of techniques and associated tools to ensure full integration of views in UML
[Egyed and Medvidovic 1999; 2000]. The ultimate goal of this work is to apply
and evaluate the two strategies described here in the context of large-scale
case studies.

Another, long-term goal is to augment existing capabilities for generating im-
plementations from architectures. Such capabilities have typically only dealt
with a system’s overall interconnection and interaction characteristics (recall
Section 7.1.6). We intend to augment them with support for implementing in-
dividual architectural elements that is already available or is emerging in the
context of different UML modeling diagrams. Ensuring that individual design
elements are consistent with the overall architecture is a necessary first step
in accomplishing this task in a meaningful way.

Finally, it is important to note that the relevant future work is not restricted
to our research, but also includes UML itself. In the process of revising and

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



54 • N. Medvidovic et al.

completing this work over the past three years, UML has gone through several
revisions (from UML 1.0 to the current 1.3). While advertised as “minor,” these
revisions forced us to change several details of our mappings from the three
ADLs (e.g., the details concerning the meta model and OCL). The revisions also
resulted in a shortcoming that was introduced into UML only with version 1.3:
UML 1.1 was actually able to model both provided and required operations of
a class, while UML 1.3 is not. We hope that the major revision to UML, version
2.0, which is currently in preparation, can remedy some of the shortcomings
of UML as an architecture modeling notation that have been identified in
this paper.

ACKNOWLEDGMENTS

The authors wish to acknowledge Yuzo Kanomata and Roshanak Roshandel
for their help in preparing the final manuscript of this paper. We also thank
the anonymous referees for their extremely thorough and helpful comments on
the manuscript.

REFERENCES

ABI-ANTOUN, M. AND MEDVIDOVIC, N. 1999. Enabling the refinement of a software architecture
into a design. In Proceedings of the Second International Conference on the Unified Modeling
Language (UML’99, Fort Collins, CO). IEEE Computer Society Press, Los Alamitos, CA, 17–31.

ALLEN, R. J. 1997. A Formal Approach to Software Architecture. Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA.

ALLEN, R. AND GARLAN, D. 1994. Formalizing architectural connection. In Proceedings of the 16th
International Conference on Software Engineering (Sorrento, Italy, May). IEEE Computer Society
Press, Los Alamitos, CA, 71–80.

ALLEN, R. AND GARLAN, D. 1997. A Formal basis for architectural connection. ACM Trans. Softw.
Eng. Methodol. 6, 3 (July), 213–249.

BOOCH, G., JACOBSON, I., AND RUMBAUGH, J. 1998. The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA.

BOURDEAU, R. H. AND CHENG, B. H. C. 1995. A formal semantics of object models. IEEE Trans.
Softw. Eng. 21, 10 (Oct.), 799–821.

DI NITTO, E. AND ROSENBLUM, D. S. 1999. Exploiting ADLs to specify architectural styles induced
by middleware infrastructures. In Proceedings of the 21st International Conference on Software
Engineering (Los Angeles, CA). ACM Press, New York, NY, 13–22.

EGYED, A. AND MEDVIDOVIC, N. 1999. Extending architectural representation in UML with view
integration. In Proceedings of the Second International Conference on the Unified Modeling Lan-
guage (UML’99, Fort Collins, CO). IEEE Computer Society Press, Los Alamitos, CA, 2–16.

EGYED, A. AND MEDVIDOVIC, N. 2000. A formal approach to heterogeneous software modeling. In
Proceedings of the Third International Conference on the Fundamental Approaches to Software
Engineering (FASE 2000, Berlin, Germany, March-April), Tom Mailbaum, Ed. Lecture Notes in
Computer Science, No. 1783. Springer-Verlag, Berlin/Heidelberg, Germany.

FEATHER, M. S., FICKAS, S., AND VAN LAMSWEERDE, A. 1997. Requirements and specification exem-
plars. Automated Softw. Eng. 4, 4, 419–438.

FIDGE, C. J. 1991. Logical time in distributed computing systems. IEEE Comp. 24, 8, 28–33.
GARLAN, D. (Ed.). 1995. Proceedings of the First International Workshop on Architectures for

Software Systems (Seattle, WA, Apr.). Published in ACM Softw. Eng. Notes.
GARLAN, D., ALLEN, R., AND OCKERBLOOM, J. 1994. Exploiting style in architectural design envi-

ronments. In Proceedings of SIGSOFT ’94: Foundations of Software Engineering (New Orleans,
LA, Dec.), ACM Press, New York, NY, 175–188.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 55

GARLAN, D. AND KOMPANEK, A. 2000. Reconciling the needs of architectural description with object-
modeling notations. In Proceedings of the Third International Conference on the Unified Modeling
Language (UML 2000, York, UK, October), Springer-Verlag, Berlin, Germany.

GARLAN, D., MONROE, R., AND WILE, D. 1997. ACME: An architectural interconnection language.
In Wile. Proceedings of CASCON ’97 (Toronto, Ont., Canada). IBM Canada Ltd., Toronto, Ont.,
Canada.

GARLAN, D., PAULISCH, F. N., AND TICHY, W. F. (Eds.). 1995. Summary of the Dagstuhl Workshop
on Software Architecture, February 1995. ACM Softw. Eng. Notes July, 63–83.

GARLAN, D. AND SHAW, M. 1993. An Introduction to Software Architecture: Advances in Software
Engineering and Knowledge Engineering, Vol. I. World Scientific Publishing, Singapore.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8,
231–274.

HAREL, D. AND NAAMAD, A. 1996. The STATEMATE semantics of statecharts. ACM Trans. Softw.
Eng. Methodol. 5, 4 (Oct.), 293–333.

HOARE, C. A. R. 1985. Communicating Sequential Processes. Prentice Hall, Englewood Califfs,
NJ.

HOFMEISTER, C., NORD, R. L., AND SONI, D. 2000. Applied Software Architecture. Addison-Wesley,
Reading, MA.

JACOBSON, I., BOOCH, G., AND RUMBAUGH, J. 1999. The Unified Software Development Process.
Addison-Wesley, Reading, MA.

KRUCHTEN, P. B. 1995. The 4+ 1 view model of architecture. IEEE Software, 12, 6 (Nov.), 42–50.
KRUCHTEN, P. B. 1998. The Rational Unified Process. Addison-Wesley, Reading, MA.
LAMPORT, L. 1978. Time, clocks and the ordering of events in a distributed system. Commun.

ACM 21, 7, 558–565.
LUCKHAM, D. C., KENNEY, J. J., AUGUSTIN, L. M., VERA, J., BRYAN, D., AND MANN, W. 1995. Specification

and analysis of system architecture using rapide. IEEE Trans. Softw. Eng. 21, 4 (Apr.), 336–355.
LUCKHAM, D. C. AND VERA, J. 1995. An event-based architecture definition language. IEEE Trans.

Softw. Eng. 21, 9 (Sept.), 717–734.
MAGEE, J. AND KRAMER, J. 1996. Dynamic structures in software architecture. In Proceedings of

ACM SIGSOFT ’96: Fourth Symposium on the Foundations of Software Engineering (FSE4, San
Francisco, CA). ACM Press, New York, NY, 3–14.

MAGEE, J. AND PERRY, D. E. (Eds.). 1998. Proceedings of the Third International Software Archi-
tecture Workshop (ISAW-3, Lake Buena Vista, FL, Nov.). ACM Press, New York, NY.

MEDVIDOVIC, N., OREIZY, P., ROBBINS, J. E., AND TAYLOR, R. N. 1996. Using object-oriented typing
to support architectural design in the C2 style. In Proceedings of ACM SIGSOFT ’96: Fourth
Symposium on the Foundations of Software Engineering (FSE4, San Francisco, CA). ACM Press,
New York, NY.

MEDVIDOVIC, N., OREIZY, P., AND TAYLOR, R. N. 1997. Reuse of off-the-shelf components in C2-style
architectures. In Proceedings of the 1997 Symposium on Software Reusability (SSR’97, Boston,
MA). ACM Press New York, 190–198. Also in Proceedings of the 1997 International Conference
on Software Engineering (ICSE’97, Boston, MA). ACM Press, New York, NY, 692–700.

MEDVIDOVIC, N. AND ROSENBLUM, D. S. 1997. Domains of concern in software architectures and
architecture description languages. In Proceedings of the USENIX Conference on Domain Specific
Languages (Santa Barbara, CA, Oct.), Usenix Association, Berkeley, CA, 199–212.

MEDVIDOVIC, N. AND ROSENBLUM, D. S. 1999. Assessing the suitability of a standard design method
for modeling software architectures. In Proceedings of the First IFIP Working Conference on
Software Architecture (WICSA1, San Antonio, TX, Feb.), 161–182.

MEDVIDOVIC, N., ROSENBLUM, D. S., AND TAYLOR, R. N. 1999. A language and environment for
architecture-based software development and evolution. In Proceedings of the 21st Interna-
tional Conference on Software Engineering (Los Angeles, CA, May). ACM Press, New York, NY,
44–53.

MEDVIDOVIC, N. AND TAYLOR, R. N. 1998. Separating fact from fiction in software architecture. In
Proceedings of the Third International Software Architecture Workshop (ISAW-3, Lake Buena
Vista, FL, Nov.), ACM Press, New York, NY, 105–108.

MEDVIDOVIC, N. AND TAYLOR, R. N. 2000. A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Trans. Softw. Eng. 26, 1 (Jan.), 70–93.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



56 • N. Medvidovic et al.

MEDVIDOVIC, N., TAYLOR, R. N., AND WHITEHEAD, JR., E. J. 1996. Formal modeling of software archi-
tectures at multiple levels of abstraction. In Proceedings of the California Software Symposium
1996 (Los Angeles, CA, Apr.). University of Southern California, Center for Software Engineering
and University of California, Irvine, Irvine Research Unit in Software, Los Angels, 28–40.

MEHTA, N., MEDVIDOVIC, N., AND PHADKE, S. 2000. Towards a taxonomy of software connectors. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE 2000, Limerick,
Ireland, June). ACM Press, New York, NY, 178–187.

MORICONI, M., QIAN, X., AND RIEMENSCHNEIDER, R. A. 1995. Correct architecture refinement. IEEE
Trans. Softw. Eng. 21, 4 (Apr.), 356–372.

Rational Software Corporation. 1998. Rational Rose 98: Using Rational Rose. Rational Software
Corp., Cupertino, CA, and Lexington, MA.

OBJECT MANAGEMENT GROUP. 2000. OMG UML Specification Version 1.3. Object Management
Group, Needham, MA.

PERRY, D. E. AND WOLF, A. L. 1992. Foundations for the study of software architectures. ACM
SIGSOFT Softw. Eng. Notes 17, 4 (Oct.), 40–52.

ROBBINS, J. E., MEDVIDOVIC, N., REDMILES, D. F., AND ROSENBLUM, D. S. 1998. Integrating archi-
tecture description languages with a standard design method. In Proceedings of the 20th In-
ternational Conference on Software Engineering (ICSE’98, Kyoto, Japan, Apr.). IEEE Computer
Society, Los Alamitos, CA, 209–218.

ROSCOE, A. W. 1998. Two Papers on CSP. Technical monograph PRG-67, Oxford University Com-
puting Laboratory, Oxford, UK.

RUMBAUGH, J., JACOBSON, I., AND BOOCH, G. 1998. The Unified Modeling Language Reference Man-
ual. Addison-Wesley, Reading, MA.

SCATTERGOOD, B. 1998. The Semantics and Implementation of Machine-Readable CSP. Ph.D. dis-
sertation, Oxford University, Oxford, UK.

SELIC, B. 1999. Turning clockwise: Using UML in the real-time domain. Commun. ACM 42, 10
(Oct.), 46–54.

SELIC, B., GULLEKSON, G., AND WARD, P. 1994. Real-Time Object-Oriented Modeling. Wiley,
New York, NY.

SELIC, B. AND RUMBAUGH, J. 1998. Using UML for Modeling Complex Real-Time Systems.
ObjectTime white paper, March 11, 1998. Accessed June 2000 at Web site http://www.
objectime.com/otl/technical/umlrt.pdf.

SHAW, M. 1996. Procedure calls are the assembly language of software interconnection: Connec-
tors deserve first-class status. In Studies of Software Design, Proceedings of an ICSE’93 Work-
shop. Lecture Notes in Computer Science, No. 1078. Springer-Verlag, Berlin, Germany, 17–32.

SHAW, M., DELINE, R., KLEIN, D. V., ROSS, T. L., YOUNG, D. M., AND ZELESNIK, G. 1995. Abstrac-
tions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 21, 4 (Apr.),
314-335.

SHAW, M. AND GARLAN, D. 1995. Formulations and formalisms in software architecture. In Com-
puter Science Today: Recent Trends and Developments, J. van Leeuwen (Ed.), Lecture Notes in
Computer Science, No. 1000. Springer-Verlag, Berlin, Germany, 307–323.

SHAW, M., GARLAN, D., ALLEN, R., KLEIN, D., OCKERBLOOM, J., SCOTT, C., AND SCHUMACHER, M. 1995.
Candidate model problems in software architecture. Unpublished manuscript. Available from
http://www.cs.cmu.edu/afs/cs/project/compose/www/html/ModProb/.

SONI, D., NORD, R., AND HOFMEISTER, C. 1995. Software architecture in industrial applications. In
Proceedings of the 17th International Conference on Software Engineering (ICSE 17, Seattle, WA,
Apr.). ACM Press, New York, NY, 196 1995.

TAYLOR, R. N., MEDVIDOVIC, N., ANDERSON, K. M., WHITEHEAD, JR., E. J., ROBBINS, J. E., NIES, K. A.,
OREIZY, P., AND DUBROW, D. L. 1996. A component- and message-based architectural style for
GUI software. IEEE Trans. Softw. Eng. 22, 6 (June), 390–406.

TIGRIS. 2000. Design your UML models with ArgoUML. http://argouml.tigris.org/v08/press-
release.html.

TRACZ, W. 1995. DSSA (domain-specific software architecture): Pedagogical example. ACM SIG-
SOFT Softw. Eng. Notes 20, 3 (July), 49–62.

VESTAL, S. 1996. MetaH Programmer’s Manual, Version 1.09. Technical report, Honeywell Tech-
nology Center.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.



Modeling Software Architectures in UML • 57

WANG, E. Y., RICHTER, H. A., AND CHENG, B. H. C. 1997. Formalizing and integrating the dynamic
model within OMT. In Proceedings of the 1997 International Conference on Software Engineering
(Boston, MA, May), ACM Press, New York, NY, 45–55.

WARMER, J. B. AND KLEPPE, A. G. 1998. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, Reading, MA.

WOLF, A. L. (Ed.). 1996. Proceedings of the Second International Software Architecture Workshop
(ISAW-2, San Francisco, CA, Oct.).

Received July 1999; revised August 2000; accepted March 2001

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1, January 2002.


