
Modelling Simul. Mater. Sci. Eng.6 (1998) 755–770. Printed in the UK PII: S0965-0393(98)97151-0

Mesoscopic scale simulation of dislocation dynamics in fcc
metals: Principles and applications

M Verdier†‖, M Fivel‡ and I Groma§
† LTPCM Domaine Universitaire-BP 75 38402 St Martin d’Hères Cedex, France
‡ GPM2 Domaine Universitaire-BP 46 38402 St Martin d’Hères Cedex, France
§ Institute for General Physics, Eotvos University, H-1445 Muzeum krt. 6–8, Budapest VIII,
POB 323, Hungary

This paper is dedicated to Gilles Canova, who initiated and participated in the development of
the numerical simulations presented in this paper.

Received 14 June 1998, accepted for publication 27 August 1998

Abstract. This paper reviews the methods and techniques developed to simulate dislocation
dynamics on a mesoscopic scale. Attention is given to techniques of acceleration and to the
implementation of special boundary conditions. Typical results concerning the deformation of a
bulk crystal, the effect of image forces and the combination with a finite-element code to simulate
the indentation test are presented. The limits and future development of each application are
discussed.

1. Introduction

Dislocations are the vector for plastic deformation in crystalline solids and in materials
where the long-range interactions between dislocations dominates, as in, for example, most
face-centred-cubic (fcc) metals where the emergence and evolution of a heterogeneous
microstructure of dislocations governs mechanical properties.

At the mesoscopic scale, i.e. the scale between the atomic level and the macroscopic
level of the mechanical properties, the basic entity is the dislocation line. The dislocations
interact through a long-range stress field (in 1/r), and as a non-conservativeN -body problem
it is difficult to treat analytically. Therefore, with the aim of studying the self-organizing
patterns of the dislocation structure and their influence on the mechanical properties of a
single crystal, a framework for a three-dimensional (3D) numerical simulation of dislocations
on a mesoscopic scale has been developed in the past few years [1]. This work has recently
been reviewed [2].

A different version of this simulation has recently been developed to test an acceleration
scheme required to reach some larger strain [3]. Moreover, to study physical problems where
a high density of dislocations in the volume simulated is not required, such as the role of
interfaces and the indentation test, some complex boundary conditions have been developed
and implemented [4–6]. In the present paper, we first briefly review the key elements
for such simulations, emphasizing the different techniques that we have developed. Then,
we present the different boundary conditions developed in this simulation for the case of
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modelling the behaviour of bulk crystal, and for situations where a complex boundary is
required, such as surfaces taking into account image forces or indentation of a crystal. In
the last part, typical results concerning each case are presented and the limit of the various
methods are discussed.

2. General frame

2.1. Discretization of space and dislocations

The computer model was developed in the same scheme as detailed in [1]. The crystal
considered in this work has a face-centred-cubic structure (fcc). Dislocations are introduced
as linear discontinuities in an isotropic elastic continuum represented by a cube. A lattice
homothetic to a fcc lattice is superimposed on the cube: the length scale of this mesoscopic
network is deduced from experimental observations by Essmann and Mughrabi [7] in Cu,
where these authors observed a critical annihilation distance around 26Å and 500 Å,
respectively, for edge and screw dipoles. Therefore, the minimum distance where two
dislocations can coexist, 26̊A, is taken as the unit length of the lattice. This length is bigger
than the core radius of the dislocation (3–10Å) and allows the use of elastic expressions
for the stress interaction between dislocations without the nonlinearity problems related to
their core structures.

The dislocation considered in the simulation of fcc metals are all glissile, therefore
six Burgers vectors of (110) type are used. Dislocation lines are discretized into straight
segments of pure edge and screw characters as proposed by Devincre and Condat [8],
connected on the node of the mesoscopic lattice. Each screw segment, whose line vector is
aligned along〈110〉, can glide in the two (111) planes associated with the〈110〉 direction
along a〈211〉 direction. This describes simple glide and cross-slip geometry of a screw
dislocation. The edge segments have line vectors along the〈211〉 direction and can glide
only along the orthogonal〈110〉 direction associated, the climb being not implemented
for simulation of plasticity of crystal at room temperature. The 12 glissile systems are
enumerated in table 1 with the Schmid and Boas notation.

Table 1. List of vectors and system used in the simulation for fcc metals.

System

1 2 3 4 5 6 7 8 9 10 11 12

Edge 1̄01 1̄01 011 011 1̄10 1̄10 110 110 01̄1 01̄1 101 101
Screw 1̄21̄ 121 2̄11 21̄1 11̄2 1̄1̄2̄ 11̄2̄ 1̄12̄ 21̄1̄ 211 1̄21 12̄1
Normal 111 1̄11 1̄1̄1 1̄11 111 11̄1 11̄1 1̄11̄ 111 1̄11 11̄1 11̄1̄
Schmid and Boas B4 D4 C1 D1 B5 C5 D6 A6 B2 A2 C3 A3

2.2. Effective stress

The movement of the dislocation line is made of a succession of motion of each straight
segment, applying a molecular dynamics scheme. The kinetics of motion of a straight
segment depends upon the local effective stress and the line tension. The local effective
stress is a sum of several contributions:

(i) a threshold stress defined by the friction shear stress of the crystal (Peierls stress).
For Cu, one estimatesτPeierls= 3× 10−5 G= 1.26 MPa, where G is the shear modulus;



Mesoscopic scale simulation of dislocation dynamics in fcc metals 757

(ii) the internal stress field due to the dislocations((σint)). This computation is based
on the elastic stress field created by a finite dislocation segment, using DeWit’s formula [9]
modified by Devincre and Condat [8]. Because of the long-range interaction of dislocations
(1/r), no cut-off radius can be introduced. This implies computingN2 interactions (N being
the number of segments) for each time step. We have developed a method to decrease this
number of computations detailed later;

(iii) the external stress tensor((σext)). For example, the macroscopic tensor of an
uniaxial tensile stress which is applied homogeneously in the cube, or the local stress
coming from an indenter; and

(iv) the image force tensor((σim)) taking into account free surfaces.
The effective resolved shear stressτ ∗ on a segment of Burgers vectorb and line vector

l, is calculated using the Peach–Koehler formula

τ = [[((σint))+ ((σext))+ ((σim))] · b] l̂. (1)

And taking into account the friction shear stress

τ ∗ = τ − sign(τ ) · τPeierls. (2)

2.3. Line tension

The line tension, or self stress of the dislocation line, is calculated either from the gradient
of the self-energy due to virtual displacements as described in [8] or from the local radius
of curvature of the dislocation line. This latter approach leads to a less squared shape of
the dislocation loop produced by the Frank Read mechanism of dislocation multiplication
because it is less dependent on edge-screw discretization of the dislocation line. LettingR

be the local curvature radius of a dislocation line under equilibrium, one has according to
Cottrell [10]

|τline tension| = αGb

R
(3)

whereα = 0.63 is obtained from the experimental observations of the curvature radius of
dislocation lines by Mughrabi [11].

2.4. Dynamic of dislocations

Evolution of the dislocation configuration is based on a molecular dynamics scheme; the
time step of the simulation is typically set around 10−9 s, which allows for a permanent
regime for the speedv of the dislocation segments. Then,v obeys a Newtonian-type law

v = τ ∗ b
B

(4)

whereB is a viscous drag coefficient due to interactions with phonons at room temperature
(B = 1.5× 10−5 Pa s for Cu) [12]. To take into account the dynamics of segments of
different speeds, the time step is limited to the order of magnitude of 10−9 s, and an
arbitrary speed limit is set to 100 m s−1.

2.5. Core effects

To take into account local properties related to the core of the dislocation, such as the
cross-slip of screw dislocations, the annihilation/recombination of lines, and sessile junction
formations, one has to add some rules to the model.
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The cross-slip mechanism of screw segments is based on a stochastic test using the
following probability per unit of time

P = β L
L0

δt

δt0
exp

(
V · [τ ∗ − τIII ]

kT

)
(5)

whereτIII is the resolved shear stress at the onset of stage III of plastic deformation,V is
the activation volume,k is the Boltzmann constant,β is a normalizing coefficient, andL0

andδt0 are respectively references to length and time. According to the work of Bonneville
et al [13] concerning Cu crystals,V = 300 b3 and the probabilityP is set to one at room
temperature when aL0 = 1 µm screw dislocation under a resolved shear stressτ ∗ = τIII is
at a critical distance on a parallel plane (500Å for Cu) of an opposite Burgers vector screw
dislocation.

The rules concerning annihilation and recombination of segments are naturally done
on the lattice using a sign convention of the orientation of the dislocation lines. For non-
coplanar crossing of dislocations, only attractive sessile junction formation is taken into
account based on a line energy minimization criterion

b2
1 + b2

2 < (b1+ b2)
2 (6)

i.e. the segments ofb1 andb2 Burgers vector are immobilized when this condition is true.
Sessile junctions are destroyed when the resolved shear stress on the immobilized segments
exceeds a threshold valueτj , set to 12.5 MPa based on comparison with the forest hardening
model [14].

3. Acceleration methods

For N segments in the simulation, the total number of interactions required to compute
((σint)) per time step is equal toN2 − N . To reduce this number, we have used the
assumption that the time and space variations of the long distance stress field are small.
Therefore, the cube is subdivided into (M ×M ×M) boxes, as shown in figure 1.

Figure 1. Scheme of the box system used for the long-distance stress field calculation.

For each box, we define the short distance volume as being the box itself and its first
neighbours, and the long distance the remaining boxes. Without any approximation, at any
segment inside a sub-boxS where ((σint)) needs to be computed can be written as

((σint))segment= ((σSD))segment+ ((σLD))segment (7)
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where ((σSD)) and ((σLD)) are the short-distance and long-distance stress fields, respectively.
The first assumption is that the long distance stress contribution varies little in the volume
of the box. It is taken as constant and calculated at the centreI of the box. The variation
of the long-distance stress field is considered to have a long wavelength compared to the
half size of the box

((σint))segment≈ ((σSD))segment+ ((σLD))centre I . (8)

The second approximation is that ((σLD))centre I is not updated every time step as
((σSD))segmentbut with a periodf .

The total number of interactions forN segments to be computed with this method
averaging on allM3 boxes (in the volume with 26 first neighbours, or less when close to
the surface, figure 1) is per time step

c(M, f ) = N

M3

[
1

f
(M6− 27M3+ 54M2− 36M + 8)+ 27(N − 1)− 54

(N − 1)

M

+36
(N − 1)

M2
− 8

(N − 1)

M3

]
. (9)

The efficiency of the method,c(M, f )/(N2−N), is plotted in figure 2 for different number
of segments. For 50 000 segments with more than (15× 15× 15) boxes, a minimum factor
improvement between five and ten (forf greater than 20 time steps) can be achieved.
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Figure 2. Efficiency of the box method for different updating periodf and different number of
segments.

The error due to the approximation by assuming a homogenous long-distance stress
field within a box is illustrated in figure 3. ((σLD)) has been calculated along 50 pointsP
on a (111) diagonal of a box and compared to the value at its centreI . A relative errorεr

is defined as

εr =
∑ (|σ iLD(P )− σ iLD(I )|

maxk(σ kint(P ))
(10)

whereσ j is thej component of the ((σ )) tensor written in vectorial notation (j = 1, 6). In
figure 3, the relative errors have been averaged for the set of pointsP . The configuration
used is obtained after a tensile deformation of a 15µm simulation cube along [111] and
contains 50 079 segments (dislocation densityρ = 5×1012 m−2, see for example figure 6).
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Figure 3. Averaged relative error introduced by the box method against the number of box (M)
per side on the cube.
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Figure 4. Evolution of σzz during several simulation steps,σzz is computed without any
approximation (σint), with the box method (σLD +σSD), with a cut-off radius (σSD). The 15µm
simulated cube has 50 000 segments.

The curve in figure 3 presents a minimum due to the fact that for a small number of
boxes, the volume of each box is important, and the long-distance field is not homogenous
within a box. For a large number of boxes, the nearest segments belonging to the long-
distance volume are too close and an error is introduced by computing their stress field in
the centreI instead ofP .

An optimum number of boxes between 83 to 113 boxes was obtained, minimizing the
relative errorεr (10), with a relative error of less than 10%.

The error introduced by the update period is more difficult to evaluate: it strongly
depends on the type of mechanical test simulated, the dislocation density and the time step
used, factors that would determine the evolution kinetics of a given configuration. However,
in figure 4 we have compared the evolution ofσzz of ((σint)) against the number of simulation
time steps, calculated with and without the box method. In the case of the calculation with
the box method, we useM = 11 andf = 20 steps. The initial configuration is a cube
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Figure 5. Gain and efficiency per processor for the stress calculation on a (T3D) computer
against the number of parallel processors.

of 15 µm size, with 50 000 segments obtained after a macroscopic strainε = 1.5× 10−4

pulled along thez-axis at a strain rate of 50 s−1. For comparison, the componentσzz of
the short distance stress ((σSD)) is also reported: it would correspond to internal stress if a
cut-off radius was introduced instead of the box method.

In this figure, it can be seen that using the box method with an update periodf = 20
steps gives results very close to the exact solution. Moreover, the difference of several
MPa between ((σSD)) and ((σint)) confirms the need to take the long-distance field stress
into account.

In conclusion, this simple box method does not remove theN2 character of computation
required for local interactions. It allows, however, for a computational gain between two
and ten times with a relatively small error in the internal stress evaluation.

In order to reduce the user computation time, we have developed a parallel version of
the code running on different computers using the parallel virtual machine (PVM) library.
Only computation of the resolved shear stress on each segment using the box method has
been parallelized, since the part of the code in charge of configuration updates through
the segment displacements and is too complex to be easily made parallel. The scheme
we have adopted is to spread the internal stress calculation amongst different processors,
being helped by the natural subdivision of the box method. Figure 5 illustrates the gain
for one internal stress computation and the efficiency per processor against the number of
processors, on a Cray T3D for a configuration of 20 000 segments. For such a simulation,
the compromise is balance between the time spent for the transfer of the configuration
to each processor, and the time spent computing the stress field. Therefore, a maximum
number of processors used on this type of machine is on the order of eight, for which the
efficiency is 90%. This gain represents the gain only for the stress computation, and it has
to be divided roughly by two for the whole simulation, because the configuration update
takes around 50% of the time for 20 000 segments when the whole simulation is executed
on a single processor.

4. Boundary conditions

Depending on the type of problem studied, different boundary conditions have been
developed. We review the different methods used for the simulation of a bulk crystal.
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Figure 6. (a) Whole deformed microstructure of 82 270 segments, dislocation density in the
15 µm cube: ρ = 9.6× 1012 m−2; in the sphere (b)ρ = 18.7× 1012 m−2. (c) Dislocation
density against sphere radiusR.

4.1. Bulk crystal simulation

The primary goal for this type of simulation of plastic deformation is to obtain features
of the dislocation structure of a bulk single crystal. Therefore, a minimum cube size is
15 µm3: for dislocation density around 1013 m−2 which are achievable by simulation in
such a volume, the size of an emergent self-organized structure of dislocations should be of
several microns diameter. This relatively small volume prohibits the use of real free surface:
the images forces from one single surface would have an action to a depth of 4µm in the
cube (cf section 5 of this paper) [6].

Moreover, whatever the sort of boundary (free, periodic,. . .) used to simulate a bulk
crystal, their effect is not clear. Therefore, for the sake of simplicity, we simulate a cube
but only the dislocations inside a sphere are taken into account in terms of data recorded
(plastic deformation, density,. . .). The choice of a sphere also has the advantage that it
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does not favour any crystallographic direction in the process of cutting the segments as they
touch the boundary. This sphere lies far enough from the sides of the cube, so that their
artifact does not affect too much the content of the sphere. As can be seen in figure 6(a), the
dislocation density near the sides of the simulated cube is smaller than towards the centre.

Figure 6(c) shows, for this configuration, evolution of the dislocation density in a sphere
with different radii. The effect of the surfaces is seen for a radius greater than 5µm; the
dislocation density is constant in the 4–5µm range.

4.2. Free surfaces

The use of an elastic continuum as a framework for the simulation allows the use of
the principle of elastic field ‘superimposition’: as described by van-der-Giessen and
Needlemann in two dimensions [15], it consists of superimposing both elastic fields from
the dislocations and from the boundary, figure 7. For the special case of image forces from a
free surface, the use of a finite element code is not compulsory: owing to Boussinesq linear
operators [16], an analytical solution exists to determine the elastic field in a half-space
volume due to a point load at its flat surface.

σ σ σ= +$ ~ Boussinesq operators

T=0

σ(Μ)

FD

σ(Μ)

0-FD

σ(Μ)
= +

Figure 7. Scheme of the Boussinesq problem applied to a free surface.

LetX ′ be a point on a surface of a half space where forceF is applied, then the elastic
tensor in the volume at a pointX is

σij (X) = Bijk(X,X ′)Fk(X ′) (11)

whereB is the Boussinesq operator [16]. The method is described in [6] and is in good
agreement with the analytical solution of Gosling and Willis for a dislocation loop [17].
An extension of this method can be developed for the case of two free surfaces in order to
simulate a free standing thin film [4]. The principle is shown in figure 8.

The problem of image forces of dislocations in this problem is decomposed into two
sub-problems:

(i) the image forcesFd andFd′ coming from the dislocations in the volume are calculated
on the two surfaces (S andS ′, respectively) as if the dislocations were in an infinite elastic
medium. However, reintroduction of the forceFd on the surfaceS through the Boussinesq
operator will create a forceF ′B on the surfaceS ′ (and also a forceFB on S from the
reintroduction ofF ′d on S ′).

(ii) the equilibrium of the surfaces is then obtained by applying the force−(Fd − FB)

on S and−(F ′d− F ′B) on S ′. The image forces in the volume are then computed using the
Boussinesq operator on those two forces.
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(b) Reintroduction of image forces using the Boussinesq method.

4.3. Complex boundary conditions

More complex boundary conditions such as the one occurring during an indentation test
can be treated following the same decomposition as described for thin films. However,
because the Boussinesq operators deal only with forces of plane loaded surfaces, the use
of a finite-element code is required for this more complex boundary condition, as shown in
figure 9.

Ud -UDUd

Fd

σ(M)

Ω Ω Ω

d2 Ω

d Ω1

σ(M) σ(M)

Fd

UD

-FD

FD

σ σ σ= +$ ~
Finite element resolution

(Castem2000)

Figure 9. Scheme of dislocations and complex boundary problem in a finite volume�, where
displacementsUd and forcesFd are imposed (see text).

The finite volume� contains some dislocations, an external forceFd is applied on a
boundary∂�1 and a displacementUd on a boundary∂�2. The stress field ((σ )) that has
to be applied to the dislocations is the sum of ((σD)) and ((σdiff )):

(i) ((σD)) is the stress field of the dislocations as if they were in an infinite medium (no
free surfaces), which in the simulation is ((σint)). However, ((σD)) creates on the boundaries
∂�1 some forcesF D = ((σint)) · n (n is normal of∂�1), and some displacementsUD on
∂�2.
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(ii) ((σdiff )) reproduces the mechanical equilibrium of the boundaries, and corresponds to
the solution of a dislocation-free elastic volume� with the boundary conditions (Fd−FD)
and (Ud− UD) on ∂�1 and∂�2, respectively.

This decomposition has been applied to the problem of nano-indentation of a crystal
by a sphere [5]. The calculation of ((σdiff )) is solved classically using a finite-element code
(CASTEM2000). The plastic displacementUD from the dislocation motion is computed in
the following manner: the space is divided in small subvolumesV containing the node of
the meshed surface where the displacement must be established. Then on each node, the
distortionβp is obtained by

βp = dA · b
V

where dA is the swept area of a moving dislocation. This discrete plastic field of distortion
is transformed in continuous plastic field via Gaussian distribution functionsf

UD =
∫
f (βp) · dX.

5. Applications

5.1. Bulk deformation of crystal

The initial configuration for this type of simulation consists of a random distribution of
segments pinned at their end (figure 10(a)). The initial multiplication mechanism is based
on Frank Read source activation as in real crystals, where lines of dislocations are pinned
at their ends on fix obstacles (sessile dislocations, vacancy,. . .) (figure 10(b)). This initial
configuration is not initially under mechanical equilibrium, but during the first simulation
steps, because the whole contribution of dislocations is computed when displacing a segment
the structure relaxes by forming 3D loops (cross-slip mechanism). Moreover, the pinned
point effect is thought to become negligible when the dislocation density is high enough.

(a) (b)

Figure 10. (a) Example of an initial configuration of segments. (b) Frank Read multiplication
mechanism.

To study the characteristic of self organization patterns of a dislocation population, the
crystal is pulled in tension at a constant strain rate, typically dε/dt = 50 s−1. The tensile axis
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is chosen along a crystallographic direction such as [100] or [111], that allows to activate
several slip systems. The strain rate used is in the range of quasi-static testing, avoiding
dynamic testing (dε/dt > 100 s−1) conditions, where plastic deformation is localized on a
reduced number of slip systems.

Typical stress-strain curves are shown in figure 11. The initial transient peak in figure 11
is caused by an artifact related by the initial configuration: there is initially a too low mobile
dislocation density which is unable to achieve the imposed strain rate because the pinned
segments sources have not been activated. In cases where the initial configuration has a
higher density of dislocations which can accommodate more rapidly the strain rate, the
transient peak is absent.

During deformation, the dislocations density continuously increases as shown in
figure 12(a), and the repartition on each slip system, figure 12(b), is in agreement with their
respective Schmid factor. Moreover, the homogenous repartition of dislocations among the
activated slip systems ensures that the strain rate used is well in a quasi-static domain of
deformation [18].

The microstructure of the deformed state are shown in figure 13, where a thin slice
is cut through the simulated cube. One can observe the emergence of tangled dislocation
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Figure 13. Cut of a 1µm [111] thick slice within the simulated structure,ε = 2× 10−4.

walls, which are thought to be the initiation of the cell structure developed at higher strain.
However, the actual limit of the simulation (due to theN2 algorithm) prevents us getting
higher strain thanε = 0.05% in reasonable computing time.

5.2. Free surface

To illustrate the importance of the image forces from a free surface, the evolution of
the image forces tensor components are calculated as a function of the depth in the
cube, figure 14(a). The dislocation configuration in the cube has a dislocation density
ρ = 2× 1012 m−2, and the Boussinesq method has been applied using a mesh of 17 948
points on one surface of the cube. The image forces significantly affect the volume to a
depth of 4µm. However, if one compares the magnitude the image force field and the
dislocation direct stress field, both resolved on a slip system, it appears that the effect of
the former affect the volume to a depth of 2µm, figure 14(b).

5.3. Nano-indentation test

The principle of the nano-indentation test is to impose the Hertzian elastic stress field
corresponding to the contact of a sphere on a flat surface. As observed experimentally,
dislocation loops are nucleated under the indenter. These loops must be nucleated when
either a macroscopic or a microscopic loading criterion is satisfied. The local criterion refers
to the critical resolved shear stress on the slip planes for loop nucleation. However, this
value is not very well known yet due to the high complexity of the atomistic distortions
involved under sharp indenters. Since the macroscopic load is decreased when a new loop
is introduced in the crystal, an alternative scheme consists in matching the computed applied
load with the appropriate experimental data, i.e. the nano-indentation loading curve on pure
single crystals. This criterion is the one used in this paper. This preliminary experiment is
necessary to run the simulation with some physical parameter. In future, the critical shear
stress for loop nucleation will be fixed and the simulation will be executed without any
experimental parameter.

Dislocation loops are nucleated as prismatic loops under the indenter at the locus of
maximum shear stress. The area of the nucleated loop is equal to the projected contact area
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Figure 14. (a) Evolution of the six components of the image force tensor against the depth in
the cube from the surface. Cube with a dislocation densityρ = 2× 1012 m−2. (b) Comparison
of image forces and direct dislocation stress fields resolved on (111̄) [1̄10].
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Figure 15. Load displacement curve in the case of a 50 nm [001] indentation.

of the indenter [19]. To obtain this shear stress threshold, prismatic loops are nucleated until
the macroscopic force applied on the indenter is equal to that measured experimentally on
a load-displacement (P–h) curve obtained on pure Cu. Figure 15 displays an example of
such an adjustment in the case of a [001] indentation on Cu to a depth of 50 nm. The initial
solution (point 0 on figure 15) is given by the Hertzian solution as calculated by the finite-
element code, then nucleations of loops decrease the macroscopic forceP until it reaches
the experimental curve (point 1). Dislocations then move under the heterogeneous stress
field taking into account the boundary conditions. When the dislocation strain becomes
negligible, this relaxation process is stopped and an load increment is applied. This scheme
is repeated during the indentation process (points 1–5). This procedure ensures the loading
process to be quasi-static. The dislocation microstructures corresponding to depths of 15,
19, 35 and 50 nm (points 0, 1, 3 and 5, figure 15) are shown on figure 16.
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Figure 16. Indent induced dislocation microstructure corresponding to figure 15.

The simulated microstructure has been directly compared to that obtained from
transmission electron microscope observations as a result of an accurate modelling of the
experimental procedure (reset of the indenter load, cut of a thin slice in the cube, relaxation
due to image forces on both sides of the foil) [19].

6. Conclusion

This papers reviews the different techniques used in the simulation of dislocation dynamics
in fcc metals on a mesoscopic scale. New acceleration methods for the long-distance stress
calculation have been implemented. Boundary conditions have been solved for different
cases (bulk, thin film, indentation). Solving complex boundary condition problems requires
coupling between the mesoscopic code and the finite-element approach.

Future developments concern an extension of this coupling in order to take into account
plastic displacements at interfaces to simulate, for example, the unloading part of the
indentation process and the plastic behaviour of films on substrate and of multilayers.
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